CN104986856A - 部分短程硝化-同步污泥发酵、反硝化、厌氧氨氧化工艺处理低碳氮比生活污水的方法 - Google Patents

部分短程硝化-同步污泥发酵、反硝化、厌氧氨氧化工艺处理低碳氮比生活污水的方法 Download PDF

Info

Publication number
CN104986856A
CN104986856A CN201510447054.7A CN201510447054A CN104986856A CN 104986856 A CN104986856 A CN 104986856A CN 201510447054 A CN201510447054 A CN 201510447054A CN 104986856 A CN104986856 A CN 104986856A
Authority
CN
China
Prior art keywords
sludge
programme
main reactor
nitrogen
process controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510447054.7A
Other languages
English (en)
Other versions
CN104986856B (zh
Inventor
彭永臻
郭媛媛
王博
赵梦月
王淑莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201510447054.7A priority Critical patent/CN104986856B/zh
Publication of CN104986856A publication Critical patent/CN104986856A/zh
Application granted granted Critical
Publication of CN104986856B publication Critical patent/CN104986856B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

部分短程硝化-同步污泥发酵、反硝化、厌氧氨氧化工艺处理低碳氮比生活污水的方法,属于污水污泥生物处理领域。其装置包括:原水池、储泥池、主反应器、空气压缩机、排水池、可编程过程控制器和计算机。首次运行时接种污泥来自厌氧消化系统、城市污水生物处理系统和厌氧氨氧化系统,每周期向主反应器注入生活污水和城市污水生物处理系统所排剩余污泥,好氧阶段进行部分短程硝化反应,在缺氧阶段,厌氧氨氧化菌将剩余氨氮和亚硝转化为氮气和硝态氮,异养菌利用外源污泥水解发酵产生的有机物作为碳源,将剩余的亚硝和生成的硝态氮还原为氮气。本发明不仅节约了能耗,而且同时实现低碳氮比(C/N)城市生活污水的深度脱氮和外源污泥的减量。

Description

部分短程硝化-同步污泥发酵、反硝化、厌氧氨氧化工艺处理低碳氮比生活污水的方法
技术领域
本发明涉及一种部分短程硝化-同步污泥发酵、反硝化、厌氧氨氧化工艺处理低碳氮比生活污水的方法,属于污水污泥生物处理领域。该工艺适用于低碳氮比(化学需氧量质量浓度/总氮质量浓度,C/N)城市生活污水的强化脱氮生物处理及剩余污泥减量。
背景技术
近年来,随着水环境富营养化问题的日趋严重,城市生活污水的脱氮除磷逐渐受到重视,污水处理厂对于总氮的出水标准也日趋严格。我国污水处理厂面临的主要问题是进水碳源不足,尤其是可快速降解的溶解性有机物不足,直接影响了总氮的去除效率。为了达标排放,污水处理厂往往采用投加外碳源的方式进行深度脱氮,这样既消耗了有限的有机资源,又增加了污水厂的运行费用。
减少生物脱氮过程中碳源的使用量是解决途径之一。与传统脱氮过程相比,短程硝化可以节省25%的曝气量以及40%的有机碳源,并可实现较低的污泥产量,因而在低C/N生活污水的脱氮过程中起到了节省能耗的作用。除此之外,增加污泥内碳源的开发也可以强化低C/N污水的脱氮。现有的低氧曝气联合污泥发酵耦合反硝化工艺可以在同一空间内减少有机碳源的使用,并能利用剩余污泥为底物进行内碳源的开发,为深度脱氮提供碳源。但该工艺还存在一些不足:1、发酵过程释放的氨氮在反应结束前无法去除,造成出水总氮较高;2、硝化过程虽然为短程,但其稳定维持仍存在较多挑战。
厌氧氨氧化作为一种新型自养脱氮工艺,反应途径较短,不需要碱度补偿和投加有机碳源,从而节约了大量的能源和物料,节省运行成本。但现有研究多集中于该工艺在人工配水及高氨氮废水中的应用,其在城市生活污水中的应用还存在以下难点:1、低氨氮废水较难实现短程硝化,从而难于为厌氧氨氧化反应提供亚硝态氮;2、厌氧氨氧化菌生长缓慢,导致工艺启动时间长;3、厌氧氨氧化菌对环境条件较为敏感,如温度、溶解氧等。
发明内容
为了解决上述问题,本发明将部分短程硝化、污泥发酵、反硝化和厌氧氨氧化耦合于同一反应器中,同时实现低C/N城市生活污水的深度脱氮以及剩余污泥的减量。本发明利用部分短程硝化为厌氧氨氧化反应提供氨氮和亚硝态氮,同时异养菌原位利用外加剩余污泥发酵产生的有机碳源进行反硝化反应,从而使得系统出水达到城镇污水处理厂污染物排放一级A标准。
本发明通过以下技术步骤实现:
部分短程硝化-同步污泥发酵、反硝化、厌氧氨氧化工艺处理低碳氮比生活污水的方法,其装置包括:原水池、储泥池、主反应器、空气压缩机、排水池、可编程过程控制箱和计算机。原水池、储泥池、空气压缩机、排水池分别与主反应器相连接,在所述主反应器侧面设有进泥管、进水管、气体流量计、排水管,顶部设有一号搅拌器、DO传感器、pH传感器,底部设有曝气头。储泥池顶部设有二号搅拌器。
原水池、进水泵和进水管的一端依次相连接,进水管的另一端与主反应器相连接;储泥池、进泥泵和进泥管的一端依次相连接,进泥管的另一端与主反应器相连接;排水池、排水继电器和排水管的一端依次相连接,排水管另一端与主反应器相连接;空气压缩机的出气端通过气体流量计与主反应器相连接;
可编程过程控制器内置有DO传感器接口、一号搅拌器接口、进水泵继电器接口、排水继电器接口、曝气继电器接口、pH传感器接口、进泥泵继电器接口和二号搅拌器接口,可编程过程控制器的一端与计算机相连接。
部分短程硝化-同步污泥发酵、反硝化、厌氧氨氧化工艺处理低碳氮比生活污水的方法,其特征包括以下步骤:
1)接种污泥:低氧硝化联合污泥发酵耦合反硝化同步厌氧氨氧化工艺首次启动时采用的接种污泥分别来自污泥厌氧消化系统、城市污水生物处理系统和厌氧氨氧化系统。其中厌氧消化系统污泥浓度为10-13kgMLSS/m3,接种体积占反应器有效容积的3/20,城市污水生物处理系统污泥浓缩后浓度为10-12kgMLSS/m3,接种体积占反应器有效容积的1/5,厌氧氨氧化系统污泥浓度为5-7kgMLSS/m3,接种体积占反应器有效容积的1/20;
2)启动系统:开启一号搅拌器、二号搅拌器、空气压缩机,开启可编程过程控制器和计算机,设置DO范围为0.5-0.8mg/L,曝气时间为2-4h;
3)进泥:启动进泥泵,将储泥池中的新鲜剩余污泥泵入主反应器中,剩余污泥为城市污水生物处理系统所排剩余污泥,污泥浓度浓缩至10-13kgMLSS/m3,进泥体积与反应器有效容积的体积比为1:30至1:15,进泥完毕后进入下一步骤;
4)进水:启动进水泵,将原水池中的城市生活污水泵入主反应器中,进水体积占主反应器有效容积的8/15至17/30,进水完毕后进入下一步骤;
5)好氧阶段:通过可编程过程控制器启动空气压缩机,硝化阶段采用微曝气,可编程过程控制器收集DO传感器反馈信号并控制空气压缩机使溶解氧维持在0.5-0.8mg/L,当曝气结束后,关闭空气压缩机;
6)缺氧阶段:通过可编程过程控制器控制一号搅拌器,转速控制在70-90rpm,可编程过程控制器收集pH传感器反馈信号并传输至计算机,当pH信号的一阶导数由正变负时,关闭一号搅拌器,进入下一步骤;
7)沉淀:静置沉淀时间为30-60min,沉淀结束后进入下一步骤;
8)排水:通过可编程过程控制器控制排水继电器,排水体积为主反应器有效容积的3/5;
9)闲置:通过可编程过程控制器控制闲置时间为2-3h;
10)循环步骤(3)——(9)。
本发明的原理:本发明可以在同一反应器中实现部分短程硝化、污泥发酵产酸、反硝化及厌氧氨氧化的耦合。本发明所处理的城市生活污水C/N小于3,进水氨氮浓度范围为50-70mg/L。首先在好氧阶段,溶解氧控制在0.5-0.8mg/L,硝化细菌利用溶解氧进行硝化反应。通过控制曝气时间使得氨氧化菌将氨氮部分转化为亚硝态氮;接下来系统进入缺氧阶段,厌氧氨氧化菌利用部分短程硝化的产物(氨氮和亚硝态氮)进行厌氧氨氧化反应,将其转化为氮气和硝态氮,与此同时,发酵细菌利用外加的剩余污泥进行水解酸化反应,产生可供异养菌利用的有机碳源(VFAs),从而进行反硝化反应,将硝态氮和(或)亚硝态氮转化为氮气。由于好氧阶段采用微曝气,故不会对厌氧菌(发酵细菌和厌氧氨氧化菌)产生较大影响。
与现有技术相比,本发明具有以下优点:
1)本发明将部分短程硝化、污泥发酵产酸、反硝化及厌氧氨氧化耦合于同一空间内,解决了低C/N生活污水深度脱氮碳源不足的问题,同时实现了污泥减量;
2)在好氧阶段实现部分短程硝化,与传统短程硝化相比进一步节省了能源;
3)在缺氧阶段,厌氧氨氧化反应与发酵耦合反硝化反应共同作用,使发酵释放的氨氮作为厌氧氨氧化反应的底物,从而不会在系统中积累;
4)本系统中好氧菌与厌氧菌共存,微生物种群结构丰富,抗冲击负荷能力强。
附图说明
图1为本发明的装置结构图:
1-原水池      1.1-进水泵
2-储泥池      2.1-二号搅拌器   2.2-进泥泵
3-主反应器    3.1-进泥管       3.2-进水管   3.3-一号搅拌器   3.4-DO传感器
3.5-pH传感器  3.6-气体流量计   3.7-排水管   3.8-曝气头
4-空气压缩机
5-排水池      5.1-排水继电器
6-可编程过程控制器          6.1-DO传感器接口
6.2-一号搅拌器接口          6.3-进水泵继电器接口
6.4-排水继电器接口          6.5-曝气继电器接口
6.6-pH传感器接口            6.7-进泥泵继电器接口
6.8-二号搅拌器接口
7-计算机
具体实施方式
结合附图1和实施实例对本发明做进一步说明。
一种部分短程硝化-同步污泥发酵、反硝化、厌氧氨氧化工艺处理低碳氮比生活污水的方法,其装置包括:原水池1、储泥池2、主反应器3、空气压缩机4、排水池5、可编程过程控制箱6和计算机7。原水池1、储泥池2、空气压缩机4、排水池5分别与主反应器3相连接,所述主反应器3采用圆柱形结构,在其侧面设有进泥管3.1、进水管3.2、气体流量计3.6,排水管3.7,顶部设有一号搅拌器3.3、DO传感器3.4、pH传感器3.5,底部设有曝气头3.8。储泥池2顶部设有二号搅拌器2.1。
原水池1通过进水泵1.1、进水管3.2与主反应器3相连接,;储泥池2通过进泥泵2.2、进泥管3.1与主反应器3相连接;排水池5通过排水继电器5.1、排水管3.7与主反应器3相连接;空气压缩机4通过气体流量计3.6与主反应器3相连接;
可编程过程控制器6内置有DO传感器接口6.1、一号搅拌器接口6.2、进水泵继电器接口6.3、排水继电器接口6.4、曝气继电器接口6.5、pH传感器接口6.6、进泥泵继电器接口6.7和二号搅拌器接口6.8,可编程过程控制器6的一端与计算机7相连接。
本发明以某大学家属区排放的生活污水(pH=7.1-7.9,NH4 +-N=50-70mg/L,COD=120-150mg/L)为研究对象。试验接种污泥分别来自某城市污水处理厂污泥消化系统、城市生活污水中试生物处理系统和高氨氮废水中试厌氧氨氧化一体化系统。试验用外加剩余污泥来自城市生活污水中试生物处理系统,浓缩后置于储泥池中(MLSS=9.5-13kgMLSS/m3,MLVSS=7.5-11kgMLSS/m3)。部分短程硝化-同步污泥发酵、反硝化、厌氧氨氧化工艺主反应器有效容积为10L,首次运行接种厌氧消化系统污泥浓度为10-13kgMLSS/m3,接种体积为1.5L,城市生活污水生物处理系统污泥浓缩后浓度为10-12kgMLSS/m3,接种体积为2L,厌氧氨氧化系统污泥浓度为5-7kgMLSS/m3,接种体积为0.5L。每周期投加新鲜剩余污泥0.5L,进水5.5L,混合后NH4 +-N浓度为35mg/L,污泥浓度为4.5kgMLSS/m3。具体运行过程如下:
1)接种污泥:接种某城市污水处理厂污泥消化系统所排剩余污泥1.5L,污泥浓度为10.5kgMLSS/m3,城市生活污水中试生物处理系统所排剩余污泥2L,污泥浓度为10kgMLSS/m3,高氨氮废水中试厌氧氨氧化一体化系统所排剩余污泥0.5L,污泥浓度为6kgMLSS/m3
2)启动系统:开启一号搅拌器、二号搅拌器、空气压缩机,开启可编程过程控制器和计算机,设置DO范围为0.5-0.8mg/L、曝气时间为3h;
3)进泥:启动进泥泵,将储泥池中的新鲜剩余污泥泵入主反应器中,剩余污泥为城市污水中试生物处理系统所排剩余污泥,污泥浓度浓缩至11kgMLSS/m3,进泥体积与反应器有效容积的体积比为1:30至1:15,进泥泵速为250ml/min,进泥时间为2min,进泥完毕后进入下一步骤;
4)进水:启动进水泵,将原水池中的城市生活污水泵入主反应器中,进水泵速为550ml/min,进水时间为10min,进水完毕后进入下一步骤;
5)好氧阶段:通过可编程过程控制器启动空气压缩机,硝化阶段采用微曝气,可编程过程控制器收集DO传感器反馈信号并控制空气压缩机使溶解氧维持在0.5-0.8mg/L,当曝气3h后,关闭空气压缩机;
6)缺氧阶段:通过可编程过程控制器控制一号搅拌器,转速控制在75rpm,可编程过程控制器收集pH传感器反馈信号并传输至计算机,当pH信号的一阶导数由正变负时,关闭一号搅拌器,进入下一步骤;
7)沉淀:静置沉淀时间为60min,沉淀结束后进入下一步骤;
8)排水:通过可编程过程控制器控制排水继电器,排水体积6L,排水时间为2min;
9)闲置:通过可编程过程控制器控制闲置时间为2h;
10)循环步骤(3)——(9)。
连续运行结果表明:DO浓度为0.5-0.8mg/L,反应器中污泥浓度为4-5kgMLSS/m3,进水氨氮为50-70mg/L,进水C/N小于3的情况下,出水氨氮小于5mg/L,出水总氮小于10mg/L,达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准。与此同时,系统还实现了50%以上的外源污泥减量率。本发明实现了在同一反应器中的部分短程硝化、污泥发酵产酸、反硝化及厌氧氨氧化的耦合,最终强化了低C/N城市生活污水的深度脱氮,并在不产生剩余污泥的情况下实现了外源污泥的减量。

Claims (2)

1.一种部分短程硝化-同步污泥发酵、反硝化、厌氧氨氧化工艺处理低碳氮比生活污水的装置,其特征在于:包括原水池(1)、储泥池(2)、主反应器(3)、空气压缩机(4)、排水池(5)、可编程过程控制器(6)和计算机(7);原水池(1)、储泥池(2)、空气压缩机(4)、排水池(5)分别与主反应器(3)相连接,在所述主反应器(3)侧面设有进泥管(3.1)、进水管(3.2)、气体流量计(3.6),排水管(3.7),顶部设有一号搅拌器(3.3)、溶解氧(DO)传感器(3.4)、pH传感器(3.5),底部设有曝气头(3.8);储泥池(2)顶部设有二号搅拌器(2.1);
原水池(1)、进水泵(1.1)和进水管(3.2)的一端依次相连接,进水管(3.2)的另一端与主反应器相连接;储泥池(2)、进泥泵(2.2)和进泥管(3.1)的一端依次相连接,进泥管(3.1)的另一端与主反应器(3)相连接;排水池(5)、排水继电器(5.1)和排水管(3.7)的一端依次相连接,排水管(3.7)的另一端与主反应器(3)相连接;空气压缩机(4)的出气端通过气体流量计(3.6)与主反应器(3)相连接;
可编程过程控制器(6)内置有DO传感器接口(6.1)、一号搅拌器接口(6.2)、进水泵继电器接口(6.3)、排水继电器接口(6.4)、曝气继电器接口(6.5)、pH传感器接口(6.6)、进泥泵继电器接口(6.7)和二号搅拌器接口(6.8),可编程过程控制器(6)的一端与计算机(7)相连接。
2.应用权利要求1所述装置处理低碳氮比生活污水的方法,其特征包括以下步骤:
1)接种污泥:部分短程硝化-同步污泥发酵、反硝化、厌氧氨氧化工艺首次启动时采用的接种污泥分别来自污泥厌氧消化系统、城市污水生物处理系统和厌氧氨氧化系统;其中厌氧消化系统污泥浓度为10-13kgMLSS/m3,接种体积占反应器有效容积的3/20,城市污水生物处理系统污泥浓缩后浓度为10-12kgMLSS/m3,接种体积占反应器有效容积的1/5,厌氧氨氧化系统污泥浓度为5-7kgMLSS/m3,接种体积占反应器有效容积的1/20;
2)启动系统:开启一号搅拌器、二号搅拌器、空气压缩机,开启可编程过程控制器和计算机,设置DO范围为0.5-0.8mg/L,曝气时间为2-4h;
3)进泥:启动进泥泵,将储泥池中的新鲜剩余污泥泵入主反应器中,剩余污泥为城市污水生物处理系统所排剩余污泥,污泥浓度浓缩至10-13kgMLSS/m3,进泥体积与反应器有效容积的体积比为1:30至1:15,进泥完毕后进入下一步骤;
4)进水:启动进水泵,将原水池中的城市生活污水泵入主反应器中,进水体积为主反应器有效容积的8/15至17/30,进水完毕后进入下一步骤;
5)好氧阶段:通过可编程过程控制器启动空气压缩机,硝化阶段采用微曝气,可编程过程控制器收集DO传感器反馈信号并控制空气压缩机使溶解氧维持在0.5-0.8mg/L,当曝气结束后,关闭空气压缩机;
6)缺氧阶段:通过可编程过程控制器控制一号搅拌器,转速控制在70-90rpm,可编程过程控制器收集pH传感器反馈信号并传输至计算机,当pH信号的一阶导数由正变负时,关闭一号搅拌器,进入下一步骤;
7)沉淀:静置沉淀时间为30-60min,沉淀结束后进入下一步骤;
8)排水:通过可编程过程控制器控制排水继电器,排水体积为主反应器有效容积的3/5;
9)闲置:通过可编程过程控制器控制闲置时间为2-3h;
10)循环步骤(3)——(9)。
CN201510447054.7A 2015-07-27 2015-07-27 部分短程硝化‑同步污泥发酵、反硝化、厌氧氨氧化工艺处理低碳氮比生活污水的方法 Active CN104986856B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510447054.7A CN104986856B (zh) 2015-07-27 2015-07-27 部分短程硝化‑同步污泥发酵、反硝化、厌氧氨氧化工艺处理低碳氮比生活污水的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510447054.7A CN104986856B (zh) 2015-07-27 2015-07-27 部分短程硝化‑同步污泥发酵、反硝化、厌氧氨氧化工艺处理低碳氮比生活污水的方法

Publications (2)

Publication Number Publication Date
CN104986856A true CN104986856A (zh) 2015-10-21
CN104986856B CN104986856B (zh) 2017-04-26

Family

ID=54298783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510447054.7A Active CN104986856B (zh) 2015-07-27 2015-07-27 部分短程硝化‑同步污泥发酵、反硝化、厌氧氨氧化工艺处理低碳氮比生活污水的方法

Country Status (1)

Country Link
CN (1) CN104986856B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105695321A (zh) * 2016-01-29 2016-06-22 北京交通大学 一种溶解氧智能控制缺养菌培养驯化装置及方法
CN109095733A (zh) * 2018-10-31 2018-12-28 北京安国水道自控工程技术有限公司 一种低碳氮比城市生活污水的深度脱氮装置和方法
CN109867359A (zh) * 2019-04-03 2019-06-11 北京工业大学 利用污泥发酵混合物短程硝化反硝化耦合部分厌氧氨氧化深度脱氮的方法和装置
CN109912030A (zh) * 2019-04-02 2019-06-21 北京工业大学 在aoa-sbr中实现异养与自养耦合深度脱氮同步污泥减量的方法和装置
CN109912031A (zh) * 2019-04-02 2019-06-21 北京工业大学 在aoa-sbbr中实现异养耦合厌氧氨氧化深度脱氮的方法和装置
CN109912032A (zh) * 2019-04-02 2019-06-21 北京工业大学 在aoa-sbr中实现异养与自养耦合污泥减量同步脱氮除磷的方法和装置
CN112158952A (zh) * 2020-09-07 2021-01-01 北京工业大学 连续流aoa短程硝化与厌氧氨氧化耦合污泥发酵反硝化处理低碳氮比废水的装置与方法
CN113149213A (zh) * 2021-04-25 2021-07-23 北京工业大学 一种快速培养好氧颗粒污泥及处理低碳比城市污水的装置及方法
CN113880251A (zh) * 2021-09-26 2022-01-04 北京工业大学 利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法和装置
CN115043487A (zh) * 2022-05-26 2022-09-13 北京工业大学 一种基于a/o/a运行方式实现晚期垃圾渗滤液与污泥发酵液联合深度脱氮的方法和装置
CN115321666A (zh) * 2022-09-12 2022-11-11 北京工业大学 利用污泥发酵强化内碳源贮存联合内源短程反硝化-厌氧氨氧化处理城市污水的装置和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07308688A (ja) * 1994-03-23 1995-11-28 Japan Organo Co Ltd 生物学的処理装置
CN103058374A (zh) * 2013-01-05 2013-04-24 北京工业大学 污泥发酵同步反硝化耦合自养脱氮处理高氨氮短程硝化出水的方法
CN103121752A (zh) * 2013-01-05 2013-05-29 北京工业大学 污泥发酵与反硝化耦合厌氧氨氧化处理城市污水硝化液的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07308688A (ja) * 1994-03-23 1995-11-28 Japan Organo Co Ltd 生物学的処理装置
CN103058374A (zh) * 2013-01-05 2013-04-24 北京工业大学 污泥发酵同步反硝化耦合自养脱氮处理高氨氮短程硝化出水的方法
CN103121752A (zh) * 2013-01-05 2013-05-29 北京工业大学 污泥发酵与反硝化耦合厌氧氨氧化处理城市污水硝化液的方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105695321A (zh) * 2016-01-29 2016-06-22 北京交通大学 一种溶解氧智能控制缺养菌培养驯化装置及方法
CN109095733A (zh) * 2018-10-31 2018-12-28 北京安国水道自控工程技术有限公司 一种低碳氮比城市生活污水的深度脱氮装置和方法
CN109912030A (zh) * 2019-04-02 2019-06-21 北京工业大学 在aoa-sbr中实现异养与自养耦合深度脱氮同步污泥减量的方法和装置
CN109912031A (zh) * 2019-04-02 2019-06-21 北京工业大学 在aoa-sbbr中实现异养耦合厌氧氨氧化深度脱氮的方法和装置
CN109912032A (zh) * 2019-04-02 2019-06-21 北京工业大学 在aoa-sbr中实现异养与自养耦合污泥减量同步脱氮除磷的方法和装置
CN109867359B (zh) * 2019-04-03 2021-11-26 北京工业大学 利用污泥发酵混合物短程硝化反硝化耦合部分厌氧氨氧化深度脱氮的方法和装置
CN109867359A (zh) * 2019-04-03 2019-06-11 北京工业大学 利用污泥发酵混合物短程硝化反硝化耦合部分厌氧氨氧化深度脱氮的方法和装置
CN112158952A (zh) * 2020-09-07 2021-01-01 北京工业大学 连续流aoa短程硝化与厌氧氨氧化耦合污泥发酵反硝化处理低碳氮比废水的装置与方法
CN113149213A (zh) * 2021-04-25 2021-07-23 北京工业大学 一种快速培养好氧颗粒污泥及处理低碳比城市污水的装置及方法
CN113149213B (zh) * 2021-04-25 2024-04-05 北京工业大学 一种快速培养好氧颗粒污泥及处理低碳氮比城市污水的装置及方法
CN113880251A (zh) * 2021-09-26 2022-01-04 北京工业大学 利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法和装置
CN113880251B (zh) * 2021-09-26 2023-10-10 北京工业大学 利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法和装置
CN115043487A (zh) * 2022-05-26 2022-09-13 北京工业大学 一种基于a/o/a运行方式实现晚期垃圾渗滤液与污泥发酵液联合深度脱氮的方法和装置
CN115321666A (zh) * 2022-09-12 2022-11-11 北京工业大学 利用污泥发酵强化内碳源贮存联合内源短程反硝化-厌氧氨氧化处理城市污水的装置和方法
CN115321666B (zh) * 2022-09-12 2023-10-10 北京工业大学 利用污泥发酵强化内碳源贮存联合内源短程反硝化-厌氧氨氧化处理城市污水的装置和方法

Also Published As

Publication number Publication date
CN104986856B (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
CN104986856B (zh) 部分短程硝化‑同步污泥发酵、反硝化、厌氧氨氧化工艺处理低碳氮比生活污水的方法
CN108675450B (zh) 一种实现城市污水高效低耗脱氮除磷的装置和方法
CN108545830B (zh) 一种利用污泥发酵强化连续流城市污水部分短程硝化厌氧氨氧化的工艺
CN102557356B (zh) 半短程硝化/厌氧氨氧化城市污水脱氮除磷工艺和方法
CN103833185B (zh) 基于能量回收的垃圾渗滤液自养脱氮方法
CN103058461B (zh) 强化能量回收的城市污水短程硝化+厌氧氨氧化脱氮方法
CN109574218B (zh) 短程硝化-发酵/反硝化-厌氧氨氧化工艺处理晚期垃圾渗滤液的装置与方法
CN102101745B (zh) 污泥发酵耦合反硝化处理污泥消化液的控制装置与方法
CN107162186B (zh) 一种基于颗粒污泥的城市污水厌氧氨氧化自养脱氮的装置和方法
CN103086511B (zh) 污泥发酵强化城市污水脱氮除磷的方法
CN113233597B (zh) 一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的方法
CN107512774B (zh) 前置短程反硝化-厌氧氨氧化处理低c/n城市污水的装置与方法
CN103693813B (zh) 一种强化污泥消化并同步脱氮除磷的装置和方法
CN104129853B (zh) 一种快速短程硝化的启动方法
CN102583883B (zh) 分段并联厌氧氨氧化处理城市污水的工艺和方法
CN113233592B (zh) 一种实现晚期垃圾渗滤液与生活污水同步深度脱氮除碳的处理装置与方法
CN113402021A (zh) 原位污泥水解酸化耦合短程反硝化厌氧氨氧化一体化实现污水脱氮及污泥减量的装置与方法
CN101264979B (zh) 一种低温条件下实现短程深度脱氮的方法
CN113461145A (zh) 污水处理厂二级出水深度脱氮同步污泥减量的装置和方法
CN105217882A (zh) 好氧吸磷与半短程硝化耦合厌氧氨氧化双颗粒污泥系统深度脱氮除磷的方法
US20230100166A1 (en) Device and method for treating urban domestic sewage based on two-stage combined process of partial denitrification-anammox
CN111410310A (zh) 一种利用同步短程硝化反硝化-厌氧氨氧化耦合驱动实现高效脱氮的方法
CN113233594A (zh) 低氧曝气aoa-sbbr短程硝化厌氧氨氧化耦合反硝化除磷一体化城市污水处理方法
CN113716693A (zh) 一种基于厌氧-好氧-缺氧运行对垃圾渗滤液深度脱氮的装置与方法
CN112479361A (zh) 一种深度处理含盐废水的装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant