WO2022062616A1 - 一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置 - Google Patents

一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置 Download PDF

Info

Publication number
WO2022062616A1
WO2022062616A1 PCT/CN2021/107611 CN2021107611W WO2022062616A1 WO 2022062616 A1 WO2022062616 A1 WO 2022062616A1 CN 2021107611 W CN2021107611 W CN 2021107611W WO 2022062616 A1 WO2022062616 A1 WO 2022062616A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
reactor
water
denitrification
tank
Prior art date
Application number
PCT/CN2021/107611
Other languages
English (en)
French (fr)
Inventor
彭永臻
邱金港
张琼
王众
姜浩
任尚
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Priority to US17/768,668 priority Critical patent/US20240109798A1/en
Publication of WO2022062616A1 publication Critical patent/WO2022062616A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/303Nitrification and denitrification treatment characterised by the nitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/307Nitrification and denitrification treatment characterised by direct conversion of nitrite to molecular nitrogen, e.g. by using the Anammox process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/166Nitrites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/38Gas flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment

Definitions

  • the application relates to a method and device for realizing deep denitrification of late-stage landfill leachate and reduction of excess sludge by utilizing a carbon source for sludge fermentation, belonging to the technical field of biological denitrification of late-stage landfill leachate with a low-carbon-nitrogen ratio.
  • landfill leachate is a kind of wastewater containing high concentrations of organic matter and ammonia nitrogen.
  • the treatment and disposal of a large amount of excess sludge is also another major problem.
  • the excess sludge is rich in organic carbon sources, and a large amount of short-chain fatty acids can be produced through alkaline anaerobic fermentation. It can be used as a high-quality carbon source to be added to the landfill leachate treatment process. At the same time, it also reduces its own weight by 50%-60%.
  • the sludge fermentation liquid produced by directly using the sludge fermentation mixture instead of the sludge fermentation product centrifugation saves the centrifugation cost of the sludge-water separation and saves the floor space.
  • Method and device for deep denitrification and sludge reduction in late-stage landfill leachate by sludge fermentation It operates in aerobic mode. After the raw water enters the anoxic section, organic matter is used to convert a part of nitrite nitrogen and nitrate nitrogen remaining in the previous cycle into nitrogen; The remaining nitrite nitrogen is removed at the same time, and nitrate nitrogen is generated; then it enters the aerobic section, and the remaining ammonia nitrogen is converted into nitrite nitrogen; the effluent containing nitrite nitrogen and nitrate nitrogen is pumped into DN-SBR, At the same time, the excess sludge fermentation mixture was added. The reactor was operated in anaerobic/aerobic/anoxic mode.
  • the carbon source required for denitrification was derived from the excess sludge fermentation mixture on the one hand, and from the anaerobic stage on the other hand.
  • the storage of microorganisms and the release of carbon sources in the anoxic stage, the microorganisms in the activated sludge use two parts of the carbon sources for denitrification to remove nitrogen from the landfill leachate.
  • the removal rate of TN in the effluent reaches 96.0%.
  • the process uses excess sludge for fermentation as a carbon source, which not only saves the cost of excess sludge treatment and disposal, but also provides a carbon source for the deep denitrification of sewage treatment, and can achieve the effect of reducing excess sludge at the same time.
  • the present application proposes a method and device for realizing deep denitrification and sludge reduction of late-stage landfill leachate by utilizing sludge fermentation carbon source, specifically, the late-stage landfill leachate first enters short-range nitrification/anaerobic
  • the ammonia oxidation reactor operates in A/A/O (anoxic/anaerobic/aerobic) mode. After the raw water enters the anoxic section, organic matter is used to convert part of the nitrite nitrogen and nitrate nitrogen remaining in the previous cycle into nitrogen.
  • the anaerobic ammonium oxidation reaction occurs, removing part of the ammonia nitrogen and the remaining nitrite nitrogen in the raw water at the same time, and generating nitrate nitrogen; then entering the aerobic stage, converting the remaining ammonia nitrogen into nitrite nitrogen ;
  • the effluent containing nitrite nitrogen and nitrate nitrogen is pumped into DN-SBR, and the excess sludge fermentation mixture is added at the same time.
  • This reactor is operated in A/O/A (anaerobic/aerobic/anoxic) mode, and the The carbon source required for nitrification is derived from the residual sludge fermentation mixture on the one hand, and the storage of microorganisms in the anaerobic stage on the other hand, and the carbon source is released in the anoxic stage; It can be reduced to nitrogen, so as to realize the deep denitrification and sludge reduction of the late landfill leachate.
  • A/O/A anaerobic/aerobic/anoxic
  • a device for realizing deep denitrification of late-stage landfill leachate and sludge reduction by utilizing a carbon source for sludge fermentation comprising a raw water tank (1), a short-range nitrification/anammox integrated reactor (2), an intermediate water tank (3) ), the residual sludge alkaline fermentation tank (4), the fermentation product storage tank (5), the denitrification reactor (6), and the effluent water tank (7).
  • the raw water tank is provided with an overflow pipe (1.1) and a water outlet (1.2);
  • the short-range nitrification/anammox integrated reactor (2) is provided with an air compressor (2.1), a gas flow meter (2.2), an air compressor (2.2), a Air sand head (2.10), first water inlet (2.3), first sampling port (2.8), first drain port (2.9), first vent pipe (2.6), first agitator (2.5), first Water inlet peristaltic pump (2.11), first water outlet peristaltic pump (2.12), pH/DO real-time monitoring device (2.7), ORP real-time monitoring device (2.4);
  • the residual sludge alkaline fermentation tank (4) is completely sealed outside the Attached with insulation layer, equipped with temperature control device (4.1), first mud inlet (4.2), second agitator (4.3), pH/DO real-time monitoring device (4.4), first mud outlet (4.5);
  • the denitrification reactor (6) is provided with an air compressor (6.1), a gas flow meter (6.2), an a
  • the raw water tank (1) is connected to the first water inlet (2.3) of the short-path nitrification/anammox integrated reactor through the first water inlet peristaltic pump (2.11); the first outlet of the short-path nitrification/anammox integrated reactor
  • the water outlet (2.9) is connected to the water inlet (3.1) of the intermediate water tank through the first water outlet peristaltic pump (2.12), and the air passes through the air compressor (2.1) and the gas flow meter (2.2) and finally enters the short-range through the aeration sand head (2.10).
  • the second outlet peristaltic pump (6.12) is connected to the second water outlet (6.9) of the denitrification reactor.
  • the device to utilize sludge fermentation carbon source to realize late-stage landfill leachate deep denitrification and sludge reduction, it is characterized in that, it includes the following process:
  • the residual sludge alkaline fermentation tank is a semi-continuous reactor, the sludge residence time SRT is 8-10 days, the temperature is maintained at 35 ⁇ 0.5 ° C, and the reaction pH is monitored online. It is maintained at 10 ⁇ 0.2; according to the amount of the excess sludge fermentation mixture discharged to the excess sludge fermentation mixture storage tank per day by SBR, and an equal volume of fresh excess sludge is added to the excess sludge alkaline fermentation tank;
  • mode operation that is, the following mode: open the first stirrer to enter the anoxic stage after the water inflow is completed, stir for 1h, and convert the remaining part of the nitrite nitrogen and nitrate nitrogen in the upper cycle of the reactor into nitrogen; After the biodegradable organic matter is used up, continue anaerobic stirring for 2 hours, and the anaerobic ammonia oxidation reaction will occur, and a part of ammonia nitrogen and unused nitrite nitrogen in the raw water will be removed at the same time, and nitrate nitrogen will be generated, and the first agitator will be closed.
  • the first air compression pump to start aeration, a short-range nitrification reaction occurs, and the ammonia nitrogen is converted into nitrous nitrogen, the DO is maintained between 1-1.5mg/L by the real-time control device, and the pH is monitored in real time by the pH control device.
  • the preset aeration time is 4-5h, and the aeration is stopped at the "ammonia valley point", that is, before the inflection point where the pH first drops and then rises during the nitrification process; sedimentation is 0.5h to separate the mud and water, and the first effluent peristaltic pump is turned on. Discharge into the intermediate water tank, the drainage ratio is 30%;
  • this reactor operates in the mode of A/O/A (anaerobic/aerobic/anoxic), that is, the following way: after the water inflow is completed, open the second stirrer and start stirring for 3-4h, and make full use of
  • the organic matter in the residual sludge fermentation mixture is denitrified, and the microorganisms are stored in the internal carbon source at the same time, and the second air compression pump is turned on after the stirring; Entering the aeration stage, the ammonia nitrogen brought in the fermentation mixture is converted into nitrite nitrogen,
  • the dissolved oxygen is maintained at 0.5-1.5mg/L by the real-time control device, the pH is monitored in real time by the pH control device, and the preset aeration time is 1-2h.
  • the late landfill leachate first enters the PNA-SBR and operates in the A/A/O (anoxic/anaerobic/aerobic) mode. After the raw water enters the anoxic section, the remaining part of the nitrite nitrogen and nitrate in the previous cycle is converted by organic matter. Nitrogen is converted into nitrogen; after entering the anaerobic stage, anaerobic ammonia oxidation reaction occurs, and part of the ammonia nitrogen and unused nitrite nitrogen in the raw water are removed at the same time, and nitrate nitrogen is generated; after entering the aerobic stage, the remaining ammonia nitrogen is removed.
  • A/A/O anoxic/anaerobic/aerobic
  • This reactor is A/O/A (anaerobic/aerobic/ After entering the anaerobic section, the nitrite nitrogen and nitrate nitrogen in the influent are denitrified by using a part of the organic matter in the sludge fermentation mixture, and the microorganisms store the internal carbon source at the same time; the aerobic section will ferment The ammonia nitrogen generated in the mixture is converted into nitrite nitrogen and nitrate nitrogen; the final anoxic stage reduces the nitrite nitrogen and nitrate nitrogen to nitrogen, and simultaneously completes the deep removal of nitrogen and excess sludge in the denitrification reactor. reduction.
  • This application realizes the deep denitrification of late-stage landfill leachate in the true sense through the organic combination of short-range nitrification, anaerobic ammonia oxidation, excess sludge fermentation and endogenous denitrification, and achieves cost saving and deep denitrification.
  • the short-path nitrification of ammonia oxidizing bacteria can save 60% of the aeration amount, and the anammox bacteria do not generate N2O during the metabolic process, so this process is a greenhouse gas Low emissions.
  • both short-path nitrification and anammox process can be carried out.
  • the device is simple and easy to operate.
  • the carbon source required for the reaction comes from the internal carbon source stored in the anaerobic stage; , which greatly saves the required cost.
  • This process does not have a reflux device, which saves costs and is easy to operate.
  • Fig. 1 is a flow chart of a method and device for realizing deep denitrification of late-stage landfill leachate and sludge reduction by utilizing sludge fermentation carbon source
  • a method and device for realizing deep denitrification of late-stage landfill leachate and sludge reduction by utilizing a carbon source for sludge fermentation including a raw water tank (1), a short-range nitrification/anammox integrated reactor (2), an intermediate water tank (3), a residual sludge alkaline fermentation tank (4), a fermentation product storage tank (5), a denitrification reactor (6), and a water outlet tank (7).
  • the raw water tank is provided with an overflow pipe (1.1) and a water outlet (1.2);
  • the short-range nitrification/anammox integrated reactor (2) is provided with an air compressor (2.1), a gas flow meter (2.2), an air compressor (2.2), a Air sand head (2.10), first water inlet (2.3), first sampling port (2.8), first drain port (2.9), first vent pipe (2.6), first agitator (2.5), first Water inlet peristaltic pump (2.11), first water outlet peristaltic pump (2.12), pH/DO real-time monitoring device (2.7), ORP real-time monitoring device (2.4);
  • the residual sludge alkaline fermentation tank (4) is completely sealed outside the Attached with insulation layer, equipped with temperature control device (4.1), first mud inlet (4.2), second agitator (4.3), pH/DO real-time monitoring device (4.4), first mud outlet (4.5);
  • the denitrification reactor (6) is provided with an air compressor (6.1), a gas flow meter (6.2), an a
  • the raw water tank (1) is connected to the first water inlet (2.3) of the short-path nitrification/anammox integrated reactor through the first water inlet peristaltic pump (2.11); the first outlet of the short-path nitrification/anammox integrated reactor
  • the water outlet (2.9) is connected to the water inlet (3.1) of the intermediate water tank through the first water outlet peristaltic pump (2.12), and the air passes through the air compressor (2.1) and the gas flow meter (2.2) and finally enters the short-range through the aeration sand head (2.10).
  • the second outlet peristaltic pump (6.12) is connected to the second water outlet (6.9) of the denitrification reactor.
  • the residual sludge alkaline fermentation tank is a semi-continuous reactor, the sludge residence time SRT is 8-10 days, the temperature is maintained at 35 ⁇ 0.5 ° C, and the reaction pH is monitored online. It is maintained at 10 ⁇ 0.2; according to the amount of the excess sludge fermentation mixture discharged to the excess sludge fermentation mixture storage tank per day by SBR, and an equal volume of fresh excess sludge is added to the excess sludge alkaline fermentation tank;
  • mode operation that is, the following mode: open the first stirrer to enter the anoxic stage after the water inflow is completed, stir for 1h, and convert the remaining part of the nitrite nitrogen and nitrate nitrogen in the upper cycle of the reactor into nitrogen; After the biodegradable organic matter is used up, continue anaerobic stirring for 2 hours, and the anaerobic ammonia oxidation reaction will occur, and a part of ammonia nitrogen and unused nitrite nitrogen in the raw water will be removed at the same time, and nitrate nitrogen will be generated, and the first agitator will be closed.
  • the first air compression pump to start aeration, a short-range nitrification reaction occurs, and the ammonia nitrogen is converted into nitrous nitrogen, and the DO is maintained between 1-1.5mg/L by the real-time control device, and the pH is monitored in real time by the pH control device.
  • the preset aeration time is 4-5h, and the aeration is stopped at the "ammonia valley point", that is, before the inflection point where the pH first drops and then rises during the nitrification process; sedimentation is 0.5h to separate the mud and water, and the first effluent peristaltic pump is turned on. Discharge into the intermediate water tank, the drainage ratio is 30%;
  • this reactor operates in the mode of A/O/A (anaerobic/aerobic/anoxic), that is, the following way: after the water inflow is completed, open the second stirrer and start stirring for 3-4h, and make full use of
  • the organic matter in the residual sludge fermentation mixture is denitrified, and the microorganisms are stored in the internal carbon source at the same time, and the second air compression pump is turned on after the stirring; Entering the aeration stage, the ammonia nitrogen brought in the fermentation mixture is converted into nitrite nitrogen,
  • the dissolved oxygen is maintained at 0.5-1.5mg/L by the real-time control device, the pH is monitored in real time by the pH control device, and the preset aeration time is 1-2h.
  • the TN removal rate reaches 96.0% under the condition that the influent ammonia nitrogen, total nitrogen and COD concentrations are 1150 ⁇ 40mg/L, 1421 ⁇ 55mg/L and 1503 ⁇ 150mg/L respectively, and the TN removal rate can be up to 0.64kg/(m 3 ⁇ d).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置,属于高氨氮污水污泥生物处理领域。晚期垃圾渗滤液首先进入PNA-SBR,反应器以A/A/O(缺氧/厌氧/好氧)方式运行,缺氧段进行反硝化;随后厌氧段发生厌氧氨氧化去除一部分氨氮和亚硝态氮;好氧段进行短程硝化彻底去除氨氮;将出水泵入DN-SBR,同时投加剩余污泥发酵混合物,反应器以A/O/A(厌氧/好氧/缺氧)方式运行,厌氧段利用污泥发酵混合物中的有机物进行反硝化,同时微生物储存内碳源;好氧段去除发酵物中带来的氨氮;缺氧段利用内碳源进行反硝化。本申请在TN去除率达到96.0%的同时,也有明显的污泥减量效果,适用于高氨氮废水的深度去除。

Description

一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置
交叉引用
本申请要求在2020年9月24日提交中国专利局、申请号为202011011157.6、发明名称为“一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮和剩余污泥减量的方法和装置,属于低碳氮比晚期垃圾渗滤液生物脱氮技术领域。
背景技术
近年来,随着经济的发展和人民生活水平的提高,城市固体废物的产量也随之不断增加,其处理方法包括填埋法、焚烧法和堆肥法等。其中,填埋法因其操作方式简单逐渐成为世界上应用最广泛的处理和处置方法。但填埋法也会对大气、土壤、水源等产生危害。填埋法产生的渗滤液如果不及时收集并妥善处理,则会严重污染地表水或地下水。垃圾渗滤液是一种含有高浓度有机物和氨氮的废水,具有水质成分复杂、水量变化大、微生物营养元素比例失调等水质特点,会对环境造成严重污染,使得垃圾渗滤液的处理成为国际范围内尚未解决的难题之一。传统污水生物脱氮通过硝化将NH 4 +-N转化为NO 3 --N,再通过反硝化将NO 3 --N转化为氮气从水中逸出。 在反硝化阶段,微生物以NO 3 --N为电子受体,以有机物为电子供体,最终将氨氮转化为氮气,完成脱氮,达到排放标准并排放。但垃圾渗滤液在不同时期其水质有很大差别,对于晚期垃圾渗滤液而言,其碳源非常少,碳氮比较低,不能满足反硝化是微生物所需碳源,使得对于晚期渗滤液脱氮的效率无法提高,传统生物脱氮工艺难以完成对晚期垃圾渗滤液的深度去除,而外加有机碳源又会大幅度的增加污水处理费用。
由于碳源不足,在处理过程中势必投加外加碳源,这又导致异养菌的大量增长,剩余污泥产量大。因此,作为活性污泥法的副产物,大量的剩余污泥的处理处置亦是面临的又一大问题。剩余污泥中含有丰富的有机碳源,通过碱性厌氧发酵能够产生大量的短链脂肪酸,它可作为优质碳源投加到垃圾渗滤液的处理过程中,剩余污泥在提供碳源的同时也使得其本身减量50%-60%。从运行成本上考虑,直接利用污泥发酵混合物而非污泥发酵物离心而产生的污泥发酵液,节省了泥水分离的离心费用并节约了占地面积。
利用污泥发酵实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置以剩余污泥和高氨氮浓度的晚期垃圾渗滤液为研究对象,在PNA-SBR中采用缺氧/厌氧/好氧的方式运行,原水进入缺氧段后利用有机物将上周期剩余的一部分亚硝态氮和硝态氮转化成氮气;进入厌氧段后发生厌氧氨氧化反应,将原水中一部分氨氮和剩余的亚硝态氮同时去除,并生成硝态氮;再进入好氧段,将剩余的氨氮转化成亚硝态氮;将含有亚硝态氮和硝态氮的出水泵入DN-SBR,同时投加剩余污泥发酵混合物,此反应器为厌氧/好氧/缺氧模式运行,反硝化所需碳源,一方面来源于剩余污泥发酵混合物,另 一方面来源于在厌氧阶段微生物的贮存,并在缺氧阶段释放碳源,活性污泥中微生物利用两部分的碳源进行反硝化,将垃圾渗滤液中氮素去除。该工艺在进水氨氮、总氮和COD浓度分别为1150±40mg/L,1421±55mg/L和1503±150mg/L的条件下,出水TN去除率达96.0%。该工艺利用剩余污泥进行发酵作为碳源,既节省了剩余污泥处理处置的费用又为污水处理的深度脱氮提供了碳源,同时能够完成剩余污泥减量效果。
发明内容
针对现有技术的不足,本申请提出了一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置,具体是晚期垃圾渗滤液首先进入短程硝化/厌氧氨氧化反应器,采用A/A/O(缺氧/厌氧/好氧)的方式运行,原水进入缺氧段后利用有机物将上周期剩余的一部分亚硝态氮和硝态氮转化成氮气;进入厌氧段后发生厌氧氨氧化反应,将原水中一部分氨氮和剩余的亚硝态氮同时去除,并生成硝态氮;再进入好氧段,将剩余的氨氮转化成亚硝态氮;含有亚硝态氮和硝态氮的出水泵入DN-SBR,同时投加剩余污泥发酵混合物,此反应器为A/O/A(厌氧/好氧/缺氧)模式运行,反硝化所需要的碳源,一方面来源于剩余污泥发酵混合物,另一方面来源于在厌氧阶段微生物的贮存,并在缺氧阶段释放碳源;利用两个途径的碳源,将氮素还原为氮气,从而实现晚期垃圾渗滤液的深度脱氮与污泥减量化。
本申请是通过以下技术方案来实现的:
一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的装置,包括原水水箱(1)、短程硝化/厌氧氨氧化一体化反应器(2)、中间 水箱(3)、剩余污泥碱性发酵罐(4)、发酵物储存罐(5)、反硝化反应器(6)、出水水箱(7)。
原水水箱设有溢流管(1.1)和出水口(1.2);所述短程硝化/厌氧氨氧化一体化反应器(2)设有空气压缩机(2.1)、气体流量计(2.2)、曝气砂头(2.10)、第一进水口(2.3)、第一取样口(2.8)、第一排水口(2.9)、第一放空管(2.6)、第一搅拌器(2.5)、第一进水蠕动泵(2.11)、第一出水蠕动泵(2.12)、pH/DO实时监测装置(2.7)、ORP实时监测装置(2.4);所述剩余污泥碱性发酵罐(4)完全密封外附有保温层,设有温度控制装置(4.1)、第一进泥口(4.2)、第二搅拌器(4.3)、pH/DO实时监测装置(4.4)、第一出泥口(4.5);所述反硝化反应器(6)设有空气压缩机(6.1)、气体流量计(6.2)、曝气砂头(6.10)、第二进水口(6.3)、第二取样口(6.8)、第二排水口(6.9)、第二放空管(6.6)、第三搅拌器(6.5)、第二进水蠕动泵(6.11)、第二出水蠕动泵(6.12)、pH/DO实时监测装置(6.7);
原水水箱(1)通过第一进水蠕动泵(2.11)与短程硝化/厌氧氨氧化一体化反应器第一进水口(2.3)相连;短程硝化/厌氧氨氧化一体化反应器第一出水口(2.9)通过第一出水蠕动泵(2.12)与中间水箱进水口(3.1)相连,空气经过空气压缩机(2.1)、气体流量计(2.2)最终通过曝气砂头(2.10)打入短程硝化/厌氧氨氧化一体化反应器(2);中间水箱出水口(3.3)通过第二进水蠕动泵(6.11)与反硝化反应器(6)相连;剩余污泥碱性发酵罐(4)的第一出泥口(4.5)与发酵物储存罐(5)相连;发酵物储存罐(5)与反硝化反应器(6)第二进泥口(6.4)相连;出水水箱 (7)通过第二出水蠕动泵(6.12)与反硝化反应器第二排水口(6.9)相连。
采用所述装置进行利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量,其特征在于,包括以下过程:
1)剩余污泥碱性发酵罐的启动:剩余污泥碱性发酵罐为半连续反应器,污泥停留时间SRT为8-10天,温度维持在35±0.5℃,在线监测反应pH,将其维持在10±0.2;根据SBR每天排放剩余污泥发酵混合物至剩余污泥发酵混合物储存罐的量,并加入等体积新鲜的剩余污泥至剩余污泥碱性发酵罐;
2)分别将短程硝化/厌氧氨氧化活性污泥、反硝化污泥投加至短程硝化/厌氧氨氧化反应器和反硝化反应器中,控制投加后各个反应器混合液污泥浓度分别为4000-5000mg/和8000-15000mg/L;
3)打开第一进水蠕动泵,将原水水箱中的晚期垃圾渗滤液泵入短程硝化/厌氧氨氧化反应器中,此反应器以A/A/O(缺氧/厌氧/好氧)的方式运行,即下述方式:进水完毕后打开第一搅拌器进入缺氧阶段,搅拌1h,将反应器上周期剩余的一部分亚硝态氮和硝态氮转化成氮气;将原水中可生物降解有机物利用完后,继续厌氧搅拌2h,发生厌氧氨氧化反应,将原水中一部分的氨氮和未利用完的亚硝态氮同时去除,并生成硝态氮,关闭第一搅拌器;随后打开第一空气压缩泵开始曝气,发生短程硝化反应,将氨氮转化成亚硝态氮,通过实时控制装置保持DO在1-1.5mg/L之间,通过pH控制装置实时监测pH,预设曝气时间在4-5h,在“氨谷点”,即在硝化过程中pH先下降后上升的拐点前停止曝气;沉淀0.5h使泥水分离,打开第 一出水蠕动泵,将水排入中间水箱,排水比为30%;
4)打开第二进水蠕动泵,将中间水箱中亚硝态氮和硝态氮废水泵入反硝化反应器,同时投加剩余污泥发酵混合物,进发酵物量为反硝化反应器有效体积的3%-5%,此反应器以A/O/A(厌氧/好氧/缺氧)的方式运行,即下述方式:进水完毕打开第二搅拌器开始搅拌3-4h,充分利用剩余污泥发酵混合物中的有机物进行反硝化,同时使微生物储存内碳源,搅拌结束后打开第二空气压缩泵;进入曝气阶段,将发酵混合物中带来的氨氮转化成亚硝态氮,通过实时控制装置保持溶解氧维持在0.5-1.5mg/L,通过pH控制装置实时监测pH,预设曝气时间在1-2h,在“氨谷点”,即在硝化过程中pH先下降后上升的拐点前停止曝气;再次开启第二搅拌器,进入缺氧搅拌阶段,此时微生物释放厌氧阶段储存的碳源,进行反硝化,其终点由实时控制判断,当出现“亚硝酸盐肘”拐点,即ΔpH=pH2-pH1<0时停止搅拌,沉淀0.5h使泥水分离,打开第二出水蠕动泵,将上清液泵入出水水箱,排水比为30%。
晚期垃圾渗滤液首先进入PNA-SBR,以A/A/O(缺氧/厌氧/好氧)方式运行,原水进入缺氧段后利用有机物将上周期剩余的一部分亚硝态氮和硝态氮转化成氮气;进入厌氧段后发生厌氧氨氧化反应,将原水中一部分氨氮和未利用完的亚硝态氮同时去除,并生成硝态氮;进入好氧段后,将剩余的氨氮转化成亚硝态氮;将含有亚硝态氮和硝态氮的出水泵入DN-SBR,同时投加剩余污泥发酵混合物,此反应器为A/O/A(厌氧/好氧/缺氧)方式运行,进入厌氧段后,利用污泥发酵混合物中的一部分有机物先将进水中亚硝态氮和硝态氮反硝化,同时使微生物储存内碳源;好氧段将发酵混合 物中产生的氨氮转化为亚硝态氮和硝态氮;最后缺氧段将亚硝态氮和硝态氮还原为氮气,在反硝化反应器中同时完成氮素的深度去除和剩余污泥的减量。
本申请涉及的一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置具有以下优点:
(1)本申请通过将短程硝化、厌氧氨氧化、剩余污泥发酵及内源反硝化的有机结合,实现了真正意义上的晚期垃圾渗滤液的深度脱氮,达到了节约成本、深度脱氮及污泥减量的效果。
(2)在短程硝化/厌氧氨氧化反应器中,氨氧化菌的短程硝化作用可以节省60%的曝气量,并且厌氧氨氧化菌在代谢过程中无N2O生成,因此本工艺温室气体排放少。
(3)短程硝化/厌氧氨氧化反应器中既可以发生短程硝化反应,又可以进行厌氧氨氧化过程,相对传统的短程硝化耦合厌氧氨氧化两级工艺,装置简介且操作简单。
(4)在反硝化反应器中,反应所需要的碳源,一是来自厌氧阶段储存的内碳源;二是来自投加的剩余污泥发酵混合物,实现了碳源“零投加”,大大节约了所需成本。
(5)本工艺不设回流装置,节约成本且操作简单。
附图说明
图1为一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置的流程图
具体实施方式
下面结合附图和具体实施方式对本申请作进一步详细的说明。
如图1所示,一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置,包括原水水箱(1)、短程硝化/厌氧氨氧化一体化反应器(2)、中间水箱(3)、剩余污泥碱性发酵罐(4)、发酵物储存罐(5)、反硝化反应器(6)、出水水箱(7)。
原水水箱设有溢流管(1.1)和出水口(1.2);所述短程硝化/厌氧氨氧化一体化反应器(2)设有空气压缩机(2.1)、气体流量计(2.2)、曝气砂头(2.10)、第一进水口(2.3)、第一取样口(2.8)、第一排水口(2.9)、第一放空管(2.6)、第一搅拌器(2.5)、第一进水蠕动泵(2.11)、第一出水蠕动泵(2.12)、pH/DO实时监测装置(2.7)、ORP实时监测装置(2.4);所述剩余污泥碱性发酵罐(4)完全密封外附有保温层,设有温度控制装置(4.1)、第一进泥口(4.2)、第二搅拌器(4.3)、pH/DO实时监测装置(4.4)、第一出泥口(4.5);所述反硝化反应器(6)设有空气压缩机(6.1)、气体流量计(6.2)、曝气砂头(6.10)、第二进水口(6.3)、第二取样口(6.8)、第二排水口(6.9)、第二放空管(6.6)、第三搅拌器(6.5)、第二进水蠕动泵(6.11)、第二出水蠕动泵(6.12)、pH/DO实时监测装置(6.7);
原水水箱(1)通过第一进水蠕动泵(2.11)与短程硝化/厌氧氨氧化一体化反应器第一进水口(2.3)相连;短程硝化/厌氧氨氧化一体化反应器第一出水口(2.9)通过第一出水蠕动泵(2.12)与中间水箱进水口(3.1)相连,空气经过空气压缩机(2.1)、气体流量计(2.2)最终通过曝气砂头(2.10)打入短程硝化/厌氧氨氧化一体化反应器(2);中间水箱出水 口(3.3)通过第二进水蠕动泵(6.11)与反硝化反应器(6)相连;剩余污泥碱性发酵罐(4)的第一出泥口(4.5)与发酵物储存罐(5)相连;发酵物储存罐(5)与反硝化反应器(6)第二进泥口(6.4)相连;出水水箱(7)通过第二出水蠕动泵(6.12)与反硝化反应器第二排水口(6.9)相连。
具体操作过程如下:
1)剩余污泥碱性发酵罐的启动:剩余污泥碱性发酵罐为半连续反应器,污泥停留时间SRT为8-10天,温度维持在35±0.5℃,在线监测反应pH,将其维持在10±0.2;根据SBR每天排放剩余污泥发酵混合物至剩余污泥发酵混合物储存罐的量,并加入等体积新鲜的剩余污泥至剩余污泥碱性发酵罐;
2)分别将短程硝化/厌氧氨氧化活性污泥、反硝化污泥投加至短程硝化/厌氧氨氧化反应器和反硝化反应器中,控制投加后各个反应器混合液污泥浓度分别为4000-5000mg/和8000-15000mg/L;
3)打开第一进水蠕动泵,将原水水箱中的晚期垃圾渗滤液泵入短程硝化/厌氧氨氧化反应器中,此反应器以A/A/O(缺氧/厌氧/好氧)的方式运行,即下述方式:进水完毕后打开第一搅拌器进入缺氧阶段,搅拌1h,将反应器上周期剩余的一部分亚硝态氮和硝态氮转化成氮气;将原水中可生物降解有机物利用完后,继续厌氧搅拌2h,发生厌氧氨氧化反应,将原水中一部分的氨氮和未利用完的亚硝态氮同时去除,并生成硝态氮,关闭第一搅拌器;随后打开第一空气压缩泵开始曝气,发生短程硝化反应,将氨氮转化成亚硝态氮,通过实时控制装置保持DO在1-1.5mg/L之间,通过pH 控制装置实时监测pH,预设曝气时间在4-5h,在“氨谷点”,即在硝化过程中pH先下降后上升的拐点前停止曝气;沉淀0.5h使泥水分离,打开第一出水蠕动泵,将水排入中间水箱,排水比为30%;
4)打开第二进水蠕动泵,将中间水箱中亚硝态氮和硝态氮废水泵入反硝化反应器,同时投加剩余污泥发酵混合物,进发酵物量为反硝化反应器有效体积的3%-5%,此反应器以A/O/A(厌氧/好氧/缺氧)的方式运行,即下述方式:进水完毕打开第二搅拌器开始搅拌3-4h,充分利用剩余污泥发酵混合物中的有机物进行反硝化,同时使微生物储存内碳源,搅拌结束后打开第二空气压缩泵;进入曝气阶段,将发酵混合物中带来的氨氮转化成亚硝态氮,通过实时控制装置保持溶解氧维持在0.5-1.5mg/L,通过pH控制装置实时监测pH,预设曝气时间在1-2h,在“氨谷点”,即在硝化过程中pH先下降后上升的拐点前停止曝气;再次开启第二搅拌器,进入缺氧搅拌阶段,此时微生物释放厌氧阶段储存的碳源,进行反硝化,其终点由实时控制判断,当出现“亚硝酸盐肘”拐点,即ΔpH=pH2-pH1<0时停止搅拌,沉淀0.5h使泥水分离,打开第二出水蠕动泵,将上清液泵入出水水箱,排水比为30%。
连续试验结果表明:
本工艺稳定运行后,在进水氨氮、总氮和COD浓度分别为1150±40mg/L,1421±55mg/L和1503±150mg/L的条件下,TN去除率达96.0%,TN去除速率可达0.64kg/(m 3·d)。

Claims (2)

  1. 一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的装置,其特征在于:包括原水水箱(1)、短程硝化/厌氧氨氧化一体化反应器(2)、中间水箱(3)、剩余污泥碱性发酵罐(4)、发酵物储存罐(5)、反硝化反应器(6)、出水水箱(7);
    原水水箱设有溢流管(1.1)和出水口(1.2);所述短程硝化/厌氧氨氧化一体化反应器(2)设有空气压缩机(2.1)、气体流量计(2.2)、曝气砂头(2.10)、第一进水口(2.3)、第一取样口(2.8)、第一排水口(2.9)、第一放空管(2.6)、第一搅拌器(2.5)、第一进水蠕动泵(2.11)、第一出水蠕动泵(2.12)、pH/DO实时监测装置(2.7)、ORP实时监测装置(2.4);所述剩余污泥碱性发酵罐(4)完全密封外附有保温层,设有温度控制装置(4.1)、第一进泥口(4.2)、第二搅拌器(4.3)、pH/DO实时监测装置(4.4)、第一出泥口(4.5);所述反硝化反应器(6)设有空气压缩机(6.1)、气体流量计(6.2)、曝气砂头(6.10)、第二进水口(6.3)、第二取样口(6.8)、第二排水口(6.9)、第二放空管(6.6)、第三搅拌器(6.5)、第二进水蠕动泵(6.11)、第二出水蠕动泵(6.12)、pH/DO实时监测装置(6.7);
    原水水箱(1)通过第一进水蠕动泵(2.11)与短程硝化/厌氧氨氧化一体化反应器第一进水口(2.3)相连;短程硝化/厌氧氨氧化一体化反应器第一出水口(2.9)通过第一出水蠕动泵(2.12)与中间水箱进水口(3.1)相连,空气经过空气压缩机(2.1)、气体流量计(2.2)最终通过曝气砂头(2.10)打入短程硝化/厌氧氨氧化一体化反应器(2);中间水箱出水口(3.3)通 过第二进水蠕动泵(6.11)与反硝化反应器(6)相连;剩余污泥碱性发酵罐(4)的第一出泥口(4.5)与发酵物储存罐(5)相连;发酵物储存罐(5)与反硝化反应器(6)第二进泥口(6.4)相连;出水水箱(7)通过第二出水蠕动泵(6.12)与反硝化反应器第二排水口(6.9)相连。
  2. 利用权利要求1所述装置进行利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法,其特征在于,包括以下过程:
    1)剩余污泥碱性发酵罐的启动:剩余污泥碱性发酵罐为半连续反应器,污泥停留时间SRT为8-10天,温度维持在35±0.5℃,在线监测反应pH,将其维持在10±0.2;根据SBR每天排放剩余污泥发酵混合物至剩余污泥发酵混合物储存罐的量,并加入等体积新鲜的剩余污泥至剩余污泥碱性发酵罐;
    2)分别将短程硝化/厌氧氨氧化活性污泥、反硝化污泥投加至短程硝化/厌氧氨氧化反应器和反硝化反应器中,控制投加后各个反应器混合液污泥浓度分别为5000-7000mg/L和8000-15000mg/L;
    3)打开第一进水蠕动泵,将原水水箱中的晚期垃圾渗滤液泵入短程硝化/厌氧氨氧化反应器中,此反应器以A/A/O(缺氧/厌氧/好氧)的方式运行,即下述方式:进水完毕后打开第一搅拌器进入缺氧阶段,搅拌1h;将原水中可生物降解有机物利用完后,继续厌氧搅拌2h,关闭第一搅拌器;随后打开第一空气压缩泵,开始曝气,通过实时控制装置保持DO在1-1.5mg/L之间,通过pH控制装置实时监测pH,预设曝气时间在4-5h,在“氨谷点”,即在硝化过程中pH先下降后上升的拐点前停止曝气;沉淀0.5h使泥水分离,打开第一出水蠕动泵,将水排入中间水箱,排水比为30%;
    4)打开第二进水蠕动泵,将中间水箱中亚硝态氮和硝态氮废水泵入反硝化反应器,同时投加剩余污泥发酵混合物,进发酵物量为反硝化反应器有效体积的3%-5%,此反应器以A/O/A(厌氧/好氧/缺氧)的方式运行,即下述方式:进水完毕打开第二搅拌器开始搅拌3-4h,搅拌结束后打开第二空气压缩泵;进入曝气阶段,通过实时控制装置保持溶解氧维持在0.5-1.5mg/L,通过pH控制装置实时监测pH,预设曝气时间在1-2h,在“氨谷点”,即在硝化过程中pH先下降后上升的拐点前停止曝气;再次开启第二搅拌器,进入缺氧搅拌阶段,此时微生物释放厌氧阶段储存的碳源,进行反硝化,其终点由过程实时控制判断,当出现“亚硝酸盐肘”拐点,即ΔpH=pH2-pH1<0时停止搅拌,沉淀0.5h使泥水分离,打开第二出水蠕动泵,将上清液泵入出水水箱,排水比为30%。
PCT/CN2021/107611 2020-09-24 2021-07-21 一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置 WO2022062616A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/768,668 US20240109798A1 (en) 2020-09-24 2021-07-21 Method and device for realizing advanced nitrogen removal of mature landfill leachate and sludge reduction by using sludge fermentation products as carbon source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011011157.6 2020-09-24
CN202011011157.6A CN112250178B (zh) 2020-09-24 2020-09-24 一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置

Publications (1)

Publication Number Publication Date
WO2022062616A1 true WO2022062616A1 (zh) 2022-03-31

Family

ID=74232570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107611 WO2022062616A1 (zh) 2020-09-24 2021-07-21 一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置

Country Status (3)

Country Link
US (1) US20240109798A1 (zh)
CN (1) CN112250178B (zh)
WO (1) WO2022062616A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114735826A (zh) * 2022-05-12 2022-07-12 北控水务(中国)投资有限公司 自动补碳系统、自动补碳方法及aao污水处理系统
CN114835250A (zh) * 2022-05-20 2022-08-02 中国计量大学 一种餐厨垃圾相变液用于sbr补充碳源的工艺方法
CN114956332A (zh) * 2022-06-01 2022-08-30 邢利俊 一种智能化垂直流aooa污水处理装置和方法
CN114988582A (zh) * 2022-08-08 2022-09-02 山东锐沃环保科技有限公司 垃圾渗滤液sbr与厌氧氨氧化组合脱氮装置
CN115286100A (zh) * 2022-08-30 2022-11-04 中冶华天工程技术有限公司 短程反硝化厌氧氨氧化耦合缺氧mbbr工艺实现污水厂尾水深度脱氮装置与方法
CN115321666A (zh) * 2022-09-12 2022-11-11 北京工业大学 利用污泥发酵强化内碳源贮存联合内源短程反硝化-厌氧氨氧化处理城市污水的装置和方法
CN115490331A (zh) * 2022-10-24 2022-12-20 中国电建集团华东勘测设计研究院有限公司 引入生活污水的城镇污染雨水sbbr处理装置及其处理方法
CN115488134A (zh) * 2022-08-24 2022-12-20 贵州筑信水务环境产业有限公司 应用于污水处理厂餐厨垃圾转碳源协同处理装置及方法
CN115594303A (zh) * 2022-11-11 2023-01-13 北控水务(中国)投资有限公司(Cn) 污水短程硝化装置、方法及污水处理系统
CN115611426A (zh) * 2022-10-06 2023-01-17 北京工业大学 一种实现晚期垃圾渗滤液深度脱氮同步硫单质回收的装置与方法
CN115784441A (zh) * 2022-11-23 2023-03-14 北京建筑大学 连续流自养脱氮颗粒污泥处理老龄垃圾渗滤液的方法
CN116102166A (zh) * 2022-12-14 2023-05-12 北京城市排水集团有限责任公司 一种基于微型悬浮载体投加的强化一体化自养脱氮方法
CN116589093A (zh) * 2023-05-30 2023-08-15 广东益康生环保科技有限公司 一种用于scnd装置处理高氮低碳废水的调试方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250178B (zh) * 2020-09-24 2022-04-22 北京工业大学 一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置
CN113716693A (zh) * 2021-08-24 2021-11-30 北京工业大学 一种基于厌氧-好氧-缺氧运行对垃圾渗滤液深度脱氮的装置与方法
CN113716694A (zh) * 2021-08-24 2021-11-30 北京工业大学 基于污泥发酵液原位诱导短程反硝化耦合厌氧氨氧化对垃圾渗滤液深度脱氮的装置与方法
CN113800636B (zh) * 2021-09-26 2024-02-06 北京工业大学 短程硝化/厌氧氨氧化-发酵耦合短程反硝化/厌氧氨氧化处理污泥消化液的方法和装置
CN113880251B (zh) * 2021-09-26 2023-10-10 北京工业大学 利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法和装置
CN114477642A (zh) * 2022-02-13 2022-05-13 北京工业大学 一种同步处理高氨氮废水和剩余污泥的装置和方法
CN114634281B (zh) * 2022-03-29 2023-05-02 中国电建集团华东勘测设计研究院有限公司 剩余污泥发酵联合可渗透反应墙修复污染地下水的装置及方法
CN114772733A (zh) * 2022-05-19 2022-07-22 北京工业大学 一种基于厨余垃圾消化液作为外碳源的晚期垃圾渗滤液厌氧氨氧化深度脱氮装置与方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539317A (zh) * 2013-10-28 2014-01-29 北京工业大学 反硝化脱氮除磷处理高氨氮厌氧氨氧化出水和生活污水的装置和方法
CN105036335A (zh) * 2015-08-05 2015-11-11 北京工业大学 一种对晚期垃圾渗滤液自养深度脱氮生物处理装置与方法
JP2016077954A (ja) * 2014-10-15 2016-05-16 新日鐵住金株式会社 生物学的窒素除去方法
CN108439595A (zh) * 2018-04-04 2018-08-24 北京工业大学 利用污泥发酵物实现污水部分短程硝化-Anammox/反硝化的方法
CN109485149A (zh) * 2018-12-22 2019-03-19 北京工业大学 一种实现晚期垃圾渗滤液深度脱氮和剩余污泥减量的装置与方法
CN112250178A (zh) * 2020-09-24 2021-01-22 北京工业大学 一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108585202B (zh) * 2018-05-14 2021-04-30 北京工业大学 序批式反应器中实现部分短程硝化、污泥发酵耦合反硝化与厌氧氨氧化处理生活污水的工艺
CN109574218B (zh) * 2018-12-22 2021-11-26 北京工业大学 短程硝化-发酵/反硝化-厌氧氨氧化工艺处理晚期垃圾渗滤液的装置与方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539317A (zh) * 2013-10-28 2014-01-29 北京工业大学 反硝化脱氮除磷处理高氨氮厌氧氨氧化出水和生活污水的装置和方法
JP2016077954A (ja) * 2014-10-15 2016-05-16 新日鐵住金株式会社 生物学的窒素除去方法
CN105036335A (zh) * 2015-08-05 2015-11-11 北京工业大学 一种对晚期垃圾渗滤液自养深度脱氮生物处理装置与方法
CN108439595A (zh) * 2018-04-04 2018-08-24 北京工业大学 利用污泥发酵物实现污水部分短程硝化-Anammox/反硝化的方法
CN109485149A (zh) * 2018-12-22 2019-03-19 北京工业大学 一种实现晚期垃圾渗滤液深度脱氮和剩余污泥减量的装置与方法
CN112250178A (zh) * 2020-09-24 2021-01-22 北京工业大学 一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114735826A (zh) * 2022-05-12 2022-07-12 北控水务(中国)投资有限公司 自动补碳系统、自动补碳方法及aao污水处理系统
CN114835250A (zh) * 2022-05-20 2022-08-02 中国计量大学 一种餐厨垃圾相变液用于sbr补充碳源的工艺方法
CN114956332A (zh) * 2022-06-01 2022-08-30 邢利俊 一种智能化垂直流aooa污水处理装置和方法
CN114956332B (zh) * 2022-06-01 2023-12-29 邢利俊 一种智能化垂直流aooa污水处理装置和方法
CN114988582A (zh) * 2022-08-08 2022-09-02 山东锐沃环保科技有限公司 垃圾渗滤液sbr与厌氧氨氧化组合脱氮装置
CN115488134A (zh) * 2022-08-24 2022-12-20 贵州筑信水务环境产业有限公司 应用于污水处理厂餐厨垃圾转碳源协同处理装置及方法
CN115286100A (zh) * 2022-08-30 2022-11-04 中冶华天工程技术有限公司 短程反硝化厌氧氨氧化耦合缺氧mbbr工艺实现污水厂尾水深度脱氮装置与方法
CN115321666A (zh) * 2022-09-12 2022-11-11 北京工业大学 利用污泥发酵强化内碳源贮存联合内源短程反硝化-厌氧氨氧化处理城市污水的装置和方法
CN115321666B (zh) * 2022-09-12 2023-10-10 北京工业大学 利用污泥发酵强化内碳源贮存联合内源短程反硝化-厌氧氨氧化处理城市污水的装置和方法
CN115611426A (zh) * 2022-10-06 2023-01-17 北京工业大学 一种实现晚期垃圾渗滤液深度脱氮同步硫单质回收的装置与方法
CN115490331A (zh) * 2022-10-24 2022-12-20 中国电建集团华东勘测设计研究院有限公司 引入生活污水的城镇污染雨水sbbr处理装置及其处理方法
CN115594303A (zh) * 2022-11-11 2023-01-13 北控水务(中国)投资有限公司(Cn) 污水短程硝化装置、方法及污水处理系统
CN115784441A (zh) * 2022-11-23 2023-03-14 北京建筑大学 连续流自养脱氮颗粒污泥处理老龄垃圾渗滤液的方法
CN116102166A (zh) * 2022-12-14 2023-05-12 北京城市排水集团有限责任公司 一种基于微型悬浮载体投加的强化一体化自养脱氮方法
CN116589093A (zh) * 2023-05-30 2023-08-15 广东益康生环保科技有限公司 一种用于scnd装置处理高氮低碳废水的调试方法

Also Published As

Publication number Publication date
US20240109798A1 (en) 2024-04-04
CN112250178B (zh) 2022-04-22
CN112250178A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2022062616A1 (zh) 一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置
CN108439595B (zh) 利用污泥发酵物实现污水部分短程硝化-Anammox/反硝化的方法
CN113480004B (zh) 一种城市污水碳磷捕获后通过pda深度脱氮及实现磷回收的方法
WO2022242040A1 (zh) 一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的装置及方法
CN110104773B (zh) 全流程厌氧氨氧化强化脱氮的aoa工艺处理城市污水的方法与装置
CN113800636B (zh) 短程硝化/厌氧氨氧化-发酵耦合短程反硝化/厌氧氨氧化处理污泥消化液的方法和装置
CN109574218B (zh) 短程硝化-发酵/反硝化-厌氧氨氧化工艺处理晚期垃圾渗滤液的装置与方法
CN108217950A (zh) Fna强化污泥发酵及实现污水短程脱氮除磷的装置和方法
CN109354191B (zh) 一种污泥发酵强化内源反硝化的双污泥回流aoa深度脱氮方法
CN1887740A (zh) 城市垃圾渗滤液短程深度生物脱氮方法
CN104058551A (zh) 一种节能高效的城市污水自养脱氮生物处理方法及装置
CN113880251B (zh) 利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法和装置
CN109485149A (zh) 一种实现晚期垃圾渗滤液深度脱氮和剩余污泥减量的装置与方法
CN101264978B (zh) 一种快速实现sbr法短程深度脱氮的方法
CN108585347A (zh) 一种分段进水氧化沟工艺调节低c/n城市污水的装置和方法
CN108658229B (zh) 一种自养/异养深度脱氮过程控制的装置与方法
CN105712584A (zh) 分段短程硝化合并厌氧氨氧化同步处理养殖场沼液废水与城市污水的脱氮方法与装置
CN112479362A (zh) 一种污泥发酵组合短程反硝化厌氧氨氧化处理城市污水的装置和方法
CN113233596A (zh) 连续流短程硝化/内源短程反硝化/厌氧氨氧化一体化工艺处理中晚期垃圾渗滤液的方法
CN101186387A (zh) 一种提高实际污水在厌氧-低氧条件下生物同时除磷脱氮效果的方法
CN105693009A (zh) 一种对垃圾渗滤液和生活污水的混合废水进行深度脱氮除磷处理的方法及装置
CN102491587B (zh) 一种早期城市垃圾渗透液的处理方法和装置
CN113912184A (zh) 一种提高低cn比污水处理效果的方法
CN201343466Y (zh) 一种高氨氮垃圾渗滤液短程生物脱氮教学实验装置
WO2023151300A1 (zh) 一种同步处理高氨氮废水和剩余污泥的装置和方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17768668

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 19.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21870994

Country of ref document: EP

Kind code of ref document: A1