CN113880251B - 利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法和装置 - Google Patents

利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法和装置 Download PDF

Info

Publication number
CN113880251B
CN113880251B CN202111126400.3A CN202111126400A CN113880251B CN 113880251 B CN113880251 B CN 113880251B CN 202111126400 A CN202111126400 A CN 202111126400A CN 113880251 B CN113880251 B CN 113880251B
Authority
CN
China
Prior art keywords
short
sludge
reactor
water
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111126400.3A
Other languages
English (en)
Other versions
CN113880251A (zh
Inventor
彭永臻
郭静雯
李夕耀
宫小斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202111126400.3A priority Critical patent/CN113880251B/zh
Publication of CN113880251A publication Critical patent/CN113880251A/zh
Application granted granted Critical
Publication of CN113880251B publication Critical patent/CN113880251B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/307Nitrification and denitrification treatment characterised by direct conversion of nitrite to molecular nitrogen, e.g. by using the Anammox process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/16Total nitrogen (tkN-N)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/06Sludge reduction, e.g. by lysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations

Abstract

利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法和装置,属于高氨氮废水生化处理及污泥减量领域。高氨氮废水进入短程硝化/厌氧氨氧化反应器中,在预缺氧段,反硝化菌将硝态氮反硝化生成氮气;在好氧段通过部分短程硝化作用将氨氮部分转化为亚硝态氮;在缺氧段,厌氧氨氧化菌利用剩余氨氮及亚硝态氮反应产生氮气完成脱氮。剩余污泥在厌氧发酵产生含有挥发性脂肪酸的发酵物,将发酵物离心后取上清液置于发酵液储存箱,随后中间水箱中的硝态氮废水及发酵液储存箱中的发酵液进行短程反硝化产生亚硝态氮,厌氧氨氧化菌利用亚硝态氮和发酵液中的氨氮进一步脱氮。本方法在节省曝气及碳源的同时实现了污水深度脱氮与污泥减量化。

Description

利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法 和装置
技术领域
本发明涉及一种利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法和装置,属于高氨氮废水生化处理及污泥减量技术领域。首先通过短程硝化/厌氧氨氧化脱氮,再利用污泥中温碱性发酵罐中产生的挥发性脂肪酸作为短程反硝化/厌氧氨氧化系统的碳源进行深度脱氮的同时实现了污泥减量化。本技术适用于高氨氮废水深度处理及污泥减量化处理。
背景技术
近年来,我国经济的飞速发展和工业化程度的提高加剧了受纳水体的污染,我国水资源短缺的形式日益严峻,为了贯彻可持续发展战略并缓解水污染问题,我国对传统污水处理厂提出了更为严格的排放标准。我国多数高氨氮废水存在碳源严重不足的问题,无法满足其脱氮需求,现有污水处理厂常额外投加甲醇、乙醇、葡萄糖及乙酸钠等碳源来满足脱氮需求实现达标排放,而这些方式不仅增加了吨水处理成本,加剧了温室气体的排放,还增加了剩余污泥的产量。
厌氧氨氧化作为一种自养脱氮技术应运而生,利用氨氮和亚硝态氮在缺氧环境中直接反应生成氮气。该技术相较于传统硝化反硝化具有节省60%曝气量、节省100%碳源和减少90%剩余污泥产量的优势,但该技术需要稳定的亚硝态氮来源。稳定的亚硝态氮可以由短程硝化和短程反硝化来提供,两者各有优劣。
另外,由于长期的“重水轻泥”,导致我国污泥处置存在污泥产量大且增长迅速、污泥处理率较低以及污泥资源化利用率低的问题,传统污泥处理过程多为填埋和焚烧,其费用几乎占据污水厂建设和运行费用的一半,且常因处理不当而对环境造成更加严重的污染。
因此,利用短程硝化/厌氧氨氧化串联短程反硝化/厌氧氨氧化满足高氨氮废水的脱氮需求,再利用污泥中温碱性发酵罐中产生的挥发性脂肪酸作为外加碳源,实现系统深度脱氮的同时又实现了污泥减量化及资源化。
发明内容
针对现有技术的不足,本发明的目的是提供一种实现高氨氮废水深度脱氮的同时进行污泥减量化及资源化利用的装置和方法。高氨氮废水进入短程硝化/厌氧氨氧化反应器中,在预缺氧段,反硝化菌利用进水中的有机物将上一阶段剩余的硝态氮反硝化生成氮气;在好氧段通过部分短程硝化作用将氨氮部分转化为亚硝态氮;在缺氧段,厌氧氨氧化菌利用剩余氨氮及亚硝态氮反应产生氮气完成脱氮,出水进入中间水箱。生物脱氮系统排出的剩余污泥在污泥中温碱性厌氧发酵罐中厌氧发酵产生含有挥发性脂肪酸的发酵物,将发酵物离心后取上清液置于发酵液储存箱,随后中间水箱中的硝态氮废水及发酵液储存箱中的发酵液一同进入短程反硝化/厌氧氨氧化反应器,利用发酵液提供的碳源进行短程反硝化产生亚硝态氮,厌氧氨氧化菌利用亚硝态氮和发酵液中的氨氮进一步脱氮,从而在节省曝气能耗及碳源的同时实现了高氨氮废水的深度脱氮与污泥减量化。
本发明是通过以下技术方案来实现的:
一种利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量装置,其特征在于,包括:进水水箱(1)、短程硝化/厌氧氨氧化反应器(2)、中间水箱(3)、短程反硝化/厌氧氨氧化反应器(4)、出水水箱(5)、污泥中温碱性厌氧发酵罐(6)、发酵液储存箱(7);
进水水箱(1)设有进水水箱出水口(1.1);短程硝化/厌氧氨氧化反应器(2)设有第一进水蠕动泵(2.1)、第一进水口(2.2)、曝气泵(2.3)、气体流量计(2.4)、第一pH/DO实时监测装置(2.5)、第一pH探头(2.6)、第一DO探头(2.7)、第一搅拌器(2.8)、曝气盘(2.9)、第一出水口(2.10)和第一排水阀(2.11);中间水箱(3)设有中间水箱进水口(3.1)和中间水箱出水口(3.2);短程反硝化/厌氧氨氧化反应器(4)设有第二进水蠕动泵(4.1)、第二进水口(4.2)、第二pH/DO实时检测装置(4.3)、第二pH探头(4.4)、第二DO探头(4.5)、第二搅拌器(4.6)、进发酵液口(4.7)、进发酵液蠕动泵(4.8)、第二出水口(4.9)和第二排水阀(4.10);出水水箱(5)设有出水水箱进水口(5.1);污泥中温碱性厌氧发酵罐(6)完全密封且缠有加热带通过温度控制装置(6.7)控制温度,外附保温层,并设有排泥口(6.1)、第三pH/DO实时监测装置(6.2)、第三pH探头(6.3)、第三DO探头(6.4)、第三搅拌器(6.5)、进泥加药口(6.6)和温度控制装置(6.7);
进水水箱(1)的出水口(1.1)通过第一进水蠕动泵(2.1)与短程硝化/厌氧氨氧化反应器(2)的第一进水口(2.2)相连,空气依次通过曝气泵(2.3)、气体流量计(2.4)和曝气盘(2.9)打入短程硝化/厌氧氨氧化反应器(2),并通过第一pH/DO实时监测装置(2.5)监测其pH和DO值;短程硝化/厌氧氨氧化反应器(2)的第一出水口(2.10)通过第一排水阀(2.11)与中间水箱(3)的进水口(3.1)相连;中间水箱(3)的排水口(3.2)通过第二进水蠕动泵(4.1)与短程反硝化/厌氧氨氧化反应器(4)的第二进水口(4.2)相连;污泥中温碱性发酵罐(6)的排泥口(6.1)与发酵液储存箱(7)相连;发酵液储存箱(7)通过进发酵液蠕动泵(4.8)与短程反硝化/厌氧氨氧化反应器(4)的进发酵液口(4.7)相连;短程反硝化/厌氧氨氧化反应器(4)的第二出水口(4.9)通过第二排水阀(4.10)与出水水箱(5)的进水口(5.1)相连。
本发明同时提供一种利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法,包括以下步骤:
1)系统的启动
(1)污泥中温碱性厌氧发酵罐的启动:污泥碱性厌氧发酵反应器为半连续反应器,接种污泥为城市污水处理厂二沉池剩余污泥,污泥浓度为10000-12000mg/L,污泥停留时间为6-8天,利用温度控制装置控制温度为35±1℃,通过pH在线监测装置控制pH在10±0.2;根据反应器的污泥停留时间每天排放发酵混合物并加入等体积新鲜剩余污泥至污泥中温碱性厌氧发酵罐;
(2)短程硝化/厌氧氨氧化反应器的启动:短程硝化/厌氧氨氧化反应器为序批式反应器,接种污泥为短程硝化活性污泥,控制接种后反应器内的污泥浓度为3000-5000mg/L,并通过排泥控制其污泥龄为25-30d;将进水水箱中COD浓度为120-200mg/L,氨氮浓度为200-400mg/L的高氨氮废水泵入短程硝化/厌氧氨氧化反应器中,通过DO实时监测装置控制DO维持在1-1.5mg/L,反应器的排水比为0.5-0.7,每天运行4-6个周期,每个周期包括进水、曝气搅拌、沉淀、排水和闲置,在上述条件下运行反应器,当其出水中氨氮与亚硝态氮的质量浓度比为1-1.32且持续15天以上时,部分短程硝化得以实现;随后在短程硝化反应器中接种厌氧氨氧化活性污泥,通过DO实时监测装置控制好氧段DO为1-1.5mg/L,反应器的排水比为0.5-0.7,每天运行3-4个周期,每个周期包括进水、缺氧搅拌、好氧搅拌、缺氧搅拌、沉淀、排水和闲置,在上述条件下运行反应器,当其出水中氨氮与亚硝态氮浓度均<1mg/L且稳定运行15天以上时,认为短程硝化/厌氧氨氧化反应器启动成功。
(3)短程反硝化/厌氧氨氧化反应器的启动:短程反硝化/厌氧氨氧化反应器为序批式反应器,接种污泥为短程反硝化/厌氧氨氧化活性污泥,控制接种后反应器内的污泥浓度为3000-5000mg/L,并通过排泥控制其污泥龄为25-30d。启动时,进水采用COD浓度为45-75mg/L、硝态氮浓度为15-25mg/L的配水,控制反应器缺氧段DO<0.1mg/L,反应器的排水比为0.5-0.7,每天运行5-6个周期,每个周期包括进水、缺氧搅拌、沉淀、排水和闲置,在上述条件下运行反应器,当其出水中亚硝态氮积累率>90%且持续维持15天以上时,认为短程反硝化反应器启动成功;随后,在短程反硝化反应器中接种厌氧氨氧化活性污泥,将中间水箱中的短程硝化/厌氧氨氧化反应器的出水及发酵液储存箱中的发酵液泵入反应器内,通过DO实时监测装置控制缺氧段DO<0.1mg/L,反应器的排水比为0.5-0.7,每天运行3-4个周期,每个周期包括进水、缺氧搅拌、沉淀、排水和闲置,在上述条件下运行反应器,当其TN去除率高于90%且持续维持15天以上时,认为短程反硝化/厌氧氨氧化反应器启动成功。
2)系统的运行
(1)打开第一进水蠕动泵,将进水水箱中的高氨氮废水泵入短程硝化/厌氧氨氧化反应器中,该反应器以A/O/A(缺氧/好氧/缺氧)的方式运行,进水完毕后,第一个缺氧段短程硝化/厌氧氨氧化反应器中的搅拌器开启,缺氧搅拌30min,利用原水中的有机物反硝化去除上周期剩余的硝态氮。第一个缺氧段结束后,曝气泵开启向短程硝化/厌氧氨氧化反应器曝气,将原水中的氨氮部分转换为亚硝态氮,通过调节气体流量计控制DO在1-1.5mg/L,通过pH/DO在线监测装置监测pH及DO值,好氧搅拌时间为120-180min,曝气结束后,短程硝化/厌氧氨氧化反应器中的曝气泵关闭,缺氧搅拌180-210min,厌氧氨氧化利用剩余氨氮及亚硝态氮进行自养脱氮,随后沉淀30min使泥水分离,打开第一排水阀,排水进入中间水箱,排水比为70%,每天运行3个周期,其余时间闲置。
(2)将每日从发酵罐中排出的发酵混合物放入离心机中,离心得到上清液后置于发酵液储存箱中,打开第二进水蠕动泵,将中间水箱中的污水泵入短程反硝化/厌氧氨氧化反应器,同时开启进发酵液蠕动泵投加污泥发酵液,控制短程反硝化/厌氧氨氧化反应器的进水C/NOx-N质量比为3-6,进水完毕打开第二搅拌器开始搅拌,缺氧搅拌180-240min,进行缺氧段的短程反硝化厌氧氨氧化反应,反硝化菌利用发酵液作为碳源进行短程反硝化生成亚硝态氮,随后厌氧氨氧化菌利用亚硝态氮和发酵液中的氨氮进行自养脱氮,反应结束后,沉淀30min使泥水分离,打开第二排水阀,排水进入出水水箱,排水比为70%,每天运行3个周期,其余时间闲置。
本发明的技术原理如下:
高氨氮废水首先进入短程硝化/厌氧氨氧化反应器,该反应器以A/O/A(缺氧/好氧/缺氧)的方式运行,反硝化菌利用原水中的有机物反硝化去除上周期剩余的亚硝态氮和硝态氮,接着通过控制曝气量和曝气时间实现废水的部分短程硝化,随后缺氧搅拌,厌氧氨氧化利用剩余的氨氮及亚硝态氮进行自养脱氮,出水排入中间水箱,中间水箱中的硝态氮废水和污泥中温碱性厌氧发酵产生的发酵物上清液一同进入短程反硝化/厌氧氨氧化反应器,利用发酵液提供的碳源进行短程反硝化产生亚硝态氮,厌氧氨氧化菌利用亚硝态氮和发酵液中的氨氮进一步自养深度脱氮,同时使得剩余污泥减量化和资源化利用。本发明的关键在于通过对短程硝化/厌氧氨氧化反应器中pH和DO的调控,使得亚硝积累,并控制氨氮与亚硝态氮的比例为1-1.32,确保系统中厌氧氨氧化菌正常生长并能保持较高的活性。另外控制污泥发酵液的投加量,使得短程反硝化/厌氧氨氧化反应器中氨氮的含量及C/NOx-N的比例在适宜范围,从而确保反应体系中反硝化菌和厌氧氨氧化菌的和谐共生。
与现有技术相比,本发明具有以下优点:
(1)本发明通过将短程硝化、短程反硝化、厌氧氨氧化和污泥中温碱性发酵有机结合,满足了高氨氮废水的脱氮需求,达到了节省曝气能耗、节省碳源投加量、深度脱氮及污泥减量化和资源化利用的目的。
(2)在短程硝化/厌氧氨氧化反应器中,短程硝化作用可以节省60%的曝气量,厌氧氨氧化自养脱氮过程中无N2O形成,减少了温室气体的排放。
(3)短程反硝化/厌氧氨氧化作为后续工艺,即便短程硝化/厌氧氨氧化反应器效果不稳定,仍可实现总氮的高效去除,使得整个串联系统可以有效的应对氮负荷冲击。
附图说明
图1是一种利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的装置的结构示意图;如图1:1-进水水箱;2-短程硝化/厌氧氨氧化反应器;3-中间水箱;4-短程反硝化/厌氧氨氧化反应器;5-出水水箱;6-污泥中温碱性厌氧发酵罐;7-发酵液储存箱;1.1-进水水箱出水口;2.1-第一进水蠕动泵;2.2-第一进水口;2.3-曝气泵;2.4-气体流量计;2.5-第一pH/DO实时监测装置;2.6-第一pH探头;2.7-第一DO探头;2.8-第一搅拌器;2.9-曝气盘;2.10-第一出水口;2.11-第一排水阀;3.1-中间水箱进水口;3.2-中间水箱出水口;4.1-第二进水蠕动泵;4.2-第二进水口;4.3-第二pH/DO实时检测装置;4.4-第二pH探头;4.5-第二DO探头;4.6-第二搅拌器;4.7-进发酵液口;4.8-进发酵液蠕动泵;4.9-第二出水口;4.10-第二排水阀;5.1-出水水箱进水口;6.1-排泥口;6.2-第三pH/DO实时监测装置;6.3-第三pH探头;6.4-第三DO探头;6.5-第三搅拌器;6.6-进泥加药口;6.7-温度控制装置;7.1-出发酵液口。
图2为短程硝化/厌氧氨氧化反应器运行时序图;
图3为短程反硝化/厌氧氨氧化运行时序图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,一种利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量装置,包括进水水箱(1)、短程硝化/厌氧氨氧化反应器(2)、中间水箱(3)、短程反硝化/厌氧氨氧化反应器(4)、出水水箱(5)、污泥中温碱性厌氧发酵罐(6)、发酵液储存箱(7);
进水水箱(1)设有进水水箱出水口(1.1);短程硝化/厌氧氨氧化反应器(2)设有第一进水蠕动泵(2.1)、第一进水口(2.2)、曝气泵(2.3)、气体流量计(2.4)、第一pH/DO实时监测装置(2.5)、第一pH探头(2.6)、第一DO探头(2.7)、第一搅拌器(2.8)、曝气盘(2.9)、第一出水口(2.10)和第一排水阀(2.11);中间水箱(3)设有中间水箱进水口(3.1)和中间水箱出水口(3.2);短程反硝化/厌氧氨氧化反应器(4)设有第二进水蠕动泵(4.1)、第二进水口(4.2)、第二pH/DO实时检测装置(4.3)、第二pH探头(4.4)、第二DO探头(4.5)、第二搅拌器(4.6)、进发酵液口(4.7)、进发酵液蠕动泵(4.8)、第二出水口(4.9)和第二排水阀(4.10);出水水箱(5)设有出水水箱进水口(5.1);污泥中温碱性厌氧发酵罐(6)完全密封且缠有加热带通过温度控制装置(6.7)控制温度,外附保温层,并设有排泥口(6.1)、第三pH/DO实时监测装置(6.2)、第三pH探头(6.3)、第三DO探头(6.4)、第三搅拌器(6.5)、进泥加药口(6.6)和温度控制装置(6.7);
进水水箱(1)的出水口(1.1)通过第一进水蠕动泵(2.1)与短程硝化/厌氧氨氧化反应器(2)的第一进水口(2.2)相连,空气依次通过曝气泵(2.3)、气体流量计(2.4)和曝气盘(2.9)打入短程硝化/厌氧氨氧化反应器(2),并通过第一pH/DO实时监测装置(2.5)监测其pH和DO值;短程硝化/厌氧氨氧化反应器(2)的第一出水口(2.10)通过第一排水阀(2.11)与中间水箱(3)的进水口(3.1)相连;中间水箱(3)的排水口(3.2)通过第二进水蠕动泵(4.1)与短程反硝化/厌氧氨氧化反应器(4)的第二进水口(4.2)相连;污泥中温碱性发酵罐(6)的排泥口(6.1)与发酵液储存箱(7)相连;发酵液储存箱(7)通过进发酵液蠕动泵(4.8)与短程反硝化/厌氧氨氧化反应器(4)的进发酵液口(4.7)相连;短程反硝化/厌氧氨氧化反应器(4)的第二出水口(4.9)通过第二排水阀(4.10)与出水水箱(5)的进水口(5.1)相连。
具体实验用水采用北京工业大学家属区生活污水外加碳酸氢铵作为原水,具体水质如下:pH为6.5-7.5,COD浓度为120-200mg/L,氨氮浓度为200-400mg/L,亚硝态氮及硝态氮均在检测限以下,COD/N比为0.3-1。试验每天所加污泥为北京市高碑店再生水厂回流污泥(SS为8000-10000mg/L)。短程硝化/厌氧氨氧化反应器及短程反硝化/厌氧氨氧化所用SBR的有效容积为10L,排水比为0.7,每天运行3个周期。污泥中温碱性厌氧发酵罐所用SBR的有效容积为10L,污泥停留时间为6-8d。
具体运行过程如下:
1)系统的启动
(1)污泥中温碱性厌氧发酵罐的启动:污泥碱性厌氧发酵反应器为半连续反应器,接种污泥为城市污水处理厂二沉池剩余污泥,污泥浓度为10000-12000mg/L,污泥停留时间为6-8天,利用温度控制装置控制温度为35±1℃,通过pH在线监测装置控制pH在10±0.2;根据反应器的污泥停留时间每天排放发酵混合物并加入等体积新鲜剩余污泥至污泥中温碱性厌氧发酵罐;
图2为短程硝化/厌氧氨氧化反应器运行时序图;
图3为短程反硝化/厌氧氨氧化运行时序图;
(2)短程硝化/厌氧氨氧化反应器的启动:短程硝化/厌氧氨氧化反应器为序批式反应器,接种污泥为短程硝化活性污泥,控制接种后反应器内的污泥浓度为3000-5000mg/L,并通过排泥控制其污泥龄为25-30d;将进水水箱中COD浓度为120-200mg/L,氨氮浓度为200-400mg/L的高氨氮废水泵入短程硝化/厌氧氨氧化反应器中,通过DO实时监测装置控制DO维持在1-1.5mg/L,反应器的排水比为0.5-0.7,每天运行4-6个周期,每个周期包括进水、曝气搅拌、沉淀、排水和闲置,在上述条件下运行反应器,当其出水中氨氮与亚硝态氮的质量浓度比为1-1.32且持续15天以上时,部分短程硝化得以实现;随后在短程硝化反应器中接种厌氧氨氧化活性污泥,通过DO实时监测装置控制好氧段DO为1-1.5mg/L,反应器的排水比为0.5-0.7,每天运行3-4个周期,每个周期包括进水、缺氧搅拌、好氧搅拌、缺氧搅拌、沉淀、排水和闲置,在上述条件下运行反应器,当其出水中氨氮与亚硝态氮浓度均<1mg/L且稳定运行15天以上时,认为短程硝化/厌氧氨氧化反应器启动成功。
(3)短程反硝化/厌氧氨氧化反应器的启动:短程反硝化/厌氧氨氧化反应器为序批式反应器,接种污泥为短程反硝化/厌氧氨氧化活性污泥,控制接种后反应器内的污泥浓度为3000-5000mg/L,并通过排泥控制其污泥龄为25-30d。启动时,进水采用COD浓度为45-75mg/L、硝态氮浓度为15-25mg/L的配水,控制反应器缺氧段DO<0.1mg/L,反应器的排水比为0.5-0.7,每天运行5-6个周期,每个周期包括进水、缺氧搅拌、沉淀、排水和闲置,在上述条件下运行反应器,当其出水中亚硝态氮积累率>90%且持续维持15天以上时,认为短程反硝化反应器启动成功;随后,在短程反硝化反应器中接种厌氧氨氧化活性污泥,将中间水箱中的短程硝化/厌氧氨氧化反应器的出水及发酵液储存箱中的发酵液泵入反应器内,通过DO实时监测装置控制缺氧段DO<0.1mg/L,反应器的排水比为0.5-0.7,每天运行3-4个周期,每个周期包括进水、缺氧搅拌、沉淀、排水和闲置,在上述条件下运行反应器,当其TN去除率高于90%且持续维持15天以上时,认为短程反硝化/厌氧氨氧化反应器启动成功。
2)系统的运行
(1)打开第一进水蠕动泵,将进水水箱中的高氨氮废水泵入短程硝化/厌氧氨氧化反应器中,该反应器以A/O/A(缺氧/好氧/缺氧)的方式运行进水完毕后,第一个缺氧段短程硝化/厌氧氨氧化反应器中的搅拌器开启,缺氧搅拌30min,利用原水中的有机物反硝化去除上周期剩余的硝态氮。第一个缺氧段结束后,曝气泵开启向短程硝化/厌氧氨氧化反应器曝气,将原水中的氨氮部分转换为亚硝态氮,通过调节气体流量计控制DO在1-1.5mg/L,通过pH/DO在线监测装置监测pH及DO值,好氧搅拌时间为120-180min,曝气结束后,短程硝化/厌氧氨氧化反应器中的曝气泵关闭,缺氧搅拌180-210min,厌氧氨氧化利用剩余氨氮及亚硝态氮进行自养脱氮,随后沉淀30min使泥水分离,打开第一排水阀,排水进入中间水箱,排水比为70%,每天运行3个周期,其余时间闲置。
(2)将每日从发酵罐中排出的发酵混合物放入离心机中,离心得到上清液后置于发酵液储存箱中,打开第二进水蠕动泵,将中间水箱中的污水泵入短程反硝化/厌氧氨氧化反应器,同时开启进发酵液蠕动泵投加污泥发酵液,控制短程反硝化/厌氧氨氧化反应器的进水C/NOx-N质量比为3-6,进水完毕打开第二搅拌器开始搅拌,缺氧搅拌180-240min,进行缺氧段的短程反硝化厌氧氨氧化反应,反硝化菌利用发酵液作为碳源进行短程反硝化生成亚硝态氮,随后厌氧氨氧化菌利用亚硝态氮和发酵液中的氨氮进行自养脱氮,反应结束后,沉淀30min使泥水分离,打开第二排水阀,排水进入出水水箱,排水比为70%,每天运行3个周期,其余时间闲置。每天运行3个周期,其余时间闲置。
连续实验结果表明:运行稳定后,污泥中温碱性厌氧发酵罐每天产生2500-3500mgCOD/L的挥发性脂肪酸,剩余污泥减量率达到25%-30%;脱氮反应器出水氨氮小于5mg/L,出水总氮小于15mg/L,出水COD<50mg/L,实现了高氨氮废水的深度脱氮。
以上是本发明的具体实施案例,便于该技术领域的技术人员能更好的理解和应用本发明,但本发明的实施不限于此,因此该技术领域的技术人员对本发明所做的简单改进都在本发明保护范围之内。

Claims (1)

1.一种利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法,其特征在于,该方法所用装置包括:进水水箱(1)、短程硝化/厌氧氨氧化反应器(2)、中间水箱(3)、短程反硝化/厌氧氨氧化反应器(4)、出水水箱(5)、污泥中温碱性厌氧发酵罐(6)、发酵液储存箱(7);
进水水箱(1)设有进水水箱出水口(1.1);短程硝化/厌氧氨氧化反应器(2)设有第一进水蠕动泵(2.1)、第一进水口(2.2)、曝气泵(2.3)、气体流量计(2.4)、第一pH/DO实时监测装置(2.5)、第一pH探头(2.6)、第一DO探头(2.7)、第一搅拌器(2.8)、曝气盘(2.9)、第一出水口(2.10)和第一排水阀(2.11);中间水箱(3)设有中间水箱进水口(3.1)和中间水箱出水口(3.2);短程反硝化/厌氧氨氧化反应器(4)设有第二进水蠕动泵(4.1)、第二进水口(4.2)、第二pH/DO实时检测装置(4.3)、第二pH探头(4.4)、第二DO探头(4.5)、第二搅拌器(4.6)、进发酵液口(4.7)、进发酵液蠕动泵(4.8)、第二出水口(4.9)和第二排水阀(4.10);出水水箱(5)设有出水水箱进水口(5.1);污泥中温碱性厌氧发酵罐(6)完全密封且缠有加热带通过温度控制装置(6.7)控制温度,外附保温层,并设有排泥口(6.1)、第三pH/DO实时监测装置(6.2)、第三pH探头(6.3)、第三DO探头(6.4)、第三搅拌器(6.5)、进泥加药口(6.6)和温度控制装置(6.7);
进水水箱(1)的出水口(1.1)通过第一进水蠕动泵(2.1)与短程硝化/厌氧氨氧化反应器(2)的第一进水口(2.2)相连,空气依次通过曝气泵(2.3)、气体流量计(2.4)和曝气盘(2.9)打入短程硝化/厌氧氨氧化反应器(2),并通过第一pH/DO实时监测装置(2.5)监测其pH和DO值;短程硝化/厌氧氨氧化反应器(2)的第一出水口(2.10)通过第一排水阀(2.11)与中间水箱(3)的进水口(3.1)相连;中间水箱(3)的排水口(3.2)通过第二进水蠕动泵(4.1)与短程反硝化/厌氧氨氧化反应器(4)的第二进水口(4.2)相连;污泥中温碱性发酵罐(6)的排泥口(6.1)与发酵液储存箱(7)相连;发酵液储存箱(7)通过进发酵液蠕动泵(4.8)与短程反硝化/厌氧氨氧化反应器(4)的进发酵液口(4.7)相连;短程反硝化/厌氧氨氧化反应器(4)的第二出水口(4.9)通过第二排水阀(4.10)与出水水箱(5)的进水口(5.1)相连;
包括以下步骤:
1)系统的启动
(1)污泥中温碱性厌氧发酵罐的启动:污泥碱性厌氧发酵反应器为半连续反应器,接种污泥为城市污水处理厂二沉池剩余污泥,污泥浓度为10000-12000mg/L,污泥停留时间为6-8天,利用温度控制装置控制温度为35±1℃,通过pH在线监测装置控制pH在10±0.2;根据污泥停留时间每天排放发酵混合物并加入等体积新鲜剩余污泥至污泥中温碱性厌氧发酵罐;
(2)短程硝化/厌氧氨氧化反应器的启动:短程硝化/厌氧氨氧化反应器为序批式反应器,接种污泥为短程硝化活性污泥,控制接种后反应器内的污泥浓度为3000-5000mg/L,并通过排泥控制其污泥龄为25-30d;将进水水箱中COD浓度为120-200mg/L,氨氮浓度为200-400mg/L的高氨氮废水泵入短程硝化/厌氧氨氧化反应器中,通过DO实时监测装置控制DO维持在1-1.5mg/L,反应器的排水比为0.5-0.7,每天运行4-6个周期,每个周期包括进水、曝气搅拌、沉淀、排水和闲置;在上述条件下运行反应器,当其出水中氨氮与亚硝态氮的质量浓度比为1-1.32且持续15天以上时,部分短程硝化得以实现;随后在短程硝化反应器中接种厌氧氨氧化活性污泥,通过DO实时监测装置控制好氧段DO为1-1.5mg/L,反应器的排水比为0.5-0.7,每天运行3-4个周期,每个周期包括进水、缺氧搅拌、好氧搅拌、缺氧搅拌、沉淀、排水和闲置,在上述条件下运行反应器,当其出水中氨氮与亚硝态氮浓度均<1mg/L且稳定运行15天以上时,认为短程硝化/厌氧氨氧化反应器启动成功;
(3)短程反硝化/厌氧氨氧化反应器的启动:短程反硝化/厌氧氨氧化反应器为序批式反应器,接种污泥为短程反硝化/厌氧氨氧化活性污泥,控制接种后反应器内的污泥浓度为3000-5000mg/L,并通过排泥控制其污泥龄为25-30d;启动时,进水采用COD浓度为45-75mg/L、硝态氮浓度为15-25mg/L的配水,控制反应器缺氧段DO<0.1mg/L,反应器的排水比为0.5-0.7,每天运行5-6个周期,每个周期包括进水、缺氧搅拌、沉淀、排水和闲置,当其出水中亚硝态氮积累率>90%且持续维持15天以上时,认为短程反硝化反应器启动成功;随后,在短程反硝化反应器中接种厌氧氨氧化活性污泥,将中间水箱中的短程硝化/厌氧氨氧化反应器的出水及发酵液储存箱中的发酵液泵入反应器内,通过DO实时监测装置控制缺氧段DO<0.1mg/L,反应器的排水比为0.5-0.7,每天运行3-4个周期,每个周期包括进水、缺氧搅拌、沉淀、排水和闲置,在上述条件下运行反应器,当其TN去除率高于90%且持续维持15天以上时,认为短程反硝化/厌氧氨氧化反应器启动成功;
2)系统的运行
(1)打开第一进水蠕动泵,将进水水箱中的高氨氮废水泵入短程硝化/厌氧氨氧化反应器中,该反应器以A/O/A(缺氧/好氧/缺氧)的方式运行,进水完毕后,第一个缺氧段短程硝化/厌氧氨氧化反应器中的搅拌器开启,缺氧搅拌30min,利用原水中的有机物反硝化去除上周期剩余的硝态氮;第一个缺氧段结束后,曝气泵开启向短程硝化/厌氧氨氧化反应器曝气,将原水中的氨氮部分转换为亚硝态氮,通过调节气体流量计控制DO在1-1.5mg/L,通过pH/DO在线监测装置监测pH及DO值,好氧搅拌时间为120-180min,曝气结束后,短程硝化/厌氧氨氧化反应器中的曝气泵关闭,缺氧搅拌180-210min,厌氧氨氧化利用剩余氨氮及亚硝态氮进行自养脱氮,随后沉淀30min使泥水分离,打开第一排水阀,排水进入中间水箱,排水比为70%,每天运行3个周期,其余时间闲置;
(2)将每日从发酵罐中排出的发酵混合物放入离心机中,离心得到上清液后置于发酵液储存箱中,打开第二进水蠕动泵,将中间水箱中的污水泵入短程反硝化/厌氧氨氧化反应器,同时开启进发酵液蠕动泵投加污泥发酵液,控制短程反硝化/厌氧氨氧化反应器的进水C/NOx-N质量比为3-6,进水完毕打开第二搅拌器开始搅拌,缺氧搅拌180-240min,进行缺氧段的短程反硝化厌氧氨氧化反应,反硝化菌利用发酵液作为碳源进行短程反硝化生成亚硝态氮,随后厌氧氨氧化菌利用亚硝态氮和发酵液中的氨氮进行自养脱氮,反应结束后,沉淀30min使泥水分离,打开第二排水阀,排水进入出水水箱,排水比为70%,每天运行3个周期,其余时间闲置。
CN202111126400.3A 2021-09-26 2021-09-26 利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法和装置 Active CN113880251B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111126400.3A CN113880251B (zh) 2021-09-26 2021-09-26 利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111126400.3A CN113880251B (zh) 2021-09-26 2021-09-26 利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法和装置

Publications (2)

Publication Number Publication Date
CN113880251A CN113880251A (zh) 2022-01-04
CN113880251B true CN113880251B (zh) 2023-10-10

Family

ID=79006633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111126400.3A Active CN113880251B (zh) 2021-09-26 2021-09-26 利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法和装置

Country Status (1)

Country Link
CN (1) CN113880251B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477642A (zh) * 2022-02-13 2022-05-13 北京工业大学 一种同步处理高氨氮废水和剩余污泥的装置和方法
CN114772726B (zh) * 2022-03-10 2023-12-08 北京工业大学 高负荷活性污泥联合pn/a技术对污泥发酵物碳捕获与上清液深度处理的工艺与装置
CN114671512B (zh) * 2022-03-29 2023-07-14 北京工业大学 基于a-b法利用污泥发酵强化主流厌氧氨氧化实现碳氮磷同步去除的方法与装置
CN115286100A (zh) * 2022-08-30 2022-11-04 中冶华天工程技术有限公司 短程反硝化厌氧氨氧化耦合缺氧mbbr工艺实现污水厂尾水深度脱氮装置与方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245689A (ja) * 2002-02-21 2003-09-02 Kurita Water Ind Ltd 排水の処理方法及び処理装置
JP2012157837A (ja) * 2011-02-02 2012-08-23 Ishigaki Co Ltd 脱水ろ液の窒素除去システム並びに窒素除去方法
CN103663862A (zh) * 2013-11-25 2014-03-26 北京工业大学 亚硝化与厌氧氨氧化耦合反硝化除磷强化低cn比城市污水脱氮除磷的装置和方法
CN104986856A (zh) * 2015-07-27 2015-10-21 北京工业大学 部分短程硝化-同步污泥发酵、反硝化、厌氧氨氧化工艺处理低碳氮比生活污水的方法
CN108439595A (zh) * 2018-04-04 2018-08-24 北京工业大学 利用污泥发酵物实现污水部分短程硝化-Anammox/反硝化的方法
CN109912031A (zh) * 2019-04-02 2019-06-21 北京工业大学 在aoa-sbbr中实现异养耦合厌氧氨氧化深度脱氮的方法和装置
CN110002592A (zh) * 2019-05-05 2019-07-12 北京工业大学 短程反硝化—污泥发酵耦合厌氧氨氧化系统处理生活污水的装置和方法
WO2019169980A1 (zh) * 2018-03-09 2019-09-12 上海世浦泰膜科技有限公司 一种结合mbr的厌氧氨氧化污水处理工艺
CN112250178A (zh) * 2020-09-24 2021-01-22 北京工业大学 一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置
CN113200600A (zh) * 2021-05-14 2021-08-03 北京工业大学 半短程硝化厌氧氨氧化串联短程反硝化厌氧氨氧化处理高氨氮有机物废水的装置与方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245689A (ja) * 2002-02-21 2003-09-02 Kurita Water Ind Ltd 排水の処理方法及び処理装置
JP2012157837A (ja) * 2011-02-02 2012-08-23 Ishigaki Co Ltd 脱水ろ液の窒素除去システム並びに窒素除去方法
CN103663862A (zh) * 2013-11-25 2014-03-26 北京工业大学 亚硝化与厌氧氨氧化耦合反硝化除磷强化低cn比城市污水脱氮除磷的装置和方法
CN104986856A (zh) * 2015-07-27 2015-10-21 北京工业大学 部分短程硝化-同步污泥发酵、反硝化、厌氧氨氧化工艺处理低碳氮比生活污水的方法
WO2019169980A1 (zh) * 2018-03-09 2019-09-12 上海世浦泰膜科技有限公司 一种结合mbr的厌氧氨氧化污水处理工艺
CN108439595A (zh) * 2018-04-04 2018-08-24 北京工业大学 利用污泥发酵物实现污水部分短程硝化-Anammox/反硝化的方法
CN109912031A (zh) * 2019-04-02 2019-06-21 北京工业大学 在aoa-sbbr中实现异养耦合厌氧氨氧化深度脱氮的方法和装置
CN110002592A (zh) * 2019-05-05 2019-07-12 北京工业大学 短程反硝化—污泥发酵耦合厌氧氨氧化系统处理生活污水的装置和方法
CN112250178A (zh) * 2020-09-24 2021-01-22 北京工业大学 一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置
CN113200600A (zh) * 2021-05-14 2021-08-03 北京工业大学 半短程硝化厌氧氨氧化串联短程反硝化厌氧氨氧化处理高氨氮有机物废水的装置与方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Lei Miao等.Advanced nitrogen removal from landfill leachate using real-time controlled three-stage sequence batch reactor (SBR) system.《Bioresource Technology》.2014,第258–265页. *
彭永臻等.进水碳氮比对中试AAO-BAF 系统脱氮除磷性能的影响.《北京工业大学学报》.2019,第45卷(第9期),第904-910页. *
曾萍等.《辽河流域制药废水处理与资源化技术》.中国环境出版集团,2019,第134页. *

Also Published As

Publication number Publication date
CN113880251A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
CN112250178B (zh) 一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置
CN113880251B (zh) 利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法和装置
CN112158952B (zh) 连续流aoa短程硝化与厌氧氨氧化耦合污泥发酵反硝化处理低碳氮比废水的装置与方法
CN113480004B (zh) 一种城市污水碳磷捕获后通过pda深度脱氮及实现磷回收的方法
CN108793398B (zh) 以污泥发酵混合物为碳源的短程反硝化耦合厌氧氨氧化深度脱氮的方法和装置
CN113800636B (zh) 短程硝化/厌氧氨氧化-发酵耦合短程反硝化/厌氧氨氧化处理污泥消化液的方法和装置
CN113233597B (zh) 一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的方法
CN109354191B (zh) 一种污泥发酵强化内源反硝化的双污泥回流aoa深度脱氮方法
CN108217950A (zh) Fna强化污泥发酵及实现污水短程脱氮除磷的装置和方法
CN110217889B (zh) 基于生物膜的两段式强化半短程硝化耦合厌氧氨氧化处理城市生活污水的装置和方法
CN109867359B (zh) 利用污泥发酵混合物短程硝化反硝化耦合部分厌氧氨氧化深度脱氮的方法和装置
CN113233592B (zh) 一种实现晚期垃圾渗滤液与生活污水同步深度脱氮除碳的处理装置与方法
CN112479361A (zh) 一种深度处理含盐废水的装置及方法
CN113233596A (zh) 连续流短程硝化/内源短程反硝化/厌氧氨氧化一体化工艺处理中晚期垃圾渗滤液的方法
CN112607861A (zh) 一种剩余污泥发酵碳源强化反硝化除磷-部分短程反硝化-厌氧氨氧化处理城市污水工艺
CN101186387A (zh) 一种提高实际污水在厌氧-低氧条件下生物同时除磷脱氮效果的方法
CN112250179B (zh) 通过污泥发酵物在污水处理连续流工艺中实现短程硝化耦合厌氧氨氧化反硝化的装置与方法
CN111333185B (zh) 基于脉冲气混式短程反硝化/厌氧氨氧化颗粒污泥系统的城市污水深度脱氮装置和方法
CN113023869A (zh) 以污泥发酵液为碳源的短程反硝化串联厌氧氨氧化处理高浓度硝酸盐废水和生活污水的工艺
CN109879428B (zh) 一种利用延时厌氧/低碳缺氧sbr实现城市污水短程反硝化过程的方法
CN113415884B (zh) 一种充分利用内碳源同时处理生活污水和硝酸盐废水脱氮除磷的方法
CN113603210B (zh) 一种高密度短程反硝化颗粒污泥的驯化方法
CN114180786A (zh) 利用污泥发酵液为碳源实现短程反硝化与厌氧氨氧化菌原位富集的装置和方法
CN115043487A (zh) 一种基于a/o/a运行方式实现晚期垃圾渗滤液与污泥发酵液联合深度脱氮的方法和装置
CN114477642A (zh) 一种同步处理高氨氮废水和剩余污泥的装置和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant