WO2022057620A1 - 壳体及其制备方法和电子设备 - Google Patents

壳体及其制备方法和电子设备 Download PDF

Info

Publication number
WO2022057620A1
WO2022057620A1 PCT/CN2021/115821 CN2021115821W WO2022057620A1 WO 2022057620 A1 WO2022057620 A1 WO 2022057620A1 CN 2021115821 W CN2021115821 W CN 2021115821W WO 2022057620 A1 WO2022057620 A1 WO 2022057620A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
area
green body
colorant
region
Prior art date
Application number
PCT/CN2021/115821
Other languages
English (en)
French (fr)
Inventor
张文宇
卢湘武
侯体波
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21868447.0A priority Critical patent/EP4170997A4/en
Publication of WO2022057620A1 publication Critical patent/WO2022057620A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0279Improving the user comfort or ergonomics
    • H04M1/0283Improving the user comfort or ergonomics for providing a decorative aspect, e.g. customization of casings, exchangeable faceplate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • H05K5/0243Mechanical details of casings for decorative purposes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/61Mechanical properties, e.g. fracture toughness, hardness, Young's modulus or strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0249Details of the mechanical connection between the housing parts or relating to the method of assembly

Definitions

  • the present application belongs to the technical field of electronic products, and specifically relates to a casing, a preparation method thereof, and an electronic device.
  • Ceramic materials have the advantages of high hardness, good toughness and wear resistance, and are often used in electronic equipment in recent years. Since the color of ceramic materials is relatively single, it is particularly important to improve its appearance and meet more diverse needs.
  • the present application provides a casing and a preparation method thereof, a casing and an electronic device.
  • the casing presents a variety of colors, and there is a color gradient area between the two colors, and the appearance effect is rich.
  • the shape error of the boundary line between them is small, which ensures the uniformity of the appearance of the casing and improves the visual aesthetics; when the casing is applied to electronic equipment, the appearance effect and product competitiveness can be significantly improved.
  • the present application provides a housing including a ceramic substrate, the ceramic substrate including a first area, a second area, and a gradient area between the first area and the second area; the The first area exhibits a first color, the second area exhibits a second color, and the first area and the second area have a color difference; the direction from the first area to the second area is the first direction, along the first direction, the gradient area presents a gradient from a first color to a second color; the surface of the ceramic substrate has a first boundary line and a second boundary line, and the first boundary line is located in the first area and the gradation area, the second boundary line is located between the second area and the gradation area, and the straightness of at least one of the first boundary line and the second boundary line is less than 0.5 mm.
  • the application provides a method for preparing a shell, comprising:
  • a first ceramic green body and a second ceramic green body are provided, the first ceramic green body and the second ceramic green body have a color difference, and the Vickers hardness of the first ceramic green body and the second ceramic green body is provided greater than or equal to 10Hv0.1;
  • a ceramic substrate green body is formed by pressing, and the first ceramic green body and the second ceramic green body in the ceramic substrate green body are The density difference is less than 0.08g/cm 3 ;
  • the green ceramic substrate is debonded and sintered to obtain a ceramic substrate and a casing.
  • the present application provides an electronic device, including a housing and a main board, the housing includes a ceramic substrate, and the ceramic substrate includes a first area, a second area, and a Gradient area between two areas; the first area exhibits a first color, the second area exhibits a second color, and the first area and the second area have a color difference; the first area to the The direction of the second region is the first direction, and the gradient region exhibits a gradient from a first color to a second color along the first direction; the surface of the ceramic substrate has a first boundary line and a second boundary line, the a first boundary line is located between the first area and the gradient area, the second boundary line is located between the second area and the gradient area, the first boundary line and the second boundary The straightness of at least one of the lines is less than 0.5 mm.
  • FIG. 1 is a schematic structural diagram of a housing provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a casing provided by another embodiment of the present application.
  • FIG. 3 is an enlarged schematic view of area A in FIG. 2 .
  • FIG. 4 is a top view of a housing provided by an embodiment of the present application.
  • FIG. 5 is a top view of a casing provided by another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a casing provided by another embodiment of the present application.
  • FIG. 7 is a flow chart of a method for manufacturing a casing provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a green ceramic substrate provided by an embodiment of the application, wherein (a) in FIG. 8 is a schematic structural diagram of a green ceramic substrate of the first type, and (b) is a schematic diagram of a green ceramic substrate of the second type.
  • (c) is the schematic structural diagram of the third green ceramic substrate
  • (d) is the structural schematic diagram of the fourth green ceramic substrate
  • (e) is the structural schematic diagram of the fifth green ceramic substrate
  • (f) is the structural schematic diagram of the sixth kind of green ceramic substrate
  • (g) is the structural schematic diagram of the seventh kind of green ceramic substrate
  • (h) is the structural schematic diagram of the eighth kind of green ceramic substrate
  • (i) is the ninth kind of green body Schematic diagram of the structure of the green ceramic substrate.
  • An embodiment of the present application provides a housing including a ceramic substrate, the ceramic substrate including a first area, a second area, and a gradient area between the first area and the second area; the first area The area exhibits a first color, the second area exhibits a second color, and the first area and the second area have a color difference; the direction from the first area to the second area is the first direction, along all The gradient area in the first direction presents a gradient from a first color to a second color; the surface of the ceramic substrate has a first borderline and a second borderline, and the first borderline is located between the first area and the second color. between the gradation areas, the second boundary line is located between the second area and the gradation area, and the straightness of at least one of the first boundary line and the second boundary line is less than 0.5 mm.
  • the straightness of at least one of the first boundary line and the second boundary line is less than 0.3 mm.
  • first boundary line and the second boundary line are parallel.
  • the size of the gradient region in the first direction is less than or equal to 20 mm.
  • the first region includes a first colorant, and the mass content of the first colorant in the first region is 0.1%-10%; the second region includes a second colorant, the second The mass content of the second colorant in the region is less than or equal to 10%.
  • the mass content of the first colorant in the first region is 4%-10%
  • the mass content of the second colorant in the second region is 0%-2%
  • the first colorant At least one of the colorant and the second colorant is a non-spinel colorant.
  • the material of the ceramic substrate includes alumina, and the mass content of the alumina in the ceramic substrate is less than 1%.
  • the first colorant is a spinel colorant.
  • the second region includes alumina, and the mass content of alumina in the second region is 3%-20%.
  • the first region includes alumina, and the mass content of alumina in the first region is less than or equal to 20%.
  • the optical transmittance of the second region is greater than 40%.
  • the material of the second region includes 0.2%-0.5% of alumina, 0.5%-1% of silica, 2%-10% of stabilizer, and the balance of zirconia.
  • the housing further includes a color layer disposed on the surface of the ceramic substrate, the color layer covers the second area, and the color layer has a color difference with the first area.
  • first area and the gradual change area are disposed adjacent to each other, and the second area and the gradual change area are disposed adjacent to each other.
  • the color difference value between the first area and the second area is greater than 2.
  • the density of the ceramic substrate is greater than 6g/cm 3 , the flexural strength is greater than 800MPa, the fracture toughness is greater than 7MPa ⁇ m 1/2 , the Vickers hardness is greater than 500Hv0.1, and the surface roughness is less than 0.01 ⁇ m.
  • An embodiment of the present application further provides a method for manufacturing a casing, including: providing a first ceramic green body and a second ceramic green body, wherein the first ceramic green body and the second ceramic green body have a color difference, and the The Vickers hardness of the first ceramic green body and the second ceramic green body is greater than or equal to 10Hv0.1; after the first ceramic green body and the second ceramic green body are spliced, a green ceramic substrate is formed by pressing , the density difference between the first ceramic green body and the second ceramic green body in the ceramic substrate green body is less than 0.08g/cm 3 ; the ceramic substrate green body is debinding and sintered to obtain a ceramic substrate, which is prepared case.
  • the providing the first ceramic green body and the second ceramic green body includes: providing the first ceramic raw material and the second ceramic raw material, the difference between the medium particle diameter D50 of the first ceramic raw material and the second ceramic raw material less than 30 ⁇ m, the difference between the bulk density of the first ceramic raw material and the second ceramic raw material is less than 0.2 g/cm 3 ; after pre-pressing, the first ceramic raw material is made into the first ceramic green body , the second ceramic raw material is made into the second ceramic green body.
  • the medium particle size D50 of the first ceramic raw material is 50 ⁇ m-100 ⁇ m, and the bulk density is 1.2 g/cm 3 -1.8 g/cm 3 ;
  • the medium particle size D50 of the second ceramic raw material is 50 ⁇ m-100 ⁇ m,
  • the bulk density is 1.2g/cm 3 -1.8g/cm 3 ;
  • the pre-pressing includes processing at 5MPa-20MPa, and the density of the first ceramic green body and the second ceramic green body are respectively 2.2g /cm 3 -2.5g/cm 3 , the density difference between the first ceramic green body and the second ceramic green body is less than 0.2g/cm 3 , the first ceramic green body and the second ceramic green body
  • the Vickers hardness is 10Hv0.1-70Hv0.1, respectively.
  • a ceramic substrate green body is formed by pressing, including: the first ceramic green body and the second ceramic green body are spliced together, and through the final process
  • the green ceramic substrate is formed by pressing and isostatic pressing, the final pressure includes treatment at 50 MPa-80 MPa, and the isostatic pressing includes treatment at 100 MPa-200 MPa.
  • the density difference between the first ceramic green body after the final pressing and the second ceramic green body is less than 0.15 g/cm 3
  • the density of the ceramic substrate green body after the final pressing is greater than 3 g/cm cm 3
  • the density of the green ceramic substrate after the isostatic pressing is greater than 3.1 g/cm 3 .
  • the debinding includes treatment at 300°C-500°C for 12h-24h; and the sintering includes treatment at 1300°C-1500°C for 2h-4h.
  • the bonding strength of the first ceramic green body and the second ceramic green body is greater than 800MPa, and the porosity difference between the first ceramic green body and the second ceramic green body is less than 0.1 %.
  • An embodiment of the present application further provides an electronic device, including a casing and a main board, the casing includes a ceramic substrate, and the ceramic substrate includes a first area, a second area, and the first area and the second area Gradient area between areas; the first area exhibits a first color, the second area exhibits a second color, and the first area and the second area have a color difference; the first area to the second area
  • the direction of the second region is the first direction, and the gradient region exhibits a gradient from a first color to a second color along the first direction;
  • the surface of the ceramic substrate has a first boundary line and a second boundary line, the first color A boundary line is located between the first area and the gradient area, the second boundary line is located between the second area and the gradient area, the first boundary line and the second boundary line At least one of the straightness is less than 0.5mm.
  • FIG. 1 is a schematic structural diagram of a casing provided by an embodiment of the application.
  • the casing 100 includes a ceramic substrate 10 , and the ceramic substrate 10 includes a first area 11 , a second area 12 , and the first area 11 and the second area.
  • the surface of the ceramic substrate 10 has a first boundary line 14 and a second boundary line 15 , and the first boundary line 14 is located in the first area 11 .
  • the second boundary line 15 is located between the second area 12 and the gradient area 13; the straightness of at least one of the first boundary line 14 and the second boundary line 15 is less than 0.5 mm.
  • the ceramic assembly presents multiple color visual effects, which greatly improves the appearance of the housing 100; at the same time, The shape error of the boundary line between the regions is small, which ensures the uniformity of the appearance of the casing 100, improves the visual aesthetics, and is more conducive to its application.
  • the ceramic substrate 10 includes a first area 11 , a second area 12 and a gradient area 13 , and the first area 11 and the second area 12 have a color difference.
  • first, second, etc. in this application are only used for the purpose of description, and should not be interpreted as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the surface of the ceramic substrate 10 has a first boundary line 14 and a second boundary line 15 , the first boundary line 14 is located between the first area 11 and the graded area 13 , and the second boundary line 15 is located between the second area 12 and the graded area 13 . That is, on the surface of the casing 100 , the first area 11 and the gradient area 13 are bounded by the first boundary line 14 , and the second area 12 and the gradient area 13 are bounded by the second boundary line 15 . It can be understood that the casing 100 has multiple surfaces, and at least one surface of the casing has a first boundary line 14 and a second boundary line 15 .
  • the first region 11 and the gradation region 13 are adjacent to each other, and the second region 12 and the gradation region 13 are adjacent to each other.
  • the adjoining can be arranged around, and can also be arranged on one side.
  • the surrounding may be, but not limited to, partial surrounding, surrounding, and the like.
  • the first region 11 is located on one side of the gradient region 13 .
  • the second region 12 is located on one side of the gradient region 13 .
  • the first area 11 is arranged around the gradient area 13 , or the gradient area 13 is arranged around the first area 11 .
  • the second area 12 is arranged around the gradient area 13 , or the gradient area 13 is arranged around the second area 12 .
  • a plurality of second boundary lines 15 exist between the second region 12 and the gradient region 13 , and the straightness of at least one second boundary line 15 is less than 0.5 mm. It can be understood that at least two of the plurality of second boundary lines 15 extend in different directions.
  • straightness refers to the total allowable variation of a single actual straight line, which is a type of shape tolerance.
  • the straightness of the curve is the maximum value of the vertical distance between the peaks and valleys of the curve.
  • the straightness of the first boundary line 14 and the second boundary line 15 are both less than 0.3 mm. Therefore, the uniformity of the color distribution of the ceramic substrate 10 is further improved.
  • the straightness of at least one of the first boundary line 14 and the second boundary line 15 is less than 0.3 mm. As a result, the regions are further improved and the color distribution is more harmonious.
  • the straightness of the first boundary line 14 and/or the second boundary line 15 is less than 0.28 mm, 0.25 mm, 0.22 mm, and 0.2 mm.
  • the first boundary line 14 and the second boundary line 15 are parallel. Thus, the color distribution between the gradation area 13 and the adjacent areas is improved.
  • the first area 11 exhibits a first color
  • the second area 12 exhibits a second color
  • the first area 11 and the second area 12 have a color difference. It can be understood that by controlling the ceramic material, the first area 11 or the second area 12 is colorless and transparent, so that the casing 100 has a partial color change and a partially transparent appearance, and the visual effect is more abundant.
  • the color difference value between the first area 11 and the second area 12 is greater than 2.
  • the Lab color model is a device-independent color model and a color model based on physiological characteristics.
  • the Lab color model consists of three elements, L, a, and b.
  • L is used to indicate brightness, the value range is [0, 100], which means from pure black to pure white; a means the range from green to red, and the value range is [-128, 127]; b means from blue to yellow Range, the value range is [-128, 127].
  • Each color has a Lab value, and the difference (color difference value) between the two colors is represented by ⁇ E.
  • the color difference between the first area 11 and the second area 12 is controlled to be greater than 2, so that the colors of the first area 11 and the second area 12 can be distinguished by human eyes, and the appearance effects of multiple colors are realized.
  • the color difference value of the first area 11 and the second area 12 is greater than 4; further, the color difference value of the first area 11 and the second area 12 is greater than 6, so as to produce obvious color difference and form a color contrast effect .
  • the difference between the average Lab value of the gradient area 13 and the Lab value of the first area 11 is greater than 2, and/or the difference between the average Lab value of the gradient area 13 and the Lab value of the second area 12 is greater than 2, In order to make the color of the gradient area 13 distinct from that of the first area 11 and the second area 12 .
  • the difference between the Lab value of the intermediate point in the gradient area 13 and the Lab value of the first area 11 and/or the second area 12 is greater than 2, wherein the intermediate point is from the gradient area 13 to the first area 11 and The points of the second region 12 whose shortest distances are equal.
  • the ceramic substrate 10 has an inner surface and an outer surface disposed opposite the inner surface. It can be understood that the inner surface and the outer surface of the ceramic substrate 10 have a first area 11 , a second area 12 and a gradient area 13 , and it can also be understood that a part of the inner surface belongs to the first area 11 and a part of the inner surface belongs to the second area 12 , another part of the inner surface belongs to the gradient area 13 ; a part of the outer surface belongs to the first area 11 , a part of the outer surface belongs to the second area 12 , and the other part of the outer surface belongs to the gradient area 13 .
  • the color difference value between the inner surface and the outer surface of the first area 11 and the interior of the ceramic substrate 10 is less than 1, that is to say, the first area 11 shows the first color, the color is evenly distributed, and there is no obvious color difference .
  • the color difference values on the inner surface, the outer surface of the first region 11 and the interior of the ceramic substrate 10 are less than 0.5.
  • the color difference between the inner surface and the outer surface of the second area 12 and the interior of the ceramic substrate 10 is less than 1, that is to say, the second area 12 exhibits the second color, the color is uniformly distributed, and there is no obvious difference. chromatic aberration.
  • the color difference values on the inner surface, the outer surface of the second region 12 and the interior of the ceramic substrate 10 are less than 0.5.
  • the first detection point located on the inner surface of the gradation area 13 , the second detection point located on the outer surface of the gradation area 13 , and the third detection point located inside the ceramic substrate 10 of the gradation area 13 The color difference value is less than 1. Further, the color difference value is less than 0.5.
  • the first detection point, the second detection point and the third detection point are points on the same line segment with the shortest distance from the inner surface to the outer surface. That is to say, the gradation area 13 exhibits a gradation of color, and the colors at the corresponding positions on the surface and the interior have no obvious color difference, and the color of the gradation area 13 exhibits an overall uniform gradation.
  • the gradient area 13 presents a gradient from the first color to the second color along the first direction. It can be understood that along the opposite direction of the first direction, the gradient area 13 presents a gradient from the second color to the first color.
  • the first area 11 has the first colorant
  • the second area 12 has the second colorant
  • the gradient area 13 includes the first colorant
  • the mass content of the first colorant in the gradient area 13 is along the first direction gradually decreases. That is, the mass content of the first colorant in the gradation area 13 tends to decrease along the first direction, until the junction of the second area 12 and the gradation area 13 , the mass content of the first colorant reaches the lowest, or even zero.
  • the color of the gradation area 13 exhibits a gradation effect. It can be understood that when the second region 12 does not contain the second colorant, the gradient region 13 does not contain the second colorant, but only contains the first colorant. In one embodiment, when the second region 12 has the second colorant, the mass content of the second colorant in the gradient region 13 gradually decreases along the opposite direction of the first direction. That is to say, the mass content of the second colorant in the gradient area 13 tends to decrease in the opposite direction of the first direction, until the junction of the first area 11 and the gradient area 13, the mass content of the second colorant reaches the lowest, even zero.
  • the mass content of the second colorant in the gradient area 13 gradually decreases along the opposite direction of the first direction and reaches zero, and then the mass content of the second colorant in the gradient area 13 continues along the first direction The opposite direction remains at zero.
  • the mass content of the first colorant in the gradient region 13 decreases linearly along the first direction.
  • the colors of the gradient area 13 are smoothly transitioned.
  • the mass content of the second colorant in the gradient area 13 decreases linearly along the opposite direction of the first direction.
  • the colors of the gradient area 13 are smoothly transitioned.
  • the size of the gradient region 13 in the first direction is less than or equal to 20 mm.
  • the casing 100 has a very gentle color transition, and the delicate feeling is enhanced.
  • the size of the gradient region 13 in the first direction is 50 ⁇ m-10 mm.
  • the size of the gradient region 13 in the first direction is less than or equal to 200 ⁇ m. Therefore, the casing 100 exhibits a very strong color contrast effect, and the contrast color lines are clear.
  • the size of the gradient region 13 in the first direction may be, but not limited to, 60 ⁇ m, 150 ⁇ m, 500 ⁇ m, 1 mm, 6 mm, 15 mm or 18 mm.
  • the width of the gradient region 13 is the smallest dimension of the gradient region 13 in the first direction. In one embodiment, the width of the gradient area 13 is less than or equal to 20 mm; further, the width of the gradient area 13 is less than or equal to 10 mm. In another embodiment, the width of the gradient region 13 is 50 ⁇ m-10 mm.
  • the visual effect of the casing 100 is enriched, which is beneficial to its application in electronic equipment and improves the appearance selectivity of the product. It can be understood that the value of the straightness of the first boundary line 14 and/or the second boundary line 15 is smaller than the size of the gradient region 13 in the first direction.
  • FIG. 2 is a schematic structural diagram of a housing provided by another embodiment of the application.
  • the housing 100 includes a ceramic substrate 10 , and the ceramic substrate 10 includes a first area 11 and a second area 12 ; please refer to FIG. 3 , which is FIG. 2 An enlarged schematic view of the middle area A, wherein there is also a gradient area 13 between the first area 11 and the second area 12 .
  • the size of the gradient area 13 in the first direction is small, which is not easy to be recognized by the naked eye, and then a clear boundary line is presented between the first area 11 and the second area 12, forming an obvious color contrast effect, which greatly improves the casing.
  • the appearance of the casing 100 enriches the visual effect of the casing 100 and is more conducive to its application.
  • FIG. 4 is a top view of a casing provided in an embodiment of the present application.
  • the surface of the casing 100 has a first area 11 , a second area 12 and a gradient area between the first area 11 and the second area 12 13;
  • the first area 11 and the second area 12 have a color difference, so that the gradient area 13 presents a slow transition of colors.
  • the gradient area 13 has a larger size in the first direction and can be observed by the naked eye, thereby making the housing 100 Presents a muted color stitching effect.
  • the size of the gradient region 13 in the first direction may be, but not limited to, greater than 1 mm, 3 mm, 5 mm, or 10 mm. Please refer to FIG.
  • the surface of the casing 100 has a first area 11 and a second area 12 , and a gradient area between the first area 11 and the second area 12
  • the size of 13 in the first direction is small and cannot be observed by the naked eye, and appears as a clear boundary on the casing 100 , so that the casing 100 exhibits an obvious color collision effect.
  • the size of the gradient region 13 in the first direction may be, but not limited to, no larger than 1 mm, 0.5 mm, 0.2 mm, or 0.1 mm, or the like.
  • the first region 11 includes a first colorant. That is to say, due to the presence of the first colorant in the first region 11 , the first region 11 exhibits the first color.
  • the first colorant may include a colorant of one color, and the colorant is uniformly distributed in the first region 11; the first colorant may also include a plurality of colorants of different colors, and the colorants of a plurality of different colors are uniformly distributed in the first region 11. in the first area 11.
  • the mass content of the first colorant in the first region 11 is 0.1%-10%. In another embodiment, the mass content of the first colorant in the first region 11 is 4%-10%.
  • the mass content of the first colorant in the first region 11 by controlling the mass content of the first colorant in the first region 11 , it is avoided that the content of the colorant is too high to affect the mechanical strength of the ceramic substrate 10 . Further, the mass content of the first colorant in the first region 11 is 4%-8%. Further, the mass content of the first colorant in the first area 11 is 6%-8%, which deepens the color of the first area 11 .
  • the second region 12 includes a second colorant. That is to say, due to the presence of the second colorant in the second region 12 , the second region 12 exhibits the second color.
  • the second colorant may include a colorant of one color that is uniformly distributed in the second region 12; the second colorant may also include a plurality of colorants of different colors, and the colorants of a plurality of different colors are uniformly distributed in the second region 12. in the second area 12 .
  • the mass content of the second colorant in the second region 12 is less than or equal to 10%.
  • the mass content of the first colorant in the first region 11 is 4%-10%
  • the mass content of the second colorant in the second region 12 is 0%-2%
  • the first colorant and at least one of the second colorant is a non-spinel colorant.
  • the size of the gradient region 13 in the first direction is greater than 5 mm.
  • the mass content of the first colorant in the first region 11 is 4%-8%
  • the mass content of the second colorant in the second region 12 is 0%-1%.
  • the size of the gradient region 13 in the first direction is greater than 10 mm.
  • the second region 12 when the mass content of the second colorant in the second region 12 is 0%, that is, without the second colorant, the second region 12 exhibits the color of the ceramic material itself.
  • the size of the gradient region 13 in the first direction is greater than 15 mm. In one embodiment, the size of the gradient region 13 in the first direction is not greater than 20 mm. In a specific embodiment, the mass content of the first colorant in the first region 11 is 4%-10%, and the mass content of the second colorant in the second region 12 is 0%, which can be more prominent in the gradient region 13 The color of the first colorant.
  • At least one of the first colorant and the second colorant is a non-spinel colorant.
  • the general chemical formula of the spinel structure is AB 2 O 4
  • A is a divalent metal cation, which can be but not limited to Mg 2+ , Mn 2+ , Ni 2+ , Zn 2+ , Co 2+ , Cd 2+ , At least one of Cu 2+ and Ca 2+
  • B is a trivalent metal cation, which can be but not limited to at least one of Fe 3+ , Cr 3+ , and Mn 3+ .
  • both the first colorant and the second colorant may be non-spinel colorants, or one of them may be a non-spinel colorant, and the other may be a spinel colorant or a spinel colorant non-spinel.
  • the first colorant and the second colorant may be, but are not limited to, selected from iron oxide, cobalt oxide, cerium oxide, cesium oxide, nickel oxide, bismuth oxide, zinc oxide, manganese oxide, chromium oxide, At least one of praseodymium oxide, neodymium oxide, strontium oxide, lanthanum oxide, erbium oxide, gallium oxide, silicon oxide, magnesium oxide, calcium oxide, copper oxide, vanadium oxide, tin oxide, titanium oxide, and other compounds with the above cations kind.
  • other compounds having the above-mentioned cations may be, but not limited to, nickel silicate, vanadium zirconium yellow, and the like. It can be understood that other colorants not listed above can also be selected for the first colorant and the second colorant.
  • the material of the ceramic substrate 10 further includes alumina, and the mass content of the alumina in the ceramic substrate 10 is less than 1%. Further, the mass content of alumina in the ceramic substrate 10 is less than 0.5%. Thus, the excessive alumina content and the inhibition effect on the diffusion of the colorant are avoided, and it is beneficial to obtain the gradient region 13 with the size in the first direction greater than 5 mm.
  • the gradient area 13 presents a gradient from the first color to the second color along the first direction. It can be understood that along the opposite direction of the first direction, the gradient area 13 presents a gradient from the second color to the first color, and at the same time , the size of the gradient region 13 in the first direction is greater than 5 mm.
  • the casing 100 has a very gentle color transition, and the delicate feeling is enhanced.
  • the size of the gradient region 13 in the first direction is greater than 10 mm.
  • the width of the gradient region 13 is the smallest dimension of the gradient region 13 in the first direction.
  • the width of the gradient area 13 is greater than 5 mm; further, the width of the gradient area 13 is greater than 10 mm. In another embodiment, the width of the gradient region 13 is less than 20 mm.
  • the first colorant is a spinel colorant.
  • the use of spinel colorants facilitates the creation of narrower gradient regions 13 .
  • the second colorant may be a spinel colorant, a non-spinel colorant, or a mixture of a spinel colorant and a non-spinel colorant.
  • the size of the graded region 13 in the first direction is less than 200 ⁇ m. By arranging the above-mentioned gradation area 13 , the casing 100 has a very obvious color contrast effect, and the appearance expression is improved. Further, the size of the gradient region 13 in the first direction is less than 150 ⁇ m. By controlling the size of the gradient region 13 in the first direction, the visual effect of the casing 100 is enriched, which is beneficial to its application in electronic products and improves the appearance selectivity of the products.
  • the second region 12 includes alumina, and the mass content of the alumina in the second region 12 is greater than or equal to 3%.
  • Alumina can play the role of stabilizing the colorant, and can also inhibit the diffusion of the colorant, which is beneficial to reduce the size of the gradient region 13 in the first direction, thereby helping to obtain the size in the first direction.
  • Gradient region 13 less than 200 ⁇ m. If the mass content of alumina in the second region 12 is too low, it is unfavorable to obtain a narrow gradient region 13 . Further, the mass content of alumina in the second region 12 is 3%-20%.
  • the existence of alumina can not only ensure the generation of the narrow gradient region 13 , but also not affect the performance of the ceramic substrate 10 and the casing 100 .
  • the mass content of alumina in the second region 12 is 5%-15%.
  • the first region 11 includes alumina, and the mass content of the alumina in the first region 11 is less than or equal to 20%. Further, the mass content of alumina in the first region 11 is 5%-15%. Further, the mass content of alumina in the first region 11 is 6%-10%. Therefore, it is beneficial to reduce the size of the gradient region 13 in the first direction, so as to obtain a narrow gradient region 13 .
  • the particle diameter of the first colorant is 100 nm-2000 nm
  • the particle diameter of the second colorant is 100 nm-2000 nm.
  • the first colorant and the second colorant may include a plurality of colorants of different colors, the particle diameters of the colorants of different colors may be the same or different, and the particle diameters of the first colorant and the second colorant may be the same , can also be different.
  • the particle size of each color of the first colorant is 100 nm-2000 nm; when the second colorant includes a plurality of different colors In the case of colored colorants, the particle size of each color colorant in the second colorant is 100 nm-2000 nm.
  • the colorant can be uniformly distributed in the ceramic substrate 10 without agglomeration, thereby ensuring the ceramic substrate 10 and the shell
  • the mechanical strength of the body 100 can be improved, and at the same time, the uniformity and fineness of the color of the casing 100 can be improved.
  • the particle size of the first colorant is 500nm-1000nm, and the particle size of the second colorant is 500nm-1000nm; further, the particle size of the first colorant is 600nm-900nm, and the particle size of the second colorant It is 600nm-900nm, which is beneficial to enhance the coloring effect and the uniformity of the appearance color of the casing 100 .
  • the particle size of the alumina is 100 nm-2000 nm.
  • the uniform distribution of alumina in the ceramic substrate 10 can be ensured, so that the mechanical properties of the ceramic substrate 10 and the casing 100 are excellent, and at the same time, agglomeration is not easy to occur, and the distribution can be better.
  • the diffusion of the colorant can be sufficiently hindered, which is more conducive to the generation of the narrow gradient region 13 .
  • the particle size of the alumina is 500nm-1600nm.
  • the particle size of the alumina is 600nm-1000nm.
  • the particle size of the alumina may be, but not limited to, 100 nm, 300 nm, 500 nm, 800 nm, 1200 nm, 1500 nm or 1700 nm.
  • the ceramic substrate 10 is a zirconia-based ceramic. That is to say, the material of the ceramic substrate 10 is mainly zirconia, and the zirconia-based ceramic has excellent toughness, strength and hardness, which improves the mechanical properties and resistance of the ceramic substrate 10 and the casing 100, which is beneficial to its application.
  • the material of the ceramic substrate 10 includes zirconia, a stabilizer, a first colorant and a second colorant.
  • the particle size of the zirconia is 100nm-500nm. Therefore, it is beneficial to form the ceramic substrate 10 with fine texture. Further, the particle size of the zirconia is 200nm-300nm.
  • the particle size of the zirconia may be, but not limited to, 120 nm, 160 nm, 190 nm, 230 nm, 250 nm, 380 nm or 450 nm.
  • the stabilizer may include, but is not limited to, at least one of yttrium oxide, hafnium oxide, lanthanum oxide, cerium oxide, scandium oxide, calcium oxide, magnesium oxide, ytterbium oxide, and tantalum oxide.
  • it is beneficial to form a stable and dense zirconia crystal phase in the finally produced ceramic substrate 10 so as to improve the performance of the ceramic substrate 10 .
  • the mass content of the stabilizer in the ceramic substrate 10 is 3%-10%. Further, the mass content of the stabilizer in the ceramic substrate 10 is 4%-6%.
  • the stabilizers in the ceramic substrate 10 are yttrium oxide and hafnium oxide. Yttrium oxide ensures that the ceramic substrate 10 has a relatively high content of tetragonal phase, and makes the ceramic substrate 10 have better stability to prevent the ceramic substrate 10 from cracking during sintering and processing.
  • Hafnium oxide is a companion of zirconia, and both It has similar physical and chemical properties, and has a stabilizing effect on the ceramic substrate 10 .
  • the tetragonal zirconia in the ceramic substrate 10 accounts for more than 70% of the mass of the zirconia.
  • the second region 12 may not add colorant, and by controlling the ceramic material, it is colorless and transparent, so that the casing 100 has a partial color change and a partially transparent appearance, and the visual effect is more abundant.
  • the optical transmittance of the second region 12 is greater than 40%. Further, the optical transmittance of the second region 12 is greater than 50%. Furthermore, the optical transmittance of the second region 12 is greater than 60%.
  • Optical transmittance is the transmittance of light in the 380nm-780nm band. Therefore, the second area 12 can present a transparent appearance, which enriches the visual effect of the casing 100 .
  • the material of the second region 12 includes 0.2%-0.5% alumina, 0.5%-1% silica, 2%-10% stabilizer, and the balance of Zirconia. Further, in terms of mass percentage, the material of the second region 12 includes 0.2%-0.4% alumina, 0.5%-0.8% silica, 2%-8% stabilizer, and the balance zirconia.
  • the optical transmittance of the second region 12 is made greater than 50%.
  • alumina improves the brightness of the ceramic substrate 10 , so that the casing 100 has a higher transmittance, and can ensure the mechanical properties of the ceramic substrate 10 and the casing 100 ; silica improves the acid resistance and high temperature resistance of the ceramic substrate 10 .
  • the color of the ceramic substrate 10 can also be adjusted to improve the brightness of the casing 100 .
  • FIG. 6 is a schematic structural diagram of a casing according to another embodiment of the present application.
  • the casing 100 further includes a color layer 20 on the surface of the ceramic substrate 10 , and the color layer 20 covers the second area 12 .
  • the color layer 20 may cover only the second area 12 , may also cover the second area 12 and the gradient area 13 , or may cover the second area 12 , the gradient area 13 and the first area 11 .
  • the color layer 20 and the first region 11 have a color difference, so that the housing exhibits various color changes.
  • the color difference between the color layer 20 and the first region 11 is greater than 2, so that the casing 100 has an obvious color contrast effect.
  • the color layer 20 may be directly attached to the surface of the casing 100 , or may be located on the surface of the casing 100 by spraying. By disposing the color layer 20 , the casing 100 can present more diverse color choices.
  • the color layer 20 has a solid color, and the color layer 20 is located on the inner surface of the casing 100 , so that the outer surface of the casing 100 directly presents an appearance with a final color contrast effect.
  • the color layer 20 may be a transparent color layer. In this case, the color layer 20 may be located either on the inner surface of the housing 100 or on the outer surface of the ceramic assembly 10 .
  • the casing 100 can present appearance effects of various colors.
  • the flexural strength refers to the ability of the ceramic substrate 10 to resist bending without breaking.
  • three-point bending test or four-point test method are used for evaluation.
  • the three-point bending strength test of the ceramic substrate 10 is carried out by adopting GB/T 6569-2006 "Bending Strength Test Method of Fine Ceramics".
  • the flexural strength of the ceramic substrate 10 is greater than 800 MPa.
  • the flexural strength of the ceramic substrate 10 is greater than 900 MPa.
  • the flexural strength of the ceramic substrate 10 of the present application is excellent, thereby ensuring the flexural strength of the casing 100, so that it has a better application prospect.
  • Fracture toughness is the resistance value displayed by the material when there is a crack or a crack-like defect in the ceramic substrate 10 , which is the starting point and no longer rapidly breaks with the increase of the load, that is, the so-called unstable fracture occurs. Fracture toughness characterizes the ability of a material to prevent crack propagation, and is a quantitative index to measure the toughness of a material.
  • the fracture toughness of the ceramic substrate 10 is tested by adopting the three-point bending in GB/T 23806-2009 "Fracture Toughness Test Method for Fine Ceramics Single-sided Pre-Cracked Beam (SEPB) Method".
  • SEPB Fine Ceramics Single-sided Pre-Cracked Beam
  • the fracture toughness of the ceramic substrate 10 is greater than 7 MPa ⁇ m 1/2 . Further, the fracture toughness of the ceramic substrate 10 is greater than 7.5 MPa ⁇ m 1/2 .
  • the ceramic substrate 10 of the present application has good fracture toughness and excellent brittle fracture resistance, which ensures that the casing 100 has excellent performance
  • Hardness characterizes the ability of the ceramic substrate 10 to resist the pressing of hard objects into its surface.
  • the standard format of Vickers hardness value is xHVy, the value x in front of HV is the hardness value, and the value y behind is the test force.
  • the ceramic substrate 10 is tested with a Vickers hardness tester. In the embodiment of the present application, the Vickers hardness of the ceramic substrate 10 is greater than 500Hv0.1. Further, the Vickers hardness of the ceramic substrate 10 is greater than 600Hv0.1.
  • the ceramic substrate 10 of the present application has high hardness and good deformation resistance.
  • the surface roughness of the ceramic substrate 10 is less than 0.01 ⁇ m. By providing the ceramic substrate 10 with small surface roughness, it is beneficial to enhance its surface smoothness. In the embodiment of the present application, the surface roughness of the casing 100 is less than 0.01 ⁇ m, which is favorable for its application in electronic devices.
  • the density and porosity of the ceramic substrate 10 are tested by adopting GB/T 25995-2010 "Test Method for Density and Apparent Porosity of Fine Ceramics".
  • the density of the ceramic substrate 10 is greater than 6 g/cm 3 .
  • the porosity of the ceramic substrate 10 is less than 1%. That is, the density of the ceramic substrate 10 is greater than 99%.
  • the density and low porosity of the ceramic substrate 10 ensure the bonding strength inside the ceramic substrate 10 , which is beneficial to the improvement of the mechanical properties of the casing 100 .
  • FIG. 7 is a flowchart of a method for preparing a casing provided in an embodiment of the present application.
  • the preparation method for preparing the casing 100 of any of the above-mentioned embodiments includes:
  • Operation 101 providing a first ceramic green body and a second ceramic green body, the first ceramic green body and the second ceramic green body have a color difference, and the Vickers hardness of the first ceramic green body and the second ceramic green body is greater than or equal to 10Hv0. 1.
  • Operation 102 After the first ceramic green body and the second ceramic green body are spliced, a ceramic substrate green body is formed by pressing, and the density difference between the first ceramic green body and the second ceramic green body in the ceramic substrate green body is less than 0.08 g/cm 3 .
  • Operation 103 After debinding and sintering the green ceramic substrate, a ceramic substrate is obtained, and a casing is prepared.
  • the ceramic green body by controlling the difference in hardness and density, the ceramic green body will not be deformed and twisted during the whole process of dry pressing, and the shrinkage rate of the adjacent ceramic green body is ensured to be consistent, so as to obtain a ceramic green body with Ceramic substrate 10 and housing 100 with excellent straightness.
  • the colorant in the ceramic green body will diffuse and occur near the splicing surface.
  • the mixing of the colors forms a gradient area 13 that is different from the first color and the second color.
  • the straightness of the boundary line between the regions in the manufactured casing 100 is less than 0.5 mm.
  • the first ceramic green body exhibits a first color
  • the second ceramic green body exhibits a second color
  • the sintered first ceramic green body forms the first region 11 and part of the gradient region 13
  • the sintered second The green ceramic body forms the second region 12 and part of the graded region 13 .
  • On the surface of the casing 100 of the present application there is a first boundary line 14 between the first area 11 and the gradation area 13, and a second boundary line 15 between the second area 12 and the gradation area 13, but it is not a seam .
  • providing a first ceramic green body and a second ceramic green body includes: providing a first ceramic raw material and a second ceramic raw material, wherein the difference between the medium particle size D50 of the first ceramic raw material and the second ceramic raw material is less than 30 ⁇ m, the difference between the bulk density of the first ceramic raw material and the second ceramic raw material is less than 0.2g/cm 3 ; after pre-pressing, the first ceramic raw material is made into a first ceramic green body, and the second ceramic raw material is made into a second ceramic green body. Ceramic green body.
  • the difference in medium particle size D50 and the difference in bulk density between the first ceramic raw material and the second ceramic raw material it is beneficial to make the first ceramic green body and the second ceramic green body in the ceramic substrate green body
  • the difference in density between the two is less than 0.08 g/cm 3 , which is beneficial to obtain better straightness of the first boundary line 14 and the second boundary line 15 .
  • the difference between the median particle size D50 of the first ceramic raw material and the second ceramic raw material is less than 25 ⁇ m, and the difference between the bulk density of the first ceramic raw material and the second ceramic raw material is less than 0.16 g/cm 3 .
  • the first ceramic raw material is formed by mixing the first ceramic powder and the first organic auxiliary agent and then granulating.
  • the first ceramic powder includes zirconia, a stabilizer and a first colorant.
  • the stabilizer accounts for 3%-10%, the first colorant accounts for less than 20%, and the balance is zirconia, in terms of mass percentage. Further, in the first ceramic powder, the stabilizer accounts for 3%-10%, the first colorant accounts for 1%-20%, and the zirconia accounts for 70%-95% by mass percentage.
  • the mass ratio of the first organic auxiliary agent to the first ceramic powder is (0.01-0.2):1. Further, the mass ratio of the first organic auxiliary agent to the first ceramic powder is (0.01-0.1):1.
  • the first organic additive is completely discharged through decomposition or volatilization.
  • the first organic adjuvant includes a binder.
  • the binder may include, but is not limited to, at least one of polymethyl methacrylate, polyvinyl butyral, polyethylene and polyethylene glycol.
  • the components in the first ceramic powder can be uniformly dispersed in the first organic auxiliary, and the strength of the first ceramic green body is enhanced by the action of the binder between the components.
  • the mass ratio of the binder to the first ceramic powder is greater than 0.03. Therefore, the hardness of the first ceramic green body is improved, the overall strength during the pressing process is improved, and the deformation of the green body during the pressing process is avoided. Further, the mass ratio of the binder to the first ceramic powder is greater than 0.05.
  • the first organic adjuvant may include, but is not limited to, at least one of a binder, an organic solvent, a plasticizer, a dispersant, a defoaming agent, and a lubricant.
  • the organic solvent can include, but is not limited to, at least one of absolute ethanol, toluene, and ethylene glycol
  • the plasticizer can include, but is not limited to, dibutyl phthalate, dioctyl phthalate, and At least one of butyl benzyl phthalate
  • the dispersant can be but not limited to triethanolamine
  • the defoamer can be but not limited to dimethylsiloxane
  • the lubricant can be but not limited to stearic acid and paraffin at least one of them.
  • the proportion of each component can be selected according to the needs of the subsequent preparation process, and the types of components in the first organic auxiliary agent can be added as required.
  • the first ceramic powder and the first organic auxiliary agent are mixed to form the first ceramic slurry, and the first ceramic slurry is sprayed and granulated to obtain the first ceramic raw material.
  • the outlet temperature of the spray dryer during spray granulation can be, but is not limited to, 150°C-250°C.
  • the medium particle size D50 of the first ceramic raw material obtained by granulation is 50 ⁇ m-100 ⁇ m, and the bulk density is 1.2 g/cm 3 -1.8 g/cm 3 .
  • the medium particle size D50 of the first ceramic raw material is 55 ⁇ m-90 ⁇ m, and the bulk density is 1.25 g/cm 3 -1.7 g/cm 3 . Therefore, the preparation of the first ceramic green body is facilitated, and the density difference between the first ceramic green body and the second ceramic green body is further reduced.
  • the second ceramic raw material is formed by mixing the second ceramic powder and the second organic auxiliary agent and then granulating.
  • the second ceramic powder includes zirconia, a stabilizer and a second colorant.
  • the stabilizer accounts for 3%-10%, the second colorant accounts for less than 20%, and the balance is zirconia, in terms of mass percentage.
  • the stabilizer accounts for 3%-10%, the second colorant accounts for 1%-20%, and the zirconia accounts for 70%-95% by mass percentage.
  • the first colorant and the second colorant may be the same colorant, but have different mass contents in the ceramic powder, and may also be different kinds of colorants.
  • the first colorant and the second colorant may be one colorant or a mixture of multiple colorants.
  • the mass content of the first colorant or the second colorant may be zero, so that the ceramic green body exhibits the color and luster of the ceramic material itself.
  • the types and particle diameters of the first colorant and the second colorant can be selected according to the types and particle diameters of the above-mentioned colorants, which will not be repeated here.
  • the mass ratio of the second organic auxiliary agent to the second ceramic powder is (0.01-0.2):1. Further, the mass ratio of the second organic auxiliary agent to the second ceramic powder is (0.01-0.1):1.
  • the second organic additive is completely discharged through decomposition or volatilization.
  • the second organic adjuvant includes a binder.
  • the binder may include, but is not limited to, at least one of polymethyl methacrylate, polyvinyl butyral, polyethylene and polyethylene glycol.
  • each component in the second ceramic powder can be uniformly dispersed in the second organic auxiliary, and the strength of the second ceramic green body is enhanced by the action of the binder between the various components.
  • the mass ratio of the binder to the second ceramic powder is greater than 0.03. Therefore, the hardness of the second ceramic green body is improved, the overall strength during the pressing process is improved, and the deformation of the green body during the pressing process is avoided. Further, the mass ratio of the binder to the second ceramic powder is greater than 0.05.
  • the second organic adjuvant may include, but is not limited to, at least one of a binder, an organic solvent, a plasticizer, a dispersant, a defoaming agent and a lubricant.
  • the organic solvent can include, but is not limited to, at least one of absolute ethanol, toluene, and ethylene glycol
  • the plasticizer can include, but is not limited to, dibutyl phthalate, dioctyl phthalate, and At least one of butyl benzyl phthalate
  • the dispersant can be but not limited to triethanolamine
  • the defoamer can be but not limited to dimethylsiloxane
  • the lubricant can be but not limited to stearic acid and paraffin at least one of them.
  • the second organic auxiliary agent contains multiple components, the proportion of each component can be selected according to the needs of the subsequent preparation process, and the types of components in the second organic auxiliary agent can be added as required.
  • the second ceramic powder and the second organic additive are mixed to form the second ceramic slurry, and the second ceramic slurry is sprayed and granulated to obtain the second ceramic raw material.
  • the outlet temperature of the spray dryer during spray granulation can be, but is not limited to, 150°C-250°C.
  • the medium particle size D50 of the second ceramic raw material obtained by granulation is 50 ⁇ m-100 ⁇ m, and the bulk density is 1.2 g/cm 3 -1.8 g/cm 3 .
  • the medium particle size D50 of the second ceramic raw material is 55 ⁇ m-90 ⁇ m, and the bulk density is 1.25 g/cm 3 -1.7 g/cm 3 . Therefore, the preparation of the second ceramic green body is facilitated, and the density difference with the first ceramic green body is further reduced.
  • the diffusion range of the first colorant and the second colorant is wider, and a wider gradient region 13 is formed.
  • the first ceramic powder includes a first colorant
  • the second ceramic powder includes a second colorant
  • the mass content of the first colorant in the first ceramic powder is 4%-10%
  • the second ceramic powder includes a second colorant.
  • the mass content of the second colorant in the powder is 0%-2%
  • at least one of the first colorant and the second colorant is a non-spinel colorant. Therefore, the size of the gradient region 13 in the ceramic substrate 10 in the first direction is greater than 5 mm.
  • the size of the gradient region 13 in the first direction cannot be guaranteed to be greater than 5 mm; when the content of the first colorant is too high, it is not conducive to the
  • the mechanical properties of a ceramic green body will also affect the selection of the sintering temperature, so that the shrinkage rates of the first ceramic green body and the second ceramic green body during sintering cannot be guaranteed to be similar. Therefore, by using the above-mentioned content of the first colorant and the second colorant in the present application, the casing 100 can present a gradient region 13 with obvious color transition, while ensuring the performance of the casing 100 .
  • the mass content of the first colorant in the first ceramic powder is 6%-10%, and the mass content of the second colorant in the second ceramic powder is 0%-1%, so that the gradient area 13 is The dimension in the first direction is greater than 10 mm. In another embodiment, the size of the gradient region 13 in the first direction is less than or equal to 20 mm. In this application, the difference between the first colorant and the second colorant is greater than 2%. Further, the difference between the first colorant and the second colorant is greater than 4%, which further improves the visual effect of the gradient area 13 . It can be understood that by controlling the content and color of the first colorant and the second colorant, the first ceramic green body and the second ceramic green body produced subsequently have a color difference.
  • At least one of the first colorant and the second colorant is a non-spinel colorant.
  • the non-spinel colorant has good thermal diffusivity, so that it can be rapidly diffused during the sintering process, thereby forming a wider gradient region 13 and enhancing the appearance of the shell 100 .
  • the first colorant when the mass content of the second colorant in the second ceramic powder is 0%, then the first colorant is a non-spinel colorant, which is more conducive to the generation of the gradation region 13 with a wider size .
  • both the first colorant and the second colorant are non-spinel colorants, which is more conducive to the generation of the gradient region 13 with a wider size.
  • the thermal diffusion of the first colorant and the second colorant is lower than the sintering temperature.
  • the atomic diffusion temperature of the first colorant and the second colorant is lower than the sintering temperature so that the graded region 13 can occur during the sintering process.
  • the first ceramic powder does not contain alumina, which is beneficial to the formation of the wider gradient region 13 .
  • the first ceramic powder includes alumina.
  • alumina is dispersed in the first ceramic powder and distributed in the first ceramic green body, which is dispersed around the zirconia grains and the colorant, which acts as a nail to the diffusion of the colorant during the sintering process It can inhibit the diffusion of the colorant, thereby affecting the generation of the wider gradient region 13 .
  • alumina in the first ceramic powder accounts for less than 1%.
  • the gradient region 13 with gentle color transition is produced, and the size of the gradient region 13 in the first direction is greater than 8 mm.
  • alumina accounts for less than 1% in the second ceramic powder. Further, the second ceramic powder does not contain alumina, which is beneficial to the formation of the wider gradient region 13 .
  • the diffusion range of the first colorant and the second colorant is small, and a narrow gradient region 13 is formed.
  • the first ceramic powder includes a first colorant, the first colorant is a spinel colorant, and the mass content of the first colorant in the first ceramic powder is 0.1%-10%, and the second colorant is The ceramic powder includes alumina, and the mass content of alumina in the second ceramic powder is greater than or equal to 3%. Therefore, the size of the gradient region 13 in the housing 100 in the first direction is less than 200 ⁇ m.
  • the content of the first colorant when the content of the first colorant is too high, it is not conducive to the mechanical properties of the first ceramic body, and at the same time affects the selection of the sintering temperature, so that the shrinkage rate of the ceramic green body during sintering cannot be guaranteed to be similar, and the first The wider diffusion range of the colorant is not conducive to the generation of the narrow gradation area 13; if the content of the first colorant is too low, the first ceramic green body cannot show a distinct color, which is not conducive to the presentation of the color contrast effect.
  • the casing 100 can present a narrow gradient area 13 with obvious lines, and at the same time, the performance of the casing 100 can be ensured.
  • the spinel colorant has excellent structural stability and high temperature stability. During the sintering process, the spinel colorant has slow thermal diffusion, which is beneficial to make the size of the gradient region 13 in the first direction less than 200 ⁇ m. Further, the mass content of the first colorant in the first ceramic powder is 0.5%-8%. Further, the mass content of the first colorant in the first ceramic powder is 1%-5%.
  • the mass content of the first colorant in the first ceramic powder may be, but not limited to, 0.1%, 0.5%, 1%, 3%, 5%, 7% or 9%. Therefore, the size of the gradation area 13 in the first direction can be further reduced, so that the gradation area 13 that is approximately the boundary line is formed on the final casing 100 , so that the appearance of the gradation area 13 exhibits a distinct color contrast effect.
  • Alumina can hinder the diffusion of the colorant, and under high temperature conditions, part of the alumina can enter the spinel structure, further improving the stability of the spinel colorant and further reducing the colorant diffusion speed; Part of the alumina is evenly dispersed around the colorant, which has a pinning effect on the colorant and further inhibits the diffusion of the colorant, thereby facilitating the formation of a narrower gradient area 13 and improving the gap between the first area 11 and the second area 12. Clarity of contrasting lines.
  • the mass content of alumina in the second ceramic powder is 3%-20%. Therefore, while ensuring the formation of the narrow gradient region 13 , the processing difficulty is reduced, and the high mechanical strength of the casing 100 is also ensured. Further, the mass content of alumina in the second ceramic powder is 5%-10%. Specifically, the mass content of alumina in the second ceramic powder may be, but not limited to, 2%, 5%, 7%, 9%, 12%, 15% or 18%.
  • the first ceramic powder further includes alumina, wherein the mass content of alumina is less than or equal to 20%. Therefore, the diffusion of the colorant can be hindered without affecting the performance of the ceramic substrate 10 and the casing 100 , which is beneficial to obtain an extremely narrow gradient region 13 .
  • the mass content of alumina in the first ceramic powder is 3%-20%.
  • the mass content of alumina in the first ceramic powder is 5%-10%. Specifically, the mass content of alumina in the first ceramic powder may be, but not limited to, 2%, 5%, 7%, 9%, 12%, 15% or 18%.
  • the second ceramic powder further includes a second colorant.
  • the mass content of the second colorant in the second ceramic powder is less than or equal to 10%. Therefore, the second ceramic green body produced subsequently can show obvious color, and during the sintering process, the shrinkage rate between the ceramic green bodies is not much different, so as to avoid adverse effects on the performance of the ceramic substrate 10 and the housing 100 .
  • the mass content of the second colorant in the second ceramic powder is 0.5%-8%.
  • the mass content of the second colorant in the second ceramic powder is 1%-5%.
  • the second colorant may be a spinel colorant, a non-spinel colorant, or a mixture of both.
  • the second ceramic powder is free of colorants.
  • the second colorant includes spinel colorant, or does not contain the second colorant. In this case, it is beneficial to generate a narrower gradient region 13 and to present clearer contrasting color lines.
  • the difference between the first colorant and the second colorant is greater than 2%. Further, the difference between the first colorant and the second colorant is greater than 4%, which further improves the color contrast effect. It can be understood that by controlling the content and color of the first colorant and the second colorant, the first ceramic green body and the second ceramic green body produced subsequently have a color difference.
  • the first ceramic raw material is made into a first ceramic green body, and the second ceramic raw material is made into a second ceramic green body, and the pre-pressing includes processing at 5MPa-20MPa.
  • the first ceramic raw material is made into a first ceramic green body, and the second ceramic raw material is made into a second ceramic green body.
  • the pre-pressing includes processing at 8MPa-17MPa.
  • the densities of the first ceramic green body and the second ceramic green body are respectively 2.2g/cm 3 -2.5g/cm 3 .
  • the density difference between the first ceramic green body and the second ceramic green body is less than 0.2 g/cm 3 .
  • the density difference between the first ceramic green body and the second ceramic green body is less than 0.15 g/cm 3 . Therefore, the density of the first ceramic green body and the second ceramic green body are not much different, and in the subsequent preparation process, the shrinkage rate of the green body is similar, so that the straightness of the boundary line on the ceramic substrate 10 is better.
  • the Vickers hardness of the first ceramic green body and the second ceramic green body are respectively 10Hv0.1-70Hv0.1, so that during the pre-pressing process of the ceramic green body, Each green ceramic body can maintain its original shape without deformation and distortion; at the same time, it will not make the green ceramic body too hard, which avoids the problems of more defects in the sintering process and low bonding strength between the green ceramic bodies.
  • the Vickers hardness of the first ceramic green body and the second ceramic green body are respectively 20Hv0.1-40Hv0.1.
  • the Vickers hardness of the first ceramic green body and the second ceramic green body are respectively 25Hv0.1-35Hv0.1. Therefore, the bonding strength of the ceramic substrate 10 and the case 100 is further improved.
  • the first ceramic green body and the second ceramic green body are spliced, and a green ceramic substrate is formed by final pressing and isostatic pressing.
  • the final pressing includes processing at 50MPa-80MPa, and the isostatic pressing includes 100MPa-200MPa for treatment.
  • the bonding between the first ceramic green body and the second ceramic green body is made closer, and the density between the two green bodies is also more similar, which is beneficial to the sintering process. And better straightness of the first boundary line 14 and the second boundary line 15 is obtained.
  • the final pressure includes treatment under 55MPa-75MPa
  • the isostatic pressure includes treatment under 120MPa-190MPa.
  • the final pressure includes treatment under 60MPa-73MPa
  • the isostatic pressure includes treatment under 150MPa-180MPa.
  • the density difference between the first ceramic green body after final pressing and the second ceramic green body is less than 0.15 g/cm 3
  • the density of the green ceramic substrate after final pressing is greater than 3 g/cm 3
  • the first The straightness of the splicing line between the first ceramic green body and the second ceramic green body is less than 0.1 mm. This ensures that the shrinkage ratio of the green body is similar, so that the straightness of the upper boundary line of the shell 100 is better.
  • the density of the isostatically pressed ceramic substrate green body is greater than 3.1 g/cm 3 , and the straightness of the splicing line between the first ceramic green body and the second ceramic green body is less than 0.15 mm. Therefore, in the subsequent preparation process, the shrinkage rate of the green body is similar, and the straightness of the upper boundary line of the shell 100 is better.
  • isostatic pressing includes treatment at 20°C-90°C, 100 MPa-200 MPa. Further, the density difference between the first ceramic green body and the second ceramic green body after isostatic pressing is less than 0.05 g/cm 3 .
  • the time of pre-pressing, final pressing and isostatic pressing is set according to the required density and density difference of the ceramic green body.
  • the first ceramic green body and the second ceramic green body can be spliced left and right, or can be spliced up and down, and can also be arranged one around the other, and the specific positional relationship can be selected according to actual needs.
  • the above-mentioned left and right splicing and upper and lower splicing are the relative positional relationship between the first ceramic green body and the second ceramic green body in actual use, and are only for describing the exemplary arrangement of the first ceramic green body and the second ceramic green body Way.
  • different shapes of green ceramic substrates can be produced, such as, but not limited to, flat, three-dimensional, curved, and unequal thickness green ceramic substrates.
  • the ceramic substrate green body can be circular, semicircular, oval, triangular, square, rectangular, or irregular polygon, so as to improve the diversity of the housing 100 .
  • FIG. 8 is a schematic structural diagram of a green ceramic substrate according to an embodiment of the application, wherein (a)-(i) in FIG. 8 are schematic structural diagrams of green ceramic substrates with different splicing methods, and A is a A ceramic green body showing color A, B is a ceramic green body showing color B, and C is a ceramic green body showing color C.
  • the ceramic substrate green body can be composed of, but not limited to, two, three, or more than three types of ceramic green bodies. By splicing a plurality of ceramic green bodies, and adjacent ceramic green bodies are of different colors, a ceramic substrate green body is formed, thereby improving the product diversity of the housing 100 . It can be understood that FIG.
  • the ceramic green body can be, but not limited to, a square, a rectangle, an irregular polygon, etc. At the same time, two, three, or more than three The ceramic green bodies are spliced together, and the specific ones can be selected according to actual needs.
  • debinding includes treating at 300°C-500°C for 12h-24h; sintering includes treating at 1300°C-1500°C for 2h-4h.
  • the temperature of debinding can be, but not limited to, 300°C, 320°C, 350°C, 370°C, 410°C, 450°C, 480°C or 500°C
  • the debinding time can be, but not limited to, 12h, 14h, 15h, 17h, 19h, 20h, 22h or 24h to ensure that the green ceramic substrate will not crack during the debinding process
  • the sintering temperature can be but not limited to 1300°C, 1350°C, 1370°C, 1400°C, 1450°C, 1460°C Or 1500°C
  • the sintering time can be but not limited to 2h, 2.5h, 3h, 3.5h or 4h, to ensure the improvement of the internal bonding strength and compactness of the green ceramic substrate.
  • the organic components in the green ceramic substrate such as the first organic additive, the second organic additive, etc.
  • the thermal diffusion temperature of the first colorant and the second colorant is lower than the sintering temperature.
  • the thermal diffusion temperature of the first colorant and the second colorant is lower than 1300°C; further, the thermal diffusion temperature of the first colorant and the second colorant is lower than 1200°C.
  • the porosity of the ceramic substrate 10 is less than 1%, which enhances the overall mechanical properties.
  • the difference in porosity between the first ceramic green body and the second ceramic green body is less than 0.1%.
  • the overall performance of the casing 100 is guaranteed.
  • the bonding strength of the first ceramic green body and the second ceramic green body is greater than 800 MPa. Further, the bonding strength of the first ceramic green body and the second ceramic green body is greater than 900 MPa. Therefore, the internal bonding strength of the ceramic substrate 10 and the casing 100 is improved, so that the cracking phenomenon is less likely to occur.
  • the surface of the sintered ceramic substrate 10 is polished.
  • the grinding depth is greater than 0.05 mm.
  • rough machining and finish machining are performed on the surface of the ceramic substrate 10 to reduce the surface roughness, which is more beneficial to its application.
  • the surface roughness of the ceramic substrate 10 obtained after sintering is less than 10.0 ⁇ m after sintering, and the surface roughness of the ceramic substrate 10 after grinding is less than 1.0 ⁇ m after sintering.
  • the surface roughness of 10 is less than 0.1 ⁇ m after sintering, and the surface roughness of the finished ceramic substrate 10 after sintering is less than 0.01 ⁇ m, which has excellent smoothness and can be used for back covers, frames, buttons, decorative parts, etc. The appearance of the product.
  • the surface of the ceramic substrate 10 is roughened and trimmed by steel-coated emery, wherein the spindle speed is 20,000 rpm, and the power is 15 kW; and then the polishing process includes placing the ceramic substrate 10 on diamond powder for grinding. In the liquid, the polishing pressure is 0.08Mpa-0.12Mpa, and the rotational speed is 30rpm-50rpm, to obtain a ceramic substrate 10 with a surface roughness of less than 0.01 ⁇ m.
  • the preparation method of the casing 100 provided in the present application is simple to operate, easy to mass-produce, and can produce the casing 100 with rich appearance effects, which is beneficial to its application.
  • the present application also provides an electronic device, including the housing 100 of any of the foregoing embodiments.
  • the electronic device may be, but not limited to, a mobile phone, a tablet computer, a notebook computer, a watch, MP3, MP4, GPS navigator, digital camera, and the like.
  • the electronic device includes a casing and a main board, and the casing includes the casing 100 of any of the foregoing embodiments.
  • the casing 100 can give the electronic device the appearance of various colors, and also has a color gradient area 13 , and the boundary lines between the areas have good straightness, which improves the expressiveness of the electronic device.
  • the medium particle diameter D50 of the ceramic raw material was 80 ⁇ m, and the bulk density was 1.5 g/cm 3 .
  • the ceramic raw material was pre-pressed at 16 MPa to obtain a black ceramic green body B with a density of 2.2 g/cm 3 and a hardness of 20Hv0.1.
  • the above-mentioned ceramic green body A, ceramic green body B and ceramic green body C have a length of 160 mm, a width of 70 mm and a thickness of 1 mm.
  • one ceramic green body is set on one side of the other ceramic green body, so that the final A boundary line having a length of 160mm may be present in the housing.
  • the ceramic green body A and the ceramic green body B are spliced, and the final pressing is carried out at 80MPa.
  • the straightness of the splicing line between the ceramic green body A and the ceramic green body B is 0.08mm, and the density of the ceramic green body A after final pressing is 3.05 g/cm 3 , the density of the ceramic green body B is 3.1 g/cm 3 ; after isostatic pressing at 80° C. and 180 MPa, the straightness of the splicing line between the ceramic green body A and the ceramic green body B is 0.13 mm, the density of the ceramic green body A after isostatic pressing is 3.17 g/cm 3 , and the density of the ceramic green body B is 3.19 g/cm 3 .
  • shell A/B was obtained with a density of 6.03g/cm 3 , a bond strength of 951MPa, and the straightness of the boundary line between the blue area and the gradient area as 0.3mm, the straightness of the boundary line between the black area and the gradient area is 0.3mm.
  • the ceramic green body A and the ceramic green body C are spliced, and the final pressing is carried out at 70MPa.
  • the straightness of the splicing line between the ceramic green body A and the ceramic green body C is 0.06mm, and the density of the ceramic green body A after final pressing is 3.02 g/cm 3 , the density of the ceramic green body C is 3.06g/cm 3 ; after isostatic pressing at 70°C and 190MPa, the straightness of the splicing line between the ceramic green body A and the ceramic green body C is 0.09 mm, the density of the ceramic green body A after isostatic pressing is 3.14 g/cm 3 , and the density of the ceramic green body C is 3.17 g/cm 3 .
  • shell A/C was obtained with a density of 6.05g/cm 3 , a bond strength of 927MPa, and the straightness of the boundary line between the blue area and the gradient area. 0.15mm, the straightness of the boundary line between the green area and the gradient area is 0.15mm.
  • the ceramic green body B and the ceramic green body C are spliced together, and the final pressing is carried out at 50MPa.
  • the straightness of the splicing line between the ceramic green body B and the ceramic green body C is 0.09mm, and the density of the ceramic green body B after final pressing is 3.01 g/cm 3 , the density of the ceramic green body C is 3.08 g/cm 3 ; after isostatic pressing at 20° C. and 180 MPa, the straightness of the splicing line between the ceramic green body B and the ceramic green body C is 0.12 mm, the density of the ceramic green body B after isostatic pressing is 3.11 g/cm 3 , and the density of the ceramic green body C is 3.18 g/cm 3 .
  • shell B/C was obtained with a density of 6.01 g/cm 3 , a bond strength of 937 MPa, and the straightness of the boundary line between the blue area and the gradient area. 0.45mm, the straightness of the boundary line between the green area and the gradient area is 0.45mm.
  • the boundary line between the regions in the shell cannot be less than 0.5mm, which will affect the appearance of the shell.
  • the hardness of the ceramic green body in the seventh group is larger, which in turn slightly affects the bonding strength between the two ceramic green bodies in the subsequent splicing process.
  • the boundary lines between the various color regions in the shell can be made more tidy.
  • the above-mentioned Er 2 O 3 colorant has a non-spinel structure, and the particle size is 900 nm.
  • Ceramic green body G-3 with a hardness of 30Hv0.1.
  • the above-mentioned Cr 2 O 3 colorant has a non-spinel structure, and the particle size is 600 nm.
  • the ceramic green bodies prepared above were spliced together according to the combination shown in Table 1, final pressure was carried out at 75 MPa, and then isostatic pressing was carried out at 60 ° C and 180 MPa to form a ceramic substrate green body; adjacent ceramic green bodies; The density difference of the blank is less than 0.08g/cm 3 ; after the green ceramic substrate is treated at 400°C for 15h, and then treated at 1400°C for 4h, a shell is obtained, wherein the adjacent color areas on the surface of the shell are distinct and clear. The boundary, the straightness of the boundary line is less than 0.45mm.
  • the width of the gradient region was measured on the prepared shell, and the results are shown in Table 2.
  • the measurement method of the width of the gradient area is: determine the boundary line between the gradient area and the first area and the second area, measure the distance between the two boundary lines with a vernier caliper, and measure three different positions on each boundary line The average value can be calculated after taking the measurement.
  • the colorant content in the ceramic green body F-4 exceeds 2%, and the colorant content in the ceramic green body G-3 is less than 4%, thereby making the shell F-4/G- 1.
  • the width of the gradient area of shell F-1/G-3 and shell F-3/G-3 is less than 5mm.
  • Both the ceramic green body H-1 and the ceramic green body I-1 are spinel colorants, so the width of the gradient region of the shell H-1/I-1 is much less than 5 mm.
  • the alumina content in the ceramic green body F-5 is too high, so that the width of the graded area in the case F-5/G-1 is narrower than that in the case F-1/G-1.
  • the ceramic green body G-1 has a higher content of colorant, and the shell formed with the ceramic green body F-1 has a wider range of gradation zone.
  • the mechanical properties of shell F-1/G-1 are better than those of shell F-1/G-4 due to the smaller particle size of colorant used in green ceramic body G-4. Due to the larger colorant particle size used in the ceramic green body G-5, the color uniformity of the case F-1/G-1 is better than that of the case F-1/G-5. Since the green ceramic body G-1 is a colorant with a non-spinel structure, and the green ceramic body H-1 is a colorant with a spinel structure, the width of the gradient region of the shell F-1/G-1 is obvious. Greater than the gradient width of F-1/H-1.
  • Ceramic green body L-1 with a hardness of 36Hv0.1.
  • Ceramic green body L-2 with a hardness of 35Hv0.1.
  • the above-mentioned (Co 0.7 Zn 0.3 )(Fe 0.7 Al 0.3 ) 2 O 4 colorants and CoAl 2 O 4 colorants are spinel colorants, and Cr 2 O 3 colorants are non-spinel colorants;
  • the above ceramics The particle size of the colorant in the green body K-6 is 50 nm, the particle size of the colorant in the ceramic green body K-7 is 2500 nm, and the particle size of the other (Co 0.7 Zn 0.3 )(Fe 0.7 Al 0.3 ) 2 O 4 colorants is 800 nm.
  • the particle size of Cr 2 O 3 colorant is 600nm; the particle size of alumina in the above-mentioned green ceramic body K-8 is 60 nm, the particle size of alumina in the green ceramic body K-9 is 2200 nm, and the particle size of alumina in the rest of the ceramic green body is uniform. is 300nm.
  • the ceramic green bodies prepared above were spliced together according to the combination shown in Table 3, final pressure was carried out at 70 MPa, and then isostatic pressing was carried out at 60 ° C and 150 MPa to form a ceramic substrate green body; adjacent ceramic green bodies; The density difference of the blanks is less than 0.08g/cm 3 ; after the green ceramic substrate is treated at 380°C for 20h, and then treated at 1450°C for 3.5h, a shell is obtained, wherein the adjacent color regions on the surface of the shell have obvious and bright colors. Clear boundary, the straightness of the boundary line is less than 0.5mm.
  • the width of the gradient region was measured on the prepared shell, and the results are shown in Table 3.
  • the measurement method of the width of the gradient area is as follows: Place it under an optical microscope, magnify it to an appropriate multiple, determine the boundary line between the gradient area and the first area and the second area, and measure the distance between the two boundary lines , and measure three different positions on each boundary line to calculate the average value.
  • the content of colorant in the ceramic green body K-3 exceeds 10%, and the alumina content of L-1 in the ceramic green body is less than 3%, thereby making the shell K-3/
  • the width of the gradient region of M-1, K-3/M-2, K-1/L-1, K-2/L-1 is greater than 200 ⁇ m.
  • the alumina content in the ceramic green bodies M-1, M-2, and M-3 increased in turn, so that the shells K-1/M-1, K-1/M-2, K-1/M-3
  • the width of the gradient zone gradually decreases, and the mechanical properties of the shells K-1/M-3 decrease slightly.
  • K-6/M-1 the colorant in K-1/M-1 is not easy to agglomerate, and the obtained shell has better mechanical properties.
  • K-1/M-1 has a more delicate appearance.
  • the width of the gradient area of the K-1/M-1 is narrower, the color contrast effect is more obvious, and the lines of the gradient area are clearer.
  • K-9/M-1 the color distribution of K-1/M-1 is uniform, and the mechanical properties of the prepared shell are better.
  • the mechanical properties of the shell K-1/M-1 were checked, and it was found that the flexural strength of the shell K-1/M-1 was 850MPa, the fracture toughness was greater than 7MPa ⁇ m 1/2 , and the Vickers hardness was 600Hv0.1 , the porosity is less than 1%, and the surface roughness is less than 0.01 ⁇ m after processing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Adornments (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本申请提供了一种壳体,包括陶瓷基板,陶瓷基板包括第一区域、第二区域以及位于第一区域和第二区域之间的渐变区;第一区域呈现第一颜色,第二区域呈现第二颜色,第一区域与第二区域具有色差;第一区域至第二区域的方向为第一方向,沿第一方向渐变区呈现第一颜色到第二颜色的渐变;陶瓷基板的表面具有第一边界线和第二边界线,第一边界线位于第一区域和渐变区之间,第二边界线位于第二区域和渐变区之间,第一边界线和第二边界线中的至少一个的直线度小于0.5mm。该壳体各颜色区域之间的边界线形状误差小,保证了外观均一性,提升视觉美感;该壳体制备方法简单,具有该壳体的电子设备的外观竞争力、产品表现力增强。

Description

壳体及其制备方法和电子设备 技术领域
本申请属于电子产品技术领域,具体涉及壳体及其制备方法和电子设备。
背景技术
陶瓷材料具有硬度高、韧性好、耐磨等优点,近年来常常应用于电子设备中。由于陶瓷材料颜色较为单一,因此,改善其外观效果,满足更加多样化的需求显得尤为重要。
发明内容
鉴于此,本申请提供了一种壳体及其制备方法、壳体和电子设备,该壳体呈现多种颜色,且两种颜色之间存在颜色渐变区,外观效果丰富,同时,各区域之间的边界线形状误差小,保证了壳体的外观均一性,提升视觉美感;将该壳体应用至电子设备中时,可以显著提升外观效果和产品竞争力。
第一方面,本申请提供了一种壳体,包括陶瓷基板,所述陶瓷基板包括第一区域、第二区域以及位于所述第一区域和所述第二区域之间的渐变区;所述第一区域呈现第一颜色,所述第二区域呈现第二颜色,所述第一区域与所述第二区域具有色差;所述第一区域至所述第二区域的方向为第一方向,沿所述第一方向所述渐变区呈现第一颜色到第二颜色的渐变;所述陶瓷基板的表面具有第一边界线和第二边界线,所述第一边界线位于所述第一区域和所述渐变区之间,所述第二边界线位于所述第二区域和所述渐变区之间,所述第一边界线和所述第二边界线中的至少一个的直线度小于0.5mm。
第二方面,本申请提供了一种壳体的制备方法,包括:
提供第一陶瓷生坯和第二陶瓷生坯,所述第一陶瓷生坯和所述第二陶瓷生坯具有色差,所述第一陶瓷生坯和所述第二陶瓷生坯的维氏硬度大于或等于10Hv0.1;
所述第一陶瓷生坯和所述第二陶瓷生坯拼接后,经压合形成陶瓷基板生坯,所述陶瓷基板生坯中所述第一陶瓷生坯和所述第二陶瓷生坯的密度差小于0.08g/cm 3
所述陶瓷基板生坯排胶、烧结后得到陶瓷基板,制得壳体。
第三方面,本申请提供了一种电子设备,包括壳体和主板,所述壳体包括陶瓷基板,所述陶瓷基板包括第一区域、第二区域以及位于所述第一区域和所述第二区域之间的渐变区;所述第一区域呈现第一颜色,所述第二区域呈现第二颜色,所述第一区域与所述第二区域具有色差;所述第一区域至所述第二区域的方向为第一方向,沿所述第一方向所述渐变区呈现第一颜色到第二颜色的渐变;所述陶瓷基板的表面具有第一边界线和第二边界线,所述第一边界线位于所述第一区域和所述渐变区之间,所述第二边界线位于所述第二区域和所述渐变区之间,所述第一边界线和所述第二边界线中的至少一个的直线度小于0.5mm。
附图说明
为了更清楚地说明本申请实施方式中的技术方案,下面将对本申请实施方式中所需要使用的附图进行说明。
图1为本申请一实施方式提供的壳体的结构示意图。
图2为本申请另一实施方式提供的壳体的结构示意图。
图3为图2中区域A的放大示意图。
图4为本申请一实施方式提供的壳体的俯视图。
图5为本申请另一实施方式提供的壳体的俯视图。
图6为本申请另一实施方式提供的壳体的结构示意图。
图7为本申请一实施方式提供的壳体的制备方法流程图。
图8为本申请一实施方式提供的陶瓷基板生坯的结构示意图,其中,图8中(a)为第一种陶瓷基板生坯的结构示意图,(b)为第二种陶瓷基板生坯的结构示意图,(c)为第三种陶瓷基板生坯的结构示意图,(d)为第四种陶瓷基板生坯的结构示意图,(e)为第五种陶瓷基板生坯的结构示意图,(f)为第六种陶瓷基板生坯的结构示意图,(g)为第七种陶瓷基板生坯的结构示意图,(h)为第八种陶瓷基板生坯的结构示意图,(i)为第九种陶瓷基板生坯的结构示意图。
标号说明:
第一区域-11、第二区域-12、渐变区-13、第一边界线-14、第二边界线-15、陶瓷基板-10、颜色层-20、壳体-100。
具体实施方式
以下是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
本申请实施例提供了一种壳体,包括陶瓷基板,所述陶瓷基板包括第一区域、第二区域以及位于所述第一区域和所述第二区域之间的渐变区;所述第一区域呈现第一颜色,所述第二区域呈现第二颜色,所述第一区域与所述第二区域具有色差;所述第一区域至所述第二区域的方向为第一方向,沿所述第一方向所述渐变区呈现第一颜色到第二颜色的渐变;所述陶瓷基板的表面具有第一边界线和第二边界线,所述第一边界线位于所述第一区域和所述渐变区之间,所述第二边界线位于所述第二区域和所述渐变区之间,所述第一边界线和所述第二边界线中的至少一个的直线度小于0.5mm。
其中,所述第一边界线和所述第二边界线中的至少一个的直线度小于0.3mm。
其中,所述第一边界线和所述第二边界线平行。
其中,所述渐变区在所述第一方向上的尺寸小于或等于20mm。
其中,所述第一区域包括第一着色剂,所述第一区域中所述第一着色剂的质量含量为0.1%-10%;所述第二区域包括第二着色剂,所述第二区域中所述第二着色剂的质量含量小于或等于10%。
其中,所述第一区域中所述第一着色剂的质量含量为4%-10%,所述第二区域中所述第二着色剂的质量含量为0%-2%,所述第一着色剂和所述第二着色剂中至少一个为非尖晶石着色剂。
其中,所述陶瓷基板的材质包括氧化铝,所述氧化铝在所述陶瓷基板中的质量含量小于1%。
其中,所述第一着色剂为尖晶石着色剂。
其中,所述第二区域包括氧化铝,所述第二区域中氧化铝的质量含量为3%-20%。
其中,所述第一区域包括氧化铝,所述第一区域中氧化铝的质量含量小于或等于20%。
其中,所述第二区域的光学透过率大于40%。
其中,按质量百分比计,所述第二区域的材质包括0.2%-0.5%的氧化铝,0.5%-1%的二氧化硅,2%-10%的稳定剂,以及余量的氧化锆。
其中,所述壳体还包括设置所述陶瓷基板表面的颜色层,所述颜色层覆盖所述第二区域,所述颜色层与所述第一区域具有色差。
其中,所述第一区域和所述渐变区邻接设置,所述第二区域和所述渐变区邻接设置。
其中,所述第一区域和所述第二区域的色差值大于2。
其中,所述陶瓷基板的密度大于6g/cm 3,抗弯强度大于800MPa,断裂韧性大于7MPa·m 1/2,维氏硬度大于500Hv0.1,表面粗糙度小于0.01μm。
本申请实施例还提供了一种壳体的制备方法,包括:提供第一陶瓷生坯和第二陶瓷生坯,所述第一陶瓷生坯和所述第二陶瓷生坯具有色差,所述第一陶瓷生坯和所述第二陶瓷生坯的维氏硬度大于或等于10Hv0.1;所述第一陶瓷生坯和所述第二陶瓷生坯拼接后,经压合形成陶瓷基板生坯,所述陶瓷基板生坯中所述第一陶瓷生坯和所述第二陶瓷生坯的密度差小于0.08g/cm 3;所述陶瓷基板生坯排胶、烧结后得到陶瓷基板,制得壳体。
其中,所述提供第一陶瓷生坯和第二陶瓷生坯,包括:提供第一陶瓷原料和第二陶瓷原料,所述第一陶瓷原料与所述第二陶瓷原料的中粒径D50差值小于30μm,所述第一陶瓷原料与所述第二陶瓷原料的松装密度差值小于0.2g/cm 3;经预压后,将所述第一陶瓷原料制成所述第一陶瓷生坯,所述第二陶瓷原料制成所述第二陶瓷生坯。
其中,所述第一陶瓷原料的中粒径D50为50μm-100μm,松装密度为1.2g/cm 3-1.8g/cm 3;所述第二陶瓷原料的中粒径D50为50μm-100μm,松装密度为1.2g/cm 3-1.8g/cm 3;所述预压包括在5MPa-20MPa下进行处理,所述第一陶瓷生坯和所述第二陶瓷生坯的密度分别为2.2g/cm 3-2.5g/cm 3,所述第一陶瓷生坯和所述第二陶瓷生坯的密度差小于0.2g/cm 3,所述第一陶瓷生坯和所述第二陶瓷生坯的维氏硬度分别为10Hv0.1-70Hv0.1。
其中,所述第一陶瓷生坯和所述第二陶瓷生坯拼接后,经压合形成陶瓷基板生坯,包括:所述第一陶瓷生坯和所述第二陶瓷生坯拼接,通过终压和等静压处理形成所述陶瓷基板生坯,所述终压包括在50MPa-80MPa下进行处理,所述等静压包括在100MPa-200MPa下进行处理。
其中,所述终压后的所述第一陶瓷生坯和所述第二陶瓷生坯的密度差小于0.15g/cm 3,所述终压后的所述陶瓷基板生坯的密度大于3g/cm 3,所述等静压后的所述陶瓷基板生坯的密度大于3.1g/cm 3
其中,所述排胶包括在300℃-500℃处理12h-24h;所述烧结包括在1300℃-1500℃处理2h-4h。
其中,所述烧结后,所述第一陶瓷生坯和所述第二陶瓷生坯的结合强度大于800MPa,所述第一陶瓷生坯和所述第二陶瓷生坯的气孔率差值小于0.1%。
本申请实施例还提供了一种电子设备,包括壳体和主板,所述壳体包括陶瓷基板,所述陶瓷基板包括第一区域、第二区域以及位于所述第一区域和所述第二区域之间的渐变区;所述第一区域呈现第一颜色,所述第二区域呈现第二颜色,所述第一区域与所述第二区域具有色差;所述第一区域至所述第二区域的方向为第一方向,沿所述第一方向所述渐变区呈现第一颜色到第二颜色的渐变;所述陶瓷 基板的表面具有第一边界线和第二边界线,所述第一边界线位于所述第一区域和所述渐变区之间,所述第二边界线位于所述第二区域和所述渐变区之间,所述第一边界线和所述第二边界线中的至少一个的直线度小于0.5mm。
请参考图1,为本申请一实施方式提供的壳体的结构示意图,壳体100包括陶瓷基板10,陶瓷基板10包括第一区域11、第二区域12以及位于第一区域11和第二区域12之间的渐变区13;第一区域11呈现第一颜色,第二区域12呈现第二颜色,第一区域11与第二区域12具有色差;第一区域11至第二区域12的方向为第一方向,沿第一方向渐变区13呈现第一颜色到第二颜色的渐变;陶瓷基板10的表面具有第一边界线14和第二边界线15,第一边界线14位于第一区域11和渐变区13之间,第二边界线15位于第二区域12和渐变区13之间;第一边界线14和第二边界线15中的至少一个的直线度小于0.5mm。在本申请中,通过设置具有多种颜色的区域,并且在单个颜色区域之间设置颜色的渐变区13,使得陶瓷组装呈现多种色彩视觉效果,极大地提升了壳体100的外观;同时,各区域之间的边界线形状误差小,保证了壳体100的外观均一性,提升视觉美感,更有利于其应用。
在本申请中,陶瓷基板10包括第一区域11、第二区域12和渐变区13,第一区域11与第二区域12具有色差。可以理解的,本申请中的术语“第一”、“第二”等仅用于描述的目的,而不能理解为指示或暗示相对重要性或隐含指明所指示的技术特征的数量。本申请中可以有两个单一颜色的区域,也可以有两个以上单一颜色的区域,形成更加丰富多彩的外观效果。陶瓷基板10的表面具有第一边界线14和第二边界线15,第一边界线14位于第一区域11和渐变区13之间,第二边界线15位于第二区域12和渐变区13之间;也就是说,在壳体100的表面上,第一区域11和渐变区13的界限为第一边界线14,第二区域12和渐变区13的界限为第二边界线15。可以理解的,在壳体100具有多个表面,在壳体至少一个表面上存在有第一边界线14和第二边界线15。
在本申请中,第一区域11和渐变区13相邻接,第二区域12和渐变区13相邻接。可以理解的,相邻接可以为围绕设置,也可以为在一侧设置。具体的,围绕可以但不限于为部分围绕、环绕等。在一实施方式中,第一区域11位于渐变区13的一侧。此时,在陶瓷基板10的表面上,第一区域11与渐变区13之间仅存在一条第一边界线14。在另一实施方式中,第二区域12位于渐变区13的一侧。此时,在陶瓷基板10的表面上,第二区域12与渐变区13之间仅存在一条第二边界线15。在又一实施方式中,第一区域11围绕渐变区13设置,或渐变区13围绕第一区域11设置。此时,在陶瓷基板10的表面上,第一区域11与渐变区13之间存在多条第一边界线14,至少一条第一边界线14的直线度小于0.5mm。可以理解的,多条第一边界线14中至少有两条的延伸方向不同。在又一实施方式中,第二区域12围绕渐变区13设置,或渐变区13围绕第二区域12设置。此时,第二区域12与渐变区13之间存在多条第二边界线15,至少一条第二边界线15的直线度小于0.5mm。可以理解的,多条第二边界线15中至少有两条的延伸方向不同。
可以理解的,直线度指单一实际直线允许的变动全量,属于形状公差中的一种。通过控制陶瓷基板10中各区域之间的边界线的直线度,进而保证了各区域分布范围均一性好,避免了颜色分布杂乱,视觉效果混杂的问题,保证壳体100的外壳效果。在本申请中,通过二次元影像测量仪对焦第一边界线14和/或第二边界线15,在第一边界线14或第二边界线15上等距离取点,相邻两点距离不大于5mm,每条边界线上取至少20个点,对所取得的点拟合出一条曲线,对该曲线的直线度进行测量,即可得到第一边界线14和/或第二边界线15的直线度。其中,曲线的直线度为该曲线波峰和波谷之间的垂直距 离的最大值。在本申请实施方式中,第一边界线14和第二边界线15的直线度均小于0.3mm。从而,进一步提升了陶瓷基板10色彩分布的整齐性。在本申请另一实施方式中,第一边界线14和第二边界线15中的至少一个的直线度小于0.3mm。从而,进一步提升各区域之间更加整齐,色彩分布更加和谐。具体的可以但不限于,第一边界线14和/或第二边界线15的直线度小于0.28mm、0.25mm、0.22mm、0.2mm。在本申请又一实施方式中,所述第一边界线14和所述第二边界线15平行。从而,提升了渐变区13与相邻区域之间的颜色分布情况。
在本申请中,第一区域11呈现第一颜色,第二区域12呈现第二颜色,第一区域11与第二区域12具有色差。可以理解的,通过控制陶瓷材料,使第一区域11或第二区域12呈现无色透明状,进而使得壳体100具有部分颜色的变化,以及部分通透外观,视觉效果更加丰富。
在本申请实施方式中,第一区域11和第二区域12的色差值大于2。Lab颜色模型是一种设备无关的颜色模型,也是一种基于生理特征的颜色模型。Lab颜色模型由L、a和b三个要素组成。L用于表示亮度,取值范围是[0,100],表示从纯黑到纯白;a表示从绿色到红色的范围,取值范围是[-128,127];b表示从蓝色到黄色的范围,取值范围是[-128,127]。每种颜色具有一个Lab值,两种颜色的差异(色差值)用ΔE表示。例如,第一种颜色的L值为L1,a值为a1,b值为b1,第二种颜色的L值为L2,a值为a2,b值为b2,则两种颜色的明度差异ΔL=│L1-L2│,红/绿差异Δa=│a1-a2│,黄/蓝差异Δb=│b1-b2│,两种颜色的色差值ΔE=(ΔL2+Δa2+Δb2) 1/2。在本申请中,通过控制第一区域11和第二区域12的色差值大于2,以使得第一区域11和第二区域12的颜色能够被人眼区分,实现多种颜色的外观效果。进一步的,第一区域11和第二区域12的色差值大于4;更进一步的,第一区域11和第二区域12的色差值大于6,以产生明显的颜色差异,形成撞色效果。
在本申请实施方式中,渐变区13的平均Lab值与第一区域11的Lab值差值大于2,和/或渐变区13的平均Lab值与第二区域12的Lab值差值大于2,以使得渐变区13的颜色与第一区域11、第二区域12具有明显区别。在一实施例中,渐变区13中中间点的Lab值与第一区域11和/或第二区域12的Lab值差值大于2,其中,中间点为渐变区13中到第一区域11和第二区域12的最短距离相等的点。
在本申请中,陶瓷基板10具有内表面和与内表面相对设置的外表面。可以理解的,陶瓷基板10的内表面和外表面上具有第一区域11、第二区域12和渐变区13,也可以理解为一部分内表面属于第一区域11,一部分内表面属于第二区域12,另一部分内表面属于渐变区13;一部分外表面属于第一区域11,一部分外表面属于第二区域12,另一部分外表面属于渐变区13。在一实施例中,位于第一区域11的内表面、外表面以及陶瓷基板10内部的色差值小于1,也就是说,第一区域11均呈现第一颜色,颜色均匀分布,没有明显色差。进一步的,位于第一区域11的内表面、外表面以及陶瓷基板10内部的色差值小于0.5。在另一实施例中,位于第二区域12的内表面、外表面以及陶瓷基板10内部的色差值小于1,也就是说,第二区域12均呈现第二颜色,颜色均匀分布,没有明显色差。进一步的,位于第二区域12的内表面、外表面以及陶瓷基板10内部的色差值小于0.5。在又一实施例中,位于渐变区13的内表面上的第一检测点、位于渐变区13的外表面的第二检测点,以及位于渐变区13的陶瓷基板10内部的第三检测点的色差值小于1。进一步的,色差值小于0.5。其中,第一检测点、第二检测点和第三检测点为内表面至外表面最短距离的同一线段上的点。也就是说,渐变区13呈颜色的渐变,且表面和内部相对应位置处的颜色没有明显色差,渐变区13的颜色呈整体均匀的渐变。
在本申请中,沿第一方向渐变区13呈现第一颜色到第二颜色的渐变,可以理解的,沿第一方向相 反的方向,渐变区13呈现第二颜色到第一颜色的渐变。在本申请实施方式中,第一区域11具有第一着色剂,第二区域12具有第二着色剂,渐变区13包括第一着色剂,渐变区13中第一着色剂的质量含量沿第一方向逐渐降低。也就是说,渐变区13中第一着色剂的质量含量沿第一方向呈降低趋势,直至第二区域12和渐变区13的交界处,第一着色剂的质量含量达到最低,甚至为零。通过控制渐变区13中第一着色剂的质量含量,进而使得渐变区13的颜色呈现渐变的效果。可以理解的,当第二区域12不含第二着色剂时,此时渐变区13就不含第二着色剂,仅仅含第一着色剂。在一实施例中,当第二区域12具有第二着色剂时,渐变区13中第二着色剂的质量含量沿第一方向的反方向逐渐降低。也就是说,渐变区13中第二着色剂的质量含量沿第一方向的反方向呈降低趋势,直至第一区域11和渐变区13的交界处,第二着色剂的质量含量达到最低,甚至为零。在另一实施例中,渐变区13中的第二着色剂的质量含量沿第一方向的反方向逐渐降低并达到零,而后在渐变区13中第二着色剂的质量含量继续沿第一方向的反方向保持为零。在本申请实施方式中,渐变区13中第一着色剂的质量含量沿第一方向呈线性降低。从而使得渐变区13的颜色平缓的过渡。在本申请另一实施方式中,渐变区13中第二着色剂的质量含量沿第一方向的反方向呈线性降低。从而使得渐变区13的颜色平缓的过渡。
在本申请一实施方式中,渐变区13在第一方向上的尺寸小于或等于20mm。通过设置上述的渐变区13,使得壳体100具有非常缓和的颜色过渡,细腻感增强。进一步的,渐变区13在第一方向上的尺寸为50μm-10mm。更进一步的,渐变区13在第一方向上的尺寸为小于或等于200μm。从而,使得壳体100呈现非常强烈的撞色效果,并且撞色线条清晰。具体的,渐变区13在第一方向上的尺寸可以但不限于为60μm、150μm、500μm、1mm、6mm、15mm或18mm。在本申请中,渐变区13的宽度即为渐变区13在第一方向上的最小尺寸。在一实施例中,渐变区13的宽度小于或等于20mm;进一步的,渐变区13的宽度小于或等于10mm。在另一实施例中,渐变区13的宽度为50μm-10mm。通过控制渐变区13在第一方向上的尺寸,丰富了壳体100的视觉效果,有利于其在电子设备中的应用,提高产品的外观选择性。可以理解的,第一边界线14和/或第二边界线15的直线度的值小于渐变区13在第一方向上的尺寸。
请参阅图2,为本申请另一实施方式提供的壳体的结构示意图,壳体100包括陶瓷基板10,陶瓷基板10包括第一区域11和第二区域12;请参阅图3,为图2中区域A的放大示意图,其中,第一区域11和第二区域12之间还具有渐变区13。此时渐变区13在第一方向上的尺寸较小,肉眼不易识别,进而在第一区域11和第二区域12之间呈现出清晰的界线,形成明显的撞色效果,大大提升了壳体100的外观,丰富了壳体100的视觉效果,更有利于其应用。
请参阅图4,为本申请一实施方式提供的壳体的俯视图,在壳体100的表面具有第一区域11、第二区域12以及位于第一区域11和第二区域12之间的渐变区13;第一区域11和第二区域12具有色差,从而渐变区13呈现颜色的缓慢过渡,此时渐变区13在第一方向上的尺寸较大,能够被肉眼观察到,进而使得壳体100呈现缓和的颜色拼接效果。具体的,渐变区13在第一方向上的尺寸可以但不限于大于1mm、3mm、5mm或10mm等。请参阅图5,为本申请另一实施方式提供的壳体的俯视图,在壳体100的表面具有第一区域11和第二区域12,第一区域11和第二区域12之间的渐变区13在第一方向上的尺寸较小,不能够被肉眼观察到,在壳体100上呈现为清晰的界限,进而使得壳体100呈现明显的颜色碰撞效果。具体的,渐变区13在第一方向上的尺寸可以但不限于不大于1mm、0.5mm、0.2mm或0.1mm等。
在本申请中,第一区域11包括第一着色剂。也就是说,第一区域11由于存在第一着色剂,进而使得第一区域11呈现第一颜色。第一着色剂可以包括一种颜色的着色剂,该着色剂均匀分布在第一区域11中;第一着色剂还可以包括多种不同颜色的着色剂,多种不同颜色的着色剂均匀分布在第一区域11中。在一实施例中,第一区域11中第一着色剂的质量含量为0.1%-10%。在另一实施例中,第一区域11中第一着色剂的质量含量为4%-10%。在本申请中,通过控制第一区域11中第一着色剂的质量含量,进而避免着色剂含量过高影响陶瓷基板10的机械强度。进一步的,第一区域11中第一着色剂的质量含量为4%-8%。更进一步的,第一区域11中第一着色剂的质量含量为6%-8%,加深第一区域11的色彩。
在本申请实施方式中,第二区域12包括第二着色剂。也就是说,第二区域12由于存在第二着色剂,进而使得第二区域12呈现第二颜色。第二着色剂可以包括一种颜色的着色剂,该着色剂均匀分布在第二区域12中;第二着色剂还可以包括多种不同颜色的着色剂,多种不同颜色的着色剂均匀分布在第二区域12中。在一实施例中,第二区域12中第二着色剂的质量含量小于或等于10%。
在本申请一实施方式中,第一区域11中第一着色剂的质量含量为4%-10%,第二区域12中第二着色剂的质量含量为0%-2%,第一着色剂和第二着色剂中至少一个为非尖晶石着色剂。从而,渐变区13在第一方向上的尺寸大于5mm。进一步的,第一区域11中第一着色剂的质量含量为4%-8%,第二区域12中第二着色剂的质量含量为0%-1%。从而,渐变区13在第一方向上的尺寸大于10mm。在另一实施例中,当第二区域12中第二着色剂的质量含量为0%时,即不含第二着色剂时,第二区域12呈现陶瓷材料本身的颜色。从而,渐变区13在第一方向上的尺寸大于15mm。在一实施例,渐变区13在第一方向上的尺寸不大于20mm。在一具体实施例中,第一区域11中第一着色剂的质量含量为4%-10%,第二区域12中第二着色剂的质量含量为0%,进而可以在渐变区13更加突出第一着色剂的色彩。
在本申请中,第一着色剂和第二着色剂中至少一个为非尖晶石着色剂。尖晶石结构的化学式通式为AB 2O 4,A为二价金属阳离子,可以但不限于为Mg 2+、Mn 2+、Ni 2+、Zn 2+、Co 2+、Cd 2+、Cu 2+、Ca 2+中的至少一种,B为三价金属阳离子,可以但不限于为Fe 3+、Cr 3+、Mn 3+中的至少一种。在尖晶石晶体结构中,氧离子按立方紧密堆积排列,二价阳离子充填于八分之一的四面体空隙中,三价阳离子充填于二分之一的八面体空隙中。可以理解的,第一着色剂和第二着色剂可以都为非尖晶石着色剂,也可以其中一个是非尖晶石着色剂,另一个是尖晶石着色剂、尖晶石着色剂非尖晶石着色剂的混合或不含着色剂。在一实施例中,第一着色剂和第二着色剂可以但不限于为分别选自氧化铁、氧化钴、氧化铈、氧化铯、氧化镍、氧化铋、氧化锌、氧化锰、氧化铬、氧化镨、氧化钕、氧化锶、氧化镧、氧化铒、氧化镓、氧化硅、氧化镁、氧化钙、氧化铜、氧化钒、氧化锡、氧化钛,以及具有上述阳离子的其他化合物中的至少一种。例如,具有上述阳离子的其他化合物可以但不限于为硅酸镍、钒锆黄等。可以理解的,第一着色剂和第二着色剂还可以选择其他上述未列出的着色剂。
在本申请另一实施方式中,陶瓷基板10的材质还包括氧化铝,陶瓷基板10中氧化铝的质量含量小于1%。进一步的,陶瓷基板10中氧化铝的质量含量小于0.5%。从而避免了氧化铝含量过多,对着色剂扩散的抑制作用,有利于获得在第一方向上的尺寸大于5mm的渐变区13。
在本申请中,沿第一方向渐变区13呈现第一颜色到第二颜色的渐变,可以理解的,沿第一方向相反的方向,渐变区13呈现第二颜色到第一颜色的渐变,同时,渐变区13在第一方向上的尺寸大于5mm。 通过设置上述的渐变区13,使得壳体100具有非常缓和的颜色过渡,细腻感增强。进一步的,渐变区13在第一方向上的尺寸大于10mm。在本申请中,渐变区13的宽度即为渐变区13在第一方向上的最小尺寸。在一实施例中,渐变区13的宽度大于5mm;进一步的,渐变区13的宽度大于10mm。在另一实施例中,渐变区13的宽度小于20mm。通过控制渐变区13在第一方向上的尺寸,丰富了壳体100的视觉效果,有利于其在电子产品中的应用,提高产品的外观选择性。
在本申请一实施方式中,第一着色剂为尖晶石着色剂。在本申请中,采用尖晶石着色剂有利于较窄渐变区13的产生。在本申请实施方式中,第二着色剂可以为尖晶石着色剂,也可以为非尖晶石着色剂,还可以为尖晶石着色剂和非尖晶石着色剂的混合物。在一实施例中,渐变区13在第一方向上的尺寸小于200μm。通过设置上述的渐变区13,使得壳体100具有非常明显的撞色效果,提升外观表现力。进一步的,渐变区13在第一方向上的尺寸小于150μm。通过控制渐变区13在第一方向上的尺寸,丰富壳体100的视觉效果,有利于其在电子产品中的应用,提高产品的外观选择性。
在本申请另一实施方式中,第二区域12包括氧化铝,第二区域12中氧化铝的质量含量大于或等于3%。氧化铝能够起到稳定着色剂的作用,同时还能够对着色剂的扩散起到抑制作用,有利于减小渐变区13在第一方向上的尺寸,从而有利于获得在第一方向上的尺寸小于200μm的渐变区13。第二区域12中氧化铝的质量含量过低,则不利于得到较窄的渐变区13。进一步的,第二区域12中氧化铝的质量含量为3%-20%。从而,氧化铝的存在既能够保证较窄渐变区13的产生,同时又不会对陶瓷基板10和壳体100的性能造成影响。更进一步的,第二区域12中氧化铝的质量含量为5%-15%。在本申请另一实施方式中,第一区域11包括氧化铝,第一区域11中氧化铝的质量含量小于或等于20%。进一步的,第一区域11中氧化铝的质量含量为5%-15%。更进一步的,第一区域11中氧化铝的质量含量为6%-10%。从而有利于减小渐变区13在第一方向上的尺寸,从而得到具有较窄的渐变区13。
在本申请实施方式中,第一着色剂的粒径为100nm-2000nm,第二着色剂的粒径为100nm-2000nm。第一着色剂和第二着色剂中可以包括多种不同颜色的着色剂,不同颜色的着色剂的粒径可以相同,也可以不同,并且第一着色剂和第二着色剂的粒径可以相同,也可以不同。在一实施例中,当第一着色剂包括多种不同颜色的着色剂时,第一着色剂中每一种颜色的着色剂的粒径为100nm-2000nm;当第二着色剂包括多种不同颜色的着色剂时,第二着色剂中每一种颜色的着色剂的粒径为100nm-2000nm。在本申请中,通过采用粒径为100nm-2000nm的着色剂,使得在制备陶瓷基板10的过程中,着色剂能够均匀分布在陶瓷基板10中,不发生团聚,进而保证了陶瓷基板10和壳体100的机械强度,同时可以提升壳体100颜色的均匀性和细腻感。进一步的,第一着色剂的粒径为500nm-1000nm,第二着色剂的粒径为500nm-1000nm;更进一步的,第一着色剂的粒径为600nm-900nm,第二着色剂的粒径为600nm-900nm,有利于增强着色效果和壳体100外观颜色的均匀性。
在本申请实施方式中,氧化铝的粒径为100nm-2000nm。通过采用粒径为100nm-2000nm的氧化铝,既能够保证氧化铝在陶瓷基板10中的均匀分布,进而使得陶瓷基板10和壳体100的机械性能优异,同时不易发生团聚,能够更好地分布在着色剂的周围,能够充分对着色剂的扩散起到阻碍作用,更有利于较窄渐变区13的产生。进一步的,氧化铝的粒径为500nm-1600nm。更进一步的,氧化铝的粒径为600nm-1000nm。具体的,氧化铝的粒径可以但不限于为100nm、300nm、500nm、800nm、1200nm、1500nm或1700nm。
在本申请实施方式中,陶瓷基板10为氧化锆基陶瓷。也就是说,陶瓷基板10的材质主要为氧化 锆,氧化锆基陶瓷具有优异的韧性、强度和硬度,提高了陶瓷基板10和壳体100的力学性能和耐性,有利于其应用。在本申请一实施例中,陶瓷基板10的材质包括氧化锆、稳定剂、第一着色剂和第二着色剂。在一实施例中,氧化锆的粒径为100nm-500nm。从而,有利于成型细腻质感的陶瓷基板10。进一步的,氧化锆的粒径为200nm-300nm。具体的,氧化锆的粒径可以但不限于为120nm、160nm、190nm、230nm、250nm、380nm或450nm。在一实施例中,稳定剂可以但不限于包括氧化钇、氧化铪、氧化镧、氧化铈、氧化钪、氧化钙、氧化镁、氧化镱和氧化钽中的至少一种。在本申请中,通过加入稳定剂,有利于在最终制得的陶瓷基板10中形成具有稳定、致密的氧化锆晶相,以提高陶瓷基板10的性能。可选的,陶瓷基板10中稳定剂的质量含量为3%-10%。进一步的,陶瓷基板10中稳定剂的质量含量为4%-6%。在一具体实施例中,陶瓷基板10中稳定剂为氧化钇和氧化铪。氧化钇保证陶瓷基板10具有较高含量的四方相,并且使得陶瓷基板10具有较好的稳定性,防止陶瓷基板10在烧结和加工过程中的开裂,氧化铪为氧化锆的伴生物,两者具有相似的物理化学性质,对陶瓷基板10起到稳定作用。在另一具体实施例中,陶瓷基板10中四方相氧化锆占氧化锆质量的70%以上。
可以理解的,第二区域12可以不加着色剂,并且通过控制陶瓷材料,使其呈现无色透明状,进而使得壳体100具有部分颜色的变化,以及部分通透外观,视觉效果更加丰富。在本申请一实施方式中,第二区域12的光学透过率大于40%。进一步的,第二区域12的光学透过率大于50%。更进一步的,第二区域12的光学透过率大于60%。光学透过率为在380nm-780nm波段下光线的透过率。从而第二区域12能够呈现通透的外观,丰富壳体100的视觉效果。在一实施例中,按质量百分比计,第二区域12的材质包括0.2%-0.5%的氧化铝,0.5%-1%的二氧化硅,2%-10%的稳定剂,以及余量的氧化锆。进一步的,按质量百分比计,第二区域12的材质包括0.2%-0.4%的氧化铝,0.5%-0.8%的二氧化硅,2%-8%的稳定剂,以及余量的氧化锆。从而,使得第二区域12的光学透过率大于50%。其中,氧化铝提高陶瓷基板10的亮度,使壳体100具有较高的透过率,又能够保证陶瓷基板10和壳体100的机械性能;二氧化硅提高陶瓷基板10的耐酸性和耐高温,还能够调节陶瓷基板10的颜色,以提高壳体100的亮度。
请参阅图6,为本申请另一实施方式提供的壳体的结构示意图,壳体100还包括位于陶瓷基板10表面的颜色层20,颜色层20覆盖第二区域12。在本申请中,颜色层20可以仅覆盖第二区域12,还可以覆盖第二区域12和渐变区13,也可以覆盖第二区域12、渐变区13和第一区域11。在一实施方式中,颜色层20与第一区域11具有色差,从而使得壳体呈现多种颜色变化。在一实施例中,颜色层20与第一区域11的色差值大于2,进而使得壳体100具有明显的撞色效果。在一实施方式中,颜色层20可以直接贴合在壳体100的表面,还可以通过喷涂的方式位于壳体100的表面。通过设置颜色层20,从而使得壳体100能够呈现更加多样化的色彩选择。在一实施例中,颜色层20具有实色,颜色层20位于壳体100的内表面,以使得在壳体100的外表面直接呈现最终具有撞色效果的外观。在本申请另一实施例中,颜色层20可以为透明颜色层,此时,颜色层20既可以位于壳体100的内表面,也可以位于陶瓷组装10的外表面。从而,壳体100能够呈现多种颜色的外观效果。
抗弯强度是指陶瓷基板10抵抗弯曲不断裂的能力。一般采用三点抗弯测试或四点测试方法评测。本申请中通过采用GB/T 6569-2006《精细陶瓷弯曲强度试验方法》对陶瓷基板10进行三点抗弯强度的检测。在本申请实施方式中,陶瓷基板10的抗弯强度大于800MPa。进一步的,陶瓷基板10的抗弯强度大于900MPa。本申请陶瓷基板10的抗弯强度优异,进而保证了壳体100的抗弯强度,使其具 有更好地应用前景。
断裂韧性是陶瓷基板10中有裂纹或类裂纹缺陷情形下发生以其为起点的不再随着载荷增加而快速断裂,即发生所谓不稳定断裂时,材料显示的阻抗值。断裂韧性表征材料阻止裂纹扩展的能力,是度量材料的韧性好坏的一个定量指标。本申请中通过采用GB/T 23806-2009《精细陶瓷断裂韧性试验方法单边预裂纹梁(SEPB)法》中的三点弯曲对陶瓷基板10的断裂韧性进行检测。在本申请实施方式中,陶瓷基板10的断裂韧性大于7MPa·m 1/2。进一步的,陶瓷基板10的断裂韧性大于7.5MPa·m 1/2。本申请陶瓷基板10的断裂韧性佳,抗脆断能力优异,保证了壳体100具有优异的性能。
硬度表征了陶瓷基板10抵抗硬物压入其表面的能力。维氏硬度值的标准格式为xHVy,HV前面的数值x为硬度值,后面的数值y为试验力。通过维氏硬度计对陶瓷基板10进行检测。在本申请实施方式中,陶瓷基板10的维氏硬度大于500Hv0.1。进一步的,陶瓷基板10的维氏硬度大于600Hv0.1。本申请陶瓷基板10的硬度高,抗形变能力佳。
在本申请实施方式中,陶瓷基板10的表面粗糙度小于0.01μm。通过提供表面粗糙度小的陶瓷基板10,进而有利于增强其表面光滑性能。在本申请实施方式中,壳体100的表面粗糙度小于0.01μm,有利于其在电子设备中的应用。
本申请通过采用GB/T 25995-2010《精细陶瓷密度和显气孔率试验方法》对陶瓷基板10的密度和气孔率进行检测。在本申请实施方式中,陶瓷基板10的密度大于6g/cm 3。在本申请另一实施方式中,陶瓷基板10的气孔率小于1%。即陶瓷基板10的致密度大于99%。陶瓷基板10的密度和低气孔率保证了陶瓷基板10内部的结合强度,有利于壳体100机械性能的提升。
请参阅图7,为本申请一实施方式提供的壳体的制备方法流程图,该制备方法制备上述任一实施例的壳体100,包括:
操作101:提供第一陶瓷生坯和第二陶瓷生坯,第一陶瓷生坯和第二陶瓷生坯具有色差,第一陶瓷生坯和第二陶瓷生坯的维氏硬度大于或等于10Hv0.1。
操作102:第一陶瓷生坯和第二陶瓷生坯拼接后,经压合形成陶瓷基板生坯,陶瓷基板生坯中第一陶瓷生坯和第二陶瓷生坯的密度差小于0.08g/cm 3
操作103:陶瓷基板生坯排胶、烧结后得到陶瓷基板,制得壳体。
在本申请中,通过控制硬度和密度差,进而使得陶瓷生坯在整个干压成型的过程中不会发生形变和扭曲,并且保证相邻接的陶瓷生坯的收缩率一致,进而制得具有优异直线度的陶瓷基板10和壳体100。陶瓷基板生坯中具有多个不同颜色的陶瓷生坯,相邻的第一陶瓷生坯和第二陶瓷生坯在烧结过程中,陶瓷生坯中的着色剂会发生扩散,在拼接面附近发生颜色的混合,形成区别于第一颜色和第二颜色的渐变区13。本申请通过控制第一陶瓷生坯和第二陶瓷生坯的密度差,在制得的壳体100中各区域之间的边界线的直线度小于0.5mm。
可以理解的,第一陶瓷生坯呈现第一颜色,第二陶瓷生坯呈现第二颜色,烧结后的第一陶瓷生坯形成了第一区域11和部分的渐变区13,烧结后的第二陶瓷生坯形成了第二区域12和部分的渐变区13。在本申请的壳体100的表面,第一区域11和渐变区13之间具有第一边界线14,第二区域12和渐变区13之间具有第二边界线15,但并不是拼接缝。
在本申请实施方式中,提供第一陶瓷生坯和第二陶瓷生坯,包括:提供第一陶瓷原料和第二陶瓷原料,第一陶瓷原料与第二陶瓷原料的中粒径D50差值小于30μm,第一陶瓷原料与第二陶瓷原料的 松装密度差值小于0.2g/cm 3;经预压后,将第一陶瓷原料制成第一陶瓷生坯,第二陶瓷原料制成第二陶瓷生坯。从而,通过对第一陶瓷原料与第二陶瓷原料的中粒径D50差值和松装密度差值进行控制,有利于使得陶瓷基板生坯中第一陶瓷生坯和所述第二陶瓷生坯的密度差小于0.08g/cm 3,有利于获得较佳的第一边界线14和第二边界线15的直线度。进一步的,第一陶瓷原料与第二陶瓷原料的中粒径D50差值小于25μm,第一陶瓷原料与第二陶瓷原料的松装密度差值小于0.16g/cm 3
在本申请实施方式中,第一陶瓷原料通过第一陶瓷粉和第一有机助剂混合后造粒形成。在本申请一实施例中,第一陶瓷粉包括氧化锆、稳定剂和第一着色剂。在一实施例中,按质量百分比计,第一陶瓷粉中稳定剂占3%-10%,第一着色剂占20%以下,余量为氧化锆。进一步的,按质量百分比计,第一陶瓷粉中稳定剂占3%-10%,第一着色剂占1%-20%,氧化锆占70%-95%。
在本申请实施方式中,第一有机助剂与第一陶瓷粉的质量比为(0.01-0.2):1。进一步的,第一有机助剂与第一陶瓷粉的质量比为(0.01-0.1):1。在后续排胶、烧结过程中,第一有机助剂经分解或挥发完全排出。在一实施例中,第一有机助剂包括粘结剂。具体的,粘结剂可以但不限于包括聚甲基丙烯酸甲酯、聚乙烯醇缩丁醛、聚乙烯和聚乙二醇中的至少一种。通过设置粘结剂,使得第一陶瓷粉体中的各个组分能够均匀分散在第一有机助剂中,且各个组分之间通过粘结剂作用,增强第一陶瓷生坯的强度。在一实施例中,粘结剂与第一陶瓷粉的质量比大于0.03。从而提高了第一陶瓷生坯的硬度,提升在压合过程中整体强度,避免压合过程中坯体发生形变。进一步的,粘结剂与第一陶瓷粉的质量比大于0.05。在另一实施例中,第一有机助剂可以但不限于包括粘结剂、有机溶剂、塑化剂、分散剂、消泡剂和润滑剂中的至少一种。具体的,有机溶剂可以但不限于包括无水乙醇、甲苯和乙二醇中的至少一种,塑化剂可以但不限于包括邻苯二甲基二丁酯、邻苯二甲酸二辛酯和邻苯二甲酸丁苄酯中的至少一种,分散剂可以但不限于为三乙醇胺,消泡剂可以但不限于为二甲基硅氧烷,润滑剂可以但不限于为硬脂酸和石蜡中的至少一种。在本申请中,当第一有机助剂含有多种组分时,各组分的比例可以根据后续制备工艺的需要进行选择,并且第一有机助剂中组分的种类可以根据需要进行添加。
在本申请实施方式中,第一陶瓷粉和第一有机助剂混合形成第一陶瓷浆料,第一陶瓷浆料经喷雾造粒后制得第一陶瓷原料。在一实施例中,喷雾造粒时喷雾干燥机的出口温度可以但不限于为150℃-250℃。在另一实施例中,造粒制得的第一陶瓷原料的中粒径D50为50μm-100μm,松装密度为1.2g/cm 3-1.8g/cm 3。进一步的,第一陶瓷原料的中粒径D50为55μm-90μm,松装密度为1.25g/cm 3-1.7g/cm 3。从而,有利于第一陶瓷生坯的制备,进一步减小与第二陶瓷生坯之间的密度差。
在本申请实施方式中,第二陶瓷原料通过第二陶瓷粉和第二有机助剂混合后经造粒形成。在本申请一实施例中,第二陶瓷粉包括氧化锆、稳定剂和第二着色剂。在一实施例中,按质量百分比计,第二陶瓷粉中稳定剂占3%-10%,第二着色剂占20%以下,余量为氧化锆。进一步的,按质量百分比计,第二陶瓷粉中稳定剂占3%-10%,第二着色剂占1%-20%,氧化锆占70%-95%。具体的,第一着色剂和第二着色剂可以为同一着色剂,但在陶瓷粉中的质量含量不同,也可以为不同种的着色剂。第一着色剂和第二着色剂可以为一种着色剂,还可以为多种着色剂的混合。在一实施例中,第一着色剂或第二着色剂的质量含量可以为零,从而使得陶瓷生坯呈现陶瓷材料本身的色泽。具体的,第一着色剂和第二着色剂的种类以及粒径,可以根据上述着色剂的种类以及粒径进行选择,在此不再赘述。
在本申请实施方式中,第二有机助剂与第二陶瓷粉的质量比为(0.01-0.2):1。进一步的,第二有机助剂与第二陶瓷粉的质量比为(0.01-0.1):1。在后续排胶、烧结过程中,第二有机助剂经分解 或挥发完全排出。在一实施例中,第二有机助剂包括粘结剂。具体的,粘结剂可以但不限于包括聚甲基丙烯酸甲酯、聚乙烯醇缩丁醛、聚乙烯和聚乙二醇中的至少一种。通过设置粘结剂,使得第二陶瓷粉体中的各个组分能够均匀分散在第二有机助剂中,且各个组分之间通过粘结剂作用,增强第二陶瓷生坯的强度。在一实施例中,粘结剂与第二陶瓷粉的质量比大于0.03。从而提高了第二陶瓷生坯的硬度,提升在压合过程中整体强度,避免压合过程中坯体发生形变。进一步的,粘结剂与第二陶瓷粉的质量比大于0.05。在另一实施例中,第二有机助剂可以但不限于包括粘结剂、有机溶剂、塑化剂、分散剂、消泡剂和润滑剂中的至少一种。具体的,有机溶剂可以但不限于包括无水乙醇、甲苯和乙二醇中的至少一种,塑化剂可以但不限于包括邻苯二甲基二丁酯、邻苯二甲酸二辛酯和邻苯二甲酸丁苄酯中的至少一种,分散剂可以但不限于为三乙醇胺,消泡剂可以但不限于为二甲基硅氧烷,润滑剂可以但不限于为硬脂酸和石蜡中的至少一种。在本申请中,当第二有机助剂含有多种组分时,各组分的比例可以根据后续制备工艺的需要进行选择,并且第二有机助剂中组分的种类可以根据需要进行添加。
在本申请实施方式中,第二陶瓷粉和第二有机助剂混合形成第二陶瓷浆料,第二陶瓷浆料经喷雾造粒后制得第二陶瓷原料。在一实施例中,喷雾造粒时喷雾干燥机的出口温度可以但不限于为150℃-250℃。在另一实施例中,造粒制得的第二陶瓷原料的中粒径D50为50μm-100μm,松装密度为1.2g/cm 3-1.8g/cm 3。进一步的,第二陶瓷原料的中粒径D50为55μm-90μm,松装密度为1.25g/cm 3-1.7g/cm 3。从而,有利于第二陶瓷生坯的制备,进一步减小与第一陶瓷生坯之间的密度差。
在本申请中,通过控制第一陶瓷粉和第二陶瓷粉中着色剂的含量和类型,使得第一着色剂和第二着色剂的扩散范围更广,形成较宽的渐变区13。
在本申请一实施方式中,第一陶瓷粉包括第一着色剂,第二陶瓷粉包括第二着色剂,第一陶瓷粉中第一着色剂的质量含量为4%-10%,第二陶瓷粉中第二着色剂的质量含量为0%-2%,第一着色剂和第二着色剂中至少一个为非尖晶石着色剂。从而,陶瓷基板10中渐变区13在第一方向上的尺寸大于5mm。
在本申请中,当第一着色剂含量过低或第二着色剂含量过高时,无法保证渐变区13在第一方向上的尺寸大于5mm;第一着色剂含量过高时,不利于第一陶瓷坯体的机械性能,同时会影响烧结温度的选择,进而无法保证第一陶瓷生坯和第二陶瓷生坯在烧结时的收缩率相近。从而,本申请通过采用上述含量的第一着色剂和第二着色剂,既可以使得壳体100呈现具有明显颜色缓和过渡的渐变区13,又同时保证了壳体100的性能。在一实施例中,第一陶瓷粉中第一着色剂的质量含量为6%-10%,第二陶瓷粉中第二着色剂的质量含量为0%-1%,进而使得渐变区13在第一方向上的尺寸大于10mm。在另一实施例中,渐变区13在第一方向上的尺寸小于或等于20mm。在本申请中,第一着色剂和第二着色剂的差值大于2%。进一步的,第一着色剂和第二着色剂的差值大于4%,进一步提高渐变区13的视觉效果。可以理解的,通过控制第一着色剂和第二着色剂的含量、颜色,进而使得后续制得的第一陶瓷生坯和第二陶瓷生坯具有色差。第一着色剂和第二着色剂中至少一个为非尖晶石着色剂。非尖晶石着色剂具有很好的热扩散性能,进而在烧结过程中可以进行快速扩散,从而形成具有较宽的渐变区13,增强壳体100的外观效果。在一实施例中,当第二陶瓷粉中第二着色剂的质量含量为0%时,此时第一着色剂为非尖晶石着色剂,更有利于较宽尺寸的渐变区13的产生。在另一实施例中,第一着色剂和第二着色剂均为非尖晶石着色剂,更有利于较宽尺寸的渐变区13的产生。在本申请实施方式中,第一着色剂和第二着色剂的热扩散低于烧结温度。在一实施例中,第一着色剂和第二着色剂的原子扩 散温度低于烧结温度,从而使得在烧结过程中可以出现渐变区13。
在本申请另一实施方式中,第一陶瓷粉中不含氧化铝,有利于较宽渐变区13的形成。在本申请又一实施方式中,第一陶瓷粉包括氧化铝。在本申请中,氧化铝分散在第一陶瓷粉中,并在第一陶瓷生坯中分布,其在氧化锆晶粒和着色剂周围分散,在烧结过程中,对着色剂的扩散起到钉扎作用,抑制着色剂的扩散,进而影响较宽渐变区13的产生。在一实施例中,按质量百分比计,第一陶瓷粉中氧化铝占1%以下。从而,制得具有平缓的颜色过渡的渐变区13,渐变区13在第一方向上的尺寸大于8mm。在另一实施例中,第二陶瓷粉中氧化铝占1%以下。进一步的,第二陶瓷粉中不含氧化铝,有利于较宽渐变区13的形成。
在本申请中,通过控制第一着色剂的含量和类型以及第二陶瓷粉体中氧化铝的含量,使得第一着色剂和第二着色剂的扩散范围小,形成较窄的渐变区13。
在本申请一实施方式中,第一陶瓷粉包括第一着色剂,第一着色剂为尖晶石着色剂,第一陶瓷粉中第一着色剂的质量含量为0.1%-10%,第二陶瓷粉包括氧化铝,第二陶瓷粉中氧化铝的质量含量大于或等于3%。从而,壳体100中渐变区13在第一方向上的尺寸小于200μm。
在本申请中,第一着色剂含量过高时,不利于第一陶瓷坯体的机械性能,同时会影响烧结温度的选择,进而无法保证陶瓷生坯在烧结时的收缩率相近,并且第一着色剂扩散范围较宽,不利于较窄渐变区13的产生;第一着色剂含量过低,则无法使第一陶瓷生坯呈现明显的颜色,从而不利于撞色效果的呈现。因此,本申请通过采用上述含量的第一着色剂既可以使得壳体100呈现较窄且线条明显的渐变区13,又同时保证了壳体100的性能。尖晶石着色剂具有优异的结构稳定性和高温稳定性,在烧结过程中,尖晶石着色剂热扩散缓慢,有利于使渐变区13在第一方向上的尺寸小于200μm。进一步的,第一陶瓷粉中第一着色剂的质量含量为0.5%-8%。更进一步的,第一陶瓷粉中第一着色剂的质量含量为1%-5%。具体的,第一陶瓷粉中第一着色剂的质量含量可以但不限于为0.1%、0.5%、1%、3%、5%、7%或9%。从而,可以进一步降低渐变区13在第一方向上的尺寸,使得在最终壳体100上形成近似为边界线的渐变区13,使得其外观呈现明显的撞色效果。氧化铝能够对着色剂的扩散起到阻碍作用,并且在高温条件下,部分氧化铝可以进入尖晶石结构中,进一步提高尖晶石着色剂的稳定性,进一步减小着色剂扩散速度;还有部分氧化铝均匀分散在着色剂周围,对着色剂起到钉扎作用,进一步抑制着色剂的扩散,从而有利于较窄渐变区13的形成,提高第一区域11和第二区域12之间撞色线条的清晰度。通过控制第二陶瓷粉中氧化铝的质量含量在3%以上,从而保证了氧化铝在烧结对着色剂的阻碍作用,从而可以形成在第一方向上的尺寸小于200μm的渐变区13。在本申请实施方式中,第二陶瓷粉中氧化铝的质量含量为3%-20%。从而,在保证较窄渐变区13形成的同时,又降低了加工难度,还保证了壳体100较高的机械强度。进一步的,第二陶瓷粉中氧化铝的质量含量为5%-10%。具体的,第二陶瓷粉中氧化铝的质量含量可以但不限于为2%、5%、7%、9%、12%、15%或18%。
在本申请另一实施方式中,第一陶瓷粉中还包括氧化铝,其中氧化铝的质量含量小于或等于20%。从而既能够对着色剂的扩散起到阻碍作用,同时又不会影响陶瓷基板10和壳体100的性能,有利于得到极窄的渐变区13。进一步的,第一陶瓷粉中氧化铝的质量含量为3%-20%。更进一步的,第一陶瓷粉中氧化铝的质量含量为5%-10%。具体的,第一陶瓷粉中氧化铝的质量含量可以但不限于为2%、5%、7%、9%、12%、15%或18%。
在本申请又一实施方式中,第二陶瓷粉还包括第二着色剂。在一实施例中,第二陶瓷粉中第二着 色剂的质量含量小于或等于10%。从而能够使得后续制得的第二陶瓷生坯呈现明显的色彩,并且在烧结过程中,使得陶瓷生坯之间的收缩率相差不大,避免对陶瓷基板10和壳体100的性能产生不良影响。进一步的,第二陶瓷粉中第二着色剂的质量含量为0.5%-8%。更进一步的,第二陶瓷粉中第二着色剂的质量含量为1%-5%。在本申请一实施方式中,第二着色剂可以为尖晶石着色剂、非尖晶石着色剂或两者的混合。在本申请另一实施方式中,第二陶瓷粉不含着色剂。在一具体实施例中,第二着色剂包括尖晶石着色剂,或不含第二着色剂,此时,有利于更窄渐变区13的产生,以及更加清晰的撞色线条的呈现。在本申请实施方式中,第一着色剂和第二着色剂的差值大于2%。进一步的,第一着色剂和第二着色剂的差值大于4%,进一步提高撞色效果。可以理解的,通过控制第一着色剂和第二着色剂的含量、颜色,进而使得后续制得的第一陶瓷生坯和第二陶瓷生坯具有色差。
在本申请实施方式中,经预压后,将第一陶瓷原料制成第一陶瓷生坯,第二陶瓷原料制成第二陶瓷生坯,预压包括在5MPa-20MPa下进行处理。通过预先压合,将第一陶瓷原料制成第一陶瓷生坯,第二陶瓷原料制成第二陶瓷生坯。进一步的,预压包括在8MPa-17MPa下进行处理。
在本申请一实施例中,经预压后,第一陶瓷生坯和第二陶瓷生坯的密度分别为2.2g/cm 3-2.5g/cm 3。在本申请另一实施例中,经预压后,第一陶瓷生坯和第二陶瓷生坯的密度差小于0.2g/cm 3。进一步的,经预压后,第一陶瓷生坯和第二陶瓷生坯的密度差小于0.15g/cm 3。从而保证第一陶瓷生坯和第二陶瓷生坯的密度相差不大,在后续制备过程中,生坯的收缩率相近,使得陶瓷基板10上边界线的直线度较佳。在本申请又一实施例中,经预压后,第一陶瓷生坯和第二陶瓷生坯的维氏硬度分别为10Hv0.1-70Hv0.1,使得陶瓷生坯在预压的过程中,各个陶瓷生坯可以保持其原有的形状,不发生变形扭曲;同时又不会使得陶瓷生坯过硬,避免了烧结过程产生更多缺陷以及陶瓷生坯之间结合强度低的问题。进一步的,第一陶瓷生坯和第二陶瓷生坯的维氏硬度分别为20Hv0.1-40Hv0.1。更进一步的,第一陶瓷生坯和第二陶瓷生坯的维氏硬度分别为25Hv0.1-35Hv0.1。从而,进一步提升陶瓷基板10和壳体100的结合强度。
在本申请实施方式中,第一陶瓷生坯和第二陶瓷生坯拼接,通过终压和等静压处理形成陶瓷基板生坯,终压包括在50MPa-80MPa下进行处理,等静压包括在100MPa-200MPa下进行处理。通过终压和等静压处理,使得第一陶瓷生坯和第二陶瓷生坯之间的结合更加紧密,同时也使得两个生坯之间的密度更加相近,从而有利于烧结过程的进行,并获得较佳第一边界线14和第二边界线15的直线度。进一步的,终压包括在55MPa-75MPa下进行处理,等静压包括在120MPa-190MPa下进行处理。更进一步的,终压包括在60MPa-73MPa下进行处理,等静压包括在150MPa-180MPa下进行处理。从而进一步提升陶瓷生坯组件中第一陶瓷生坯和第二陶瓷生坯之间拼接不发生形变,保证在烧结过程中着色剂扩散后,能够形成直线度较佳的边界线。
在本申请一实施例中,终压后的第一陶瓷生坯和第二陶瓷生坯的密度差小于0.15g/cm 3,终压后的陶瓷基板生坯的密度大于3g/cm 3,第一陶瓷生坯和第二陶瓷生坯拼接线的直线度小于0.1mm。从而保证生坯的收缩率相近,使得壳体100上边界线的直线度较佳。
在本申请一实施例中,等静压后的陶瓷基板生坯的密度大于3.1g/cm 3,第一陶瓷生坯和第二陶瓷生坯拼接线的直线度小于0.15mm。从而保证在后续制备过程中,生坯的收缩率相近,壳体100上边界线的直线度较佳。在另一实施例中,等静压包括在20℃-90℃、100MPa-200MPa下进行处理。进一步的,等静压后的第一陶瓷生坯和第二陶瓷生坯的密度差小于0.05g/cm 3。在本申请中,预压、终压和 等静压的时间根据所需要的陶瓷生坯的密度、密度差进行设定。
在本申请中,第一陶瓷生坯和第二陶瓷生坯可以左右拼接,还可以上下拼接,还可以一个围绕另一个设置,具体的位置关系可以根据实际需要进行选择。同时,上述左右拼接、上下拼接均为在实际使用中第一陶瓷生坯和第二陶瓷生坯的相对位置关系,仅仅是为了描述示例性的第一陶瓷生坯和第二陶瓷生坯的设置方式。在本申请中,通过上述的成型方式,可以制得不同形状的陶瓷基板生坯,例如可以但不限于为平面状的、立体状的、有弧度的、不等厚度的陶瓷基板生坯,也可以为圆形、半圆形、椭圆形、三角形、正方形、长方形、不规则多边形的陶瓷基板生坯,以提高壳体100的多样性。
请参阅图8,为本申请一实施方式提供的陶瓷基板生坯的结构示意图,其中,图8中(a)-(i)为多种不同拼接方式的陶瓷基板生坯的结构示意图,A为呈现颜色A的陶瓷生坯,B为呈现颜色B的陶瓷生坯,C为呈现颜色C的陶瓷生坯。可以理解的,陶瓷基板生坯可以但不限于通过两种、三种、或三种以上陶瓷生坯组成。通过将多个陶瓷生坯进行拼接,且相邻陶瓷生坯颜色不同,形成陶瓷基板生坯,进而提高壳体100的产品多样性。可以理解的,图8为示例性的拼接方式示意图,在实际制备中,陶瓷生坯可以但不限于为正方形、长方形、不规则多边形等,同时,可以将两个、三个、或三个以上的陶瓷生坯拼接在一起,具体的可以根据实际需要进行选择。
在操作103中,排胶包括在300℃-500℃处理12h-24h;烧结包括在1300℃-1500℃处理2h-4h。具体的,排胶的温度可以但不限于300℃、320℃、350℃、370℃、410℃、450℃、480℃或500℃,排胶的时间可以但不限于为12h、14h、15h、17h、19h、20h、22h或24h,保证在排胶过程中,陶瓷基板生坯不会发生开裂;烧结的温度可以但不限于1300℃、1350℃、1370℃、1400℃、1450℃、1460℃或1500℃,烧结的时间可以但不限于为2h、2.5h、3h、3.5h或4h,保证陶瓷基板生坯内部结合强度和致密性的提高。通过排胶和烧结,使得陶瓷基板生坯中的有机成分,如第一有机助剂、第二有机助剂等排出,同时增强陶瓷基板生坯内部的致密性和结合强度,并且在此过程中,第一着色剂和第二着色剂发生扩散,形成渐变区13,得到外观效果丰富的壳体100。在一实施例中,第一着色剂和第二着色剂的热扩散温度低于烧结温度。可选的,第一着色剂和第二着色剂的热扩散温度低于1300℃;进一步的,第一着色剂和第二着色剂的热扩散温度低于1200℃。在另一实施例中,陶瓷基板10的气孔率小于1%,增强了整体的机械性能。在又一实施例中,经烧结后,第一陶瓷生坯和第二陶瓷生坯的气孔率差值小于0.1%。从而保证壳体100的整体性能。在又一实施例中,经烧结后,第一陶瓷生坯和第二陶瓷生坯的结合强度大于800MPa。进一步的,第一陶瓷生坯和第二陶瓷生坯的结合强度大于900MPa。从而,提升了陶瓷基板10和壳体100的内部结合强度,使其不易发生开裂现象。
在本申请一实施方式中,对烧结后的陶瓷基板10的表面进行打磨处理。在一实施例中,打磨深度大于0.05mm。从而,保证陶瓷表面与内部颜色保持一致。进一步的,对陶瓷基板10的表面进行粗加工和精加工,降低表面粗糙度,更有利于其应用。在一具体实施例中,烧结后制得的陶瓷基板10的表面粗糙度烧结后小于10.0μm,经打磨处理后的陶瓷基板10的表面粗糙度烧结后小于1.0μm,经粗加工后的陶瓷基板10的表面粗糙度烧结后小于0.1μm,经精加工后的陶瓷基板10的表面粗糙度烧结后小于0.01μm,具有优异的光滑性,可以用于后盖、边框、按键、装饰件等,提高产品的外观效果。在另一具体实施例中,通过钢镀金刚砂对陶瓷基板10的表面进行开粗和精修,其中主轴转速为20000rpm,功率为15kW;再通过抛光处理,包括将陶瓷基板10置于钻石粉研磨液中,抛光压力为0.08Mpa-0.12Mpa,转速30rpm-50rpm,得到表面粗糙度小于0.01μm的陶瓷基板10。
在本申请提供的壳体100的制备方法操作简单,易于大规模生产,可以制得具有丰富外观效果的壳体100,有利于其应用。
本申请还提供了一种电子设备,包括上述任一实施例的壳体100。可以理解的,电子设备可以但不限于为手机、平板电脑、笔记本电脑、手表、MP3、MP4、GPS导航仪、数码相机等。在本申请一实施方式中,电子设备包括壳体和主板,壳体包括上述任一实施例的壳体100。该壳体100可以赋予电子设备多种颜色的外观,同时还具有颜色渐变区13,各区域之间的边界线直线度佳,提升电子设备的表现力。
实施例1
按质量百分比称取4%铝酸钴(粒径800nm)、2%氧化铝(粒径600nm)、2%氧化铪、5%氧化钇以及余量的氧化锆(粒径280nm)得到陶瓷粉体。陶瓷粉体与有机助剂混合,得到陶瓷浆料,其中有机助剂在陶瓷粉体中的质量占比为6%,有机助剂中粘结剂在陶瓷粉体中的质量占比为4%。将陶瓷浆料进行喷雾造粒后,得到陶瓷原料,陶瓷原料的中粒径D50为70μm,松装密度为1.6g/cm 3。陶瓷原料在12MPa下进行预压,得到密度为2.3g/cm 3、硬度为25Hv0.1的蓝色陶瓷生坯A。
按质量百分比称取5%(Co 0.7Zn 0.3)(Fe 0.7Al 0.3) 2O 4(粒径950nm)、0.5%氧化铝(粒径600nm)、2%氧化铪、5%氧化钇以及余量的氧化锆(粒径280nm)得到陶瓷粉体。陶瓷粉体与有机助剂混合,得到陶瓷浆料,其中有机助剂在陶瓷粉体中的质量占比为8%,有机助剂中粘结剂在陶瓷粉体中的质量占比为6%。将陶瓷浆料进行喷雾造粒后,得到陶瓷原料,陶瓷原料的中粒径D50为80μm,松装密度为1.5g/cm 3。陶瓷原料在16MPa下进行预压,得到密度为2.2g/cm 3、硬度为20Hv0.1的黑色陶瓷生坯B。
按质量百分比称取3%氧化铬(粒径700nm)、1.5%氧化铝(粒径600nm)、2%氧化铪、5%氧化钇以及余量的氧化锆(粒径280nm)得到陶瓷粉体。陶瓷粉体与有机助剂混合,得到陶瓷浆料,其中有机助剂在陶瓷粉体中的质量占比为7%,有机助剂中粘结剂在陶瓷粉体中的质量占比为5%。将陶瓷浆料进行喷雾造粒后,得到陶瓷原料,陶瓷原料的中粒径D50为90μm,松装密度为1.4g/cm 3。陶瓷原料在20MPa下进行预压,得到密度为2.3g/cm 3、硬度为28Hv0.1的绿色陶瓷生坯C。
上述陶瓷生坯A、陶瓷生坯B和陶瓷生坯C的长度为160mm、宽度为70mm、厚度为1mm,拼接时,将一个陶瓷生坯设置在另一个陶瓷生坯的一侧,进而使得最终壳体中可以呈现具有160mm长度的边界线。
将陶瓷生坯A和陶瓷生坯B拼接,在80MPa下进行终压,陶瓷生坯A和陶瓷生坯B之间的拼接线直线度为0.08mm,终压后的陶瓷生坯A密度为3.05g/cm 3,陶瓷生坯B密度为3.1g/cm 3;在将其置于80℃、180MPa下进行等静压处理,陶瓷生坯A和陶瓷生坯B之间的拼接线直线度为0.13mm,等静压后的陶瓷生坯A密度为3.17g/cm 3,陶瓷生坯B密度为3.19g/cm 3。在450℃排胶20h,以及在1450℃烧结2h后得到壳体A/B,其密度为6.03g/cm 3,结合强度为951MPa,蓝色区域与渐变区之间的边界线的直线度为0.3mm,黑色区域与渐变区之间的边界线的直线度为0.3mm。
将陶瓷生坯A和陶瓷生坯C拼接,在70MPa下进行终压,陶瓷生坯A和陶瓷生坯C之间的拼接线直线度为0.06mm,终压后的陶瓷生坯A密度为3.02g/cm 3,陶瓷生坯C密度为3.06g/cm 3;在将其置于70℃、190MPa下进行等静压处理,陶瓷生坯A和陶瓷生坯C之间的拼接线直线度为0.09mm,等静压后的陶瓷生坯A密度为3.14g/cm 3,陶瓷生坯C密度为3.17g/cm 3。在450℃排胶20h,以及在1430℃烧结2h后得到壳体A/C,其密度为6.05g/cm 3,结合强度为927MPa,蓝色区域与渐变区之间的 边界线的直线度为0.15mm,绿色区域与渐变区之间的边界线的直线度为0.15mm。
将陶瓷生坯B和陶瓷生坯C拼接,在50MPa下进行终压,陶瓷生坯B和陶瓷生坯C之间的拼接线直线度为0.09mm,终压后的陶瓷生坯B密度为3.01g/cm 3,陶瓷生坯C密度为3.08g/cm 3;在将其置于20℃、180MPa下进行等静压处理,陶瓷生坯B和陶瓷生坯C之间的拼接线直线度为0.12mm,等静压后的陶瓷生坯B密度为3.11g/cm 3,陶瓷生坯C密度为3.18g/cm 3。在500℃排胶20h,以及在1470℃烧结2h后得到壳体B/C,其密度为6.01g/cm 3,结合强度为937MPa,蓝色区域与渐变区之间的边界线的直线度为0.45mm,绿色区域与渐变区之间的边界线的直线度为0.45mm。
实施例2
按质量百分比称取5%铝酸钴(粒径1000nm)、1%氧化铪、6%氧化钇以及余量的氧化锆(粒径300nm)得到陶瓷粉体。陶瓷粉体与有机助剂混合,得到陶瓷浆料,其中有机助剂在陶瓷粉体中的质量占比为5%,有机助剂中粘结剂在陶瓷粉体中的质量占比为3.5%。将陶瓷浆料进行喷雾造粒后,经预压得到陶瓷生坯D。
按质量百分比称取7%氧化铬(粒径1000nm)、2%氧化铪、5%氧化钇以及余量的氧化锆(粒径400nm)得到陶瓷粉体。陶瓷粉体与有机助剂混合,得到陶瓷浆料,其中有机助剂在陶瓷粉体中的质量占比为7%,有机助剂中粘结剂在陶瓷粉体中的质量占比为5%。将陶瓷浆料进行喷雾造粒后,经预压得到陶瓷生坯E。
将预压后不同密度差值的陶瓷生坯D和陶瓷生坯E经终压和等静压处理后,得到多组陶瓷基板生坯;再经过排胶和烧结得到多组壳体D/E,并检测得到的多组壳体D/E的结合强度以及蓝色区域与渐变区之间的边界线的直线度以及绿色区域与渐变区之间的边界线的直线度,结果如表1所示。
表1实施例2制得多组壳体D/E的参数
Figure PCTCN2021115821-appb-000001
通过本申请的实施例可以看出,陶瓷基板生坯中陶瓷生坯之间的密度差大于0.08g/cm 3或陶瓷生坯的硬度小于10Hv0.1时,壳体中各区域之间边界线的直线度无法小于0.5mm,进而影响壳体外观效果的呈现。相较于其他组,第七组中陶瓷生坯的硬度较大,进而在后续拼接过程中,对两个陶瓷生坯之间的结合强度稍有影响。同时,通过控制等静压后的陶瓷生坯之间的密度差值,可以使得壳体中各个颜色区域之间的边界线更加整齐。
实施例3
按质量百分比称取2%氧化铪、5%氧化钇以及93%氧化锆,并将其与粘结剂混合,经干压成型后得到硬度为30Hv0.1的陶瓷生坯F-1。
按质量百分比称取0.5%Er 2O 3着色剂、0.3%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与粘结剂、分散剂和润滑剂混合,经干压成型后得到硬度为30Hv0.1的陶瓷生坯F-2。
按质量百分比称取1.5%Er 2O 3着色剂、0.6%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与粘结剂、分散剂和润滑剂混合,经干压成型后得到硬度为30Hv0.1的陶瓷生坯F-3。
按质量百分比称取3%Er 2O 3着色剂、0.6%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与有机助剂混合,经干压成型后得到硬度为28Hv0.1的陶瓷生坯F-4。
按质量百分比称取1.5%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与有机助剂混合,经干压成型后得到硬度为25Hv0.1的陶瓷生坯F-5。
其中,上述Er 2O 3着色剂为非尖晶石结构,粒径为900nm。
按质量百分比称取7%Cr 2O 3着色剂、0.5%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与粘结剂混合,经干压成型后得到硬度为28Hv0.1的陶瓷生坯G-1。
按质量百分比称取5%Cr 2O 3着色剂、0.2%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与粘结剂、消泡剂和分散剂混合,经干压成型后得到硬度为25Hv0.1的陶瓷生坯G-2。
按质量百分比称取3%Cr 2O 3着色剂、0.6%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与有机助剂混合,经干压成型后得到硬度为30Hv0.1的陶瓷生坯G-3。
其中,上述Cr 2O 3着色剂为非尖晶石结构,粒径为600nm。
按质量百分比称取7%Cr 2O 3着色剂(非尖晶石结构,粒径为80nm)、0.5%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与有机助剂混合,经干压成型后得到硬度为26Hv0.1的陶瓷生坯G-4。
按质量百分比称取7%Cr 2O 3着色剂(非尖晶石结构,粒径为2500nm)、0.5%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与有机助剂混合,经干压成型后得到硬度为30Hv0.1的陶瓷生坯G-5。
按质量百分比称取7%CoAl 2O 4着色剂(尖晶石结构,粒径为1200nm)、0.5%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与粘结剂、消泡剂和分散剂混合,经干压成型后得到硬度为30Hv0.1的陶瓷生坯H-1。
按质量百分比称取1.5%(Co 0.7Zn 0.3)(Fe 0.7Al 0.3) 2O 4着色剂(尖晶石结构,粒径为1200nm)、0.6%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与粘结剂、消泡剂和分散剂混合,经干压成型后得到硬度为30Hv0.1的陶瓷生坯I-1。
按质量百分比称取0.5%Cr 2O 3着色剂(非尖晶石结构,粒径为600nm)、0.5%CoAl 2O 4着色剂(尖晶石结构,粒径为1200nm)、0.6%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与有机助剂混合,经干压成型后得到硬度为30Hv0.1的陶瓷生坯J-1。
将上述制得的陶瓷生坯按表1所示的组合方式拼接在一起,在75MPa下进行终压,再在60℃、180MPa下进行等静压处理,形成陶瓷基板生坯;相邻陶瓷生坯的密度差小于0.08g/cm 3;陶瓷基板生坯在400℃处理15h后,再在1400℃处理4h,得到壳体,其中,在壳体表面上相邻颜色区域之间具有明显且清晰的边界,边界线的直线度小于0.45mm。
同时,对制得的壳体进行渐变区宽度的测量,结果如表2所示。其中,渐变区宽度的测量方式为:确定渐变区与第一区域和第二区域的边界线,通过游标卡尺对两个边界线之间的距离进行测量,每个 边界线上测量三个不同的位置进行测量后计算平均值即可。
表2实施例3制得多组壳体的渐变区宽度
Figure PCTCN2021115821-appb-000002
通过本申请实施例的结果能够看出,陶瓷生坯F-4中着色剂含量超过了2%,陶瓷生坯G-3中着色剂含量小于4%,进而使得壳体F-4/G-1、壳体F-1/G-3、壳体F-3/G-3的渐变区宽度小于5mm。陶瓷生坯H-1和陶瓷生坯I-1中均为尖晶石着色剂,因此,壳体H-1/I-1的渐变区宽度远小于5mm。陶瓷生坯F-5中氧化铝含量过高,进而使得壳体F-5/G-1中渐变区的宽度相较于壳体F-1/G-1中渐变区的宽度较窄。陶瓷生坯G-1相较于G-2、G-3,其着色剂含量较高,进而与陶瓷生坯F-1形成的壳体得到的渐变区范围更宽。由于陶瓷生坯G-4中采用较小的着色剂粒径,因此,壳体F-1/G-1的机械性能优于壳体F-1/G-4的机械性能。由于陶瓷生坯G-5中采用较大的着色剂粒径,因此,壳体F-1/G-1的颜色均匀性优于壳体F-1/G-5的颜色均匀性。由于陶瓷生坯G-1中为非尖晶石结构的着色剂,陶瓷生坯H-1中为尖晶石结构的着色剂,因此,壳体F-1/G-1的渐变区宽度明显大于F-1/H-1的渐变区宽度。
实施例4
按质量百分比称取4%(Co 0.7Zn 0.3)(Fe 0.7Al 0.3) 2O 4着色剂、7%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与粘结剂混合,经干压成型后得到硬度为35Hv0.1的陶瓷生坯K-1。
按质量百分比称取9%(Co 0.7Zn 0.3)(Fe 0.7Al 0.3) 2O 4着色剂、7%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与粘结剂、分散剂和润滑剂混合,经干压成型后得到硬度为36Hv0.1的陶瓷生坯K-2。
按质量百分比称取15%(Co 0.7Zn 0.3)(Fe 0.7Al 0.3) 2O 4着色剂、7%氧化铝、2%氧化铪、5%氧化钇以及 余量的氧化锆,并将其与有机助剂混合,经干压成型后得到硬度为33Hv0.1的陶瓷生坯K-3。
按质量百分比称取4%(Co 0.7Zn 0.3)(Fe 0.7Al 0.3) 2O 4着色剂、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与有机助剂混合,经干压成型后得到硬度为35Hv0.1的陶瓷生坯K-4。
按质量百分比称取4%(Co 0.7Zn 0.3)(Fe 0.7Al 0.3) 2O 4着色剂、3%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与有机助剂混合,经干压成型后得到硬度为36Hv0.1的陶瓷生坯K-5。
按质量百分比称取4%(Co 0.7Zn 0.3)(Fe 0.7Al 0.3) 2O 4着色剂、7%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与有机助剂混合,经干压成型后得到硬度为36Hv0.1的陶瓷生坯K-6。
按质量百分比称取4%(Co 0.7Zn 0.3)(Fe 0.7Al 0.3) 2O 4着色剂、7%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与有机助剂混合,经干压成型后得到硬度为35Hv0.1的陶瓷生坯K-7。
按质量百分比称取4%(Co 0.7Zn 0.3)(Fe 0.7Al 0.3) 2O 4着色剂、7%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与有机助剂混合,经干压成型后得到硬度为35Hv0.1的陶瓷生坯K-8。
按质量百分比称取4%(Co 0.7Zn 0.3)(Fe 0.7Al 0.3) 2O 4着色剂、7%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与有机助剂混合,经干压成型后得到硬度为34Hv0.1的陶瓷生坯K-9。
按质量百分比称取4%Cr 2O 3着色剂、2%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与有机助剂混合,经干压成型后得到硬度为36Hv0.1的陶瓷生坯L-1。
按质量百分比称取4%Cr 2O 3着色剂、7%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与有机助剂混合,经干压成型后得到硬度为35Hv0.1的陶瓷生坯L-2。
按质量百分比称取2%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与有机助剂混合,经干压成型后得到硬度为35Hv0.1的陶瓷生坯M-1。
按质量百分比称取7%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与有机助剂混合,经干压成型后得到硬度为34Hv0.1的陶瓷生坯M-2。
按质量百分比称取25%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与有机助剂混合,经干压成型后得到硬度为36Hv0.1的陶瓷生坯M-3。
按质量百分比称取2%CoAl 2O 4着色剂、2%Cr 2O 3着色剂、2%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与粘结剂混合,经干压成型后得到硬度为35Hv0.1的陶瓷生坯N-1。
按质量百分比称取2%CoAl 2O 4着色剂、2%Cr 2O 3着色剂、7%氧化铝、2%氧化铪、5%氧化钇以及余量的氧化锆,并将其与粘结剂、分散剂和润滑剂混合,经干压成型后得到硬度为35Hv0.1的陶瓷生坯N-2。
其中,上述(Co 0.7Zn 0.3)(Fe 0.7Al 0.3) 2O 4着色剂、CoAl 2O 4着色剂为尖晶石着色剂,Cr 2O 3着色剂为非尖晶石着色剂;上述陶瓷生坯K-6中着色剂粒径为50nm,陶瓷生坯K-7中着色剂粒径为2500nm,其余(Co 0.7Zn 0.3)(Fe 0.7Al 0.3) 2O 4着色剂粒径均为800nm;Cr 2O 3着色剂粒径为600nm;上述陶瓷生坯K-8中氧化铝粒径为60nm,陶瓷生坯K-9中氧化铝粒径为2200nm,其余陶瓷生中氧化铝粒径均为300nm。
将上述制得的陶瓷生坯按表3所示的组合方式拼接在一起,在70MPa下进行终压,再在60℃、150MPa下进行等静压处理,形成陶瓷基板生坯;相邻陶瓷生坯的密度差小于0.08g/cm 3;陶瓷基板生坯在380℃处理20h后,再在1450℃处理3.5h,得到壳体,其中,在壳体表面上相邻颜色区域之间具有明显且清晰的边界,边界线的直线度小于0.5mm。
同时,对制得的壳体进行渐变区宽度的测量,结果如表3所示。其中,渐变区宽度的测量方式为: 将其置于光学显微镜下,放大至合适倍数后,确定渐变区与第一区域和第二区域的边界线,对两个边界线之间的距离进行测量,每个边界线上测量三个不同的位置进行测量后计算平均值即可。
表3实施例4制得多组壳体的渐变区宽度
Figure PCTCN2021115821-appb-000003
通过本申请实施例的结果能够看出,陶瓷生坯K-3中着色剂含量超过了10%,陶瓷生坯中L-1的氧化铝含量低于3%,进而使得壳体K-3/M-1、K-3/M-2、K-1/L-1、K-2/L-1的渐变区宽度大于200μm。陶瓷生坯M-1、M-2、M-3中的氧化铝含量依次增加,进而使得壳体K-1/M-1、K-1/M-2、K-1/M-3中渐变区的宽度逐渐降低,壳体K-1/M-3的机械性能略有降低。相较于K-6/M-1,K-1/M-1中着色剂不容易团聚,同时制得的壳体机械性能较佳。相较于K-7/M-1,K-1/M-1的外观细腻感更强。相较于K-8/M-1,K-1/M-1的渐变区宽度更窄,撞色效果更明显,渐变区的线条更加清晰。相较于K-9/M-1,K-1/M-1的颜色分布均匀,同时制得的壳体机械性能较佳。对壳体K-1/M-1的机械性能进行检查,发现壳体K-1/M-1的抗弯强度为850MPa,断裂韧性大于7MPa·m 1/2,维氏硬度为600Hv0.1,气孔率小于1%,经加工处理后,表面粗糙度小于0.01μm。
以上对本申请实施方式所提供的内容进行了详细介绍,本文对本申请的原理及实施方式进行了阐述与说明,以上说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (24)

  1. 一种壳体,其特征在于,包括陶瓷基板,所述陶瓷基板包括第一区域、第二区域以及位于所述第一区域和所述第二区域之间的渐变区;
    所述第一区域呈现第一颜色,所述第二区域呈现第二颜色,所述第一区域与所述第二区域具有色差;
    所述第一区域至所述第二区域的方向为第一方向,沿所述第一方向所述渐变区呈现第一颜色到第二颜色的渐变;
    所述陶瓷基板的表面具有第一边界线和第二边界线,所述第一边界线位于所述第一区域和所述渐变区之间,所述第二边界线位于所述第二区域和所述渐变区之间,所述第一边界线和所述第二边界线中的至少一个的直线度小于0.5mm。
  2. 如权利要求1所述的壳体,其特征在于,所述第一边界线和所述第二边界线中的至少一个的直线度小于0.3mm。
  3. 如权利要求1所述的壳体,其特征在于,所述第一边界线和所述第二边界线平行。
  4. 如权利要求1所述的壳体,其特征在于,所述渐变区在所述第一方向上的尺寸小于或等于20mm。
  5. 如权利要求1所述的壳体,其特征在于,所述第一区域包括第一着色剂,所述第一区域中所述第一着色剂的质量含量为0.1%-10%;所述第二区域包括第二着色剂,所述第二区域中所述第二着色剂的质量含量小于或等于10%。
  6. 如权利要求5所述的壳体,其特征在于,所述第一区域中所述第一着色剂的质量含量为4%-10%,所述第二区域中所述第二着色剂的质量含量为0%-2%,所述第一着色剂和所述第二着色剂中至少一个为非尖晶石着色剂。
  7. 如权利要求6所述的壳体,其特征在于,所述陶瓷基板的材质包括氧化铝,所述氧化铝在所述陶瓷基板中的质量含量小于1%。
  8. 如权利要求5所述的壳体,其特征在于,所述第一着色剂为尖晶石着色剂。
  9. 如权利要求8所述的壳体,其特征在于,所述第二区域包括氧化铝,所述第二区域中氧化铝的质量含量为3%-20%。
  10. 如权利要求9所述的壳体,其特征在于,所述第一区域包括氧化铝,所述第一区域中氧化铝的质量含量小于或等于20%。
  11. 如权利要求1所述的壳体,其特征在于,所述第二区域的光学透过率大于40%。
  12. 如权利要求11所述的壳体,其特征在于,按质量百分比计,所述第二区域的材质包括0.2%-0.5%的氧化铝,0.5%-1%的二氧化硅,2%-10%的稳定剂,以及余量的氧化锆。
  13. 如权利要求11所述的壳体,其特征在于,所述壳体还包括设置所述陶瓷基板表面的颜色层,所述颜色层覆盖所述第二区域,所述颜色层与所述第一区域具有色差。
  14. 如权利要求1所述的壳体,其特征在于,所述第一区域和所述渐变区邻接设置,所述第二区域和所述渐变区邻接设置。
  15. 如权利要求1所述的壳体,其特征在于,所述第一区域和所述第二区域的色差值大于2。
  16. 如权利要求1所述的壳体,其特征在于,所述陶瓷基板的密度大于6g/cm 3,抗弯强度大于 800MPa,断裂韧性大于7MPa·m 1/2,维氏硬度大于500Hv0.1,表面粗糙度小于0.01μm。
  17. 一种壳体的制备方法,其特征在于,包括:
    提供第一陶瓷生坯和第二陶瓷生坯,所述第一陶瓷生坯和所述第二陶瓷生坯具有色差,所述第一陶瓷生坯和所述第二陶瓷生坯的维氏硬度大于或等于10Hv0.1;
    所述第一陶瓷生坯和所述第二陶瓷生坯拼接后,经压合形成陶瓷基板生坯,所述陶瓷基板生坯中所述第一陶瓷生坯和所述第二陶瓷生坯的密度差小于0.08g/cm 3
    所述陶瓷基板生坯排胶、烧结后得到陶瓷基板,制得壳体。
  18. 如权利要求17所述的制备方法,其特征在于,所述提供第一陶瓷生坯和第二陶瓷生坯,包括:
    提供第一陶瓷原料和第二陶瓷原料,所述第一陶瓷原料与所述第二陶瓷原料的中粒径D50差值小于30μm,所述第一陶瓷原料与所述第二陶瓷原料的松装密度差值小于0.2g/cm 3
    经预压后,将所述第一陶瓷原料制成所述第一陶瓷生坯,所述第二陶瓷原料制成所述第二陶瓷生坯。
  19. 如权利要求18所述的制备方法,其特征在于,所述第一陶瓷原料的中粒径D50为50μm-100μm,松装密度为1.2g/cm 3-1.8g/cm 3;所述第二陶瓷原料的中粒径D50为50μm-100μm,松装密度为1.2g/cm 3-1.8g/cm 3
    所述预压包括在5MPa-20MPa下进行处理,所述第一陶瓷生坯和所述第二陶瓷生坯的密度分别为2.2g/cm 3-2.5g/cm 3,所述第一陶瓷生坯和所述第二陶瓷生坯的密度差小于0.2g/cm 3,所述第一陶瓷生坯和所述第二陶瓷生坯的维氏硬度分别为10Hv0.1-70Hv0.1。
  20. 如权利要求17所述的制备方法,其特征在于,所述第一陶瓷生坯和所述第二陶瓷生坯拼接后,经压合形成陶瓷基板生坯,包括:
    所述第一陶瓷生坯和所述第二陶瓷生坯拼接,通过终压和等静压处理形成所述陶瓷基板生坯,所述终压包括在50MPa-80MPa下进行处理,所述等静压包括在100MPa-200MPa下进行处理。
  21. 如权利要求20所述的制备方法,其特征在于,所述终压后的所述第一陶瓷生坯和所述第二陶瓷生坯的密度差小于0.15g/cm 3,所述终压后的所述陶瓷基板生坯的密度大于3g/cm 3,所述等静压后的所述陶瓷基板生坯的密度大于3.1g/cm 3
  22. 如权利要求17所述的制备方法,其特征在于,所述排胶包括在300℃-500℃处理12h-24h;所述烧结包括在1300℃-1500℃处理2h-4h。
  23. 如权利要求17所述的制备方法,其特征在于,所述烧结后,所述第一陶瓷生坯和所述第二陶瓷生坯的结合强度大于800MPa,所述第一陶瓷生坯和所述第二陶瓷生坯的气孔率差值小于0.1%。
  24. 一种电子设备,其特征在于,包括壳体和主板,所述壳体包括陶瓷基板,所述陶瓷基板包括第一区域、第二区域以及位于所述第一区域和所述第二区域之间的渐变区;所述第一区域呈现第一颜色,所述第二区域呈现第二颜色,所述第一区域与所述第二区域具有色差;所述第一区域至所述第二区域的方向为第一方向,沿所述第一方向所述渐变区呈现第一颜色到第二颜色的渐变;所述陶瓷基板的表面具有第一边界线和第二边界线,所述第一边界线位于所述第一区域和所述渐变区之间,所述第二边界线位于所述第二区域和所述渐变区之间,所述第一边界线和所述第二边界线中的至少一个的直线度小于0.5mm。
PCT/CN2021/115821 2020-09-15 2021-08-31 壳体及其制备方法和电子设备 WO2022057620A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21868447.0A EP4170997A4 (en) 2020-09-15 2021-08-31 SHELL AND PREPARATION METHOD THEREFOR, AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010972084.0A CN114180960B (zh) 2020-09-15 2020-09-15 壳体及其制备方法和电子设备
CN202010972084.0 2020-09-15

Publications (1)

Publication Number Publication Date
WO2022057620A1 true WO2022057620A1 (zh) 2022-03-24

Family

ID=80539254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115821 WO2022057620A1 (zh) 2020-09-15 2021-08-31 壳体及其制备方法和电子设备

Country Status (3)

Country Link
EP (1) EP4170997A4 (zh)
CN (1) CN114180960B (zh)
WO (1) WO2022057620A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006024489A1 (de) * 2006-05-26 2007-11-29 Forschungszentrum Karlsruhe Gmbh Grünkörper, Verfahren zur Herstellung einer Keramik und deren Verwendung
CN101589455A (zh) * 2007-01-11 2009-11-25 朗姆研究公司 延长作为等离子室材料的氧化钇的寿命
CN109640563A (zh) * 2019-01-25 2019-04-16 Oppo广东移动通信有限公司 彩色陶瓷和壳体及其制备方法与电子设备
CN110041070A (zh) * 2018-07-02 2019-07-23 深圳陶陶科技有限公司 流纹多色陶瓷及其制备方法和应用
WO2020035330A1 (en) * 2018-08-17 2020-02-20 Dentsply Sirona Inc. Method for the manufacture of a blank and blank
CN111491055A (zh) * 2020-04-06 2020-08-04 江苏精研科技股份有限公司 一种材质和/或颜色渐变手机外壳制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110077527A1 (en) * 2009-09-30 2011-03-31 Yang Seungrim Self-cooling gel substrate for temperature differentiated imaging
JP5646689B2 (ja) * 2013-05-29 2014-12-24 シャープ株式会社 筐体、表示装置、及びテレビジョン受信機
CN207793403U (zh) * 2018-01-26 2018-08-31 华为技术有限公司 壳体、移动终端及溅射镀膜装置
CN108947590A (zh) * 2018-07-27 2018-12-07 Oppo(重庆)智能科技有限公司 板材、制备板材的方法、壳体、电子设备
CN109049349A (zh) * 2018-08-17 2018-12-21 Oppo广东移动通信有限公司 陶瓷件的表面处理方法、壳体组件、指纹模组和电子设备
CN109246950B (zh) * 2018-09-30 2020-09-11 信利光电股份有限公司 一种渐变色盖板制作方法及盖板、电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006024489A1 (de) * 2006-05-26 2007-11-29 Forschungszentrum Karlsruhe Gmbh Grünkörper, Verfahren zur Herstellung einer Keramik und deren Verwendung
CN101589455A (zh) * 2007-01-11 2009-11-25 朗姆研究公司 延长作为等离子室材料的氧化钇的寿命
CN110041070A (zh) * 2018-07-02 2019-07-23 深圳陶陶科技有限公司 流纹多色陶瓷及其制备方法和应用
WO2020035330A1 (en) * 2018-08-17 2020-02-20 Dentsply Sirona Inc. Method for the manufacture of a blank and blank
CN109640563A (zh) * 2019-01-25 2019-04-16 Oppo广东移动通信有限公司 彩色陶瓷和壳体及其制备方法与电子设备
CN111491055A (zh) * 2020-04-06 2020-08-04 江苏精研科技股份有限公司 一种材质和/或颜色渐变手机外壳制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4170997A4 *

Also Published As

Publication number Publication date
CN114180960B (zh) 2023-04-11
CN114180960A (zh) 2022-03-15
EP4170997A4 (en) 2023-12-06
EP4170997A1 (en) 2023-04-26

Similar Documents

Publication Publication Date Title
CN107922272B (zh) 红色氧化锆烧结体及其制造方法
JP5708050B2 (ja) 赤色透光性ジルコニア焼結体及びその製造方法
WO2018056331A1 (ja) ジルコニア組成物、仮焼体及び焼結体並びにこれらの製造方法、並びに積層体
JP6331840B2 (ja) 赤色ジルコニア焼結体及びその製造方法
JP7371387B2 (ja) ジルコニア焼結体及びその製造方法
JP6449729B2 (ja) カラーセラミックス
JP2020147495A (ja) ジルコニア仮焼体
CN108751985A (zh) 灰色氧化锆陶瓷原料组合物、灰色氧化锆陶瓷及其制备方法
WO2022057620A1 (zh) 壳体及其制备方法和电子设备
JP2017160108A (ja) 淡灰色ジルコニア焼結体及びその製造方法
CN111763085B (zh) 陶瓷壳体、制备方法及电子设备
CN114180961B (zh) 壳体及其制备方法和电子设备
JP2017160109A (ja) 灰色ジルコニア焼結体及びその製造方法
JP2023109721A (ja) 粉末及びその製造方法
JP6878950B2 (ja) 青色ジルコニア焼結体及びその製造方法
CN108793996A (zh) 蓝绿色氧化锆陶瓷原料组合物、蓝绿色氧化锆陶瓷及其制备方法
CN114180959B (zh) 壳体及其制备方法和电子设备
JP6657765B2 (ja) 黒色ジルコニア焼結体及びその用途
CN108585844A (zh) 一种氧化锆陶瓷材料组合物
JP2021042119A (ja) ジルコニア焼結体及びその製造方法
JP2021042117A (ja) ジルコニア焼結体及びその製造方法
CN113929452A (zh) 氧化锆复合陶瓷及其制备方法、壳体组件和电子设备
JP2022042315A (ja) ジルコニア粉末、ジルコニア焼結体の製造方法、ジルコニア焼結体
CN116209409B (zh) 氧化锆烧结体的制造方法
WO2024127664A1 (ja) 高透光性アルミナ焼結体となる歯科用アルミナ仮焼体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021868447

Country of ref document: EP

Effective date: 20230117

NENP Non-entry into the national phase

Ref country code: DE