WO2022057853A1 - 除尘填料、积垢盘和气体净化装置 - Google Patents

除尘填料、积垢盘和气体净化装置 Download PDF

Info

Publication number
WO2022057853A1
WO2022057853A1 PCT/CN2021/118696 CN2021118696W WO2022057853A1 WO 2022057853 A1 WO2022057853 A1 WO 2022057853A1 CN 2021118696 W CN2021118696 W CN 2021118696W WO 2022057853 A1 WO2022057853 A1 WO 2022057853A1
Authority
WO
WIPO (PCT)
Prior art keywords
fouling
dust
plate
tray
gas
Prior art date
Application number
PCT/CN2021/118696
Other languages
English (en)
French (fr)
Inventor
彭德强
关明华
金平
梁相程
杨秀娜
于颖
阮宗琳
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司大连石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010978766.2A external-priority patent/CN114425207B/zh
Priority claimed from CN202010982283.XA external-priority patent/CN114425209B/zh
Priority claimed from CN202010980136.9A external-priority patent/CN114425208B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司大连石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to US18/245,573 priority Critical patent/US20230364545A1/en
Priority to KR1020237012918A priority patent/KR20230069993A/ko
Priority to EP21868675.6A priority patent/EP4215265A1/en
Publication of WO2022057853A1 publication Critical patent/WO2022057853A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • B01D46/12Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces in multiple arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/08Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0039Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0039Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices
    • B01D46/0041Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices for feeding
    • B01D46/0043Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices for feeding containing fixed gas displacement elements or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/48Removing dust other than cleaning filters, e.g. by using collecting trays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/56Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
    • B01D46/62Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/68Regeneration of the filtering material or filter elements inside the filter by means acting on the cake side involving movement with regard to the filter elements
    • B01D46/682Regeneration of the filtering material or filter elements inside the filter by means acting on the cake side involving movement with regard to the filter elements by nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • B01D50/20Combinations of devices covered by groups B01D45/00 and B01D46/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/006Separating solid material from the gas/liquid stream by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1872Details of the fluidised bed reactor

Definitions

  • the invention relates to the technical field of chemical engineering, and more particularly to a dust-removing filler, a fouling tray and a gas purification device.
  • Process gases are generated in most chemical processes, and at the same time, due to various industrial processes, these gases contain a large amount of dust/particulate matter, which are suspended in the air and have a serious impact on human health, life and production.
  • these gases With the increase in emission standards required by environmental regulations, it is necessary to remove solid particles and/or purify these gases before they are discharged into the environment.
  • the flue gas produced during the production of coal-fired power plants must be freed of fly ash before it leaves the stack.
  • the solid dust entrained in the gas produced in the chemical production process will lead to fouling and blockage of the device, which seriously restricts the long-term stable operation of the device.
  • the dust entrained in these gases has good adhesion and aggregation.
  • the adhesion of dust refers to the attraction between different molecules, such as the adhesion between powder particles and the wall; the cohesion of dust refers to the attraction between the same molecules, such as the adhesion between powder particles. Aggregates. Dust adhesion and agglomeration are related to the nature of dust and gas movement state. Generally, when the dust particle size is small, the shape is irregular, the surface is rough, the moisture content is high, the wettability is good and the charge capacity is large, the adhesion phenomenon is more likely to occur. For the dust formed in the coal chemical process, the three mineral elements Fe, Na and Ca, as well as factors such as the small particle size of the dust particles and the large specific surface area, cause the dust to have good adhesion.
  • the adhesion and agglomeration of dust are mainly caused by molecular force (Van der Waals force) and electrostatic force (Coulomb force) in the dry state. In the wet state, it mainly depends on the presence of moisture on the surface of the dust to form liquid bridges or solid bridges.
  • Mechanical dust removal technology is a method of dust removal using mechanical devices such as dust chambers and cyclones. This method has a good effect on dust with larger particles, but the purification efficiency is very low for particles of about 2 ⁇ m that cause haze pollution, and for fine particles, the secondary dust problem of this type of dust removal device is serious. , it cannot play an effective role in the current situation of higher and higher requirements for dust removal efficiency of fine particles.
  • Wet dust removal technology is a method of removing dust by using spray towers, water film dust collectors or Venturi dust collectors.
  • the bag-type dust removal technology has high dust removal efficiency and good tolerance to fluctuations in the particle size range of dust. Even fine dust can successfully obtain a high retention rate.
  • the pressure drop of bag filter technology is relatively large, and the dynamic load requirements for gas transmission equipment such as fans are high.
  • the current common cloth bags are difficult to withstand high temperature. For the sintering flue gas containing red-hot particles and smoldering particles in the exhaust gas, the use of cloth bags for dust removal often causes "bag burning" accidents.
  • Electrostatic dust removal technology is also a very common and efficient dust removal method at present.
  • the method first charges the dust in the gas, and then removes it from the gas flow by electric field force and fixes it on the surface of the electrode plate.
  • This method can be used for high temperature waste gas treatment, and has only a small pressure drop resistance, but its disadvantage is that there are certain requirements for the conductivity of dust and gas humidity, otherwise high dust removal rate cannot be obtained.
  • the one-time investment of this method is high and the running cost is high.
  • coal gasification process The main purpose of the coal gasification process is to improve the efficiency of coal use and provide more energy for production. For example, coal is converted into methanol or synthesis gas to promote energy use, or coal is synthesized into ammonia gas and oil and gas mixtures. So as to promote the deep utilization of coalbed methane.
  • the production process determines that the coal gasification crude syngas contains a large amount of dust, which requires multi-stage dust removal treatment to achieve gas purification. However, the dust particles generated by the coal gasification process are small, and a considerable amount of dust particles are between 0.1 ⁇ m and 1 ⁇ m.
  • a dust removal tank is installed in front of the synthesis gas conversion reactor, and the fine dust is intercepted by means of fixed bed adsorption and filtration. When the voids in the adsorption bed are filled, the pressure drop of the dust removal tank rises sharply, making the device unable to continue to operate. Downtime skimming/refurbishment not only affects the utilization of the capacity of the device, but also leads to an increase in material consumption and labor costs, affecting economic benefits.
  • One of the objectives of the present invention is to provide a dust-removing filler, so as to improve the problem that the removal efficiency of the fine dust in the gas is low or cannot be removed by the existing device.
  • One of the objectives of the present invention is to provide a fouling tray, which utilizes the adhesion and aggregation of dust to construct a flow field flow state suitable for dust adhesion and aggregation.
  • Another object of the present invention is to provide a gas purification device, so that dust-containing gas can be dedusted by classification, and the dedusting effect is better.
  • the present invention provides a dust removal filler, comprising:
  • each channel extending obliquely with respect to the vertical to form windward and leeward sides;
  • the wave crest of the corrugated plate is attached to the leeward surface of the oblique prismatic channel, during operation, the dust is attached to the concave part of the lower surface of the corrugated plate, and gathers to form dust aggregates, when the dust aggregates When the gravity is greater than the adhesion, the dust aggregates fall to the windward surface of the channel and slide off the windward surface of the channel.
  • each channel is in the shape of a slanted prism with a rectangular cross-section, one set of opposing sides extending obliquely with respect to the vertical to form windward and leeward sides, and the other set of opposing sides extending vertically,
  • the inclined prismatic channels of two adjacent rows are inclined in opposite directions.
  • each row of oblique prismatic channels is formed by rectangular wave plates and baffles to define flow channels therebetween.
  • the rectangular wave plate and the corrugated plate are made by stamping, and the rectangular wave plate and the corrugated plate are metal plates.
  • the opening directions of two rectangular wave plates adjacent to the same rectangular wave plate are opposite.
  • the inclination angle of the oblique prism channel is greater than the angle of repose of the intercepted dust, and the inclination angle of the oblique prism channel is 15° ⁇ 75°.
  • the width of the windward side and the leeward side is 2mm ⁇ 100mm; the width of the side surface extending in the vertical direction of the oblique prism channel is 5mm ⁇ 200mm.
  • the wave amplitude of the corrugated plate is 1mm-100mm; the wavelength is 20mm-300mm; the distance between the wave trough of the corrugated plate and the windward surface of the adjacent inclined prismatic channel is 2mm-80mm.
  • a fouling pan comprising:
  • each fouling device includes a gas collecting cylinder and a baffle plate arranged on the outer cylinder wall of the gas collecting cylinder;
  • the baffle plate is formed by a multi-layer conical baffle plate , the conical baffle is composed of a conical plate and a corrugated plate;
  • the dust adheres to the concave portion of the lower surface of the corrugated plate, and gathers to form dust aggregates.
  • the dust aggregates fall onto the upper surface of the lower conical plate. or tray plate, and slide from the upper surface of the conical plate onto the tray plate.
  • the gas collecting cylinder is a vertical cylindrical structure, the top end of the gas collecting cylinder is closed, the lower end is open, the lower end of the gas collecting cylinder passes through the tray plate and is connected with the tray plate, and the outer cylinder wall of the gas collecting cylinder is opened with Multiple vents.
  • the waveform of the corrugated plate is a sine curve or a cosine curve
  • the amplitude is 1 mm ⁇ 80 mm
  • the wavelength is 30 mm ⁇ 400 mm.
  • the lower end of the gas collecting cylinder vertically passes through the tray plate and is connected to the tray plate, and the ventilation hole is arranged on the cylinder wall between two adjacent layers of conical baffles.
  • the cone angle of the baffle plate is 30-175°.
  • the distance between two adjacent layers of conical baffles is 1.2 to 5 times the amplitude of the corrugated plate.
  • a plurality of foulers are arranged on the tray plate, and the plurality of foulers are evenly arranged on the tray plate.
  • a fouling pan comprising:
  • the fouling device includes a filter body, a baffle separation body and a cover plate;
  • the filter body is a sleeve annular cylindrical structure defining the axis of the fouler
  • the baffle separation body is an annular folded plate columnar structure extending around the axis of the sump, formed by a multi-layer annular fold, and the cross-section of the annular fold is an inverted V-shaped, thus forming a folded plate extending around the axis of the sump. Inverted V-shaped annular folded plate, and the baffle separation body is sleeved outside the filter body;
  • the cover plate is located above the baffle separation body and the filter body and shields the baffle separation body and the filter body, the top end of the baffle separation body is connected with the cover plate, and the bottom end of the baffle separation body is connected with the tray plate. connect;
  • the dust adheres to the inverted V-shaped apex of the annular folded plate and gathers to form dust aggregates.
  • the dust aggregates fall to the top of the lower annular folded plate. surface or tray deck, and slide down from the upper surface of the annular flap onto the tray deck.
  • the lower end of the filter body passes through the tray plate, and the filter body includes an inner cylinder body, an outer cylinder body and a fouling filler arranged in the annular space between the inner cylinder body and the outer cylinder body.
  • the thickness between the inner cylinder and the outer cylinder is 10 mm to 500 mm, the inner cylinder and the outer cylinder have the same height, and the two are assembled together and are made of screen mesh.
  • the equivalent diameter of the fouling filler is 0.1 mm to 10 mm; the shape of the fouling filler is one or more of spherical, polygonal or triangular.
  • the void ratio of the filter body is 5-75%.
  • the cone angle of the annular folded plate is 15° ⁇ 150°; the distance between two adjacent annular folded plates is 3 mm ⁇ 80 mm.
  • the angle of inclination of the annular folded plate is greater than the angle of repose of the solid matter in the gas.
  • the cover plate is a cone type, a circular frustum type or a straw hat type.
  • a gas circulation channel is provided between the cover plate and the upper end of the filter body, so that the gas flows through after the filter body is blocked, and the width of the gas circulation channel is 5 mm to 120 mm.
  • a gas purification device which includes an upper head, a lower head and a cylinder, and at least one of the fouling trays is arranged inside the gas purification device.
  • the fouling pan is arranged in the upper sealing head and/or the cylinder body, and when only one fouling pan is provided, the fouling pan is arranged in the upper sealing head.
  • the gas purification device further comprises one or more layers of dust removal fillers according to any one of claims 1 to 7, the gas purification device is provided with multiple layers of fouling trays, and each layer of dust removal fillers Set between two adjacent fouling pans.
  • the gas purification device further comprises one or more protective agent beds, and the protective agent beds are arranged below the fouling pan.
  • the protective agent bed is filled with a bird's nest protective agent
  • the bird's nest protective agent includes a cylinder and a plurality of ribs, the ribs intersect with each other to form a grid, and the intersections form an acute angle.
  • a multi-layer fouling disk is arranged inside the gas purification device, and a protective agent bed or a dust-removing filler according to any one of claims 1 to 7 is arranged between the two adjacent fouling disks , and the dust-removing packing is arranged above the protective agent bed.
  • the first fouling tray, the dust-removing packing, the second fouling tray, the protective agent bed and the third fouling tray are sequentially arranged according to the gas flow direction.
  • the wave amplitude and wavelength of the corrugated plate of the multi-layer dust-removing packing gradually decrease along the gas flow direction.
  • the size of the fouling pan provided in the upper head is larger than that of the other fouling pans.
  • the dust removal filler, fouling tray, gas purification device and purification method provided by the present invention have the following advantages:
  • the corrugated plate of the dust removal filler can form a wave flow field in the oblique prismatic channel, form a vortex flow field, provide time and proximity distance for fine dust attachment and dust accumulation, so as to separate fine dust from gas,
  • the gravity of the adhering aggregated ash mass is greater than the adhering force, it falls from the windward side of the corrugated sheet and the inclined prismatic channel.
  • the rectangular wave plate and the corrugated plate of the dust removal filler are punched from metal plates, which can be applied to harsh conditions such as high temperature and high pressure.
  • the dust with larger particle size loses its suspending force due to the steep drop of the gas velocity, and falls to the tray plate under the action of gravity;
  • the overflow area is rectified into a horizontal overflow area, which greatly increases the gas flow area, reduces the gas flow rate, and provides sufficient adhesion and aggregation time for dust.
  • the inclination angle of the annular folded plate of the conical baffle plate in the fouling tray is greater than the dust repose angle, and as the dust aggregate gradually increases, when the gravity is greater than the adhesion force, the dust falls to the tray by itself , It has a good self-cleaning function to prevent premature clogging of dust removal components and loss of dust removal function.
  • the fouling plate provides a great adhesion area and gathering space for solid substances in the gas by providing a baffled separator composed of multi-layer annular folded plates, and increases the adhesion probability of solid substances.
  • the inclination angle of the annular folded plate of the scaler is greater than the dust repose angle.
  • a plurality of fouling devices are arranged in the fouling plate of the invention, and the outer side of the fouling plate adopts an annular folded plate column structure.
  • the annular folded plate column composed of multi-layer annular folded plates and multiple scalers form a large number of eddy current domains, which provide thermophoretic force for the adhesion and aggregation of solid substances in the gas.
  • the solid substance breaks away from the streamline under the impact of gas molecules, and performs Brownian motion like gas molecules.
  • a fouling tray, a dust-removing filler and a bed of bird's nest protective agent are arranged, and the purification device is divided into different dust interception areas, so as to realize the grading treatment of the dust in the process gas.
  • the fouling pan, dust removal filler and bird's nest protectant bed can provide a larger attachment area for dust, and on the other hand, fine dust adheres and accumulates on the fouling pan, dust removal filler and bird's nest protectant bed, so as to realize dust removal.
  • the grading treatment improves the dust interception efficiency and achieves the goal of capturing ultrafine dust in the gas.
  • the purification unit is arranged in the upper head, and the originally idle equipment space is used for intercepting and storing dust, which greatly prolongs the operation period of the equipment.
  • the dust-removing packing and the fouling pan according to the present invention have the same or similar operating principles: the ultrafine dust adheres to the corresponding recesses on the lower surface of the dust-removing packing structure or the fouling pan structure under the action of van der Waals force; Aggregate under the action to form aggregates; when the gravity of the aggregates is greater than the adhesion, it falls on the inclined surface below; the inclination angle of the inclined surface is greater than the dust repose angle, and the aggregates slide off.
  • the gas purification device of the invention has simple structure and small pressure drop, can intercept and store fine dust in dust-containing gas, and is especially suitable for separation of fly ash entrained by coal gasification crude synthesis gas.
  • FIG. 1 is a schematic structural diagram of a gas purification apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of the dust-removing filler of the gas purification device shown in FIG. 1 .
  • FIG. 3 is a partial enlarged view of the dust-removing packing shown in FIG. 2 .
  • Fig. 4 is a partial structural schematic diagram of the oblique prismatic channel of the dust removal packing, wherein the corrugated plate is not shown.
  • FIG. 5 is a schematic structural diagram of a fouling pan according to the first embodiment of the present invention.
  • FIG. 6 is a schematic view of the appearance structure of the fouling tray shown in FIG. 5 .
  • FIG. 7 is a schematic diagram of the flow field of the fouling pan shown in FIG. 5 .
  • FIG. 8 is a schematic structural diagram of a fouling pan according to a second embodiment of the present invention.
  • FIG. 9 is a schematic view of the appearance structure of the fouling tray shown in FIG. 8 .
  • FIG. 10 is a schematic diagram of the flow field of the fouling pan shown in FIG. 8 .
  • FIG. 11 is a schematic structural diagram of a gas purification apparatus according to a second embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a gas purification device according to a third embodiment of the present invention.
  • Figure 13 is a schematic diagram of the structure of the bird's nest packing.
  • orientations or positional relationships indicated by the terms “upper”, “lower”, “inner”, “outer”, “top”, “bottom”, etc. are based on those shown in the accompanying drawings.
  • the orientation or positional relationship is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation of the present invention.
  • first and second are used for descriptive purposes only and should not be construed to indicate or imply relative importance.
  • FIG. 1 is a schematic structural diagram of a gas purification apparatus according to a first embodiment of the present invention.
  • the present invention provides a gas purification device, the gas purification device includes an upper head 4 , a casing 5 and a lower head 7 .
  • the upper sealing head is provided with a gas inlet 1
  • an inlet diffuser 2 may also be provided below the gas inlet
  • a gas outlet 9 is provided on the lower sealing head
  • an outlet collector 8 is provided above the gas outlet 9 .
  • a fouling plate 3 is arranged inside the gas purification device, and the fouling plate 3 is arranged in the upper head 4 and/or in the casing 5 .
  • the uppermost fouling pan 3 is arranged in the upper sealing head 4, and the size of the fouling pan 3 arranged in the upper sealing head 4 is larger than that of the other fouling pans 3 arranged in the casing.
  • a dust-removing filler 6 is arranged below the fouling tray 3 .
  • the dust-removing filler is arranged between the two layers of fouling trays 3 .
  • FIG. 2 is a schematic structural diagram of the dust-removing filler of the gas purification device shown in FIG. 1 .
  • FIG. 3 is a partial enlarged view of the dust-removing packing shown in FIG. 2 .
  • Fig. 4 is a partial structural schematic diagram of the oblique prismatic channel of the dust removal packing, wherein the corrugated plate is not shown.
  • the dust removal filler 6 according to the specific embodiment of the present invention includes multiple rows of channels 61 , each channel 61 extending obliquely with respect to the vertical direction to form a windward surface 611 and a leeward surface 612 .
  • each channel 61 is in the shape of an oblique prism with a rectangular cross-section, one set of opposite sides is inclined with respect to the vertical to form a windward face 611 and a leeward face 612, and the other set of opposite sides is vertically direction extension. It should be understood that the channel 61 may take other shapes as long as the channel 61 extends obliquely with respect to the vertical to form windward and leeward sides. According to a preferred embodiment, the inclination directions of the inclined prism channels 61 in two adjacent rows are opposite (as shown in FIG. 4 ).
  • the wave crests of the corrugated plate 62 are attached to the leeward side 612 of the inclined prismatic channel 61 .
  • the wave crests of the corrugated sheet 62 may be attached to the leeward side 612 of the inclined prismatic channel 61 in any suitable manner, including but not limited to welding and the like.
  • the ultra-fine dust adheres to the corrugated plate 62 under the action of van der Waals force, and the ultra-fine dust gathers at the concave part of the lower surface of the corrugated plate 62 under the action of Coulomb force to form an aggregate (ash mass), when the aggregate (ash mass)
  • the gravity is greater than the adhesion force, it falls to the windward surface 611 of the oblique prismatic channel 61 of the dust removal packing 6 .
  • the windward surface 611 is at a certain inclination angle, and the inclination angle is greater than the repose angle of dust slippage, and the dust mass slips and falls.
  • each row of inclined prismatic channels 61 is formed by a rectangular wave plate 63 and a partition 64 to define a flow channel therebetween.
  • the rectangular wave plate 63 and the corrugated plate 62 are both made of metal plates by stamping, so as to be able to adapt to the working environment of high temperature and high pressure.
  • the opening directions of two rectangular wave plates 63 adjacent to the same rectangular wave plate 63 are opposite. It should be understood that the present invention is not limited to this, and those skilled in the art can select the material and manufacturing method of the oblique prismatic channel according to actual needs. Other metal materials with good properties can be formed by molding.
  • the rectangular wave plate 63 and the corrugated plate 62 may be connected in any suitable manner, including but not limited to welding.
  • the inclination angle of the oblique prism channel 61 is greater than the angle of repose of the intercepted dust, and the inclination angle of the oblique prism channel 61 may be 15° ⁇ 75°, and preferably may be 30° ⁇ 60°.
  • the inclination angle of the oblique prism passage 61 is defined as the included angle (acute angle) of the oblique prism passage 61 with respect to the horizontal plane. It should be understood that the present invention is not limited to this, and the inclination angle of the oblique prism channel 61 can be set according to the angle of repose of the intercepted dust.
  • the widths of the windward surface 611 and the leeward surface 612 are 2 mm ⁇ 100 mm, preferably 5 mm ⁇ 30 mm; The width is 5 mm to 200 mm, preferably 20 mm to 80 mm.
  • the wave amplitude of the corrugated plate 62 is 1 mm to 100 mm, preferably 3 mm to 60 mm; the wavelength is 20 mm to 300 mm, preferably 30 mm to 220 mm; the wave trough of the corrugated plate 62
  • the distance from the windward surface 611 of the adjacent oblique prismatic channel is 2mm ⁇ 80mm, preferably 5mm ⁇ 30mm.
  • the wave amplitude and wavelength of the corrugated plate 62 of the multi-layer dust-removing filler 6 gradually decrease along the flow direction of the gas material to meet the requirement of gradually reducing the dust particle size.
  • FIG. 5 is a schematic structural diagram of a fouling pan according to the first embodiment of the present invention.
  • FIG. 6 is a schematic view of the appearance structure of the fouling tray shown in FIG. 5 .
  • FIG. 7 is a schematic diagram of the flow field of the fouling pan shown in FIG. 5 .
  • the present invention provides a fouling tray, the fouling tray 3 includes a tray plate 31 and a fouling device 300 arranged on the tray plate, and the fouling device 300 includes a collecting The gas cylinder 310 and the baffle plate 311 arranged on the outer cylinder wall of the gas collecting cylinder.
  • the baffle plate 311 is formed by a multi-layer conical baffle plate, and the conical baffle plate is composed of a conical plate 3111 and a corrugated plate 3112; wherein, the waveform of the corrugated plate 3112 is a sine curve Or a cosine curve, the amplitude is 1 mm to 80 mm, preferably 3 mm to 40 mm, and the wavelength is 30 mm to 400 mm, preferably 80 mm to 150 mm.
  • the wave crests of the corrugated plate 3112 are attached to the lower surface of the tapered plate 3111 .
  • the corrugated plate 3112 and the conical plate 3111 can be connected in any suitable manner, including but not limited to welding.
  • the gas collecting cylinder 310 is a vertical cylindrical structure.
  • the top of the gas collecting cylinder 310 is closed and the lower end is open.
  • the lower end of the gas collecting cylinder 310 passes through the tray plate 31 and is connected with the tray plate 31.
  • the opening position of the ventilation holes 3101 can be specifically set on the cylinder wall between two adjacent layers of conical baffles.
  • the gas collecting cylinder 310 is used as a gas circulation channel.
  • the cone angle of the baffle plate 311 is 30-175°, preferably 90-110°; the distance between two adjacent layers of conical baffle plates is 1.2-5° of the amplitude of the corrugated plate times, preferably 1.5 to 3 times the amplitude of the corrugated plate, more preferably 1.8 to 2.5 times the amplitude of the corrugated plate.
  • the cone angle of the baffles 311 is defined as the apex angle of an isosceles triangle obtained by extending the cross-sectional profile of each baffle 311 in the cross-sectional view shown in FIG. 7 .
  • the angle of inclination is defined as the base angle of this isosceles triangle.
  • the tray plate 31 is provided with a plurality of fouling devices 300, and the specific number of fouling devices can be determined by those skilled in the art according to actual needs.
  • the plurality of scalers are evenly arranged on the tray plate, such as but not limited to: square arrangement, equilateral triangle arrangement, circular arrangement and the like.
  • the fouling plate blocks and restricts the flow of the gas to achieve blocking and equal flow; when the gas flows through the conical baffle, a multi-layer wavy gas streamline is formed, the gas forms a vortex at the turning point, and the dust hits the gas molecules.
  • the lower part is separated from the streamline and performs Brownian motion like gas molecules. Due to the low flow rate and the action of molecular force (Van der Waals force) near the wall, the powder particles and the annular folded plate are easily adhered to form dust aggregates; As the dust accumulates, the volume increases.
  • the conical baffle is composed of a conical plate and a corrugated plate, and its upper surface is a smooth inclined plate, and its inclination angle is greater than the angle of repose of the dust.
  • the low flow rate at the gas vortex is suitable for the electrostatic force (Coulomb force) to play a role, and the dust will agglomerate and agglomerate to form aggregates.
  • the gas thermophoretic force is not enough to suspend and entrain dust particles, forming the deposition of dust particles. .
  • FIG. 8 is a schematic structural diagram of a fouling pan according to a second embodiment of the present invention.
  • FIG. 9 is a schematic view of the appearance structure of the fouling tray shown in FIG. 8 .
  • FIG. 10 is a schematic diagram of the flow field of the fouling pan shown in FIG. 8 .
  • the present invention provides a fouling tray.
  • the fouling tray 3 includes a tray plate 31 and a plurality of fouling devices 30 arranged on the tray.
  • the tray plates 31 are evenly arranged, and specifically, they can be arranged in a square arrangement, an equilateral triangle arrangement, or the like.
  • the fouling device 30 includes a cover plate 303, a baffle separation body 304 and a filter body 305 passing through the tray; the cover plate 303 is located above the baffle separation body 304 and the filter body 305 and blocks the baffles
  • the separation body 304 and the filter body 305 ensure that the gas material enters the fouler through the baffle separation body 304, the top of the baffle separation body 304 is connected to the cover plate 303, and the bottom end of the baffle separation body 304 is fixed on the tray 301;
  • the baffle separation body 304 is coaxially sleeved on the outside of the filter body 305, and there is a certain distance between the baffle separation body 304 and the filter body 305, and this annular space can be used to store the captured solid matter; In the contact sequence of the gas material, the gas first passes through the baffle separation body 304 and then passes through the filter body 305 .
  • the baffle separation body 304 is an annular folded plate columnar structure, which is formed by stacking a plurality of inverted V-shaped annular folded plates, and the annular folded plates can be fixed by, for example, but not limited to, multiple columns or annular frames (not shown). .
  • the cone angle of the inverted V-shaped annular folded plate is 15° ⁇ 150°, preferably 30° ⁇ 90°; the distance between two adjacent annular folded plates is 3mm ⁇ 80mm, preferably 8mm ⁇ 28mm.
  • the angle of inclination of the annular folded plate is greater than the angle of repose of the solid matter in the gas, which can accelerate the sliding of the aggregates of solid matter particles along the surface of the folded plate.
  • the taper angle of the annular folded plate is defined as the apex angle of an isosceles triangle obtained by extending the cross-sectional profile of each annular folded plate in the cross-sectional view shown in FIG. 10 , and the inclination angle of the annular folded plate defines is the base angle of the isosceles triangle.
  • the filter body 305 is a sleeve annular cylindrical structure, the lower end of the filter body 305 is penetrated through the tray plate 31, and the filter body 305 includes an inner cylinder body 307, an outer cylinder body 308, and is arranged on the inner cylinder body and the outer cylinder body.
  • the fouling packing 306 in the annular space between them, the filter body 305 is an annular column; the width between the inner cylinder 307 and the outer cylinder 308 is 10mm-500mm, preferably 100mm-300mm; more preferably, the inner cylinder 307 and The outer cylinder 308 has the same height, and the two are set together and are made of screen mesh; the inner cylinder 307 and the tray 301 are connected through and used as a gas channel; the annular cylindrical filter body has suitable gaps Rate.
  • a certain gap is left between the cover plate 303 and the upper end of the filter body 305 , and this gap can be used as a gas circulation channel after the filter body 305 is blocked.
  • the height of the gap is 5 mm to 200 mm, preferably 20 mm to 120 mm.
  • the fouling plate loses its function of intercepting dust, but the space between the cover plate 303 and the upper end of the filter body 305 can still be used as a gas material channel without pressure drop. Keep the device running stably for a long period of time.
  • the cover plate 303 may be conical, truncated, or straw hat. It should be understood that the cover plate 303 shown in the figures is a straw hat type, but the present invention is not limited thereto.
  • the size of the fouling pan 3 provided in the upper head 4 is larger than that of the other fouling pans 3 .
  • the specification of the multi-layered protective agent bed 6 is in accordance with the flow direction of the gas material, and the void ratio of the protective agent bed is gradually decrease.
  • the fouling plate blocks and restricts the flow of the gas to achieve blocking and equal flow; when the gas flows through the inverted V-shaped annular folded plate, a vortex is formed at the turning point, and the dust is separated from the streamline under the impact of the gas molecules, like a gas Molecules do Brownian motion in the same way.
  • the powder particles and the annular folded plate are easily adhered to form dust aggregates; Increase, when the gravity of the dust aggregate is greater than the adhesive force, the dust aggregate will peel off from the annular folded plate and fall to the next layer of annular folded plate, or if it is the bottom layer of the annular folded plate, it will drop directly from the tower on the plate 31.
  • the upper surface of the annular folded plate is a smooth inclined plate, and its inclination angle is greater than the dust repose angle.
  • the dust aggregate With the accumulation of dust on the surface of the annular folded plate, when the gravity of the dust aggregate is greater than the sliding resistance, the dust aggregate will slide along the surface of the annular folded plate and fall to the tray, thus completing the interception and storage of dust.
  • the low flow rate at the gas vortex is suitable for the electrostatic force (Coulomb force) to play a role, and the dust will agglomerate and agglomerate to form aggregates.
  • the gas thermophoretic force is not enough to suspend and entrain dust particles, forming the deposition of dust particles. .
  • FIG. 11 is a schematic structural diagram of a gas purification apparatus according to a second embodiment of the present invention.
  • the present invention provides the gas purification device of the second embodiment, the device includes an upper head 4 , a casing 5 and a lower head 7 ; the upper head is provided with a gas inlet 1 , and the An inlet diffuser 2 can also be arranged below the gas inlet, a gas outlet 9 is arranged on the lower head, and an outlet collector 8 is arranged above the gas outlet 9;
  • the dust removal filler 6 and the protective agent bed 10, the dust removal filler 6 or the protective agent bed 10 is arranged between the two adjacent fouling trays 3, and the dust removal filler 6 is arranged above the protective agent bed 10, specifically When three layers of fouling trays, dust-removing packings and protective agent beds are set, the first fouling tray, the dust-removing packing, the second fouling tray, the protective agent bed and the third fouling layer are arranged in order according to the material flow direction.
  • the fouling pan 3 is arranged in the upper sealing head 4 and/or in the casing 5, preferably in the upper sealing head 4, and the size of the fouling pan 3 arranged in the upper sealing head 4 is larger than that arranged in the casing.
  • the protective agent bed 10 is filled with a bird's nest structure protective agent. As shown in Figure 13, the bird's nest packing is composed of a cylinder and a plurality of ribs, and the ribs intersect each other to form a grid, and the intersection points form an acute angle.
  • the present invention provides a gas purification device according to a third embodiment, the device includes an upper head 4 , a casing 5 and a lower head 7 ; the upper seal is provided with a gas inlet 1 , and the gas An inlet diffuser 2 can also be arranged below the inlet, a gas outlet 9 is arranged on the lower head, and an outlet collector 8 is arranged above the gas outlet 9; a fouling plate 3 is arranged inside the device, and the fouling plate 3 is arranged on the upper In the head 4 and/or in the shell 5, preferably in the upper head 4, the size of the fouling pan 3 arranged in the upper head 4 is larger than the size of the other fouling pans 3 arranged in the shell, and the A protective agent bed 10 is arranged below the fouling pan 3 , and further preferably, the protective agent bed 10
  • the protective agent bed layer 10 is filled with a bird's nest structure protective agent.
  • the bird's nest packing is composed of a cylinder and a plurality of ribs, the ribs intersect each other to form a grid, and the intersections form an acute angle.
  • the protective agent bed has the function of "filtering", which can further intercept and store the solid substances in the gas.
  • the dust has bridging characteristics, forming a bridging effect at the acute angle formed by the intersection of the ribs of the bird's nest protectant to realize the deposition of dust; with the advancement of the operation cycle, the dust adheres and bridges under the action of van der Waals force, and under the action of Coulomb force Aggregation; fine dust agglomerates grow up and are pushed by gas when the ash mass falls off.
  • a fouling disc is set under the bed of bird's nest protectant to provide low flow rate conditions for the ash mass, and a stagnation layer is formed above the fouling disc, which is beneficial to The interception and storage of dust ash mass realize the separation of fine particle dust.
  • the purified gas flows out from the outlet collector set on the lower head and the gas outlet, and thus the dust removal and purification process of the gas is completed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Treating Waste Gases (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

一种除尘填料(6)、积垢盘(3)和气体净化装置。所述除尘填料(6)包括:多排通道(61),每一个通道(61)相对于竖直方向倾斜地延伸,以形成迎风面(611)和背风面(612);以及波纹板(62),所述波纹板(62)的波峰贴附在斜棱柱通道(61)的背风面(612)上,在操作过程中,粉尘附着于波纹板(62)的下表面的凹部处,聚集以形成粉尘聚集体,当粉尘聚集体的重力大于附着力时,粉尘聚集体掉落至通道(61)的迎风面(611)上,并从通道(61)的迎风面(611)上滑落。

Description

除尘填料、积垢盘和气体净化装置 技术领域
本发明涉及化学工程技术领域,更具体地涉及除尘填料、积垢盘和气体净化装置。
背景技术
大多数化工工艺过程中都会产生过程气体,同时由于各种工业过程导致这些气体中含有大量粉尘/颗粒物质,这些颗粒物质悬浮在空气中,对人类的健康、生活和生产造成了严重的影响。随着环保法规对排放标准要求的提高,需要在排放到环境之前先脱除这些气体中的固体颗粒和/或对其进行净化处理。例如,燃煤发电厂生产过程中产生的烟气离开烟囱之前必须脱除其中的飞灰。化工生产过程产生的气体中夹带固体粉尘会导致装置结垢、堵塞,严重制约装置长周期稳定运行。这些气体中夹带的粉尘具有良好的粘附性和聚集性。粉尘的粘附性是指不同分子间产生的引力,如粉体粒子与器壁间的粘附;粉尘的凝聚性是指相同分子间产生的引力,如粉体粒子之间发生粘附而形成聚集体。粉尘粘附性和聚集性与粉尘的性质和气体运动状态有关。通常,在粉尘粒径小、形状不规则、表面粗糙、含水率高、润湿性好及荷电量大时,更容易产生粘附现象。对于煤化工工艺过程中形成的粉尘,Fe、Na、Ca三种矿物元素以及粉尘颗粒粒径较小、比表面积大等因素,导致粉尘具有很好的粘附性。粉尘的粘附性和聚集性在干燥状态下主要是分子力(范德华力)与静电力(库仑力)发挥作用,在润湿状态下主要依赖于粉尘表面存在水分而形成液体桥或固体桥。
目前化工气体的除尘净化已经有了很多成熟技术,例如,机械除尘、湿法除尘、袋式除尘、电除尘以及静电布袋复合除尘等等。(1)机械除尘技术是利用降尘室、旋风分离器等机械装置进行除尘的方法。该方法对于颗粒较大的粉尘具有较好的效果,然而对于造成灰霾污染的2μm左右的粒子,其净化效率很低,而且对于细微颗粒而言,这一类除尘装置的二次扬尘问题严重,无法在当前对于细微颗粒的除尘效率要求越来越高的情况下有效发挥作用。(2)湿法除尘技术是利用喷淋塔、水膜除尘器或文丘里除尘器进行除尘的方法,常见于处理尘埃等 颗粒尺寸较大的气体,所捕集的颗粒可以通过和水形成泥浆而排出。该方法对设备的要求较高,设备体积较大,投资较高,且带来了泥浆废液处理的问题。(3)袋式除尘技术的除尘效率很高,对粉尘的粒径范围波动的耐受性好,即使细微的粉尘也可成功获得很高的截留率。然而,袋式除尘技术的压降较大,对于风机等气体传输设备的动力载荷要求高。此外,目前常见的布袋难以耐受高温,对于废气中含有红热颗粒和阴燃颗粒的烧结烟气而言,使用布袋除尘常常发生“烧袋”事故。(4)电除尘技术也是当前非常常用和高效的除尘方法。该方法首先对气体中的粉尘荷电,而后通过电场力将其从气流中去除并固定在电极板表面上。该方法可用于高温废气处理,且只有很小的压降阻力,但其缺点在于对粉尘的导电率、气体湿度都有一定要求,否则不能获得高的除尘率。此外,该方法的一次性投资较高,运行成本高。
随着社会水平的不断进步与经济的不断发展,对于能源的需求也越来越多。煤气化工艺主要目的是为了能提高煤炭的使用效率,为生产提供更多的能源,例如,将煤炭转化制成甲醇或者合成气体,从而促进能源的使用,或将煤炭合成氨气以及油气混合体,从而推动煤层气的深层次利用。生产工艺决定了煤气化粗合成气中含有大量粉尘,需要经过多级除尘处理,实现气体的净化。然而,煤气化工艺产生的粉尘颗粒细小,有相当数量的粉尘颗粒度在0.1μm~1μm之间,对于粒径小于2μm的粒子,传统的除尘工艺净化效率很低,甚至无法去除,不得不在粗合成气转化反应器前设置除尘罐,采用固定床吸附过滤的方式拦截细小粉尘。当吸附床层空隙被填充后,除尘罐的压力降陡升,导致装置无法继续运行。停工撇头/整修不但影响装置产能的利用,也会导致物耗、人工费用的增加,影响经济效益。
发明内容
本发明的目的之一在于,提供一种除尘填料,从而改善现有装置对气体中细微粉尘的去除效率较低或无法去除的问题。
本发明的目的之一在于,提供一种积垢盘,利用粉尘的粘附性和聚集性,构建适宜粉尘粘附和聚集的流场流态。
本发明的另一目的在于,提供一种气体净化装置,从而能够对含尘气体进行分级除尘,除尘效果更好。
为了实现上述目的,根据本发明的第一方面,本发明提供了一种除尘填料,包括:
多排通道,每一个通道相对于竖直方向倾斜地延伸,以形成迎风面和背风面;以及
波纹板,所述波纹板的波峰贴附在所述斜棱柱通道的背风面上,在操作过程中,粉尘附着于波纹板的下表面的凹部处,聚集以形成粉尘聚集体,当粉尘聚集体的重力大于附着力时,粉尘聚集体掉落至通道的迎风面上,并从通道的迎风面上滑落。
优选地,每一个通道为斜棱柱形,横截面为矩形,一组相对的侧面相对于竖直方向倾斜地延伸,以形成迎风面和背风面,另一组相对的侧面沿竖直方向延伸,相邻两排的斜棱柱通道沿相反的方向倾斜。
优选地,每一排斜棱柱通道由矩形波板和隔板形成,以在它们之间限定流动通道。
优选地,矩形波板和波纹板为冲压制成,矩形波板和波纹板为金属板。
优选地,与同一个矩形波板相邻的两个矩形波板的开口方向相反。
优选地,斜棱柱通道的倾斜角大于所拦截粉尘的休止角,斜棱柱通道的倾斜角为15°~75°。
优选地,迎风面和背风面的宽度为2mm~100mm;斜棱柱通道的沿竖直方向延伸的侧面的宽度为5mm~200mm。
优选地,所述波纹板的波幅为1mm~100mm;波长为20mm~300mm;所述波纹板的波谷与相邻斜棱柱通道的迎风面的距离为2mm~80mm。
根据本发明的另一方面,提供一种积垢盘,包括:
塔盘板;和
设置于塔盘板上的至少一个积垢器,每个积垢器包括集气筒和设置于集气筒的外筒壁上的折流盘;所述折流盘由多层锥形折流板形成,所述锥形折流板由锥形板和波形板构成;
在操作过程中,粉尘附着于波形板的下表面的凹部处,聚集以形成粉尘聚集体,当粉尘聚集体的重力大于附着力时,粉尘聚集体掉落至下面的锥形板的上表面上或塔盘板上,并从锥形板的上表面滑落到塔盘板上。
优选地,所述集气筒为立式圆筒形结构,集气筒的顶端封闭,下端开口,集气筒的下端穿过塔盘板并与塔盘板相连接,集气筒的外筒壁上开有多个通气孔。
优选地,所述波形板的波形为正弦曲线或余弦曲线,振幅为1mm~80mm;波长为30mm~400mm。
优选地,所述集气筒的下端竖直穿过塔盘板并与塔盘板相连接,所述通气孔设置于相邻两层锥形折流板之间的筒壁上。
优选地,所述折流盘的锥角为30~175°。
优选地,相邻两层锥形折流板之间的间距为波形板的振幅的1.2~5倍。
优选地,所述塔盘板上设置有多个积垢器,多个积垢器在塔盘板上均匀排列。
根据本发明的另一方面,提供一种积垢盘,包括:
塔盘板;和
设置于塔盘板上的积垢器,所述积垢器包括过滤体、折流分离体和盖板;
所述过滤体为限定积垢器轴线的套筒环形柱状结构;
所述折流分离体为围绕积垢器轴线延伸的环形折板柱状结构,由多层环形折板形成,环形折板的横截面为倒V字型,从而形成围绕积垢器的轴线延伸的倒V字型环形折板,折流分离体套设于过滤体外部;
所述盖板位于折流分离体和过滤体的上方并遮挡所述折流分离体和过滤体,折流分离体的顶端与盖板相连接,折流分离体的底端与塔盘板相连接;
在操作过程中,粉尘附着于环形折板的倒V字型顶点处,聚集以形成粉尘聚集体,当粉尘聚集体的重力大于附着力时,粉尘聚集体掉落至下面的环形折板的上表面或塔盘板上,并从环形折板的上表面滑落到塔盘板上。
优选地,过滤体的下端穿设于塔盘板,所述过滤体包括内筒体、外筒体和设置于内筒体与外筒体之间环形空间内的积垢填料。
优选地,所述内筒体和外筒体之间的厚度为10mm~500mm,内筒体和外筒体等高,两者套装在一起,由筛网制成。
优选地,所述积垢填料的当量直径为0.1mm~10mm;所述积垢填 料的形状为球形、多边形或三角形中的一种或几种。
优选地,所述过滤体的空隙率为5~75%。
优选地,所述环形折板的锥角为15°~150°;相邻两块环形折板之间的距离为3mm~80mm。
优选地,所述环形折板的倾斜角大于气体中固体物质的休止角。
优选地,所述盖板为圆锥型、圆台型或草帽型。
优选地,所述盖板与过滤体上端之间设有气体流通通道,以便在过滤体堵塞后气体流动通过,气体流通通道的宽度为5mm~120mm。
根据本发明的另一方面,提供一种气体净化装置,包括上封头、下封头和筒体,所述气体净化装置内部设置有至少一个所述的积垢盘。
优选地,所述积垢盘设置于上封头内和/或筒体中,当仅设置一个积垢盘时,积垢盘设置于上封头内。
优选地,所述气体净化装置还包括一层或多层根据权利要求1至7中任一项所述的除尘填料,所述气体净化装置内部设置有多层积垢盘,每一层除尘填料设置在两个相邻的积垢盘之间。
优选地,所述气体净化装置还包括一层或多层保护剂床层,所述保护剂床层设置于积垢盘下方。
优选地,所述保护剂床层中装填有鸟巢保护剂,所述鸟巢保护剂包括筒体和多个筋板,多个筋板相互交叉形成网格状,交叉点形成锐角。
优选地,所述气体净化装置内部设置有多层积垢盘,所述相邻两层积垢盘之间设置有保护剂床层或根据权利要求1至7中任一项所述的除尘填料,且除尘填料设置于保护剂床层上方,当设置三层积垢盘时,按照气体流动方向依次为第一层积垢盘、除尘填料、第二层积垢盘、保护剂床层和第三层积垢盘。
优选地,当设置多层除尘填料时,多层除尘填料的波纹板的波幅和波长沿气体流动方向逐渐减小。
优选地,当设置多层积垢盘时,设置在上封头中的积垢盘的尺寸大于其它积垢盘的尺寸。
本发明的提供的除尘填料、积垢盘和气体净化装置及净化方法具有如下优点:
根据本发明,除尘填料的波纹板能够在斜棱柱通道中形成波浪流场流态,形成涡流流域,为细微粉尘附着、粉尘间的聚集提供时长及靠 近距离,从而将细微粉尘从气体中分离,当附着的聚集灰团的重力大于附着力时由波纹板和斜棱柱通道的迎风面坠落。
根据本发明,除尘填料的矩形波板和波纹板为金属板冲压而成,能够应用于高温、高压等苛刻条件。
根据本发明,通过设置积垢盘,较大颗粒度的粉尘因气速的陡降失去悬浮力,在重力作用下坠落至塔盘板上;类似柱状的积垢盘将气体的轴向圆形过流域整流为水平过流域,极大地增加了气体过流面积,降低了气体流速,为粉尘提供了充裕的粘附和聚集时间。
根据本发明,积垢盘中的锥形折流板的环形折板的倾斜角大于粉尘休止角,随着粉尘聚集体的逐步增大,当重力大于粘附力时粉尘自行坠落至塔盘上,具有很好的自清理功能,防止除尘组件过早堵塞、失去除尘功能。
根据本发明,所述积垢盘通过设置由多层环形折板构成的折流分离体,为气体中的固体物质提供了极大的附着面积和聚集空间,增加了固体物质的粘附几率。且积垢器的环形折板的倾斜角大于粉尘休止角,随着粉尘聚集体的逐步增大,其重力大于粘附力时粉尘自行坠落至塔盘板上,具有很好的自清理功能,防止积垢器过早堵塞失去积垢功能。
本发明所述积垢盘中设置多个积垢器,其外侧采用环形折板柱结构,气体流经环形折板柱时形成多层波浪型气体流线,气体在转弯处形成涡流,每层环形折板都会形成多个涡流域,多层环形折板构成的环形折板柱、多个积垢器构造出数量庞大的涡流域,为气体中的固体物质粘附和聚集提供了热泳力,固体物质在气体分子的撞击下脱离流线,像气体分子一样作布朗运动,在器壁附近因流速低和分子力(范德华力)作用,粉体粒子与环形折板间极易产生粘附现象;随着粉尘的聚集,体积增大,当重力大于粘附力时,粉尘聚集体会从环形折板上剥离,坠落到塔盘上;随着粉尘在环形折板上表面的聚集,当重力大于滑移阻力时粉尘聚集体会延环形折板表面滑落,坠落到塔盘板上,至此完成粉尘的拦截与存储。
根据本发明,设置积垢盘、除尘填料和鸟巢保护剂床层,将净化装置分成不同的粉尘拦截区域,实现分级处理工艺气中的粉尘。一方面积垢盘、除尘填料和鸟巢保护剂床层可以为粉尘提供更大的附着面积,另一方面细小的粉尘在积垢盘、除尘填料和鸟巢保护剂床层上附着、 聚集,实现粉尘的分级处理,提高了粉尘拦截效率,实现捕集气体中超细粉尘的目标。
根据本发明,净化单元设置在上封头内,将原来闲置的设备空间用于拦截、存储粉尘,极大地延长了设备运行周期。
根据本发明的除尘填料和积垢盘具有相同或类似的操作原理:超细粉尘在范德华力作用下附着于除尘填料结构或积垢盘结构的下表面的对应凹部处;超细粉尘在库伦力作用下聚集,形成聚集体;当聚集体的重力大于附着力时,掉落至下面的斜表面上;斜表面的倾斜角大于粉尘休止角,聚集体滑落。
本发明的气体净化装置结构简单、压力降小,能够拦截、存储含尘气体中的细微粉尘,尤其适用于煤气化粗合成气夹带飞灰的分离。
附图说明
图1是根据本发明的第一实施方式的气体净化装置的结构示意图。
图2是图1所示的气体净化装置的除尘填料的结构示意图。
图3是图2所示的除尘填料的局部放大图。
图4是除尘填料的斜棱柱通道的局部结构示意图,其中未示出波纹板。
图5是根据本发明的第一实施方式的积垢盘的结构示意图。
图6是图5所示的积垢盘的外观结构示意图。
图7是图5所示的积垢盘的流场流态示意图。
图8是根据本发明的第二实施方式的积垢盘的结构示意图。
图9是图8所示的积垢盘的外观结构示意图。
图10是图8所示的积垢盘的流场流态示意图。
图11是根据本发明的第二实施方式的气体净化装置的结构示意图。
图12是根据本发明的第三实施方式的气体净化装置结构示意图。
图13是鸟巢填料的结构示意图。
具体实施方式
下面通过结合附图和具体实施例来进一步说明本发明的具体情况,但不限于下述的实施例。
在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”、 “顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“设有”、“置于”、“相连”、“连接”、“安装”等应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
图1是根据本发明的第一实施方式的气体净化装置的结构示意图。如图1所示,本发明提供一种气体净化装置,所述气体净化装置包括上封头4、壳体5和下封头7。所述上封头上设置有气体入口1,所述气体入口下方还可以设置有入口扩散器2,下封头上设置有气体出口9,气体出口9上方设置有出口收集器8。气体净化装置内部设置有积垢盘3,所述积垢盘3设置于上封头4内和/或壳体5中。优选地,最上面的积垢盘3设置于上封头4内,设置在上封头4中的积垢盘3的尺寸大于设置于壳体内的其它积垢盘3的尺寸。积垢盘3下方设置有除尘填料6。优选地,除尘填料设置于两层积垢盘3之间。
图2是图1所示的气体净化装置的除尘填料的结构示意图。图3是图2所示的除尘填料的局部放大图。图4是除尘填料的斜棱柱通道的局部结构示意图,其中未示出波纹板。如图2至图4所示,根据本发明具体实施方式的除尘填料6包括多排通道61,每一个通道61相对于竖直方向倾斜地延伸,以形成迎风面611和背风面612。在所示实施例中,每一个通道61为斜棱柱形,其截面为矩形,一组相对的侧面相对于竖直方向倾斜形成迎风面611和背风面612,另一组相对的侧面沿竖直方向延伸。应当理解的是,通道61可以采用其它形状,只要通道61相对于竖直方向倾斜地延伸以形成迎风面和背风面即可。根据优选实施例,相邻两排的斜棱柱通道61的倾斜方向相反(如图4所示)。波纹板62的波峰贴附在斜棱柱通道61的背风面612上。波纹板62的波峰可以以任何合适的方式贴附在斜棱柱通道61的背风面612上,包 括但不限于焊接等。
当气流由上至下流动时,仅在波纹板62与迎风面611之间的区域流过,不会流入波纹板62与背风面612之间的区域。夹带细微粉尘的气体进入除尘填料6,气体流经除尘填料6时在波纹板62的作用下,产生涡流,为超细粉尘附着、粉尘间的聚集提供时长及靠近距离。超细粉尘在范德华力作用下附着于波纹板62上,超细粉尘在库伦力作用下在波纹板62的下表面的凹部处聚集,形成聚集体(灰团),当聚集体(灰团)的重力大于附着力时坠落至除尘填料6的斜棱柱通道61的迎风面611上。迎风面611呈一定倾斜角,该倾斜角大于粉尘滑移休止角,灰团滑移坠落。
结合图2所示,在本发明的一个或多个实施方式中,每一排斜棱柱通道61由矩形波板63和隔板64形成,以在它们之间限定流动通道。在本发明的一个或多个示例性实施方式中,矩形波板63和波纹板62均为金属板通过冲压制成,从而能够适应高温高压的工作环境。在本发明的一个或多个示例性实施方式中,与同一个矩形波板63相邻的两个矩形波板63的开口方向相反。应当理解的是,本发明并不限于此,本领域技术人员可以根据实际需要选择斜棱柱通道的材料和制造方法,例如,在常温常压工况下采用塑料等非金属材质,或铝等延展性好的其它金属材料,成型的方式可采用模压等。矩形波板63和波纹板62可以采用任何合适的方式连接,包括但不限于焊接等。
进一步地,在本发明的一个或多个示例性实施方式中,斜棱柱通道61的倾斜角大于所拦截粉尘的休止角,斜棱柱通道61的倾斜角可以为15°~75°,优选可以为30°~60°。斜棱柱通道61的倾斜角定义为斜棱柱通道61相对于水平面的夹角(锐角)。应当理解的是,本发明并不限于此,斜棱柱通道61的倾斜角度可以根据所拦截粉尘的休止角大小来设置。
进一步地,在本发明的一个或多个示例性实施方式中,迎风面611和背风面612的宽度为2mm~100mm,优选为5mm~30mm;斜棱柱通道61的沿竖直方向延伸的侧面的宽度为5mm~200mm,优选为20mm~80mm。进一步地,在本发明的一个或多个示例性实施方式中,波纹板62的波幅为1mm~100mm,优选为3mm~60mm;波长为20mm~300mm,优选为30mm~220mm;波纹板62的波谷与相邻斜棱 柱通道的迎风面611的距离为2mm~80mm,优选为5mm~30mm。
进一步地,当设置多层除尘填料6时,沿气体物料流动方向,多层除尘填料6的波纹板62的波幅和波长逐渐减小,以适配粉尘颗粒度逐步减小的需要。
图5是根据本发明的第一实施方式的积垢盘的结构示意图。图6是图5所示的积垢盘的外观结构示意图。图7是图5所示的积垢盘的流场流态示意图。如图5-图7所示,本发明提供一种积垢盘,所述积垢盘3包括塔盘板31和设置于塔盘板上的积垢器300,所述积垢器300包括集气筒310和设置于集气筒的外筒壁上的折流盘311。
上述积垢盘中,所述折流盘311由多层锥形折流板形成,所述锥形折流板由锥形板3111和波形板3112构成;其中,波形板3112的波形为正弦曲线或余弦曲线,振幅为1mm~80mm,优选为3mm~40mm;波长为30mm~400mm,优选为80mm~150mm。波形板3112的波峰贴附在锥形板3111的下表面上。波形板3112与锥形板3111可以采用任何合适的方式连接,包括但不限于焊接等。
上述积垢盘中,所述集气筒310为立式圆筒形结构。集气筒310的顶端封闭,下端开口,集气筒310的下端穿过塔盘板31并与塔盘板31相连接,优选集气筒310竖直穿过塔盘板31,集气筒310的外筒壁上开有多个通气孔3101,通气孔3101作为气体进料口,所述通气孔3101的开口位置具体可以设置于相邻两层锥形折流板之间的筒壁上,所述集气筒310作为气体流通通道使用。
上述积垢盘中,所述折流盘311的锥角为30~175°,优选为90~110°;相邻两层锥形折流板之间的间距为波形板的振幅的1.2~5倍,优选为波形板的振幅的1.5~3倍,进一步优选为波形板的振幅的1.8~2.5倍。在本发明中,折流盘311的锥角定义为在如图7所示的横截面图中每个折流盘311的截面轮廓延长所得到的等腰三角形的顶角,折流盘311的倾斜角定义为该等腰三角形的底角。
上述积垢盘中,所述塔盘板31上设置有多个积垢器300,具体积垢器的数量本领域技术人员可以根据实际需要确定。当设置2个以上积垢器时,多个积垢器在塔盘板上均匀排列,例如但不限于:正方形排列、正三角形排列、圆形排列等。
通过积垢盘对流经的气体形成阻挡、限流,实现阻挡均流;气体流 经锥形折流板时形成多层波浪型气体流线,气体在转弯处形成涡流,粉尘在气体分子的撞击下脱离流线,像气体分子一样作布朗运动,器壁附近因流速低和分子力(范德华力)作用下,粉体粒子与环形折板间极易产生粘附现象,从而形成粉尘聚集体;随着粉尘的聚集,体积增大,当粉尘聚集体的重力大于粘附力时,粉尘聚集体会从锥形折板上剥离,坠落到下一层锥形折流板上,或如果是最下面一层锥形折流板的话直接掉落塔盘板31上。锥形折流板由锥形板和波形板复合而成,其上上表面为平滑的斜板,其倾斜角大于粉尘的休止角。随着粉尘在环形折板上表面的聚集,当粉尘聚集体的重力大于滑移阻力时粉尘聚集体会沿锥形板表面滑落,坠落到塔盘上,至此完成粉尘的拦截与存储。气体涡流处的低流速适宜静电力(库仑力)发挥作用,粉尘产生凝聚、结团形成聚集体,当粉尘聚集体足够大时,气体热泳力不足以悬浮、夹带粉尘颗粒,形成粉尘颗粒的沉积。
图8是根据本发明的第二实施方式的积垢盘的结构示意图。图9是图8所示的积垢盘的外观结构示意图。图10是图8所示的积垢盘的流场流态示意图。如图8-图10所示,本发明提供一种积垢盘,所述积垢盘3包括塔盘板31和设置于塔盘上的多个积垢器30,多个积垢器30在塔盘板31上均匀排列,具体可以采用正方形排列、正三角形排列等方式进行排列。
所述积垢器30包括盖板303、折流分离体304和穿设于塔盘的过滤体305;所述盖板303位于折流分离体304和过滤体305的上方并遮挡所述折流分离体304和过滤体305,保证气体物料经折流分离体304进入积垢器,折流分离体304的顶端与盖板303连接,折流分离体304的底端固定于塔盘301上;折流分离体304同轴套设于过滤体305外部,且折流分离体304与过滤体305之间留有一定距离,这个环隙空间可以用于储存捕集下来的固体物质;即按照与气体物料接触顺序,气体先经过折流分离体304,然后再经过过滤体305。
所述折流分离体304为环形折板柱状结构,由多个倒V字型环形折板叠罗而成,环形折板可以采用例如但不限于多根柱或者环形框架(未示出)固定。所述倒V字型环形折板的锥角为15°~150°,优选30°~90°;相邻两块环形折板之间的间距为3mm~80mm,优选8mm~28mm。所述环形折板的倾斜角大于气体中固体物质的休止角, 如此设置可以加速固体物质颗粒聚集体沿折板表面滑落。在本发明中,环形折板的锥角定义为在如图10所示的横截面图中每个环形折板的截面轮廓延长所得到的等腰三角形的顶角,环形折板的倾斜角定义为该等腰三角形的底角。
所述过滤体305为套筒环形柱状结构,过滤体305的下端穿设于塔盘板31,所述过滤体305包括内筒体307、外筒体308和设置于内筒体与外筒体之间环形空间内的积垢填料306,所述过滤体305为环形柱状;内筒体307和外筒体308之间的宽度为10mm~500mm,优选100mm~300mm;进一步优选内筒体307和外筒体308等高,两者套装在一起,由筛网制成;所述内筒体307与塔盘301之间是贯通的,作为气体通道使用;所述环形柱状过滤体具有适宜的空隙率。
所述盖板303与过滤体305上端之间留有一定的间隙,这个间隙可以作为过滤体305堵塞后的气体流通通道使用。间隙的高度为5mm~200mm,优选为20mm~120mm。当拦截的固体物质足够多、甚至淹没积垢器时,积垢盘失去拦截粉尘功能,但盖板303与过滤体305上端之间的空间仍然可以作为气体物料通道使用,不会产生压力降,保持装置长周期稳定运行。进一步地,在本发明的一个或多个示例性实施方式中,盖板303可以为圆锥型、圆台型或草帽型。应当理解的是,图中所示盖板303为草帽型,但是本发明并不限于此。
进一步地,在本发明的一个或多个示例性实施方式中,设置在上封头4中的积垢盘3的尺寸大于其它积垢盘3的尺寸。
进一步地,在本发明的一个或多个示例性实施方式中,当保护剂床层为多层时,多层保护剂床层6的规格按照气体物料流动方向,保护剂床层的空隙率逐渐减小。
通过积垢盘对流经的气体形成阻挡、限流,实现阻挡均流;气体流经倒V字型环形折板时,在转弯处形成涡流,粉尘在气体分子的撞击下脱离流线,像气体分子一样作布朗运动,器壁附近因流速低和分子力(范德华力)作用下,粉体粒子与环形折板间极易产生粘附现象,从而形成粉尘聚集体;随着粉尘的聚集,体积增大,当粉尘聚集体的重力大于粘附力时,粉尘聚集体会从环形折板上剥离,坠落到下一层环形折板上,或如果是最下面一层环形折板的话直接掉落塔盘板31上。环形折板的上表面为平滑的斜板,其倾斜角大于粉尘休止角。随着粉 尘在环形折板上表面的聚集,当粉尘聚集体的重力大于滑移阻力时粉尘聚集体会沿环形折板表面滑落,坠落到塔盘上,至此完成粉尘的拦截与存储。气体涡流处的低流速适宜静电力(库仑力)发挥作用,粉尘产生凝聚、结团形成聚集体,当粉尘聚集体足够大时,气体热泳力不足以悬浮、夹带粉尘颗粒,形成粉尘颗粒的沉积。
图11是根据本发明的第二实施方式的气体净化装置的结构示意图。如图11所示,本发明提供第二实施方式的气体净化装置,所述装置包括上封头4、壳体5和下封头7;所述上封头上设置有气体入口1,所述气体入口下方还可以设置有入口扩散器2,下封头上设置有气体出口9,气体出口9上方设置有出口收集器8;所述装置内部设置有多层如上所述的积垢盘3、除尘填料6、以及保护剂床层10,所述相邻两层积垢盘3之间设置有除尘填料6或保护剂床层10,且除尘填料6设置于保护剂床层10上方,具体的当设置三层积垢盘、除尘填料、保护剂床层时,按照物料流动方向依次为第一层积垢盘,除尘填料、第二层积垢盘,保护剂床层和第三层积垢盘。所述积垢盘3设置于上封头4内和/或壳体5中,优选设置于上封头4内,设置在上封头4中的积垢盘3的尺寸大于设置于壳体内的其它积垢盘3的尺寸,保护剂床层10中装填鸟巢结构保护剂,如图13所示,鸟巢填料其由筒体及多个筋板构成,筋板相互交叉形成网格状,交叉点形成锐角。
图12是根据本发明的第三实施方式的气体净化装置结构示意图。图13是鸟巢填料的结构示意图。如图12所示,本发明提供第三实施方式的气体净化装置,所述装置包括上封头4、壳体5和下封头7;所述上封上设置有气体入口1,所述气体入口下方还可以设置有入口扩散器2,下封头上设置有气体出口9,气体出口9上方设置有出口收集器8;装置内部设置有积垢盘3,所述积垢盘3设置于上封头4内和/或壳体5中,优选设置于上封头4内,设置在上封头4中的积垢盘3的尺寸大于设置于壳体内的其它积垢盘3的尺寸,积垢盘3下方设置有保护剂床层10,进一步优选保护剂床层10设置于两层积垢盘3之间。所示保护剂床层10中装填鸟巢结构保护剂,如图13所示,鸟巢填料其由筒体及多个筋板构成,筋板相互交叉形成网格状,交叉点形成锐角。
经过积垢盘和除尘填料处理后的含尘气体进入保护剂床层,保护剂 床层具有“过滤”功能,可以进一步拦截、存储气体中的固体物质,当采用鸟巢结构保护剂床层时,粉尘具有架桥特性,在鸟巢保护剂筋板交叉形成的锐角处形成架桥效应,实现粉尘的沉积;随着运行周期的推进,粉尘在范德华力作用下附着、架桥,在库伦力作用下聚集;细小粉尘聚团长大,当灰团脱落时被气体推送,鸟巢保护剂床层下方设置积垢盘,为灰团提供低流速工况,并在积垢盘上方形成滞流层,利于粉尘灰团的拦截与存储,实现细微颗粒粉尘的分离设置不同规格的鸟巢保护剂床层,深度分离超细粉尘。净化后的气体自下封头上设置的出口收集器及气体出口流出,至此完成气体的除尘净化过程。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个具体技术特征以任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。但这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (20)

  1. 一种除尘填料(6),包括:
    多排通道(61),每一个通道(61)相对于竖直方向倾斜地延伸,以形成迎风面(611)和背风面(612);以及
    波纹板(62),所述波纹板(62)的波峰贴附在所述斜棱柱通道(61)的背风面(612)上,在操作过程中,粉尘附着于波纹板(62)的下表面的凹部处,聚集以形成粉尘聚集体,当粉尘聚集体的重力大于附着力时,粉尘聚集体掉落至通道(61)的迎风面(611)上,并从通道(61)的迎风面(611)上滑落。
  2. 根据权利要求1所述的除尘填料(6),其中,每一个通道(61)为斜棱柱形,横截面为矩形,一组相对的侧面相对于竖直方向倾斜地延伸,以形成迎风面(611)和背风面(612),另一组相对的侧面沿竖直方向延伸,相邻两排的斜棱柱通道(61)沿相反的方向倾斜。
  3. 根据权利要求2所述的除尘填料(6),其中,每一排斜棱柱通道(61)由矩形波板(63)和隔板(64)形成,以在它们之间限定流动通道。
  4. 根据权利要求3所述的除尘填料(6),其中,与同一个所述矩形波板(63)相邻的两个所述矩形波板(63)的开口方向相反。
  5. 根据权利要求1所述的除尘填料(6),其中,所述斜棱柱通道(61)的倾斜角大于所拦截粉尘的休止角。
  6. 一种气体净化装置,包括:
    本体,其包括壳体(5)、上封头(4)和下封头(7);
    多个积垢盘(3),其设置在所述上封头(4)和所述壳体(5)中;以及
    一层或多层根据权利要求1至5中任一项所述的除尘填料(6),每一层除尘填料(6)设置在两个相邻的积垢盘(3)之间。
  7. 一种积垢盘(3),包括:
    塔盘板(31);和
    设置于塔盘板(31)上的至少一个积垢器(300),每个积垢器(300)包括集气筒(310)和设置于集气筒(310)的外筒壁上的折流盘(311);所述折流盘(311)由多层锥形折流板形成,所述锥形折流板由锥形板 (3111)和波形板(3112)构成;
    在操作过程中,粉尘附着于波形板(3112)的下表面的凹部处,聚集以形成粉尘聚集体,当粉尘聚集体的重力大于附着力时,粉尘聚集体掉落至下面的锥形板(3111)的上表面上并从锥形板(3111)的上表面滑落到塔盘板(31)上,或直接掉落塔盘板(31)上。
  8. 根据权利要求7所述的积垢盘(3),其中,所述集气筒(310)为立式圆筒形结构,集气筒(310)的顶端封闭,下端开口,集气筒(310)的下端穿过塔盘板(31)并与塔盘板(31)相连接,集气筒(310)的外筒壁上开有多个通气孔(3101)。
  9. 根据权利要求8所述的积垢盘(3),其中,所述集气筒(310)的下端竖直穿过塔盘板(31)并与塔盘板(31)相连接,所述通气孔(3101)设置于相邻两层锥形折流板之间的筒壁上。
  10. 根据权利要求7所述的积垢盘(3),其中,所述塔盘板(31)上设置有多个积垢器(300),多个积垢器(300)在塔盘板(31)上均匀排列。
  11. 一种气体净化装置,包括上封头(4)、下封头(7)和壳体(5),所述气体净化装置内部设置有至少一个根据权利要求7至10中任一项所述的积垢盘(3)。
  12. 根据权利要求11所述的气体净化装置,还包括一层或多层根据权利要求1至7中任一项所述的除尘填料(6),所述气体净化装置内部设置有多层积垢盘(3),每一层除尘填料(6)设置在两个相邻的积垢盘(3)之间。
  13. 根据权利要求11所述的气体净化装置,还包括一层或多层保护剂床层(10),所述保护剂床层(10)设置于积垢盘(3)下方。
  14. 根据权利要求13所述的气体净化装置,其中,所述保护剂床层(10)中装填有鸟巢保护剂,所述鸟巢保护剂包括筒体和多个筋板,多个筋板相互交叉形成网格状,交叉点形成锐角。
  15. 根据权利要求14所述的气体净化装置,其中,当设置多层除尘填料(6)时,多层除尘填料(6)的波纹板(62)的波幅和波长沿气体流动方向逐渐减小。
  16. 一种积垢盘(3),包括:
    塔盘板(31);和
    设置于塔盘板(31)上的积垢器(300),所述积垢器(300)包括过滤体(305)、折流分离体(304)和盖板(303);
    所述过滤体(305)为限定积垢器轴线的套筒环形柱状结构;
    所述折流分离体(304)为围绕积垢器轴线延伸的环形折板柱状结构,由多层环形折板形成,环形折板的横截面为倒V字型,从而形成围绕积垢器轴线延伸的倒V字型环形折板,折流分离体(304)套设于过滤体(305)外部;
    所述盖板(303)位于折流分离体(304)和过滤体(305)的上方并遮挡所述折流分离体(304)和过滤体(305),折流分离体(304)的顶端与盖板(303)相连接;
    在操作过程中,粉尘附着于环形折板的倒V字型顶点处,聚集以形成粉尘聚集体,当粉尘聚集体的重力大于附着力时,粉尘聚集体掉落至下面的环形折板的上表面并从环形折板的上表面滑落到塔盘板(31)上,或直接掉落塔盘板(31)上。
  17. 根据权利要求16所述的积垢盘(3),其中,过滤体(305)的下端穿设于塔盘板(31),所述过滤体(305)包括内筒体(307)、外筒体(308)和设置于内筒体(307)与外筒体(308)之间环形空间内的积垢填料(306)。
  18. 一种气体净化装置,包括上封头(4)、下封头(7)和壳体(5),所述气体净化装置内部设置有至少一个根据权利要求16至17中任一项所述的积垢盘(3)。
  19. 根据权利要求18所述的气体净化装置,还包括一层或多层根据权利要求1至7中任一项所述的除尘填料(6),每一层除尘填料(6)设置在两个相邻的积垢盘(3)之间。
  20. 根据权利要求18所述的气体净化装置,其中,所述气体净化装置内部设置有多层积垢盘(3),所述相邻两层积垢盘(3)之间设置有保护剂床层(10)或根据权利要求1至7中任一项所述的除尘填料(6),且除尘填料(6)设置于保护剂床层(10)上方,当设置三层积垢盘(3)时,按照气体流动方向依次为第一层积垢盘(3)、除尘填料(6)、第二层积垢盘(3)、保护剂床层(10)和第三层积垢盘(3)。
PCT/CN2021/118696 2020-09-17 2021-09-16 除尘填料、积垢盘和气体净化装置 WO2022057853A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/245,573 US20230364545A1 (en) 2020-09-17 2021-09-16 Dust removal filler, fouling collection pan and gas cleaning device
KR1020237012918A KR20230069993A (ko) 2020-09-17 2021-09-16 분진 제거 필러, 오물 축적 트레이 및 가스 정화 장치
EP21868675.6A EP4215265A1 (en) 2020-09-17 2021-09-16 Dust removal filler, dirt accumulation tray, and gas purification device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010980136.9 2020-09-17
CN202010982283.X 2020-09-17
CN202010978766.2 2020-09-17
CN202010978766.2A CN114425207B (zh) 2020-09-17 2020-09-17 气体除尘装置及其除尘填料
CN202010982283.XA CN114425209B (zh) 2020-09-17 2020-09-17 积垢盘和捕集气体中固体物质的装置
CN202010980136.9A CN114425208B (zh) 2020-09-17 2020-09-17 积垢盘和含尘气体净化装置

Publications (1)

Publication Number Publication Date
WO2022057853A1 true WO2022057853A1 (zh) 2022-03-24

Family

ID=80776481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118696 WO2022057853A1 (zh) 2020-09-17 2021-09-16 除尘填料、积垢盘和气体净化装置

Country Status (5)

Country Link
US (1) US20230364545A1 (zh)
EP (1) EP4215265A1 (zh)
KR (1) KR20230069993A (zh)
TW (1) TW202211974A (zh)
WO (1) WO2022057853A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1765478A (zh) * 2004-10-29 2006-05-03 中国石油化工股份有限公司 一种延迟积垢器
CN101596400A (zh) * 2009-07-14 2009-12-09 薛碧 逆顺流水波纹环板填料超重力除尘脱硫机
US20110226693A1 (en) * 2010-03-22 2011-09-22 Robert Yaw Gyamfi Andoh Separator for separating solids from an influent
CN203043962U (zh) * 2013-03-17 2013-07-10 湖北侨光石化机械有限责任公司 一种积垢篮
CN209689470U (zh) * 2019-02-27 2019-11-26 江苏海鸥冷却塔股份有限公司 一种梯形波三维收水器
CN210278651U (zh) * 2019-06-06 2020-04-10 唐山市鼎祥锰业有限公司 用于硅锰合金加工的粉尘处理设备
CN210613229U (zh) * 2019-04-15 2020-05-26 江森自控空调冷冻设备(无锡)有限公司 过滤装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1765478A (zh) * 2004-10-29 2006-05-03 中国石油化工股份有限公司 一种延迟积垢器
CN101596400A (zh) * 2009-07-14 2009-12-09 薛碧 逆顺流水波纹环板填料超重力除尘脱硫机
US20110226693A1 (en) * 2010-03-22 2011-09-22 Robert Yaw Gyamfi Andoh Separator for separating solids from an influent
CN203043962U (zh) * 2013-03-17 2013-07-10 湖北侨光石化机械有限责任公司 一种积垢篮
CN209689470U (zh) * 2019-02-27 2019-11-26 江苏海鸥冷却塔股份有限公司 一种梯形波三维收水器
CN210613229U (zh) * 2019-04-15 2020-05-26 江森自控空调冷冻设备(无锡)有限公司 过滤装置
CN210278651U (zh) * 2019-06-06 2020-04-10 唐山市鼎祥锰业有限公司 用于硅锰合金加工的粉尘处理设备

Also Published As

Publication number Publication date
TW202211974A (zh) 2022-04-01
EP4215265A1 (en) 2023-07-26
KR20230069993A (ko) 2023-05-19
US20230364545A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
CN107224828B (zh) 高速烟尘处理系统
CN201930700U (zh) 一种离心雾化式脱尘器
CN106964217A (zh) 一种滤层厚度可调的移动床颗粒层连续过滤系统
CN112933842B (zh) 一种波浪板螺旋槽除尘除雾装置
CN201015722Y (zh) 混合式高效除尘器
WO2022057853A1 (zh) 除尘填料、积垢盘和气体净化装置
CN206381774U (zh) 一种工业烟尘废气处理设备
CN202983406U (zh) 用于高温气体过滤器的预分离装置及其过滤器
CN207886819U (zh) 一种高效旋风除尘装置
CN214861855U (zh) 颗粒捕集装置
CN114425208B (zh) 积垢盘和含尘气体净化装置
CN114425209B (zh) 积垢盘和捕集气体中固体物质的装置
CN114425207B (zh) 气体除尘装置及其除尘填料
CN1583223A (zh) 气液交换塔
CN103041651B (zh) 用于高温气体过滤器的预分离装置及其过滤器
CN206215390U (zh) 双级旋风降尘装置
CN207056204U (zh) 一种深度废气净化装置
CN206276127U (zh) 一种沥青搅拌站专用除尘器
CN201832528U (zh) 一种撞击式分离器
CN218452288U (zh) 一种带导流装置的旋风分离器
CN205760347U (zh) 一种高效率的除尘塔
CN206325334U (zh) 一种适应于高温、高湿条件的高效除尘过滤器
CN207899164U (zh) 一种湿法除尘器
CN218475064U (zh) 一种适用于垃圾焚烧的高温除尘器
CN215049967U (zh) 一种热解油气除尘装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868675

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237012918

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021868675

Country of ref document: EP

Effective date: 20230417