WO2022242040A1 - 一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的装置及方法 - Google Patents

一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的装置及方法 Download PDF

Info

Publication number
WO2022242040A1
WO2022242040A1 PCT/CN2021/127401 CN2021127401W WO2022242040A1 WO 2022242040 A1 WO2022242040 A1 WO 2022242040A1 CN 2021127401 W CN2021127401 W CN 2021127401W WO 2022242040 A1 WO2022242040 A1 WO 2022242040A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water inlet
peristaltic pump
water tank
uasb
Prior art date
Application number
PCT/CN2021/127401
Other languages
English (en)
French (fr)
Inventor
彭永臻
梁浩然
李夕耀
王众
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Priority to US17/919,919 priority Critical patent/US20240208846A1/en
Publication of WO2022242040A1 publication Critical patent/WO2022242040A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1263Sequencing batch reactors [SBR]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2846Anaerobic digestion processes using upflow anaerobic sludge blanket [UASB] reactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/307Nitrification and denitrification treatment characterised by direct conversion of nitrite to molecular nitrogen, e.g. by using the Anammox process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention belongs to the technical field of biological denitrification of high-ammonia-nitrogen wastewater, and in particular relates to a method for realizing high-efficiency and deep deamination of landfill leachate in the middle and late stage by an endogenous denitrification combined with an autotrophic denitrification process.
  • Short-cut nitrification anaerobic ammonium oxidation and endogenous denitrification technologies are new types of sewage biological treatment technologies that have developed rapidly in recent years, and have great application value and broad development prospects.
  • Short-range nitrification is under aerobic conditions. Ammonia-oxidizing bacteria oxidize ammonia nitrogen into nitrite nitrogen. Compared with traditional nitrification, short-range nitrification has the advantages of saving aeration, saving energy, and reducing residual sludge.
  • Anaerobic ammonia oxidation technology is a process in which anaerobic ammonium oxidation bacteria convert ammonia nitrogen and nitrite nitrogen in sewage into nitrogen and a small amount of nitrate nitrogen at the same time under anaerobic conditions.
  • Anaerobic ammonia oxidation technology is a kind of autotrophic denitrification technology, which has the advantages of saving carbon sources, reducing costs, and reducing sludge production.
  • the endogenous denitrification technology is under anaerobic conditions, the endogenous denitrifying bacteria temporarily store the external carbon source in the raw water in the form of internal carbon source in the cell, and use the internal carbon source to denitrify the endogenous denitrification under anoxic conditions. It has the advantage of temporarily storing carbon sources to avoid wasting part of the carbon sources in the aerobic section.
  • the short-cut nitrification/anammox/endogenous denitrification process is a device for treating mid-late stage landfill leachate, which combines three new technologies through PN/ED-SBR and AMOX-UASB two-stage reactors to treat mid-late stage landfill leachate. filtrate.
  • the landfill leachate in the middle and late stage first enters the PN/ED-SBR reactor to operate in anaerobic/aerobic mode.
  • the microorganisms in the anaerobic stage absorb external carbon sources and store them as intracellular carbon sources.
  • Short-range nitrification occurs in the aerobic stage, and the influent Ammonia nitrogen is completely oxidized into nitrite nitrogen; after the reaction, the effluent containing nitrite nitrogen is mixed with the landfill leachate in the middle and late stage, and then enters the AMOX-UASB reactor for anaerobic ammonium oxidation reaction, and the effluent of the reactor is pumped again Into the PN/ED-SBR reactor to operate in anoxic mode, the oxidized nitrogen is removed by endogenous denitrification.
  • the present invention proposes a method for treating middle and late landfill leachate through endogenous denitrification combined with autotrophic denitrification process. Specifically, middle and late landfill leachate first enters PN/ ED-SBR operates in the mode of A/O (anaerobic/aerobic).
  • microorganisms After the raw water enters the anaerobic section, microorganisms absorb the external carbon source in the raw water and store it as intracellular carbon source; after entering the aerobic section, a short-range nitrification reaction occurs, and the reaction
  • the ammonia nitrogen in the mixed liquid of the reactor is completely oxidized into nitrite nitrogen; after the reaction, the effluent containing nitrite nitrogen and the landfill leachate in the middle and late stage are mixed and then entered into the AMOX-UASB reactor for anaerobic ammonium oxidation reaction.
  • the effluent is re-pumped into the PN/ED-SBR reactor to operate in anoxic mode, and its oxidized nitrogen is removed through endogenous denitrification.
  • microorganisms store some organic matter in the cells in time, and after the waste water undergoes anaerobic ammonium oxidation to reduce the total nitrogen load, the internal carbon source is used to denitrify and denitrify in the subsequent anoxic stage. Realize the deep denitrification of landfill leachate in the middle and late stages.
  • a method of endogenous denitrification combined with autotrophic denitrification process for treating mid-late stage landfill leachate comprising a raw water tank (1), short-path nitrification/endogenous denitrification integrated reactor (PN/ED-SBR) (2), Intermediate water tank (3), anaerobic ammonium oxidation reactor (AMOX-UASB) (4);
  • PN/ED-SBR short-path nitrification/endogenous denitrification integrated reactor
  • AMOX-UASB anaerobic ammonium oxidation reactor
  • the raw water tank is provided with a first water inlet (1.1), a first water outlet (1.2), a second water outlet (1.3), a first water inlet peristaltic pump (1.4), and a second water inlet peristaltic pump (1.5);
  • the PN/ED-SBR (2) is equipped with a pH/DO real-time monitoring device (2.1), a third water outlet (2.2), a second water inlet (2.3), an agitator (2.4), and an aeration tray (2.5) , the third water inlet (2.6), the fourth water outlet (2.7);
  • the intermediate water tank (3) is provided with the first intermediate water tank (3.1), the fourth water inlet (3.2), the fifth water outlet (3.3),
  • the first water outlet (1.2) of the raw water tank (1) is connected to the sixth water inlet (4.7) of the AMOX-UASB (4) through the second water inlet peristaltic pump (1.5); the second water outlet (1.3) of the raw water tank (1) Connect with the second water inlet (2.3) of PN/ED-SBR (2) through the first water inlet peristaltic pump (1.4); the fourth water outlet (2.7) of PN/ED-SBR (2) is connected with the first intermediate water tank (3.1) ) is connected to the fourth water inlet (3.2); the fifth water outlet (3.3) of the first intermediate water tank (3.1) is connected to the sixth water inlet (4.7) of AMOX-UASB (4) through the third water inlet peristaltic pump (3.4); The return port (4.5) of AMOX-UASB (4) is connected with the sixth water inlet (4.7) through the return peristaltic pump (4.6); the AMOX-UASB (4) is connected with the fifth water inlet (3.6) of the second intermediate water tank (3.5)
  • the method for treating mid-late stage landfill leachate with endogenous denitrification combined with autotrophic denitrification process includes the following process:
  • the reactor uses A/O (anaerobic/aerobic) Mode operation, that is, the following mode: after the water intake is completed, turn on the agitator (2.4) to enter the anaerobic stage, the endogenous denitrifying bacteria absorb the exogenous organic matter in the raw water and store them in the form of internal carbon source in the cell, stir for 4 hours, and turn off the agitation after the anaerobic end device (2.4); then the aeration pan (2.5) starts to aerate, monitors DO and pH changes through the pH/DO real-time control device (2.1), controls DO between 1.5-2.5mg/L, and the reactor in the nitrification process Stop aeration at the inflection point where the middle pH drops first and then rises, that is, before the "ammonia valley point"; settle for 1 hour to separate the
  • a method for endogenous denitrification combined with autotrophic denitrification process to treat middle and late stage landfill leachate first enters PN/ED-SBR reactor to operate in A/O (anaerobic/aerobic) mode, anaerobic
  • the endogenous denitrifying bacteria in the aerobic section absorb the external carbon source and store it as an internal carbon source in the cell body, and short-range nitrification occurs in the aerobic section, and the ammonia oxidizing bacteria oxidize all the ammonia nitrogen in the influent into nitrite nitrogen; after the reaction is over
  • the effluent containing nitrite nitrogen and the mid-late stage landfill leachate are mixed according to a certain ratio into the AMOX-UASB reactor for anaerobic ammonium oxidation reaction.
  • the reactor produces effluent containing a small amount of nitrate nitrogen and then pumped into PN/ED again -
  • the SBR reactor operates in anoxic mode, and its oxidized nitrogen is removed through endogenous denitrification.
  • the device uses SBR and UASB two-stage reactors to achieve high-efficiency denitrification of landfill leachate in the middle and late stages. This process has higher denitrification stability and more reliable denitrification pathways, and is suitable for deep denitrification treatment of waste water with high ammonia nitrogen such as landfill leachate.
  • the present invention organically combines short-range nitrification, anaerobic ammonium oxidation and endogenous denitrification through PN/ED-SBR and AMOX-UASB two-stage reactors to realize high-efficiency and deep denitrification of landfill leachate in the middle and late stages nitrogen;
  • the endogenous denitrifying bacteria in the anaerobic section temporarily store the external and internal carbon sources in the raw water in the cells, and use the internal carbon sources to perform endogenous denitrification in the anoxic section.
  • the efficient use of raw water carbon source can achieve the effect of mid-term denitrification of landfill leachate;
  • the PN/ED-SBR and AMOX-UASB two-stage reactors make the advantages of the functional bacteria in the respective reactors more obvious, and are easy to cultivate, and the whole process has more reliable stability and controllability ;
  • the total nitrogen load of the system is first reduced by anaerobic ammonium oxidation, and then a small amount of nitrate nitrogen produced by anaerobic ammonium oxidation is removed by endogenous denitrification, so that the nitrogen removal efficiency of the system is higher.
  • the denitrification pathway is more reliable.
  • Figure 1 is a flow chart of a method for endogenous denitrification combined with autotrophic denitrification process to treat mid-late stage landfill leachate
  • a method for endogenous denitrification combined with autotrophic denitrification process to treat mid-late stage landfill leachate including raw water tank (1), short-range nitrification/endogenous denitrification integrated reactor (PN/ED- SBR) (2), intermediate water tank (3), anaerobic ammonium oxidation reactor (AMOX-UASB) (4);
  • PN/ED- SBR short-range nitrification/endogenous denitrification integrated reactor
  • AMOX-UASB anaerobic ammonium oxidation reactor
  • the raw water tank is provided with a first water inlet (1.1), a first water outlet (1.2), a second water outlet (1.3), a first water inlet peristaltic pump (1.4), and a second water inlet peristaltic pump (1.5);
  • the PN/ED-SBR (2) is equipped with a pH/DO real-time monitoring device (2.1), a third water outlet (2.2), a second water inlet (2.3), an agitator (2.4), and an aeration tray (2.5) , the third water inlet (2.6), the fourth water outlet (2.7);
  • the intermediate water tank (3) is provided with the first intermediate water tank (3.1), the fourth water inlet (3.2), the fifth water outlet (3.3),
  • the first water outlet (1.2) of the raw water tank (1) is connected to the sixth water inlet (4.7) of the AMOX-UASB (4) through the second water inlet peristaltic pump (1.5); the second water outlet (1.3) of the raw water tank (1) Connect with the second water inlet (2.3) of PN/ED-SBR (2) through the first water inlet peristaltic pump (1.4); the fourth water outlet (2.7) of PN/ED-SBR (2) is connected with the first intermediate water tank (3.1) ) is connected to the fourth water inlet (3.2); the fifth water outlet (3.3) of the first intermediate water tank (3.1) is connected to the sixth water inlet (4.7) of AMOX-UASB (4) through the third water inlet peristaltic pump (3.4); The return port (4.5) of AMOX-UASB (4) is connected with the sixth water inlet (4.7) through the return peristaltic pump (4.6); the AMOX-UASB (4) is connected with the fifth water inlet (3.6) of the second intermediate water tank (3.5)
  • the reactor uses A/O (anaerobic/aerobic) Mode operation, that is, the following mode: after the water intake is completed, turn on the agitator (2.4) to enter the anaerobic stage, the endogenous denitrifying bacteria absorb the exogenous organic matter in the raw water and store them in the form of internal carbon source in the cell, stir for 4 hours, and turn off the agitation after the anaerobic end device (2.4); then the aeration pan (2.5) starts aeration, monitors DO and pH changes through the pH/DO real-time control device (2.1), controls DO between 1.5-2.5mg/L, and the reactor in the nitrification process Stop aeration at the inflection point where the middle pH drops first and then rises, that is, before the "ammonia valley point"; settle for 1 hour to separate the

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的方法,中晚期垃圾渗滤液首先进入短程硝化/内源反硝化一体化反应器(2)以厌氧/好氧方式运行,厌氧段微生物吸收外碳源储存为细胞内碳源,好氧段发生短程硝化,将进水中的氨氮全部氧化成亚硝态氮;反应结束后将含有亚硝态氮的出水和中晚期垃圾渗滤液混合后进入厌氧氨氧化反应器(4)中进行厌氧氨氧化反应,出水再重新泵入短程硝化/内源反硝化一体化反应器(2)中以缺氧方式运行,其氧化态氮通过内源反硝化被去除掉。还包括一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的装置。

Description

[根据细则37.2由ISA制定的发明名称] 一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的装置及方法 技术领域
本发明属于高氨氮废水生物脱氮技术领域,具体涉及一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液实现高效深度脱氨的方法。
背景技术
近年来,随着我国城市化脚步的提速和居民生活质量的持续提高,城市生活垃圾产生量呈现逐年增加的趋势,传统垃圾的处理方法包括填埋法、焚烧法和堆肥法等。其中,填埋法因其操作方式简单逐渐成为世界上应用最广泛的处理和处置方法。需填埋的垃圾经过初步处理运输到垃圾填埋场,其有机物在厌氧条件下被细菌分解产生水分,加之降水、地表水流入以及自身水分所产生的高污染废水即为垃圾渗滤液,垃圾渗滤液是一种含有高浓度有机物和氨氮的废水,具有水质成分复杂、水量变化大、微生物营养元素比例失调、随填埋年限水质变化波动大等特点,会对环境造成严重污染,使得垃圾渗滤液的处理成为国际范围内尚未解决的难题之一。
传统污水生物脱氮通过硝化将氨氮转化为硝态氮,再通过反硝化将硝态氮转化为氮气从水中逸出。在反硝化阶段,微生物以硝态氮为电子受体,以有机物为电子供体,最终将氨氮转化为氮气,完成脱氮。但对于中晚期垃圾渗滤液而言,其氨氮浓度极高,可生化性有机物较低,且成分复杂,碳氮比较低,按照传统硝化反硝化生物脱氮技术其碳源远远不足,需大量投加外碳源进行脱氮,其结果就是处理中晚期渗滤液脱氮的效率低,运行成本高。
短程硝化、厌氧氨氧化及内源反硝化技术是近年来发展的比较快的新型污水生物处理技术,有很大的应用价值和广泛的发展前景。短程硝化是在好氧条件下,氨氧化细菌将氨氮氧化成亚硝态氮,相较于传统的硝化作用,短程硝化具有节省曝气量、节约能源、剩余污泥少等优势。厌氧氨氧化技术是在缺氧条件下,厌氧氨氧化菌将污水中的氨氮和亚硝态氮同时转化成氮气和少量硝态氮的过程,厌氧氨氧化技术一种自养脱氮技术,具有节省碳源、降低成本、污泥产量少等优点。内源反硝化技术是在厌氧条件下,内源反硝化菌将原水中外碳源以内碳源形式暂时储存在细胞内,在缺氧时利用内碳源进行内源反硝化作用脱氮,其具有暂时储存碳源避免部分碳源在好氧段浪费的优势。
短程硝化/厌氧氨氧化/内源反硝化工艺处理中晚期垃圾渗滤液的装置,通过PN/ED-SBR和AMOX-UASB两段式反应器将三种新技术结合起来,处理中晚期垃圾渗滤液。中晚期垃圾渗滤液首先进入PN/ED-SBR反应器以厌氧/好氧方式运行,厌氧段微生物吸收外碳源储存为细胞内碳源,好氧段发生短程硝化,将进水中的氨氮全部氧化成亚硝态氮;反应结束后将含有亚硝态氮的出水和中晚期垃圾渗滤液混合后进入AMOX-UASB反应器中进行厌氧氨氧化反应,该反应器的出水再重新泵入PN/ED-SBR反应器中以缺氧方式运行,其氧化态氮通过内源反硝化被去除掉。该工艺在进水氨氮、总氮和COD浓度分别为1350±45mg/L,1425±60mg/L和2600±150mg/L的条件下,出水TN<65mg/L,去除率达95.5%,TN去除负荷达到 0.73kg/(m 3·d)。
发明内容
针对中晚期垃圾渗滤液处理效率低、成本高等问题,本发明提出了一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的方法,具体是中晚期垃圾渗滤液首先进入PN/ED-SBR,采用A/O(厌氧/好氧)的方式运行,原水进入厌氧段后微生物吸收原水中外碳源储存为细胞内碳源;进入好氧段后发生短程硝化反应,将反应器混合液中氨氮全部氧化成亚硝态氮;反应结束后将含有亚硝态氮的出水和中晚期垃圾渗滤液混合后进入AMOX-UASB反应器中进行厌氧氨氧化反应,该反应器的出水再重新泵入PN/ED-SBR反应器中以缺氧方式运行,其氧化态氮通过内源反硝化被去除掉。在中晚期垃圾渗滤液有机物有限的情况下,微生物及时将部分有机物储存在细胞内,待废水经过厌氧氨氧化作用降低总氮负荷后,在后续缺氧段利用内碳源反硝化脱氮,实现中晚期垃圾渗滤液的深度脱氮。
本发明是通过以下技术方案来实现的:
一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的方法,包括原水水箱(1)、短程硝化/内源反硝化一体化反应器(PN/ED-SBR)(2)、中间水箱(3)、厌氧氨氧化反应器(AMOX-UASB)(4);
所述原水水箱设有第一进水口(1.1)、第一出水口(1.2)、第二出水口(1.3)、第一进水蠕动泵(1.4)、第二进水蠕动泵(1.5);所述PN/ED-SBR(2)设有pH/DO实时监测装置(2.1)、第三出水口(2.2)、第二进水口(2.3)、搅拌器(2.4)、曝气盘(2.5)、第三进水口(2.6)、第四出水口(2.7);所述中间水箱(3)设有第一中间水箱(3.1)、第四进水口(3.2)、第五出水口(3.3)、第三进水蠕动泵(3.4)、第二中间水箱(3.5)、第五进水口(3.6)、第六出水口(3.7)、第四进水蠕动泵(3.8);所述AMOX-UASB(4)设有排气口(4.1)、第七出水口(4.2)、溢流堰(4.3)、三相分离器(4.4)、回流口(4.5)、回流蠕动泵(4.6)、第六进水口(4.7);
原水水箱(1)第一出水口(1.2)通过第二进水蠕动泵(1.5)与AMOX-UASB(4)第六进水口(4.7)相连;原水水箱(1)第二出水口(1.3)通过第一进水蠕动泵(1.4)与PN/ED-SBR(2)第二进水口(2.3)相连;PN/ED-SBR(2)第四出水口(2.7)与第一中间水箱(3.1)第四进水口(3.2)相连;第一中间水箱(3.1)第五出水口(3.3)通过第三进水蠕动泵(3.4)与AMOX-UASB(4)第六进水口(4.7)相连;AMOX-UASB(4)回流口(4.5)通过回流蠕动泵(4.6)与第六进水口(4.7)相连;AMOX-UASB(4)与第二中间水箱(3.5)第五进水口(3.6)相连;第二中间水箱(3.5)第六出水口(3.7)通过第四进水蠕动泵(3.8)与PN/ED-SBR(2)第三进水口(2.6)相连;
所述一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的方法,包括以下过程:
1)将短程硝化、内源反硝化活性污泥污泥按照质量比为1:2投加至PN/ED-SBR(2)中,将厌氧氨氧化污泥投加至AMOX-UASB(4)中,控制投加污泥浓度,使得投加后的后两个反应器中混合液污泥浓度分别为4000-6000mg/和8000-15000mg/L;
2)打开第一进水蠕动泵(1.4),将原水水箱中的中晚期垃圾渗滤液泵入PN/ED-SBR(2)中,该反应器以A/O(厌氧/好氧)的方式运行,即下述方式:进水完成后打开搅拌器(2.4)进入厌氧阶段,内源反硝化菌吸收原水中外源有机物以内碳源形式储存在细胞体内,搅拌4h,厌氧结束关闭搅拌器(2.4);随后曝气盘(2.5)开始曝气,通过pH/DO实时控制装置(2.1) 监测DO和pH变化,控制DO在1.5-2.5mg/L之间,在硝化过程中反应器中pH先下降后上升的拐点处,即“氨谷点”前停止曝气;沉淀1h使泥水分离,打开第四出水口(2.7),将水排入第一中间水箱(3.1),排水比为70%;
3)分别打开第二进水蠕动泵(1.5)和第三进水蠕动泵(3.4),将原水水箱中的中晚期垃圾渗滤液和中间第一水箱(3.1)含有亚硝氮态的废水同时泵入AMOX-UASB(4)中进行厌氧氨氧化反应;AMOX-UASB(4)的废水由回流口(4.5)通过回流蠕动泵(4.6)进入第六进水口(4.7),回流比为200%;AMOX-UASB(4)的出水进入第二中间水箱(3.5);
4)打开第四进水蠕动泵(3.8),将第二中间水箱(3.5)中硝态氮废水重新泵入PN/ED-SBR(2)后,打开搅拌器(2.4)进入缺氧阶段,进行内源反硝化脱氮,搅拌6h,缺氧结束关闭搅拌器(2.4)沉淀0.5h使泥水分离,打开第三出水口(2.2),将处理完废水排出,排水比为10%。
技术原理
一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的方法,中晚期垃圾渗滤液首先进入PN/ED-SBR反应器以A/O(厌氧/好氧)方式运行,厌氧段内源反硝化菌吸收外碳源以储存为内碳源形式储存在细胞体内,好氧段发生短程硝化,氨氧化菌将进水中的氨氮全部氧化成亚硝态氮;反应结束后将含有亚硝态氮的出水和中晚期垃圾渗滤液按照一定比例混合进入AMOX-UASB反应器中进行厌氧氨氧化反应,该反应器产生含有少量硝态氮的出水再重新泵入PN/ED-SBR反应器中以缺氧方式运行,其氧化态氮通过内源反硝化被去除掉。该装置通过SBR和UASB两级反应器实现中晚期垃圾渗滤液高效脱氮,该工艺脱氮稳定性更高,脱氮途径更可靠,适用于垃圾渗滤液等高氨氮废水的深度脱氮处理。
本发明涉及的一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的方法具有以下优点:
(1)本发明通过PN/ED-SBR和AMOX-UASB两段式反应器将短程硝化、厌氧氨氧化及内源反硝化的有机结合起来,实现了中晚期垃圾渗滤液的高效和深度脱氮;
(2)在PN/ED-SBR中,厌氧段内源反硝化菌将原水中外碳源以内碳源形式暂时储存在细胞内,在缺氧段利用内碳源进行内源反硝化作用脱氮,实现了在0外碳源投加且原水碳源有限条件下,高效利用原水碳源达到中期垃圾渗滤液脱氮的效果;
(3)在PN/ED-SBR中,氨氧化菌的短程硝化作用与传统硝化相比可以节省60%的曝气量,大大降低运行能耗,且在AMOX-UASB中厌氧氨氧化作用不产生温室气体,该工艺更加节能环保;
(4)PN/ED-SBR和AMOX-UASB两段式的反应器,使得各自反应器中的功能菌种优势更加明显的体现出来,且易于培养,整套工艺有更可靠的稳定性和控制性;
(5)在该套工艺中首先通过厌氧氨氧化作用降低系统的总氮负荷,再通过内源反硝化作用去除厌氧氨氧化产生的少量硝态氮,使得系统的脱氮效率更高,脱氮途径更可靠。
附图说明
图1为一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的方法的流程图
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的方法,包括原水水箱(1)、短程硝化/内源反硝化一体化反应器(PN/ED-SBR)(2)、中间水箱(3)、厌氧氨氧化反应器(AMOX-UASB)(4);
所述原水水箱设有第一进水口(1.1)、第一出水口(1.2)、第二出水口(1.3)、第一进水蠕动泵(1.4)、第二进水蠕动泵(1.5);所述PN/ED-SBR(2)设有pH/DO实时监测装置(2.1)、第三出水口(2.2)、第二进水口(2.3)、搅拌器(2.4)、曝气盘(2.5)、第三进水口(2.6)、第四出水口(2.7);所述中间水箱(3)设有第一中间水箱(3.1)、第四进水口(3.2)、第五出水口(3.3)、第三进水蠕动泵(3.4)、第二中间水箱(3.5)、第五进水口(3.6)、第六出水口(3.7)、第四进水蠕动泵(3.8);所述AMOX-UASB(4)设有排气口(4.1)、第七出水口(4.2)、溢流堰(4.3)、三相分离器(4.4)、回流口(4.5)、回流蠕动泵(4.6)、第六进水口(4.7);
原水水箱(1)第一出水口(1.2)通过第二进水蠕动泵(1.5)与AMOX-UASB(4)第六进水口(4.7)相连;原水水箱(1)第二出水口(1.3)通过第一进水蠕动泵(1.4)与PN/ED-SBR(2)第二进水口(2.3)相连;PN/ED-SBR(2)第四出水口(2.7)与第一中间水箱(3.1)第四进水口(3.2)相连;第一中间水箱(3.1)第五出水口(3.3)通过第三进水蠕动泵(3.4)与AMOX-UASB(4)第六进水口(4.7)相连;AMOX-UASB(4)回流口(4.5)通过回流蠕动泵(4.6)与第六进水口(4.7)相连;AMOX-UASB(4)与第二中间水箱(3.5)第五进水口(3.6)相连;第二中间水箱(3.5)第六出水口(3.7)通过第四进水蠕动泵(3.8)与PN/ED-SBR(2)第三进水口(2.6)相连;
具体操作过程如下:
1)将短程硝化、内源反硝化活性污泥污泥按照质量比为1:2投加至PN/ED-SBR(2)中,将厌氧氨氧化污泥投加至AMOX-UASB(4)中,控制投加污泥浓度,使得投加后的后两个反应器中混合液污泥浓度分别为4000-6000mg/和8000-15000mg/L;
2)打开第一进水蠕动泵(1.4),将原水水箱中的中晚期垃圾渗滤液泵入PN/ED-SBR(2)中,该反应器以A/O(厌氧/好氧)的方式运行,即下述方式:进水完成后打开搅拌器(2.4)进入厌氧阶段,内源反硝化菌吸收原水中外源有机物以内碳源形式储存在细胞体内,搅拌4h,厌氧结束关闭搅拌器(2.4);随后曝气盘(2.5)开始曝气,通过pH/DO实时控制装置(2.1)监测DO和pH变化,控制DO在1.5-2.5mg/L之间,在硝化过程中反应器中pH先下降后上升的拐点处,即“氨谷点”前停止曝气;沉淀1h使泥水分离,打开第四出水口(2.7),将水排入第一中间水箱(3.1),排水比为70%;
3)分别打开第二进水蠕动泵(1.5)和第三进水蠕动泵(3.4),将原水水箱中的中晚期垃圾渗滤液和中间第一水箱(3.1)含有亚硝氮态的废水同时泵入AMOX-UASB(4)中进行厌氧氨氧化反应;AMOX-UASB(4)的废水由回流口(4.5)通过回流蠕动泵(4.6)进入第六进水口(4.7),回流比为200%;AMOX-UASB(4)的出水进入第二中间水箱(3.5);
4)打开第四进水蠕动泵(3.8),将第二中间水箱(3.5)中硝态氮废水重新泵入PN/ED-SBR(2)后,打开搅拌器(2.4)进入缺氧阶段,进行内源反硝化脱氮,搅拌6h,缺氧结束关闭搅拌器(2.4)沉淀0.5h使泥水分离,打开第三出水口(2.2),将处理完废水排出,排水比为10%。
连续试验结果表明:
本工艺稳定运行后,在进水氨氮、总氮和COD浓度分别为1350±45mg/L,1425±60mg/L和2600±150mg/L的条件下,出水TN<65mg/L,去除率达95.5%,TN去除负荷达到0.73kg/(m 3·d)。

Claims (2)

  1. 一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的装置,其特征在于,所用装置包括原水水箱(1)、短程硝化/内源反硝化一体化反应器(PN/ED-SBR)(2)、中间水箱(3)、厌氧氨氧化反应器(AMOX-UASB)(4);
    所述原水水箱设有第一进水口(1.1)、第一出水口(1.2)、第二出水口(1.3)、第一进水蠕动泵(1.4)、第二进水蠕动泵(1.5);所述PN/ED-SBR(2)设有pH/DO实时监测装置(2.1)、第三出水口(2.2)、第二进水口(2.3)、搅拌器(2.4)、曝气盘(2.5)、第三进水口(2.6)、第四出水口(2.7);所述中间水箱(3)设有第一中间水箱(3.1)、第四进水口(3.2)、第五出水口(3.3)、第三进水蠕动泵(3.4)、第二中间水箱(3.5)、第五进水口(3.6)、第六出水口(3.7)、第四进水蠕动泵(3.8);所述AMOX-UASB(4)设有排气口(4.1)、第七出水口(4.2)、溢流堰(4.3)、三相分离器(4.4)、回流口(4.5)、回流蠕动泵(4.6)、第六进水口(4.7);
    原水水箱(1)第一出水口(1.2)通过第二进水蠕动泵(1.5)与AMOX-UASB(4)第六进水口(4.7)相连;原水水箱(1)第二出水口(1.3)通过第一进水蠕动泵(1.4)与PN/ED-SBR(2)第二进水口(2.3)相连;PN/ED-SBR(2)第四出水口(2.7)与第一中间水箱(3.1)第四进水口(3.2)相连;第一中间水箱(3.1)第五出水口(3.3)通过第三进水蠕动泵(3.4)与AMOX-UASB(4)第六进水口(4.7)相连;AMOX-UASB(4)回流口(4.5)通过回流蠕动泵(4.6)与第六进水口(4.7)相连;AMOX-UASB(4)与第二中间水箱(3.5)第五进水口(3.6)相连;第二中间水箱(3.5)第六出水口(3.7)通过第四进水蠕动泵(3.8)与PN/ED-SBR(2)第三进水口(2.6)相连。
  2. 利用权利要求1所述装置处理中晚期垃圾渗滤液的方法,其特征在于,包括以下过程:
    1)将短程硝化、内源反硝化活性污泥污泥按照质量比为1:2投加至短程硝化/内源反硝化一体化反应器(PN/ED-SBR)(2)中,将厌氧氨氧化污泥投加至厌氧氨氧化反应器(AMOX-UASB)(4)中,控制投加污泥浓度,使得投加后的后两个反应器中混合液污泥浓度分别为4000-6000mg/和8000-15000mg/L;
    2)打开第一进水蠕动泵(1.4),将原水水箱中的中晚期垃圾渗滤液泵入PN/ED-SBR(2)中,该反应器以A/O(厌氧/好氧)的方式运行,即下述方式:进水完成后打开搅拌器(2.4)进入厌氧阶段,内源反硝化菌吸收原水中外源有机物以内碳源形式储存在细胞体内,搅拌4h,厌氧结束关闭搅拌器(2.4);随后曝气盘(2.5)开始曝气,通过pH/DO实时控制装置(2.1)监测DO和pH变化,控制DO在1.5-2.5mg/L之间,在硝化过程中反应器中pH先下降后上升的拐点处,即“氨谷点”前停止曝气;沉淀1h使泥水分离,打开第四出水口(2.7),将水排入第一中间水箱(3.1),排水比为70%;
    3)分别打开第二进水蠕动泵(1.5)和第三进水蠕动泵(3.4),将原水水箱中的中晚期垃圾渗滤液和中间第一水箱(3.1)含有亚硝氮态的废水同时泵入AMOX-UASB(4)中进行厌氧氨氧化反应;AMOX-UASB(4)的废水由回流口(4.5)通过回流蠕动泵(4.6)进入第六进水口(4.7),回流比为200%;AMOX-UASB(4)的出水进入第二中间水箱(3.5);
    4)打开第四进水蠕动泵(3.8),将第二中间水箱(3.5)中硝态氮废水重新泵入PN/ED-SBR(2)后,打开搅拌器(2.4)进入缺氧阶段,进行内源反硝化脱氮,搅拌6h,缺氧结束关闭搅拌器(2.4)沉淀0.5h使泥水分离,打开第三出水口(2.2),将处理完废水排出,排水比为10%。
PCT/CN2021/127401 2021-05-20 2021-10-29 一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的装置及方法 WO2022242040A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/919,919 US20240208846A1 (en) 2021-05-20 2021-10-29 Method for treating middle and mature landfill leachate by endogenous denitrification combined autotrophic nitrogen removal process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110548792.6 2021-05-20
CN202110548792.6A CN113233597B (zh) 2021-05-20 2021-05-20 一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的方法

Publications (1)

Publication Number Publication Date
WO2022242040A1 true WO2022242040A1 (zh) 2022-11-24

Family

ID=77137992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127401 WO2022242040A1 (zh) 2021-05-20 2021-10-29 一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的装置及方法

Country Status (3)

Country Link
US (1) US20240208846A1 (zh)
CN (1) CN113233597B (zh)
WO (1) WO2022242040A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116081861A (zh) * 2022-12-09 2023-05-09 天津市政工程设计研究总院有限公司 一种垃圾渗滤液的柔性处理方法
CN116199339A (zh) * 2023-03-30 2023-06-02 交通运输部科学研究院 一种基于厌氧氨氧化的分散式污水低碳处理装置和方法
CN116218640A (zh) * 2023-02-28 2023-06-06 乐山师范学院 一种将浓缩污泥驯化为Feammox菌群的装置
CN116282698A (zh) * 2023-03-06 2023-06-23 武汉天源环保股份有限公司 一种污水处理系统及方法
CN116874077A (zh) * 2023-08-25 2023-10-13 广东清研环境科技有限公司 一体化短程硝化-厌氧氨氧化反应系统及反应工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113233597B (zh) * 2021-05-20 2022-09-20 北京工业大学 一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的方法
CN114380389B (zh) * 2022-01-11 2023-08-11 中国建筑设计研究院有限公司 一种超低能耗处理农村污水的装置与方法
CN114873851B (zh) * 2022-05-11 2023-07-04 桂润环境科技股份有限公司 一种高盐高氨氮废水自养脱氮与全量化处理装置和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515350A (zh) * 2011-12-09 2012-06-27 北京工业大学 垃圾渗滤液sbr与厌氧氨氧化组合脱氮装置与方法
CN202492432U (zh) * 2011-12-09 2012-10-17 北京工业大学 垃圾渗滤液sbr与厌氧氨氧化组合脱氮装置
CN104961305A (zh) * 2015-07-22 2015-10-07 浙江大学 一种畜禽养殖废水厌氧发酵液的处理方法
KR20170040900A (ko) * 2015-10-06 2017-04-14 이동주 생물학적 폐수 처리 시스템에서의 질소 제거 공정
CN113233597A (zh) * 2021-05-20 2021-08-10 北京工业大学 一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109721156B (zh) * 2019-01-21 2021-10-22 北京工业大学 间歇曝气一体化/短程反硝化-厌氧氨氧化处理晚期垃圾渗滤液的装置与方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515350A (zh) * 2011-12-09 2012-06-27 北京工业大学 垃圾渗滤液sbr与厌氧氨氧化组合脱氮装置与方法
CN202492432U (zh) * 2011-12-09 2012-10-17 北京工业大学 垃圾渗滤液sbr与厌氧氨氧化组合脱氮装置
CN104961305A (zh) * 2015-07-22 2015-10-07 浙江大学 一种畜禽养殖废水厌氧发酵液的处理方法
KR20170040900A (ko) * 2015-10-06 2017-04-14 이동주 생물학적 폐수 처리 시스템에서의 질소 제거 공정
CN113233597A (zh) * 2021-05-20 2021-08-10 北京工业大学 一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116081861A (zh) * 2022-12-09 2023-05-09 天津市政工程设计研究总院有限公司 一种垃圾渗滤液的柔性处理方法
CN116081861B (zh) * 2022-12-09 2024-05-07 天津市政工程设计研究总院有限公司 一种垃圾渗滤液的柔性处理方法
CN116218640A (zh) * 2023-02-28 2023-06-06 乐山师范学院 一种将浓缩污泥驯化为Feammox菌群的装置
CN116282698A (zh) * 2023-03-06 2023-06-23 武汉天源环保股份有限公司 一种污水处理系统及方法
CN116199339A (zh) * 2023-03-30 2023-06-02 交通运输部科学研究院 一种基于厌氧氨氧化的分散式污水低碳处理装置和方法
CN116874077A (zh) * 2023-08-25 2023-10-13 广东清研环境科技有限公司 一体化短程硝化-厌氧氨氧化反应系统及反应工艺
CN116874077B (zh) * 2023-08-25 2024-03-22 广东清研环境科技有限公司 一体化短程硝化-厌氧氨氧化反应系统及反应工艺

Also Published As

Publication number Publication date
US20240208846A1 (en) 2024-06-27
CN113233597B (zh) 2022-09-20
CN113233597A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2022242040A1 (zh) 一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的装置及方法
WO2022062616A1 (zh) 一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置
CN109721156B (zh) 间歇曝气一体化/短程反硝化-厌氧氨氧化处理晚期垃圾渗滤液的装置与方法
CN103833185B (zh) 基于能量回收的垃圾渗滤液自养脱氮方法
CN108439595A (zh) 利用污泥发酵物实现污水部分短程硝化-Anammox/反硝化的方法
CN104058551B (zh) 一种节能高效的城市污水自养脱氮生物处理方法及装置
CN113800636B (zh) 短程硝化/厌氧氨氧化-发酵耦合短程反硝化/厌氧氨氧化处理污泥消化液的方法和装置
CN113880251B (zh) 利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法和装置
CN109574218B (zh) 短程硝化-发酵/反硝化-厌氧氨氧化工艺处理晚期垃圾渗滤液的装置与方法
CN108545830A (zh) 一种利用污泥发酵强化连续流城市污水部分短程硝化厌氧氨氧化的工艺
CN109721157B (zh) 短程硝化/厌氧氨氧化/短程反硝化-厌氧氨氧化工艺处理晚期垃圾渗滤液的装置与方法
CN102583883B (zh) 分段并联厌氧氨氧化处理城市污水的工艺和方法
CN107512774A (zh) 前置短程反硝化‑厌氧氨氧化处理低c/n城市污水的装置与方法
CN109205954A (zh) 微电解催化氧化、生化处理高浓度废水工艺
CN113233596A (zh) 连续流短程硝化/内源短程反硝化/厌氧氨氧化一体化工艺处理中晚期垃圾渗滤液的方法
CN112479362A (zh) 一种污泥发酵组合短程反硝化厌氧氨氧化处理城市污水的装置和方法
CN108862581A (zh) 一种ao生物膜+污泥发酵耦合反硝化实现污水深度脱氮同步污泥减量的装置和方法
CN101186387A (zh) 一种提高实际污水在厌氧-低氧条件下生物同时除磷脱氮效果的方法
CN107840444B (zh) 一种垃圾渗沥液的处理装置
CN112250179B (zh) 通过污泥发酵物在污水处理连续流工艺中实现短程硝化耦合厌氧氨氧化反硝化的装置与方法
CN107973404A (zh) 氧化还原介体调控有机废物定向发酵产乙酸耦合低温反硝化脱氮的方法
CN115745178B (zh) 一种复合颗粒污泥系统实现同步好氧缺氧脱氮除磷的方法
CN204111523U (zh) 垃圾渗滤液短程硝化反硝化脱氮专用装置
CN114772733B (zh) 一种基于厨余垃圾消化液作为外碳源的晚期垃圾渗滤液厌氧氨氧化深度脱氮装置与方法
CN113415884B (zh) 一种充分利用内碳源同时处理生活污水和硝酸盐废水脱氮除磷的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17919919

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18/01/2024)