WO2022056715A1 - 用于新能源汽车的电池包及新能源汽车 - Google Patents

用于新能源汽车的电池包及新能源汽车 Download PDF

Info

Publication number
WO2022056715A1
WO2022056715A1 PCT/CN2020/115554 CN2020115554W WO2022056715A1 WO 2022056715 A1 WO2022056715 A1 WO 2022056715A1 CN 2020115554 W CN2020115554 W CN 2020115554W WO 2022056715 A1 WO2022056715 A1 WO 2022056715A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
new energy
liquid cooling
energy vehicle
battery module
Prior art date
Application number
PCT/CN2020/115554
Other languages
English (en)
French (fr)
Inventor
于林
包德荣
占莉
戴少峰
潘福中
Original Assignee
浙江吉利控股集团有限公司
威睿电动汽车技术(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江吉利控股集团有限公司, 威睿电动汽车技术(宁波)有限公司 filed Critical 浙江吉利控股集团有限公司
Priority to PCT/CN2020/115554 priority Critical patent/WO2022056715A1/zh
Priority to CN202080100493.XA priority patent/CN115956319A/zh
Priority to KR1020237006750A priority patent/KR20230036159A/ko
Publication of WO2022056715A1 publication Critical patent/WO2022056715A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of new energy vehicle batteries, in particular, to a battery pack for new energy vehicles and a new energy vehicle.
  • the chassis platform architecture system of hybrid electric vehicles promoted by most automobile manufacturers is modified and optimized on the basis of the original fuel vehicle models; the purpose of this is to save development costs and maintain the characteristics of the original models.
  • the disadvantage is that the battery installation space on the chassis of the new energy vehicle is irregular in shape, which is not conducive to the development and manufacture of products.
  • some auto manufacturers choose to prioritize the arrangement of battery packs for new energy vehicles in the trunk of new energy vehicles, so that battery packs with regular shapes can be installed, but this arrangement will reduce the space used in the trunk.
  • the present application aims to solve at least one of the technical problems existing in the prior art.
  • the present application proposes a battery pack for new energy vehicles, which has the advantages of compact structure, high integration, flexible appearance, and good thermal management effect, and can be adapted to a variety of The battery installation space in the new energy vehicle, the new energy vehicle having the battery pack for the new energy vehicle has high space utilization rate, strong endurance, simple assembly and low manufacturing cost.
  • the application provides a battery pack for a new energy vehicle, including a casing, a battery module and a liquid cooling device; the shape of the casing is adapted to the battery installation space of the new energy vehicle; the battery module Set in the casing, the battery module is formed by stacking at least two battery modules, wherein each of the battery modules in the battery module has the same or different number of cells, so that the battery module has the same or different number of cells.
  • the shape of the group is adapted to the shape of the casing; the liquid cooling device is attached and connected to the battery module, and the liquid cooling device is used for exchanging heat with the battery module.
  • the battery pack for new energy vehicles also includes a battery system power distribution box and a flexible circuit board, the battery system power distribution box is arranged above the battery module, and the battery system power distribution box passes through the battery system.
  • the flexible circuit board is electrically connected to the battery module.
  • the battery system power distribution box is integrated with a battery management unit, a battery monitoring circuit unit, a high-voltage control unit and a signal acquisition unit.
  • the flexible circuit board is respectively attached to the third side end surface of the battery module and the side end surface of the battery system power distribution box.
  • the battery module has a first side end surface, a second side end surface and a bottom end surface, and the bottom end surface is respectively connected with the first side end surface and the second side end surface.
  • the liquid cooling device includes a first liquid cooling assembly, a second liquid cooling assembly, and a third liquid cooling assembly, and the third liquid cooling assembly is respectively connected with the first liquid cooling assembly and the second liquid cooling assembly. components are connected.
  • first liquid cooling component is attached to the first side end surface
  • second liquid cooling component is attached to the second side end surface
  • third liquid cooling component is attached to the bottom end surface.
  • a protective plate is provided on a side of the liquid cooling device away from the battery module.
  • the protective plate includes a first protective plate and a second protective plate, the first protective plate is arranged on a side of the first liquid cooling assembly away from the end face of the first side, and the second protective plate It is arranged on the side of the second liquid cooling assembly away from the end face of the second side.
  • first liquid cooling assembly, the second liquid cooling assembly and the third liquid cooling assembly are all composed of at least one liquid cooling tube.
  • liquid cooling tube is provided with a flowing heat exchange medium to exchange heat with the battery module.
  • the cross-sectional shape of the liquid cooling tube is polygonal or circular.
  • the battery pack for new energy vehicles described in the present application can be provided with a corresponding shell shape according to the battery installation space of different models of new energy vehicles, and formed by changing the number of cells according to the shape of the shell.
  • the battery modules are stacked to form battery modules of corresponding shapes. Therefore, the battery pack for new energy vehicles of the present application has a flexible appearance and can be adapted to battery installation spaces in various new energy vehicles without changing the battery installation space.
  • the arrangement of the internal batteries does not need to occupy other space such as the trunk, which improves the experience of drivers and passengers of new energy vehicles.
  • the battery module is formed by stacking a corresponding number of battery modules, so that the internal structure of the battery pack for the new energy vehicle is compact, the integration degree is high, and the production cost can be reduced at the same time.
  • the liquid cooling device is attached and connected to the battery module, so that the thermal management effect of the battery pack used in the new energy vehicle is good.
  • the present application also provides a new energy vehicle, comprising a battery installation space and the battery pack for a new energy vehicle as described in any one of the above, wherein the battery pack for a new energy vehicle is located in In the battery installation space, the battery pack for a new energy vehicle is used to provide driving electric energy for the new energy vehicle.
  • the new energy vehicle described in the present application has the advantages of compact structure, high integration, flexible appearance and good thermal management effect because of the battery pack for the new energy vehicle, and can be adapted to a variety of The battery installation space in the new energy vehicle, so the new energy vehicle of the present application has the advantages of high space efficiency, strong endurance, simple assembly, and low manufacturing cost.
  • FIG. 1 is a schematic structural diagram of a battery pack for a new energy vehicle described in the embodiments of the present application;
  • FIG. 2 is a schematic structural diagram of a battery module described in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a battery module described in another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of the battery module and the liquid cooling device being assembled and connected to the protective plate in the embodiment of the present application;
  • FIG. 6 is a schematic structural diagram of a liquid cooling device described in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a liquid cooling device described in another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a battery system power distribution box and a battery module connected with a flexible circuit board according to an embodiment of the present application;
  • FIG. 9 is a schematic structural diagram of the battery system power distribution box described in the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of the battery installation space described in the embodiment of the present application.
  • 2-battery module 20-battery module, 201-first side end face, 202-second side end face, 203-bottom end face, 21-fastening bolt;
  • 3-liquid cooling device 30-liquid cooling pipe, 31-first liquid cooling assembly, 32-second liquid cooling assembly, 33-third liquid cooling assembly;
  • 4-battery system power distribution box 41-battery management unit, 42-battery monitoring circuit unit, 43-high voltage control unit, 44-signal acquisition unit;
  • references herein to "one embodiment” or “an embodiment” refers to a particular feature, structure, or characteristic that may be included in at least one implementation of the present application.
  • the orientation or positional relationship indicated by the terms “upper”, “top”, “bottom”, etc. is based on the orientation or positional relationship shown in the accompanying drawings, and is only for the convenience of describing the present application and to simplify the description, rather than to indicate or imply that the device or element referred to must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as limiting the application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature. Also, the terms “first,” “second,” etc. are used to distinguish between similar objects, and are not necessarily used to describe a particular order or precedence. It is to be understood that data so used may be interchanged under appropriate circumstances so that the embodiments of the application described herein can be practiced in sequences other than those illustrated or described herein.
  • An embodiment of the present application provides a battery pack for a new energy vehicle.
  • the battery pack for a new energy vehicle includes a casing 1 , a battery module 2 and a liquid cooling device 3 .
  • the shape of the casing 1 is adapted to the shape of the battery installation space 7 of the new energy vehicle.
  • the battery module 2 is arranged inside the casing 1, and the battery module 2 is formed by stacking at least two battery modules 20; and the battery modules 20 in the battery module 2 have the same or different number of cells, so that the The shape of the battery module 2 formed by stacking the battery modules 20 is adapted to the shape of the casing 1 .
  • the liquid cooling device 3 is attached and connected to the battery module 20, and the liquid cooling device 3 is used for exchanging heat with the battery module 20.
  • the number of battery modules 20 in the battery module 2 can be two or more than two, which can actually be based on the shape of the battery installation space 7 of the new energy vehicle and the requirements of the new energy vehicle.
  • the driving power adjusts the number of battery modules 20 .
  • the liquid cooling device 3 and the battery module 20 are integrated into one body through a heat conducting medium and then connected together, so that the installation space occupied by the liquid cooling device 3 and the battery module 20 can be effectively reduced, and the battery used in the new energy vehicle can be realized. High integration of packages.
  • the battery module 2 is formed by two battery modules 20 as an example.
  • the battery module 2 is formed by stacking two battery modules 20 with different numbers of cells.
  • the battery module 20 in the upper layer has more cells than the battery module 20 in the lower layer.
  • the number of cores is small, and the battery pack for new energy vehicles having the battery modules 2 stacked in this way can be applied to the battery installation space 7 of the new energy vehicle with different sizes of upper and lower layers and irregular shapes.
  • the battery modules 20 on the upper layer have the same number of cells as the battery modules 20 on the lower layer.
  • the battery modules 2 formed by stacking in this way are used for new energy
  • the battery pack of an automobile has a high degree of spatial integration, and can be applied to the battery installation space 7 of a new energy vehicle with a regular shape of the same size as the upper and lower layers.
  • the stacking design of the battery modules 20 in the battery module 2 can be adjusted according to the shape of the battery installation space 7 of the new energy vehicle in actual use, and the battery modules 20 can be stacked as needed to adjust and adapt according to actual use requirements.
  • the height of the battery installation space 7 is adapted to the length of the battery installation space 7 by adjusting the number of cells of each layer of the battery module 20 according to actual use requirements.
  • the battery pack for a new energy vehicle of the present application can be applied to different types of new energy vehicles, and can flexibly adjust the external It only needs to use the existing battery cells to meet the requirements. There are few new parts that need to be added, and the corresponding tests that need to be added are also reduced. There is no need to change the selection of the battery. When developing new energy vehicles, the battery resources will affect the selection. There are few restrictions, which can effectively reduce the design and development cost of battery packs required by different types of new energy vehicles, and the cycle required for design, development and production can be greatly shortened.
  • the battery pack for a new energy vehicle of the present application can be adapted to the battery installation space 7 of the new energy vehicle, and does not need to occupy space in areas such as the trunk other than the battery installation space 7 in the new energy vehicle during installation, While improving the space utilization rate, the space left for the autonomous control of the drivers and passengers has also been effectively improved, and the experience of the drivers and passengers has also been improved.
  • the fixed connection is realized by tightening the bolts 21 .
  • This fixed connection method is simple and reliable, the internal structure is compact, the space utilization rate is high, and the design and installation costs are low.
  • the number and length of the fastening bolts 21 are determined according to the length and height of the battery module 20 , for example, the number of the fastening bolts 21 may be 4, 6, 8, 10 and so on.
  • the stacked plurality of battery modules 20 may be fixed by other means, such as adhesive fixing and the like.
  • a battery pack for a new energy vehicle further includes a battery system power distribution box 4 and a flexible circuit board 6 , and the battery system power distribution box 4 is provided on the side of the battery module 2 .
  • the battery system power distribution box 4 is electrically connected to the battery module 2 through the flexible circuit board 6 .
  • the flexible circuit board 6 is respectively attached to the third side end surface (not shown in the figure) of the battery module 2 and the side end surface (not shown in the figure) of the battery system power distribution box 4 .
  • the flexible circuit board 6 embeds the circuit design on the flexible thin plastic sheet, and embeds a large number of precision components in a narrow and limited space, thereby forming a flexible flexible circuit, which can be attached to the third side end face of the battery module 2 (not marked in the figure) and the side end face of the battery system distribution box 4 (not marked in the figure), make full use of the space at the narrow side end face of the battery pack for new energy vehicles, and at the same time can overcome the traditional bending of the connecting wire harness At the same time, the flexible circuit board 6 can be bent and folded at will, with light weight, small volume, good heat dissipation and convenient installation.
  • the battery system power distribution box 4 includes a battery management unit 41 , a battery monitoring circuit unit 42 , a high-voltage control unit 43 and a signal acquisition unit 44 .
  • the battery management unit 41 , the battery monitoring circuit unit 42 , the high-voltage control unit 43 and the signal acquisition unit 44 are highly integrated in the battery system power distribution box 4 , realizing a highly integrated integrated design and effectively saving the needs of the battery system power distribution box 4
  • the space utilization of battery packs for new energy vehicles is improved, and the assembly efficiency of battery packs for new energy vehicles is improved.
  • the signal acquisition unit 44 may include sensing devices such as a liquid leakage sensor and a smoke sensor.
  • the design of the highly integrated battery system power distribution box 4 reduces the connection points between the battery system power distribution box 4 and the battery module 2, and improves the battery system power distribution box 4 and its use in new energy vehicles. Reliability of battery packs.
  • the battery module 20 has a first side end surface 201 , a second side end surface 202 and a bottom end surface 203 , and the bottom end surface 203 is respectively connected with the first side end surface 201 and the first side end surface 201 and the first side end surface 203 .
  • the two side end faces 202 are connected.
  • the liquid cooling device 3 includes a first liquid cooling assembly 31 , a second liquid cooling assembly 32 and a third liquid cooling assembly 33 , and the third liquid cooling assembly 33 is respectively connected to the first liquid cooling assembly 31 and the second liquid cooling assembly 32 .
  • the first liquid cooling component 31 is attached to the first side end surface 201
  • the second liquid cooling component 32 is attached to the second side end surface 202
  • the third liquid cooling component 33 is attached to the bottom end surface 203 .
  • the first liquid cooling assembly 31 , the second liquid cooling assembly 32 and the third liquid cooling assembly 33 are attached and connected to the first side end face 201 , the second side end face 202 and the bottom end face 203 respectively, so the required installation space is small and the space High utilization rate.
  • a protective plate 5 is provided on a side of the liquid cooling device 3 away from the battery module 20 .
  • the protective plate 5 includes a first protective plate 51 and a second protective plate 52; wherein, the first protective plate 51 is provided on the side of the first liquid cooling assembly 31 away from the first side end surface 201, and the second protective plate 52 is provided on the second protective plate 52.
  • the protective plate 5 can be fixed on the outside of the liquid cooling device 3, and the protective plate 5 can also be fixed on the inner side of the housing 1.
  • the protective plate 5 can share the external impact force, thereby effectively protecting the battery pack for new energy vehicles, avoiding During a collision, the battery pack used for new energy vehicles is squeezed and the cells are stressed, so as to avoid potential safety hazards caused by the stress on the cells.
  • the first liquid cooling assembly 31 , the second liquid cooling assembly 32 and the third liquid cooling assembly 33 are all composed of at least one liquid cooling tube 30 .
  • the number of liquid cooling tubes 30 included in the first liquid cooling assembly 31 , the second liquid cooling assembly 32 and the third liquid cooling assembly 33 can be adjusted according to the volume of the battery module 20 and the heat dissipation requirement.
  • both the first liquid cooling assembly 31 and the second liquid cooling assembly 32 are composed of only one liquid cooling tube 30
  • the third liquid cooling assembly 33 may be composed of two liquid cooling tubes 30 .
  • FIG. 6 both the first liquid cooling assembly 31 and the second liquid cooling assembly 32 are composed of only one liquid cooling tube 30
  • the third liquid cooling assembly 33 may be composed of two liquid cooling tubes 30 .
  • the first liquid cooling assembly 31 and the second liquid cooling assembly 32 are only composed of two liquid cooling tubes 30, and the third liquid cooling assembly 33 may be composed of four liquid cooling tubes 30.
  • the number and length of the liquid cooling pipes 30 included in the first liquid cooling assembly 31 , the second liquid cooling assembly 32 and the third liquid cooling assembly 33 can be set according to the volume and heat dissipation requirements of the battery module 20 in actual use. Not listed here.
  • liquid cooling pipe 30 can be made of, but not limited to, a metal material with good ductility such as a copper plate, an aluminum plate, a stainless steel plate, etc. As long as the combination can satisfy the ductility and bending properties required by the liquid cooling tube 30 , no other limitation is made here.
  • a flowing heat exchange medium is provided in the liquid cooling pipe 30 to exchange heat with the battery module 20 .
  • the heat exchange medium is heated/cooled by the heating/cooling element, and the heat exchange medium can flow in the liquid cooling pipe 30 to make the liquid cooling device 31 perform heat exchange (heating/cooling) for the battery pack for the new energy vehicle, thereby It is ensured that the battery module 2 in the battery pack used for the new energy vehicle works at a suitable temperature, thereby extending the service life and cruising range of the battery pack used for the new energy vehicle.
  • the above-mentioned heat exchange medium is generally one of water, Coolant (coolant mixture), ethylene glycol and ethylene glycol/water mixture, synthetic hydrocarbon oil, PAO dielectric and the like.
  • the liquid cooling device 3 may be a serpentine tube formed by bending a straight tube for many times, or it may be formed by bending a plurality of straight tubes and then splicing them together.
  • the cross-sectional shape of the above-mentioned liquid cooling pipe 30 is one or both of polygons or circles, and forms corresponding first liquid cooling components 31 , second liquid cooling components 32 and third liquid cooling components 33 .
  • the distances between the liquid cooling tubes 30 in each column of the 2000 can be equal or unequal, and can be improved according to the actual usage.
  • an embodiment of the present application further provides a new energy vehicle.
  • the new energy vehicle includes a battery installation space 7 and a battery pack for a new energy vehicle as in any of the above embodiments.
  • the battery installation space 7 of the new energy vehicle is formed by modification and optimization based on the model of the original fuel vehicle.
  • the battery pack for the new energy vehicle is arranged in the battery installation space 7, and the battery pack for the new energy vehicle is used to provide driving power for the new energy vehicle.
  • the battery pack for a new energy vehicle used in the vehicle in the embodiments of the present application has the advantages of compact structure, high integration, flexible appearance, good thermal management effect, high safety performance, and long service life, and can be adapted to many Therefore, the new energy vehicle provided by the present application has good power performance, high safety factor, high space utilization rate, strong endurance, simple assembly and low manufacturing cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种用于新能源汽车的电池包,涉及新能源汽车电池领域。用于新能源汽车的电池包包括壳体、电池模组和液冷装置,壳体的形状与新能源汽车的电池安装空间相适配,电池模组设于壳体内,电池模组由至少两个电池模块堆叠形成;其中电池模组中每个电池模块所具有的电芯数量相同或不同,以使得电池模组的形状与壳体的形状相适配;液冷装置与电池模块贴合相连,液冷装置用于对电池模块进行热交换。本申请的用于新能源汽车的电池包具有结构紧凑、集成度高、外型灵活、热管理效果好的优点,能够适配多种新能源汽车中的电池安装空间,具有该用于新能源汽车的电池包的新能源汽车空间效率高、续航能力强、装配简单、生产制造成本低。

Description

用于新能源汽车的电池包及新能源汽车 技术领域
本申请涉及新能源汽车电池领域,具体而言,涉及一种用于新能源汽车的电池包及新能源汽车。
背景技术
在如今环境污染和石油损耗日益严重的情况下,新能源汽车成为了汽车工业中发展的重要环节。用于新能源汽车的电池包作为新能源汽车的核心部件,如何在新能源汽车中布置电池包成为了技术难点。
现有技术中,大多数汽车厂家推广的混合动力新能源汽车的底盘平台架构系统,都是在原有燃油车的车型基础上更改优化的;这样做目的是为了节约开发成本,保持原有车型特色;但缺点是留给新能源汽车的底盘上电池安装空间形状不规则,不利于产品的开发制造。为了解决该问题,部分汽车厂家选择将用于新能源汽车的电池包优先布置在新能源汽车的后备箱内,以使得可以安装形状规则的电池包,但这样布置会减少后备箱的使用空间,影响新能源汽车的驾乘人员的使用体验,且这样的布置方式会加长前机舱到后备箱连接线及连接管的长度,增加制造成本;还有部分汽车厂家为了满足新能源汽车的底盘上电池安装空间,选择采用体积小的电芯,集成体积小的电池模组,继而可以根据不规则空间,见缝插针式排布,但电芯的体积越小,所需额外的辅助的零部件就越多,电池模组的集成度也越低,成本也会增加。
因此亟需设计一种能够布置在新能源汽车的现有的电池安装空间内的、结构紧凑、性能优越、且能够适配多种新能源汽车车型的不同电池安装空间的用于新能源汽车的电池包。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种用于新能源汽车的电池包,该用于新能源汽车的电池包具有结构紧凑、集成度高、外型灵活、热管理效果好的优点,能够适配多种新能源汽车中的电池安装空间,具有该用于新能源汽车的电池包的新能源汽车空间利用率高、续航能力强、装配简单、生产制造成本低。
本申请提供了一种用于新能源汽车的电池包,包括壳体、电池模组和液冷装置;所述壳体的形状与新能源汽车的电池安装空间相适配;所述电池模组设于所述壳体内,所述电池模组由至少两个电池模块堆叠形成,其中所述电池模组中每个所述电池模块所具有的电芯数量相同或不同,以使得所述电池模组的形状与所述壳体的形状相适配;所述液冷装置与所述电池模组贴合相连,所述液冷装置用于对电池模组进行热交换。
进一步地,所述用于新能源汽车的电池包还包括电池系统配电盒和柔性线路板,所述电池系统配电盒设于所述电池模组的上方,所述电池系统配电盒通过所述柔性线路板与所述电池模组电连接。
进一步地,所述电池系统配电盒内集成有电池管理单元、电池监控电路单元、高压控制单元以及信号采集单元。
进一步地,所述柔性线路板分别与所述电池模组的第三侧端面和所述电池系统配电盒的侧端面贴合。
进一步地,所述电池模块具有第一侧端面、第二侧端面以及底端面,所述底端面分别与所述第一侧端面和所述第二侧端面相连。
进一步地,所述液冷装置包括第一液冷组件、第二液冷组件和第三液冷组件,所述第三液冷组件分别与所述第一液冷组件和所述第二液冷组件相连。
进一步地,所述第一液冷组件与所述第一侧端面贴合,所述第二液冷组件与所述第二侧端面贴合,所述第三液冷组件与所述底端面贴合。
进一步地,所述液冷装置远离所述电池模块的一侧设有防护板。
进一步地,所述防护板包括第一防护板和第二防护板,所述第一防护板设于所述第一液冷组件远离所述第一侧端面的一侧,所述第二防护板设于所述第二液冷组件远离所述第二侧端面的一侧。
进一步地,所述第一液冷组件、所述第二液冷组件和所述第三液冷组件均由至少一根液冷管组成。
进一步地,所述液冷管内设有流动的换热介质以对所述电池模块进行热交换。
进一步地,所述液冷管的截面形状为多边形或圆形。
采用上述技术方案,本申请所述的用于新能源汽车的电池包可以根据不同车型的新能源汽车的电池安装空间设置相应的壳体形状,并根据壳体的形状通过改变电芯数量形成的电池模块相堆叠而形成相应形状的电池模组,因此本申请的用于新能源汽车的电池包的外型灵活,能够适配多种新能源汽车中的电池安装空间,且无需改变电池安装空间内电池的排布位置,不需要占用后备箱等其他使用空间,提升新能源汽车的驾乘人员的使用体验。电池模组由相应数量的电池模块堆叠形成,使得用于新能源汽车的电池包的内部结构紧凑,集成度高,同时还能降低生产成本。同时,液冷装置与电池模块贴合相连,使得用于新能源汽车的电池包的热管理效果好。
基于相同的发明构思,本申请还提供了一种新能源汽车,包括电池安装空间和如上任意一项所述的用于新能源汽车的电池包,所述用于新能源汽车的电池包设于所述电池安装空间内,所述用于新能源汽车的电池包用于提供所述新能源汽车的驱动电能。
采用上述技术方案,本申请所述的新能源汽车因其所具有的用于新能源汽车的电池包具有结构紧凑、集成度高、外型灵活、热管理效果好的优点,能够适配多种新能源汽车中的电池安装空间,因此本申请的新能源汽车具有空间效率高、续航能力强、装配简单、生产制造成本低的优点。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例中所述的用于新能源汽车的电池包的结构示意图;
图2是本申请一个实施例中所述的电池模组的结构示意图;
图3是本申请另一个实施例中所述的电池模组的结构示意图;
图4是本申请实施例中所述的电池模组与液冷装置装配后的结构示意图;
图5是本申请实施例中所述的电池模组与液冷装置装配后与防护板连接的结构示意图;
图6是本申请一个实施例中所述的液冷装置的结构示意图;
图7是本申请另一个实施例中所述的液冷装置的结构示意图;
图8是本申请实施例中所述的连接有柔性线路板的电池系统配电盒和电池模组的结构示意图;
图9是本申请实施例中所述的电池系统配电盒的结构示意图;
图10是本申请实施例中所述的电池安装空间的结构示意图;
图中,
1-壳体;
2-电池模组,20-电池模块,201-第一侧端面,202-第二侧端面,203-底端面,21-紧固螺栓;
3-液冷装置,30-液冷管,31-第一液冷组件,32-第二液冷组件,33-第三液冷组件;
4-电池系统配电盒,41-电池管理单元,42-电池监控电路单元,43-高压控制单元,44-信号采集单元;
5-防护板,51-第一防护板,52-第二防护板;
6-柔性线路板;
7-电池安装空间。
具体实施方式
为了使本申请所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得 的所有其他实施例,都应当属于本申请保护的范围。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
此处所称的“一个实施例”或“实施例”是指可包含于本申请至少一个实现方式中的特定特征、结构或特性。在本申请的描述中,需要理解的是,术语“上”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含的包括一个或者更多个该特征。而且,术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
下面结合附图及实施例对本申请做进一步描述。
本申请实施例中提供了一种用于新能源汽车的电池包。
请参阅图1-图10,根据本申请的用于新能源汽车的电池包包括壳体1、电池模组2和液冷装置3。其中,壳体1的形状与新能源汽车的电池安装空间7的形状相适配。电池模组2设置于壳体1的内部,且电池模组2由至少两个电池模块20堆叠而成;且电池模组2中电池模块20所具有的电芯数量相同或不同,以使得由电池模块20堆叠形成的电池模组2的形状与壳体1的形状相适配。液冷装置3与电池模块20贴合相连,液冷装置3用于 对电池模块20进行热交换。
可以理解的是,电池模组2中电池模块20的数量可以是两个,也可以是两个以上的其他数量,可以实际根据新能源汽车的电池安装空间7的形状以及新能源汽车所需要的驱动电能调整电池模块20的数量。优选地,液冷装置3与电池模块20通过导热介质集成为一体后实现贴合相连,这样可以有效地缩减液冷装置3与电池模块20需要占用的安装空间,实现用于新能源汽车的电池包的高度集成。
如图2和图3所示,以电池模组2由两个电池模块20而成为例。如图2的实施例所示,电池模组2由两个具有不同的电芯数量的电池模块20堆叠形成,上层的电池模块20所具有的电芯数量比下层的电池模块20所具有的电芯数量少,具有这种方式堆叠形成的电池模组2的用于新能源汽车的电池包能够适用于上下层体积大小不同的形状不规则的新能源汽车的电池安装空间7。如图3的实施例所示,上层的电池模块20所具有的电芯数量与下层的电池模块20所具有的电芯数量相同,具有这种方式堆叠形成的电池模组2的用于新能源汽车的电池包的空间集成度高,且能够适用于上下层体积大小相同的规则形状的新能源汽车的电池安装空间7。具体地电池模组2中电池模块20的堆叠设计可以根据实际使用时的新能源汽车的电池安装空间7的形状而进行调整,根据实际的使用需求按需将电池模块20进行堆叠来调整适配电池安装空间7的高度,根据实际的使用需求调整每一层的电池模块20所具有的电芯的数量来适配电池安装空间7的长度。因此,本申请的用于新能源汽车的电池包能够适用于不同类型的新能源车辆,在适配不同类型的新能源车辆的电池平台的改制、升级或扩容的过程中,能够灵活地调整外型,仅需使用现有的电芯即可满足,需要增加的新开件少,相应需要增加的测试也减少,不需要改变电池的选型,研发新能源车辆时受电池资源而影响选型的制约少,能够有效地降低不同类型的新能源车辆所需要的电池包的设计研发成本,且设计研发以及生产所需要的周期能够得到极大地缩短。同时,本申请的用于新能源汽车的电池包能够适配新能源汽车的电池安装空间7,在安装时不需要占用新能源汽车中除电池安装空间7以外的如后备箱等区域的空间,在提高空间利用率的同时,留给驾乘 人员自主支配的空间也得到有效地提升,同时也提升了驾乘人员的使用体验。
每一层的电池模块20堆叠后通过紧固螺栓21实现固定连接,这种固定连接的方式简单可靠,内部结构紧凑,空间利用率高,且设计和安装成本低。紧固螺栓21的数量和长度根据电池模块20的长度和高度决定,例如,紧固螺栓21的数量可以是4个、6个、8个、10个等。在其他实施例中,堆叠后的多个电池模块20可以通过其他方式固定,例如,粘接固定等。
在本申请的一些实施例中,如图8所示,用于新能源汽车的电池包还包括电池系统配电盒4和柔性线路板6,电池系统配电盒4设于电池模组2的上方,电池系统配电盒4通过柔性线路板6与电池模组2电连接。
如图8所示,柔性线路板6分别与电池模组2的第三侧端面(图未标注)和电池系统配电盒4的侧端面(图未标注)贴合。柔性线路板6在可弯曲的轻薄塑料片上嵌入电路设计,在窄小和有限空间中堆嵌大量精密元件,从而形成可弯曲的挠性电路,可以贴合在电池模组2的第三侧端面(图未标注)和电池系统配电盒4的侧端面(图未标注)上,充分利用用于新能源汽车的电池包内的狭小的侧端面处的空间,同时能够克服传统的连接线束拐弯半径大的缺点,同时柔性线路板6可随意弯曲、折迭,重量轻,体积小,散热性好,安装方便。
在本申请的一些实施例中,如图9所示,电池系统配电盒4包括电池管理单元41、电池监控电路单元42、高压控制单元43以及信号采集单元44。电池管理单元41、电池监控电路单元42、高压控制单元43以及信号采集单元44高度集成在电池系统配电盒4内,实现高度集成的一体化设计,有效地节约电池系统配电盒4所需要的安装空间,提高了用于新能源汽车的电池包的空间利用率,提升了用于新能源汽车的电池包的装配效率。信号采集单元44可以包括漏液传感器以及烟雾传感器等传感设备。同时高度集成的电池系统配电盒4的设计,减少了电池系统配电盒4与电池模组2之间的连接点,提升了电池系统配电盒4及具有其的用于新能源汽车的电池包的可靠性。
在本申请的一些实施例中,如图3和图4所示,电池模块20具有第一 侧端面201、第二侧端面202以及底端面203,底端面203分别与第一侧端面201和第二侧端面202相连。液冷装置3包括第一液冷组件31、第二液冷组件32和第三液冷组件33,第三液冷组件33分别与第一液冷组件31和第二液冷组件32相连。其中,第一液冷组件31与第一侧端面201贴合,第二液冷组件32与第二侧端面202贴合,第三液冷组件33与底端面203贴合。通过在电池模块20的第一侧端面201、第二侧端面202以及底端面203分别设置对应的第一液冷组件31、第二液冷组件32和第三液冷组件33,可以有效地增大液冷装置3与电池模块20的接触面积,提高用于新能源汽车的电池包的热传导效率,增强用于新能源汽车的电池包的换热效果。同时第一液冷组件31、第二液冷组件32和第三液冷组件33分别与第一侧端面201、第二侧端面202以及底端面203贴合相连,所需要的安装空间小,空间利用率高。
在本申请的一些实施例中,液冷装置3远离电池模块20的一侧设有防护板5。防护板5包括第一防护板51和第二防护板52;其中,第一防护板51设于第一液冷组件31远离第一侧端面201的一侧,第二防护板52设于第二液冷组件32远离第二侧端面202的一侧。因新能源汽车需要在不改变原有燃油车的车型基础上,在电池安装空间7内安装电池,而电池安装空间7的空间狭小,预留空间不足,因此,当新能源汽车受到侧面碰撞时,很容易会挤压到用于新能源汽车的电池包。防护板5可以固定液冷装置3的外侧,防护板5也可以固定在壳体1的内侧上,防护板5可以分摊外部的撞击力,进而有效地保护用于新能源汽车的电池包,避免碰撞时用于新能源汽车的电池包被挤压后发生电芯受力,避免电芯受力而带来的安全隐患。
在本申请的一些实施例中,如图6和图7所示,第一液冷组件31、第二液冷组件32和第三液冷组件33均由至少一根液冷管30组成。第一液冷组件31、第二液冷组件32和第三液冷组件33中所包含的液冷管30的数量可以根据电池模块20的体积以及散热需求进行调整。如图6所示,第一液冷组件31和第二液冷组件32均仅由一根液冷管30组成,第三液冷组件33可以由两根液冷管30组成。如图7所示,第一液冷组件31和第二液冷组 件32均仅由两根液冷管30组成,第三液冷组件33可以由四根液冷管30组成。第一液冷组件31、第二液冷组件32和第三液冷组件33中所包含的液冷管30的数量和长度均可根据实际使用中电池模块20的体积以及散热需求等进行设置,在此不一一列举。
可以理解的是,上述液冷管30可以采用但不限于如厚度较小的铜板、铝板、不锈钢板等延展性好的金属材料制成,也可以是上述金属材料和/或一些非金属材料的组合,只要能满足液冷管30所需的延展性能和弯折性能即可,在此不作其他限定。
在液冷管30内设有流动的换热介质以对电池模块20进行热交换。通过加热/冷却原件对换热介质进行加热/冷却,换热介质可以在液冷管30内流动以使液冷装置31对用于新能源汽车的电池包进行热交换(加热/冷却),从而保证用于新能源汽车的电池包内的电池模组2在适宜的温度下工作,进而延长用于新能源汽车的电池包的使用寿命以及续航里程。上述的换热介质一般是水、Coolant(冷却剂混合物)、乙二醇及乙二醇/水混合物、合成烃油、PAO电介质等中的一种。液冷装置3可以是由一根直管弯折多次后形成的蛇形管,也可以是多根直管弯折后拼接而成。
可以理解的是,上述液冷管30的截面形状为多边形或圆形中的一种或两种,且形成对应的第一液冷组件31、第二液冷组件32和第三液冷组件33的每一列的液冷管30之间的距离可以相等也可以不等,可以根据实际的使用情况进行改进。
基于上述用于新能源汽车的电池包,本申请的一个实施例中还提供一种新能源汽车。该新能源汽车包括电池安装空间7和如上任一实施例中的用于新能源汽车的电池包。如图10所示,新能源汽车的电池安装空间7是在是在原有燃油车的车型基础上更改优化形成。用于新能源汽车的电池包设于电池安装空间7内,且用于新能源汽车的电池包用于提供新能源汽车的驱动电能。
本申请实施例中用于的车辆的用于新能源汽车的电池包具有结构紧凑、集成度高、外型灵活、热管理效果好、安全性能高、使用寿命长的优点,且能够适配多种新能源汽车中的电池安装空间,因此本申请所提供的 新能源汽车的动力性能好、安全系数高、空间利用率高、续航能力强、装配简单、生产制造成本低。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种用于新能源汽车的电池包,其特征在于,包括:
    壳体(1),所述壳体(1)的形状与所述新能源汽车的电池安装空间(7)相适配;
    电池模组(2),所述电池模组(2)设于所述壳体(1)内,所述电池模组(2)由至少两个电池模块(20)堆叠形成;其中所述电池模组(2)中每个所述电池模块(20)所具有的电芯数量相同或不同,以使得所述电池模组(2)的形状与所述壳体(1)的形状相适配;
    液冷装置(3),所述液冷装置(3)与所述电池模块(20)贴合相连,所述液冷装置(3)用于对所述电池模块(20)进行热交换。
  2. 根据权利要求1所述的用于新能源汽车的电池包,其特征在于:还包括电池系统配电盒(4)和柔性线路板(6),所述电池系统配电盒(4)设于所述电池模组(2)的上方,所述电池系统配电盒(4)通过所述柔性线路板(6)与所述电池模组(2)电连接。
  3. 根据权利要求2所述的用于新能源汽车的电池包,其特征在于:所述电池系统配电盒(4)内集成有电池管理单元(41)、电池监控电路单元(42)、高压控制单元(43)以及信号采集单元(44)。
  4. 根据权利要求2所述的用于新能源汽车的电池包,其特征在于:所述柔性线路板(6)分别与所述电池模组(2)的第三侧端面和所述电池系统配电盒(4)的侧端面贴合。
  5. 根据权利要求1所述的用于新能源汽车的电池包,其特征在于:所述电池模块(20)具有第一侧端面(201)、第二侧端面(202)以及底端面(203),所述底端面(203)分别与所述第一侧端面(201)和所述第二侧端面(202)相连。
  6. 根据权利要求5所述的用于新能源汽车的电池包,其特征在于:所述液冷装置(3)包括第一液冷组件(31)、第二液冷组件(32)和第三液冷组件(33),所述第三液冷组件(33)分别与所述第一液冷组件(31)和所述第二液冷组件(32)相连。
  7. 根据权利要求6所述的用于新能源汽车的电池包,其特征在于:所述第一液冷组件(31)与所述第一侧端面(201)贴合,所述第二液冷组件(32)与所述第二侧端面(202)贴合,所述第三液冷组件(33)与所述底端面(203)贴合。
  8. 根据权利要求6所述的用于新能源汽车的电池包,其特征在于:所述液冷装置(3)远离所述电池模块(20)的一侧设有防护板(5)。
  9. 根据权利要求8所述的用于新能源汽车的电池包,其特征在于:所述防护板(5)包括第一防护板(51)和第二防护板(52),所述第一防护板(51)设于所述第一液冷组件(31)远离所述第一侧端面(201)的一侧,所述第二防护板(52)设于所述第二液冷组件(32)远离所述第二侧端面(202)的一侧。
  10. 根据权利要求6所述的用于新能源汽车的电池包,其特征在于,所述第一液冷组件(31)、所述第二液冷组件(32)和所述第三液冷组件(33)均由至少一根液冷管(30)组成。
  11. 根据权利要求10所述的用于新能源汽车的电池包,其特征在于,所述液冷管(30)内设有流动的换热介质以对所述电池模块(20)进行热交换。
  12. 根据权利要求10所述的用于新能源汽车的电池包,其特征在于,所述液冷管(30)的截面形状为多边形或圆形。
  13. 一种新能源汽车,其特征在于:包括电池安装空间(7)和权利要求1-12任意一项所述的用于新能源汽车的电池包,所述用于新能源汽车的电池包设于所述电池安装空间(7)内,所述用于新能源汽车的电池包用于提供所述新能源汽车的驱动电能。
PCT/CN2020/115554 2020-09-16 2020-09-16 用于新能源汽车的电池包及新能源汽车 WO2022056715A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/115554 WO2022056715A1 (zh) 2020-09-16 2020-09-16 用于新能源汽车的电池包及新能源汽车
CN202080100493.XA CN115956319A (zh) 2020-09-16 2020-09-16 用于新能源汽车的电池包及新能源汽车
KR1020237006750A KR20230036159A (ko) 2020-09-16 2020-09-16 신에너지 자동차에 사용되는 배터리 팩 및 신에너지 자동차

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115554 WO2022056715A1 (zh) 2020-09-16 2020-09-16 用于新能源汽车的电池包及新能源汽车

Publications (1)

Publication Number Publication Date
WO2022056715A1 true WO2022056715A1 (zh) 2022-03-24

Family

ID=80777510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115554 WO2022056715A1 (zh) 2020-09-16 2020-09-16 用于新能源汽车的电池包及新能源汽车

Country Status (3)

Country Link
KR (1) KR20230036159A (zh)
CN (1) CN115956319A (zh)
WO (1) WO2022056715A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209232838U (zh) * 2018-12-11 2019-08-09 北京汽车研究总院有限公司 车辆动力电池系统组件和具有其的车辆
CN209730111U (zh) * 2019-05-29 2019-12-03 重庆电子工程职业学院 电动汽车电池组热管理设备
KR20200011787A (ko) * 2018-07-25 2020-02-04 현대자동차주식회사 전기자동차용 배터리 냉각장치
CN210956796U (zh) * 2019-12-27 2020-07-07 芜湖天量电池系统有限公司 一种双层液冷动力电池包
CN211320158U (zh) * 2019-12-18 2020-08-21 张小华 一种新能源汽车用散热辅助设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012108762A1 (de) * 2012-09-18 2014-03-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batterieeinrichtung
JP6344250B2 (ja) * 2015-01-29 2018-06-20 トヨタ自動車株式会社 電動車両
CN107275532A (zh) * 2017-05-24 2017-10-20 广东工业大学 一种用于电动车辆的新型驱动电池箱
DE102017005401A1 (de) * 2017-06-02 2018-12-06 Audi Ag Baukastensystem und Kraftfahrzeug
CN109435661B (zh) * 2017-09-05 2023-11-17 马勒国际有限公司 用于电动车辆或混合动力车辆的储能器组件
JP7135492B2 (ja) * 2018-06-25 2022-09-13 マツダ株式会社 車両のバッテリ搭載構造
CN111129376A (zh) * 2018-10-31 2020-05-08 王海林 一种用于电动车辆的新型驱动电池箱
CN109515216B (zh) * 2018-12-06 2024-02-27 中国第一汽车股份有限公司 纯电动汽车动力电池总成结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200011787A (ko) * 2018-07-25 2020-02-04 현대자동차주식회사 전기자동차용 배터리 냉각장치
CN209232838U (zh) * 2018-12-11 2019-08-09 北京汽车研究总院有限公司 车辆动力电池系统组件和具有其的车辆
CN209730111U (zh) * 2019-05-29 2019-12-03 重庆电子工程职业学院 电动汽车电池组热管理设备
CN211320158U (zh) * 2019-12-18 2020-08-21 张小华 一种新能源汽车用散热辅助设备
CN210956796U (zh) * 2019-12-27 2020-07-07 芜湖天量电池系统有限公司 一种双层液冷动力电池包

Also Published As

Publication number Publication date
KR20230036159A (ko) 2023-03-14
CN115956319A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
CN108390123B (zh) 一种动力电池包热管理系统及汽车
CN105811046B (zh) 一种电池模组
CN112271393A (zh) 动力电池包、储能装置以及电动车
KR20230076119A (ko) 고전압 박스, 배터리 및 전기 장치
WO2022056715A1 (zh) 用于新能源汽车的电池包及新能源汽车
CN112582703B (zh) 一种基于热管与液冷板耦合的新型电池冷却结构
CN210142702U (zh) 电池模组换热结构、电池模组、电池包以及汽车
CN217182266U (zh) 电池单体、电池和用电装置
CN216903182U (zh) 电池箱体、集成液冷电池箱体、电池及用电装置
CN208111526U (zh) 一种纯电动汽车动力电池散热系统
CN211295320U (zh) 一种新能源汽车电池冷却系统
CN215527852U (zh) 一种柴油增程式电动轻卡电池包结构
CN113067054B (zh) 一种基于相变材料耦合翅片的电池及其电池热管理系统
CN211182299U (zh) 电池包下箱体及电池包
CN211530009U (zh) 电池箱、电池包和车辆
CN103579712B (zh) 一种具有导热结构的电池单体、电池以及车辆
CN207233798U (zh) 一种电池箱
CN112993474A (zh) 电池包下箱体及电池包
CN217009316U (zh) 一种集成水冷支路固定结构的电池模组总成
CN219959161U (zh) 一种多层电池均温导热装置
CN215299356U (zh) 一种电池组的加热结构
CN220934318U (zh) 电池单体、电池和用电设备
CN219959301U (zh) 一种储能电池组
CN217182267U (zh) 箱体、电池包及用电装置
CN210403853U (zh) 一种电池包和汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237006750

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953574

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20953574

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/09/2023)