WO2022064614A1 - 界磁子および界磁子を備えた電動機 - Google Patents

界磁子および界磁子を備えた電動機 Download PDF

Info

Publication number
WO2022064614A1
WO2022064614A1 PCT/JP2020/036108 JP2020036108W WO2022064614A1 WO 2022064614 A1 WO2022064614 A1 WO 2022064614A1 JP 2020036108 W JP2020036108 W JP 2020036108W WO 2022064614 A1 WO2022064614 A1 WO 2022064614A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
pole permanent
permanent magnets
magnetic
permanent magnet
Prior art date
Application number
PCT/JP2020/036108
Other languages
English (en)
French (fr)
Inventor
純香 乙坂
龍太郎 稲垣
拓実 東松
裕史 若山
ザイニ アリフ
裕介 坂本
研太 元吉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021525853A priority Critical patent/JP6947340B1/ja
Priority to DE112020007625.3T priority patent/DE112020007625T5/de
Priority to PCT/JP2020/036108 priority patent/WO2022064614A1/ja
Priority to CN202080105117.XA priority patent/CN116114144A/zh
Publication of WO2022064614A1 publication Critical patent/WO2022064614A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present disclosure relates to a field magnet composed of a permanent magnet and an electric motor provided with the field magnet.
  • a Halbach magnet array structure As a field structure of an electric motor having a permanent magnet, a Halbach magnet array structure has conventionally been used for a permanent magnet for the purpose of concentrating magnet magnetic flux.
  • a Halbach magnet array there is an arrangement in which a plurality of main magnetic pole permanent magnets magnetized in the direction of the generated magnetic field and secondary magnetic pole permanent magnets arranged between the main magnetic pole permanent magnets are fixed in a row to the back yoke. ..
  • Patent Document 1 Since the arrangement described in Patent Document 1 narrows the surface on the generated magnetic field side, the secondary magnetic flux permanent magnets arranged between the main magnetic flux permanent magnets and the main magnetic pole permanent magnets are fixed in a row to the back yoke. Although the generated magnetic field can be made larger than that of such an arrangement, there is a problem that the magnetic flux originally possessed by the magnet cannot be effectively used.
  • This disclosure is made in order to solve the above-mentioned problems, and includes a field magnet and a field magnet capable of improving the thrust by a configuration that effectively utilizes the magnetic flux of the original permanent magnet.
  • the purpose is to provide an electric motor.
  • the field magnet according to the present disclosure differs from a plurality of main magnetic pole permanent magnets magnetized in a direction orthogonal to the main surface of the back yoke and arranged so that the magnetization directions alternate, and the magnetization directions of the main magnetic pole permanent magnets. It is magnetized in the direction and arranged so that the magnetization directions alternate, and a plurality of secondary magnetic pole permanent magnets and main magnetic pole permanent magnets provided alternately with the main magnetic pole permanent magnet in the same direction as the arrangement direction of the main magnetic pole permanent magnets.
  • a non-magnetic layer which is a non-magnetic region provided between the magnet and another adjacent main magnetic pole permanent magnet, is provided, and the secondary magnetic pole permanent magnet has a non-magnetic layer in a direction at least partially orthogonal to the main surface.
  • the position of the surface facing the main surface of the secondary magnetic pole permanent magnet is the position of the surface of the main magnetic pole permanent magnet farthest from the main surface in the direction orthogonal to the main surface and the main surface. It is at the same position in the direction orthogonal to the surface or at a position farther from the main surface than the position of the surface of the main magnetic pole permanent magnet, and the length in the arrangement direction of the secondary magnetic pole permanent magnet is the same as the length in the arrangement direction of the non-magnetic layer.
  • it is characterized in that it is longer than the length of the non-magnetic layer in the arrangement direction.
  • the magnetic flux of the permanent magnet can be effectively utilized and the thrust can be improved.
  • FIG. 1 is a cross-sectional view showing an electric motor provided with a field magnet according to the first embodiment of the present disclosure
  • FIG. 2 is a vertical cross-sectional view showing an electric motor provided with a field magnet according to the first embodiment of the present disclosure. It is a figure.
  • the cross-sectional view is a cross-sectional view in a plane orthogonal to the arrangement direction of the permanent magnets described later
  • the vertical cross-sectional view is a plane orthogonal to the main surface of the back yoke described later and parallel to the arrangement direction of the permanent magnets. It is a cross-sectional view in.
  • a linear motor will be described as an example of the electric motor, but the present invention is not limited to this.
  • the electric motor 10 includes a gantry 100, a pair of guide rails 102 extended to the gantry 100, a stage 101 that can be moved by being guided by the guide rails 102, an armature 2, and a field magnet. It is equipped with a child 3.
  • a field magnet 3 that generates a periodic magnetic field is installed on the gantry 100.
  • the periodic magnetic field here is a periodic magnetic field in which N magnetic poles and S magnetic poles are alternately generated.
  • the armature 2 is supported on the stage 101 by securing an air gap which is a predetermined gap between the stage 101 and the field magnet 3.
  • the armature 2 supported by the stage 101 is guided by the guide rail 102 and becomes movable in a state of facing the field magnet 3.
  • the armature 2 moves while generating an attractive force and a repulsive force between the armature 2 and the periodic magnetic field generated from the field magnetic field 3. That is, in the embodiment of the present disclosure, the field magnet 3 is configured as a stator in the motor 10 and the armature 2 is configured as a mover in the motor 10.
  • the field magnet 3 may be used as a mover and the armature 2 may be used as a stator.
  • the configuration of the gantry 100, the stage 101, and the guide rail 102 is not limited to this, and any configuration may be used as long as one of the field magnet 3 and the armature 2 can be fixed and the other can be moved. ..
  • each configuration will be further described, but detailed description of each configuration will be omitted because the configurations of the gantry 100, the stage 101, and the guide rail 102 are well-known techniques.
  • the armature 2 includes a core 20 made of an electromagnetic steel plate which is a soft magnetic material, and a coil 21 wound around a tooth 22 portion of the core 20.
  • the armature 2 is attached so that the tip of the teeth 22 faces the field magnet 3 side and is parallel to the surface of the stage 101. With this configuration, the armature 2 can move in the arrangement direction of the permanent magnets constituting the field magnet 3, which will be described later, while ensuring a constant gap between the teeth 22 and the field magnet 3.
  • the core 20 of the armature 2 is manufactured by passing through a laminated body of electrical steel sheets and fastening and integrating them with bolts and nuts.
  • the traveling direction of the armature 2 is the x direction
  • the direction across the air gap between the armature 2 and the field magnet 3 is the y direction
  • the direction perpendicular to each of the x direction and the y direction is the z direction.
  • the right direction in the drawing of the paper surface is the positive direction of x (+ x direction)
  • the upward direction of the paper surface is the positive direction of y (+ y direction)
  • the front direction of the paper surface is the positive direction of z (+ z direction). Is defined as. This definition also applies to other embodiments.
  • the field magnet 3 is composed of a back yoke 5 made of a lump of magnetic material and a permanent magnet.
  • the back yoke 5 is formed in a plate shape and extends in the x direction, and is arranged so that the main surface 5a of the back yoke 5 is a surface orthogonal to the y direction.
  • the main surface 5a of the back yoke 5 is the surface on the armature 2 side among the surfaces orthogonal to the y direction.
  • the permanent magnets are the main magnetic pole permanent magnets 41 and 51 magnetized in the y direction, which is the direction of the generated magnetic field, and the secondary magnetic pole permanent magnets 61 and 71 magnetized so as to be different from the magnetic pole directions of the main magnetic pole permanent magnets 41 and 51. And, including.
  • the main magnetic pole permanent magnets 41 and 51 and the sub magnetic pole permanent magnets 61 and 71 are arranged in a Halbach array on the main surface 5a of the back yoke 5 so that the magnetic field strength in a specific direction increases.
  • a "permanent magnet" may be used.
  • main magnetic pole permanent magnets 41 and 51 for example, Nd-Fe-B-based sintered magnets made into a rectangular parallelepiped are used. Further, the main magnetic pole permanent magnets 41 and 51 are magnetized in the y direction, which is the direction across the air gap between the armature 2 and the field magnet 3.
  • the main magnetic pole permanent magnet 41 is magnetized in the + y direction orthogonal to the main surface 5a of the back yoke 5, and the main magnetic pole permanent magnet 51 is oriented in the ⁇ y direction. Magnetized.
  • the main magnetic pole permanent magnets 41 and the main magnetic pole permanent magnets 51 are alternately arranged on the main surface 5a of the back yoke 5 in the x direction with an interval. That is, the main magnetic pole permanent magnets 41 and 51 are linearly arranged so that the magnetization directions of the other main magnetic pole permanent magnets 41 and 51 adjacent to each other are opposite (alternating) to each other in the x direction. Further, in the y direction, the main magnetic pole permanent magnets 41 and 51 are provided so as to be located in the + y direction with respect to the back yoke 5.
  • the secondary magnetic pole permanent magnets 61 and 71 the same as the main magnetic pole permanent magnets 41 and 51, Nd-Fe-B-based sintered magnets manufactured in a rectangular parallelepiped are used. Further, the secondary magnetic pole permanent magnets 61 and 71 are magnetized in the x direction, which is the movable direction of the armature 2.
  • the secondary magnetic pole permanent magnet 61 is magnetized in the + x direction
  • the secondary magnetic pole permanent magnet 71 is magnetized in the ⁇ x direction.
  • the secondary magnetic pole permanent magnets 61 and the secondary magnetic pole permanent magnets 71 are alternately arranged in the same direction as the arrangement directions of the main magnetic pole permanent magnets 41 and 51 with intervals. That is, each of the sub-magnetic pole permanent magnets 61 and 71 is linearly arranged so that the magnetization directions of the other sub-magnetic pole permanent magnets 61 and 71 adjacent to each other are opposite (alternating) to each other in the x direction. Further, the secondary magnetic pole permanent magnets 61 and 71 are provided on the + y direction side of the main magnetic pole permanent magnets 41 and 51 in the y direction.
  • a gap between the main magnetic pole permanent magnet 41 and the main magnetic pole permanent magnet 51 in the x direction is a non-magnetic region, and will be described below as the non-magnetic layer 6.
  • a magnetic body 4 is arranged at each distance between the secondary magnetic pole permanent magnet 61 and the secondary magnetic pole permanent magnet 71 in the x direction. Therefore, a linear arrangement in the x direction is formed in which the main magnetic pole permanent magnet 41, the non-magnetic layer 6, the main magnetic pole permanent magnet 51, the non-magnetic layer 6 ... Are repeated in this order. Further, a linear arrangement in the x direction is formed in which the secondary magnetic pole permanent magnet 61, the magnetic body 4, the secondary magnetic pole permanent magnet 71, the magnetic body 4 ... Are repeated in this order.
  • the magnetic material 4 for example, a material formed by laminating Fe—Co—V-based soft magnetic materials in the z direction is used.
  • the main magnetic pole permanent magnets 41 and 51 and the sub magnetic pole permanent magnets 61 and 71 are arranged so as to be staggered in the x direction.
  • any of the secondary magnetic pole permanent magnets 61 and 71 is arranged so as to be arranged on the + y direction side of the non-magnetic layer 6 between the main magnetic pole permanent magnet 41 and the main magnetic pole permanent magnet 51.
  • at least a part of the secondary magnetic pole permanent magnets 61 and 71 is arranged in the ⁇ y direction via the non-magnetic layer 6 so as to face the main surface 5a of the back yoke 5.
  • the y direction is a direction orthogonal to the main surface 5a of the back yoke 5, and the ⁇ y direction is a direction from the non-magnetic layer 6 toward the back yoke 5.
  • the position of the surface of the secondary magnetic pole permanent magnets 61 and 71 facing the main surface 5a in the y direction is the same as the surface of the main magnetic pole permanent magnets 41 and 51 farthest from the main surface 5a. It becomes a position.
  • the positions of the surfaces of the main magnetic pole permanent magnets 41 and 51 are further separated from the main surface 5a in the + y direction than the surface farthest from the main surface 5a. However, even if the positions are distant, the distance is small and the positions are almost the same.
  • the surfaces of the main magnetic pole permanent magnets 41 and 51 farthest from the main surface 5a are the surfaces on the + y direction side of the surfaces orthogonal to the y direction.
  • either the main magnetic pole permanent magnet 41 or 51 is arranged so as to be arranged on the ⁇ y direction side of the magnetic body 4 located between the secondary magnetic pole permanent magnet 61 and the secondary magnetic pole permanent magnet 71.
  • the center of the magnetic body 4 in the x direction and the center of any of the main magnetic pole permanent magnets 41 and 51 arranged on the ⁇ y direction side of the magnetic body 4 are arranged so as to coincide with each other in the x direction.
  • the permanent magnets include the secondary magnetic pole permanent magnet 61, the main magnetic pole permanent magnet 41, the secondary magnetic pole permanent magnet 71, the main magnetic pole permanent magnet 51, the secondary magnetic pole permanent magnet 61, and the like in the + x direction. It is arranged repeatedly in order. That is, the main magnetic pole permanent magnet 41 magnetized in the + y direction has a secondary magnetic pole permanent magnet 61 magnetized in the + x direction arranged on the ⁇ x direction side thereof, and magnetized in the ⁇ x direction on the + x direction side thereof. The secondary magnetic pole permanent magnet 71 is located.
  • the secondary magnetic pole permanent magnet 71 magnetized in the ⁇ x direction is arranged on the ⁇ x direction side thereof, and the + x direction is arranged on the + x direction side thereof.
  • a secondary magnetic pole permanent magnet 61 magnetized toward is located.
  • the space between each configuration is held by the adhesion between the faces. Specifically, the distance between the magnetic body 4 and the main magnetic pole permanent magnets 41, 51 in the y direction, the distance between the main magnetic pole permanent magnets 41, 51 and the back yoke 5 in the y direction, the sub-magnetic pole permanent magnets 61, 71 and the magnetic material 4 An adhesive is applied to each of the two x-directions to attach the surfaces in close contact with each other. When there is a surface facing the main magnetic pole permanent magnets 41 and 51 and the sub magnetic pole permanent magnets 61 and 71 in the y direction, an adhesive is applied and the surfaces are closely attached to each other as in the other configurations.
  • FIG. 3 is a vertical cross-sectional view of the field magnet according to the first embodiment of the present disclosure.
  • the width of the main magnetic pole permanent magnets 41 and 51 in the y direction which is orthogonal to the main surface 5a of the back yoke 5, is Tm
  • the width of the non-magnetic layer 6 is Ta
  • the width of the secondary magnetic pole permanent magnets 61 and 71 is Ts
  • magnetic Let the width of the body be Td.
  • the width Tm of the main magnetic pole permanent magnets 41 and 51 and the width Ta of the non-magnetic layer 6 are the same width.
  • the width Ts of the secondary magnetic pole permanent magnets 61 and 71 and the width Td of the magnetic body 4 are the same.
  • the back yoke 5 is arranged so that the main surface 5a is orthogonal to the y direction as described above. Therefore, the main magnetic pole permanent magnet 41, the main magnetic pole permanent magnet 51, and the non-magnetic layer 6 arranged on the + y direction side of the main surface 5a of the back yoke 5 have their respective surfaces on the + y direction side with respect to the y direction. It will be orthogonal. Further, the surfaces of the magnetic body 4 arranged on the + y direction side and the secondary magnetic pole permanent magnets 61 and 71 are also orthogonal to the y direction. That is, the position of the surface of the magnetic body 4 facing the air gap and the position of the surface of the secondary magnetic pole permanent magnets 61 and 71 facing the air gap coincide with each other in the y direction.
  • Lm be the length of the main magnetic pole permanent magnets 41 and 51
  • La be the length of the non-magnetic layer 6
  • Ls be the length of the secondary magnetic pole permanent magnets 61 and 71
  • Ld be the length of the magnetic body 4.
  • the length Ld of the magnetic body 4 is shorter than the length Lm of the main magnetic pole permanent magnets 41 and 51, and longer than the length Ls of the secondary magnetic pole permanent magnets 61 and 71 and the length La of the non-magnetic layer 6. It is composed.
  • the length Ls of the secondary magnetic pole permanent magnets 61 and 71 is configured to be the same as the length La of the non-magnetic layer 6 or longer than the length La of the non-magnetic layer 6.
  • the length Lm of the main magnetic pole permanent magnets 41 and 51 is shorter than the pole pitch Lp, which is the length of one pole, and longer than the length La of the non-magnetic layer 6.
  • FIG. 3 illustrates a configuration in which the length Ls of the secondary magnetic pole permanent magnets 61 and 71 is longer than the length La of the non-magnetic layer 6.
  • FIG. 4 is a diagram showing the relationship between the ratio Ls / La of the length Ls of the auxiliary magnetic pole permanent magnets 61 and 71 to the length La of the non-magnetic layer 6 and the rate of increase / decrease of the induced voltage.
  • ratio Ls / La indicates the value of the ratio Ls / La
  • the vertical axis represents the length Ls of the secondary magnetic pole permanent magnets 61 and 71 and the length La of the non-magnetic layer 6 (ratio Ls).
  • / La shows the rate of increase / decrease in the ratio of the induced voltage based on 1). Since the induced voltage is generally proportional to the thrust, the increase / decrease of the induced voltage will be mainly described below in detail.
  • the increase / decrease rate has a convex shape in which the value of the increase / decrease rate of the induced voltage increases in the direction of increasing the ratio Ls / La from 1, reaches a peak, and then decreases again.
  • the length Ls of the secondary magnetic pole permanent magnets 61 and 71 is longer than the length La of the non-magnetic layer 6 and is induced in the length when the surface of the main magnetic pole permanent magnets 41 and 51 has a surface portion overlapping in the y direction. It can be seen that the voltage becomes maximum. More specifically, it can be seen that when the ratio Ls / La is 1 to 2.8, the induced voltage becomes larger than the reference induced voltage.
  • FIG. 5A schematically shows the magnetic flux density waveform at the air gap surface g1.
  • the solid rectangular wave H1 shows the magnetic flux density waveform in the case of a general magnet arrangement, and the wave H2 having a shape close to the broken rectangular wave is the main magnetic pole permanent magnets 41 and 51 and the secondary magnetic pole permanent magnets 61 and 71.
  • the magnetic flux density waveform in the case of the Halbach array in which the air gap planes are matched is shown.
  • the wave A1 close to a dotted sine wave shows a magnetic flux density waveform when the length Ls of the auxiliary magnetic pole permanent magnets 61 and 71 shown in A1 of FIG. 5 described later and the length La of the non-magnetic layer 6 are equal.
  • the wave A2, which is close to a solid sine wave shows a magnetic flux density waveform when the length Ls of the secondary magnetic pole permanent magnets 61 and 71 of A2 in FIG. 5, which will be described later, is longer than the length La of the non-magnetic layer 6.
  • the wave A3 of the alternate long and short dash line shows the magnetic flux density waveform when the lengths Ls of the secondary magnetic pole permanent magnets 61 and 71 are not properly set.
  • the case where the length Ls of the secondary magnetic pole permanent magnets 61 and 71 is not properly set is, for example, a case where the length L is too long with respect to the length La of the non-magnetic layer 6.
  • the case where the length Ls of the secondary magnetic flux permanent magnets 61 and 71 and the length La of the non-magnetic layer 6 are equal (A1) is compared with the case of a general magnet arrangement other than the Halbach array. It can be seen that the magnetic flux density waveform approaches a wave shape close to a sine wave (hereinafter referred to as "substantially sine wave") from a rectangular wave. This is because the magnetic flux at the ends of the main magnetic pole permanent magnets 41 and 51 is concentrated near the central portion of the main magnetic pole permanent magnets 41 and 51 due to the influence of the secondary magnetic pole permanent magnets 61 and 71.
  • the magnetic flux is further concentrated near the central portion of the main magnetic pole permanent magnets 41 and 51.
  • the ends of the main magnetic pole permanent magnets 41 and 51 are originally in a range where the magnetic flux density is not so high, and the effect of magnetic flux concentration near the center of the main magnetic pole permanent magnets 41 and 51 is larger than the decrease in the magnetic flux density. Is.
  • the lengths Ls of the secondary magnetic pole permanent magnets 61 and 71 are not properly set, the amount of magnetic flux near the central portion of the main magnetic pole permanent magnets 41 and 51 decreases. As a result, the influence on the person who lowers the induced voltage becomes large. Therefore, by making the lengths Ls of the secondary magnetic pole permanent magnets 61 and 71 longer than the length La of the non-magnetic layer 6 in an appropriate range, the effect of increasing the induced voltage can be obtained.
  • A1 of FIG. 5 is a diagram schematically showing a part of the arrangement when the length Ls of the secondary magnetic pole permanent magnets 61 and 71 and the length La of the non-magnetic layer 6 are equal, and the magnetic flux lines at that time. ..
  • the magnetic flux from the main magnetic pole permanent magnet 41 travels in the + y direction in the figure, crosses the air gap surface g1 and penetrates into the armature 2 located ahead thereof.
  • the magnetic flux of the secondary magnetic pole permanent magnet 61 gradually bends in the + y direction while traveling in the + x direction, crosses the air gap surface g1 and penetrates into the armature 2.
  • the magnetic flux of the secondary magnetic pole permanent magnet 71 gradually bends in the + y direction while traveling in the ⁇ x direction, crosses the air gap surface g1 and penetrates into the armature 2.
  • the motor 10 of the present disclosure which is a linear motor having the secondary magnetic pole permanent magnets 61 and 71, has an air gap surface g1 as compared with a general armature composed of only permanent magnets corresponding to the main magnetic pole permanent magnets 41 and 51.
  • the magnetic flux density in the vicinity of the central portion of the main magnetic pole permanent magnet 41 of the above is improved.
  • the magnetic flux density waveform on the air gap surface g1 approaches a substantially sine wave.
  • A2 of FIG. 5 schematically shows a part of the arrangement when the length Ls of the secondary magnetic pole permanent magnet is made larger than the length La of the non-magnetic layer 6 in an appropriate range, and the magnetic flux line at that time. It is a figure.
  • the portions of the main magnetic pole permanent magnets 41 that overlap with the secondary magnetic pole permanent magnets 61 and 71 on the + y direction side are referred to as main magnetic pole permanent magnets 411 and 421, respectively, and the other portions are referred to as main magnetic pole permanent magnets 413.
  • the portion of the secondary magnetic pole permanent magnet 61 that overlaps with the main magnetic pole permanent magnet 41 on the ⁇ y direction side is referred to as the secondary magnetic pole permanent magnet 611.
  • the portion of the secondary magnetic pole permanent magnet 71 that overlaps with the main magnetic pole permanent magnet 41 on the ⁇ y direction side is referred to as the secondary magnetic pole permanent magnet 711.
  • the configuration is different from that of A1 in FIG. 5 in that the magnetic body 4 is replaced with the secondary magnetic pole permanent magnet 61 in the secondary magnetic pole permanent magnets 611 and 711 of A2.
  • the magnetic flux from the secondary magnetic pole permanent magnet 611 gradually bends in the + y direction while traveling in the + x direction, crosses the air gap surface g1 and penetrates into the armature 2 located ahead thereof.
  • the magnetic flux from the secondary magnetic pole permanent magnet 711 gradually bends in the + y direction while traveling in the ⁇ x direction, crosses the air gap surface g1 and penetrates into the armature 2. Since the secondary magnetic pole permanent magnets 61 and 71 are located closer to the central portion of the main magnetic pole permanent magnet 41 as compared with A1, the magnetic flux density in the vicinity of the central portion of the main magnetic pole permanent magnet 41 of the air gap surface g1 is improved.
  • the magnetic flux from the main magnetic pole permanent magnet 41 also travels in the + y direction in the same manner as A1 in FIG.
  • the magnetic flux density in the vicinity of is lower than that in the configuration in which the magnetic body 4 is arranged as in A1.
  • the vicinity of the main magnetic pole permanent magnets 411 and 412 is a position away from the peak of the magnetic flux density waveform, and is originally a range in which the magnetic flux density value is not so high in the substantially sinusoidal waveform. Therefore, by appropriately setting the range of the sub-magnetic pole permanent magnets 611 and 711, even if the magnetic flux density in the vicinity of the main magnetic pole permanent magnets 411 and 421 decreases, the induced voltage is not significantly affected. Therefore, by making the lengths Ls of the secondary magnetic pole permanent magnets 61 and 71 longer than the length La of the non-magnetic layer 6 in an appropriate range, the effect of increasing the induced voltage can be obtained.
  • the length Ls of the secondary magnetic pole permanent magnets is specifically the same as the length La of the non-magnetic layer 6 or longer than the length La of the non-magnetic layer 6. Is configured so that the ratio Ls / La is 1 to 2.8.
  • the length Ls of the secondary magnetic pole permanent magnet is longer than the length La of the non-magnetic layer 6, a part of the surface orthogonal to the y direction of the secondary magnetic pole permanent magnet in the ⁇ y direction is the main magnetic pole. It faces the main surface 5a of the back yoke 5 in the y direction via the permanent magnets 41 and 51.
  • the ratio Ls / La at this time is configured to be 2.8 or less.
  • the operation of the electric motor 10 configured as described above will be briefly described.
  • the magnetic fields of the main magnetic pole permanent magnets 41 and 51 and the magnetic fields of the sub-magnetic pole permanent magnets 61 and 71 can be superimposed. ..
  • the periodic magnetic field which is the distribution of the magnetic flux density formed in the + y direction of the field magnet 3, becomes a substantially sine wave.
  • the armature 2 When the coil 21 of the armature 2 is energized there, the armature 2 is guided by the guide rail 102 by the attractive force and the repulsive force of the magnetic field generated by the energization and the periodic magnetic field, and is guided in the arrangement direction of the permanent magnets. Moving.
  • the periodic magnetic field formed in the + y direction of the field magnet 3 is a substantially sine wave
  • the counter electromotive force induced in the coil 21 is also a substantially sine wave.
  • the field magnet 3 has a main magnetic pole permanent magnets 41 and 51 magnetized in the direction of the generated magnetic field and a sub magnetized so as to be different from the directions of the magnetic poles of the main magnetic pole permanent magnets 41 and 51.
  • the main magnetic pole permanent magnets 41 and 51 and the sub magnetic pole permanent magnets 61 and 71 are arranged so as to be staggered in the arrangement direction.
  • the main magnetic pole permanent magnets 41 and 51 are arranged so that the magnetization directions are opposite to those of the other adjacent main magnetic pole permanent magnets 41 and 51, and the sub-magnetic pole permanent magnets 61 and 71 are arranged so as to be opposite to each other.
  • the secondary magnetic pole permanent magnets 61 and 71 are arranged so that their magnetization directions are opposite to each other.
  • a non-magnetic layer 6 is provided between the main magnetic pole permanent magnet 41 and the main magnetic pole permanent magnet 51 in the x direction. Then, at least a part of the auxiliary magnetic pole permanent magnets 61 and 71 is arranged so as to face the main surface 5a via the non-magnetic layer 6. Further, the surface of the secondary magnetic pole permanent magnets 61 and 71 facing the main surface 5a is at the same position as or farther from the surface of the main magnetic pole permanent magnets 41 and 51 farthest from the main surface 5a in the + y direction.
  • the secondary magnetic pole permanent magnet 61 As compared with the case where the main magnetic pole permanent magnets 41 and 51 are adjacent to each other and the case where the main magnetic pole permanent magnets 41 and 51 and the secondary magnetic pole permanent magnets 61 and 71 are adjacent to each other, the secondary magnetic pole permanent magnet 61 The volume of the reverse magnetic field applied to the main magnetic pole permanent magnets 41 and 51 by 71 is reduced, and the demagnetization resistance of the main magnetic pole permanent magnets 41 and 51 is improved. Further, it is possible to reduce the regions of the main magnetic pole permanent magnets 41 and 51 in which the permeance coefficient decreases due to the temperature rise during driving. Therefore, the magnetic flux originally possessed by the permanent magnet can be effectively used, and the magnet volume required to generate the same thrust can be reduced. Therefore, the magnetic flux of the permanent magnet can be effectively used to improve the thrust.
  • the length Ls in the x direction which is the arrangement direction of the secondary magnetic pole permanent magnets 61, 71, is configured to be the same as or longer than the length La in the x direction of the non-magnetic layer 6.
  • the length Ls in the x direction which is the arrangement direction of the secondary magnetic pole permanent magnets 61, 71, and the length La in the x direction of the non-magnetic layer 6 are configured so that the ratio Ls / La is 1 to 2.8. Ru. This has the effect of increasing the induced voltage.
  • the main magnetic pole permanent magnets 41, 51 is arranged so as to have a portion overlapping with the secondary magnetic pole permanent magnets 61 and 71 on the + y direction side. That is, at least a part of the secondary magnetic pole permanent magnets 61 and 71 is arranged so as to face the main surface 5a of the back yoke 5 in the ⁇ y direction via the non-magnetic layer 6.
  • a magnetic body 4 is provided between the secondary magnetic pole permanent magnet 61 and the secondary magnetic pole permanent magnet 71 in the x direction.
  • the magnetic saturation of the main magnetic pole permanent magnets 41 and 51 on the + y direction side is relaxed, the generated magnetic field can be made higher, and the generated magnetic field can be further lowered. It is possible to reduce the loss.
  • the magnetic material 4 is configured by laminating soft magnetic materials in the z direction. By forming the magnetic material 4 with a soft magnetic material laminated in the z direction, the effect of reducing the eddy current loss can be obtained.
  • electromagnetic steel sheets are placed at both ends of the permanent magnet array.
  • the auxiliary magnetic pole permanent magnets 61 and 71 may fly due to the magnetic force, but this can be avoided by arranging the electromagnetic steel plate at the ends. It becomes possible.
  • the periodic magnetic field formed in the + y direction of the field magnet 3 is configured to be a substantially sine wave.
  • the counter electromotive force induced in the coil 21 can also be a substantially sine wave. Therefore, the harmonic component of the fundamental wave, which is a sine wave, can be reduced, and the cogging thrust can be reduced. Then, the generated magnetic field can be increased, and the loss can be reduced.
  • the magnetization direction of the main magnetic pole permanent magnet 41 is toward + y
  • the magnetization direction of the main magnetic pole permanent magnet 51 is toward ⁇ y
  • the magnetization direction of the secondary magnetic pole permanent magnet 61 is toward + x
  • the secondary magnetic pole permanent magnet 71 The magnetization direction of was set to the direction toward ⁇ x. That is, although the description has been made on the premise that they are orthogonal to each y direction and parallel to the x direction, various patterns can be considered for the magnetization angle. For example, if the + x direction is 0 ° and the ⁇ x direction is 180 °, the magnetization direction of the main magnetic pole permanent magnet 41 may be 45 ° and the magnetization direction of the main magnetic pole permanent magnet 51 may be 135 °.
  • the magnetization directions are opposite to each other in the arrangement direction.
  • the magnetization direction does not have to be a single direction in the permanent magnet, and for example, it is possible to use a polar anisotropy magnet for the main magnetic pole permanent magnets 41 and 51.
  • the magnetization direction can be reversed in the arrangement direction. Therefore, even in these cases, the magnetic flux of the permanent magnet described above can be effectively utilized to improve the thrust.
  • the air layer is a non-magnetic layer 6 between the main magnetic pole permanent magnet 41 and the main magnetic pole permanent magnet 51 in the x-direction, at least one between the main magnetic pole permanent magnet 41 and the main magnetic pole permanent magnet 51 in the x-direction.
  • a spacer made of a non-magnetic material may be arranged in the portion. In this case, in addition to achieving the same effect as when a gap is provided, when a magnetic attraction force is generated between the main magnetic pole permanent magnets 41 and 51 and the sub magnetic pole permanent magnets 61 and 71, a force is applied by the spacer. Can receive. Therefore, the possibility that the permanent magnet is chipped can be reduced.
  • a cover of a non-magnetic material for example, a SUS material may be attached with an adhesive so as to cover the field magnet 3, or the SUS material may be fastened and fixed to the back yoke 5 with a bolt.
  • the tightening at that time can be fixed by, for example, riveting or welding.
  • the field magnet 3 is entirely composed of the magnetic body 4, and the main magnetic pole permanent magnets 41 and 51 are inserted into the holes 31 provided in the magnetic body 4 from the z-axis direction, respectively. May be good.
  • the secondary magnetic pole permanent magnets 61 and 71 may be inserted into the holes 32 provided in the magnetic body 4 from the z-axis direction, respectively.
  • all or part of the permanent magnets 41 and 51 between the main magnetic poles may be fixed by the caulking 33.
  • the magnetic body 4 can be fixed by using an adhesive steel plate or fixed by a bolt at, for example, a back yoke portion, and a gap can be provided between the main magnetic pole permanent magnets 41 and 51.
  • the magnetic material 4 here is assumed to be an electromagnetic steel sheet, but may be iron.
  • the core 20 of the armature 2 is a laminate of electromagnetic steel sheets which are soft magnetic materials
  • the magnetic material may be, for example, a machined block of SS400 material, and is an armature 2 having a coreless structure without a core. You may. Further, it is said that the core 20 of the armature 2 is manufactured by passing through a laminated body of electrical steel sheets and tightening and integrating using bolts and nuts, but the core 20 is manufactured by crimping and integrating the laminated body of magnetic plates. You may. Even in these configurations, the magnetic flux of the permanent magnet described above can be effectively utilized to achieve the effect of improving the thrust.
  • FIG. 7 is a vertical cross-sectional view illustrating the configuration of the field magnet according to the second embodiment of the present disclosure.
  • FIG. 8 is a diagram showing a magnetic force acting on the field magnetic force according to the second embodiment of the present disclosure.
  • the width Ts of the secondary magnetic pole permanent magnets 61 and 71 in the field magnet 3 in the y direction is smaller than the width Td of the magnetic body 4 in the y direction. It is composed of. Other configurations are the same as those in the first embodiment.
  • the magnetic force in the y direction will be described with reference to FIG.
  • the horizontal axis of FIG. 8 shows the thickness of the air layer generated when the width Ts of the secondary magnetic pole permanent magnets 61 and 71 is made smaller than the width equivalent to that of the magnetic body 4.
  • the vertical axis shows the magnetic force in the y direction acting on the secondary magnetic force permanent magnets 61 and 71.
  • the magnetic force here is the force exerted by the permanent magnet.
  • the magnetic force acting on the sub-magnetic force permanent magnets 61 and 71 decreases and increases as the width Ts of the sub-magnetic force permanent magnets 61 and 71 decreases. That is, when the width Ts of the secondary magnetic pole permanent magnets 61 and 71 is changed, the magnetic force acting on the secondary magnetic pole permanent magnets 61 and 71 also changes.
  • FIG. 9 illustrates only a part of the arrangement of permanent magnets and schematically shows magnetic flux lines and magnetic forces.
  • FIG. 9 is a schematic diagram of magnetic flux lines and magnetic forces when the width Td of the magnetic body 4 and the width Ts of the secondary magnetic pole permanent magnet 71 are equal and the positions of the surfaces on the air gap side of each are the same.
  • the magnetic force acting on the secondary magnetic pole permanent magnet 71 is the attractive force Fa between the magnetic body 4 and the secondary magnetic pole permanent magnet 71 shown in the figure, and the repulsive force between the main magnetic pole permanent magnet 41 and the secondary magnetic pole permanent magnet 71. It is Fr1.
  • the magnetic force in the + y direction is due to the repulsive force Fr1.
  • B2 in FIG. 9 is a schematic diagram of magnetic flux lines and magnetic forces when the width Ts of the secondary magnetic force permanent magnet 71 is smaller than the width Td of the magnetic body 4.
  • the magnetic force acting on the secondary magnetic pole permanent magnet 71 is the attractive force Fa between the magnetic body 4 and the secondary magnetic pole permanent magnet 71, the repulsive force Fr2, and the repulsive force Fr1 between the main magnetic pole permanent magnet 41 and the secondary magnetic pole permanent magnet 71.
  • the suction force Fa and the repulsive force Fr2 are different from B1 in FIG. In B2 of FIG. 9, since the width Ts of the secondary magnetic pole permanent magnet 71 is smaller than the width Td of the magnetic body 4, the attractive force Fa is reduced by that amount.
  • the S pole does not occur in the portion facing the air layer generated by reducing the width Td of the secondary magnetic pole permanent magnet 71, and the N pole is formed. Occurs.
  • a repulsive force Fr2 is generated by the N pole and the N pole of the secondary magnetic pole permanent magnet 71.
  • the secondary magnetic force permanent magnet 71 receives the magnetic force in the ⁇ y direction due to the extinction of the attractive force Fa and the resultant force of the repulsive force Fr2, and the magnetic force in the + y direction due to the resultant force with the repulsive force Fr1 is shown in FIG. It can be seen that the result is less than the magnetic force in the + y direction in the configuration shown in B1.
  • B3 of FIG. 9 is a schematic diagram of magnetic flux lines and magnetic forces when the width Ts of the secondary magnetic force permanent magnet 71 is smaller than the width Td of the magnetic body 4.
  • the magnetic force acting on the secondary magnetic pole permanent magnet 71 is the attractive force Fa between the magnetic body 4 and the secondary magnetic pole permanent magnet 71, the repulsive force Fr2, the main magnetic pole permanent magnet 41 and the secondary magnetic pole permanent magnet 71, as in B2 of FIG.
  • the width Ts of the secondary magnetic pole permanent magnet 71 is smaller than the width Td of the magnetic body 4, it is further smaller than the attractive force Fa in B2 of FIG.
  • the S pole is reduced on the surface of the magnetic body 4 facing the secondary magnetic pole permanent magnet 71, and a portion where no magnetic pole is generated is formed. Then, a slight repulsive force Fr2 is generated.
  • the magnetic force in the ⁇ y direction becomes smaller due to the resultant force of the attractive force Fa and the repulsive force Fr2, and the resultant force with the repulsive force Fr1 becomes the + y direction shown in B1 of FIG. It will be more than the magnetic force of. This is the reason why the magnetic force shown in FIG. 8 decreased and then increased.
  • the width Ts of the secondary magnetic pole permanent magnets 61 and 71 with respect to the width Td of the magnetic material in the y direction be small within an appropriate range. Further, it has been explained that if the width Ts of the secondary magnetic force permanent magnets 61 and 71 in the y direction is made too small with respect to the width Td of the magnetic body 4 in the y direction, the magnetic force increases. In response to this, the secondary magnetic pole permanent magnet 61 with respect to the width Td in the y direction of the magnetic material while maintaining the configuration in which the magnetic fields of the main magnetic pole permanent magnets 41 and 51 and the magnetic fields of the secondary magnetic pole permanent magnets 61 and 71 are superimposed. By configuring the width Ts of 71 in the y direction to be small, the problem can be solved without making it too small.
  • the volumes of the main magnetic pole permanent magnets 41 and 51 are not changed, and the width Ts of the secondary magnetic pole permanent magnets 61 and 71 in the y direction is smaller than the width Td of the magnetic material in the y direction. It was configured to be. As a result, the magnetic force can be reduced without reducing the amount of magnetic flux on the air gap surface. Therefore, as in the first embodiment, in addition to the effect of effectively utilizing the magnetic flux of the permanent magnet and improving the thrust, the effect of improving the workability when mounting the secondary magnetic pole permanent magnets 61 and 71 is exhibited. .. It also has the effect of ensuring a certain level of adhesive strength.
  • main magnetic pole permanent magnet 41 and the secondary magnetic pole permanent magnet 71 have been described as examples, the main magnetic pole permanent magnet 41 and the secondary magnetic pole permanent magnet 61, the main magnetic pole permanent magnet 51 and the secondary magnetic pole permanent magnet 61, and the main magnetic pole permanent magnet are described. The same explanation can be given for the 51 and the secondary magnetic pole permanent magnet 71.
  • the air gap surface side of the secondary magnetic pole permanent magnets 61 and 71 may be chamfered with C or provided with a corner radius. Also in this case, as described above, the magnetic force can be reduced without reducing the amount of magnetic flux on the air gap surface. Then, as in the first embodiment, in addition to the effect that the magnetic flux of the permanent magnet can be effectively utilized and the thrust can be improved, the workability and the adhesive strength when attaching the secondary magnetic pole permanent magnets 61 and 71 are improved. It has the effect of securing.
  • the air layer generated when the width Ts of the secondary magnetic pole permanent magnets 61 and 71 is made smaller than the width equivalent to that of the magnetic material 4 and the air gap surface side of the secondary magnetic pole permanent magnets 61 and 71.
  • each member has a non-magnetic molding material 8 on the surface of the surface. By molding, it has the effect of firmly fixing each member. Further, the mold material 8 may also flow into the gaps between the members.
  • the mold material 8 is configured to fill the space between the main magnetic flux permanent magnets 41 and 51, leakage of the main magnetic flux permanent magnets 41 and 51 is compared with the case where the main magnetic flux permanent magnets 41 and 51 are adjacent to each other. The magnetic flux can be reduced. Therefore, by effectively using the magnetic flux of the permanent magnet, the required volume of the permanent magnet can be reduced, and as a result, the price can be reduced.
  • FIG. 12 is a vertical cross-sectional view illustrating the configuration of the field magnet according to the third embodiment of the present disclosure. For convenience of explanation, only a part of the field magnet is shown.
  • the corners on the main magnetic pole permanent magnets 41 and 51 are chamfered.
  • Other configurations are the same as those of the first and second embodiments.
  • the corners on the main magnetic pole permanent magnets 41 and 51 are chamfered to C to effectively utilize the magnetic flux of the permanent magnets and further improve the thrust. It has the effect that it can.
  • the corners of the magnetic material 4 are chamfered to C
  • a configuration in which R is added to the corners may be used.
  • the corners of the secondary magnetic pole permanent magnets 61 and 71 on the main magnetic pole permanent magnets 41 and 51 may be chamfered to C or the corners may be rounded. In this case as well, the leakage flux of the secondary magnetic pole permanent magnets 61 and 71 can be reduced, and the demagnetization strength of the permanent magnets can be increased.
  • FIG. 13 is a vertical sectional view illustrating the configuration of the field magnet according to the fourth embodiment of the present disclosure. For convenience of explanation, only a part of the field magnet is shown.
  • the fourth embodiment of the present disclosure is configured such that the magnetic body 4 and the two auxiliary magnetic pole permanent magnets 61 and 71 are one pole and their air gap surface side has an arc shape.
  • the air gap surface side is a surface on the side not facing the main magnetic pole permanent magnets 41 and 51.
  • Other configurations are the same as those of the first to third embodiments.
  • the breakdown of the two secondary magnetic pole permanent magnets 61 and 71 is the secondary magnetic pole permanent magnet 61 magnetized in the + x direction, the secondary magnetic pole permanent magnet 61, and the secondary magnetic pole permanent magnet 71 magnetized in the ⁇ x direction in the opposite magnetization direction. be.
  • the magnetic body 4 By configuring the magnetic body 4, the secondary magnetic pole permanent magnet 61, and the secondary magnetic pole permanent magnet 71 as one pole so that the air gap surface side thereof has an arc shape, the magnetic flux density waveform in the air gap can be made into a substantially sine wave. , It has the effect of reducing the cogging thrust. Therefore, the magnetic flux of the permanent magnet can be effectively utilized, and the thrust can be further improved.
  • Embodiment 5 the field magnet according to the fifth embodiment will be described with reference to FIGS. 14 and 15.
  • 14 and 15 are vertical cross-sectional views illustrating the configuration of the field magnet according to the fifth embodiment of the present disclosure. For convenience of explanation, some configurations are omitted.
  • a rotary machine will be described as an example of the electric motor, but the present invention is not limited thereto.
  • the field magnet 3 in the fifth embodiment is composed of a field core 34 formed in a circular shape and permanent magnets arranged on the outer circumference of the field core 34.
  • one of the armature 2 and the field magnet 3 is a rotatable mover and the other is a stator. That is, the movable element constitutes a rotatable rotary machine.
  • the direction in which the rotor rotates about the axis of rotation is defined as the circumferential direction
  • the direction orthogonal to the axis of the axis of rotation is defined as the radial direction. do.
  • the direction in which the magnetic plates constituting the field magnet 3 described later are laminated is defined as the axial direction.
  • FIG. 14 shows the two poles of the main magnetic pole permanent magnets 41 and 51 when the field magnet 3 is equally divided in the circumferential direction. Further, E1 to E7 in FIG. 14 show an example of modification of the permanent magnet.
  • the field magnet 3 has a field magnet core 34, and the field magnet core 34 is composed of main magnetic pole permanent magnets 41 and 51 and secondary magnetic pole permanent magnets 61 and 71 in a Halbach array. ing.
  • a method of arranging in the field core 34 there are a method of attaching a magnet to the surface of the field core 34 as shown in FIG. 14 and a method of embedding a permanent magnet in the field core 34 shown in FIG. be. The method of embedding a permanent magnet inside the field core 34 shown in FIG. 15 will be described later.
  • the field core 34 shown in FIG. 14 is integrally formed by laminating magnetic plates of electrical steel sheets in the axial direction. Each magnetic plate is manufactured into a desired shape by punching out a silicon steel plate which is a soft magnetic material. Then, the main magnetic pole permanent magnets 41 and 51 are arranged in the field core 34. Specifically, the main magnetic pole permanent magnets 41 and 51 are arranged on the outer peripheral surface of the field core 34. Further, a non-magnetic layer 6 is provided at each distance in the circumferential direction from the main magnetic pole permanent magnets 41 and 51.
  • the secondary magnetic pole permanent magnets 61 and 71 are arranged further radially outside the main magnetic pole permanent magnets 41 and 51 provided in the field core 34.
  • the secondary magnetic pole permanent magnets 61 and 71 are arranged so that the center in the circumferential direction of the non-magnetic layer 6 and the center in the circumferential direction of the secondary magnetic pole permanent magnets 61 and 71 coincide with each other.
  • the main magnetic pole permanent magnets 41, 51 and the secondary magnetic pole permanent magnets 61, 71 are, for example, coated with an adhesive as necessary and held by adhesion.
  • the specific arrangement order and magnetizing direction of the main magnetic pole permanent magnets 41 and 51 and the sub magnetic pole permanent magnets 61 and 71 are the same as those in the first to fourth embodiments, and the description thereof will be omitted. Further, although not shown, the magnetic material 4 is arranged at each interval in the circumferential direction of the secondary magnetic pole permanent magnets 61 and 71.
  • the outer peripheral surface of the field core 34 is an arc, and permanent magnets are arranged along this arc. At this time, various types of permanent magnet shapes are assumed. The shapes of the permanent magnets arranged in the field core 34 will be described below using E1 to E7.
  • E1 in FIG. 14 represents a case where the cross-sectional shape of the permanent magnet in the axial direction is rectangular.
  • E2 represents a case where each permanent magnet has an axial cross-sectional shape in which two sides extending in the radial direction at both ends in the circumferential direction face the center of rotation.
  • E3 represents the case where the two sides of each permanent magnet along the circumferential direction are arcs and the two sides are parallel to each other in the axial cross-sectional shape.
  • E4 represents a case where it is composed of a combination of two sides extending in the radial direction of E2 and two sides along the circumferential direction of E3.
  • each permanent magnet is arcuate, and one side on the center side of the field magnet 3 is a straight line at an angle in contact with the outer periphery of the field magnet core 34.
  • the two sides connecting these sides in the radial direction represent the case of a parallel axial cross-sectional shape.
  • the portion of the main magnetic pole permanent magnets 41 and 51 that overlap with the secondary magnetic pole permanent magnets 61 and 71 is flat on one side on the radial outer side of the field magnet 3.
  • the shape of the main magnetic pole permanent magnets 41 and 51 and the sub magnetic pole permanent magnets 61 and 71 may be any combination of E1 to E6.
  • the field core 34 has a main magnetic pole permanent magnet accommodating hole 410 in which magnetic plates are laminated and connected in the axial direction for accommodating the main magnetic pole permanent magnets 41 and 51, and sub-magnetic pole permanent magnets 61 and 71. It has an auxiliary magnetic pole permanent magnet accommodating hole 610 connected in the axial direction for accommodating.
  • the main magnetic pole permanent magnets 41 and 51 are inserted and held in the main magnetic pole permanent magnet storage holes 410.
  • the secondary magnetic pole permanent magnets 61 and 71 are inserted and held in the secondary magnetic pole permanent magnet storage holes 610.
  • the shape of the permanent magnet shown in FIG. 14 described above can be similarly adopted in the embedded configuration. Then, a method is used in which an adhesive is applied as needed and the adhesive is held by adhesion.
  • FIG. 15 shows that the space between the main magnetic pole permanent magnet 41 and the main magnetic pole permanent magnet 51 is filled with the field core 34, but the non-magnetic layer 6 can be provided.
  • the non-magnetic material may be configured to be provided with a non-magnetic material storage hole for storing the non-magnetic material, or a space between the main magnetic pole permanent magnets 41 and 51 and one storage hole for inserting the non-magnetic material or the non-magnetic material. It can also be configured to provide.
  • the electric motor 10 configured as described above is the same as the field magnet 3 in the first to fourth embodiments of the present disclosure, except that the electric motor 10 is a rotating machine and the configuration of the field magnet, particularly the shape of the permanent magnet is different. It is composed. Therefore, according to the fifth embodiment of the present disclosure, since the field core 34 and the permanent magnet are provided on the arc, it can be applied to a rotary machine tool or a servomotor. The applied rotating machine also has the effect of effectively utilizing the magnetic flux of the permanent magnet as in the first to fourth embodiments to further improve the thrust.
  • the permanent magnet since the permanent magnet is embedded in the field core 34, the permanent magnet uses more reluctance torque than the configuration provided on the outer peripheral surface of the field core 34. Can be done.
  • the permanent magnet is held by an adhesive
  • a case for holding the permanent magnet may be inserted and fixed, or an electromagnet around which a coil is wound may be inserted and fixed.
  • a protrusion or a boundary plate for positioning the main magnetic pole permanent magnets 41 and 51 is inserted. By providing a groove to be provided, it is possible to arrange the magnet more accurately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

バックヨーク(5)の主面(5a)と直交する方向に磁化され、磁化方向が交互となるように配列される複数の主磁極永久磁石(41、51)と、主磁極永久磁石(41、51)の磁化方向と異なる方向に磁化され、磁化方向が交互となるように配列されるとともに、主磁極永久磁石(41、51)の配列方向と同方向に主磁極永久磁石(41、51)と互い違いに設けられる複数の副磁極永久磁石(61、71)と、非磁性の領域である非磁性層(6)と、を備え、副磁極永久磁石(61、71)は、少なくとも一部が主面(5a)と直交する方向に非磁性層(6)を介して主面(5a)と対向し、副磁極永久磁石(61、71)の主面(5a)と対向する面の位置は、主面(5a)から最も離れた主磁極永久磁石(41、51)の面の位置と同じ位置であり、副磁極永久磁石(61、71)の長さは、非磁性層(6)の長さよりも長い又は同じ長さであることを特徴とする界磁子。

Description

界磁子および界磁子を備えた電動機
 本開示は、永久磁石で構成される界磁子および界磁子を備えた電動機に関するものである。
 永久磁石を有する電動機の界磁構造として、従来、磁石磁束を集中させることを目的とする永久磁石をハルバッハ磁石配列構造が用いられている。ハルバッハ磁石配列としては、発生磁界方向に磁化された複数の主磁極永久磁石と、主磁極永久磁石の間に配置される副磁極永久磁石とがバックヨークに一列に固定されるような配列がある。
 そのような配列は、発生磁界を大きくできる一方で、発生させることができる磁界には限界があった。これに対し、バックヨークと、主磁極永久磁石と、主磁極永久磁石の磁界発生側に配置された軟磁性材料と、主磁極永久磁石と軟磁性材料のそれぞれと同じ厚みの2種類の幅の副磁極永久磁石を有するものがある。そして軟磁性材料の発生磁界側の長さよりも主磁極永久磁石のバックヨーク側の長さを大きく形成した配列が提案されている(例えば特許文献1)。
特開2011-24379号公報
 特許文献1に記載の配列は、発生磁界側の面を狭くするようにしているため、主磁極永久磁石と主磁極永久磁石の間に配置される副磁極永久磁石とがバックヨークに一列に固定されるような配列よりも発生磁界を大きくすることができるものの、本来磁石がもつ磁束を有効に使うことができていないという課題があった。
 本開示は、上記課題を解決するためになされたものであって、本来の永久磁石がもつ磁束を有効に活用する構成により、推力を向上させることができる界磁子および界磁子を備えた電動機を提供することを目的とする。
 本開示に係る界磁子は、バックヨークの主面と直交する方向に磁化され、磁化方向が交互となるように配列される複数の主磁極永久磁石と、主磁極永久磁石の磁化方向と異なる方向に磁化され、磁化方向が交互となるように配列されるとともに、主磁極永久磁石の配列方向と同方向に主磁極永久磁石と互い違いに設けられる複数の副磁極永久磁石と、主磁極永久磁石と隣接する他の主磁極永久磁石との間に設けられる非磁性の領域である非磁性層と、を備え、副磁極永久磁石は、少なくとも一部が主面と直交する方向に非磁性層を介して主面と対向するように配置され、副磁極永久磁石の主面と対向する面の位置は、主面と直交する方向に主面から最も離れた主磁極永久磁石の面の位置と主面と直交する方向において同じ位置または主磁極永久磁石の面の位置よりも主面から離れた位置であり、副磁極永久磁石における配列方向の長さは、非磁性層の配列方向の長さと同じ又は非磁性層の配列方向の長さよりも長いことを特徴とするものである。
 本開示の界磁子および界磁子を備えた電動機によれば、永久磁石の磁束を有効に活用し、推力を向上させることができる。
本開示の実施の形態1に係る界磁子を備えた電動機の横断面図である。 本開示の実施の形態1に係る界磁子を備えた電動機の縦断面図である。 本開示の実施の形態1に係る界磁子を備えた界磁子の縦断面図である。 本開示の実施の形態1に係る界磁子における非磁性層の長さに対する副磁極永久磁石の長さの比と誘起電圧の増減率との関係を示す図である。 本開示の実施の形態1に係る界磁子を説明する縦断面図と空気ギャップ面での磁束密度波形の模式図である。 本開示の実施の形態1に係る界磁子の構成を説明する縦断面図である。 本開示の実施の形態2に係る界磁子の構成を説明する縦断面図である。 本開示の実施の形態2に係る界磁子にはたらく磁気力を示す図である。 本開示の実施の形態2に係る界磁子にはたらく磁気力を説明する界磁子の要部縦断面図である。 本開示の実施の形態2に係る界磁子の構成を説明する縦断面図である。 本開示の実施の形態2に係る界磁子の構成を説明する縦断面図である。 本開示の実施の形態3に係る界磁子の構成を説明する縦断面図である。 本開示の実施の形態4に係る界磁子の構成を説明する縦断面図である。 本開示の実施の形態5に係る界磁子の構成を説明する軸方向断面図である。 本開示の実施の形態5に係る界磁子の構成を説明する軸方向断面図である。
 以下、図面を参照しながら実施の形態について説明する。なお、図面は概略的に示されるものであり、説明の便宜のため、構成の省略、または、構成の簡略化がなされるものである。また、異なる図面にそれぞれ示される構成などの大きさおよび位置の相互関係は、必ずしも正確に記載されるものではなく、適宜変更され得るものである。また、以下に示される説明では、同様の構成要素には同じ符号を付して図示し、それらの名称と機能とについても同様のものとする。したがって、それらについての詳細な説明を、重複を避けるために省略する場合がある。
実施の形態1.
 図1は、本開示の実施の形態1に係る界磁子を備えた電動機を示す横断面図、図2は、本開示の実施の形態1に係る界磁子を備えた電動機を示す縦断面図である。なお、横断面図とは後述する永久磁石の配列方向と直交する平面における断面図であり、縦断面図とは後述するバックヨークの主面と直交し、かつ永久磁石の配列方向と平行な平面における断面図である。
 また、本開示の実施の形態1において、電動機として、リニアモータを例に説明するがこれに限るものではない。
 図1に示すように、電動機10は、架台100と、架台100に延設された一対のガイドレール102と、ガイドレール102に案内されて移動可能なステージ101と、電機子2と、界磁子3と、を備える。
 架台100上には、周期磁場を発生する界磁子3が設置される。ここでの周期磁場とは、N磁極とS磁極が交互に発生する周期的な磁場である。また、ステージ101には、界磁子3との間に所定の隙間である空気ギャップを確保して電機子2が支持される。
 この構成により、ステージ101に支持された電機子2は、ガイドレール102に案内され、界磁子3に対向した状態で可動自在となる。電機子2は、界磁子3から発生された周期磁場との間に吸引力と反発力とを発生させながら可動する。すなわち、本開示の形態においては、界磁子3が電動機10における固定子となり、電機子2が電動機10における可動子として構成されている。
 なお、界磁子3を可動子とし、電機子2を固定子としてもよいことは言うまでもない。また、架台100、ステージ101、ガイドレール102の構成はこれに限られるものではなく、界磁子3または電機子2のいずれか一方を固定し、他方を可動させることができる構成であればよい。以下、各構成についてさらに説明するが、各構成のうち架台100、ステージ101、ガイドレール102の構成については、周知技術であるため詳細な説明は省略する。
 図2に示すように電機子2は、軟磁性材料である電磁鋼板を用いて作製されたコア20と、コア20のティース22部分に巻き回されたコイル21と、を備えている。電機子2は、ティース22の先端を界磁子3側に向け、ステージ101の面と平行に取り付けられている。この構成により、電機子2は、ティース22と界磁子3との間の隙間を一定に確保しつつ、後述する界磁子3を構成する永久磁石の配列方向に移動可能となっている。電機子2のコア20は、電磁鋼板の積層体を通しボルトとナットとを用いて締着一体化して作製されている。
 ここで、電機子2の進行方向をx方向、電機子2と界磁子3の間の空気ギャップを横切る方向をy方向、x方向とy方向とのそれぞれに直角な方向をz方向、と定義する。また、説明の便宜上、紙面の図面における右方向をxの正方向(+x方向)、紙面の上方向をyの正方向(+y方向)、紙面の手前方向をzの正方向(+z方向)、と定義する。本定義は、他の実施の形態においても適用する。
 界磁子3は、磁性材の塊から作製されたバックヨーク5と、永久磁石と、により構成される。
 バックヨーク5は、板状に構成されてx方向に延設され、バックヨーク5の主面5aがy方向に直交する面となるように配置される。バックヨーク5の主面5aは、y方向に直交する面のうち、電機子2側の面である。
 永久磁石は、発生磁界の方向となるy方向に磁化された主磁極永久磁石41、51と、主磁極永久磁石41、51の磁極の向きと異なるように磁化された副磁極永久磁石61、71と、を含む。そして、主磁極永久磁石41、51と副磁極永久磁石61、71とは、バックヨーク5の主面5a上に特定方向への磁場強度が大きくなるようにハルバッハ配列にて配列される。以下の説明では、主磁極永久磁石41、51と副磁極永久磁石61、71とをまとめて説明する際には「永久磁石」を用いて説明する場合がある。
 主磁極永久磁石41、51は、例えばNd-Fe-B系焼結磁石を直方体に作製したものが用いられる。また、主磁極永久磁石41、51は、電機子2と界磁子3の間の空気ギャップを横切る方向であるy方向に磁化されている。
 図2に矢印で示すように、具体的には、主磁極永久磁石41はバックヨーク5の主面5aと直交する+y方向に向かって磁化され、主磁極永久磁石51は-y方向に向かって磁化される。そして、主磁極永久磁石41と主磁極永久磁石51は、バックヨーク5の主面5a上に交互に間隔を有してx方向に配列される。すなわち、各主磁極永久磁石41、51は、x方向において、隣接する他の主磁極永久磁石41、51と磁化方向が互いに逆向き(交互)となるように直線状に配列されている。また、y方向において、主磁極永久磁石41、51は、バックヨーク5よりも+y方向に位置するように設けられている。
 副磁極永久磁石61、71は、主磁極永久磁石41、51と同様にNd-Fe-B系焼結磁石を直方体に作製したものが用いられる。また、副磁極永久磁石61、71は、電機子2の可動方向であるx方向に磁化される。
 具体的には、副磁極永久磁石61は+x方向に向かって磁化され、副磁極永久磁石71は-x方向に向かって磁化されている。そして、副磁極永久磁石61と副磁極永久磁石71は、交互に間隔を有して主磁極永久磁石41、51の配列方向と同方向に配列される。すなわち、各副磁極永久磁石61、71は、x方向において、隣接する他の副磁極永久磁石61、71と磁化方向が互いに逆向き(交互)となるように直線状に配列されている。また、副磁極永久磁石61、71は、y方向において、主磁極永久磁石41、51よりも+y方向側に設けられている。
 主磁極永久磁石41と主磁極永久磁石51とのx方向における各間は、空隙となっている。この空隙は非磁性の領域となっており、以下、非磁性層6として説明する。また、副磁極永久磁石61と副磁極永久磁石71とのx方向における各間隔には、磁性体4が配置される。したがって、主磁極永久磁石41、非磁性層6、主磁極永久磁石51、非磁性層6・・・の順で繰り返されるx方向の直線状の配列が形成される。また、副磁極永久磁石61、磁性体4、副磁極永久磁石71、磁性体4・・・の順で繰り返されるx方向の直線状の配列が形成される。磁性体4は、例えばFe-Co-V系の軟磁性材料がz方向に積層されて構成されたものが用いられる。
 ここで、主磁極永久磁石41、51と副磁極永久磁石61、71との配置関係について説明する。
 主磁極永久磁石41、51と副磁極永久磁石61、71とはx方向において、互い違いになるように配列される。具体的には、主磁極永久磁石41と主磁極永久磁石51との間にある非磁性層6の+y方向側に副磁極永久磁石61、71のいずれかが配置されるように配列される。言い換えると、副磁極永久磁石61、71は、その少なくとも一部が-y方向に非磁性層6を介してバックヨーク5の主面5aと対向して配置される。y方向とは、バックヨーク5の主面5aと直交する方向であり、-y方向とは、非磁性層6からバックヨーク5に向かう方向である。このとき、副磁極永久磁石61、71の面のうち主面5aと対向する面のy方向における位置は、主磁極永久磁石41、51の面のうち主面5aから最も離れている面と同じ位置となる。または、主磁極永久磁石41、51の面のうち主面5aから最も離れている面よりもさらに+y方向に主面5aから離れた位置となる。ただし、離れた位置となる場合においても、その距離はわずかでありほぼ同等な位置となる。主面5aから最も離れている主磁極永久磁石41、51の面とは、y方向と直交する面のうちの+y方向側の面である。
 また、副磁極永久磁石61と副磁極永久磁石71との間に位置する磁性体4の-y方向側に、主磁極永久磁石41、51のいずれかが配置されるように配列される。このとき、磁性体4のx方向における中心と磁性体4の-y方向側に配置されるいずれかの主磁極永久磁石41、51とのx方向における中心とは一致するように配列される。
 さらに具体的に説明すると、永久磁石は、+x方向に向かって、副磁極永久磁石61、主磁極永久磁石41、副磁極永久磁石71、主磁極永久磁石51、副磁極永久磁石61・・・の順に繰り返して配列される。すなわち、+y方向に磁化された主磁極永久磁石41はその-x方向側に+x方向に向かって磁化された副磁極永久磁石61が配置され、その+x方向側に-x方向に向かって磁化された副磁極永久磁石71が位置する。また反対に、-y方向に向かって磁化された主磁極永久磁石51はその-x方向側に-x方向に向かって磁化された副磁極永久磁石71が配置され、その+x方向側に+x方向に向かって磁化された副磁極永久磁石61が位置する。この配置により、主磁極永久磁石41、51の磁場と副磁極永久磁石61、71の磁場とを重畳させることができる。なお、配列の両端は、電磁鋼板が配置されている。
 次に各構成間の保持について説明する。各構成間は面と面との接着により保持される。具体的には、磁性体4と主磁極永久磁石41、51とのy方向間、主磁極永久磁石41、51とバックヨーク5とのy方向間、副磁極永久磁石61、71と磁性体4とのx方向間のそれぞれが接着剤を塗布され面同士を密着して取り付けられる。主磁極永久磁石41、51と副磁極永久磁石61、71とのy方向間に対向する面がある場合は、他の構成と同様に接着剤を塗布されて面同士を密着して取り付けられる。
 次に各構成のy方向における幅の関係について図3を用いて説明する。図3は、本開示の実施の形態1に係る界磁子の縦断面図である。
 バックヨーク5の主面5aと直交する方向であるy方向における主磁極永久磁石41、51の幅をTm、非磁性層6の幅をTa、副磁極永久磁石61、71の幅をTs、磁性体の幅をTdとする。
 このとき、主磁極永久磁石41、51の幅Tmと非磁性層6の幅Taは同等の幅である。
 また、副磁極永久磁石61、71の幅Tsと磁性体4の幅Tdは同じである。そして、バックヨーク5は上述のとおり主面5aがy方向に直交する面となるように配置されている。このため、バックヨーク5の主面5aの+y方向側に配置される主磁極永久磁石41、主磁極永久磁石51、および非磁性層6は、+y方向側のそれぞれの面がy方向に対して直交することになる。さらに、それらの+y方向側に配置される磁性体4と副磁極永久磁石61、71の面もy方向に対して直交することになる。すなわち、磁性体4の空気ギャップに面する面の位置と副磁極永久磁石61、71の空気ギャップに面する面の位置とは、y方向において一致している。
 次に各構成のx方向(永久磁石の配列方向)における長さの関係について説明する。
 主磁極永久磁石41、51の長さをLm、非磁性層6の長さをLa、副磁極永久磁石61、71の長さをLs、磁性体4の長さをLdとする。
 磁性体4の長さLdは、主磁極永久磁石41、51の長さLmよりも短く、副磁極永久磁石61、71の長さLsおよび非磁性層6の長さLaよりも長くなるように構成される。副磁極永久磁石61、71の長さLsは、非磁性層6の長さLaと同じもしくは非磁性層6の長さLaよりも長くなるように構成される。主磁極永久磁石41、51の長さLmは、1極分の長さである極ピッチLpよりも短く、非磁性層6の長さLaよりも長くなるように構成される。図3では、副磁極永久磁石61、71の長さLsが非磁性層6の長さLaよりも長い構成を図示している。
 ここで、図4を用いて副磁極永久磁石61、71の長さLsを変更して解析した結果を説明する。副磁極永久磁石61、71の長さLsは、非磁性層6の長さLaと同じ長さから長くなるように変更している。図4は、非磁性層6の長さLaに対する副磁極永久磁石61、71の長さLsの比Ls/Laと誘起電圧の増減率との関係を示す図である。図4に示すグラフの横軸は、比Ls/Laの値を示し、縦軸は、副磁極永久磁石61、71の長さLsと非磁性層6の長さLaとが等しいとき(比Ls/Laが1)を基準とした誘起電圧の割合の増減率を示している。一般に誘起電圧は推力に比例するため、以下では主に誘起電圧の増減について詳細に説明する。
 図4に示すように、増減率は比Ls/Laが1から増加する方向に向かって、誘起電圧の増減率の値が大きくなり、ピークを迎えた後、また小さくなるような凸の形状となる。すなわち、副磁極永久磁石61、71の長さLsが非磁性層6の長さLaよりも長く、主磁極永久磁石41、51の面とy方向において重なる面部分を有するときの長さにおいて誘起電圧が最大となることがわかる。さらに具体的には、比Ls/Laが1~2.8の場合において、基準とした誘起電圧よりも誘起電圧が大きくなることがわかる。
 副磁極永久磁石61、71の長さLsを変更した際の磁束密度波形の変化について図5を用いて説明する。図5のAは、空気ギャップ面g1での磁束密度波形を模式的に表したものである。実線の矩形波H1は、一般的な磁石配列の場合の磁束密度波形を示し、破線の矩形波に近い形状の波H2は、主磁極永久磁石41、51と副磁極永久磁石61、71との空気ギャップ面を一致させたハルバッハ配列の場合の磁束密度波形を示している。また、点線の正弦波に近い波A1は、後述する図5のA1に示す副磁極永久磁石61、71の長さLsと非磁性層6の長さLaが等しい場合の磁束密度波形を示している。実線の正弦波に近い波A2は、後述する図5のA2の副磁極永久磁石61、71の長さLsが非磁性層6の長さLaよりも長い場合の磁束密度波形を示している。さらに、一点鎖線の波A3は、副磁極永久磁石61、71の長さLsが適切に設定されない場合の磁束密度波形を示している。副磁極永久磁石61、71の長さLsが適切に設定されない場合とは、例えば非磁性層6の長さLaに対して長すぎる場合である。
 図5のAに示すように、副磁極永久磁石61、71の長さLsと非磁性層6の長さLaが等しい場合(A1)は、ハルバッハ配列ではない一般的な磁石配列の場合と比べ、磁束密度波形が矩形波から正弦波に近い波型(以下、「略正弦波」という)に近づくことがわかる。これは、副磁極永久磁石61、71の影響により主磁極永久磁石41、51の端部の磁束が主磁極永久磁石41、51の中央部付近に集中するためである。また、副磁極永久磁石61、71の長さLsが非磁性層6の長さLaよりも長い場合(A2)には、さらに磁束が主磁極永久磁石41、51の中央部付近に集中していることがわかる。主磁極永久磁石41、51の端部は、元々磁束密度がそれほど高くない範囲であり、磁束密度の低下に比べ、主磁極永久磁石41、51の中央部付近への磁束集中の効果が大きいためである。
 一方で、副磁極永久磁石61、71の長さLsが適切に設定されない場合には、主磁極永久磁石41、51の中央部付近の磁束量が低下する。結果、誘起電圧低下させる方への影響が大きくなる。したがって、副磁極永久磁石61、71の長さLsを適切な範囲で非磁性層6の長さLaよりも長くすることにより、誘起電圧を高める効果を得ることができる。
 副磁極永久磁石61、71の長さLsを変更した際における磁束線の様子をさらに説明する。図5のA1は、副磁極永久磁石61、71の長さLsと非磁性層6の長さLaが等しい場合の配列の一部と、その際の磁束線を模式的に表した図である。
 図5のA1に示すように主磁極永久磁石41からの磁束は、図中の+y方向に進行し、空気ギャップ面g1を横切ってその先に位置する電機子2に侵入する。一方で、副磁極永久磁石61の磁束は、+x方向に進行しつつ徐々に+y方向へと曲がり、空気ギャップ面g1を横切って電機子2に侵入する。また、同様に副磁極永久磁石71の磁束は、-x方向に進行しつつ徐々に+y方向へと曲がり、空気ギャップ面g1を横切って電機子2に侵入する。このため、主磁極永久磁石41、51にあたる永久磁石のみで構成される一般的な電機子に比べ、副磁極永久磁石61、71を有するリニアモータである本開示の電動機10は、空気ギャップ面g1の主磁極永久磁石41の中央部付近における磁束密度が向上する。そして、空気ギャップ面g1における磁束密度波形は、略正弦波に近づくことになる。
 図5のA2は、副磁極永久磁石の長さLsを適切な範囲で非磁性層6の長さLaよりも大きくした場合の配列の一部と、その際の磁束線を模式的に表した図である。説明の便宜上、主磁極永久磁石41のうち、+y方向側で副磁極永久磁石61、71と重なる部分をそれぞれ主磁極永久磁石411、412とし、それ以外の部分を主磁極永久磁石413とする。また、副磁極永久磁石61のうち、-y方向側で主磁極永久磁石41と重なる部分を副磁極永久磁石611とする。同様に副磁極永久磁石71のうち-y方向側で主磁極永久磁石41と重なる部分を副磁極永久磁石711とする。図5のA1との構成とは、A2の副磁極永久磁石611、711部分において磁性体4から副磁極永久磁石61に置き換わっている点で異なっている。
 副磁極永久磁石611からの磁束は、+x方向へ進行しつつ徐々に+y方向へと曲がり、空気ギャップ面g1を横切ってその先に位置する電機子2に侵入する。副磁極永久磁石711からの磁束も同様に、-x方向へ進行しつつ徐々に+y方向へと曲がり、空気ギャップ面g1を横切って電機子2に侵入する。A1と比較し、副磁極永久磁石61、71は、主磁極永久磁石41の中央部により近くに位置するため、空気ギャップ面g1の主磁極永久磁石41の中央部付近における磁束密度が向上する。
 主磁極永久磁石41からの磁束も図5のA1と同様に、+y方向に進行する一方で、その上部が磁性体4から副磁極永久磁石61、71へと変わった主磁極永久磁石411、412の付近の磁束密度は、A1のように磁性体4が配置される構成に比べ低くなる。しかしながら、主磁極永久磁石411、412付近は、磁束密度波形のピークから離れた位置であり、略正弦波波形においては元々磁束密度値がそれほど高くない範囲である。そのため、副磁極永久磁石611、711部分の範囲を適切に設定することにより、主磁極永久磁石411、412付近の磁束密度が下がった場合でも誘起電圧に対しては大きな影響を与えない。よって、副磁極永久磁石61、71の長さLsを適切な範囲で非磁性層6の長さLaよりも長くすることにより、誘起電圧を高める効果を得ることができる。
 したがって、本開示の形態においても上述した配列において副磁極永久磁石の長さLsは、非磁性層6の長さLaと同じもしくは非磁性層6の長さLaよりも長くなるように、具体的には比Ls/Laが1~2.8となるように構成される。副磁極永久磁石の長さLsを非磁性層6の長さLaよりも長く構成する際には、副磁極永久磁石のy方向と直交する面のうち-y方向の面の一部が主磁極永久磁石41、51を介してバックヨーク5の主面5aとy方向に対向することとなる。このときの比Ls/Laは、2.8以下となるように構成される。
 上述のように構成された電動機10の動作について簡単に説明する。
 主磁極永久磁石41、51と副磁極永久磁石61、71を上述した構成とすることにより、主磁極永久磁石41、51の磁場と副磁極永久磁石61、71の磁場とを重畳させることができる。重畳させることにより、界磁子3の+y方向に形成される磁束密度の分布である周期磁場は、略正弦波となる。そこに、電機子2のコイル21に通電をすると、電機子2は、通電により発生する磁場と周期磁場との吸引力および反発力により、ガイドレール102に案内されて、永久磁石の配列方向に移動する。本開示の電動機10では、界磁子3の+y方向に形成される周期磁場が略正弦波となるため、コイル21に誘起される逆起電力も略正弦波となる。
 界磁子3を上述した構成とすることによる効果を説明する。
 本開示の実施の形態1における界磁子3は、発生磁界の方向に磁化された主磁極永久磁石41、51と、主磁極永久磁石41、51の磁極の向きと異なるように磁化された副磁極永久磁石61、71と、を含む。そして、主磁極永久磁石41、51と副磁極永久磁石61、71とは、配列方向に互い違いとなるように配列される。そして各主磁極永久磁石41、51は、隣接する他の主磁極永久磁石41、51と磁化方向が互いに逆向きとなるように配列され、各副磁極永久磁石61、71は、隣接する他の副磁極永久磁石61、71と磁化方向が互いに逆向きとなるように配列される。この構成により、主磁極永久磁石41、51の磁場と副磁極永久磁石61、71の磁場とを重畳させることができ、界磁子3の+y方向に形成される周期磁場を略正弦波とすることができる。
 また、x方向における主磁極永久磁石41と主磁極永久磁石51との間には非磁性層6が設けられる。そして、副磁極永久磁石61、71の少なくとも一部が非磁性層6を介して主面5aと対向するように配置される。さらに、副磁極永久磁石61、71の主面5aと対向する面は、主面5aから+y方向に最も離れた主磁極永久磁石41、51の面の位置と同じもしくはより離れた位置となる。この構成により、主磁極永久磁石41、51同士が隣接している場合や主磁極永久磁石41、51と副磁極永久磁石61、71とが隣接している場合と比較し、副磁極永久磁石61、71による主磁極永久磁石41、51への逆磁界がかかる体積が減り、主磁極永久磁石41、51の減磁耐力が向上する。また、駆動時における温度上昇によりパーミアンス係数が低下する主磁極永久磁石41、51の領域を減らすことができる。よって、本来永久磁石がもつ磁束を有効に使うことができ、同じ推力を出すために必要な磁石体積を減らすことができる。
 したがって、永久磁石の磁束を有効に活用し、推力を向上させることができる。
 また、副磁極永久磁石61、71の配列方向であるx方向の長さLsは、非磁性層6のx方向における長さLaと同じもしくは長くなるように構成される。この構成により、主磁極永久磁石41の+y方向、すなわち、界磁子3の+y方向に形成される磁束密度の分布である周期磁場の略正弦波のピーク値を高くすることができる。また、副磁極永久磁石61、71の配列方向であるx方向の長さLsと非磁性層6のx方向における長さLaは、比Ls/Laが1~2.8となるように構成される。これにより、誘起電圧をより大きくすることができる効果を奏する。
 また、副磁極永久磁石61、71の配列方向であるx方向の長さLsが非磁性層6のx方向における長さLaよりも大きく構成される場合においては、主磁極永久磁石41、51の+y方向側で副磁極永久磁石61、71と重なる部分を有するように配置される。すなわち、副磁極永久磁石61、71は、その少なくとも一部が-y方向に非磁性層6を介してバックヨーク5の主面5aと対向するように配置される。これにより、主磁極永久磁石41、51における磁束密度値が他と比べて高くない範囲を有効に活用し、誘起電圧をより大きくすることができる効果を奏する。さらに、後着磁の場合には副磁極永久磁石61、71の真下に位置する主磁極永久磁石41、51の着磁性が向上する。
 また、x方向における副磁極永久磁石61と副磁極永久磁石71との間には、磁性体4が設けられる。この構成により、磁性体4が、空気や非磁性材である場合と比較し、主磁極永久磁石41、51の+y方向側での磁気飽和が緩和され、発生磁界をより高くでき、一層の低損失化を図ることができる。さらに、磁性体4は、軟磁性材料がz方向に積層されて構成されている。磁性体4をz方向に積層した軟磁性材料で構成することにより、渦電流損低減する効果を奏する。
 また、永久磁石の配列の両端には、電磁鋼板が配置されている。例えば副磁極永久磁石61、71が端に配置されていた場合には、磁力によって副磁極永久磁石61、71が飛んでいく可能性があるが、端に電磁鋼板を配置することにより、回避することが可能となる。
 また、電動機10においては、界磁子3の+y方向に形成される周期磁場が略正弦波となるように構成される。これによりコイル21に誘起される逆起電力も略正弦波とすることができる。よって、正弦波である基本波に対する高調波成分を小さくでき、コギング推力を小さくすることができる。そして、発生磁場を高くすることができ、低損失化を図ることができる。
 なお、主磁極永久磁石41の磁化方向を+yに向かう方向、主磁極永久磁石51の磁化方向を-yに向かう方向、副磁極永久磁石61の磁化方向を+xに向かう方向、副磁極永久磁石71の磁化方向を-xに向かう方向とした。すなわち、それぞれのy方向に対して直交、x方向に対して平行である前提で説明したが、磁化角度は、さまざまなパターンが考えられる。例えば、+x方向を0°、-x方向を180°とすると、主磁極永久磁石41の磁化方向を45°、主磁極永久磁石51の磁化方向を135°とした構成とすることもできる。いずれの場合も配列方向において磁化方向が逆向きになるように配置されていればよい。また、磁化方向は永久磁石内で単一方向でなくてもよく、例えば、主磁極永久磁石41、51について、極異方性の磁石を用いることも可能である。極異法性の磁石を配列することによっても配列方向において磁化方向が逆向きになるようにできる。したがって、これらの場合においても上述した永久磁石の磁束を有効に活用し、推力を向上させることができる効果を奏する。
 また、主磁極永久磁石41と主磁極永久磁石51とのx方向間を空気の層を非磁性層6としたが、主磁極永久磁石41と主磁極永久磁石51とのx方向間の少なくとも一部に非磁性材料からなるスペーサを配置してもよい。この場合には、空隙を設けた場合と同様の効果を奏することに加え、主磁極永久磁石41、51と副磁極永久磁石61、71との間に磁気吸引力が生じた場合にスペーサで力を受けることができる。よって、永久磁石が欠けてしまう可能性を低減させることができる。
 また、界磁子3を覆うように非磁性体、例えばSUS材のカバーを接着剤により取り付けてもよく、SUS材をボルトによりバックヨーク5に締着固定してもよい。その際の締着は例えばリベット止めや溶接などにより固定することができる。その他、樹脂で覆うことも可能である。これらにより、それぞれの部材を強固に保持することができる。
 また、界磁子3は、図6に示すようにその全体を磁性体4で構成し、磁性体4に設けられた孔31に主磁極永久磁石41、51をz軸方向からそれぞれ挿入してもよい。また同様に磁性体4に設けられた孔32に副磁極永久磁石61、71をz軸方向からそれぞれ挿入してもよい。その際に主磁極永久磁石41、51間の全て、または一部をカシメ33によって固定するように構成してもよい。磁性体4は、接着鋼板を用いて固定あるいは例えばバックヨーク部でボルトにより固定することができ、主磁極永久磁石41、51間には、空隙を設けることができる。ここでの磁性体4は電磁鋼板を想定しているが鉄であってもよい。
 また、電機子2のコア20は軟磁性材である電磁鋼板の積層であると説明したが、磁性材は例えばSS400材のブロックの削り出しでもよく、コアがないコアレス構造の電機子2であってもよい。さらに、電機子2のコア20が電磁鋼板の積層体を通しボルトとナットとを用いて締着一体化して作製されているとしたが、コア20は磁性板の積層体を圧着一体化して作成してもよい。これらの構成においても上述した永久磁石の磁束を有効に活用し、推力を向上させることができる効果を奏する。
 実施の形態2.
 以下に、実施の形態2に係る界磁子について図を用いて説明する。図7は本開示の実施の形態2に係る界磁子の構成を説明する縦断面図である。図8は本開示の実施の形態2に係る界磁子にはたらく磁気力を示す図である。
 本開示の実施の形態2は、図7に示すように、界磁子3における副磁極永久磁石61、71のy方向の幅Tsが、磁性体4のy方向の幅Tdよりも小さくなるように構成される。その他の構成は実施の形態1と同様である。
 副磁極永久磁石61、71のy方向に直交する面のうち-y方向側の面を固定し、副磁極永久磁石61、71の幅Tsを変更した際に副磁極永久磁石61、71にはたらくy方向の磁気力について図8を用いて説明する。図8の横軸は、副磁極永久磁石61、71の幅Tsを磁性体4と同等の幅よりも小さくした際に生じる空気層の厚さを示している。縦軸は、副磁極永久磁石61、71にはたらくy方向の磁気力を示している。ここでの磁気力とは、永久磁石によって働く力のことである。
 図8に示すように、副磁極永久磁石61、71に対してはたらく磁気力は、副磁極永久磁石61、71の幅Tsを小さくするに応じて減少し、また増加する。すなわち、副磁極永久磁石61、71の幅Tsを変更すると副磁極永久磁石61、71に対してはたらく磁気力も変化する。
 副磁極永久磁石61、71の幅Tsを小さくすることにより、副磁極永久磁石61、71に対して働く磁気力が変化する点について図9を用いてさらに詳細に説明する。図9は説明の便宜上、永久磁石の配列の一部のみを図示し、磁束線および磁気力を模式的に示している。
 図9のB1は、磁性体4の幅Tdと副磁極永久磁石71の幅Tsが等しく、それぞれの空気ギャップ側の面の位置が一致する場合の磁束線と磁気力の模式図である。副磁極永久磁石71にはたらく磁気力は、図中に示した磁性体4と副磁極永久磁石71との間の吸引力Fa、主磁極永久磁石41と副磁極永久磁石71との間の反発力Fr1である。図8で示すように+y方向の磁気力は、反発力Fr1によるものである。
 図9のB2は、磁性体4の幅Tdよりも副磁極永久磁石71の幅Tsが小さい場合における磁束線と磁気力の模式図である。副磁極永久磁石71にはたらく磁気力は、磁性体4と副磁極永久磁石71との間の吸引力Fa、反発力Fr2、主磁極永久磁石41と副磁極永久磁石71との間の反発力Fr1である。図9のB1とは、吸引力Faと反発力Fr2が異なっている。図9のB2では、磁性体4の幅Tdよりも副磁極永久磁石71の幅Tsが小さくなっているため、その分吸引力Faは小さくなる。また、磁性体4の副磁極永久磁石71と対抗する面のうち、副磁極永久磁石71の幅Tdを小さくしたことにより生じた空気層に面する部分にはS極が生じず、N極が生じる。このN極と副磁極永久磁石71のN極とにより反発力Fr2が生じることとなる。
 したがって、副磁極永久磁石71にとって、吸引力Faの消滅分と反発力Fr2の合力により-y方向の磁気力を受けることになり、反発力Fr1との合力による+y方向の磁気力は図9のB1で示した構成における+y方向の磁気力よりも減る結果となるとわかる。
 図9のB3は、磁性体4の幅Tdよりも副磁極永久磁石71の幅Tsがより小さい場合における磁束線と磁気力の模式図である。副磁極永久磁石71にはたらく磁気力は、図9のB2と同様に磁性体4と副磁極永久磁石71との間の吸引力Fa、反発力Fr2、主磁極永久磁石41と副磁極永久磁石71との間の反発力Fr1である。ただし、磁性体4の幅Tdに対する副磁極永久磁石71の幅Tsがより小さいため、図9のB2における吸引力Faよりもさらに小さくなる。また、磁性体4の副磁極永久磁石71と対向する面においてS極が減少し、磁極が生じない部分ができる。そして、僅かに反発力Fr2が発生する。その結果、副磁極永久磁石71にとって、吸引力Faの消滅分と反発力Fr2との合力により-y方向の磁気力が小さくなり、反発力Fr1との合力が図9のB1で示した+y方向の磁気力よりも増えることとなる。図8に示した磁気力が減少したのちに増加したのはこのためである。
 したがって、磁性体のy方向の幅Tdに対する副磁極永久磁石61、71のy方向の幅Tsは適切な範囲で小さくなるように構成することが望ましい。また、磁性体4のy方向の幅Tdに対する副磁極永久磁石61、71のy方向の幅Tsを小さくしすぎると、磁気力が増えてしまうことを説明した。これに対しては、主磁極永久磁石41、51の磁場と副磁極永久磁石61、71の磁場とを重畳させる構成を維持しつつ、磁性体のy方向の幅Tdに対する副磁極永久磁石61、71のy方向の幅Tsが小さくなるような構成とすることにより小さくなりすぎることはなく解決できる。
 本開示の実施の形態2においては、主磁極永久磁石41、51の体積は変更せず、副磁極永久磁石61、71のy方向の幅Tsが、磁性体のy方向の幅Tdよりも小さくなるように構成した。これにより、空気ギャップ面の磁束量を低減させずに磁気力を減らすことができる。したがって、実施の形態1と同様に、永久磁石の磁束を有効に活用し、推力を向上させることができる効果に加え、副磁極永久磁石61、71を取付ける際の作業性を向上させる効果を奏する。また、一定の接着強度を確保する効果も奏する。
 なお、主磁極永久磁石41と副磁極永久磁石71を例に挙げて説明したが、主磁極永久磁石41と副磁極永久磁石61、主磁極永久磁石51と副磁極永久磁石61、主磁極永久磁石51と副磁極永久磁石71も同様の説明ができる。
 また、実施の形態2の変形例として、図10のC1およびC2に示すように副磁極永久磁石61、71の空気ギャップ面側をC面取りまたは角のRをつけた形態としてもよい。この場合においても、上述したように空気ギャップ面の磁束量を低減させずに磁気力を減らすことができる。そして、実施の形態1と同様に、永久磁石の磁束を有効に活用し、推力を向上させることができる効果に加え、副磁極永久磁石61、71を取付ける際の作業性の向上と接着強度を確保する効果を奏する。
 また、図11に示すように、副磁極永久磁石61、71の幅Tsを磁性体4と同等の幅よりも小さくした際に生じる空気層と、副磁極永久磁石61、71の空気ギャップ面側の面を非磁性材のモールド材8により各部材をモールドする構成とすることもできる。モールドすることにより各部材を強固に固定できる効果を奏する。また、各部材間の隙間にもモールド材8を流れ込ませてもよい。モールド材8が主磁極永久磁石41、51間を充填する構成とする場合には、主磁極永久磁石41、51同士が隣接している場合と比較して各主磁極永久磁石41、51の漏れ磁束を減らすことができる。よって、永久磁石の磁束を有効に使うことで必要な永久磁石の体積を減らすことができ、その結果低価格化することも可能となる。
 実施の形態3.
 以下に、実施の形態3に係る界磁子について図12を用いて説明する。図12は本開示の実施の形態3に係る界磁子の構成を説明する縦断面図である。なお説明の便宜上界磁子の一部分のみを示している。
 本開示の実施の形態3は、図12のD1に示すように、直方体に構成される磁性体4の角のうち、主磁極永久磁石41、51側の角についてC面取りをとる構成である。その他の構成は実施の形態1~2と同様である。
 磁束はできるだけ最短距離となるような経路をたどるため、図12のDに示すように副磁極永久磁石61、71の角部は漏れ磁束が生じやすい。これに対し、磁性体4の角をC面取りすることにより、空隙が生じることになる。よって、磁束がとおりにくくなるため、漏れ磁束を低減できる。この漏れ磁束は、主磁極永久磁石41、51への逆磁界であるため、主磁極永久磁石41、51の減磁耐力を高めることを意味する。
 したがって、直方体に構成される磁性体4の角のうち、主磁極永久磁石41、51側の角についてC面取りの構成とすることにより、永久磁石の磁束を有効に活用し、推力をより向上させることができる効果を奏する。
 なお、磁性体4の角をC面取りする説明をしたが角にRをつけた構成としてもよい。また、図12のD2に示すように副磁極永久磁石61、71の主磁極永久磁石41、51側の角をC面取りまたは角にRをつけた構成としてもよい。この場合においても同様に副磁極永久磁石61、71の漏れ磁束を低減でき、永久磁石の減磁耐力を高めることができる。
 実施の形態4.
 以下に、実施の形態4に係る界磁子について図13を用いて説明する。図13は本開示の実施の形態4に係る界磁子の構成を説明する縦断面図である。なお説明の便宜上界磁子の一部分のみを示している。
 本開示の実施の形態4は、図13に示すように、磁性体4と2つの副磁極永久磁石61、71とを1極としてそれらの空気ギャップ面側が円弧形状となるように構成される。空気ギャップ面側とは、主磁極永久磁石41、51と面しない側の面である。その他の構成は実施の形態1~3と同様である。2つの副磁極永久磁石61、71の内訳は、+x方向に磁化された副磁極永久磁石61と副磁極永久磁石61と磁化方向が逆方向の-x方向に磁化された副磁極永久磁石71である。
 磁性体4と副磁極永久磁石61と副磁極永久磁石71とを1極としてそれらの空気ギャップ面側が円弧形状となるように構成することにより、空気ギャップでの磁束密度波形を略正弦波にでき、コギング推力を低減できる効果を奏する。したがって、永久磁石の磁束を有効に活用し、推力をより向上させることができる効果を奏する。
 実施の形態5.
 以下に、実施の形態5に係る界磁子について図14および図15を用いて説明する。図14および図15は本開示の実施の形態5に係る界磁子の構成を説明する縦断面図である。説明の便宜上、一部構成を省略している。また、本開示の実施の形態5においては、電動機として、回転機を例に説明するがこれらに限るものではない。
 実施の形態5における界磁子3は、円形状に形成された界磁子コア34と、界磁子コア34の外周に配列される永久磁石とで構成される。実施の形態5においても電機子2または界磁子3の一方が回転可能な可動子となり他方が固定子となる。すなわち、可動子が回転自在な回転機を構成している。本開示においては一例として界磁子3が回転子となる構成を示し、この回転子が回転する軸を中心として回転する方向を周方向とし、回転軸の軸心と直交する方向を径方向とする。また、後述する界磁子3を構成する磁性板が積層される方向を軸方向と定義する。
 図14は、界磁子3を周方向に等分割した際の主磁極永久磁石41、51の2極分を示している。また、図14中のE1~E7は、永久磁石の変更例を示している。
 図14に示すように界磁子3は、界磁子コア34を有し、界磁子コア34に主磁極永久磁石41、51と副磁極永久磁石61、71とがハルバッハ配列にて構成されている。界磁子コア34に配列させる方法としては、図14に示すような界磁子コア34の表面に磁石を張り付ける方法と図15に示す界磁子コア34内部に永久磁石を埋め込む方法とがある。図15に示す界磁子コア34内部に永久磁石を埋め込む方法については、後述する。
 図14に示す界磁子コア34は、電磁鋼板の磁性板を軸方向に積層され、一体的に構成される。各磁性板は、軟磁性材料である珪素鋼板を打ち抜いて所望の形状に作製される。そして、界磁子コア34には、主磁極永久磁石41、51が配置される。具体的には、主磁極永久磁石41、51は、界磁子コア34の外周面に配列される。また、主磁極永久磁石41、51との周方向における各間隔には、非磁性層6が設けられる。
 界磁子コア34に設けられた主磁極永久磁石41、51よりもさらに径方向外側には、副磁極永久磁石61、71が配置される。副磁極永久磁石61、71は、非磁性層6の周方向における中心と副磁極永久磁石61、71の周方向における中心とが一致するように配列される。主磁極永久磁石41、51および副磁極永久磁石61、71は、例えば必要に応じて接着剤を塗布され接着により保持される。
 主磁極永久磁石41、51と副磁極永久磁石61、71の具体的な配列順序、着磁方向については、実施の形態1~4と同様であり、説明を省略する。また、図示していないが、副磁極永久磁石61、71の周方向における各間隔には、磁性体4が配置される。
 上述のとおり、界磁子コア34の外周面は円弧であり、これに沿うように永久磁石がそれぞれ配列される。このときの、永久磁石の形状にはさまざまな種類が想定される。以下で界磁子コア34に配置する永久磁石の形状についてE1~E7を用いて説明する。
 図14のE1は、永久磁石の軸方向の断面形状が長方形である場合を表す。E2は、各永久磁石の周方向両端の径方向に延びた2辺が回転中心に向くような軸方向断面形状である場合を表す。E3は、各永久磁石の周方向沿った2辺が円弧であり、その2辺が平行である軸方向断面形状の場合を表す。E4は、E2の径方向に延びた2辺とE3の周方向沿った2辺とを組み合わせた辺で構成された場合を表す。E5は、各永久磁石の径方向外側の周方向に沿った1辺が円弧状であり、界磁子3の中心側の1辺が界磁子コア34の外周に接する角度の直線であり、それらの辺を径方向に結ぶ2辺は平行となる軸方向断面形状の場合を表す。E6は、主磁極永久磁石41、51の、界磁子3の径方向外側の1辺において、副磁極永久磁石61、71と重なる部分が平らである。また、界磁子3の径方向内側の1辺が界磁子コア34の外径に接する角度の直線であり、周方向の2辺が平行となるような軸方向断面形状の場合を表す。E7において、主磁極永久磁石41、51と副磁極永久磁石61、71の形状がE1~E6のどの組合せであってもよいことを表している。
 次に永久磁石を界磁子コア34内部に埋め込む構成について図15を用いて説明する。図15において、界磁子コア34は磁性板が積層され、主磁極永久磁石41、51を収納するための軸方向に連なった主磁極永久磁石収納孔410と、副磁極永久磁石61、71を収納するための軸方向に連なった副磁極永久磁石収納孔610と、を有する。主磁極永久磁石収納孔410には、主磁極永久磁石41、51が挿入され、保持される。また、副磁極永久磁石収納孔610には、副磁極永久磁石61、71が挿入され、保持される。図15のF1~F4に示すように、上述の図14で示した永久磁石の形状は、埋め込む構成においても同様に採用できる。そして、必要に応じて接着剤を塗布され接着により保持する方法が用いられる。
 図15では、主磁極永久磁石41と主磁極永久磁石51との間が界磁子コア34で満たされているものを図示しているが、非磁性層6を設けることができる。また、図示していないが、非磁性体について、収納するための非磁性体収納孔を設ける構成としてもよいし、主磁極永久磁石41、51と空隙あるいは非磁性体を挿入する1つの収納孔を設ける構成とすることもできる。
 上述のとおり構成された電動機10は、回転機である点と界磁子の構成、特に永久磁石の形状が異なる点を除いて本開示の実施の形態1~4における界磁子3と同様に構成される。したがって、本開示の実施の形態5によれば、界磁子コア34と永久磁石とが円弧上に設けられているため、回転型の工作機械やサーボモータに応用できる。応用した回転機においても実施の形態1~4と同様の永久磁石の磁束を有効に活用し、推力をより向上させることができる効果を奏する。
 また、特に図14のE7のような組合せにすることで、永久磁石の製造コストを最低限に抑えてコギングトルクやトルクリプルを低減することができる効果を奏する。
 さらに、図15の構成においては、永久磁石が界磁子コア34に埋め込まれているので、永久磁石が界磁子コア34の外周面に設けられる構成に比べてリラクタンストルクをより多く利用することができる。
 なお、永久磁石を接着剤で保持すると表記したが、永久磁石を保持するケースを挿入し固定してもよいし、コイルを巻き回した電磁石を挿入し固定してもよい。また、主磁極永久磁石41、51と非磁性層6もしくは非磁性体とを挿入する1つの収納孔を設ける場合には、主磁極永久磁石41、51を位置決めするための突起や境界板を挿入する溝を設ける構成とすることにより、より正確に配置させることが可能となる。
 本開示は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 2 電機子、3 界磁子、4 磁性体、5 バックヨーク、6 非磁性層、8 モールド材、10 電動機、20 コア、21 コイル、22 ティース、31、32 孔、33 カシメ、34 界磁子コア、41、51、411、412 主磁極永久磁石、61、71、611、711 副磁極永久磁石、 100 架台、101 ステージ、102 ガイドレール、410 主磁極永久磁石収納孔、610 副磁極永久磁石収納孔。

Claims (10)

  1. バックヨークの主面と直交する方向に磁化され、磁化方向が交互となるように前記主面に配列される複数の主磁極永久磁石と、
    前記主磁極永久磁石の磁化方向と異なる方向に磁化され、磁化方向が交互となるように配列されるとともに、前記主磁極永久磁石の配列方向と同方向に前記主磁極永久磁石と互い違いに設けられる複数の副磁極永久磁石と、
    前記主磁極永久磁石と隣接する他の前記主磁極永久磁石との間に設けられる非磁性の領域である非磁性層と、
    を備え、
    前記副磁極永久磁石は、少なくとも一部が前記主面と直交する方向に前記非磁性層を介して前記主面と対向するように配置され、
    前記副磁極永久磁石の前記主面と対向する面の位置は、前記主面と直交する方向に前記主面から最も離れた前記主磁極永久磁石の面の位置と前記主面と直交する方向において同じ位置または前記主磁極永久磁石の面の位置よりも前記主面から離れた位置であり、
    前記副磁極永久磁石における前記配列方向の長さは、前記非磁性層の前記配列方向の長さと同じ又は前記非磁性層の前記配列方向の長さよりも長い、
    ことを特徴とする界磁子。
  2. 前記副磁極永久磁石は、一部が前記主磁極永久磁石を介して前記主面と直交する方向において前記バックヨークと対向するように配置され、
    前記副磁極永久磁石における前記配列方向の長さは、前記非磁性層における前記配列方向の長さよりも長い
    ことを特徴とする請求項1に記載の界磁子。
  3. 前記副磁極永久磁石における前記配列方向の長さに対する前記非磁性層における前記配列方向の長さの比は、2.8以下である
    ことを特徴とする請求項2に記載の界磁子。
  4. 前記副磁極永久磁石と隣接する他の前記副磁極永久磁石との間には、軟磁性材料からなる磁性体が設けられる
    ことを特徴とする請求項1から請求項3のいずれか1項に記載の界磁子。
  5. 前記主面と直交する方向における前記副磁極永久磁石の幅は、前記主面と直交する方向における前記磁性体の幅よりも小さい
    ことを特徴とする請求項4に記載の界磁子。
  6. 前記磁性体の一部の角は、C面取りまたは角にRをつけた構成である
    ことを特徴とする請求項4に記載の界磁子。
  7. 前記磁性体の角のうち前記主磁極永久磁石側の角は、C面取りまたは角にRをつけた構成である
    ことを特徴とする請求項4または請求項6に記載の界磁子。
  8. 前記副磁極永久磁石の角のうち前記主磁極永久磁石側の角は、C面取りまたは角にRをつけた構成である
    ことを特徴とする請求項4に記載の界磁子。
  9. 前記磁性体と磁化方向が逆方向の2つの前記副磁極永久磁石とを1極としたとき、前記主磁極永久磁石と面しない側の面は、円弧形状である
    ことを特徴とする請求項4から請求項8のいずれか1項に記載の界磁子。
  10. 請求項1から請求項9のいずれか1項の界磁子と、
    前記界磁子との間に空気ギャップを有して配置される電機子と、
    前記電機子に設けられるコイルと、
    を備え、
    前記電機子と前記界磁子のうち、いずれか一方は可動自在であり、
    前記界磁子が備える前記前記主磁極永久磁石と前記副磁極永久磁石は、直線状または円弧状に配列される
    ことを特徴とする電動機。
PCT/JP2020/036108 2020-09-24 2020-09-24 界磁子および界磁子を備えた電動機 WO2022064614A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021525853A JP6947340B1 (ja) 2020-09-24 2020-09-24 界磁子および界磁子を備えた電動機
DE112020007625.3T DE112020007625T5 (de) 2020-09-24 2020-09-24 Feldelement und elektromotor mit einem solchen feldelement
PCT/JP2020/036108 WO2022064614A1 (ja) 2020-09-24 2020-09-24 界磁子および界磁子を備えた電動機
CN202080105117.XA CN116114144A (zh) 2020-09-24 2020-09-24 励磁元件及具有励磁元件的电动机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/036108 WO2022064614A1 (ja) 2020-09-24 2020-09-24 界磁子および界磁子を備えた電動機

Publications (1)

Publication Number Publication Date
WO2022064614A1 true WO2022064614A1 (ja) 2022-03-31

Family

ID=78001280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036108 WO2022064614A1 (ja) 2020-09-24 2020-09-24 界磁子および界磁子を備えた電動機

Country Status (4)

Country Link
JP (1) JP6947340B1 (ja)
CN (1) CN116114144A (ja)
DE (1) DE112020007625T5 (ja)
WO (1) WO2022064614A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312449A (ja) * 2006-05-16 2007-11-29 Yaskawa Electric Corp 周期磁界発生装置およびこれを用いた電動機
JP2009011023A (ja) * 2007-06-26 2009-01-15 Honda Motor Co Ltd アキシャルギャップ型モータ
JP2009118550A (ja) * 2007-11-01 2009-05-28 Honda Motor Co Ltd アキシャルギャップ型モータ
JP2010088182A (ja) * 2008-09-30 2010-04-15 Honda Motor Co Ltd アキシャルギャップ型モータ
JP2010178592A (ja) * 2009-02-02 2010-08-12 Honda Motor Co Ltd アキシャルギャップ型モータ
JP2010259150A (ja) * 2009-04-21 2010-11-11 Toshiba Corp 永久磁石回転電機
JP2011024379A (ja) * 2009-07-17 2011-02-03 Yaskawa Electric Corp 周期磁界発生装置およびそれを用いたリニアモータ、回転型モータ
JP2012228072A (ja) * 2011-04-20 2012-11-15 Mitsubishi Electric Corp 永久磁石型回転電機およびその製造方法
WO2013008284A1 (ja) * 2011-07-08 2013-01-17 三菱電機株式会社 永久磁石型回転電機およびその製造方法
JP2017022914A (ja) * 2015-07-13 2017-01-26 アスモ株式会社 ロータ及びブラシレスモータ
JP2018019081A (ja) * 2016-07-15 2018-02-01 日立金属株式会社 焼結体、その製造方法、プレス装置および樹脂モールドリング

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312449A (ja) * 2006-05-16 2007-11-29 Yaskawa Electric Corp 周期磁界発生装置およびこれを用いた電動機
JP2009011023A (ja) * 2007-06-26 2009-01-15 Honda Motor Co Ltd アキシャルギャップ型モータ
JP2009118550A (ja) * 2007-11-01 2009-05-28 Honda Motor Co Ltd アキシャルギャップ型モータ
JP2010088182A (ja) * 2008-09-30 2010-04-15 Honda Motor Co Ltd アキシャルギャップ型モータ
JP2010178592A (ja) * 2009-02-02 2010-08-12 Honda Motor Co Ltd アキシャルギャップ型モータ
JP2010259150A (ja) * 2009-04-21 2010-11-11 Toshiba Corp 永久磁石回転電機
JP2011024379A (ja) * 2009-07-17 2011-02-03 Yaskawa Electric Corp 周期磁界発生装置およびそれを用いたリニアモータ、回転型モータ
JP2012228072A (ja) * 2011-04-20 2012-11-15 Mitsubishi Electric Corp 永久磁石型回転電機およびその製造方法
WO2013008284A1 (ja) * 2011-07-08 2013-01-17 三菱電機株式会社 永久磁石型回転電機およびその製造方法
JP2017022914A (ja) * 2015-07-13 2017-01-26 アスモ株式会社 ロータ及びブラシレスモータ
JP2018019081A (ja) * 2016-07-15 2018-02-01 日立金属株式会社 焼結体、その製造方法、プレス装置および樹脂モールドリング

Also Published As

Publication number Publication date
DE112020007625T5 (de) 2023-07-06
CN116114144A (zh) 2023-05-12
JPWO2022064614A1 (ja) 2022-03-31
JP6947340B1 (ja) 2021-10-13

Similar Documents

Publication Publication Date Title
CN108075585B (zh) 旋转电机
JP5398512B2 (ja) アキシャルギャップ型永久磁石モータ、それに用いるロータ、及びそのロータの製造方法
JP5294762B2 (ja) リニアモータ
JP5332082B2 (ja) モータ
JP5502571B2 (ja) 永久磁石式回転電機
US8179001B2 (en) Linear motor armature and linear motor
JP2007143335A (ja) 界磁子およびモータ
JP6019876B2 (ja) 回転電機
KR20120075428A (ko) 릴럭턴스 모터
JP2011078202A (ja) アキシャルギャップモータ
JP4687687B2 (ja) アキシャルギャップ型回転電機及び界磁子
JP6016833B2 (ja) 電気機械
WO2022064614A1 (ja) 界磁子および界磁子を備えた電動機
JP5589507B2 (ja) リニア駆動装置の可動子及び固定子
JP7482480B2 (ja) 筒型リニアモータ
JP5261080B2 (ja) リニアモータ
JP2008187863A (ja) アキシャルギャップ型回転電機及び圧縮機
JP5750995B2 (ja) 同期電動機
JP5740250B2 (ja) 永久磁石式回転電機
JP2010200483A (ja) Ipmモータ用ロータとipmモータ
JP2020156199A (ja) 回転電機
WO2023042639A1 (ja) ロータの製造装置
JP7491138B2 (ja) 永久磁石界磁、製造方法、リニアモータ
WO2022208622A1 (ja) 着磁装置および着磁方法
KR100556974B1 (ko) 리니어 모터용 고정자의 아우터 코어 조립 구조 및 그 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021525853

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955208

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20955208

Country of ref document: EP

Kind code of ref document: A1