WO2023151300A1 - 一种同步处理高氨氮废水和剩余污泥的装置和方法 - Google Patents

一种同步处理高氨氮废水和剩余污泥的装置和方法 Download PDF

Info

Publication number
WO2023151300A1
WO2023151300A1 PCT/CN2022/125253 CN2022125253W WO2023151300A1 WO 2023151300 A1 WO2023151300 A1 WO 2023151300A1 CN 2022125253 W CN2022125253 W CN 2022125253W WO 2023151300 A1 WO2023151300 A1 WO 2023151300A1
Authority
WO
WIPO (PCT)
Prior art keywords
sbr
sludge
water
tank
nitrogen
Prior art date
Application number
PCT/CN2022/125253
Other languages
English (en)
French (fr)
Inventor
王博
李笑迪
马雨晴
江潭
王硕
汪文
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2023151300A1 publication Critical patent/WO2023151300A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/307Nitrification and denitrification treatment characterised by direct conversion of nitrite to molecular nitrogen, e.g. by using the Anammox process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/15N03-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/38Gas flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1263Sequencing batch reactors [SBR]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/282Anaerobic digestion processes using anaerobic sequencing batch reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention belongs to the technical field of excess sludge biochemical treatment and sewage treatment, and relates to a device and method for synchronously treating high-ammonia nitrogen wastewater and excess sludge.
  • nitrification is a process in which ammonia oxidizing bacteria convert NH 4 + -N into NO 2 ⁇ -N and finally into NO 3 ⁇ -N.
  • Anaerobic ammonium oxidation refers to the biological oxidation process in which microorganisms use NH 4 + -N as electron donor and NO 2 ⁇ -N as electron acceptor to produce N 2 and NO 3 ⁇ -N under anaerobic conditions.
  • NO 2 ⁇ -N is not easy to obtain in sewage, and short-range nitrification is usually used to obtain NO 2 ⁇ -N.
  • the short-cut nitrification-anammox process is considered to be the most economical and effective denitrification process for treating high ammonia nitrogen wastewater or low C/N wastewater, which can save 40% of aeration volume and 100% of carbon source, and has the advantages of low energy consumption, low Advantages such as cost, but it will produce part of NO 3 ⁇ -N, which needs further treatment.
  • Denitrification reaction refers to the process in which denitrifying bacteria reduce NO 3 — -N and NO 2 — —N to N 2 under anoxic conditions, and this process needs to consume carbon sources.
  • the C/N of most urban sewage in my country is relatively low, and the lack of carbon sources is an important reason why the total nitrogen of the effluent in the field of sewage technology does not meet the standard.
  • Sewage treatment plants often use additional carbon sources (such as methanol, etc.) as supplementary carbon sources, but these methods will increase operating costs.
  • VFAs volatile fatty acids
  • the present invention provides a device and method for synchronously treating high-ammonia-nitrogen wastewater and excess sludge, belonging to the technical field of excess sludge biochemical treatment and sewage treatment.
  • the present invention does not require a special start-up strategy for the coupled denitrification of excess sludge fermentation, and the coupled denitrification of sludge fermentation can maintain long-term stable operation. While realizing the reduction and stabilization of excess sludge, it can also realize resource utilization and high ammonia nitrogen Advanced treatment of wastewater.
  • a device for synchronously treating high-ammonia nitrogen wastewater and excess sludge characterized in that the device includes: a raw water tank (1), a raw water inlet pump (2), a first SBR (3), an aeration pan (4), a second One SBR agitator (5), the first ORP probe (6), the first pH probe (7), the first dissolved oxygen probe (DO) (8), the first outlet pump (9), the first sludge pump ( 10), intermediate water tank (13), excess sludge storage tank (37), sludge storage tank (11), mud inlet pump (12), water inlet pump (14), second SBR (15), second SBR agitator (16), heating rod (39), second ORP probe (17), second pH probe (18), gas flow meter (19), air bag (20), second water outlet pump (21), two-phase separation Device (23), water outlet tank (22), second mud discharge pump (40), mud discharge tank (24).
  • the raw water tank (1) is an open box, connected to the first water inlet (27) of the first SBR (3) through the raw water inlet pump (2), and the first SBR (3) is equipped with an aeration pan ( 4), the first SBR agitator (5), the first ORP probe (6), the first pH probe (7), the first dissolved oxygen probe (DO) (8), the drain valve (28) and the sludge discharge valve ( 29).
  • the first ORP probe (6) is connected to the first water quality analysis multi-parameter detector (44), the first pH probe (7), the first dissolved oxygen probe (DO) (8) is connected to the second water quality analysis multi-parameter detector (45).
  • the first SBR (3) is connected with the second SBR (15) through the intermediate water tank (13) and the mud storage tank (11).
  • the middle water tank (13) is an airtight casing, and the second water inlet (35) place is filled with N 2 to discharge air.
  • a part of the sludge in the sludge storage tank (11) is the sludge discharged from the first SBR (3), and a part is taken from the excess sludge of the secondary settling tank, which is stored in the excess sludge storage tank (37).
  • the second SBR (15) is a closed reactor, and the second SBR stirrer (16) is installed in the hole above the airtight cover, and the second SBR (15) is equipped with a heating rod (39), a second ORP probe (17) , a second pH probe (18), a gas flow meter (19), and an air bag (20).
  • the second ORP probe (17) is connected to the third multi-parameter analyzer for water quality analysis (42), and the second pH probe (18) is connected to the fourth multi-parameter analyzer for water quality analysis (43).
  • the drain valve (32) of the second SBR (15) is connected with the two-phase separation device (23) through the second outlet pump (21).
  • the two-phase separation device (23) is respectively connected to the mud discharge tank (24) through the second mud discharge pump (40), and connected to the water discharge tank (22) through the second water outlet pump (41).
  • the details are as follows: put the short-range nitrification coupled anammox sludge into the first SBR (3), use artificially synthesized wastewater as the raw water, in which the concentration of NH 4 + -N is 1700-1900 mg/L, and put the raw water in the raw water tank (1)
  • the synthetic waste water is injected into the first SBR (3), ensuring that the sludge concentration in the first SBR (3) is 3000-4000 mg/L.
  • the operation cycle is: control water intake for 5-10 minutes, anoxic agitation for 30-60 minutes, aerobic aeration for 6-8 hours, DO at 0.1-0.5 mg/L, anoxic agitation for 20-30 hours, precipitation for 30 minutes, and drainage for 5-10 minutes ,
  • the drainage ratio is 20%-60%
  • the hydraulic retention time is 60-70h
  • the sludge needs to be discharged and the sludge retention time is controlled to 10-20d.
  • the first SBR (3) After the first SBR (3) enters the water, it first anaerobically stirs to remove the remaining NO 3 ⁇ -N after drainage in the previous cycle, and then converts part of the NH 4 + -N in the incoming water into NO by short-range nitrification through aerobic aeration 2 ⁇ -N, so that the mass concentration ratio of NH 4 + -N to NO 2 ⁇ -N is 1:1-1:1.32; finally, the anammox bacteria use the NO 2 ⁇ produced by short-cut nitrification under the condition of anoxic stirring N and the remaining NH 4 + -N in the influent undergo anaerobic ammonium oxidation to generate 100-220mg/L nitrate nitrogen at the same time.
  • the removal rate of NH 4 + -N in the effluent reaches more than 90% and lasts for more than half a month, it is considered that the short-range nitrification coupled with anammox is successfully started.
  • the volume of the sludge-water mixture at the end of each cycle is 90% of the working volume, and the remaining 10% is used as the inoculation sludge for the next cycle.
  • the volume of the sludge-water mixture at the beginning of each cycle is 90% of the working volume, so that the sludge concentration is 8000-10000mg/L , the concentration of nitrate nitrogen is 150mg/L.
  • the first SBR is connected in series with the second SBR. After the first SBR and the second SBR are started successfully, connect them in series, and part of the sludge in the sludge storage tank (11) is the sludge discharged from the first SBR (3), and part of it is taken from the secondary settling tank of a certain urban sewage treatment plant.
  • the remaining sludge pool (37), the volume ratio of the two is 1:8-1:9; the middle water tank (13) is the effluent of the first SBR.
  • the remaining sludge in the mud storage tank (11) is pumped into the second SBR (15), while the first SBR (3) effluent is pumped into the second SBR (15) through the intermediate water tank (13), so that the second The sludge concentration in SBR (15) is 8000-10000mg/L, and the initial pH is adjusted to 6.5-7.5.
  • the pH is not controlled during the reaction, and the oxygen is filled with N2 for 10min.
  • Two SBR stirrers (16) stir continuously. Control the mud-water mixture for 5 minutes, anoxic stirring for 70-80 hours, and discharge the mud-water mixture for 5 minutes.
  • the volume of the mud-water mixture at the end of each cycle is 90% of the working volume, and the volume of the mud-water mixture at the beginning of each cycle is 90% of the working volume, so that the sludge concentration is 8000-10000mg/L.
  • the final effluent removal rate of nitrate nitrogen in the second SBR reaches more than 90%, and the sludge reduction is about 20%-30%, it is considered that the series connection is successful.
  • the denitrification of high ammonia nitrogen wastewater and the promotion of fermentation of excess sludge and deep denitrification of sewage are realized.
  • a device and method for synchronously treating high-ammonia-nitrogen wastewater and excess sludge is provided.
  • the process is as follows: firstly, the high-ammonia-nitrogen wastewater undergoes short-range nitrification to convert part of NH 4 + -N into NO 2 ⁇ -N, At the same time, the anammox bacteria use the NO 2 ⁇ -N produced by short-range nitrification and the NH 4 + -N in the influent to perform anaerobic ammonium oxidation, remove the ammonia nitrogen in the raw water, and generate nitrate nitrogen at the same time.
  • the nitrifying liquid enters the excess sludge fermentation coupling denitrification reactor and mixes with the excess sludge.
  • the presence of nitrate nitrogen promotes the fermentation of excess sludge and produces more carbon sources.
  • denitrification The bacteria use the carbon source produced by the remaining sludge to reduce the nitrate nitrogen produced by short-range nitrification coupled with anammox oxidation to nitrogen gas, so as to realize the deep denitrification of sewage.
  • the present invention has the following advantages:
  • Fig. 1 is device structural diagram of the present invention:
  • a device for synchronously treating high-ammonia-nitrogen wastewater and excess sludge includes: a raw water tank (1), a raw water inlet pump (2), a first SBR (3), an aeration pan (4), and a first SBR agitator (5) , the first ORP probe (6), the first pH probe (7), the first dissolved oxygen probe (DO) (8), the first water outlet pump (9), the first mud pump (10), the intermediate water tank (13 ), excess sludge storage tank (37), sludge storage tank (11), mud inlet pump (12), water inlet pump (14), second SBR (15), second SBR agitator (16), heating rod ( 39), second ORP probe (17), second pH probe (18), gas flow meter (19), air bag (20), second water outlet pump (21), two-phase separation device (23), water outlet tank (22), the second mud discharge pump (40), mud discharge tank (24).
  • the first SBR device is made of acrylic material, with an effective volume of 5L and a drainage ratio of 50%.
  • the operating cycle is: water intake (0.1h), anoxic agitation (1h), aerobic aeration (7h), DO kept at 0.25mg/L, anoxic stirring (24h), sedimentation (0.25h), drainage (0.1h), hydraulic retention time 60-70h, need to discharge sludge, control sludge retention time 15-20d.
  • anoxic stirring is carried out.
  • the denitrifying bacteria in the reactor use the carbon source in the raw water to reduce the remaining NO 3 ⁇ -N to N 2 , and the anoxic stirring time is judged by the change of pH ; Then turn on the aeration and control the dissolved oxygen at 0.1-0.5mg/L through the water quality analysis multi-parameter analyzer.
  • the ammonia oxidizing bacteria use the NH 4 + -N in the raw water to perform a partial short-range nitrification reaction, Convert part of the NH 4 + -N in the influent into NO 2 ⁇ -N so that the mass concentration ratio of NH 4 + -N to NO 2 ⁇ -N is 1:1-1:1.32; close the aeration to reduce DO to 0mg/L, under the condition of anoxic stirring, the anammox bacteria use the remaining part of NH 4 + -N and NO 2 ⁇ -N to generate N 2 and produce part of NO 3 ⁇ -N; finally enter the sedimentation stage, and the mud and water are separated Finally, open the drain valve to allow the supernatant to enter the intermediate tank.
  • the removal rate of NH 4 + -N in the effluent reaches over 90% and the accumulated concentration of NO 3 ⁇ -N in the effluent is 100-220 mg/L and lasts for more than 15 days. Part of the short-range nitrification coupled with anammox has been successfully started.
  • the decontaminated sludge is used as the inoculum, the volume is 10% of the second SBR, (no need to add after start-up) into the second SBR, the second SBR device is made of acrylic material, and the effective volume is 3L.
  • the remaining sludge from the secondary settling tank is used as the fermentation substrate and 150mg/L nitrate-nitrogen wastewater of artificially synthesized wastewater is pumped into the second SBR at the same time, the sludge concentration is maintained at 8000-10000mg/L, and the initial pH is adjusted to 6.5-7.5.
  • the pH is not controlled in the medium, and the oxygen is removed by filling with N 2 for 5-10min, and it is continuously stirred under the anoxic condition of 35 ⁇ 2°C until the denitrification of NO 3 - -N is completed.
  • the operation cycle is: feed mud-water mixture (0.4h), anoxic stirring (72h), discharge mud-water mixture (0.1h), hydraulic retention time is 48-72h.
  • the volume of the sludge-water mixture at the end of each cycle is 90% of the working volume, and the remaining 10% is used as the inoculation sludge for the next cycle.
  • the volume of the sludge-water mixture at the beginning of each cycle is 90% of the working volume, so that the sludge concentration is 8000-10000mg/L , the concentration of nitrate nitrogen is 150mg/L.
  • the removal rate of NO 3 - -N and TN in the effluent reaches over 90% and lasts for more than half a month, and the sludge fermentation coupled with denitrification starts successfully.
  • the first SBR is connected in series with the second SBR. After the first SBR and the second SBR are started successfully, connect them in series, and part of the sludge in the sludge storage tank (11) is the sludge discharged from the first SBR (3), and part of it is taken from the secondary settling tank of a certain urban sewage treatment plant.
  • the excess sludge tank (37) in the secondary settling tank and the sludge discharged from the first SBR are used as fermentation substrates, the volume ratio of the two is 8:1-9:1, and the first SBR in the middle tank (13) is SBR out of the water. After the first SBR enters the water, anoxic stirring is carried out.
  • the denitrifying bacteria in the reactor use the carbon source in the raw water to reduce the remaining NO 3 ⁇ -N to N 2 , and the anoxic stirring time is judged by the change of pH ; Then turn on the aeration and control the dissolved oxygen at 0.1-0.5mg/L through the water quality analysis multi-parameter analyzer.
  • the ammonia oxidizing bacteria use the NH 4 + -N in the raw water to perform a partial short-range nitrification reaction, Convert part of the NH 4 + -N in the influent to NO 2 ⁇ -N, so that the mass concentration ratio of NH 4 + -N and NO 2 ⁇ -N is 1:1-1:1.32; close the aeration to reduce DO to 0mg/L, under the condition of anoxic stirring, the anammox bacteria use the remaining part of NH 4 + -N and NO 2 ⁇ -N to generate N 2 and produce part of NO 3 ⁇ -N; finally enter the sedimentation stage, and the mud and water are separated Finally, open the drain valve to allow the supernatant to enter the intermediate tank.
  • the effluent of the first SBR in the intermediate water tank and the sludge in the sludge storage tank are pumped into the second SBR at the same time, the sludge concentration is maintained at 8000-10000mg/L, and the initial pH is adjusted to 6.5-7.5.
  • the pH is not controlled during the reaction.
  • -10min N 2 to remove oxygen, and keep stirring under the anoxic condition of 35 ⁇ 2°C until the denitrification of NO 3 - -N is completed.
  • the operation cycle is: feed mud-water mixture (0.4h), anoxic stirring (72h), discharge mud-water mixture (0.1h), hydraulic retention time is 48-72h.
  • the volume of the sludge-water mixture at the end of each cycle is 90% of the working volume, and the remaining 10% is used as the inoculation sludge for the next cycle.
  • the volume of the sludge-water mixture at the beginning of each cycle is 90% of the working volume, so that the sludge concentration is 8000-10000mg/L , the concentration of nitrate nitrogen is 150mg/L.
  • the final effluent removal rate of nitrate nitrogen in the second SBR reaches over 90%, and the sludge volume is reduced by about 20%-30%.
  • the series connection is successful. After running for four cycles, the effect is good, and finally the denitrification of high ammonia nitrogen wastewater and the promotion of fermentation of excess sludge and deep denitrification of sewage are realized.
  • a device for synchronously treating high-ammonia-nitrogen wastewater and excess sludge The final effluent ammonia nitrogen concentration is 50-70mg/L, the pH value is 7.0-7.2, the COD value is 200-300mg/L, and the sludge volume is reduced by about 20%-30%. .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

一种同步处理高氨氮废水和剩余污泥的装置和方法,属于剩余污泥生化处理与污水处理领域。涉及装置有:原水箱、第一SBR、中间水箱、储泥池、第二SBR。高氨氮废水进入第一SBR进行短程硝化耦合厌氧氨氧化,短程硝化将部分氨氮转化为亚硝态氮,剩余氨氮与亚硝态氮经厌氧氨氧化作用生成氮气并产生部分硝态氮;第一SBR出水与储泥池中的剩余污泥同步泵入第二SBR,在第二SBR中反硝化菌利用剩余污泥发酵产生的有机物作为碳源,将硝态氮还原为氮气,实现剩余污泥资源化及反硝化深度脱氮。本发明在对高氨氮废水采用新型自养生物脱氮工艺后,再同步污泥厌氧发酵,真正实现了污水的深度脱氮和剩余污泥的资源化处理,节省脱氮成本。

Description

一种同步处理高氨氮废水和剩余污泥的装置和方法 技术领域:
本发明属于剩余污泥生化处理与污水处理技术领域,涉及了一种同步处理高氨氮废水和剩余污泥的装置和方法。先通过接种污泥实现短程硝化耦合厌氧氨氧化的稳定运行,完成高氨氮废水的脱氮,再在发酵菌和反硝化菌的作用下,实现促进剩余污泥的发酵和污水的深度脱氮。
背景技术:
污水生物脱氮时,硝化反应是通过氨氧化菌将NH 4 +-N转化为NO 2 -N最终转化为NO 3 -N的过程。厌氧氨氧化是指在厌氧条件下,微生物以NH 4 +-N为电子供体,NO 2 -N为电子受体,产生N 2和NO 3 -N的生物氧化过程。NO 2 -N在污水中不易获得,通常采用短程硝化获取NO 2 -N。短程硝化-厌氧氨氧化工艺被认为是处理高氨氮废水或低C/N废水最经济有效的脱氮工艺,能节省40%的曝气量和100%的碳源,具有能耗低、低成本等优点,然而其会产生部分NO 3 -N,需进一步处理。
反硝化反应是指在缺氧的条件下,反硝化菌将NO 3 -N和NO 2 -N还原为N 2的过程,此过程需要消耗碳源。我国大多数城镇污水C/N较低,碳源的缺乏是是污水技术领域出水总氮不达标的重要原因。污水处理厂常采用投加外加碳源(如甲醇等)作为补充碳源,但这些方法会增加运营成本。
剩余污泥有机物含量高,性质不稳定,含水率高,常用处理方法如厌氧发酵可实现污泥的资源化、稳定化和减量化。剩余污泥厌氧发酵一般分为5个步骤:破解、水解、酸化、产乙酸、同型产乙酸过程,通常污泥破解和水解被认为是剩余污泥厌氧发酵的限速步骤。挥发性脂肪酸(VFAs)作为厌氧发酵的中间产物,是微生物可利用的优质碳源之一,可以解决污水处理中碳源不足的问题,但提取发酵液需要消耗能源和成本。
发明内容:
基于以上原因,本发明提供了一种同步处理高氨氮废水和剩余污泥的装置和方法,属于剩余污泥生化处理与污水处理技术领域。本发明剩余污泥发酵耦合反硝化不需特殊的启动策略,污泥发酵耦合反硝化可维持长期稳定运行,在实现剩余污泥减量化、稳定化的同时,还能实现资源化以及高氨氮废水的深度处理。
一种同步处理高氨氮废水和剩余污泥的装置,其特征在于,该装置包括:原水箱(1)、原水进水泵(2)、第一SBR(3)、曝气盘(4)、第一SBR搅拌器(5)、第一ORP探头(6)、第一pH探头(7)、第一溶解氧探头(DO)(8)、第一出水泵(9)、第一排泥泵(10)、中间水箱(13)、剩余污泥储存箱(37)、储泥池(11)、进泥泵(12)、进水泵(14)、第二SBR(15)、第二SBR搅拌器(16)、加热棒(39)、第二ORP探头(17)、第二pH探头(18)、气体流量计(19)、气袋(20)、第二出水泵(21)、两相分离装置(23)、出水箱(22)、第二排泥泵(40)、排泥池(24)。
所述原水箱(1)为敞口箱体,通过原水进水泵(2)与第一SBR(3)的第一进水口(27)相连接,第一SBR(3)配备有曝气盘(4)、第一SBR搅拌器(5)、第一ORP探头(6)、第一pH探头(7)、第一溶解氧探头(DO)(8)和排水阀门(28)和排泥阀门(29)。第一ORP探头(6)连接到第一水质分析多参数测定仪(44)、第一pH探头(7)、第一溶解氧探头(DO)(8)连接到第二水质分析多参数测定仪(45)。第一SBR(3)通过中间水箱(13)和储泥池(11)与第二SBR(15)相连。中间水箱(13)为一密闭箱体,在第二进水口(35)处充N 2以排出空气。储泥池(11)内一部分污泥为第一SBR(3)排出污泥,一部分取自二沉池的剩余污泥,储存在剩余污泥储存箱(37)。所述第二SBR(15)为密闭反应器,密闭盖上方留孔装有第二SBR搅拌器(16),第二SBR(15)配备有加热棒(39)、第二ORP探头(17)、第二pH探头(18)、气体流量计(19)、气袋(20)。第二ORP探头(17)连接到第三水质分析多参数测定仪(42)、第二pH探头(18)连接到第四水质 分析多参数测定仪(43)。第二SBR(15)排水阀(32)通过第二出水泵(21)与两相分离装置(23)相连。两相分离装置(23)分别通过第二排泥泵(40)与排泥池(24)相连,通过第二出水泵(41)与出水池(22)相连。
应用所述装置进行同步处理高氨氮废水和剩余污泥的方法,其特征在于,包括以下步骤:
(1)启动第一SBR。具体如下:取短程硝化耦合厌氧氨氧化污泥投入第一SBR(3),以人工合成废水作为原水,其中NH 4 +-N浓度为1700-1900mg/L,将原水箱(1)中的人工合成废水注入第一SBR(3),确保第一SBR(3)内污泥浓度为3000-4000mg/L。运行周期为:控制进水5-10min,缺氧搅拌30-60min,好氧曝气6-8h,DO保持在0.1-0.5mg/L,缺氧搅拌20-30h,沉淀30min,排水5-10min,排水比为20%-60%,水力停留时间60-70h,需要排泥,控制污泥停留时间10-20d。第一SBR(3)进水后先厌氧搅拌,将上周期排水后剩余NO 3 -N去除,再经好氧曝气利用短程硝化作用将进水的部分NH 4 +-N转化为NO 2 -N,使得NH 4 +-N与NO 2 -N质量浓度比为1:1-1:1.32;最后厌氧氨氧化菌在缺氧搅拌条件下利用短程硝化产生的NO 2 -N和进水中剩余的NH 4 +-N进行厌氧氨氧化作用,同时生成100-220mg/L硝态氮。当出水中NH 4 +-N去除率达到90%以上且持续维持半个月以上时,认为短程硝化耦合厌氧氨氧化启动成功。
(2)启动第二SBR。具体如下:以消化污泥作为接种物,体积为第二SBR的10%,(启动以后不再添加),二沉池剩余污泥作为发酵底物与人工合成废水150mg/L的硝氮废水同时泵入第二SBR(15),使污泥浓度为8000-10000mg/L,并将初始pH调至6.5-7.5,反应中不控制pH,充10min N 2去除氧气,在35±2℃的缺氧条件下不断搅拌。运行周期为:进泥水混合物5min,缺氧搅拌70-80h,排泥水混合物5min。每周期末尾排泥水混合物体积为工作体积的90%,剩余的10%作为下周期的接种污泥,每周期初进泥水混合物体积为工作体积的90%,使得污泥浓度为8000-10000mg/L,硝氮浓度为150mg/L。当出水中NO 3 -N及TN去除率达到90%以上且持续维持半个 月以上时,认为污泥发酵耦合反硝化启动成功。
(3)第一SBR与第二SBR串联。第一SBR和第二SBR分别启动成功后,将两者串联起来,储泥池(11)内污泥一部分为第一SBR(3)排出污泥,一部分取自某城镇污水处理厂二沉池的剩余污泥池(37),二者体积比例为1:8-1:9;中间水箱(13)内为第一SBR的出水。首先将原水箱(1)中的人工合成废水注入第一SBR(3),确保第一SBR(3)内污泥浓度为3000-4000mg/L,控制进水5-10min,缺氧搅拌30-60min,好氧曝气6-8h,DO保持在0.1-0.5mg/L,缺氧搅拌20-30h,沉淀30min,排水5-10min,排水比为20%-60%,水力停留时间60-70h,需要排泥,控制污泥停留时间10-20d。然后将储泥池(11)内剩余污泥泵入第二SBR(15)中,同时将第一SBR(3)出水经中间水箱(13)泵入第二SBR(15)中,使第二SBR(15)内污泥浓度为8000-10000mg/L,并将初始pH调至6.5-7.5,反应中不控制pH,充10min N 2去除氧气,在缺氧35±2℃的条件下用第二SBR搅拌器(16)不断搅拌。控制进泥水混合物5min,缺氧搅拌70-80h,排泥水混合物5min。每周期末尾排泥水混合物体积为工作体积的90%,每周期初进泥水混合物体积为工作体积的90%,使得污泥浓度为8000-10000mg/L。当第二SBR中硝氮最终出水去除率达到90%以上,达到污泥减量约20%-30%,认为串联成功。最终实现对高氨氮废水的脱氮以及促进剩余污泥发酵和污水的深度脱氮。
综上所述,提供的一种同步处理高氨氮废水和剩余污泥的装置和方法,其流程如下:高氨氮废水先经短程硝化作用将部分NH 4 +-N转化为NO 2 -N,同时厌氧氨氧化菌利用短程硝化产生的NO 2 -N和进水中的NH 4 +-N进行厌氧氨氧化作用,去除原水中的氨氮,同时生成硝态氮。稳定运行后硝化液进入剩余污泥发酵耦合反硝化反应器,与剩余污泥混合,一方面硝态氮的存在促进了剩余污泥的发酵,产生了更多碳源,另一方面,反硝化菌利用剩余污泥产生的碳源,将短程硝化耦合厌氧氨氧化产生的硝态氮还原为氮气,实现污水的深度脱氮。
与现有技术相比,本发明具有以下优点:
(1)在对高氨氮废水采用新型自养生物脱氮工艺后,再同步污泥厌氧发酵,真正意义上实现了污水的深度脱氮。
(2)剩余污泥发酵耦合反硝化不需特殊的启动策略,污泥发酵耦合反硝化可维持长期稳定运行,实现剩余污泥的稳定化处理。
(3)在实现剩余污泥减量化、稳定化的同时,还能实现剩余污泥的资源化处理,节省脱氮成本。
附图说明:
图1为本发明的装置结构图:
一种同步处理高氨氮废水和剩余污泥的装置包括:原水箱(1)、原水进水泵(2)、第一SBR(3)、曝气盘(4)、第一SBR搅拌器(5)、第一ORP探头(6)、第一pH探头(7)、第一溶解氧探头(DO)(8)、第一出水泵(9)、第一排泥泵(10)、中间水箱(13)、剩余污泥储存箱(37)、储泥池(11)、进泥泵(12)、进水泵(14)、第二SBR(15)、第二SBR搅拌器(16)、加热棒(39)、第二ORP探头(17)、第二pH探头(18)、气体流量计(19)、气袋(20)、第二出水泵(21)、两相分离装置(23)、出水箱(22)、第二排泥泵(40)、排泥池(24)。
具体实施方式:
参照图1所示的试验装置,按照如下步骤实现同步处理高氨氮废水和促进剩余污泥发酵:
(1)启动第一SBR。取短程硝化耦合厌氧氨氧化污泥投入第一SBR,以人工合成废水作为原水,具体试验原水采用人工合成废水,具体指标为:NH 4 +-N=1600-1800mg/L,NO 2 -N≤0.5mg/L,NO 3 -N≤0.5mg/L。将原水箱中的人工合成废水注入第一SBR,确保第一SBR内污泥浓度为3000-4000mg/L。第一SBR装置由亚克力材质制成,有效体积为5L,排水比为50%, 运行周期为:进水(0.1h),缺氧搅拌(1h),好氧曝气(7h),DO保持在0.25mg/L,缺氧搅拌(24h),沉淀(0.25h),排水(0.1h),水力停留时间60-70h,需要排泥,控制污泥停留时间15-20d。第一SBR进水后进行缺氧搅拌,反应器中的反硝化菌利用原水中的碳源,将上一周期剩余的NO 3 -N还原为N 2,通过pH的变化判断缺氧搅拌时长;然后开启曝气并通过水质分析多参数测定仪控制溶解氧在0.1-0.5mg/L,在好氧曝气的条件下氨氧化菌利用原水中的NH 4 +-N进行部分短程硝化反应,将进水的部分NH 4 +-N转化为NO 2 -N,使得NH 4 +-N与NO 2 -N质量浓度比为1:1-1:1.32;关闭曝气,使DO降为0mg/L,在缺氧搅拌的条件下,厌氧氨氧化菌利用剩余部分NH 4 +-N与NO 2 -N生成N 2并产生部分NO 3 -N;最后进入沉淀阶段,泥水分离后,开启排水阀使上清液进入中间水箱。出水中NH 4 +-N去除率达到90%以上且出水NO 3 -N积累浓度为100-220mg/L且持续维持15天以上,部分短程硝化耦合厌氧氨氧化启动成功。
(2)启动第二SBR。取消化污泥作为接种物,体积为第二SBR的10%,(启动以后不再添加)投入第二SBR,第二SBR装置由亚克力材质制成,有效体积为3L。二沉池剩余污泥作为发酵底物与人工合成废水150mg/L的硝氮废水同时泵入第二SBR,维持污泥浓度为8000-10000mg/L,并将初始pH调至6.5-7.5,反应中不控制pH,充5-10min N 2去除氧气,在35±2℃的缺氧条件下不断搅拌,直至NO 3 -N反硝化完。运行周期为:进泥水混合物(0.4h),缺氧搅拌(72h),排泥水混合物(0.1h),水力停留时间为48-72h。每周期末尾排泥水混合物体积为工作体积的90%,剩余的10%作为下周期的接种污泥,每周期初进泥水混合物体积为工作体积的90%,使得污泥浓度为8000-10000mg/L,硝氮浓度为150mg/L。出水中NO 3 -N及TN去除率达到90%以上且持续维持半个月以上,污泥发酵耦合反硝化启动成功。
(3)第一SBR与第二SBR串联。第一SBR和第二SBR分别启动成功后,将两者串联起来,储泥池(11)内污泥一部分为第一SBR(3)排出污泥,一部分取自某城镇污水处理厂二沉池的剩余污泥池(37),以二沉池剩 余污泥和第一SBR的排泥作为发酵底物,二者体积比为8:1-9:1,中间水箱(13)内为第一SBR的出水。第一SBR进水后进行缺氧搅拌,反应器中的反硝化菌利用原水中的碳源,将上一周期剩余的NO 3 -N还原为N 2,通过pH的变化判断缺氧搅拌时长;然后开启曝气并通过水质分析多参数测定仪控制溶解氧在0.1-0.5mg/L,在好氧曝气的条件下氨氧化菌利用原水中的NH 4 +-N进行部分短程硝化反应,将进水的部分NH 4 +-N转化为NO 2 -N,使得NH 4 +-N与NO 2 -N质量浓度比例为1:1-1:1.32;关闭曝气,使DO降为0mg/L,在缺氧搅拌的条件下,厌氧氨氧化菌利用剩余部分NH 4 +-N与NO 2 -N生成N 2并产生部分NO 3 -N;最后进入沉淀阶段,泥水分离后,开启排水阀使上清液进入中间水箱。中间水箱内的第一SBR出水与储泥池内污泥同时泵入第二SBR,维持污泥浓度为8000-10000mg/L,并将初始pH调至6.5-7.5,反应中不控制pH,充5-10min N 2去除氧气,在35±2℃的缺氧条件下不断搅拌,直至NO 3 -N反硝化完。运行周期为:进泥水混合物(0.4h),缺氧搅拌(72h),排泥水混合物(0.1h),水力停留时间为48-72h。每周期末尾排泥水混合物体积为工作体积的90%,剩余的10%作为下周期的接种污泥,每周期初进泥水混合物体积为工作体积的90%,使得污泥浓度为8000-10000mg/L,硝氮浓度为150mg/L。运行一段时间后,第二SBR中硝氮最终出水去除率达到90%以上,污泥减量约20%-30%,串联成功。运行了四个周期后实现效果良好,最终实现了对高氨氮废水的脱氮以及促进剩余污泥发酵和污水的深度脱氮。
一种同步处理高氨氮废水和剩余污泥的装置,最终出水氨氮浓度50-70mg/L,pH值为7.0-7.2,COD值200-300mg/L,同时污泥减量约20%-30%。

Claims (2)

  1. 一种同步处理高氨氮废水和剩余污泥的装置,其特征在于,该装置包括:原水箱(1)、原水进水泵(2)、第一SBR(3)、曝气盘(4)、第一SBR搅拌器(5)、第一ORP探头(6)、第一pH探头(7)、第一溶解氧探头(DO)(8)、第一出水泵(9)、第一排泥泵(10)、中间水箱(13)、剩余污泥储存箱(37)、储泥池(11)、进泥泵(12)、进水泵(14)、第二SBR(15)、第二SBR搅拌器(16)、加热棒(39)、第二ORP探头(17)、第二pH探头(18)、气体流量计(19)、气袋(20)、第二出水泵(21)、两相分离装置(23)、出水箱(22)、第二排泥泵(40)、排泥池(24);
    所述原水箱(1)为敞口箱体,通过原水进水泵(2)与第一SBR(3)的第一进水口(27)相连接,第一SBR(3)配备有曝气盘(4)、第一SBR搅拌器(5)、第一ORP探头(6)、第一pH探头(7)、第一溶解氧探头(DO)(8)和排水阀门(28)和排泥阀门(29);第一ORP探头(6)连接到第一水质分析多参数测定仪(44)、第一pH探头(7)、第一溶解氧探头(DO)(8)连接到第二水质分析多参数测定仪(45);第一SBR(3)通过中间水箱(13)和储泥池(11)与第二SBR(15)相连;中间水箱(13)为一密闭箱体,在第二进水口(35)处充N 2以排出空气;储泥池(11)内一部分污泥为第一SBR(3)排出污泥,一部分取自二沉池的剩余污泥,储存在剩余污泥储存箱(37);所述第二SBR(15)为密闭反应器,密闭盖上方留孔装有第二SBR搅拌器(16),第二SBR(15)配备有加热棒(39)、第二ORP探头(17)、第二pH探头(18)、气体流量计(19)、气袋(20);第二ORP探头(17)连接到第三水质分析多参数测定仪(42)、第二pH探头(18)连接到第四水质分析多参数测定仪(43);第二SBR(15)排水阀(32)通过第二出水泵(21)与两相分离装置(23)相连;两相分离装置(23)分别通过第二排泥泵(40)与排泥池(24)相连,通过第二出水泵(41)与出水池(22)相连。
  2. 应用权利要求1所述装置进行同步处理高氨氮废水和剩余污泥的方法,其特征在于,包括以下步骤:
    (1)启动第一SBR;具体如下:取短程硝化耦合厌氧氨氧化污泥投入第 一SBR(3),以人工合成废水作为原水,其中NH 4 +-N浓度为1700-1900mg/L,将原水箱(1)中的人工合成废水注入第一SBR(3),确保第一SBR(3)内污泥浓度为3000-4000mg/L;运行周期为:控制进水5-10min,缺氧搅拌30-60min,好氧曝气6-8h,DO保持在0.1-0.5mg/L,缺氧搅拌20-30h,沉淀30min,排水5-10min,排水比为20%-60%,水力停留时间60-70h,需要排泥,控制污泥停留时间10-20d;第一SBR(3)进水后先厌氧搅拌,将上周期排水后剩余NO 3 -N去除,再经好氧曝气利用短程硝化作用将进水的部分NH 4 +-N转化为NO 2 -N,使得NH 4 +-N与NO 2 -N质量浓度比为1:1-1:1.32;最后厌氧氨氧化菌在缺氧搅拌条件下利用短程硝化产生的NO 2 -N和进水中剩余的NH 4 +-N进行厌氧氨氧化作用,同时生成100-220mg/L硝态氮;当出水NH 4 +-N去除率达到90%以上且持续维持半个月以上时,认为短程硝化耦合厌氧氨氧化启动成功;
    (2)启动第二SBR;具体如下:以消化污泥作为接种物,体积为第二SBR的10%,二沉池剩余污泥作为发酵底物与人工合成废水150mg/L的硝氮废水同时泵入第二SBR(15),使污泥浓度为8000-10000mg/L,并将初始pH调至6.5-7.5,反应中不控制pH,充10min N 2去除氧气,在35±2℃的缺氧条件下不断搅拌;运行周期为:进泥水混合物5min,缺氧搅拌70-80h,排泥水混合物5min;每周期末尾排泥水混合物体积为工作体积的90%,剩余的10%作为下周期的接种污泥,每周期初进泥水混合物体积为工作体积的90%,使得污泥浓度为8000-10000mg/L,硝氮浓度为150mg/L;当出水中NO 3 -N及TN去除率达到90%以上且持续维持半个月以上时,认为污泥发酵耦合反硝化启动成功;
    (3)第一SBR与第二SBR串联;第一SBR和第二SBR分别启动成功后,将两者串联起来,储泥池(11)内污泥一部分为第一SBR(3)排出污泥,一部分取自二沉池的剩余污泥池(37),二者体积比例为1:8-1:9;中间水箱(13)内为第一SBR的出水;首先将原水箱(1)中的人工合成废水注入第一SBR(3),确保第一SBR(3)内污泥浓度为3000-4000mg/L,控制进水 5-10min,缺氧搅拌30-60min,好氧曝气6-8h,DO保持在0.1-0.5mg/L,缺氧搅拌20-30h,沉淀30min,排水5-10min,排水比为20%-60%,水力停留时间60-70h,需要排泥,控制污泥停留时间10-20d;然后将储泥池(11)内剩余污泥泵入第二SBR(15)中,同时将第一SBR(3)出水经中间水箱(13)泵入第二SBR(15)中,使第二SBR(15)内污泥浓度为8000-10000mg/L,并将初始pH调至6.5-7.5,反应中不控制pH,充10min N 2去除氧气,在缺氧35±2℃的条件下用第二SBR搅拌器(16)不断搅拌;控制进泥水混合物5min,缺氧搅拌70-80h,排泥水混合物5min;每周期末尾排泥水混合物体积为工作体积的90%,每周期初进泥水混合物体积为工作体积的90%,使得污泥浓度为8000-10000mg/L。
PCT/CN2022/125253 2022-02-13 2022-10-14 一种同步处理高氨氮废水和剩余污泥的装置和方法 WO2023151300A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210131032.XA CN114477642A (zh) 2022-02-13 2022-02-13 一种同步处理高氨氮废水和剩余污泥的装置和方法
CN202210131032.X 2022-02-13

Publications (1)

Publication Number Publication Date
WO2023151300A1 true WO2023151300A1 (zh) 2023-08-17

Family

ID=81479901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125253 WO2023151300A1 (zh) 2022-02-13 2022-10-14 一种同步处理高氨氮废水和剩余污泥的装置和方法

Country Status (3)

Country Link
CN (1) CN114477642A (zh)
LU (1) LU503536B1 (zh)
WO (1) WO2023151300A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477642A (zh) * 2022-02-13 2022-05-13 北京工业大学 一种同步处理高氨氮废水和剩余污泥的装置和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342522A (en) * 1991-11-18 1994-08-30 Tauw Milieu B.V. Method for the treatment of sewage
CN103011407A (zh) * 2012-12-03 2013-04-03 北京工业大学 初沉污泥内碳源开发强化城市污水脱氮的装置与方法
CN103663879A (zh) * 2013-12-24 2014-03-26 北京工业大学 一种污泥发酵同步处理高氨氮废水的装置和方法
CN108439595A (zh) * 2018-04-04 2018-08-24 北京工业大学 利用污泥发酵物实现污水部分短程硝化-Anammox/反硝化的方法
CN113800636A (zh) * 2021-09-26 2021-12-17 北京工业大学 短程硝化/厌氧氨氧化-发酵耦合短程反硝化/厌氧氨氧化处理污泥消化液的方法和装置
CN113880251A (zh) * 2021-09-26 2022-01-04 北京工业大学 利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法和装置
CN114477642A (zh) * 2022-02-13 2022-05-13 北京工业大学 一种同步处理高氨氮废水和剩余污泥的装置和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103214156B (zh) * 2013-04-01 2014-05-14 北京工业大学 低溶解氧条件下剩余污泥发酵耦合反硝化装置与方法
CN107162196A (zh) * 2017-07-10 2017-09-15 北京工业大学 短程硝化厌氧氨氧化耦合反硝化处理城市生活污水的方法与装置
CN109912030A (zh) * 2019-04-02 2019-06-21 北京工业大学 在aoa-sbr中实现异养与自养耦合深度脱氮同步污泥减量的方法和装置
CN112250178B (zh) * 2020-09-24 2022-04-22 北京工业大学 一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342522A (en) * 1991-11-18 1994-08-30 Tauw Milieu B.V. Method for the treatment of sewage
CN103011407A (zh) * 2012-12-03 2013-04-03 北京工业大学 初沉污泥内碳源开发强化城市污水脱氮的装置与方法
CN103663879A (zh) * 2013-12-24 2014-03-26 北京工业大学 一种污泥发酵同步处理高氨氮废水的装置和方法
CN108439595A (zh) * 2018-04-04 2018-08-24 北京工业大学 利用污泥发酵物实现污水部分短程硝化-Anammox/反硝化的方法
CN113800636A (zh) * 2021-09-26 2021-12-17 北京工业大学 短程硝化/厌氧氨氧化-发酵耦合短程反硝化/厌氧氨氧化处理污泥消化液的方法和装置
CN113880251A (zh) * 2021-09-26 2022-01-04 北京工业大学 利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法和装置
CN114477642A (zh) * 2022-02-13 2022-05-13 北京工业大学 一种同步处理高氨氮废水和剩余污泥的装置和方法

Also Published As

Publication number Publication date
LU503536B1 (en) 2023-08-18
CN114477642A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2022062616A1 (zh) 一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置
CN110015757B (zh) Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置
CN108439595B (zh) 利用污泥发酵物实现污水部分短程硝化-Anammox/反硝化的方法
CN113480004B (zh) 一种城市污水碳磷捕获后通过pda深度脱氮及实现磷回收的方法
CN109368792B (zh) 污泥双回流aoa短程硝化耦合厌氧氨氧化与内源反硝化处理城市污水的方法与装置
CN108217950B (zh) Fna强化污泥发酵及实现污水短程脱氮除磷的装置和方法
CN108585202B (zh) 序批式反应器中实现部分短程硝化、污泥发酵耦合反硝化与厌氧氨氧化处理生活污水的工艺
CN112456646B (zh) 通过异养与自养反硝化强化短程反硝化耦合厌氧氨氧化的a0a-sbr的装置和方法
CN102557356B (zh) 半短程硝化/厌氧氨氧化城市污水脱氮除磷工艺和方法
CN113800636B (zh) 短程硝化/厌氧氨氧化-发酵耦合短程反硝化/厌氧氨氧化处理污泥消化液的方法和装置
CN107032506A (zh) 分段出水短程硝化‑Anammox/反硝化处理生活污水的装置和方法
CN109574218B (zh) 短程硝化-发酵/反硝化-厌氧氨氧化工艺处理晚期垃圾渗滤液的装置与方法
WO2022242040A1 (zh) 一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的装置及方法
CN106830573A (zh) 基于强化碳捕获与厌氧氨氧化的低能耗城市污水脱氮方法
CN109354191B (zh) 一种污泥发酵强化内源反硝化的双污泥回流aoa深度脱氮方法
CN112250176A (zh) 一体化短程硝化耦合厌氧氨氧化反硝化除磷实现城市污水深度脱氮除磷的装置和方法
CN113880251B (zh) 利用污泥发酵液实现高氨氮废水深度脱氮和污泥减量的方法和装置
CN113402021A (zh) 原位污泥水解酸化耦合短程反硝化厌氧氨氧化一体化实现污水脱氮及污泥减量的装置与方法
CN109368791A (zh) 通过投加污泥发酵物实现短程反硝化厌氧氨氧化的方法
CN108585347A (zh) 一种分段进水氧化沟工艺调节低c/n城市污水的装置和方法
US20230100166A1 (en) Device and method for treating urban domestic sewage based on two-stage combined process of partial denitrification-anammox
CN102101718A (zh) 污泥水解酸化耦合反硝化装置及其处理方法
WO2023151300A1 (zh) 一种同步处理高氨氮废水和剩余污泥的装置和方法
CN115043487A (zh) 一种基于a/o/a运行方式实现晚期垃圾渗滤液与污泥发酵液联合深度脱氮的方法和装置
CN102491587A (zh) 一种早期城市垃圾渗透液的处理方法和装置