WO2022063209A1 - 一种官能化双嵌段共聚物及其制备方法和用途 - Google Patents

一种官能化双嵌段共聚物及其制备方法和用途 Download PDF

Info

Publication number
WO2022063209A1
WO2022063209A1 PCT/CN2021/120179 CN2021120179W WO2022063209A1 WO 2022063209 A1 WO2022063209 A1 WO 2022063209A1 CN 2021120179 W CN2021120179 W CN 2021120179W WO 2022063209 A1 WO2022063209 A1 WO 2022063209A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
diblock copolymer
groups
tumor
polymer
Prior art date
Application number
PCT/CN2021/120179
Other languages
English (en)
French (fr)
Inventor
周纯
叶振兴
陆琛宏
Original Assignee
亭创生物科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亭创生物科技(上海)有限公司 filed Critical 亭创生物科技(上海)有限公司
Priority to US18/028,218 priority Critical patent/US20240197925A1/en
Publication of WO2022063209A1 publication Critical patent/WO2022063209A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • A61K49/0034Indocyanine green, i.e. ICG, cardiogreen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/593Polyesters, e.g. PLGA or polylactide-co-glycolide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • A61K47/6937Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol the polymer being PLGA, PLA or polyglycolic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0054Macromolecular compounds, i.e. oligomers, polymers, dendrimers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/664Polyesters containing oxygen in the form of ether groups derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6852Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • C08G63/6882Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids

Definitions

  • the present application relates to the field of organic chemistry, in particular to a functionalized diblock copolymer and its preparation method and use, which mainly include tumor imaging probe reagents and tumor therapeutic drug preparations.
  • Malignant tumors have become one of the main causes of threatening human life and are increasing year by year. According to the 2019 National Cancer Report released by the National Cancer Center of China, in China, malignant tumors have become one of the major public health problems that seriously threaten the health of the Chinese population. The latest statistics show that deaths from malignant tumors account for 23.91% of all deaths among residents. Resulting in more than 220 billion medical expenses. In 2015, there were about 3.929 million cases of malignant tumors and 2.338 million deaths nationwide.
  • Surgical resection is the most effective method for the treatment of early stage solid tumors, usually by surgeons during the surgical operation, relying on preoperative imaging diagnosis, intraoperative clinical experience (including visual discrimination and touch feeling, etc.), and other clinical Auxiliary means to determine the boundary of the tumor and perform resection of the lesion site.
  • preoperative imaging diagnosis including visual discrimination and touch feeling, etc.
  • intraoperative clinical experience including visual discrimination and touch feeling, etc.
  • other clinical Auxiliary means to determine the boundary of the tumor and perform resection of the lesion site.
  • tumors are basically heterogeneously distributed tissues, and various types of tumors have different boundary characteristics, it is difficult to accurately determine the tumor boundary during surgery.
  • the surgeon In the process of tumor resection, the surgeon usually needs to decide whether to perform lymphatic dissection based on the preoperative imaging diagnosis and the pathological stage of the patient to remove the cancerous tissue that may metastasize.
  • the doctor will choose to cut the patient's tissue, during the operation (the patient is still under anesthesia), send the specimen to the pathology department to collect the specimen, after a quick frozen pathological diagnosis, the result will be fed back to the surgeon, so that he can Determine the scope and extent of cleaning for the relevant organization.
  • the entire rapid freezing pathological examination process takes about 45 minutes to several hours. During this period, the medical team and medical resources in the operating room are all on standby, and the patient is also waiting in the operating room. The process of infection and prolonged Risk of anesthesia time.
  • a faster and more accurate pathological judging method of the tumor spread tissue is also required in the clinical process, which can shorten the operation time, accurately remove the cancer spread tissue, reduce the recurrence or spread in the later stage, and prolong the patient's time. of postoperative survival.
  • the technique based on fluorescence imaging has the advantage of better real-time application in surgery.
  • the near-infrared light source commonly used in fluorescence imaging technology has stronger penetrating ability in tissue compared with light sources such as visible light and ultraviolet light, and is affected by the main absorption chromophores inside the tissue such as hemoglobin, oxyhemoglobin, and water, etc. It has a small impact and can penetrate about 1 cm of tissue. It has very important application value in tissue optical detection, especially in superficial tissue.
  • the hardware implementation of fluorescence imaging can be more flexible.
  • It can be designed as a movable white light and fluorescence operating table imaging system, or it can be designed as a small sterile probe with an external display screen, which can realize the internal detection of white light and fluorescence. Peek into the imaging system and perform minimally invasive surgery in the body. Both hardware designs are FDA and EMA approved (eg, SPY Imaging system; Endoscopic Fluorescence Imaging System; da Vinci Surgical Robot System), successfully applied in clinical surgery. Using a fluorescence microscope system, within 20 minutes after an intraoperative intravenous bolus of indocyanine green (ICG), angiography (neurosurgery, vascular surgery) can be performed using the ICG's characteristic of excitable fluorescence under the illumination of a near-infrared light source. surgery, eye surgery, etc.). Methylene blue is also an approved fluorescent imaging agent used in some surgical procedures.
  • ICG intraoperative intravenous bolus of indocyanine green
  • angiography angiography
  • Methylene blue is also an approved
  • the targeted tumor type must have some specific characteristics. Some of the characteristics that are widely recognized are: specific surface receptors (such as folic acid, folic acid, Her2/Neu, EGFR, PSMA and other receptors); characteristics of the tumor microenvironment (specific metabolites, proteases; or inside cancer cells (pHi: 5.0-6.0) or interstitial fluid between cells (pHe: 6.4-6.9) ), originating from the lactate metabolites produced after the rapid uptake of glucose by cancer cells.
  • specific surface receptors such as folic acid, folic acid, Her2/Neu, EGFR, PSMA and other receptors
  • characteristics of the tumor microenvironment specific metabolites, proteases; or inside cancer cells (pHi: 5.0-6.0) or interstitial fluid between cells (pHe: 6.4-6.9)
  • the developed imaging technology should be used as a precise target to effectively realize the specific aggregation of imaging agents at the tumor site.
  • Receptors realize the specific binding of imaging agents to them; use the acidity or other characteristics of the tumor microenvironment to retain and enrich imaging agents at the tumor site by chemical means; use the high permeability and retention effect (EPR) of tumor tissue Selective local enrichment of some nanoparticles was achieved.
  • EPR permeability and retention effect
  • the imaging agent used must be safe and can be degraded or removed from the body within a short period of time after use.
  • the tissue residue should be small and not cause adverse reactions. If a metabolic reaction occurs, the metabolites of the imaging agent should be harmless to the body. .
  • the main clinical translations of intraoperative imaging in solid tumors use the following categories of techniques:
  • Tissue boundaries are not clearly imaged), which may be due to imaging molecules normally circulating in the body (not bound to tumor receptors) that can fluoresce when illuminated by an excitation light source, causing background fluorescence, or false positives at non-tumor sites Imaging ("off-target" phenomena, such as the presence of folate receptors to varying degrees in certain healthy tissues such as the kidney), or due to the heterogeneity of tumors mentioned above, the expression of folate in tumor tissue may not be as high as Complete uniformity causes defects in image quality. From the clinical data, the clearance of background is related to the administration dose, which basically takes 24 hours to 4 days. The effect of tumor imaging (cancer/normal tissue ratio, TNR, 2-3 times) is average.
  • the ultra-long circulation time of antibody molecules will also cause high background fluorescence, and there are also other problems, such as narrow application (only for tumors with high expression of specific receptors), Such as false positive images of non-tumor sites (the selected target may exist in healthy tissue), as well as the heterogeneity of tumors mentioned above. From the clinical and animal research data, the effect of tumor imaging (cancer/normal tissue ratio, TNR, 2-5 times) is acceptable, but the images are usually accompanied by strong background fluorescence.
  • polypeptides can be used for selective targeting to target fluorescent imaging molecules to tumor sites.
  • polypeptides can be used for selective targeting to target fluorescent imaging molecules to tumor sites.
  • R.Tsien and Avelas Biosciences, Inc. use a special U-shaped polypeptide combination design, in which one end of the polypeptide is positively charged under physiological conditions (the end of this polypeptide segment is linked The other end of the polypeptide is negatively charged under physiological conditions.
  • the two segments of polypeptides are connected by a linker.
  • the linker can be cleaved by proteases existing in the tumor microenvironment.
  • the polypeptide of the molecule has a positive charge, which can attract the negative charge on the surface of the cancer cell and then adsorb on the surface. Later, it enters the cancer cell through the endocytosis mechanism, and then the imaging agent molecules that enter the cancer cell can be emitted under the irradiation of the excitation light source. Fluorescence. It can be seen that such imaging agents need to enter the body within a limited time (even after adding a long-circulating PEG molecule, the half-life is only more than 20 minutes), the time window for completing this series of actions Insufficient, resulting in poor imaging results (cancer/normal tissue ratio 2-3 times).
  • Donald M is the time window for completing this series of actions Insufficient, resulting in poor imaging results.
  • Lumicell's design is to link a fluorescent imaging molecule to another molecule that can absorb fluorescence through a peptide.
  • the selected peptide can be catalyzed by some proteases (such as Cathepsin K, L, S) common in the tumor microenvironment. After switching off, the fluorescent molecules and the molecules that actively absorb the fluorescence are separated and then fluoresce in the presence of an excitation light source.
  • Such a design can reduce background fluorescence during cycling because the entire imaging agent molecule does not fluoresce until it reaches the tumor microenvironment.
  • the cycle time can be achieved to about 24 hours, and the tumor image quality (TNR ratio of 3-5) is poor.
  • another disadvantage of this technique is whether the selected polypeptide sequences can achieve highly specific tumor targeting.
  • Nanoparticles-Fluorescent Molecular Imaging Agents In the field of medical imaging, nanoparticles are widely used, and the main categories are liposome nanoparticles, inorganic nanoparticles, and polymer nanoparticles. Definity(R) is a phospholipid liposome approved by Lantheus Medical (now BMS) in 2001, used to stabilize perfluoropropane (C3F8) bubbles as an ultrasound imaging agent. There are many kinds of inorganic nanoparticles (silicon dioxide; iron oxide; quantum dots; carbon nanotubes, etc.), and usually the difficulty of clinical application of inorganic nanoparticles is safety, and fluorescent groups are only introduced by chemical modification on the surface of nanoparticles It is often difficult to achieve specific tumor fluorescence imaging.
  • the fluorescent molecules introduced by this method can overcome the possible defect of fluorescence quenching due to aggregation of conventional nanoparticle-fluorescent molecule conjugates, but the reported half-life is short (10-30 minutes), and the tumor imaging effect is still Yes, with a TNR of 5-10 (with a wide margin of error in the reported data), but high hepatic uptake (tumor/liver ratio of about 2).
  • TNR time to which a tumor imaging effect is still Yes
  • TNR 5-10
  • high hepatic uptake tumor/liver ratio of about 2
  • the author believes that although small-sized nanoparticles (less than 20nm) can be cleared by the kidneys, their clinical risks (such as diffusion to the brain through the BBB, etc.) cannot be ruled out.
  • polymeric nanoparticles The typical construction of polymeric nanoparticles is to use amphiphilic diblock polymers such as PEG-PLGA, PEG-PEG-Glutamate, PEG-Aspartate as several classes of scavengable (PEG)/degradable that are currently working to the clinic. (another block) polymer.
  • amphiphilic diblock polymers such as PEG-PLGA, PEG-PEG-Glutamate, PEG-Aspartate
  • PEG-Aspartate amphiphilic diblock polymers
  • the diblock copolymer realizes the dissociation of the nanoparticles in the weakly acidic environment of the tumor (the core of the nanoparticles is ionized in the acidic environment, and the energy balance of the two-person assembly is destroyed after the charge repulsion is generated).
  • the purpose of the present application is to provide a functionalized diblock copolymer and its preparation method and use, which are used to solve the problems in the prior art.
  • L 31 , L 32 , L 33 and L 34 are linking groups
  • R' 1 , R' 2 , R' 3 , R' 4 are each independently selected from H, C1-C20 alkyl, C3-C10 cycloalkyl;
  • a 3 is selected from protonatable groups
  • C 3 is selected from fluorescent molecular groups
  • D is selected from the group of delivery molecules
  • E 3 is selected from hydrophilic/hydrophobic groups
  • T 3 is selected from end-capping groups
  • EG 3 is selected from capping groups.
  • Another aspect of the present invention provides a polymer particle prepared from the above-mentioned functionalized diblock copolymer.
  • Another aspect of the present invention provides the use of the above-mentioned functionalized diblock copolymer, or the above-mentioned polymer particles in the preparation of image probe reagents and pharmaceutical preparations.
  • Another aspect of the present invention provides a composition comprising the functionalized diblock copolymer described above, or the polymer particles described above.
  • Figure 1 shows the fluorescence intensity (left) of the polymer (IB015-038-01) nano-imaging agent solution of Example 6.1.5 measured at different solution pH (left) and the corresponding fluorescence intensity after normalization treatment on the solution pH graph (right)
  • Figure 2 shows the fluorescence intensity (left) of the polymer (IB015-055-01) nano-imaging agent solution of Example 11.1.5 measured at different solution pHs (left) and the corresponding fluorescence intensity of the solution after normalization treatment pH graph (right)
  • Figure 3 shows the fluorescence intensity of the polymer (IB015-055-01) nano-imager solution of Example 11.1.5 measured at different pH values and the fluorescence intensity measured by adding the nano-imager solution to the solvent DMF Merge Mapping
  • Figure 4 shows the fluorescence intensity of the polymer (IB015-050-01) nano-imaging agent solution of Example 10.1.5 measured at different pH values
  • Fig. 5 Top left: Fluorescence light intensity of polymer IB015-059-01 (Example 11.2.5) nano-imaging agent solution measured at different pH (aqueous solution); top right: Polymer IB015-059-01 (Example 11.2. 5) Fluorescence intensities of nano-imaging agent solutions measured at different pH (aqueous solutions) (and in DMF and EtOH); lower left: polymer IB015-059-01 (Example 11.2.5) nano-imaging agent solutions exhibit fluorescence emission Blue shift of peaks (normalized to fluorescence emission intensity)
  • Figure 6 is a 24-hour in vivo imaging, fluorescence imaging photos of isolated organs and lymph nodes of the 4T1 subcutaneous model Balb/c tumor-bearing mouse after injection of the nano-fluorescent imaging agent of Example 11.1.5 (IB015-055-01).
  • FIG. 7 is the fluorescence quantitative light intensity value of the isolated organ in FIG. 6 .
  • Figure 8 is a 24-hour in vivo imaging, fluorescence imaging photos of isolated organs and lymph nodes of the 4T1 subcutaneous model Balb/c tumor-bearing mouse after injection of the nano-fluorescent imaging agent of Example 6.1.5 (IB015-038-01).
  • FIG. 9 is the fluorescence quantitative light intensity value of the isolated organ in FIG. 8 .
  • Figure 10 is a fluorescence imaging photograph of the isolated organs and lymph nodes of the 4T1 subcutaneous model Balb/c tumor-bearing mouse injected with the nano-fluorescent imaging agent of Example 10.1.5 (IB015-050-01) (24 hours after injection).
  • Fig. 11 is the fluorescence quantitative light intensity value of the isolated organ in Fig. 10 .
  • diblock copolymer generally refers to a polymer formed by linking together two polymer segments with different properties.
  • protonable groups generally refer to groups that can combine with protons, that is, can bind at least one proton, and these groups usually have lone pairs of electrons, so that at least one proton can be bound by the protonatable groups.
  • a “degradability modulating group” is generally a group of groups capable of altering the degradability of a compound in vivo.
  • fluorescent molecular group generally refers to a type of group corresponding to fluorescent molecules, and compounds containing these groups can usually have characteristic fluorescence in the ultraviolet-visible-near-infrared region, and their fluorescence properties (excitation and emission) A class of fluorescent molecules that can change with the properties of their environment (wavelength, intensity, lifetime, polarization, etc.).
  • delivery molecular group generally refers to the main chain of the block copolymer that can be attached to the main chain of the block copolymer through side chains in the form of chemical bonding, or through physical forces (such as charge forces, hydrogen bonds, van der Waals forces, hydrophobicity Various molecules that interact with the hydrophobic end side chain groups of block copolymers and can be delivered by nanoparticles formed by self-assembly of block polymers in aqueous solution.
  • hydrophilic/hydrophobic group generally refers to a group with certain hydrophilicity or lipophilicity.
  • alkyl generally refers to a saturated aliphatic group, which may be straight or branched.
  • C1-C20 alkyl usually refers to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 , 15, 16, 17, 18, 19, 20 carbon atoms alkyl groups.
  • alkyl groups may include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, Tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl.
  • C2-C10 alkenyl generally refers to alkenyl groups of 2, 3, 4, 5, 6, 7, 8, 9, 10 carbon atoms.
  • Particular alkenyl groups may include, but are not limited to, vinyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl.
  • alkynyl generally refers to an unsaturated aliphatic group, and includes a C ⁇ C bond (carbon-carbon triple bond, alkyne bond), which may be linear or branched.
  • C2-C10 alkynyl generally refers to alkynyl groups of 2, 3, 4, 5, 6, 7, 8, 9, 10 carbon atoms.
  • Particular alkynyl groups may include, but are not limited to, ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl.
  • cycloalkyl generally refers to saturated and unsaturated (but not aromatic) cyclic hydrocarbons.
  • C3-C10 cycloalkyl generally refers to a cycloalkyl group of 3, 4, 5, 6, 7, 8, 9, 10 carbon atoms.
  • Specific cycloalkyl groups may include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl.
  • cycloalkyl the term in this application also includes saturated cycloalkyl groups in which optionally at least one carbon atom may be replaced by a heteroatom, which may be selected from S, N, P or O.
  • mono- or poly-unsaturated (preferably mono-unsaturated) cycloalkyl groups having no heteroatoms in the ring should belong to the term cycloalkyl, as long as they are not aromatic systems.
  • aromatic group generally refers to a ring system with at least one aromatic ring and no heteroatoms, the aromatic group may be substituted or unsubstituted, and the specific substituent may be selected from C1-C6 alkanes group, C1-C6 alkoxy, C3-C10 cycloalkyl, hydroxyl, halogen, etc.
  • Specific aryl groups may include, but are not limited to, phenyl, phenol, phenylamino, and the like.
  • heteroaryl generally refers to having at least one aromatic ring and optionally containing one or more (eg, 1, 2, or 3) heteroatoms selected from nitrogen, oxygen, or sulfur , the heteroaryl can be substituted or unsubstituted, and the specific substituent can be selected from C1-C6 alkyl, C1-C6 alkoxy, C3-C10 cycloalkyl, hydroxyl, halogen and the like.
  • heteroaryl groups may include, but are not limited to, furan, benzofuran, thiophene, benzothiophene, pyrrole, pyridine, pyrimidine, pyridazine, pyrazine, quinoline, isoquinoline, phthalazine, benzo-1 , 2,5-thiadiazole, benzothiazole, indole, benzotriazole, benzodioxolane, benzodioxane, benzimidazole, carbazole, or quinazoline.
  • targeted preparations generally refer to preparations that can specifically target a specific compound to the site (target area) where it needs to act. These preparations can use polymer particles as a carrier, and can usually target non-target tissues. Have relatively low, or no, or little interaction.
  • image probe generally refers to a class of substances that can enhance the effect of image observation after being injected (or administered) into human tissues or organs.
  • “individual” generally includes humans, non-human primates, such as mammals, dogs, cats, horses, sheep, pigs, cattle, and the like.
  • diblock copolymers can be pH-responsive and can be degraded under corresponding pH conditions through innovative chemical modification strategies. Therefore, it can be applied to various fields as a targeting agent, and the present invention has been completed on this basis.
  • a first aspect of the present application provides a functionalized diblock copolymer, and the functionalized diblock copolymer has the following chemical structural formula:
  • L 31 , L 32 , L 33 and L 34 are linking groups
  • R' 1 , R' 2 , R' 3 , R' 4 are each independently selected from H, C1-C10 alkyl, C3-C10 cycloalkyl;
  • a 3 is selected from protonatable groups
  • C 3 is selected from fluorescent molecular groups
  • D is selected from the group of delivery molecules
  • E 3 is selected from hydrophilic/hydrophobic groups
  • T 3 is selected from end-capping groups
  • EG 3 is selected from capping groups.
  • the compound of formula III is a polyethylene glycol-polylactide diblock copolymer, wherein the side chain structure of the polylactide block is randomly distributed, and is represented by ran in the general formula.
  • L 31 , L 32 , L 33 , and L 34 are usually linking groups, which are mainly used to link the main chain of the functionalized diblock copolymer and its branches.
  • L 31 , L 32 , L 33 , and L 34 can each be independently selected from S.
  • a 3 is usually selected from a protonatable group, and the group and the block of the polymer in which the group is located are mainly used to adjust the pH response of the polymer.
  • a 3 can be selected from wherein, R 11 and R 12 are each independently selected from C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, and aryl.
  • a 3 can be selected from Wherein, R 11 is selected from ethyl group, and R 12 is selected from ethyl group.
  • a 3 can be selected from Wherein, R 11 is selected from n-propyl group, and R 12 is selected from n-propyl group.
  • a 3 can be selected from Wherein, R 11 is selected from n-propyl group, and R 12 is selected from n-butyl group.
  • a 3 can be selected from Wherein, R 11 is selected from n-butyl group, and R 12 is selected from n-butyl group.
  • C 3 is usually selected from a fluorescent molecular group, and the group and the block of the polymer in which the group is located are mainly used to introduce fluorescent molecular groups.
  • the fluorescent molecular group may specifically include, but is not limited to, a combination of one or more of organic reagents, metal chelates, and the like.
  • C 3 may include ICG, METHYLENE BLUE, CY3, CY3.5, CY5, CY5.5, CY7, CY7.5, BDY630, BDY650, BDY-TMR, Tracy 645, Tracy 652, etc. fluorescent molecules.
  • C 3 may include indocyanine green (ICG), and the ICG may be connected to the branch of the block through an amide bond.
  • ICG indocyanine green
  • D 3 can be selected from a delivery molecular group, and the block of the polymer in which this group is located is mainly used to introduce various molecular groups that can be delivered by the block copolymer.
  • These molecular groups may include, but are not limited to, fluorescence quenching groups, drug molecular groups (eg, precursor molecules for photodynamic therapy, chemotherapeutic drug molecules, biopharmaceutical molecules, etc.), and the like.
  • the fluorescence quenching group can be selected from BHQ-0, BHQ-1, BHQ-2, BHQ-3, BHQ-10, QXL-670, QXL-610, QXL-570 , QXL 520, QXL-490, QSY35, QSY7, QSY21, QXL 680, Iowa Black RQ, Iowa Black FQ.
  • the drug molecule group may be selected from chemotherapeutic drugs, and specifically may be groups corresponding to drug molecules such as nucleic acid drugs, paclitaxel, cisplatin, doxorubicin, irinotecan, and SN38.
  • the drug molecule group can be selected from the chemical drugs of photodynamic therapy, and specifically can be the group corresponding to 5-ALA and its derivative structure (fatty chain, etc.), The specific chemical structure of the group is as follows:
  • E 3 can be selected from a hydrophilic/hydrophobic group, and the group and the block of the polymer in which the group is located are mainly used to adjust the hydrophobicity/hydrophilic degree of the hydrophobic block of the polymer.
  • the chemical structural formulas of the cholesterol and cholesterol derivatives, vitamin D and vitamin E can be one of the following:
  • the chemical structural formula of the zwitterionic group may be one of the following:
  • E 3 can be selected from n-nonyl groups.
  • E 3 can be selected from n-octyl.
  • E 3 can be selected from n-butanyl.
  • E 3 can be selected from n-propyl.
  • E 3 can be selected from ethane groups.
  • E 3 can be selected from methyl.
  • E 3 can be selected from n-octadecyl.
  • E 3 may be selected from n-heptadecyl.
  • E 3 can be selected from cholesterol.
  • E 3 can be selected from cholesterol derivatives.
  • E 3 can be selected from hydroxyethyl.
  • E 3 can be selected from hydroxymethyl.
  • E 3 can be selected from hydroxypropyl.
  • E 3 can be selected from hydroxybutyl.
  • E 3 can be selected from zwitterionic groups.
  • E 3 can be used in combination with a zwitterionic group and a n-nonyl group.
  • E 3 can be used in combination with a zwitterionic group and an n-octyl group.
  • T3 can generally be a terminal group from a different PEG initiator.
  • T 3 can be selected from -CH 3 , H.
  • EG 3 can generally be generated from different capping agents added after polymerization.
  • EG 3 can be selected from -YR 13 , wherein Y is selected from O, S, N, R 13 is selected from H, C1-C20 alkyl, C3-C10 cycloalkyl, aryl .
  • EG 3 can be selected from -OH.
  • the molecular weight of the polyethylene glycol (PEG) block can be 1000 ⁇ 50000Da, 1000 ⁇ 2000Da, 2000 ⁇ 3000Da, 3000 ⁇ 4000Da, 4000 ⁇ 5000Da, 5000 ⁇ 6000Da, 6000 ⁇ 7000Da, 7000Da 8000DA, 8000 ⁇ 9000Da, 9000 ⁇ 10000Da, 1000 ⁇ 12000Da, 12000 Da, 16000 ⁇ 18000Da, 18000 ⁇ 20000Da, 22000 ⁇ 24000Da, 24000-26000Da, 26000 ⁇ 28000Da, 28000 ⁇ 30000Da, 30000 ⁇ 32000DA, 32000 ⁇ 34000Da, 34000 ⁇ 36000Da, 36000 ⁇ 38000Da, 38000 ⁇ 40000Da, 40000 ⁇ 42000Da, 42000 ⁇ 44000Da, 44000 ⁇ 46000Da, 46000 ⁇ 48000Da, or 48000 ⁇ 50000Da, the molecular weight of polylactide
  • the molecular weight of the polyethylene glycol block may be 2000-10000 Da, and the molecular weight of the polylactide block may generally be 4000-26000 Da, 20000-40000 Da, 40000-60000 Da.
  • m 3 can be 22-1136, 22-32, 32-42, 42-52, 52-62, 62-72, 72-82, 82-92, 92-102, 102-122 , 122 ⁇ 142, 142 ⁇ 162, 162 ⁇ 182, 182 ⁇ 202, 202 ⁇ 242, 242 ⁇ 282, 282 ⁇ 322, 322 ⁇ 362, 362 ⁇ 402, 402 ⁇ 442, 442 ⁇ 482, 482 ⁇ 522, 522 ⁇ 562, 562 ⁇ 602, 602 ⁇ 642, 642 ⁇ 682, 682 ⁇ 722, 722 ⁇ 762, 762 ⁇ 802, 802 ⁇ 842, 842 ⁇ 882, 882 ⁇ 902, 902 ⁇ 942, 942 ⁇ 982, or 982 ⁇ 1136.
  • n 3 can be 10 ⁇ 500, 10 ⁇ 15, 15 ⁇ 20, 20 ⁇ 25, 25 ⁇ 30, 30 ⁇ 35, 35 ⁇ 40, 40 ⁇ 45, 45 ⁇ 50, 45 ⁇ 50, 50 ⁇ 60, 60 ⁇ 70, 70-80, 80-90, 90-100, 100-120, 120-140, 140-160, 160-180, 180-200, 200-220, 220-240, 240-260, 260-280, 280-300, 300-320, 320-340, 340-360, 360-380, 380-400, 400-420, 420-440, 440-460, 460-480, or 480-500.
  • p 3 can be 0.5 ⁇ 50, 0 ⁇ 0.5, 0.5 ⁇ 1, 1 ⁇ 2, 2 ⁇ 4, 4 ⁇ 6, 6 ⁇ 8, 8 ⁇ 10, 10 ⁇ 12, 12 ⁇ 14, 14 ⁇ 16, 16 ⁇ 18, 18-20, 20-25, 25-30, 30-35, 35-40, 40-45, or 45-50.
  • q 3 can be 0 ⁇ 500, 0 ⁇ 1, 1 ⁇ 2, 2 ⁇ 4, 4 ⁇ 6, 6 ⁇ 8, 8 ⁇ 10, 10 ⁇ 12, 12 ⁇ 14, 14 ⁇ 16, 16 ⁇ 18, 18 ⁇ 20, 20 to 25, 25 to 30, 30 to 35, 35 to 40, 40 to 45, 45 to 50, 45 to 50, 50 to 60, 60 to 70, 70 to 80, 80 to 90, 90 to 100, 100 ⁇ 120, 120 ⁇ 140, 140 ⁇ 160, 160 ⁇ 180, 180 ⁇ 200, 200 ⁇ 220, 220 ⁇ 240, 240 ⁇ 260, 260 ⁇ 280, 280 ⁇ 300, 300 ⁇ 320, 320 ⁇ 340, 340 ⁇ 360, 360-380, 380-400, 400-420, 420-440, 440-460, 460-480, or 480-500.
  • r 3 can be 0 ⁇ 200, 0 ⁇ 1, 1 ⁇ 2, 2 ⁇ 3, 3 ⁇ 4, 4 ⁇ 5, 6 ⁇ 7, 6 ⁇ 7, 7 ⁇ 8, 8 ⁇ 9, 9 ⁇ 10, 10- 15, 15-20, 25-30, 30-35, 35-40, 40-45, 45-50, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100 to 120, 120 to 140, 140 to 160, 160 to 180, 180 to 200, or 200 to 220.
  • r 3 can be the total number of hydrophilic/hydrophobic groups
  • r 3,A can be the total number of hydrophilic groups
  • r 3, A can be ⁇ 151, 1 ⁇ 2, 2 ⁇ 3, 3 ⁇ 4 , 4 ⁇ 5, 6 ⁇ 7, 6 ⁇ 7, 7 ⁇ 8, 8 ⁇ 9, 9 ⁇ 10, 10 ⁇ 12, 12 ⁇ 14, 14 ⁇ 16, 16 ⁇ 18, 18 ⁇ 20, 20 ⁇
  • s 31 may be 1-10, 1-2, 2-3, 3-4, 4-5, 6-7, 6-7, 7-8, 8-9, 9-10.
  • s 32 may be 1-10, 1-2, 2-3, 3-4, 4-5, 6-7, 6-7, 7-8, 8-9, 9-10.
  • s 33 may be 1-10, 1-2, 2-3, 3-4, 4-5, 6-7, 6-7, 7-8, 8-9, 9-10.
  • s 34 may be 1-10, 1-2, 2-3, 3-4, 4-5, 6-7, 6-7, 7-8, 8-9, 9-10.
  • t 31 may be 1-10, 1-2, 2-3, 3-4, 4-5, 6-7, 6-7, 7-8, 8-9, 9-10.
  • t 32 may be 1-10, 1-2, 2-3, 3-4, 4-5, 6-7, 6-7, 7-8, 8-9, 9-10.
  • t 33 may be 1-10, 1-2, 2-3, 3-4, 4-5, 6-7, 6-7, 7-8, 8-9, 9-10.
  • t 34 may be 1-10, 1-2, 2-3, 3-4, 4-5, 6-7, 6-7, 7-8, 8-9, 9-10.
  • m 3 22-1136
  • n 3 10-500
  • p 3 1-50
  • q 3 0
  • r 3 0.
  • the products prepared by these polymers for example, polymer particles
  • the fluorescent molecules distributed in the hydrophobic core are due to the FRET (Fluorescence Resonance Energy Transfer) effect, under certain excitation conditions (for example, in the near-infrared as the excitation light source) case) does not emit light.
  • FRET Fluorescence Resonance Energy Transfer
  • the target site eg, tumor site
  • EPR Enhanced Permeation and Retention
  • the protonatable group ie, the A3 group
  • the charge repulsion generated by its protonation and the increase in the solubility of the polymer drive the dispersion of the polymer particles, and after the dispersion
  • the FRET effect of the fluorophore on a single polymer segment is weakened or even completely eliminated, and the polymer molecules in the discrete state enriched in the target site can emit fluorescence under certain excitation conditions (for example, in the near-infrared). as the excitation light source).
  • the chemical structural formula of the functionalized diblock copolymer is shown as one of the following:
  • m 3 22-1136
  • n 3 10-500
  • p 3 0.5-50
  • q 3 0
  • r 3 1-200.
  • the products prepared by these polymers for example, polymer particles
  • the fluorescent molecules distributed in the hydrophobic core do not emit light under certain excitation conditions (for example, in the case of near-infrared as the excitation light source) due to the FRET effect
  • hydrophilic/hydrophobic groups ie, E3 groups
  • increases the stability of the polymer particles enhances the FRET effect of the polymer particles (more complete fluorescence quenching), and changes the acidity sensitivity of the polymer particles .
  • the target site eg, tumor site
  • EPR electrospray mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adid ad adionuentasulfonitoride, or other tissue uptake means.
  • the group ie, the A3 group
  • the FRET effect of the fluorophore on it is weakened or even completely eliminated, and the polymer molecules in the discrete state enriched in the target site can emit fluorescence under certain excitation conditions (for example, in the case of near-infrared as the excitation light source) Down).
  • Example 6.1.5 introduces 20 -C 9 H 19 groups through side chains on the hydrophobic block of the polymer, resulting in The quenching of ICG occurs to a higher degree in the self-organized state, and changing the pH of the solution to a more acidic condition still fails to completely dissolve the polymer (reflected in the relatively low fluorescence intensity of the acidic solution, and the polymer solution After adding DMF, there is a large increase in fluorescence intensity).
  • the chemical structural formula of the functionalized diblock copolymer is as follows:
  • the chemical structural formula of the functionalized diblock copolymer is as follows:
  • m 3 22-1136
  • n 3 10-500
  • p 3 0.5-50
  • q 3 1-500
  • r 3 0.
  • the products prepared by these polymers for example, polymer particles
  • the fluorescent molecules distributed in the hydrophobic core do not emit light under certain excitation conditions (for example, in the case of near-infrared as the excitation light source) due to the FRET effect
  • the delivery molecular group ie the D3 group
  • the target site eg, tumor site
  • EPR electrospray mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adsorption-mediated adid ad adionuentasulfonitoride, or other tissue uptake means.
  • the group ie, the A3 group
  • the FRET effect of the fluorophore on it is weakened or even completely eliminated, and the polymer molecules in the discrete state enriched in the target site can emit fluorescence under certain excitation conditions (for example, in the case of near-infrared as the excitation light source) Down).
  • the delivery molecular groups connected to the side chains can be hydrolyzed into corresponding molecules under the specific pH conditions of the target site after the dissociation of the polymer. These molecules can play corresponding roles at the target site.
  • the delivery molecular group can be the group corresponding to 5-ALA, which can provide 5-ALA molecules after hydrolysis.
  • 5-ALA can be efficiently It is enriched in cancer cells whose metabolism is accelerated, and completes biosynthesis to form Protoporphyrin (after Protoporphyrin enters cancer cells, because its metabolic process is blocked, it stays for a long time / "trap" inside cancer cells), at this time Under the irradiation of near-infrared or 400nm excitation light, it can emit fluorescence efficiently.
  • the dual wavelengths can separately excite the fluorescence, and the fluorescence image of the tumor site can be enhanced or the boundary is confirmed. or confirmation of cancerous or not.
  • 5-ALA is a proven precursor of photodynamic therapy drugs, and we creatively introduce and deliver 5-ALA in this example, which not only enhances the effect of tumor-specific imaging, but also implements tumor imaging At the same time, photodynamic therapy of the tumor site was performed.
  • the insoluble anticancer drugs connected to the side chains form a good water-soluble, safe and stable drug injection preparation. The solubility in the blood and the direct contact with the blood are reduced, the stability of the drug in the body is improved, the toxic and side effects of the drug in the body are reduced, and the high anti-tumor activity characteristic of the drug itself is retained.
  • the delivery molecular group can be the group corresponding to SN-38, which can provide SN-38 after hydrolysis, which overcomes the drug loading of traditional hydrophobic antitumor drug delivery systems.
  • the disadvantages of low and strong side effects improve drug safety and achieve the effect of killing cancer cells.
  • the side chain can also be chemically linked or delivered by physical action to form nano-formulations of nucleic acid drugs and drugs, which can significantly improve the in vivo stability of nucleic acid drugs and drugs.
  • the chemical structural formula of the functionalized diblock copolymer is as follows:
  • the functionalized diblock copolymer provided in this application usually has a lower critical micelle concentration, thereby reducing the difficulty of preparing polymer self-assembled particles, thereby ensuring that the obtained polymer particles have good solution stability and blood stability.
  • the functionalized diblock copolymer can have a critical micelle concentration (CMC) of ⁇ 50 ⁇ g/mL, ⁇ 45 ⁇ g/mL, ⁇ 40 ⁇ g/mL, ⁇ 35 ⁇ g/mL, ⁇ 30 ⁇ g/mL, ⁇ 25 ⁇ g/mL , ⁇ 20 ⁇ g/mL, ⁇ 16 ⁇ g/mL, ⁇ 14 ⁇ g/mL, ⁇ 12 ⁇ g/mL, ⁇ 10 ⁇ g/mL, ⁇ 9 ⁇ g/mL, ⁇ 8 ⁇ g/mL, ⁇ 7 ⁇ g/mL, ⁇ 6 ⁇ g/mL, ⁇ 5 ⁇ g/mL , ⁇ 4 ⁇ g/mL, or less critical micelle concentration.
  • CMC
  • a second aspect of the present application provides a polymer particle prepared from the functionalized diblock copolymer provided in the first aspect of the present invention.
  • the functionalized diblock copolymers described above can be used to form polymer particles.
  • the fluorescent molecules with polymer particles distributed in the hydrophobic core do not emit light under certain excitation conditions (for example, when near-infrared is used as the excitation light source) because of the FRET effect.
  • After administration to an individual it can be enriched at the target site (eg, tumor site) by passive targeting of EPR (or other tissue uptake means), and can be protonated due to the special pH environment (eg, acidic environment) of the target site.
  • the group can be protonated in this pH range, and the charge repulsion and water-solubility generated by the protonation drive the dispersion of the polymer particles.
  • the fluorescent group on the discrete single polymer segment has a FRET effect Attenuated or even completely eliminated, polymer molecules in discrete states enriched at target sites can fluoresce under certain excitation conditions (eg, in the case of near-infrared excitation light sources).
  • the above-mentioned pH environment can be 6.5-6.8, which can correspond to the interstitial fluid of tumor cells, and at least part of the polymer particles can reach the target site and be in the interstitial fluid of cells; for another example, the above-mentioned pH environment It can also be 4.5-6.5, the pH environment can correspond to endosomes or lysosomes in tumor cells, and at least part of the polymer particles can interact with cells at the target site (eg, tumor cells), through endocytosis mechanisms, into the interior of the cell to achieve the above-mentioned pH environment.
  • the target site eg, tumor cells
  • the polymer particles prepared by the functionalized diblock copolymer provided in this application can be fully diffused in the target site to achieve a clear fluorescence edge, and the functionalized diblock copolymer and/or polymer particles can be in vivo. degraded.
  • polymer particles or nanoparticles that fail to be targeted to the tumor site through the EPR effect cycle can be degraded after being engulfed by the body's immune system (mainly macrophages, etc.).
  • the body's immune system mainly macrophages, etc.
  • PEG molecules with molecular weights below 40,000 Da for example, Roche's long-acting interferon
  • the Chinese product name is Peluoxin, which has been used safely in clinical practice for more than ten years after approval.
  • the molecular weight of PEG involved is 40,000 Da), which can be effectively eliminated by the kidneys after circulating in the body, while polylactide can be hydrolyzed. It is gradually metabolized after being reduced, and part of it can be eliminated by the kidneys).
  • the polymer particles targeted to the target site through the EPR effect are dissociated into free functionalized diblock copolymer molecules, which can be degraded into PEG under the pH conditions of the target site and the presence of various enzymes (which can be recycled after passing through Kidney clearance) and degradable block (polylactide) macromolecules with gradually decreasing molecular weight (subsequent cyclic metabolism, some macromolecules can be cleared by the kidneys).
  • the polymer particles provided in this application may be nano-sized. ⁇ 100nm, 100 ⁇ 120nm, 120 ⁇ 140nm, 140 ⁇ 160nm, 160 ⁇ 180nm, or 180 ⁇ 200nm.
  • the polymer particles can also be modified with targeting groups, and these targeting groups can usually be modified on the surface of the polymer particles.
  • Suitable methods for modifying targeting groups to polymer particles should be known to those skilled in the art, for example, in general, targeting groups can be attached to functionalized diblock copolymer molecular structures. T terminal. These targeting groups can often increase the targeting efficiency of nanoparticles to liver tumors on the basis of the EPR effect (or other tissue uptake modalities).
  • targeting groups may include, but are not limited to, (monoclonal) antibody fragments (eg, Fab, etc.), small molecule targeting groups (eg, folic acid, carbohydrates), polypeptide molecules (eg, cRGD, GL2P), nucleic acid suitable
  • Various functional molecules such as ligands (aptamers), these functional factors can have targeting functions (for example, the function of targeting tumor tissue).
  • the targeting group is selected from -GalNac (N-acetylgalactosamine).
  • the third aspect of the present application provides the preparation method of the polymer particles provided by the second aspect of the present application.
  • a suitable method for forming the polymer particles will be known to those skilled in the art It should be known, for example, may include: dispersing an organic solvent comprising the functionalized diblock copolymers described above in water, self-assembling to provide the polymer particles; or reversing this process, dispersing water in the functional groups described above in the organic solvent of the diblock copolymer.
  • the system can be thoroughly mixed by suitable operation, for example, it can be carried out under ultrasonic conditions.
  • the self-assembly process it can usually be carried out by a method of removing the organic solvent in the reaction system, and the method of removing the organic solvent can specifically be a solvent volatilization method, an ultrafiltration method, or the like.
  • the CMC of the polymer is related to the ratio of the hydrophobic block to the hydrophilic block of the polymer, and the higher the ratio of the hydrophobic block, the smaller the CMC.
  • E1, E2, and E3 are long-chain hydrophobic side chains, their content is inversely proportional to the size of CMC; when E1, E2, and E3 are hydrophilic side chains, their content is proportional to the size of CMC.
  • the particle size of the polymer particles can usually be adjusted by an extrusion apparatus or a microfluidic device (a homogenizer, NanoAssemblr, etc.).
  • the fourth aspect of the present application provides the use of the functionalized diblock copolymer provided in the first aspect of the present application, or the polymer particles provided in the second aspect of the present application in preparing pharmaceutical preparations and/or reagents, to form a polymer Nanoparticles, as drug delivery systems, can deliver drugs or imaging probe molecules with polymer particles as carriers.
  • the products (eg, polymer particles) prepared by the functionalized diblock copolymers provided herein have passive (enrichment at the tumor site through the general EPR effect of nanoparticles) or active targeting ( Targeting groups modified on the surface of nanoparticles are enriched at the tumor site through specific binding to tumor surface-specific receptors) function, after administration to an individual, due to the special pH environment of the target site (for example, acidic environment), the protonable group can be protonated in this pH range, and the charge repulsion and water-solubility generated by its protonation drive the dispersion of polymer particles, and the fluorescence on the discrete single polymer segment group, its FRET effect is weakened or even completely eliminated, and polymer molecules in a discrete state enriched in the target site can emit fluorescence under certain excitation conditions (for example, in the case of near-infrared light as the excitation light source), achieving
  • the target site (eg, tumor site) is specifically luminescent and can thus be used as a targeted
  • the drug or image probe molecule can usually be delivered by using polymer particles as a carrier, and the functionalized diblock copolymer can be used as a single active ingredient, or can be combined with other active groups.
  • the components are combined to form the active ingredient together for the above-mentioned uses.
  • a fifth aspect of the present application provides a composition comprising the functionalized diblock copolymer provided in the first aspect of the present application, or the polymer particles provided in the second aspect of the present application.
  • the above-mentioned composition can be a targeting reagent, and in a specific embodiment of the present application, the above-mentioned composition can be an image probe.
  • compositions provided in this application may also include at least one pharmaceutically acceptable carrier, which generally refers to a carrier for administration, which does not itself induce the production of antibodies that are detrimental to the individual receiving the composition, and which gives There is no excessive toxicity after the drug.
  • pharmaceutically acceptable carriers are well known to those skilled in the art, for example, relevant information on pharmaceutically acceptable carriers is disclosed in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).
  • the carrier can be a combination including, but not limited to, one or more of saline, buffer, dextrose, water, glycerol, ethanol, adjuvants, and the like.
  • the functionalized diblock copolymer can be a single active ingredient, or can be combined with other active ingredients and used in combination.
  • the other active components can be various other drugs and/or agents, which can generally act on the target site together with the above-mentioned functionalized diblock copolymer.
  • the content of the active ingredient in the composition is usually a safe and effective amount, and the safe and effective amount should be adjustable for those skilled in the art. type, condition and severity of the disease.
  • compositions provided in the present application can be adapted to any form of administration, which can be parenteral, for example, can be pulmonary, nasal, rectal and/or intravenous, more specifically can be intradermal, subcutaneous , intramuscular, intra-articular, intraperitoneal, pulmonary, buccal, sublingual, nasal, transdermal, vaginal, intravesical, intrauterine, enteral, post-craniotomy topical, or parenteral .
  • parenteral for example, can be pulmonary, nasal, rectal and/or intravenous, more specifically can be intradermal, subcutaneous , intramuscular, intra-articular, intraperitoneal, pulmonary, buccal, sublingual, nasal, transdermal, vaginal, intravesical, intrauterine, enteral, post-craniotomy topical, or parenteral .
  • formulations suitable for parenteral administration may include but are not limited to solutions, suspensions, reconstituted dry formulations or sprays, etc.
  • a sixth aspect of the present application provides a method of treatment or diagnosis, comprising: administering to an individual an effective amount of the functionalized diblock copolymer provided in the first aspect of the present application, or the polymer particles provided in the second aspect of the present application, or The composition provided by the fifth aspect of the present application.
  • the "effective amount” generally refers to an amount that, after an appropriate period of administration, will achieve the desired effect, eg, imaging, treatment of disease, and the like.
  • the functionalized diblock copolymers or polymer particles provided in this application can significantly improve the safety of tumor imaging probe reagents and/or tumor drug preparations (most tumor imaging probe reagents are single-use; The formulation is usually administered multiple times).
  • the diblock copolymer provided by the present invention the compound of formula III PEG-PLA copolymer
  • PEG can be safely removed from the human body
  • adoptive adjuvant(R) the compound of formula III PEG-PLA copolymer
  • PLGA block component macromolecule
  • the functionalized diblock copolymers or polymer particles provided in this application can realize high-quality imaging imaging of tumor imaging probe reagents specific to solid tumor sites, and respond sensitively to pH changes at tumor sites (fluorescence signal changes ⁇ pH10–90% only Requires about 0.2-0.3 pH units), high signal-to-noise ratio, clear boundaries, long half-life, and in vivo imaging data show that the used imaging probes can have long intratumoral retention and duration (several days) once enriched into tumors above), endows tumor imaging surgery with a longer observation window, and solves the difficult problem of real-time intraoperative navigation of fluorescence imaging technology.
  • the functionalized diblock copolymers or polymer particles provided in the present application can achieve in vivo labeling of cancerous lymph nodes after administration, and significantly fluorescent lymph nodes can be seen by in vivo imaging and ex vivo dissection. This finding is of great significance for the intraoperative determination of intraoperative lymph node cancer metastasis in future tumor resection surgery, and can have a significant positive impact on the surgical prognosis and survival of patients.
  • the specific mode of administration can be local injection, such as local injection into the periareola or subcutaneous tissue in breast cancer resection, and local injection into intraperitoneal tissue in abdominal tumor surgery, as well as melanoma resection and treatment Local subcutaneous or intramuscular injection for surgery.
  • the functionalized diblock copolymers, polymer particles, or compositions provided in this application can be conveniently administered locally, for example, intravesical infusion, uterine infusion, intestinal infusion, and local administration to the brain after craniotomy etc., after the polymer particles used are sufficiently contacted with the locally contacted tumor tissue, the polymer particles can be absorbed by the tumor tissue, thereby realizing the imaging and treatment of the tumor tissue.
  • the functionalized diblock copolymers or polymer particles provided in this application can be introduced into the macromolecular tumor microenvironment (for example, weak acid, microenvironment-specific Protease, etc.) cleavable precursor molecules (for example, the precursor molecules of photodynamic therapy drugs, etc., more specifically 5-ALA precursor molecules, etc.), the side chain is cut off from the polymer main chain and reduced to a clinically obtained molecule.
  • a batch of drug molecules eg, 5-ALA, etc.
  • the designed image probe reagent utilizes the light source for performing intraoperative images, realizes photodynamic therapy of tumor tissue during tumor resection, and reduces the effect of other photodynamic therapy on normal tissue. In the process of removing tumor tissue, it kills unremoved cancer tissue, reduces postoperative recurrence and prolongs survival time.
  • the functionalized diblock copolymers or polymer particles provided in this application can be widely used in the fields of tumor imaging, tumor treatment, etc.
  • Faster and tunable (by changing the number of cannulated groups) degradation and clearance, and high-quality imaging effects with excellent specificity at the target site, with high signal-to-noise ratio, clear boundaries, long half-life, etc. solves the problem of real-time intraoperative navigation of fluorescence imaging technology, and thus has a good industrialization prospect.
  • the first step Synthesis of 2-hydroxypent-4-enoic acid (IB004-069-01)
  • the second step Synthesis of 2-(2-bromo-propionyloxy)-pent-4-enoic acid (IB004-082-01)
  • Step 3 Synthesis of 3-allyl-6-methyl-[1,4]dioxane-2,5-dione (IB004-084-01)
  • the polymer to be modified in the photochemical reactor choose a solvent such as dichloromethane or water according to the solubility of the polymer, and the reaction system should be completely dissolved.
  • the reaction concentration was 100 mg polymer/1000 ⁇ L.
  • the hydrophilic/hydrophobic group to be modified, 0.2 mol equivalent of 2,2-dimethoxy-2-phenylacetophenone was added, and the reaction solution was irradiated with 365 nm ultraviolet light at room temperature for 2 hours. After completion of the reaction, the reaction solution was concentrated. The precipitate was washed with n-heptane. Filtration gave a precipitate of polymer as a white solid.
  • the polymer to be modified in the photochemical reactor choose a solvent such as dichloromethane or water according to the solubility of the polymer, and the reaction system should be completely dissolved.
  • the reaction concentration was 100 mg polymer/1000 ⁇ L.
  • the polymer to be modified into the single-necked flask select a solvent such as dichloromethane or water according to the solubility of the polymer, and the reaction system should be completely dissolved.
  • the reaction concentration was 50 mg polymer/1000 ⁇ L.
  • the polymer to be modified in the photochemical reactor choose a solvent such as dichloromethane or water according to the solubility of the polymer, and the reaction system should be completely dissolved.
  • the reaction concentration was 100 mg polymer/1000 ⁇ L.
  • Example 6.1.2 According to the procedure of Example 1.2 above (using 3-allyl-6-methyl-[1,4]dioxane-2,5-dione 1.02 g, 6 mmol) A total of 1.16 g of white solid polymer was obtained with a yield of 91.3%.
  • 1 H NMR 400MHz, Chloroform-d
  • 3.63(s, 448H) 2.67(m, 240H), 1.55(m, 343H) .
  • Example 6.1.3 According to the procedure of Example 2 above, a total of 52 mg of white solid polymer was obtained by using dichloromethane as the solvent, and the yield was 91%.
  • 1 H NMR 400MHz, Chloroform-d
  • 3.63 (d, J 1.2Hz, 448H)
  • 2.75-2.56 (m, 220H) , 2.46-2.39(m, 41H)
  • 1.90-1.78(m, 40H) 1.61-1.44(m, 447H), 1.29-1.26(m, 210H), 0.89-0.87(m, 62H).
  • Example 6.1.4 According to the procedure of Example 3 above, a total of 65 mg of white solid polymer was obtained by using dichloromethane as the solvent, and the yield was 89%.
  • 1 H NMR 400MHz, Chloroform-d
  • 1.58 -1.43(m, 549H) 1.58 -1.43(m, 549H
  • 0.92-0.89(m, 59H 1.
  • Example 6.1.5 Synthesis and purification of Example 6.1.5 According to the procedure of Example 4 above, a total of 32 mg of green solid polymer was obtained by using dichloromethane as the solvent, and the yield was 76%.
  • 1 H NMR 400MHz, Chloroform-d
  • Example 7.1.2 According to the procedure of Example 1.2 above (using 3-allyl-6-methyl-[1,4]dioxane-2,5-dione 1.02 g, 6 mmol) A total of 1.16 g of white solid polymer was obtained with a yield of 91.3%.
  • 1 H NMR 400MHz, Chloroform-d
  • ⁇ 5.84-5.66 m, 109H
  • 5.28-5.08 m, 452H
  • 2.67 m, 240H
  • 1.54 1.54 (m, 343H) .
  • Example 7.1.3 According to the procedure of Example 2 above, a total of 56 mg of white solid polymer was obtained by using dichloromethane as the solvent, and the yield was 93%.
  • 1 H NMR 400MHz, Chloroform-d
  • 1.58-1.44(m, 442H) 1.29-1.24(m, 565H), 0.89-0.87(m, 58H).
  • Example 7.1.4 According to the procedure of Example 3 above, dichloromethane was used as the solvent to obtain a total of 60 mg of white solid polymer with a yield of 85%.
  • 1 H NMR 400MHz, Chloroform-d
  • 2.44-2.38(m, 41H) 1.91 -1.76(m, 239H), 1.57-1.44(m, 543H), 0.89-0.87(m, 61H).
  • Example 7.1.5 According to the procedure of Example 4 above, a total of 33 mg of green solid polymer was obtained by using dichloromethane as the solvent, and the yield was 72%.
  • 1 H NMR 400MHz, Chloroform-d
  • ⁇ 8.14-7.30(m, 27H), 5.14(s, 327H), 3.63(d, J 1.2Hz, 448H), 3.09-2.58(m, 1172H), 2.47 -2.39(m, 42H), 1.90-1.78(m, 240H), 1.57-1.44(m, 543H), 0.89-0.87(m, 61H).
  • Example 8.1.2 According to the procedure of Example 1.2 above (using 3-allyl-6-methyl-[1,4]dioxane-2,5-dione 1.02 g, 6 mmol) A total of 1.16 g of white solid polymer was obtained with a yield of 91.3%.
  • 1 H NMR 400MHz, Chloroform-d
  • 3.63(s, 448H) 2.67(m, 240H), 1.55(m, 343H) .
  • PLA110-C4 IB015-042-01
  • Example 8.1.3 According to the procedure of Example 2 above, a total of 51 mg of white solid polymer was obtained by using dichloromethane as the solvent, and the yield was 89%.
  • 1 H NMR 400MHz, Chloroform-d
  • 3.63 (d, J 1.2Hz, 448H)
  • 2.75-2.56 (m, 223H) , 2.46-2.39(m, 38H)
  • 1.61-1.44(m, 442H) 1.61-1.44(m, 442H
  • 0.92-0.89(m, 61H 1.
  • Example 8.1.4 According to the procedure of Example 3 above, a total of 54 mg of white solid polymer was obtained by using dichloromethane as the solvent, and the yield was 91%.
  • 1 H NMR 400MHz, Chloroform-d
  • ⁇ 5.14(s, 332H) 3.63(s, 448H), 3.09-2.58(m, 1238H)
  • 1.90-1.78(m, 240H) 1.57-1.44(m, 549H)
  • 0.92-0.89 (m, 60H).
  • Example 8.1.5 According to the procedure of Example 4 above, a total of 36 mg of green solid polymer was obtained by using dichloromethane as the solvent, and the yield was 75%.
  • 1 H NMR 400MHz, Chloroform-d
  • ⁇ 8.09-7.28(m, 24H) 5.14(s, 333H), 3.63(s, 448H), 3.07-2.56(m, 1238H), 1.91-1.80(m, 243H), 1.58-1.43 (m, 548H), 0.92-0.88 (m, 59H).
  • Example 9.1.2 According to the procedure of Example 1.2 above (using 3-allyl-6-methyl-[1,4]dioxane-2,5-dione 1.02 g, 6 mmol) A total of 1.16 g of white solid polymer was obtained with a yield of 91.3%.
  • 1 H NMR 400MHz, Chloroform-d
  • 5.28-5.08(m, 452H) 3.62(s, 448H)
  • 2.67(m, 240H) 1.56(m, 343H) .
  • Example 9.1.3 According to the procedure of Example 2 above, a total of 55 mg of white solid polymer was obtained by using dichloromethane as the solvent, and the yield was 89%.
  • 1 H NMR 400MHz, Chloroform-d
  • 2.75-2.56(m, 208H) 2.50-2.46(m, 42H)
  • 1.90-1.78(m, 40H) 1.61-1.55(m, 363H), 1.17-1.12(m, 63H).
  • Example 9.1.4 According to the procedure of Example 3 above, dichloromethane was used as the solvent to obtain a total of 64 mg of white solid polymer with a yield of 91%.
  • 1 H NMR (400MHz, Chloroform-d) ⁇ , 5.14(s, 322H), 3.63(d, J 1.2Hz, 448H), 3.09-2.58(m, 1198H), 2.50-2.46(m, 42H), 1.90 -1.78(m, 240H), 1.55(m, 473H), 1.17-1.13(m, 63H).
  • Example 9.1.5 Synthesis and purification of Example 9.1.5 According to the procedure of Example 4 above, dichloromethane was used as the solvent to obtain a total of 40 mg of green solid polymer with a yield of 75%.
  • 1 H NMR 400MHz, Chloroform-d
  • ⁇ , 8.08-7.28 m, 20H
  • 5.14 s, 320H
  • 3.09-2.58 m, 1198H
  • 2.50 -2.46(m, 42H) 1.90-1.78(m, 240H), 1.55(m, 473H), 1.17-1.13(m, 63H).
  • Example 10.1.2 Following the procedure of Example 1.2 above (using 3-allyl-6-methyl-[1,4]dioxane-2,5-dione 1.02 g, 6 mmol) A total of 1.16 g of white solid polymer was obtained with a yield of 91.3%.
  • 1 H NMR 400MHz, Chloroform-d
  • 2.67(m, 240H) 1.55(m, 343H) .
  • PLA110-CHOL IB015-046-01
  • Example 10.1.3 According to the procedure of Example 2 above, a total of 61 mg of white solid polymer was obtained by using dichloromethane as the solvent, and the yield was 93%.
  • 1 H NMR 400MHz, Chloroform-d
  • Example 10.1.4 According to the procedure of Example 3 above, a total of 75 mg of white solid polymer was obtained by using dichloromethane as the solvent, and the yield was 92%.
  • 1 H NMR 400MHz, Chloroform-d
  • Example 10.1.5 Synthesis and purification of Example 10.1.5 According to the procedure of Example 4 above, dichloromethane was used as the solvent to obtain a total of 43 mg of green solid polymer with a yield of 85%.
  • 1 H NMR 400MHz, Chloroform-d
  • Example 11.1.2 Following the procedure of Example 1.2 above (using 3-allyl-6-methyl-[1,4]dioxane-2,5-dione 1.02 g, 6 mmol) A total of 1.16 g of white solid polymer was obtained with a yield of 91.3%.
  • 1 H NMR 400MHz, Chloroform-d
  • 3.63(s, 448H) 2.67(m, 243H), 1.55(m, 343H) .
  • Example 111.3 According to the procedure of Example 2 above, using water as the solvent, a total of 55 mg of white solid polymer was obtained, and the yield was 85%.
  • 1 H NMR 400MHz, Chloroform-d
  • 2.75-2.56(m, 265H) 2.35-2.31(m, 41H)
  • 1.90-1.78(m, 40H) 1.61-1.55(m, 363H).
  • Example 11.1.4 According to the procedure of Example 3 above, dichloromethane was used as the solvent to obtain a total of 60 mg of white solid polymer with a yield of 80%.
  • 1 H NMR 400MHz, Chloroform-d
  • 2.35-2.31(m, 45H) 1.90-1.78(m, 238H), 1.55(m, 473H).
  • Example 11.1.5 According to the procedure of Example 4 above, dichloromethane was used as the solvent to obtain a total of 35 mg of green solid polymer with a yield of 79%.
  • 1 H NMR 400MHz, Chloroform-d
  • 3.63(d, J 1.2Hz, 448H)
  • 1.90-1.78(m, 238H) 1.55(m, 473H).
  • Example 11.2.2 Following the procedure of Example 1.2 above (using 3-allyl-6-methyl-[1,4]dioxane-2,5-dione 1.02 g, 6 mmol) A total of 1.16 g of white solid polymer was obtained with a yield of 91.3%.
  • 1 H NMR 400MHz, Chloroform-d
  • 3.63(s, 448H) 2.67(m, 243H), 1.55(m, 343H) .
  • Example 11.2.3 According to the procedure of Example 2 above, using water as the solvent, a total of 52 mg of white solid polymer was obtained, and the yield was 85%.
  • 1 H NMR 400MHz, Chloroform-d
  • 3.63(d, J 1.2Hz, 448H)
  • 2.75-2.56(m, 238H) 2.37-2.32 (m, 101H)
  • 1.61-1.55 (m, 397H).
  • Example 11.2.4 According to the procedure of Example 3 above, dichloromethane was used as the solvent to obtain a total of 54 mg of white solid polymer with a yield of 80%.
  • 1 H NMR 400MHz, Chloroform-d
  • 2.37-2.32(m, 105H) 1.90 -1.78(m, 241H), 1.55(m, 468H).
  • Example 11.2.5 According to the procedure of Example 4 above, a total of 32 mg of green solid polymer was obtained by using dichloromethane as the solvent, and the yield was 74%.
  • 1 H NMR 400MHz, Chloroform-d
  • Example 12.1.2 Following the procedure of Example 1.2 above (using 3-allyl-6-methyl-[1,4]dioxane-2,5-dione 1.02 g, 6 mmol) A total of 1.16 g of white solid polymer was obtained with a yield of 91.3%.
  • 1 H NMR 400MHz, Chloroform-d
  • 2.67(m, 240H) 1.55(m, 343H) .
  • Example 12.1.3 According to the procedure of Example 2 above, using water as the solvent, a total of 56 mg of white solid polymer was obtained, with a yield of 85%.
  • 1 H NMR 400MHz, Chloroform-d
  • 3.63 (d, J 1.2Hz, 448H)
  • 3.06-0.99 (m, 50H) 2.75-2.56(m, 270H), 1.90-1.78(m, 40H), 1.61-1.55(m, 363H).
  • Example 12.1.4 Synthesis and purification of Example 12.1.4 According to the procedure of Example 3 above, a total of 56 mg of white solid polymer was obtained by using dichloromethane as the solvent, and the yield was 80%.
  • 1 H NMR 400MHz, Chloroform-d
  • 1.90-1.78(m, 237H) 1.55 (m, 462H).
  • Example 12.1.5 Synthesis and Purification of Example 12.1.5 According to the procedure of Example 4 above, a total of 30 mg of green solid polymer was obtained by using dichloromethane as the solvent, and the yield was 75%.
  • 1 H NMR 400MHz, Chloroform-d
  • ⁇ 8.07-7.29(m, 26H) 5.14(s, 318H)
  • 1.90 -1.78(m, 238H) 1.55(m, 462H).
  • Example 13.1.2 According to the procedure of Example 1.2 above (using 3-allyl-6-methyl-[1,4]-dioxane-2,5-dione 1.02 g, 6 mmol ) to obtain a total of 1.16 g of a white solid polymer with a yield of 91.3%.
  • 1 H NMR 400MHz, Chloroform-d
  • 3.63(s, 448H) 2.67(m, 240H), 1.55(m, 343H) .
  • Example 6.1.3 According to the procedure of Example 2 above, a total of 52 mg of white solid polymer was obtained by using water as the solvent, and the yield was 90%.
  • 1 H NMR 400MHz, Chloroform-d
  • ⁇ 5.85-5.67(m, 88H) 5.28-5.08(m, 433H)
  • 4.28(s, 41H) 3.81-3.77(m, 42H)
  • 3.63(d, J 1.2Hz, 448H)
  • 2.96-2.92(m, 42H) 2.75-2.56(m, 222H)
  • 1.90-1.78(m, 41H) 1.61-1.55(m, 368H) .
  • Example 6.1.4 According to the procedure of Example 3 above, a total of 65 mg of white solid polymer was obtained by using water as the solvent, and the yield was 85%.
  • 1 H NMR 400MHz, Chloroform-d
  • ⁇ 5.14(s, 335H), 4.28(s, 39H), 3.81-3.77(m, 43H), 3.63(d, J 1.2Hz, 448H), 3.32(S , 126H), 3.09-2.58 (m, 1233H), 1.90-1.78 (m, 243H), 1.55 (m, 468H).
  • Example 6.1.5 Synthesis and purification of Example 6.1.5 According to the procedure of Example 4 above, a total of 32 mg of green solid polymer was obtained by using dichloromethane as the solvent, and the yield was 74%.
  • 1 H NMR 400MHz, Chloroform-d
  • ⁇ 8.21-7.30(m, 27H) 5.14(s, 334H), 4.28(s, 39H), 3.81-3.77(m, 38H), 3.63(d, J 1.2 Hz, 448H), 3.32(S, 117H), 3.09-2.58(m, 1225H), 1.90-1.78(m, 241H), 1.55(m, 465H).
  • mice Female Balb/c nude mice (4-6 weeks) were injected with a certain amount (about 2 x 10 6 per mouse) of 4T1 cells on the lower right side of the back. When the tumor volume grew to 200-400 mm 3 , the mice were removed stand-by.
  • imaging agent No. IB015-055-01 Example 11.1.5 was used, and the dose was 2.5 mg/kg, which was injected into mice via tail vein.
  • In vivo fluorescence imaging observation After injection, at different time points, using the in vivo fluorescence imaging system (PerkinElmer, model: IVIS spectrum CT, origin: USA, using the pre-set ICG optical filter combination of the equipment, each shot was taken with a fixed shot parameters) to monitor tumor enrichment and in vivo distribution of fluorescent probes in vivo. As shown in Figure 6, 24 hours after injection, a strong fluorescence signal enrichment appeared at the tumor site. After in vivo fluorescence imaging, the mice were sacrificed and the main organs were excised for fluorescence intensity quantification to characterize their tissue distribution.
  • the tumor, muscle, and major organs were subjected to fluorescence imaging.
  • ROI image information area
  • Region of Interst image information area
  • the TNR tumor/healthy tissue ratio
  • mice Female Balb/c nude mice (4-6 weeks) were injected with a certain amount (about 2 x 10 6 per mouse) of 4T1 cells on the lower right side of the back. When the tumor volume grew to 200-400 mm 3 , the mice were removed stand-by.
  • imaging agent No. IB015-038-01 Example 6.1.5 was used, and the dose was 2.5 mg/kg, which was injected into mice via tail vein.
  • In vivo fluorescence imaging observation After injection, at different time points, using the in vivo fluorescence imaging system (PerkinElmer, model: IVIS spectrum CT, origin: USA, using the pre-set ICG optical filter combination of the equipment, each shot was taken with a fixed shot parameters) to monitor tumor enrichment and in vivo distribution of fluorescent probes in vivo. As shown in Figure 8, 24 hours after injection, a strong fluorescence signal enrichment appeared at the tumor site. After in vivo fluorescence imaging, the mice were sacrificed and the main organs were harvested for fluorescence intensity quantification to characterize their tissue distribution.
  • the tumor, muscle, and major organs were subjected to fluorescence imaging.
  • ROI image information area
  • Region of Interst image information area
  • the TNR was then calculated using "Total Light Intensity of Tumor ROI"/"Total Light Intensity of Muscle ROI”.
  • mice Female Balb/c nude mice (4-6 weeks) were injected with a certain amount (about 2 x 10 6 per mouse) of 4T1 cells on the lower right side of the back. When the tumor volume grew to 200-400 mm 3 , the mice were removed stand-by.
  • Imaging agent No. IB015-050-01 (Example 10.1.5) was used, and the dose was 2.5 mg/kg, which was injected into mice via tail vein.
  • mice After administration, the mice were sacrificed 24 hours to collect samples, and fluorescence imaging was performed on tumors, muscles, and major organs (heart, liver, spleen, lung, and kidney). After imaging, use the image information area (ROI, Region of Interst) of the same size to delineate the area of different tissues, and measure the total value and average value of the fluorescence intensity (see Figure 10 for typical imaging results and values).
  • ROI image information area
  • the TNR tumor/healthy tissue ratio
  • the present application effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本申请涉及有机化学和高分子化学领域,特别是涉及一种官能化双嵌段共聚物及其制备方法和用途。本申请提供一种官能化双嵌段共聚物,所述官能化双嵌段共聚物的化学结构式如式III所示。本申请所提供的官能化双嵌段共聚物、或聚合物颗粒,可以广泛的应用肿瘤影像、肿瘤治疗等领域,其不仅具有良好的安全性,实现酸性条件下高分子更快的且可调节(通过改变官能基团的结构和数量)的降解和清除,还在靶向部位具有优良的特异性的优质影像成像效果,具有高信噪比、边界清晰、长半衰期等特点,解决了荧光成像技术在实时术中导航的难题,从而具有良好的产业化前景。

Description

一种官能化双嵌段共聚物及其制备方法和用途 技术领域
本申请涉及有机化学领域,特别是涉及一种官能化双嵌段共聚物及其制备方法和用途,这些用途主要包含肿瘤影像探针试剂和肿瘤治疗药物制剂。
背景技术
恶性肿瘤(癌症)已经成为威胁人类生命的主要原因之一并且逐年攀升。根据中国国家癌症中心发布的2019年全国癌症报告,在中国,恶性肿瘤已成为严重威胁中国人群健康的主要公共卫生问题之一,最新的统计数据显示,恶性肿瘤死亡占居民全部死因的23.91%,导致医疗花费超过2200亿。2015年全国恶性肿瘤发病约392.9万例,死亡233.8万例。
目前,癌症治疗包括手术切除、化学疗法、放射疗法、免疫疗法等治疗方法。手术切除是治疗中早期实体肿瘤的最有效的手段,通常由外科医生在外科手术过程中,依靠术前的影像诊断、术中的临床经验(包括视觉辨别和触碰感觉等)、及其他临床辅助手段来判断肿瘤的边界并对病灶部位实施切除。但由于肿瘤基本上是非均相分布的组织,且各种不同类型的肿瘤具有不同的边界特征,造成肿瘤边界在手术过程中难以精准判断。因此,外科手术的过度切除可能严重影响病人术后生活质量(例如,乳腺癌的全乳切除;甲状腺癌手术中未能保留健康的甲状旁腺;低位直肠癌手术中引起的肛门保留问题等),切除不足则易复发(例如,非侵犯性膀胱癌电切手术因切除不净引起的高复发率)。因此,在手术过程中精准判断肿瘤病灶部位的边界成为外科手术成功的关键因素。
在肿瘤切除的手术过程中,通常外科医生需要根据术前的影像诊断及病人的病理分期,决定是否需要进行淋巴清扫,切除可能转移的癌组织。通常情况下,医生会选择切取病人的组织,在手术过程中(病人仍处于麻醉的状态下),送病理科对标本进行取材,进行快速的冰冻病理诊断后将结果回馈给手术医师,以便其决定相关组织的清扫范围和程度。一般来说,整个快速冰冻病理检查过程需要大约45分钟到数个小时,在此期间,手术室内的医护团队和医护资源全部处于待命,并且病人在手术室等待的过程中也增加了感染及延长麻醉时间的风险。因此,除了肿瘤的边界判断之外,临床上也需要在手术过程中更快、更准确的肿瘤扩散组织的病理判断手段,缩短手术时间,精确切除癌扩散组织,降低后期复发或扩散,延长病人的术后生存期。
综上所述,针对实体肿瘤及癌转移组织的术中成像技术具有重大的临床意义。但目前针对癌组织的术中特异性成像仍有很大的挑战。主要的难点,以及对应的当前临床开发策略如 下:
1)硬件上应满足手术室使用的要求。
目前临床上广为应用的影像技术如X射线扫描,CT(计算机断层扫描成像)、MRI(磁共振成像)、超声、PET-CT(正电子发射计算机断层扫描成像)主要应用于术前肿瘤影像诊断,因为实施的硬件要求(如体积)和应用要求(如电磁场等)等众多原因,限制了这些影像技术在手术台上、手术过程中的实时影像诊断。现有技术中,术中超声影像技术因为需要接触才能成像,在开放肿瘤手术情况下应用受到限制,而且其影像技术本身是基于组织形貌的,假阴性和假阳性均较高。在脑瘤手术中,MRI术前扫描并构造手术坐标信息也在临床上得到术中的应用,但是此技术因为组织在图像采集时到手术期间,可能因为组织的变形或位移影响手术的导航质量。
与上述影像技术相比,基于荧光成像的技术具有较好的手术实时应用的优势。首先,荧光影像技术通常使用的近红外光源,相对于可见光、紫外光等光源,在组织中具有更强的穿透能力,受组织内部的主要吸收色团如血红蛋白、氧合血红蛋白、和水等的影响较小,可穿透大约1厘米左右的组织,在组织光学检测,尤其是浅体表的组织,具有很重要的应用价值。其次,荧光成像的硬件实施可以比较灵活,可以设计为可移动的白光和荧光的手术台影像系统,也可以设计为小巧的无菌探头配以外部的显像屏,可实现白光和荧光的内窥影像系统,进行体内的微创手术。这两种硬件设计,均已得到FDA和EMA的批准(如,SPY Imaging system;
Figure PCTCN2021120179-appb-000001
内窥镜荧光成像系统;da Vinci手术机器人系统),成功在临床外科上应用。使用荧光显微镜系统,术中静脉推注吲哚菁绿(ICG)后,在20分钟之内,可利用ICG在近红外光源的照射下可激发荧光的特征进行血管造影(神经外科手术、血管外科手术、眼科手术等)。亚甲基蓝也是已经获得批准的荧光影像剂,在一些外科手术中得到使用。
2)所使用的技术应具备肿瘤组织的特异性。
取得肿瘤特异性的主要要求是:首先,所针对的肿瘤类型须自身具备一些特异性的特征,目前广为认可的一些特征是:具体肿瘤对应的癌细胞的特异性表面受体(例如叶酸,Her2/Neu,EGFR,PSMA等受体);肿瘤微环境的特征(特异性的代谢产物、蛋白酶;或者癌细胞内部(pHi:5.0-6.0)或者细胞之间的间隙液(pHe:6.4-6.9)的酸性特征,源起于癌细胞快速摄取葡萄糖后产生的乳酸代谢物)。其次,针对上述特异性特征,应被所开发的影像技术作为精确定位的靶点,有效实现影像剂在肿瘤部位特异性的聚集,而实现肿瘤部位的聚集通常手段:利用癌细胞的特异性的受体实现影像剂与其特异性的结合;利用肿瘤微环境的 酸性或者其它特征,通过化学的手段将影像剂滞留和富集在肿瘤部位;利用肿瘤组织的高通透性和滞留效应(EPR)实现一些纳米粒子的选择性局部富集。
3)所使用的影像剂必须安全,使用后可以在较短的时间之内被降解或从体内清除,组织残留应少且不引起不良反应,若发生代谢反应影像剂的代谢产物应对身体无害。
实体肿瘤术中成像技术的主要临床转化使用了以下几类技术手段:
1)叶酸-荧光影像分子的偶合物:On Target Laboratories公司目前已开展临床,用于肺癌和卵巢癌的肿瘤术中影像,其优点为对于所选肿瘤类型,靶点选择策略清晰(除个别组织外,叶酸受体在正常组织上表达水平很低,而在某些肿瘤细胞表面过表达)。其缺点为适用面比较窄(仅能用于特定的叶酸受体高表达的肿瘤),而且从其成像原理及临床数据来看,肿瘤的特异性显影的质量有些缺陷(背景反差;肿瘤和健康组织的边界未能清晰成像),而原因可能是正常在体内循环(未与肿瘤受体结合)的影像分子可在激发光源照射的情况下发荧光引起背景荧光,或出现非肿瘤部位的假阳性影像(“脱靶”现象,例如在某些健康组织如肾脏,也存在不同程度的叶酸受体),或由于前文所提及的肿瘤的非均一性的特点,肿瘤组织的叶酸表达量也许不能达到完全的均匀从而引起影像质量的缺陷。从临床数据来看,背景的清除与给药剂量有关系,基本上需要24小时-4天的清除时间,肿瘤影像的效果(癌症/正常组织比例,TNR,为2-3倍)一般。
2)抗体(mAB)-荧光影像分子的偶合物:目前已有几个临床研究,用于脑胶质瘤(靶向EGFR受体的mAB,Cetuximab)和肠癌、肺癌等(靶向CEA受体)的肿瘤术中影像导航。与叶酸-荧光影像分子的偶合物设计相比,用来靶向的抗体分子生物相容性好,体内循环周期超长(3-7天),对于所选肿瘤类型,靶点清楚且结合机理明确。其缺点也很明显,抗体分子超长的循环时间同样也会造成较高的背景荧光,也同样有其它的问题,如适用面比较窄(仅能用于特定的受体高表达的肿瘤),如出现非肿瘤部位的假阳性影像(所选取的靶点可能存在于健康的组织),以及前文所提及的肿瘤的非均一性的特点。从临床和动物研究数据来看,此类技术的肿瘤影像的效果(癌症/正常组织比例,TNR,为2-5倍)尚可,但通常影像伴随着较强的背景荧光。
3)多肽-荧光影像分子的偶合物:针对前文所述的几种肿瘤细胞以及肿瘤微环境的特征,多肽可用以选择性的靶向,将荧光影像分子靶向到肿瘤部位。目前在研发及临床转化的方向有以下几种设计:R.Tsien及Avelas Biosciences,Inc.公司使用特别的U型多肽组合设计,其中一端多肽在生理条件下为带正电荷(此多肽段末端链接荧光影像分子),另一端多肽在生理条件下为带负电荷,这两段多肽中间通过一个连接体连接,该连接体可被肿瘤微环 境中存在的蛋白酶切断,断开后的带有荧光影像分子的多肽呈现正电荷,可与癌细胞表面的负电荷发生吸引后吸附在表面,后期通过细胞内吞机理进入癌细胞内部,随之而进入癌细胞的影像剂分子在激发光源照射下可以发出荧光。可以看得到,此类影像剂需要进入体内之后,要在有限的时间之内(即使增加了一段长循环的PEG分子之后,半衰期也仅为20多分钟),完成这一系列的动作的时间窗口并不充裕,从而造成影像结果的欠佳(癌症/正常组织比例为2-3倍)。Yale大学的Donald M.Engelman团队,提出一种不同的设计,将荧光分子与一段多肽形成偶联物,该多肽靶向的信号为肿瘤微环境的酸性特征,正常生理条件下该多肽为负电性,在酸性环境下变成中性,电中性条件下多肽的亲油性增加,驱动多肽在癌细胞表面的沉积、跨膜等行为,实现荧光分子在肿瘤部位的特异性富集。从活体影像结果来看,此技术实现了肿瘤影像质量(TNR约为6),但是所报数据的误差范围过大,效果欠佳。Lumicell公司的设计为通过一段多肽将荧光影像分子和另一个可吸收荧光的分子连接在一起,所选用的多肽可以在肿瘤微环境常见的一些蛋白酶(如,Cathepsin K,L,S)的催化下切断,使得荧光分子和主动吸收荧光的分子分开之后在激发光源存在的情况下发荧光。这样的设计可以降低循环过程中的背景荧光,因为整个影像剂分子未到达肿瘤微环境之前不发荧光。通过连接一段PEG可实现循环时间至约24小时,肿瘤影像质量(TNR ratio为3-5),质量欠佳。除此以外,此技术另一个缺点是所选用的多肽序列是否可以实现高特异性的肿瘤靶向。
4)纳米粒子-荧光分子的影像剂:在医疗影像领域,纳米粒子得到广泛的应用,主要的类别为脂质体纳米粒子,无机纳米粒子,高分子纳米粒子。Definity(R)是Lantheus Medical(现BMS公司)2001年获批的磷脂脂质体,用于稳定全氟丙烷(C3F8)气泡,做为超声影像剂使用。无机类的纳米粒子种类繁多(二氧化硅;氧化铁;量子点;碳纳米管等),通常无机纳米粒子的临床应用难点为安全性,而且仅通过纳米粒子表面化学修饰的方式引入荧光基团的话,通常很难实现特异性的肿瘤荧光影像。U.Wiesner等成功推进了几项早期临床研究,使用小粒径(5-20nm)的SiO 2纳米粒子使得所用得纳米粒子可以从肾脏清除从而提高安全性,且纳米粒子的内核嵌入荧光分子,并且纳米粒子的表面引入特异性的靶向基团,可实现特异性的肿瘤荧光影像。通过此方法引入的荧光分子,可以克服常规的纳米粒子-荧光分子偶联物可能因为聚集出现的荧光淬灭的可能缺陷,但其报道的半衰期较短(10-30分钟),肿瘤影像效果尚可,其TNR为5-10(所报数据误差范围较大),但肝脏吸收很高(肿瘤/肝脏比例约为2)。笔者认为,尽管小粒径纳米粒子(小于20nm)可以通过肾脏清除,但仍不排除其临床的风险(例如经过BBB扩散至脑部等)。高分子纳米粒子的典型构造是使用两亲 性的双嵌段聚合物,例如PEG-PLGA,PEG-PEG-Glutamate,PEG-Aspartate为几类目前开展工作至临床的可清除(PEG)/可降解(另一嵌段)的聚合物。Kim等作者在Langer等前期关于pH响应(高分子主链上含有pH6.5左右可以质子化的氨基基团)的高分子微球的工作上,引入PEG嵌段构建了pH响应的两亲性双嵌段共聚物,实现了肿瘤弱酸性环境下纳米粒子的解散(纳米粒子内核在酸性环境下离子化,产生电荷排斥力后破坏了两亲自组装的能量平衡)。
发明内容
鉴于以上所述现有技术的缺点,本申请的目的在于提供一种官能化双嵌段共聚物及其制备方法和用途,用于解决现有技术中的问题。
为实现上述目的及其他相关目的,本申请一方面提供一种官能化双嵌段共聚物的化学结构式如式III所示:
Figure PCTCN2021120179-appb-000002
式III中,m 3=22~1136,n 3=10~500,p 3=0.5~50,q 3=0~500,r 3=0~200;
s 31=1~10,s 32=1~10,s 33=1~10,s 34=1~10;
L 31、L 32、L 33、L 34为连接基团;
R' 1、R' 2、R' 3、R' 4各自独立地选自H,C1-C20烷基,C3-C10环烷基;
A 3选自可质子化基团;
C 3选自荧光分子基团;
D 3选自递送分子基团;
E 3选自亲/疏水基团;
T 3选自封端基团;
EG 3选自封端基团。
本发明另一方面提供一种聚合物颗粒,由上述的官能化双嵌段共聚物制备获得。
本发明另一方面提供上述的官能化双嵌段共聚物、或上述的聚合物颗粒在制备影像探针 试剂和药物制剂中的用途。
本发明另一方面提供一种组合物,包括上述的官能化双嵌段共聚物、或上述的聚合物颗粒。
附图说明
图1为实施例6.1.5的聚合物(IB015-038-01)纳米影像剂溶液在不同的溶液pH下测得的荧光光强(左)及相应的荧光光强归一化处理后对溶液pH值作图(右)
图2为实施例11.1.5的聚合物(IB015-055-01)纳米影像剂溶液在不同的溶液pH下测得的荧光光强(左)及相应的荧光光强归一化处理后对溶液pH值作图(右)
图3为实施例11.1.5的聚合物(IB015-055-01)纳米影像剂溶液在不同的溶液pH下测得的荧光光强与该纳米影像剂溶液加入溶剂DMF中测得的荧光光强合并作图
图4为实施例10.1.5的聚合物(IB015-050-01)纳米影像剂溶液在不同的溶液pH下测得的荧光光强
图5左上:聚合物IB015-059-01(实施例11.2.5)纳米影像剂溶液在不同pH下(水溶液)测得的荧光光强;右上:聚合物IB015-059-01(实施例11.2.5)纳米影像剂溶液在不同pH(水溶液)下(及DMF和EtOH中)测得的荧光光强;左下:聚合物IB015-059-01(实施例11.2.5)纳米影像剂溶液出现荧光发射峰的蓝移(对荧光发射光强归一化处理)
图6为注射实施例11.1.5(IB015-055-01)纳米荧光影像剂后的4T1皮下模型Balb/c荷瘤鼠的24小时活体成像、离体脏器及淋巴结的荧光成像照片。
图7为图6离体脏器荧光定量光强值。
图8为注射实施例6.1.5(IB015-038-01)纳米荧光影像剂后的4T1皮下模型Balb/c荷瘤鼠的24小时活体成像、离体脏器及淋巴结的荧光成像照片。
图9为图8离体脏器荧光定量光强值。
图10为注射实施例10.1.5(IB015-050-01)纳米荧光影像剂的4T1皮下模型Balb/c荷瘤鼠的离体脏器及淋巴结的荧光成像照片(注射后24小时)。
图11为图10离体脏器荧光定量光强值。
具体实施方式
为了使本申请的发明目的、技术方案和有益技术效果更加清晰,以下结合实施例对本申请进行进一步详细说明,熟悉此技术的人士可由本说明书所揭露的内容容易地了解本申请的其他优点及功效。
本申请中,“双嵌段共聚物”通常是指将两种性质不同的聚合物链段连在一起所形成的聚合物。
本申请中,“可质子化基团”通常指可以与质子化合的基团,即可以结合至少一个质子,这些基团通常具有孤对电子,从而可以通过可质子化基团结合至少一个质子。
本申请中,“降解性调节基团”通常能够改变化合物体内降解性的一类基团。
本申请中,“荧光分子基团”通常指荧光分子所对应的一类基团,包含这些基团的化合物通常可以在紫外-可见-近红外区具有特征荧光,并且其荧光性质(激发和发射波长、强度、寿命、偏振等)可随所处环境的性质而改变的一类荧光性分子。
本申请中,“递送分子基团”通常指可以通过化学键合的形式通过侧链连接于嵌段共聚物的主链,或通过物理作用力(如电荷作用力、氢键、范德华力、疏水性作用力等)与嵌段共聚物的疏水端侧链基团发生作用,且能够通过嵌段聚合物在水溶液中自组装形成的纳米粒子递送的各种分子。
本申请中,“亲/疏水基团”通常指具有一定亲水性、或亲油性的基团。
本申请中,“烷基”通常指饱和的脂肪族基团,可以是有直链或支链的。例如,C1-C20烷基通常指1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个碳原子的烷基基团。具体的烷基基团可以包括但不限于甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、十八烷基、十九烷基、二十烷基。
本申请中,“烯基”通常指不饱和的脂肪族基团、且包括C=C键(碳-碳双键、烯键),可以是有直链或支链的。例如,C2-C10烯基通常指2个、3个、4个、5个、6个、7个、8个、9个、10个碳原子的烯基基团。具体的烯基基团可以包括但不限于乙烯基、丙烯基、丁烯基、戊烯基、己烯基、庚烯基、辛烯基、壬烯基、癸烯基。
本申请中,“炔基”通常指不饱和的脂肪族基团、且包括C≡C键(碳-碳三键、炔键),可以是有直链或支链的。例如,C2-C10炔基通常指2个、3个、4个、5个、6个、7个、8个、9个、10个碳原子的炔基基团。具体的炔基基团可以包括但不限于乙炔基、丙炔基、丁炔基、戊炔基、己炔基、庚炔基、辛炔基、壬炔基、癸炔基。
本申请中,“环烷基”通常指饱和的与不饱和的(但不是芳族的)环状烃。例如,C3-C10环烷基通常指3个、4个、5个、6个、7个、8个、9个、10个碳原子的环烷基基团。具体的环烷基基团可以包括但不限于环丙基、环丁基、环戊基、环己基、环庚基、环辛基、环壬 基、环癸基。对于环烷基,本申请中该术语还包括其中任选地至少一个碳原子可以被杂原子替换的饱和的环烷基,杂原子可以选自S、N、P或O。另外,在环中没有杂原子的单不饱和或多不饱和(优选单不饱和)环烷基,只要其不是芳香族体系,就应该属于术语环烷基。
本申请中,“芳香基”通常指具有至少一个芳香环的环体系、且没有杂原子的基团,所述芳香基可以是取代或未取代的,具体的取代基可以选自C1-C6烷基、C1-C6烷氧基、C3-C10环烷基、羟基、卤素等。具体的芳香基基团可以包括但不限于苯基、苯酚基、苯氨基等。
本申请中,“杂芳基”通常指具有至少一个芳香环以及可任选地含有一个或多个(例如,1个、2个、或3个)选自氮、氧、或硫的杂原子,所述杂芳基可以是取代或未取代的,具体的取代基可以选自C1-C6烷基、C1-C6烷氧基、C3-C10环烷基、羟基、卤素等。具体的杂芳基基团可以包括但不限于呋喃、苯并呋喃、噻吩、苯并噻吩、吡咯、吡啶、嘧啶、哒嗪、吡嗪、喹啉、异喹啉、酞嗪、苯并-1,2,5-噻二唑、苯并噻唑、吲哚、苯并三唑、苯并二噁茂(benzodioxolane)、苯并二噁烷、苯并咪唑、咔唑、或喹唑啉。
本申请中,“靶向制剂”通常指能够将特定的化合物专一性地导向所需发挥作用的部位(靶区)的制剂,这些制剂可以以聚合物颗粒为载体,对非靶组织通常可以具有相对较低、或没有、或几乎没有相互作用。
本申请中,“影像探针”通常指一类在注入(或服用)到人体组织或器官中后,能够增强影像观察效果的一类物质。
本申请中,“个体”通常包括人类、非人类的灵长类,如哺乳动物、狗、猫、马、羊、猪、牛等。
本申请发明人经过大量实践研究,提供了一类官能化双嵌段共聚物,这些双嵌段共聚物可以通过创新的化学修饰策略,使得聚合物具有pH响应且可以在对应pH条件下降解,从而可以作为靶向试剂被应用于各种领域,在此基础上完成了本发明。
本申请第一方面提供一种官能化双嵌段共聚物,所述官能化双嵌段共聚物具有如下所示的化学结构式:
Figure PCTCN2021120179-appb-000003
式III中,m 3=22~1136,n 3=10~500,p 3=0.5~50,q 3=0~500,r 3=0~200;
s 31=1~10,s 32=1~10,s 33=1~10,s 34=1~10;
t 31=1~10,t 32=1~10,t 33=1~10,t 34=1~10;
L 31、L 32、L 33、L 34为连接基团;
R' 1、R' 2、R' 3、R' 4各自独立地选自H,C1-C10烷基,C3-C10环烷基;
A 3选自可质子化基团;
C 3选自荧光分子基团;
D 3选自递送分子基团;
E 3选自亲/疏水基团;
T 3选自封端基团;
EG 3选自封端基团。
所述式III化合物为聚乙二醇-聚交酯的双嵌段共聚物,其中聚交酯嵌段的侧链结构为随机分布,通式中以ran体现。
所述式III化合物中,L 31、L 32、L 33、L 34通常为连接基团,其主要是用于连接官能化双嵌段共聚物的主链与其支链。在本申请一具体实施例中,L 31、L 32、L 33、L 34可以各自独立地选自S,O,N,-OC(O)-,-C(O)O-,SC(O)-,-C(O)-,-OC(S)-,-C(S)O-,-SS,C(R 1)=N—,-N=C(R 2),C(R 3)=N-O,-O-N=C(R 4),-N(R 5)C(O)-,-C(O)N(R 6),-N(R 7)C(S),C(S)N(R 8)-,-N(R 9)C(O)N(R 10),-OS(O)O-,-OP(O)O-,-OP(O)N-,-NP(O)O-,-NP(O)N-,其中,R 1~R 10各自独立地选自H,C1-C10烷基,C3-C10环烷基。
在本申请另一具体实施例中,L 31、L 32、L 33、L 34可以各自独立地选自S。
所述式III化合物中,A 3通常选自可质子化基团,该基团及该基团所在的聚合物的嵌段主要是用于调节聚合物的pH响应。在本申请一具体实施例中,A 3可以选自
Figure PCTCN2021120179-appb-000004
其中,R 11和R 12各自独立地选自C1-C10烷基,C2-C10烯基,C2-C10炔基,C3-C10环烷基,芳香基。在本申请另一具体实施例中,A 3可以选自
Figure PCTCN2021120179-appb-000005
其中,a=1-10、且a为正整数。
在本申请另一具体实施例中,A 3可以选自
Figure PCTCN2021120179-appb-000006
其中,R 11选自乙基,R 12选自正丙基。在本申请另一具体实施例中,A 3可以选自
Figure PCTCN2021120179-appb-000007
其中,a=1-10、且a为正整数。
在本申请另一具体实施例中,A 3可以选自
Figure PCTCN2021120179-appb-000008
其中,R 11选自乙基,R 12选自乙基。
在本申请另一具体实施例中,A 3可以选自
Figure PCTCN2021120179-appb-000009
其中,R 11选自正丙基,R 12选自正丙基。
在本申请另一具体实施例中,A 3可以选自
Figure PCTCN2021120179-appb-000010
其中,R 11选自正丙基,R 12选自正丁基。
在本申请另一具体实施例中,A 3可以选自
Figure PCTCN2021120179-appb-000011
其中,R 11选自正丁基,R 12选自正丁基。
所述式III化合物中,C 3通常选自荧光分子基团,该基团及该基团所在的聚合物的嵌段主要是用于引入荧光分子基团。所述荧光分子基团具体可以包括但不限于有机试剂、金属螯合物等中的一种或多种的组合。在本申请一具体实施例中,C 3可以包括ICG,METHYLENE BLUE,CY3,CY3.5,CY5,CY5.5,CY7,CY7.5,BDY630,BDY650,BDY-TMR,Tracy 645,Tracy 652等荧光分子。
在本申请另一具体实施例中,C 3可以包括吲哚氰绿(ICG),ICG可以通过酰胺键与嵌段的支链连接。
所述式III化合物中,D 3可以选自递送分子基团,该基团及该基团所在的聚合物的嵌段主要是用于引入可以通过嵌段共聚物递送的各种分子基团。这些分子基团可以是包括但不限于荧光淬灭基团、药物分子基团(例如,光动力学疗法的前体分子、化疗药物分子、生物药物分子等)等。在本申请一具体实施例中,所述荧光淬灭基团可以选自BHQ-0,BHQ-1,BHQ-2,BHQ-3,BHQ-10,QXL-670,QXL-610,QXL-570,QXL 520,QXL-490,QSY35,QSY7,QSY21,QXL 680,Iowa Black RQ,Iowa Black FQ。在本申请一具体实施例中,所述药物分子基团可以选自化疗药物,具体可以是核酸药物、紫杉醇、顺铂、阿霉素、伊立替康、SN38等药物分子所对应的基团。在本申请另一具体实施例中,所述药物分子基团可以选自光动力学疗法的化学药物,具体可以是5-ALA所对应的基团及其衍生结构(脂肪链化等),基团具体的化学结构式如下所示:
Figure PCTCN2021120179-appb-000012
所述式III化合物中,E 3可以选自亲/疏水基团,该基团及该基团所在的聚合物的嵌段主要是用于调节聚合物疏水嵌段的疏/亲水程度。在本申请一具体实施例中,E 3可以选自H,C1-C18烷基,-O-R 11,-S-R 12,其中,R 11~R 12各自独立地选自H,C1-C18烷基,C3-C10环烷基,芳香基,杂芳基,所述亲/疏水基团还可以优选选自-(CH 2-CH 2-O)n-H(n=1~30),-(R 14)-NH 2,-(R 15)-OH,其中,R 14选自长度为1-18的亚甲基(-CH 2)n(n=1~18),R 15独立地选自选自长度为1-18的亚甲基(-CH 2-)n(n=1~18),糖基,所述糖基优选为单糖和/或聚糖,所述亲/疏水基团还可以优选选自胆固醇及胆固醇衍生物,疏水性维生素,所述疏水性维生素优选选自维生素E和/或维生素D,-两性离子基团(化学结构式如下),所述亲/疏水基团还可以优选选自以上所述基团单独使用或两种以上不同基团混合使用,当混合使用时,与式II的通式对比,r 3为亲/疏水基团的总数量,r 3,A为亲水基团的总数量,r 3,B为疏水基团的总数量。
所述胆固醇及胆固醇衍生物、维生素D、维生素E的化学结构式可以是如下之一所示:
Figure PCTCN2021120179-appb-000013
所述两性离子基团的化学结构式可以是如下之一所示:
Figure PCTCN2021120179-appb-000014
在本申请另一具体实施例中,E 3可以选自正壬烷基。
在本申请另一具体实施例中,E 3可以选自正辛烷基。
在本申请另一具体实施例中,E 3可以选自正丁烷基。
在本申请另一具体实施例中,E 3可以选自正丙基。
在本申请另一具体实施例中,E 3可以选自乙烷基。
在本申请另一具体实施例中,E 3可以选自甲基。
在本申请另一具体实施例中,E 3可以选自正十八碳烷基。
在本申请另一具体实施例中,E 3可以选自正十七碳烷基。
在本申请另一具体实施例中,E 3可以选自胆固醇。
在本申请另一具体实施例中,E 3可以选自胆固醇衍生物。
在本申请另一具体实施例中,E 3可以选自羟乙基。
在本申请另一具体实施例中,E 3可以选自羟甲基。
在本申请另一具体实施例中,E 3可以选自羟丙基。
在本申请另一具体实施例中,E 3可以选自羟丁基。
在本申请另一具体实施例中,E 3可以选自两性离子基。
在本申请另一具体实施例中,E 3可以选两性离子基与正壬烷基混合使用。
在本申请另一具体实施例中,E 3可以选两性离子基与正辛烷基混合使用。
所述式III化合物中,T3通常可以是由不同的PEG引发剂的端基。在本申请一具体实施例中,T 3可以选自-CH 3,H。
所述式III化合物中,EG 3通常可以由聚合后加入的不同的封端剂所产生。在本申请一具体实施例中,EG 3可以选自-Y-R 13,其中,Y选自O、S、N,R 13选自H,C1-C20烷基,C3-C10环烷基,芳香基。
在本申请另一具体实施例中,EG 3可以选自-OH。
所述式III化合物中,聚乙二醇(PEG)嵌段的分子量可以为1000~50000Da、1000~2000Da、2000~3000Da、3000~4000Da、4000~5000Da、5000~6000Da、6000~7000Da、7000~8000Da、8000~9000Da、9000~10000Da、10000~12000Da、12000~14000Da、14000~16000Da、16000~18000Da、18000~20000Da、22000~24000Da、24000~26000Da、26000~28000Da、28000~30000Da、30000~32000Da、32000~34000Da、34000~36000Da、36000~38000Da、38000~40000Da、40000~42000Da、42000~44000Da、44000~46000Da、46000~48000Da、或48000~50000Da,聚交酯嵌段的分子量通常可以为5000~50000Da、5000~6000Da、6000~7000Da、7000~8000Da、8000~9000Da、9000~10000Da、10000~12000Da、12000~14000Da、14000~16000Da、16000~18000Da、18000~20000Da、22000~24000Da、24000~26000Da、26000~28000Da、28000~30000Da、30000~32000Da、32000~34000Da、34000~36000Da、36000~38000Da、38000~40000Da、40000~42000Da、42000~44000Da、44000~46000Da、46000~48000Da、48000~50000Da、52500~55000Da、57500~60000Da、60000~62500Da、62500~65000Da、67500~70000Da、72500~75000Da、77500~80000Da、82500~8500Da、85000~87500Da、87500~90000Da、90000~92500Da、92500~95000Da、95000~97500Da、97500~100000Da、100000~102500Da、102500~105000Da、105000~107500Da、107500~110000Da、110000~112500Da、112500~115000Da、115000~117500Da、117500~120000Da、120000~122500Da、122500~125000Da、125000~127500Da、或127500~130000Da。
在本申请一具体实施例中,聚乙二醇嵌段的分子量可以为2000-10000Da,聚交酯嵌段的分子量通常可以为4000-26000Da、20000~40000Da、40000~60000Da。
所述式III化合物中,m 3可以为22~1136、22~32、32~42、42~52、52~62、62~72、72~82、82~92、92~102、102~122、122~142、142~162、162~182、182~202、202~242、242~282、282~322、322~362、362~402、402~442、442~482、482~522、522~562、 562~602、602~642、642~682、682~722、722~762、762~802、802~842、842~882、882~902、902~942、942~982、或982~1136。
n 3可以为10~500、10~15、15~20、20~25、25~30、30~35、35~40、40~45、45~50、45~50、50~60、60~70、70~80、80~90、90~100、100~120、120~140、140~160、160~180、180~200、200~220、220~240、240~260、260~280、280~300、300~320、320~340、340~360、360~380、380~400、400-420、420-440、440-460、460-480、或480-500。
p 3可以为0.5~50、0~0.5、0.5~1、1~2、2~4、4~6、6~8、8~10、10~12、12~14、14~16、16~18、18~20、20~25、25~30、30~35、35~40、40~45、或45~50。
q 3可以为0~500、0~1、1~2、2~4、4~6、6~8、8~10、10~12、12~14、14~16、16~18、18~20、20~25、25~30、30~35、35~40、40~45、45~50、45~50、50~60、60~70、70~80、80~90、90~100、100~120、120~140、140~160、160~180、180~200、200~220、220~240、240~260、260~280、280~300、300~320、320~340、340~360、360~380、380~400、400-420、420-440、440-460、460-480、或480-500。
r 3可以为0~200、0~1、1~2、2~3、3~4、4~5、6~7、6~7、7~8、8~9、9~10、10-15、15-20、25-30、30~35、35~40、40~45、45~50、45~50、50~60、60~70、70~80、80~90、90~100、100~120、120~140、140~160、160~180、180~200、或200~220。
r 3可以为亲/疏水基团的总数量,r 3,A可以为亲水基团的总数量,r 3,B可以为疏水基团的总数量,相应的,(r 3,A+r 3,B)=1~200、1~2、2~3、3~4、4~5、6~7、6~7、7~8、8~9、9~10、10~12、12~14、14~16、16~18、18~20、20~25、25~30、30~35、35~40、40~45、45~50、50~60、60~70、70~80、80~90、90~100、100~120、120~140、140~160、160~180、或180~200,r 3,A可以为<151、1~2、2~3、3~4、4~5、6~7、6~7、7~8、8~9、9~10、10~12、12~14、14~16、16~18、18~20、20~25、25~30、30~35、35~40、40~45、45~50、50~60、60~70、70~80、80~90、90~100、100~120、120~140、或140~150。
s 31可以为1~10、1~2、2~3、3~4、4~5、6~7、6~7、7~8、8~9、9~10。
s 32可以为1~10、1~2、2~3、3~4、4~5、6~7、6~7、7~8、8~9、9~10。
s 33可以为1~10、1~2、2~3、3~4、4~5、6~7、6~7、7~8、8~9、9~10。
s 34可以为1~10、1~2、2~3、3~4、4~5、6~7、6~7、7~8、8~9、9~10。
t 31可以为1~10、1~2、2~3、3~4、4~5、6~7、6~7、7~8、8~9、9~10。
t 32可以为1~10、1~2、2~3、3~4、4~5、6~7、6~7、7~8、8~9、9~10。
t 33可以为1~10、1~2、2~3、3~4、4~5、6~7、6~7、7~8、8~9、9~10。
t 34可以为1~10、1~2、2~3、3~4、4~5、6~7、6~7、7~8、8~9、9~10。
在本申请一具体实施例中,式III中,m 3=22~1136,n 3=10~500,p 3=1~50,q 3=0,r 3=0。通过这些聚合物制备获得的产物(例如,聚合物颗粒),分布在疏水内核的荧光分子因为FRET(Fluorescence Resonance Energy Transfer)效应,在一定的激发条件下(例如,在近红外做为激发光源的情况下)不发光。而在向个体施用后,可以通过EPR(Enhanced Permeation and Retention)被动靶向(或其它组织摄取方式)富集于靶标部位(例如,肿瘤部位),由于靶标部位具有特殊的pH环境(例如,酸性环境),可质子化基团(即,A 3基团)可以在此pH范围内质子化,其质子化产生的电荷排斥力及聚合物的溶解性的提高驱使聚合物颗粒的离散,离散后的单个高分子链段上所带的荧光基团,其FRET效应减弱甚至完全消除,富集于靶标部位的离散状态下的聚合物分子可以在一定的激发条件下发出荧光(例如,在近红外做为激发光源的情况下)。
在本申请一优选实施例中,所述官能化双嵌段共聚物的化学结构式如下之一所示:
Figure PCTCN2021120179-appb-000015
Figure PCTCN2021120179-appb-000016
其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5;
在本申请一具体实施例中,式III中,m 3=22~1136,n 3=10~500,p 3=0.5~50,q 3=0, r 3=1~200。通过这些聚合物制备获得的产物(例如,聚合物颗粒),分布在疏水内核的荧光分子因为FRET效应,在一定的激发条件下(例如,在近红外做为激发光源的情况下)不发光,亲/疏水基团的(即E 3基团)的加入增加了聚合物颗粒的稳定性,增强了聚合物颗粒的FRET效应(荧光淬灭更完全),同时改变了聚合物颗粒的酸度敏感性。而在向个体施用后,可以通过EPR被动靶向(或其它组织摄取方式)富集于靶标部位(例如,肿瘤部位),由于靶标部位具有特殊的pH环境(例如,酸性环境),可质子化基团(即,A 3基团)可以在此pH范围内质子化,其质子化产生的电荷排斥力及聚合物的溶解性的提高驱使聚合物颗粒的离散,离散后的单个高分子链段上所带的荧光基团,其FRET效应减弱甚至完全消除,富集于靶标部位的离散状态下的聚合物分子可以在一定的激发条件下发出荧光(例如,在近红外做为激发光源的情况下)。实验结果显示,与未使用疏水基团E 3的聚合物相比较,实施例6.1.5在聚合物的憎水嵌段上通过侧链引入20个-C 9H 19基团,导致其在水溶液自组织状态下较高程度的出现ICG的淬灭,改变溶液pH至较酸的条件下,仍未能完全使得聚合物解散(体现在酸性溶液相对较低的荧光光强,并且将聚合物溶液加入DMF中后出现大幅度的荧光光强的提高)。此实施例聚合物(IB015-038-01)在活体成像实验中,实现了荷瘤鼠的肿瘤高特异性的肿瘤荧光标记(TNR=13),如附图8和9所示。另有实验结果显示,引入亲水侧链-C 2H 4-OH(实施例11.2.5)之后,连接了ICG的聚合物的发射发生了较大的蓝移(如附图5所示),推测原因是亲水侧链的羟基,改善了憎水嵌段的相对亲水性的同时,还提供了可以与聚合物主链上酯键的-C(=O)-上的氧形成氢键作用,使得聚合物在内核出现更大程度的紧缩,此紧缩的聚集态引起了ICG的分子状态的变化,进而导致其发射波长发生了变化。使用实施例11.1.5聚合物(IB015-055-01,-C 2H 4-OH修饰数为24个)在活体成像实验中,实现了荷瘤鼠的肿瘤高特异性的肿瘤荧光标记(TNR=21),如附图6和7所示。
在本申请一优选实施例中,所述官能化双嵌段共聚物的化学结构式如下所示:
Figure PCTCN2021120179-appb-000017
Figure PCTCN2021120179-appb-000018
Figure PCTCN2021120179-appb-000019
Figure PCTCN2021120179-appb-000020
Figure PCTCN2021120179-appb-000021
Figure PCTCN2021120179-appb-000022
Figure PCTCN2021120179-appb-000023
Figure PCTCN2021120179-appb-000024
Figure PCTCN2021120179-appb-000025
Figure PCTCN2021120179-appb-000026
Figure PCTCN2021120179-appb-000027
Figure PCTCN2021120179-appb-000028
Figure PCTCN2021120179-appb-000029
Figure PCTCN2021120179-appb-000030
Figure PCTCN2021120179-appb-000031
其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200。
在本申请一优选实施例中,所述官能化双嵌段共聚物的化学结构式如下所示:
Figure PCTCN2021120179-appb-000032
Figure PCTCN2021120179-appb-000033
其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,(r 3,A+r 3,B)=1~200。
在本申请另一优选实施例中,m 3=44~226,n 3=50~200,p 3=0.5~5,r 3=10~40。
在本申请一具体实施例中,式III中,m 3=22~1136,n 3=10~500,p 3=0.5~50,q 3=1~500,r 3=0。通过这些聚合物制备获得的产物(例如,聚合物颗粒),分布在疏水内核的荧光分子因为FRET效应,在一定的激发条件下(例如,在近红外做为激发光源的情况下)不发光,递送分子基团(即D 3基团)则被连接于官能化双嵌段聚合物的主链上。而在向个体施用后,可以通过EPR被动靶向(或其它组织摄取方式)富集于靶标部位(例如,肿瘤部位),由于靶标部位具有特殊的pH环境(例如,酸性环境),可质子化基团(即,A 3基团)可以在此pH范围内质子化,其质子化产生的电荷排斥力及聚合物的溶解性的提高驱使聚合物颗粒的离散,离散后的单个高分子链段上所带的荧光基团,其FRET效应减弱甚至完全消除,富集于靶标部位的离散状态下的聚合物分子可以在一定的激发条件下发出荧光(例如,在近红外做为激发光源的情况下)。除了聚合物颗粒携带的荧光分子基团以外,侧链上连接的递送分子基团,在高分子解散之后,可以继续靶标部位特定的pH条件下,水解为对应的分子。这些分子可以在靶标部位发挥对应的作用,例如,递送分子基团可以为5-ALA所对应的基团,其水解后可以提供5-ALA分子,5-ALA可在几小时之内,高效的富集于新陈代谢加速的癌细 胞内部,完成生物合成形成Protoporphyrin(Protoporphyrin进入癌细胞后,因为其新陈代谢的过程被阻断的原因,较长时间驻留/“trap”在癌细胞内部),此时在近红外或400nm的激发光的照射下,可以高效的发荧光,在已有的ICG荧光分子(780nm激发)的基础上,实现双波长分别单独激发荧光,肿瘤部位的荧光影像增强或边界确认或癌变与否的确认的效果。并且,5-ALA是已经得到证明的光动力学疗法药物的前体,我们在本实施例中创造性的引入并递送5-ALA,不但增强了肿瘤特异性成像的效果,而且还在实施肿瘤成像的同时,进行了肿瘤部位的光动力学治疗。除了聚合物颗粒携带的荧光分子基团以外,侧链上连接的难溶于水的抗癌药物,形成水溶性良好、安全稳定的药物注射用制剂,该药物制剂一方面大大增加了疏水药物在血液中的溶解度并减少其与血液的直接接触,提高了药物在体内的稳定性,降低了药物在体内的毒副作用,并保留药物本身的高抗肿瘤活性特点。在高分子解散之后,可以继续靶标部位特定的pH条件下,水解为对应的分子。这些分子可以在靶标部位发挥对应的作用,例如,递送分子基团可以为SN-38所对应的基团,其水解后可以提供SN-38,克服了传统疏水性抗肿瘤药物输送系统载药量低和副反应强烈的缺点,提高了药物安全性并实现杀死癌细胞的效果。此外,侧链上也可以化学连接或者通过物理作用递送核酸药物药物,形成核酸药物药物的纳米制剂,能够显著提高核酸药物药物的体内稳定性,在高分子解散之后,可以继续靶标部位特定的pH条件下,水解(对应化学连接)或释放(对应物理作用递送)为对应的核酸药物分子,在病灶部位发挥药效。
在本申请一优选实施例中,所述官能化双嵌段共聚物的化学结构式如下所示:
Figure PCTCN2021120179-appb-000034
Figure PCTCN2021120179-appb-000035
Figure PCTCN2021120179-appb-000036
其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,q 3=0~500,优选为10~200。
在本申请另一优选实施例中,m 3=44~226,n 3=50~200,p 3=0.5~5,q 3=50~200。
本申请所提供的官能化双嵌段共聚物,通常具有较低的临界胶束浓度,从而降低高分子自组装颗粒的制备难度,从而保证了制得得高分子颗粒具有很好的溶液稳定性和血液稳定性。例如,所述官能化双嵌段共聚物的临界胶束浓度(CMC)可以为<50μg/mL、<45μg/mL、<40μg/mL、<35μg/mL、<30μg/mL、<25μg/mL、<20μg/mL、<16μg/mL、<14μg/mL、<12μg/mL、<10μg/mL、≤9μg/mL、≤8μg/mL、≤7μg/mL、≤6μg/mL、≤5μg/mL、≤4μg/mL、或更小的临界胶束浓度。
本申请第二方面提供一种聚合物颗粒,由本发明第一方面所提供的官能化双嵌段共聚物制备获得。上述的官能化双嵌段共聚物可以用于形成聚合物颗粒。聚合物颗粒分布在疏水内核的荧光分子因为FRET效应,在一定的激发条件下(例如,在近红外做为激发光源的情况下)不发光。而在向个体施用后,可以通过EPR被动靶向(或其它组织摄取方式)富集于靶 标部位(例如,肿瘤部位),由于靶标部位具有特殊的pH环境(例如,酸性环境),可质子化基团可以在此pH范围内质子化,其质子化产生的电荷排斥力及水溶性变强驱使聚合物颗粒的离散,离散后的单个高分子链段上所带的荧光基团,其FRET效应减弱甚至完全消除,富集于靶标部位的离散状态下的聚合物分子可以在一定的激发条件下发出荧光(例如,在近红外做为激发光源的情况下)。例如,上述的pH环境可以为6.5-6.8,该pH环境可以对应于肿瘤细胞的间隙液,至少部分的聚合物颗粒可以到达靶标部位,并处于细胞的间隙液中;再例如,上述的pH环境还可以为4.5-6.5,该pH环境可以对应于肿瘤细胞内的内体或溶酶体,至少部分的聚合物颗粒可以与靶标部位的细胞(例如,肿瘤细胞)发生作用,通过内吞机理,进入到细胞内部,从而达到上述的pH环境中。本申请所提供的官能化双嵌段共聚物所制备的聚合物颗粒,可以充分扩散在靶标部位,实现清晰的荧光边缘,且官能化双嵌段共聚物和/或聚合物颗粒在体内是可以被降解的。实施在个体后,未能通过EPR效应循环靶向至肿瘤部位的聚合物颗粒或纳米粒子,可以被身体的免疫系统(主要是巨噬细胞等)吞没后降解(PEG虽不能完全在体内降解,但是分子量低于40000Da的PEG分子(例如,罗氏的长效干扰素,
Figure PCTCN2021120179-appb-000037
中文品名派罗欣,已经获批后安全临床使用超过十几年,其中涉及到的PEG分子量为40000Da),可以有效的在体内循环后经肾脏清除,而聚交酯可以通过水解途径,分子量逐渐减小后逐渐代谢,部分可经肾脏清除)。通过EPR效应靶向至靶标部位的聚合物颗粒,解散为游离的官能化双嵌段共聚物分子之后,在靶标部位的pH条件及多种酶的存在下,可以降解为PEG(可循环后通过肾脏清除)及分子量逐渐变小的可降解嵌段(聚交酯)高分子(后续逐渐循环代谢,部分高分子可经肾脏清除)。这些降解途径,对单次或者分多次实施(给药)的影像探针应用或者药物递送系统应用来说,可以提高药物系统的安全性。我们提供了动物活体的影像观察结果,显示所用的嵌段共聚物,在注入活体后,很快实现肿瘤组织的清晰荧光成像,经过约十天的跟踪观察发现,其它部位(肝部、肾脏、胰脏等)注射时呈现的荧光(推断荧光出现的原因是因为部分纳米颗粒被网状内皮系统(RES)捕获后,被巨噬细胞等细胞吞噬后纳米颗粒质子化,解散为单独的聚合物链段)几乎完全消失,有力的证明了我们所设计的生物降解和清除性能。
本申请所提供的聚合物颗粒,可以是纳米尺寸的,例如,聚合物颗粒的粒径可以为10~200nm、10~20nm、20~30nm、30~40nm、40~60nm、60~80nm、80~100nm、100~120nm、120~140nm、140~160nm、160~180nm、或180~200nm。
本申请所提供的聚合物颗粒中,聚合物颗粒还可以修饰有靶向基团,这些靶向基团通常可以修饰于聚合物颗粒的表面。合适的将靶向基团修饰于聚合物颗粒的方法对于本领域技术 人员来说应该是已知的,例如,通常来说,靶向基团可以连接于官能化双嵌段共聚物分子结构的T端。这些靶向基团通常可以在EPR效应(或其它组织摄取方式)的基础上,增加纳米粒子对肝部肿瘤的靶向效率。这些靶向基团可以是包括但不限于(单克隆)抗体片段(例如,Fab等)、小分子靶向基团(例如叶酸,糖类化合物)、多肽分子(例如cRGD,GL2P)、核酸适配体(aptamer)等各种功能分子,这些功能因子可以具有靶向功能(例如,靶向于肿瘤组织的功能)。在本申请一具体实施例中,所述靶向基团选自-GalNac(N-acetylgalactosamine)。
本申请第三方面提供本申请第二方面提供的聚合物颗粒的制备方法,在知晓官能化双嵌段共聚物化学结构的基础上,合适的形成聚合物颗粒的方法对于本领域技术人员来说应该是已知的,例如,可以包括:将包括上述官能化双嵌段共聚物的有机溶剂分散于水中,自组装以提供所述聚合物颗粒;或反向此过程,将水分散于上述官能团化双嵌段共聚物的有机溶剂中。上述分散过程中可以通过合适的操作以使得体系充分混合,例如,可以在超声条件下进行。再例如,自组装过程中,通常可以通过脱除反应体系中有机溶剂的方法进行,有机溶剂的脱除方法具体可以是溶剂挥发法、超滤法等。再例如,聚合物的CMC与聚合物的疏水嵌段与亲水嵌段的比例相关,疏水嵌段的比例越高,其CMC越小。当E1,E2,E3为长链疏水侧链时,其含量与CMC大小成反比;当E1,E2,E3为亲水侧链时,其含量与CMC大小成正比。再例如,聚合物颗粒的粒径大小通常可用通过挤出仪器或微流控装置(匀质机、NanoAssemblr等设备)来调节。
本申请第四方面提供本申请第一方面所提供的官能化双嵌段共聚物、或本申请第二方面提供的聚合物颗粒在制备药物制剂和/或试剂中的用途,以形成的高分子纳米颗粒作为药物递送系统,可以以聚合物颗粒为载体递送药物或影像探针分子。如上所述,通过本申请所提供的官能化双嵌段共聚物制备获得的产物(例如,聚合物颗粒)具有被动(通过纳米颗粒的通用的EPR效应富集于肿瘤部位)或者主动靶向(通过纳米颗粒表面修饰的靶向基团,通过与肿瘤表面特异性受体产生的特异结合作用富集于肿瘤部位)功能,在向个体施用后,由于靶标部位具有特殊的pH环境(例如,酸性环境),可质子化基团可以在此pH范围内质子化,其质子化产生的电荷排斥力及水溶性变强驱使聚合物颗粒的离散,离散后的单个高分子链段上所带的荧光基团,其FRET效应减弱甚至完全消除,富集于靶标部位的离散状态下的聚合物分子可以在一定的激发条件下发出荧光(例如,在近红外光做为激发光源的情况下),实现靶标部位(例如,肿瘤部位)特异性特异性发光,从而可以被用于靶向性影像探针。除了影像探针应用以外,这些聚合物颗粒可以用于制备靶向试剂,在本申请一具体实施例中,上 述聚合物颗粒可以用于制备基于聚合物颗粒的药物递送系统,递送各种药物分子。
本发明所提供的药物制剂或试剂中,通常可以以以聚合物颗粒为载体递送药物或影像探针分子,所述官能化双嵌段共聚物可以是作为单一有效成分,也可以与其他活性组分进行组合,共同地组成有效成分用于上述用途。
本申请第五方面提供一种组合物,包括本申请第一方面所提供的官能化双嵌段共聚物、或本申请第二方面提供的聚合物颗粒。如上所述,上述组合物可以是靶向试剂,在本申请一具体实施例中,上述组合物可以是影像探针。
本申请所提供的组合物中,还可以包括至少一种药学上可接受的载体,其通常指用于给药的载体,它们本身不诱导产生对接受该组合物的个体有害的抗体,且给药后没有过分的毒性。这些载体是本领域技术人员所熟知的,例如,在Remington’s Pharmaceutical Sciences(Mack Pub.Co.,N.J.1991)中公开了关于药学上可接受的载体的相关内容。具体来说,所述载体可以是包括但不限于盐水、缓冲液、葡萄糖、水、甘油、乙醇、佐剂等中的一种或多种的组合。
本申请所提供的组合物中,所述官能化双嵌段共聚物可以是单一有效成分,也可以与其他活性组分进行组合,联合使用。所述其他活性组分可以是其他各种可以是其他各种药物和/或试剂,其通常可以与上述官能化双嵌段共聚物共同作用于靶标部位。组合物中活性组分的含量通常为安全有效量,所述安全有效量对于本领域技术人员来说应该是可以调整的,例如,所述活性成分的施用量通常依赖于施用对象的体重、应用的类型、疾病的病情和严重程度。
本申请所提供的组合物可以适应于任何形式的施用方式,可以是胃肠外给药,例如,可以是经肺、经鼻、经直肠和/或静脉注射,更具体可以是真皮内、皮下、肌内、关节内、腹膜内、肺部、口腔、舌下含服、经鼻、经皮、阴道、膀胱灌注、子宫灌注、肠道灌注、开颅后局部施用、或胃肠外给药。本领域技术人员可根据给药方式,选择合适的制剂形式,例如,适合于胃肠外给药的制剂形式可以是包括但不限于溶液、悬浮液、可复水的干制剂或喷雾剂等,再例如,可以通过以吸入剂形式通过吸入给药的制剂形式。
本申请第六方面提供一种治疗或诊断方法,包括:向个体施用有效量的本申请第一方面所提供的官能化双嵌段共聚物、或本申请第二方面提供的聚合物颗粒、或本申请第五方面提供的组合物。所述“有效量”通常指一用量在经过适当的给药期间后,能够达到欲求的效果,例如,造影、治疗疾病等。上述具有pH响应且可以在对应pH条件下降解的功能,官能化双嵌段共聚物的进一步延伸化学修饰,还可以带来协调效应的递送分子,通过可降解的化学键 接到聚合物分子上,并可以配合独特的末端基团(靶向基团,可改善系统免疫原性的基团),变成独特的(嵌段共聚物-运输物键合体)。在本申请一具体实施例中,使用后,可以实现更好的术中的肿瘤边界辨别,更精切的切除肿瘤病灶及转移组织,同时实施术中影像的过程中,可以通过运输物的局部递送,更好的杀灭癌细胞,降低复发率,提高病人的术后生存率。
本申请所提供的官能化双嵌段共聚物、或聚合物颗粒,能够显著改善肿瘤影像探针试剂和/或肿瘤药物制剂的安全性(肿瘤影像探针试剂多为单次使用;而肿瘤药物制剂通常多次给药)。对于本发明所提供的双嵌段共聚物(式III化合物PEG-PLA共聚物),其中PEG可以安全的从人体清除(临床上批准了Adegen(R)、Oncaspar(R)等使用分子量为5K的PEG进行多位点修饰的治疗性酶,以及分子量为12-40K PEG进行修饰的干扰素、粒细胞集落刺激因子、抗体的Fab片段等生物大分子,已安全临床使用超过十年),另外一个嵌段的组份高分子(PLGA),本身在生理条件下(水解;酶)的基础上就可以逐渐降解。
本申请所提供的官能化双嵌段共聚物、或聚合物颗粒,能够实现实体肿瘤部位特异性的肿瘤影像探针试剂优质影像成像,肿瘤部位pH变化响应灵敏(荧光信号变化ΔpH10–90%只需要约0.2-0.3pH单位),高信噪比,边界清晰,长半衰期,且活体影像数据显示所用影像探针一旦富集进入肿瘤内之后可具有很长的瘤内滞留和持续时间(几天以上),赋予肿瘤影像手术更长的观察窗口,解决荧光成像技术在实时术中导航的难题。
本申请所提供的官能化双嵌段共聚物、或聚合物颗粒,能够实现施用后对癌变淋巴结的活体标记,活体成像及离体解剖可见显著发荧光的淋巴结。此发现对未来肿瘤切除手术的术中淋巴结癌转移的术中判定具有重大意义,可对病人的手术预后及生存期产生重大的正面影响。具体施用的方式除了静脉注射以外,可以是局部注射,例如乳腺癌切除术中的乳晕周围或皮下组织的局部注射,又例如腹腔肿瘤手术中腹腔内的组织局部注射,还例如黑色素瘤切除和治疗手术的局部皮下或者肌肉注射。
本申请所提供的官能化双嵌段共聚物、聚合物颗粒、或组合物,可以方便的通过局部给药的方式,例如,膀胱灌注、子宫灌注、肠道灌注、开颅后脑部局部施用等,所用的聚合物颗粒在于局部接触的肿瘤组织进行充分的接触以后,可以实现聚合物颗粒被肿瘤组织吸收,从而实现肿瘤组织的影像和治疗。
本申请所提供的官能化双嵌段共聚物、或聚合物颗粒,可以基于纳米粒子可充分扩散至实体肿瘤微环境的特点,在高分子上引入肿瘤微环境(例如,弱酸、微环境特有的蛋白酶等)可切断的前体分子(例如,光动力学治疗药物的前体分子等,更具体可以是5-ALA前体分子 等),侧链经切断离开高分子主链还原为临床已获批的药物分子(例如,5-ALA等),实现术中肿瘤部位的影像增强。影像成像的实施的同时,所设计影像探针试剂利用了实施术中影像的光源,在肿瘤切除手术的过程中实现了对肿瘤组织的光动力学治疗,降低其它光动力学治疗对正常组织的伤害,切除肿瘤组织的过程中杀灭未切净的癌组织,降低术后复发,延长生存时间。
综上所述,本申请所提供的官能化双嵌段共聚物、或聚合物颗粒,可以广泛的应用肿瘤影像、肿瘤治疗等等领域,其不仅具有良好的安全性,实现酸性条件下高分子更快的且可调节(通过改变管能基团的数量)的降解和清除,还在靶向部位具有优良的特异性的优质影像成像效果,具有高信噪比、边界清晰、长半衰期等特点,解决了荧光成像技术在实时术中导航的难题,从而具有良好的产业化前景。
下面通过实施例对本申请的申请予以进一步说明,但并不因此而限制本申请的范围。
实施例中式III系列化合物的制备方法的反应路线如下:
Figure PCTCN2021120179-appb-000038
实施例1
mPEG5k-PLA单体和聚合物的合成
1.1单体合成:
Figure PCTCN2021120179-appb-000039
第一步:合成2-羟基戊-4-烯酸(IB004-069-01)
乙醛酸(3.7g,0.05mol)溶于100ml THF,冰浴冷却至0℃,分别加入锌粒(6.5g,0.1mol)和BiCl 3(22g,0.07mol),0℃下搅拌反应3h,再加入3-溴-丙烯(8.47g,0.07mol),氩气保护下室温搅拌反应过夜。加入100ml 1N HCl淬灭反应,过滤,滤液用乙酸乙酯萃取(50ml×3),合并有机相,无水硫酸钠干燥,浓缩溶剂,干燥得到4.6g粗产品,直接用于下一步反应,不再做进一步纯化,收率为80%。 1H NMR(500MHz,CDCl 3,ppm):δ5.75-5.85(m,1H,CH=CH 2),5.20(m,2H,CH 2=CH),4.34(m,1H,HOCHCH 2,2.46-2.64(m,2H,CH 2CH=CH 2)。
第二步:合成2-(2-溴-丙酰氧基)-戊-4-烯酸(IB004-082-01)
DMAP(0.24g,0.002mol)溶于50ml二氯甲烷,氩气保护,冰浴冷却至0℃,滴加2-溴-丙酰溴(4.32g,0.02mol),2-羟基戊-4-烯酸(2.32g,0.02mol)和Et 3N(2.02g,0.02mol)溶于10ml二氯甲烷,然后缓慢滴加到上述溶液中,滴加完毕后,室温搅拌反应过夜。浓缩溶剂,所得粗产品柱分离纯化(EA:PE=1:15),共得到963mg2-(2-溴-丙酰氧基)-戊-4-烯酸,性状为无色透明油状物,收率为19%。 1H NMR(500MHz,CDCl 3,ppm):δ1.86(m,3H,CH 3CHBr),2.66-2.71(m,2H,CH 2CH=CH 2),4.38-4.48(m,1H,CH 3CHBr),5.18-5.24(m,3H,CH=CH 2and HOOCCHOCO),5.78-5.83(m,1H,CH=CH2)。
第三步:合成3-烯丙基-6-甲基-[1,4]二氧六环-2,5-二酮(IB004-084-01)
NaHCO 3(181mg,1.72mmol)分散在10ml DMF中,氩气保护,2-(2-溴-丙酰氧基)-戊-4-烯酸(963mg,3.8mmol)溶于5ml DMF,然后缓慢滴加到上述反应液中,滴加完毕后,室温搅拌反应过夜。浓缩DMF,所得粗产品柱分离纯化(EA:PE=1:10),共得到200mg3-烯丙基-6-甲基-[1,4]二氧六环-2,5-二酮,性状为无色透明油状物,收率为30.6%。 1H NMR(500MHz,CDCl 3,ppm):δ1.67-1.71(m,3H,CH 3CH),2.72-2.86(m,2H,CH 2CH=CH 2),4.95-5.01(m,1H,CHCH 2CH=CH 2),5.02-5.09(m,1H,CH 3CH),5.23-5.33(m,2H,CH 2CH=CH 2), 5.83-5.88(m,1H,CH 2CH=CH 2).
1.2聚合:
Figure PCTCN2021120179-appb-000040
PLA100(IB004-132-01)
在H 2O和O 2指标小于0.1ppm的手套箱中,称量m-PEG-5000(50mg,0.01mmol)和3-烯丙基-6-甲基-[1,4]二氧六环-2,5-二酮(170mg,1mmol)放入聚合反应管中,Sn(Oct) 2(40.5mg,0.1mmol)溶于200μL甲苯,取20μL加入反应管中,密封,移出手套箱,加热至130℃,搅拌反应1h。冷却至室温,加入1ml DCM,搅拌溶解,转移至100ml茄形瓶中,搅拌状态下缓慢加入50ml甲基叔丁基醚,有白色固体析出,继续搅拌10min,停止搅拌,倒出甲基叔丁基醚,残余固体油泵拉干,共得到187mg聚合物,性状为白色固体,收率为85%。
实施例2
亲/疏水基团的修饰的通用方法
Figure PCTCN2021120179-appb-000041
在光化学反应器中加入要修饰的聚合物,根据聚合物的溶解性,选用二氯甲烷或水等溶剂,反应体系应当完全溶解。反应浓度为100mg聚合物/1000μL。加入所要修饰的亲/疏水基团,0.2mol当量2,2-二甲氧基-2-苯基苯乙酮,反应液在365nm紫外光光照射下,室温反应2小时。反应完毕后,浓缩反应液。沉淀用正庚烷洗涤。过滤得到聚合物沉淀,产物为一白色固体。
实施例3
可质子化基团的修饰的通用方法
Figure PCTCN2021120179-appb-000042
在光化学反应器中加入要修饰的聚合物,根据聚合物的溶解性,选用二氯甲烷或水等溶剂,反应体系应当完全溶解。反应浓度为100mg聚合物/1000μL。加入所要修饰的可质子化基团,0.2mol当量2,2-二甲氧基-2-苯基苯乙酮,反应液在365nm紫外光光照射下,室温反应2小时,使用NMR监控反应直至反应完全。反应完毕后,浓缩反应液。沉淀用正庚烷洗涤。过滤得到聚合物沉淀,产物为一白色固体。
实施例4
荧光基团的修饰的通用方法
Figure PCTCN2021120179-appb-000043
在单口烧瓶中加入要修饰的聚合物,根据聚合物的溶解性,选用二氯甲烷或水等溶剂,反应体系应当完全溶解。反应浓度为50mg聚合物/1000μL。加入所要修饰的荧光基团,室温反应过夜。反应完毕后,浓缩反应液。沉淀用乙醇溶解。溶液使用透析袋透析,除去小分子。浓缩得到聚合物为一绿色固体。
实施例5
递送分子基团的修饰的通用方法
Figure PCTCN2021120179-appb-000044
在光化学反应器中加入要修饰的聚合物,根据聚合物的溶解性,选用二氯甲烷或水等溶 剂,反应体系应当完全溶解。反应浓度为100mg聚合物/1000μL。加入所要修饰的可质子化基团,0.2mol当量2,2-二甲氧基-2-苯基苯乙酮,反应液在365nm紫外光光照射下,室温反应2小时,使用NMR监控反应直至反应完全。反应完毕后,浓缩反应液。沉淀用正庚烷洗涤。过滤得到聚合物沉淀,产物为一白色固体。
实施例6
含有正壬烷基的实施例系列
6.1 PLA110-C9-TEE-ICG
6.1.1 PLA110-C9-TEE-ICG的合成路线
Figure PCTCN2021120179-appb-000045
6.1.2 PLA110的合成(IB008-026-01)
实施例6.1.2的合成与纯化根据如上实施例1.2的过程(使用3-烯丙基-6-甲基-[1,4]二氧六环-2,5-二酮1.02g,6mmol)共得到1.16g白色固体聚合物,收率为91.3%。 1H NMR(400MHz,Chloroform-d)δ5.85–5.67(m,109H),5.28–5.08(m,452H),3.63(s,448H),2.67(m,240H),1.55(m,343H)。
6.1.3 PLA110-C9的合成(IB008-036-01)
实施例6.1.3的合成与纯化根据如上实施例2的过程,溶剂使用二氯甲烷共得到52mg白色固体聚合物,收率为91%。 1H NMR(400MHz,Chloroform-d)δ5.85–5.67(m,89H),5.28–5.08(m,432H),3.63(d,J=1.2Hz,448H),2.75-2.56(m,220H),2.46–2.39(m,41H),1.90-1.78(m,40H),1.61-1.44(m,447H),1.29-1.26(m,210H),0.89-0.87(m,62H)。
6.1.4 PLA110-C9-TEE的合成(IB008-037-01)
实施例6.1.4的合成与纯化根据如上实施例3的过程,溶剂使用二氯甲烷共得到65mg白色固体聚合物,收率为89%。 1H NMR(400MHz,Chloroform-d)δ5.14(s,332H),3.60(d,J=1.2Hz,448H),3.10-2.57(m,1238H),1.90-1.78(m,241H),1.58-1.43(m,549H),0.92-0.89(m,59H)。
6.1.5 PLA110-C9-TEE-ICG的合成(IB008-038-01)
实施例6.1.5的合成与纯化根据如上实施例4的过程,溶剂使用二氯甲烷共得到32mg绿色固体聚合物,收率为76%。 1H NMR(400MHz,Chloroform-d)δ8.12-7.31(m,19H),5.14(s,322H),3.62(d,J=1.2Hz,448H),3.09-2.58(m,1207H),1.90-1.77(m,238H),1.57-1.44(m,579H),1.29-1.26(m,218H),0.89-0.86(m,63H)。
实施例7
含有十八烷基的实施例系列
7.1 PLA110-C18-TEE-ICG
7.1.1 PLA110-C18-TEE-ICG的合成路线
Figure PCTCN2021120179-appb-000046
7.1.2 PLA110的合成(IB008-026-01)
实施例7.1.2的合成与纯化根据如上实施例1.2的过程(使用3-烯丙基-6-甲基-[1,4]二氧六环-2,5-二酮1.02g,6mmol)共得到1.16g白色固体聚合物,收率为91.3%。 1H NMR(400MHz,Chloroform-d)δ5.84–5.66(m,109H),5.28–5.08(m,452H),3.62(s,448H),2.67(m,240H),1.54(m,343H)。
7.1.3 PLA110-C18的合成(IB015-039-01)
实施例7.1.3的合成与纯化根据如上实施例2的过程,溶剂使用二氯甲烷共得到56mg白色固体聚合物,收率为93%。 1H NMR(400MHz,Chloroform-d)δ5.85-5.67(m,89H),5.30-5.07(m,432H),3.63(d,J=1.2Hz,448H),2.75-2.56(m,208H),2.46-2.38(m,40H),1.90-1.76(m,39H),1.58-1.44(m,442H),1.29-1.24(m,565H),0.89-0.87(m,58H)。
7.1.4 PLA110-C18-TEE的合成(IB015-040-01)
实施例7.1.4的合成与纯化根据如上实施例3的过程,溶剂使用二氯甲烷共得到60mg白色固体聚合物,收率为85%。 1H NMR(400MHz,Chloroform-d)δ5.13(s,337H),3.63(d,J=1.2Hz,448H),3.12-2.57(m,1122H),2.44-2.38(m,41H),1.91-1.76(m,239H),1.57-1.44(m,543H),0.89-0.87(m,61H)。
7.1.5 PLA110-C18-TEE-ICG的合成(IB015-041-01)
实施例7.1.5的合成与纯化根据如上实施例4的过程,溶剂使用二氯甲烷共得到33mg绿色固体聚合物,收率为72%。 1H NMR(400MHz,Chloroform-d)δ8.14-7.30(m,27H),5.14(s,327H),3.63(d,J=1.2Hz,448H),3.09-2.58(m,1172H),2.47-2.39(m,42H),1.90-1.78(m,240H),1.57-1.44(m,543H),0.89-0.87(m,61H)。
实施例8
含有正丁基的实施例系列
8.1 PLA110-C4-TEE-ICG
8.1.1 PLA110-C4-TEE-ICG的合成路线
Figure PCTCN2021120179-appb-000047
8.1.2 PLA110的合成(IB008-026-01)
实施例8.1.2的合成与纯化根据如上实施例1.2的过程(使用3-烯丙基-6-甲基-[1,4]二氧六环-2,5-二酮1.02g,6mmol)共得到1.16g白色固体聚合物,收率为91.3%。 1H NMR(400MHz,Chloroform-d)δ5.85-5.67(m,109H),5.28-5.08(m,452H),3.63(s,448H),2.67(m,240H),1.55(m,343H)。8.1.3 PLA110-C4的合成(IB015-042-01)
实施例8.1.3的合成与纯化根据如上实施例2的过程,溶剂使用二氯甲烷共得到51mg白色固体聚合物,收率为89%。 1H NMR(400MHz,Chloroform-d)δ5.85–5.67(m,89H),5.28-5.08(m,432H),3.63(d,J=1.2Hz,448H),2.75-2.56(m,223H),2.46–2.39(m,38H),1.90-1.78(m,40H),1.61-1.44(m,442H),0.92-0.89(m,61H)。
8.1.4 PLA110-C4-TEE的合成(IB015-043-01)
实施例8.1.4的合成与纯化根据如上实施例3的过程,溶剂使用二氯甲烷共得到54mg白色固体聚合物,收率为91%。 1H NMR(400MHz,Chloroform-d)δ5.14(s,332H),3.63(s,448H),3.09-2.58(m,1238H),1.90-1.78(m,240H),1.57-1.44(m,549H),0.92-0.89(m,60H)。
8.1.5 PLA110-C4-TEE-ICG的合成(IB015-044-01)
实施例8.1.5的合成与纯化根据如上实施例4的过程,溶剂使用二氯甲烷共得到36mg 绿色固体聚合物,收率为75%。 1H NMR(400MHz,Chloroform-d)δ8.09-7.28(m,24H),5.14(s,333H),3.63(s,448H),3.07-2.56(m,1238H),1.91-1.80(m,243H),1.58-1.43(m,548H),0.92-0.88(m,59H)。
实施例9
含有乙基的实施例系列
9.1 PLA110-C2-TEE-ICG
9.1.1 PLA110-C2-TEE-ICG的合成路线
Figure PCTCN2021120179-appb-000048
9.1.2 PLA110的合成(IB008-026-01)
实施例9.1.2的合成与纯化根据如上实施例1.2的过程(使用3-烯丙基-6-甲基-[1,4]二氧六环-2,5-二酮1.02g,6mmol)共得到1.16g白色固体聚合物,收率为91.3%。 1H NMR(400MHz,Chloroform-d)δ5.85–5.68(m,109H),5.28–5.08(m,452H),3.62(s,448H),2.67(m,240H),1.56(m,343H)。
9.1.3 PLA110-C2的合成(IB015-045-01)
实施例9.1.3的合成与纯化根据如上实施例2的过程,溶剂使用二氯甲烷共得到55mg白色固体聚合物,收率为89%。 1H NMR(400MHz,Chloroform-d)δ5.85-5.67(m,89H),5.28-5.08(m,432H),3.63(d,J=1.2Hz,448H),2.75-2.56(m,208H),2.50-2.46(m,42H),1.90-1.78(m,40H),1.61-1.55(m,363H),1.17-1.12(m,63H)。
9.1.4 PLA110-C2-TEE的合成(IB015-047-01)
实施例9.1.4的合成与纯化根据如上实施例3的过程,溶剂使用二氯甲烷共得到64mg白色固体聚合物,收率为91%。 1H NMR(400MHz,Chloroform-d)δ,5.14(s,322H),3.63(d,J=1.2Hz,448H),3.09-2.58(m,1198H),2.50-2.46(m,42H),1.90-1.78(m,240H),1.55(m,473H),1.17-1.13(m,63H)。
9.1.5 PLA110-C2-TEE-ICG的合成(IB015-049-01)
实施例9.1.5的合成与纯化根据如上实施例4的过程,溶剂使用二氯甲烷共得到40mg绿色固体聚合物,收率为75%。 1H NMR(400MHz,Chloroform-d)δ,8.08-7.28(m,20H),5.14 (s,320H),3.63(d,J=1.2Hz,448H),3.09-2.58(m,1198H),2.50-2.46(m,42H),1.90-1.78(m,240H),1.55(m,473H),1.17-1.13(m,63H)。
实施例10
含有胆固醇基的实施例系列
10.1 PLA110-CHOL-TEE-ICG
10.1.1 PLA110-CHOL-TEE-ICG的合成路线
Figure PCTCN2021120179-appb-000049
10.1.2 PLA110的合成(IB008-026-01)
实施例10.1.2的合成与纯化根据如上实施例1.2的过程(使用3-烯丙基-6-甲基-[1,4]二氧六环-2,5-二酮1.02g,6mmol)共得到1.16g白色固体聚合物,收率为91.3%。 1H NMR(400MHz,Chloroform-d)δ5.85-5.67(m,109H),5.28-5.08(m,452H),3.63(s,448H),2.67(m,240H),1.55(m,343H)。10.1.3 PLA110-CHOL的合成(IB015-046-01)
实施例10.1.3的合成与纯化根据如上实施例2的过程,溶剂使用二氯甲烷共得到61mg白色固体聚合物,收率为93%。 1H NMR(400MHz,Chloroform-d)δ5.85-5.67(m,89H),5.28-5.08(m,451H),4.40(d,J=9.8Hz,2H),3.63(d,J=1.2Hz,448H),3.02(d,J=8.2Hz,20H),2.75-2.56(m,220H),2.12(d,J=8.3Hz,20H),1.90-0.58(m,1260H),0.46(s,61H)。
10.1.4 PLA110-CHOL-TEE的合成(IB015-048-01)
实施例10.1.4的合成与纯化根据如上实施例3的过程,溶剂使用二氯甲烷共得到75mg白色固体聚合物,收率为92%。 1H NMR(400MHz,Chloroform-d)δ5.21-5.11(m,352H),4.40(d,J=9.8Hz,20H),3.63(d,J=1.2Hz,448H),3.09-2.58(m,1231H),2.12(d,J=8.3Hz,42H),1.90-0.58(m,1588H),0.46(s,63H)。
10.1.5 PLA110-CHOL-TEE-ICG的合成(IB015-050-01)
实施例10.1.5的合成与纯化根据如上实施例4的过程,溶剂使用二氯甲烷共得到43mg绿色固体聚合物,收率为85%。 1H NMR(400MHz,Chloroform-d)δ8.12-7.28(m,21H),5.21-5.11(m,352H),4.40(d,J=9.8Hz,20H),3.63(d,J=1.2Hz,448H),3.09-2.58(m,1231H),2.12 (d,J=8.3Hz,42H),1.90-0.58(m,1588H),0.46(s,63H)。
实施例11
含有羟乙基的实施例系列
11.1 PLA110-C2OH-TEE-ICG
11.1.1 PLA110-C2OH-TEE-ICG的合成路线
Figure PCTCN2021120179-appb-000050
11.1.2 PLA110的合成(IB008-026-01)
实施例11.1.2的合成与纯化根据如上实施例1.2的过程(使用3-烯丙基-6-甲基-[1,4]二氧六环-2,5-二酮1.02g,6mmol)共得到1.16g白色固体聚合物,收率为91.3%。 1H NMR(400MHz,Chloroform-d)δ5.85-5.67(m,109H),5.28-5.08(m,452H),3.63(s,448H),2.67(m,243H),1.55(m,343H)。
11.1.3 PLA110-C2OH的合成(IB015-051-01)
实施例11.1.3的合成与纯化根据如上实施例2的过程,溶剂使用水,共得到55mg白色固体聚合物,收率为85%。 1H NMR(400MHz,Chloroform-d)δ5.85-5.67(m,89H),5.28-5.08(m,432H),3.63(d,J=1.2Hz,448H),2.75-2.56(m,265H),2.35-2.31(m,41H),1.90-1.78(m,40H),1.61-1.55(m,363H)。
11.1.4 PLA110-C2OH-TEE的合成(IB015-053-01)
实施例11.1.4的合成与纯化根据如上实施例3的过程,溶剂使用二氯甲烷共得到60mg白色固体聚合物,收率为80%。 1H NMR(400MHz,Chloroform-d)δ5.14(s,331H),3.63(d,J=1.2Hz,448H),3.09-2.58(m,1251H),,2.35-2.31(m,45H),1.90-1.78(m,238H),1.55(m,473H)。
11.1.5 PLA110-C2OH-TEE-ICG的合成(IB015-055-01)
实施例11.1.5的合成与纯化根据如上实施例4的过程,溶剂使用二氯甲烷共得到35mg绿色固体聚合物,收率为79%。 1H NMR(400MHz,Chloroform-d)δ8.08-7.28(m,25H),5.14(s,331H),3.63(d,J=1.2Hz,448H),3.09-2.58(m,1251H),2.35-2.31(m,45H),1.90-1.78(m, 238H),1.55(m,473H)。
11.2 PLA110-C2OH-TEE-ICG
11.2.1 PLA110-C2OH-TEE-ICG的合成路线
Figure PCTCN2021120179-appb-000051
11.2.2 PLA110的合成(IB008-026-01)
实施例11.2.2的合成与纯化根据如上实施例1.2的过程(使用3-烯丙基-6-甲基-[1,4]二氧六环-2,5-二酮1.02g,6mmol)共得到1.16g白色固体聚合物,收率为91.3%。 1H NMR(400MHz,Chloroform-d)δ5.85-5.67(m,109H),5.28-5.08(m,452H),3.63(s,448H),2.67(m,243H),1.55(m,343H)。
11.2.3 PLA110-C2OH的合成(IB015-057-01)
实施例11.2.3的合成与纯化根据如上实施例2的过程,溶剂使用水,共得到52mg白色固体聚合物,收率为85%。 1H NMR(400MHz,Chloroform-d)δ5.85–5.67(m,59H),5.28–5.08(m,397H),3.63(d,J=1.2Hz,448H),2.75-2.56(m,238H),2.37-2.32(m,101H),1.90-1.78(m,99H),1.61-1.55(m,397H)。
11.2.4 PLA110-C2OH-TEE的合成(IB015-058-01)
实施例11.2.4的合成与纯化根据如上实施例3的过程,溶剂使用二氯甲烷共得到54mg白色固体聚合物,收率为80%。 1H NMR(400MHz,Chloroform-d)δ5.14(s,337H),3.63(d,J=1.2Hz,448H),3.09-2.58(m,938H),2.37-2.32(m,105H),1.90-1.78(m,241H),1.55(m,468H)。
11.2.5 PLA110-C2OH-TEE-ICG的合成(IB015-059-01)
实施例11.2.5的合成与纯化根据如上实施例4的过程,溶剂使用二氯甲烷共得到32mg绿色固体聚合物,收率为74%。 1H NMR(400MHz,Chloroform-d)δ8.04-7.28(m,28H),5.14(s,337H),3.63(d,J=1.2Hz,448H),3.09-2.58(m,938H),2.37-2.32(m,105H),1.90-1.78(m,241H),1.55(m,468H)。
实施例12
含有胺乙基的实施例系列
12.1 PLA110-C2NH 2-TEE-ICG
12.1.1 PLA110-C2NH 2-TEE-ICG的合成路线
Figure PCTCN2021120179-appb-000052
12.1.2 PLA110的合成(IB008-026-01)
实施例12.1.2的合成与纯化根据如上实施例1.2的过程(使用3-烯丙基-6-甲基-[1,4]二氧六环-2,5-二酮1.02g,6mmol)共得到1.16g白色固体聚合物,收率为91.3%。 1H NMR(400MHz,Chloroform-d)δ5.85–5.67(m,109H),5.28–5.08(m,452H),3.63(s,448H),2.67(m,240H),1.55(m,343H)。12.1.3 PLA110-C2NH 2的合成(IB015-052-01)
实施例12.1.3的合成与纯化根据如上实施例2的过程,溶剂使用水,共得到56mg白色固体聚合物,收率为85%。 1H NMR(400MHz,Chloroform-d)δ5.85–5.67(m,89H),5.28-5.08(m,432H),3.63(d,J=1.2Hz,448H),3.06-0.99(m,50H),2.75-2.56(m,270H),1.90-1.78(m,40H),1.61-1.55(m,363H)。
12.1.4 PLA110-C2NH 2-TEE的合成(IB015-054-01)
实施例12.1.4的合成与纯化根据如上实施例3的过程,溶剂使用二氯甲烷共得到56mg白色固体聚合物,收率为80%。 1H NMR(400MHz,Chloroform-d)δ5.14(s,318H),3.63(d,J=1.2Hz,448H),3.09-2.58(m,1268H),1.90-1.78(m,237H),1.55(m,462H)。
12.1.5 PLA110-C2NH 2-TEE-ICG的合成(IB015-056-01)
实施例12.1.5的合成与纯化根据如上实施例4的过程,溶剂使用二氯甲烷共得到30mg绿色固体聚合物,收率为75%。 1H NMR(400MHz,Chloroform-d)δ8.07-7.29(m,26H),5.14(s,318H),3.63(d,J=1.2Hz,448H),3.09-2.58(m,1270H),1.90-1.78(m,238H),1.55(m,462H)。
实施例13
含有两性离子基团的实施例系列
13.1 PLA110-EMAA-TEE-ICG
13.1.1 PLA110-EMAA-TEE-ICG的合成路线
Figure PCTCN2021120179-appb-000053
13.1.2 PLA110的合成(IB008-026-01)
实施例13.1.2的合成与纯化根据如上实施例1.2的过程(使用3-烯丙基-6-甲基-[1,4]-二氧六环-2,5-二酮1.02g,6mmol)共得到1.16g白色固体聚合物,收率为91.3%。 1H NMR(400MHz,Chloroform-d)δ5.85–5.67(m,109H),5.28–5.08(m,452H),3.63(s,448H),2.67(m,240H),1.55(m,343H)。
13.1.3 PLA110-EMAA的合成(IB008-060-01)
实施例6.1.3的合成与纯化根据如上实施例2的过程,溶剂使用水共得到52mg白色固体聚合物,收率为90%。 1H NMR(400MHz,Chloroform-d)δ5.85–5.67(m,88H),5.28–5.08(m,433H),4.28(s,41H),3.81-3.77(m,42H),3.32(S,123H),3.63(d,J=1.2Hz,448H),2.96-2.92(m,42H),2.75-2.56(m,222H),1.90-1.78(m,41H),1.61-1.55(m,368H)。
13.1.4 PLA110-EMAA-TEE的合成(IB008-061-01)
实施例6.1.4的合成与纯化根据如上实施例3的过程,溶剂使用水共得到65mg白色固体聚合物,收率为85%。 1H NMR(400MHz,Chloroform-d)δ5.14(s,335H),4.28(s,39H),3.81-3.77(m,43H),3.63(d,J=1.2Hz,448H),3.32(S,126H),3.09-2.58(m,1233H),1.90-1.78(m,243H),1.55(m,468H)。
13.1.5 PLA110-EMMA-TEE-ICG的合成(IB008-062-01)
实施例6.1.5的合成与纯化根据如上实施例4的过程,溶剂使用二氯甲烷共得到32mg绿色固体聚合物,收率为74%。 1H NMR(400MHz,Chloroform-d)δ8.21-7.30(m,27H)5.14(s,334H),4.28(s,39H),3.81-3.77(m,38H),3.63(d,J=1.2Hz,448H),3.32(S,117H),3.09-2.58(m,1225H),1.90-1.78(m,241H),1.55(m,465H)。
实施例14
14.1含C 2H 4OH亲水基团的影像剂的小鼠皮下乳腺癌肿瘤活体成像实验:
动物建模:雌性Balb/c裸鼠(4-6周)背部右下侧注射一定量(每只鼠注射约2x 10 6)的4T1细胞,当肿瘤体积生长至200-400mm 3后,取鼠待用。
影像剂的注射给药:使用影像剂编号IB015-055-01(实施例11.1.5),剂量为2.5mg/kg,经尾静脉注射到老鼠体内。
活体荧光成像观察:注射后,在不同的时间点,使用活体荧光成像系统(PerkinElmer,型号:IVIS spectrum CT,产地:美国,使用设备预先设置的ICG光学滤镜组合,每一次拍摄均使用固定拍摄参数进行拍照)监测荧光探针在活体上的肿瘤富集及体内分布。如图6所示,在注射后24小时,肿瘤部位出现强烈的荧光信号富集,活体荧光成像后处死小鼠并摘取主要器官进行荧光光强定量以表征其组织分布。
14.2影像剂(IB015-055-01,结构对应实施例11.1.5)给药后的肿瘤与健康组织(肌肉)的比值测定
给药后,24小时活体荧光成像后,分布处死取材,将肿瘤、肌肉、主要脏器(心、肝、脾、肺、肾),进行荧光成像。成像后,使用同样大小的影像信息区域(ROI,Region of Interst),划定不同组织的面积,进行荧光光强的总值和平均值测定(典型的取材成像结果和数值可参加图6),然后使用“肿瘤ROI的总光强”/“肌肉ROI的总光强”计算的到TNR(肿瘤/健康组织的比值)。
所得结果如图7(表),可见,给药后0~24小时,肿瘤得荧光光强迅速提高,肿瘤/肌肉(TNR)的比值,也在给药后24小时内可达21.1倍,图表中数值也可计算得荧光光强较强的淋巴结/肌肉的比值约为13.3倍。
实施例15
15.1含C 9H 19憎水基团的影像剂的小鼠皮下乳腺癌肿瘤活体成像实验:
动物建模:雌性Balb/c裸鼠(4-6周)背部右下侧注射一定量(每只鼠注射约2x 10 6)的4T1细胞,当肿瘤体积生长至200-400mm 3后,取鼠待用。
影像剂的注射给药:使用影像剂编号IB015-038-01(实施例6.1.5),剂量为2.5mg/kg,经尾静脉注射到老鼠体内。
活体荧光成像观察:注射后,在不同的时间点,使用活体荧光成像系统(PerkinElmer,型号:IVIS spectrum CT,产地:美国,使用设备预先设置的ICG光学滤镜组合,每一次拍摄均使用固定拍摄参数进行拍照)监测荧光探针在活体上的肿瘤富集及体内分布。如图8所示,在注射后24小时,肿瘤部位出现强烈的荧光信号富集,活体荧光成像后处死小鼠并摘取主要器官进行荧光光强定量以表征其组织分布。
16.2影像剂(IB015-038-01,结构对应实施例6.1.5)给药后的肿瘤与健康组织(肌肉)的比值 测定
给药后,24小时活体荧光成像后,分布处死取材,将肿瘤、肌肉、主要脏器(心、肝、脾、肺、肾),进行荧光成像。成像后,使用同样大小的影像信息区域(ROI,Region of Interst),划定不同组织的面积,进行荧光光强的总值和平均值测定(典型的取材成像结果和数值可参加图8),然后使用“肿瘤ROI的总光强”/“肌肉ROI的总光强”计算的到TNR(肿瘤/健康组织的比值)。
所得结果如图9(表),可见,给药后0~24小时,肿瘤的荧光光强迅速提高,肿瘤/肌肉(TNR)的比值,也在给药后24小时内可达13.0倍,图表中数值也可计算得荧光光强较强的淋巴结/肌肉比值约为4.9倍。
实施例16
16.1含胆固醇(CHOL)憎水基团的影像剂的小鼠皮下乳腺癌肿瘤活体成像实验:
动物建模:雌性Balb/c裸鼠(4-6周)背部右下侧注射一定量(每只鼠注射约2x 10 6)的4T1细胞,当肿瘤体积生长至200-400mm 3后,取鼠待用。
影像剂的注射给药:使用影像剂编号IB015-050-01(实施例10.1.5),剂量为2.5mg/kg,经尾静脉注射到老鼠体内。
活体荧光成像观察:注射后,在不同的时间点,使用活体荧光成像系统(PerkinElmer,型号:IVIS spectrum CT,产地:美国,使用设备预先设置的ICG光学滤镜组合,每一次拍摄均使用固定拍摄参数进行拍照)监测荧光探针在活体上的肿瘤富集及体内分布。在注射后24小时,肿瘤部位出现强烈的荧光信号富集,活体荧光成像后处死小鼠并摘取主要器官进行荧光光强定量以表征其组织分布,结果如图10所示。
16.2影像剂(IB015-050-01,结构对应实施例10.1.5)给药后的肿瘤与健康组织(肌肉)的比值测定
给药后,24小时处死小鼠取材,将肿瘤、肌肉、主要脏器(心、肝、脾、肺、肾),进行荧光成像。成像后,使用同样大小的影像信息区域(ROI,Region of Interst),划定不同组织的面积,进行荧光光强的总值和平均值测定(典型的取材成像结果和数值可参加图10),然后使用“肿瘤ROI的总光强”/“肌肉ROI的总光强”计算的到TNR(肿瘤/健康组织的比值)。所得结果如图11(表),可见,给药后0~24小时,肿瘤得荧光光强迅速提高,肿瘤/肌肉(TNR)的比值,也在给药后24小时内可达12.2倍,图表中数值也可计算得荧光光强较强的淋巴结/肌肉比值约为12.1倍。
综上所述,本申请有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本申请的原理及其功效,而非用于限制本申请。任何熟悉此技术的人士皆可在不违背本申请的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本申请所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本申请的权利要求所涵盖。

Claims (12)

  1. 一种官能化双嵌段共聚物,所述官能化双嵌段共聚物的化学结构式如式III所示:
    Figure PCTCN2021120179-appb-100001
    式III中,m 3=22~1136,n 3=10~500,p 3=0.5~50,q 3=0~500,r 3=0~200;
    s 31=1~10,s 32=1~10,s 33=1~10,s 34=1~10;
    t 31=1~10,t 32=1~10,t 33=1~10,t 34=1~10;
    L 31、L 32、L 33、L 34为连接基团;
    R' 1、R' 2、R' 3、R' 4各自独立地选自H,C1-C20烷基,C3-C10环烷基;
    A 3选自可质子化基团;
    C 3选自荧光分子基团;
    D 3选自递送分子基团;
    E 3选自亲/疏水基团;
    T 3选自封端基团;
    EG 3选自封端基团。
  2. 如权利要求1所述的官能化双嵌段共聚物,其特征在于,式III中,s 31=1~5,s 32=1~5,s 33=1~5,s 34=1~5;
    t 31=1~6,t 32=1~6,t 33=1~6,t 34=1~6;
    聚乙二醇嵌段的分子量为1000~50000Da,聚交酯嵌段的分子量为1000~130000Da;
    和/或,所述官能化双嵌段共聚物的临界胶束浓度(CMC)<50μg/mL。
  3. 如权利要求1所述的官能化双嵌段共聚物,其特征在于,s 31=1~5,s 32=1~5,s 33=1~5,s 34=1~5;
    式III中,L 31、L 32、L 33、L 34各自独立地选自-S-,-O-,-OC(O)-,-C(O)O-,-SC(O)-,-C(O)-,-OC(S)-,-C(S)O-,-SS-,-C(R 1)=N-,-N=C(R 2)-,-C(R 3)=N-O-,-O-N=C(R 4)-,-N(R 5)C(O)-,-C(O)N(R 6)-,-N(R 7)C(S)-,-C(S)N(R 8)-,-N(R 9)C(O)N(R 10)-,-OS(O)O-,-OP(O)O-,-OP(O)N-,-NP(O)O-,-NP(O)N-,其中,R 1~R 10各自独立地选自H,C1-C10烷基,C3-C10环烷基;
    A 3选自
    Figure PCTCN2021120179-appb-100002
    其中,R 11和R 12各自独立地选自C1-C10烷基,C2-C10烯基,C2-C10炔基,C3-C10环烷基,芳香基,杂芳基;a=1-10、且a为正整数,优选的,R 11选自正乙基,R 12选自正乙基,或R 11选自乙基,R 12选自正丙基,或R 11选自正丙基,R 12选自正丙基,或R 11选自正丙基,R 12选自正丁基,或R 11选自正丁基,R 12选自正丁基;
    C 3包括ICG(吲哚菁绿),METHYLENE BLUE(亚甲基蓝),CY3,CY3.5,CY5,CY5.5,CY7,CY7.5,BDY630,BDY650,BDY-TMR,Tracy 645,Tracy 652;
    D 3选自荧光淬灭基团、药物分子基团,所述荧光淬灭基团优选选自BHQ-0,BHQ-1,BHQ-2,BHQ-3,BHQ-10,QXL-670,QXL-610,QXL-570,QXL 520,QXL-490,QSY35,QSY7,QSY21,QXL 680,Iowa Black RQ,Iowa Black FQ,所述药物分子优选选自化疗药物,更优选选自5-ALA(5-Aminolevulinic acid,5-氨基酮戊酸),核酸药物,紫杉醇,顺铂,阿霉素,伊立替康,SN38;
    E 3选自亲/疏水基团,所述亲/疏水基团优选选自H,C1-C18烷基,-O-R 11,-S-R 12,其中,R 11~R 12各自独立地选自H,C1-C18烷基,C3-C10环烷基,芳香基,杂芳基,所述亲/疏水基团还可以优选选自-(CH 2-CH 2-O)n-H(n=1~30),-(R 14)-NH 2,-(R 15)-OH,其中,R 14选自长度为1-18的亚甲基(-CH 2-)n(n=1~18),R 15独立地选自选自长度为1-18的亚甲基(-CH 2-)n(n=1~18),糖基,所述糖基优选为单糖和/或聚糖,所述亲/疏水基团还可以优选选自胆固醇及胆固醇衍生物,疏水性维生素,所述疏水性维生素优选选自维生素E和/或维生素D,两性离子基团(化学结构式如下),所述亲/疏水基团还可以优选选自以上所述基团单独使用或两种以上不同基团混合使用,当混合使用时,与式III的通式对比,r 3为亲/疏水基团的总数量,r 3,A定义为亲水基团的总数量,r 3,B为疏水基团的总数量,相应的,(r 3,A+r 3,B)=1~200,且r 3,A<151;
    更优选的,所述胆固醇及胆固醇衍生物、维生素D、维生素E的化学结构式如下之一所示:
    Figure PCTCN2021120179-appb-100003
    更优选的,所述两性离子基团的化学结构式如下之一所示:
    Figure PCTCN2021120179-appb-100004
    所述亲/疏水基团进一步优选选自选自正壬烷基、正辛烷基、正丁烷基、正丙基、乙烷基、甲基、正十八碳烷基、正十七碳烷基、胆固醇、胆固醇衍生物、羟乙基、羟甲基、羟丙基、羟丁基、两性离子基、两性离子基与正壬烷基混合使用、两性离子基与正辛烷基混合使用;
    T 3选自-CH 3,-H;
    EG 3选自-Y-R 13,其中,Y选自O、S、N,R 13选自H,C1-C20烷基,C3-C10环烷基,芳香基,杂芳基。
  4. 如权利要求1所述的官能化双嵌段共聚物,其特征在于,式III中,m 3=22~1136,n 3=10~500,p 3=1~50,q 3=0,r 3=0;
    或,式III中,m 3=22~1136,n 3=10~500,p 3=0.5~50,q 3=0,r 3=1~200;
    或,式III中,m 3=22~1136,n 3=10~500,p 3=0.5~50,q 3=1~500,r 3=0。
  5. 如权利要求1所述的官能化双嵌段共聚物,其特征在于,所述官能化双嵌段共聚物的化学结构式如下之一所示:
    Figure PCTCN2021120179-appb-100005
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5;
    Figure PCTCN2021120179-appb-100006
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5;
    Figure PCTCN2021120179-appb-100007
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5;
    Figure PCTCN2021120179-appb-100008
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5;
    Figure PCTCN2021120179-appb-100009
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5;
    Figure PCTCN2021120179-appb-100010
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5;
    Figure PCTCN2021120179-appb-100011
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5;
    Figure PCTCN2021120179-appb-100012
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5;
    Figure PCTCN2021120179-appb-100013
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100014
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100015
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100016
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100017
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100018
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100019
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100020
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100021
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100022
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100023
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100024
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100025
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100026
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100027
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100028
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100029
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100030
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100031
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100032
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100033
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100034
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100035
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100036
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100037
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100038
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100039
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100040
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100041
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100042
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100043
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100044
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100045
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100046
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100047
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100048
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100049
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100050
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100051
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100052
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100053
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100054
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100055
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100056
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100057
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100058
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100059
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100060
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100061
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100062
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100063
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100064
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100065
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100066
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100067
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100068
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100069
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100070
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100071
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100072
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100073
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100074
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,r 3=1~200;
    Figure PCTCN2021120179-appb-100075
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,(r 3,A+r 3,B)=1~200;
    Figure PCTCN2021120179-appb-100076
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,(r 3,A+r 3,B)=1~200;
    Figure PCTCN2021120179-appb-100077
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,(r 3,A+r 3,B)=1~200;
    Figure PCTCN2021120179-appb-100078
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,(r 3,A+r 3,B)=1~200;
    Figure PCTCN2021120179-appb-100079
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,(r 3,A+r 3,B)=1~200;
    Figure PCTCN2021120179-appb-100080
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,(r 3,A+r 3,B)=1~200;
    Figure PCTCN2021120179-appb-100081
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,q 3=0~500,优选为10~200;
    Figure PCTCN2021120179-appb-100082
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,q 3=0~500,优选为10~200;
    Figure PCTCN2021120179-appb-100083
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,q 3=0~500,优选为10~200;
    Figure PCTCN2021120179-appb-100084
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,q 3=0~500,优选为10~200;
    Figure PCTCN2021120179-appb-100085
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,q 3=0~500,优选为10~200;
    Figure PCTCN2021120179-appb-100086
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,q 3=0~500,优选为10~200;
    Figure PCTCN2021120179-appb-100087
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,q 3=0~500,优选为10~200;
    Figure PCTCN2021120179-appb-100088
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,q 3=0~500,优选为10~200;
    Figure PCTCN2021120179-appb-100089
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,q 3=0~500, 优选为10~200;
    Figure PCTCN2021120179-appb-100090
    其中,m 3=22~1136,优选为44~226,n 3=10~500,优选为30~200,p 3=0.5~5,q 3=0~500,优选为10~200。
  6. 一种聚合物颗粒,由权利要求1~5任一权利要求所述的官能化双嵌段共聚物制备获得。
  7. 如权利要求6所述的聚合物颗粒,其特征在于,所述聚合物颗粒的粒径为10~200nm;
    和/或,所述聚合物颗粒还修饰有靶向基团,所述靶向基团选自单克隆抗体片段,小分子靶向基团,多肽分子,核酸适配体;
    和/或,所述靶向基团修饰于至少部分的所述官能化双嵌段共聚物的T端。
  8. 如权利要求1~5任一权利要求所述的官能化双嵌段共聚物、或如权利要求6~7任一权利要求所述的聚合物颗粒,其特征在于,所述的官能化双嵌段共聚物和/或聚合物颗粒为体内可降解的。
  9. 如权利要求1~5任一权利要求所述的官能化双嵌段共聚物、或如权利要求6~7任一权利要求所述的聚合物颗粒在制备影像探针试剂和药物制剂中的用途,优选的,所述影像探针试剂和/或药物制剂具有靶向功能,更优选为靶向性影像探针。
  10. 一种组合物,包括如权利要求1~5任一权利要求所述的官能化双嵌段共聚物、或如权利要求6~7任一权利要求所述的聚合物颗粒。
  11. 一种肿瘤的治疗或诊断方法,所述方法包括:向个体施用有效量的如权利要求1~5任一权利要求所述的官能化双嵌段共聚物、或向个体施用有效量的如权利要求6~7任一权利要求所述的聚合物颗粒。
  12. 如权利要求11所述的肿瘤的治疗或诊断方法,其特征在于,通过膀胱灌注、子宫灌注、肠道灌注、开颅后脑部局部施用、乳腺癌切除术中局部施用、腹腔微创肿瘤切除术中局部施用等方式向个体施用。
PCT/CN2021/120179 2020-09-25 2021-09-24 一种官能化双嵌段共聚物及其制备方法和用途 WO2022063209A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/028,218 US20240197925A1 (en) 2020-09-25 2021-09-24 Functionalized diblock copolymer and its preparation method and application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011021402 2020-09-25
CN202011021402.1 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022063209A1 true WO2022063209A1 (zh) 2022-03-31

Family

ID=80824766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120179 WO2022063209A1 (zh) 2020-09-25 2021-09-24 一种官能化双嵌段共聚物及其制备方法和用途

Country Status (3)

Country Link
US (1) US20240197925A1 (zh)
CN (1) CN114262428A (zh)
WO (1) WO2022063209A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101538368A (zh) * 2009-01-16 2009-09-23 沈阳药科大学 具有温度/pH双重敏感性质的共聚物及其制备和应用
CN101732723A (zh) * 2009-12-30 2010-06-16 上海市肿瘤研究所 聚乙二醇-聚乳酸羟基乙酸-聚赖氨酸纳米递送系统、制备方法及其应用
US7740877B2 (en) * 2006-04-07 2010-06-22 University Of Utah Research Foundation Aliphatically modified biodegradable block copolymers as thermogelling polymers
CN104470904A (zh) * 2012-02-28 2015-03-25 赛诺菲 官能化的pla-peg共聚物,其纳米颗粒,其制备及其用于靶向药物递送和造影的应用
CN104997732A (zh) * 2008-06-16 2015-10-28 佰恩德治疗股份有限公司 载药的聚合物纳米微粒及其制备和使用方法
CN106177978A (zh) * 2016-07-18 2016-12-07 湘潭大学 一种具有靶向和示踪功能的抗肿瘤高分子键合药及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103251955B (zh) * 2012-02-17 2016-03-23 中国科学院化学研究所 一种用于膀胱肿瘤灌注治疗的高分子靶向药物载体及其制备方法
CN110156971A (zh) * 2018-02-13 2019-08-23 上海时莱生物技术有限公司 一种两亲性嵌段共聚物及其制备方法和纳米胶束载药系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7740877B2 (en) * 2006-04-07 2010-06-22 University Of Utah Research Foundation Aliphatically modified biodegradable block copolymers as thermogelling polymers
CN104997732A (zh) * 2008-06-16 2015-10-28 佰恩德治疗股份有限公司 载药的聚合物纳米微粒及其制备和使用方法
CN101538368A (zh) * 2009-01-16 2009-09-23 沈阳药科大学 具有温度/pH双重敏感性质的共聚物及其制备和应用
CN101732723A (zh) * 2009-12-30 2010-06-16 上海市肿瘤研究所 聚乙二醇-聚乳酸羟基乙酸-聚赖氨酸纳米递送系统、制备方法及其应用
CN104470904A (zh) * 2012-02-28 2015-03-25 赛诺菲 官能化的pla-peg共聚物,其纳米颗粒,其制备及其用于靶向药物递送和造影的应用
CN106177978A (zh) * 2016-07-18 2016-12-07 湘潭大学 一种具有靶向和示踪功能的抗肿瘤高分子键合药及其制备方法

Also Published As

Publication number Publication date
CN114262428A (zh) 2022-04-01
US20240197925A1 (en) 2024-06-20

Similar Documents

Publication Publication Date Title
Wei et al. A near-infrared-II polymer with tandem fluorophores demonstrates superior biodegradability for simultaneous drug tracking and treatment efficacy feedback
Zhang et al. Theranostic nanoparticles with disease-specific administration strategies
Porcu et al. Indocyanine green delivery systems for tumour detection and treatments
Lin et al. Self-assembled tumor-targeting hyaluronic acid nanoparticles for photothermal ablation in orthotopic bladder cancer
Liu et al. Photosensitizer-conjugated redox-responsive dextran theranostic nanoparticles for near-infrared cancer imaging and photodynamic therapy
ES2712779T3 (es) Nanopartículas para la administración dérmica y sistémica de fármacos
Wang et al. Surface-modified GVs as nanosized contrast agents for molecular ultrasound imaging of tumor
EP2609935B1 (en) Switching fluorescent nanoparticle probe and fluorescent particle imaging method using same
KR101756962B1 (ko) 암 및 피부질환 치료를 위한 생체 적합성 광열용 조성물
EP2682131B1 (en) Switching-type fluorescent nanoparticle probe, and fluorescent molecular imaging method using same
KR101630251B1 (ko) 가용화된 광감작제를 유효성분으로 하는 진단 또는 치료용 약학적 조성물
Hu et al. 6-Aminocaproic acid as a linker to improve near-infrared fluorescence imaging and photothermal cancer therapy of PEGylated indocyanine green
CN111518545B (zh) 高稳定性近红外二区纳米荧光探针及其制备方法和应用
WO2022063206A1 (zh) 一种官能化双嵌段共聚物及其制备方法和用途
WO2012128326A1 (ja) 光線力学治療用ナノ粒子
WO2019027370A1 (en) POLYMERIC NANOPARTICLES FOR MOLECULAR IMAGING WITH RESIDUAL LUMINESCENCE
Li et al. Ultra-pH-sensitive indocyanine green-conjugated nanoprobes for fluorescence imaging-guided photothermal cancer therapy
EP2996677B1 (en) Photosensitizer particles for medical imaging and/or photodynamic therapy
Fan et al. Lignin-assisted construction of sub-10 nm supramolecular self-assembly for photothermal immunotherapy and potentiating anti-PD-1 therapy against primary and distant breast tumors
He et al. NIR-II absorptive dithienopyrrole-thiadiazolobenzotriazole conjugated polymer for photoacoustic imaging-guided glioblastoma multiforme photothermal therapy
Zhou et al. Tumor-penetrating and mitochondria-targeted drug delivery overcomes doxorubicin resistance in lung cancer
WO2022063208A1 (zh) 一种官能化双嵌段共聚物及其制备方法和用途
Ma et al. High-precision detection and navigation surgery of colorectal cancer micrometastases
WO2022063209A1 (zh) 一种官能化双嵌段共聚物及其制备方法和用途
KR101751595B1 (ko) 생체적합성 친수성 고분자를 포함한 구형 약물 전달체 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871578

Country of ref document: EP

Kind code of ref document: A1