WO2022055125A1 - 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템 및 방법 - Google Patents

바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템 및 방법 Download PDF

Info

Publication number
WO2022055125A1
WO2022055125A1 PCT/KR2021/009722 KR2021009722W WO2022055125A1 WO 2022055125 A1 WO2022055125 A1 WO 2022055125A1 KR 2021009722 W KR2021009722 W KR 2021009722W WO 2022055125 A1 WO2022055125 A1 WO 2022055125A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
biogas
gas
purification
recovery efficiency
Prior art date
Application number
PCT/KR2021/009722
Other languages
English (en)
French (fr)
Inventor
장원석
임종원
박성용
오진수
김경민
이종준
남궁형규
하성용
이충섭
한상훈
임진혁
김세종
Original Assignee
한국지역난방공사
(주)에어레인
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지역난방공사, (주)에어레인 filed Critical 한국지역난방공사
Publication of WO2022055125A1 publication Critical patent/WO2022055125A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/225Multiple stage diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/643Polyether-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/50Polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2866Particular arrangements for anaerobic reactors
    • C02F3/2893Particular arrangements for anaerobic reactors with biogas recycling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Definitions

  • the embodiment relates to a purification and recycle system and method for improving methane recovery efficiency in biogas.
  • a purification and recirculation system and method for improving the efficiency of methane recovery in biogas in which a power generation process is combined with a separation membrane process that can greatly reduce the methane recovery loss rate by supplying the recycle gas to the generator from the separation membrane device to produce electricity is about
  • Biogas is a gas produced by the anaerobic digestion of organic waste resources such as sewage sludge, food waste, and livestock manure by microorganisms, and refers to gaseous fuels including methane and carbon dioxide. Methane gas containing more than 95% of the component is called biomethane. Recently, although natural gas is a fuel derived from coal, biomethane is relatively in the spotlight as an energy source because it can be used as a clean fuel for new and renewable energy.
  • biogas has a methane composition of about 40 to 65% and its calorific value (6,700 kcal/m 3 or less) is low, making it difficult to use as vehicle fuel or city gas.
  • the methane recovery rate may be 90% or more at the flow rate and concentration of the biogas designed to be constant only by the adsorption process, but there is a problem in that the methane recovery rate is remarkably reduced when the flow rate and concentration of the biogas are changed (Patent Document 1).
  • the membrane separation process is a method using a difference in the permeation rates of carbon dioxide and methane using a separation membrane, and has the advantage of low energy consumption and small installation area and easy maintenance.
  • the gas separation membrane used to remove carbon dioxide from biogas using this membrane separation process has a low carbon dioxide/methane selectivity of 50 or less, and a simple separation process is applied, resulting in a loss of recovery of methane in the biogas purification process.
  • Patent Literature 1 Korean Patent Registration No. 10-1444186
  • Patent Document 2 Korean Patent Registration No. 10-1529129
  • Patent Document 3 Korean Patent No. 10-1881090
  • the embodiment aims to greatly reduce the methane recovery loss rate to 1% or less by supplying a recycle gas from a membrane separation device to a generator for high nitrification of biogas to produce electricity and separating and discharging carbon dioxide.
  • a compressor for compressing the incoming biogas; Separation membrane processing unit for separating compressed biogas into biomethane, concentrated carbon dioxide and by-product gas; It includes; a gas generator for generating electric power using the by-product gas, and the by-product gas generated in the separation membrane process unit is recycled or supplied to the gas generator to produce electric power.
  • the separation membrane processing unit may be characterized by using a multi-stage separation membrane process.
  • the separation membrane of the separation membrane process unit may be characterized in that the carbon dioxide permeability is 50GPU or more.
  • the separation membrane of the separation membrane process unit may be characterized in that the selectivity of carbon dioxide/methane is 10 or more.
  • the separation membrane material of the separation membrane process part may be characterized in that any one selected from the group consisting of polyimide, polyetherimide, polysulfone, polyethersulfone, polycarbonate and cellulose acetate is used.
  • the separation membrane processing unit includes a first separation membrane, a second separation membrane, and a third separation membrane, and the first gas that does not pass through the first separation membrane and is concentrated is supplied to the second separation membrane, and the first separation membrane
  • the second gas passed through and separated is supplied to the third separator, and biomethane that is not passed through the second separator and is separated from the third gas that passes through the second separator is separated, and the third separator is the third separator.
  • It may be characterized in that it is separated into concentrated carbon dioxide separated through the separation membrane and a fourth gas that is concentrated without passing through the third separation membrane.
  • the by-product gas may include the third gas and the fourth gas.
  • the third gas may be supplied to the compressor, and the fourth gas may be supplied to a gas generator.
  • the membrane area ratio of the first separation membrane, the second separation membrane, and the third separation membrane may be characterized in that the area ratio of the second separation membrane is the largest.
  • the first separation membrane, the second separation membrane, and the third separation membrane may have a ratio of 1:2:1.
  • another embodiment of the present invention is a supply step of supplying biogas to the compressor; a purification step of purifying the supplied biogas using a separation membrane process unit; a gas recirculation step of recirculating some of the by-product gas generated in the refining step; and an electricity production step of supplying some of the by-product gas produced in the refining step to a gas generator to produce electricity.
  • the separation membrane processing unit may be characterized by using a multi-stage separation membrane process.
  • the separation membrane processing unit includes a first separation membrane, a second separation membrane, and a third separation membrane
  • the by-product gas is a third gas generated in the second separation membrane and a fourth gas generated in the third separation membrane process. It may be characterized by including.
  • the third gas may be supplied to the compressor, and the fourth gas may be supplied to the gas generator.
  • the membrane area ratio of the first separation membrane, the second separation membrane, and the third separation membrane may be characterized in that the area ratio of the second separation membrane is the largest.
  • the first separation membrane, the second separation membrane, and the third separation membrane may have a ratio of 1:2:1.
  • carbon dioxide is separated and discharged by supplying the recycle gas by the biogas separation membrane device to the generator, thereby greatly reducing the methane recovery loss rate to 1% or less, thereby contributing to the high quality of biogas.
  • FIG. 1 is a view showing the structure of a purification and recirculation system for improving methane recovery efficiency in biogas according to an embodiment of the present invention
  • FIG. 2 is a view showing the detailed configuration of the separation membrane processing unit of Figure 1,
  • FIG. 3 is a view showing a change in the methane recovery rate according to the biogas concentration when changing the membrane area ratio in the separation membrane process of FIG. 2;
  • FIG. 4 is a view showing the carbon dioxide removal rate according to the biogas concentration when changing the membrane area ratio in the separation membrane process of FIG. 2;
  • FIG. 5 is a view showing the recycling rate according to the biomethane concentration when changing the membrane area ratio in the separation membrane process of FIG. 2;
  • FIG. 6 is a flowchart of a purification and recycling method for improving methane recovery efficiency in biogas according to another embodiment of the present invention.
  • the singular form may also include the plural form unless otherwise specified in the phrase, and when it is described as “at least one (or more than one) of A and (and) B, C”, it is combined with A, B, and C It may include one or more of all possible combinations.
  • a component when it is described that a component is 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also with the component It may also include a case of 'connected', 'coupled' or 'connected' due to another element between the other elements.
  • the top (above) or bottom (below) is one as well as when two components are in direct contact with each other. Also includes a case in which another component as described above is formed or disposed between two components.
  • the meaning of not only the upward direction but also the downward direction based on one component may be included.
  • FIG. 1 is a diagram showing the structure of a purification and recirculation system for improving methane recovery efficiency in biogas according to an embodiment of the present invention
  • FIG. 2 is a diagram showing the detailed configuration of the separation membrane process unit of FIG. 1
  • FIG. 3 is FIG.
  • When changing the membrane area ratio in the separation membrane process of 2 it is a view showing the change in the methane recovery rate according to the biogas concentration
  • FIG. 4 is carbon dioxide according to the biogas concentration when the membrane area ratio is changed in the separation membrane process of FIG. 2
  • FIG. 5 is a view showing the recycling rate according to the biomethane concentration when the membrane area ratio is changed in the separation membrane process of FIG. 2 .
  • the purification and recirculation system for improving methane recovery efficiency in biogas includes a compressor 100, a separation membrane process unit 200, and a gas generator 300.
  • the compressor 100 may compress the incoming biogas and deliver it to the separation membrane processing unit 200 .
  • the type or shape of the compressor 100 is not limited, and various known configurations of the compressor 100 for compressing biogas may be used.
  • the separation membrane process unit 200 may separate the compressed biogas into biomethane, concentrated carbon dioxide, and by-product gas, and either recycles the by-product gas generated in the separation membrane process unit 200 or supplies it to the gas generator 300 for power. can be made to produce
  • biogas is supplied to the compressor 100 and compressed, and carbon dioxide selectively permeates through the separation membrane of the membrane processing unit 200 to produce purified biomethane.
  • carbon dioxide selectively transmitted through the separation membrane of the separation membrane process unit 200 is separated from the separation membrane and released into the atmosphere.
  • methane concentration of the selectively permeated carbon dioxide exhaust gas is high, so that the recovery loss rate of methane increases.
  • the separation membrane process unit 200 further purifies the carbon dioxide exhaust gas with a separation membrane to recycle the recycle gas, which has increased the concentration of methane, to the inlet of the compressor 100 .
  • This recycle gas is compressed in the compressor 100 together with the biogas and supplied to the membrane process unit, and the capacity of the compressor 100 increases according to the amount of the recycle gas, and carbon dioxide discharged from the membrane process unit due to the recycle gas is discharged.
  • the methane concentration of the gas increases, there is a problem in that the methane recovery loss rate increases.
  • the gas generator 300 may generate electric power by using the by-product gas generated in the separation membrane processing unit.
  • the by-product gas refers to a mixed gas of methane and carbon dioxide.
  • the compressor 100 may be operated at 3 bar to 20 bar based on the pressure gauge. In the present invention, since the exhaust gas discharged from the membrane processing unit is recirculated to the compressor 100 , the pressure acting on the compressor 100 may increase.
  • the separation membrane process unit 200 may use a multi-stage separation membrane process.
  • the separation membrane used in the multi-stage membrane process unit 200 preferably has a carbon dioxide permeability of 50GPU or more. If carbon dioxide less than 50 GPU is used, there is a concern that the recovery loss rate of methane in the entire process is increased because the amount of carbon dioxide exhaust gas is small.
  • the separation membrane used in the separation membrane process unit 200 preferably has a carbon dioxide/methane selectivity of 10 or more. If a separation membrane having a carbon dioxide/methane selectivity of less than 10 is used, it is difficult to selectively separate carbon dioxide, so that the methane recovery loss rate in the entire process may increase.
  • the separation membrane material used in the separation membrane process unit 200 of the present invention uses a glassy polymer with high attractive force between polymer chains in that it has relatively high selectivity, so polyimide, polyetherimide, polysulfone, polyethersulfone , any one selected from the group consisting of polycarbonate and cellulose acetate may be used.
  • polyimide or polysulfone is more preferably used.
  • FIG. 1 An embodiment of the present invention according to FIG. 1 will be described.
  • the device was configured to perform a biogas purification process in which a power generation process was combined with a separation membrane process, and biogas according to each step process, the inlet of the compressor 100, the membrane process part, and the gas generator 300 ) connected to the recirculation unit, the flow rate of each concentrated carbon dioxide exhaust gas, and the methane (CH4) and carbon dioxide (CO2) concentrations are shown in Table 1 below.
  • a separation membrane device was manufactured according to the method disclosed in Patent No. 10-1499741, which is a previously registered patent of the present inventors, etc.
  • the device is configured as shown in FIG. 1 but the gas generator 300 is not applied and the separation membrane
  • the biogas purification process was performed in a single process, and the recirculation unit connected to the inlet of the gas compressor 100 by combining biogas, the inlet of the compressor 100, the biomethane outlet, and the biogas according to each step process, and carbon dioxide emission
  • the flow rates of each gas and the concentrations of methane (CH4) and carbon dioxide (CO2) were shown in Table 2 below.
  • the biogas was 151.3 LPM
  • the flow rate of the recirculation part increased by 51.3 LPM than the flow rate, but in the case of the embodiment performed by combining the separation membrane process with the power generation process, the inlet flow rate of the gas compressor 100 was 100 LPM, which is biogas in which the power generation process is combined with the separation membrane process according to the present invention. According to the purification method, it was confirmed that the inlet flow rate of the gas compressor 100 did not increase compared to the conventional method of purifying biogas using only the separation membrane process.
  • the present invention it is possible to reduce the recovery loss rate of methane to less than 1% by supplying the recycle gas by the separation membrane process of biogas to the generator to produce electricity and separating and discharging carbon dioxide, and the inflow of the gas compressor 100 It can contribute to the nitrification of biogas without increasing the floating flow rate.
  • the separation membrane processing unit 200 which is a component of the present invention may include a first separation membrane 210 , a second separation membrane 220 , and a third separation membrane 230 .
  • the first gas G1 that does not pass through the first separator 210 and is concentrated is supplied to the second separator 220 , and the second gas G2 passed through and separated from the first separator 210 is the second separator 220 may be supplied.
  • the second separator 220 separates bayomethane separated without passing through the second separator 220 and the third gas G3 passing through the second separator 220, and the third separator 230 is
  • the second gas G2 may be supplied and separated into concentrated carbon dioxide that passes through the third separation membrane 230 and is separated into a fourth gas G4 that is concentrated without passing through the third separation membrane 230 .
  • the by-product gas in which methane and carbon dioxide are mixed may include a third gas (G3) and a fourth gas (G4), and this by-product gas is supplied to the compressor 100 and recirculated, or to the gas generator 300 . can be supplied to generate electricity.
  • G3 third gas
  • G4 fourth gas
  • the third gas G3 may be supplied to the compressor 100
  • the fourth gas G4 may be supplied to the gas generator 300 .
  • the third gas G3 generated by the second separator 220 has a relatively low methane content compared to the fourth gas G4 generated by the third separator 230 . Therefore, the methane recovery efficiency can be increased by circulating the third gas (G3) having a low methane content to the compressor 100, and the fourth gas (G4) having a high methane content is supplied to the gas generator 300 to achieve methane recovery efficiency. can increase
  • the membrane area ratio of the first separation membrane 210 , the second separation membrane 220 , and the third separation membrane 230 has the highest area ratio of the second separation membrane 220 . can be large
  • 3 to 5 show the CH 4 recovery rate, CO 2 removal rate, and stage cut results according to the biomethane concentration change while changing the area ratio of the first separator 210, the second separator 220, and the third separator 230 indicates
  • the results shown in FIGS. 3 to 5 are examples of biogas power generation sites, and the composition of biogas generated from sewage sludge is CH 4 concentration 40-65%, CO 2 concentration 35-60%, H 2 S concentration 150-300 ppm was measured with
  • the membrane area ratio of the three-stage separation membrane operation was performed at 1:1:1, 1:2:1, and 1:2:2.
  • the methane recovery rate was the highest when the membrane area ratio was 1:2:1. (95 ⁇ 98.5%) This is the same as the result of the two-stage operation, and the permeation amount of the second stage according to the increase of the membrane area ratio of the second stage It can be confirmed that the methane recovery rate is increased by increasing this and the recirculation rate is increased.
  • the increase in the membrane area of the 3rd stage resulted in a decrease in the methane recovery rate, which is that when the gas permeated from the 1st stage is supplied to the 3rd stage and the membrane area increases, the permeation amount increases. It can be seen that the amount of recirculation in stage 3 decreases and the methane recovery rate of the process decreases.
  • the membrane area of the three-stage separator plays a dominant role rather than the effect of the increase of the membrane area of the two-stage separator.
  • the recirculation rate according to the biomethane concentration is shown.
  • the recirculation rate of the third stage is higher than that of the second stage, and as the membrane area of the second stage increases, the recirculation rate increases, and as the membrane area of the three-stage separation membrane decreases, It can be seen that the recirculation rate increases.
  • FIG. 6 is a flowchart of a purification and recycling method for improving methane recovery efficiency in biogas according to another embodiment of the present invention.
  • the same reference numerals as those of FIGS. 1 to 5 denote the same members, and detailed descriptions thereof will be omitted.
  • a purification and recirculation method for improving methane recovery efficiency in biogas includes a supply step (S100) of supplying biogas to the compressor 100, a separation membrane process unit 200 ) of refining the supplied biogas using a refining step (S200), a gas recirculation step (S300) of recirculating some of the by-product gas generated in the refining step, and a part of the by-product gas generated in the refining step. It may include an electricity production step (S400) of supplying electricity to the generator 300 to produce electricity.
  • the biogas is supplied and compressed through the compressor 100 to supply the compressed gas to the membrane processing unit 200 .
  • the supplied biogas may be purified using the separation membrane process unit 200 .
  • the separation membrane process unit 200 used in the purification step may increase the recovery rate of biomethane by using a multi-stage membrane process.
  • the by-product gas generated in the separation membrane process unit 200 may be recycled or supplied to produce electricity.
  • the separation membrane processing unit 200 includes a first separation membrane 210 , a second separation membrane 220 , and a third separation membrane 230 , and the by-product gas is a third membrane generated by the second separation membrane 220 . It may include a gas G3 and a fourth gas G4 generated in the process of the third separation membrane 230 .
  • the third gas (G3) may be supplied to the compressor (100) to perform a recirculation process
  • the fourth gas (G4) is supplied to the gas generator (300) to increase the methane recovery rate through power generation.
  • the membrane area ratio of the first separation membrane 210 , the second separation membrane 220 , and the third separation membrane 230 is the area of the second separation membrane 220 .
  • Rain may be set to the largest.
  • the first separator 210 , the second separator 220 , and the third separator 230 may have a ratio of 1:2:1.
  • the methane recovery rate may be increased by circulating some of the by-product gas generated in the purification step (S200).
  • some of the by-product gas generated in the refining step (S200) may be supplied to the gas generator 300 to produce power, and the efficiency of the compressor 100 by controlling the amount of gas supplied in the gas recirculation step can increase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Sustainable Development (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 유입되는 바이오 가스를 압축하는 압축기, 압축된 바이오가스를 바이오메탄, 농축 이산화탄소 및 부생가스로 분리하는 분리막 공정부, 상기 부생가스를 이용하여 전력을 생산하는 가스발전기를 포함하며, 상기 분리막 공정부에서 생성되는 부생가스는 재순환되거나, 상기 가스발전기로 공급되어 전력을 생산하는 것을 특징으로 하는 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템을 제공한다.

Description

바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템 및 방법
실시예는 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템 및 방법에 관한 것이다. 더욱 상세하게는 분리막 장치에서 재순환가스를 발전기에 공급하여 전기를 생산함으로써 메탄 회수 손실율을 크게 감소시킬 수 있는 분리막공정에 발전과정이 결합된 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템 및 방법에 관한 것이다.
바이오가스는 하수 슬러지, 음식물쓰레기, 가축분뇨 등의 유기성 폐자원을 미생물에 의한 혐기성 소화에 의해 생성되는 가스로 메탄과 이산화탄소 등을 포함한 기체 상태의 연료를 일컫고, 이러한 바이오가스 중에서 이산화탄소가 제거되어 메탄성분이 95%이상인 메탄가스를 바이오메탄이라고 하는데, 최근에는 기존 천연가스가 석탄에서 유래된 연료이나, 상대적으로 바이오메탄은 신재생에너지 청정연료로 사용될 수 있어 에너지원으로 각광받고 있다.
그러나 바이오가스는 메탄 조성은 약 40~65% 수준으로 열량(6,700kcal/m3 이하)이 낮아 차량 연료나 도시가스로는 사용이 어려우며 천연가스와 비슷한 열량을 맞추기 위해 바이오메탄과 같이 메탄 함량을 95%이상으로 향상시켜야 하는 과제를 안고 있다. 따라서 바이오가스 중의 대부분을 차지하고 있는 이산화탄소/메탄 혼합기체를 분리하는 공정이 적용되어 고질화를 통해 원거리 공급이 가능해야 비로소 발전, 보일러, 공장 및 자동차 연료 또는 도시가스 등으로 사용이 가능하게 되는 것이다.
현재까지 알려진 바이오가스의 고질화를 위한 이산화탄소/메탄 정제방법으로서는 흡수공정(scrubbing process), 흡착공정(adsorption process) 및 막분리공정(membrane process) 등이 있으며, 메탄회수율이 공정을 적용하는데 중용한 판단요소가 된다. 이 중에서 흡착공정만으로는 일정하게 설계된 바이오가스의 유량과 농도에서는 메탄회수율이 90% 이상일 수 있으나, 바이오가스의 유량과 농도가 변화되면 메탄회수율이 현저하게 감소하는 문제점이 있다(특허문헌 1).
한편, 막분리공정은 분리막을 사용하여 이산화탄소와 메탄의 투과속도 차이를 이용한 방법으로 에너지 소모가 적고 설치면적이 작아 유지 보수가 용이하다는 장점이 있어 근래에 기체분리막을 이용한 정제 기술이 주목받고 있다. 이러한 막분리공정을 이용한 바이오가스 중의 이산화탄소 제거에 사용되는 기체분리막은 이산화탄소/메탄의 선택도가 50이하로 낮고, 단순한 분리공정을 적용함으로써 바이오가스 정제과정에서 메탄의 회수 손실이 발생하는 단점이 있다(특허문헌 2, 3).
[선행기술문헌]
특허문헌 1. 한국등록특허 제10-1444186호
특허문헌 2. 한국등록특허 제10-1529129호
특허문헌 3. 한국등록특허 제10-1881090호
실시예는 바이오가스 고질화를 위하여 막분리장치에서 재순환가스를 발전기에 공급하여 전기를 생산하고 이산화탄소는 분리 배출함으로써 메탄 회수 손실율을 1% 이하로 크게 감소시키는 것을 목적으로 한다.
본 발명이 해결하고자 하는 과제는 이상에서 언급된 과제에 국한되지 않으며 여기서 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시예는, 유입되는 바이오 가스를 압축하는 압축기; 압축된 바이오가스를 바이오메탄, 농축 이산화탄소 및 부생가스로 분리하는 분리막 공정부; 상기 부생가스를 이용하여 전력을 생산하는 가스발전기;를 포함하며, 상기 분리막 공정부에서 생성되는 부생가스는 재순환되거나, 상기 가스발전기로 공급되어 전력을 생산하는 것을 특징으로 할 수 있다.
바람직하게는, 상기 분리막 공정부는 다단분리막 공정을 이용하는 것을 특징으로 할 수 있다.
바람직하게는, 상기 분리막 공정부의 분리막은 이산화탄소 투과도가 50GPU 이상인 것을 특징으로 할 수 있다.
바람직하게는, 상기 분리막 공정부의 분리막은 이산화탄소/메탄의 선택도가 10이상인 것을 특징으로 할 수 있다.
바람직하게는, 상기 분리막 공정부의 분리막 소재는 폴리이미드, 폴리에테르이미드, 폴리술폰, 폴리에테르술폰, 폴리카보네이트 및 셀룰로오즈아세테이트로 이루어진 군으로부터 선택된 어느 하나의 것이 사용되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 분리막 공정부는 제1 분리막, 제2 분리막 및 제3 분리막을 포함하며, 상기 제1 분리막을 통과하지 못하고 농축되는 제1 가스는 상기 제2 분리막으로 공급되고, 상기 제1 분리막을 통과하여 분리되는 제2 가스는 상기 제3 분리막으로 공급되며, 상기 제2 분리막에서 통과되지 못하고 분리되는 바이오메탄과 상기 제2 분리막을 통과하는 제3 가스를 분리하고, 상기 제3 분리막은 상기 제3 분리막을 통과하여 분리되는 농축 이산화탄소와 상기 제3 분리막을 통과하지 못하고 농축되는 제4 가스로 분리되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 부생가스는 상기 제3 가스와 상기 제4 가스를 포함하는 것을 특징으로 할 수 있다.
바람직하게는, 상기 제3 가스는 상기 압축기로 공급되며, 상기 제4 가스는 가스발전기로 공급되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 제1 분리막, 상기 제2 분리막 및 상기 제3 분리막의 막면적비는 상기 제2 분리막의 면적비가 가장 큰 것을 특징으로 할 수 있다.
바람직하게는, 상기 제1 분리막, 상기 제2 분리막 및 상기 제3 분리막은 1:2:1의 비를 가지는 것을 특징으로 할 수 있다.
또한, 본 발명의 또 다른 실시예는 압축기로 바이오가스를 공급하는 공급단계; 분리막 공정부를 이용하여 공급된 상기 바이오가스를 정제는 정제단계; 상기 정제단계에서 생성된 부생가스 중 일부를 재순환하는 가스 재순환단계; 및 상기 정제단계에서 생상된 부생가스 중 일부를 가스발전기로 공급하여 전기를 생산하는 전기 생산단계;를 포함할 수 있다.
바람직하게는, 상기 분리막 공정부는 다단분리막 공정을 이용하는 것을 특징으로 할 수 있다.
바람직하게는, 상기 분리막 공정부는 제1 분리막, 제2 분리막 및 제3 분리막을 포함하며, 상기 부생가스는 상기 제2 분리막에서 생성되는 제3 가스와 상기 제3 분리막 공정에서 생성되는 제4 가스를 포함하는 것을 특징으로 할 수 있다.
바람직하게는, 상기 제3 가스는 상기 압축기로 공급되며, 상기 제4 가스는 상기 가스발전기로 공급되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 제1 분리막, 상기 제2 분리막 및 상기 제3 분리막의 막면적비는 상기 제2 분리막의 면적비가 가장 큰 것을 특징으로 할 수 있다.
바람직하게는, 상기 제1 분리막, 상기 제2 분리막 및 상기 제3 분리막은 1:2:1의 비를 가지는 것을 특징으로 할 수 있다.
실시예에 따르면, 바이오가스의 분리막장치에 의한 재순환가스를 발전기에 공급하여 이산화탄소는 분리 배출함으로써 메탄 회수 손실율을 1% 이하로 크게 감소시켜 바이오가스의 고질화에 기여할 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 본 발명의 실시예에 따른 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템의 구조를 나타내는 도면이고,
도 2는 도 1의 분리막 공정부의 세부구성을 나타내는 도면이고,
도 3은 도 2의 분리막 공정에서 막면적 비를 변화시킬때, 바이오가스 농도에 따른 메탄 회수율의 변화를 나타내는 도면이고,
도 4는 도 2의 분리막 공정에서 막면적 비를 변화시킬때, 바이오가스 농도에 따른 이산화탄소 제거율을 나타내는 도면이고,
도 5는 도 2의 분리막 공정에서 막면적 비를 변화시킬때, 바이오메탄 농도에 따른 재순환율을 나타내는 도면이고,
도 6은 본 발명의 또 다른 실시예에 따른 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 방법의 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, “A 및(와) B, C 중 적어도 하나(또는 한 개 이상)”로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성요소에 ‘연결’, ‘결합’ 또는 ‘접속’된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 ‘연결’, ‘결합’ 또는 ‘접속’ 되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 “상(위) 또는 하(아래)”에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, “상(위) 또는 하(아래)”으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
이하, 첨부된 도면을 참조하여 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1 내지 도 6는, 본 발명을 개념적으로 명확히 이해하기 위하여, 주요 특징 부분만을 명확히 도시한 것이며, 그 결과 도해의 다양한 변형이 예상되며, 도면에 도시된 특정 형상에 의해 본 발명의 범위가 제한될 필요는 없다.
도 1은 본 발명의 실시예에 따른 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템의 구조를 나타내는 도면이고, 도 2는 도 1의 분리막 공정부의 세부구성을 나타내는 도면이고, 도 3은 도 2의 분리막 공정에서 막면적 비를 변화시킬때, 바이오가스 농도에 따른 메탄 회수율의 변화를 나타내는 도면이고, 도 4는 도 2의 분리막 공정에서 막면적 비를 변화시킬때, 바이오가스 농도에 따른 이산화탄소 제거율을 나타내는 도면이고, 도 5는 도 2의 분리막 공정에서 막면적 비를 변화시킬때, 바이오메탄 농도에 따른 재순환율을 나타내는 도면이다.
도 1 내지 도 5를 참조하면, 본 발명의 실시예에 따른 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템은 압축기(100), 분리막 공정부(200) 및 가스발전기(300)를 포함할 수 있다.
압축기(100)는 유입되는 바이오가스를 압축하여 분리막 공정부(200)로 전달할 수 있다. 압축기(100)의 종류나 형상은 제한이 없으며, 바이오가스를 압축하기 위한 다양한 공지의 압축기(100) 구성이 사용될 수 있다.
분리막 공정부(200)는 압축된 바이오가스를 바이오메탄, 농축 이산화탄소 및 부생가스로 분리할 수 있으며, 분리막 공정부(200)에서 생성되는 부생가스를 재순환시키거나 가스발전기(300)로 공급하여 전력을 생산하도록 할 수 있다.
일반적으로 바이오가스가 압축기(100)로 공급되어 압축되고, 분리막 공정부(200)의 분리막에서 이산화탄소가 선택적으로 투과하여 정제된 바이오메탄이 생성된다. 이때, 분리막 공정부(200)의 분리막에서 선택적으로 투과된 이산화탄소는 분리막에서 분리되어 대기로 방출되는데, 선택적으로 투과된 이산화탄소 배출가스의 메탄농도가 높아 메탄의 회수 손실율이 높아지는 문제점이 있다.
이러한 메탄의 회수 손실율을 낮추기 위하여 분리막 공정부(200)는 이산화탄소 배출가스를 분리막으로 추가정제하여 메탄의 농도를 높인 재순환가스를 압축기(100)의 유입부로 재순환시키는 공정이 진행될 수 있다.
이러한 재순환가스는 바이오가스와 함께 압축기(100)에서 압축하여 분리막공정부로 공급되어지며, 재순환가스의 양에 따라 압축기(100)의 용량이 증가하게 되고 재순환가스로 인해 분리막공정부에서 배출되는 이산화탄소 배출가스의 메탄농도가 높아지게 되어 메탄회수 손실율이 증가하는 문제점이 발생한다.
본 발명에서는 이러한 문제점을 해결하기 위해 가스발전기(300)를 구비하여 메탄 회수 손실율이 증가하는 문제점을 해결할 수 있다.
가스발전기(300)는 분리막공정부에서 생성되는 부생가스를 이용하여 전력을 생산할 수 있다. 여기서 부생가스는 메탄과 이산화탄소의 혼합가스를 의미한다.
본 발명에서 압축기(100)는 압력게이지 기준 3bar 내지 20bar에서 운전될 수 있다. 본 발명은 분리막공정부에서 배출되는 배출가스가 압축기(100)로 재순환되는 구조인바, 압축기(100)에 작용하는 압력이 증가할 수 있다.
이때, 압축기(100)가 3bar 미만으로 운전하면 분리막공정부의 크기가 증가하여 장치비용이 증가하고, 20bar를 초과하여 운전하면 압축기(100) 비용과 운전비용이 증가하게 된다.
분리막 공정부(200)는 다단분리막 공정이 이용될 수 있다. 이때, 다단분리막 공정부(200)에 사용되는 분리막은 이산화탄소 투과도가 50GPU 이상인 것이 바람직하다. 이산화탄소가 50GPU 미만인 것이 사용되는 경우 이산화탄소 배출가스의 양이 적어 전체 공정에서 메탄의 회수 손실율이 증가될 우려가 존재한다.
또한, 분리막 공정부(200)에 사용되는 분리막은 이산화탄소/메탄 선택도가 10이상인 것이 바람직하다. 이산화탄소/메탄의 선택도가 10미만인 분리막을 사용하면, 이산화탄소의 선택적 분리가 어려워 전체공정에서 메탄 회수 손실율이 증가할 수 있다.
본 발명의 분리막 공정부(200)에 사용되는 분리막 소재는 대적으로 높은 선택도를 갖는 점에서 고분자 사슬간의 인력이 높은 유리상 고분자를 사용하는바, 폴리이미드, 폴리에테르이미드, 폴리술폰, 폴리에테르술폰, 폴리카보네이트 및 셀룰로오즈아세테이트로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있다. 특히, 폴리이미드 또는 폴리술폰이 더욱 바람직하게 사용한다.
도 1에 따른 본 발명의 실시예를 설명하도록 한다.
도 1에 나타난 바와 같이 장치를 구성하여 분리막공정에 발전과정이 결합된 바이오가스 정제공정을 수행하였으며, 각 단계별 공정에 따른 바이오가스, 압축기(100)의 유입부, 분리막공정부, 가스발전기(300)와 연결되어있는 재순환부, 농축 이산화탄소 배출가스 각각의 유량 및 메탄(CH4), 이산화탄소(CO2) 농도는 아래 표 1과 같았다.
(실시예)
항목 바이오가스, 압축기(100)의 유입부 분리막공정부 재순환부 농축 이산화탄소 배출가스
유량 (LPM) 100.0 40.0 35.0 25.0
CH4 (mol.%) 60.0 98.0 59.1 0.5
CO2 (mol.%) 40.0 2.0 40.9 99.5
(비교예)분리막장치는 본 발명자 등의 선등록특허인 특허 제10-1499741호에 게시된 방법에 따라 제작하였다.도 1에 나타난 바와 같이 장치를 구성하되 가스발전기(300)를 적용하지 않고 분리막 단일공정으로 바이오가스 정제공정을 수행하였으며, 각 단계별 공정에 따른 바이오가스, 압축기(100)의 유입부, 바이오메탄 배출부, 바이오가스과 합하여 가스 압축기(100)의 유입부로 연결되는 재순환부, 이산화탄소 배출가스 각각의 유량 및 메탄(CH4), 이산화탄소(CO2) 농도는 아래 표 2와 같았다.
항목 바이오가스 압축기(100)의
유입부
바이오메탄
배출부
재순환부 농축 이산화탄소 배출가스
유량 (LPM) 100.0 151.3 58.8 51.3 41.2
CH4 (mol.%) 60.0 59.7 98.0 59.1 5.8
CO2 (mol.%) 40.0 40.3 2.0 40.9 94.2
상기 실시예와 비교예에 따른 표 1과 표 2의 결과로부터 메탄 회수 손실율을 계산해 보면, 종래의 분리막 공정만을 이용한 비교예의 경우 3.96%인 반면[3.96% = (203 유량 x 메탄농도) / (1000 유량 x 메탄농도) x 100%], 분리막공정에 발전과정을 결합하여 수행한 실시예의 경우 메탄 회수손실율은 0.21%로[0.21% = (203 유량 x 메탄농도) / (1000 유량 x 메탄농도) x 100%], 본 발명에 따른 분리막 공정부(200)에 발전과정이 결합된 바이오가스 정제방법에 의하면 종래 분리막 공정만을 이용하여 바이오가스를 정제하는 방법에 비해 메탄 회수 손실율이 양적으로 현저하게 감소하는 것을 확인할 수 있었다.또한, 상기 실시예와 비교예에 따른 표 1과 표 2의 결과로부터 가스 압축기(100)의 유입부 유량을 비교해 보면 종래의 분리막 공정만을 이용한 비교예의 경우 151.3LPM으로 바이오가스의 유량보다 재순환부 유량 51.3LPM이 증가한 반면, 분리막공정에 발전과정을 결합하여 수행한 실시예의 경우 가스 압축기(100)의 유입부 유량은 100LPM으로 본 발명에 따른 분리막공정에 발전과정이 결합된 바이오가스 정제방법에 의하면, 종래 분리막 공정만을 이용하여 바이오가스를 정제하는 방법에 비해 가스 압축기(100)의 유입부 유량 증가가 발생하지 않는 것을 확인할 수 있었다.
그러므로 본 발명에 따르면, 바이오가스의 분리막공정에 의한 재순환가스를 발전기에 공급하여 전기를 생산하고 이산화탄소를 분리 배출함으로써 메탄의 회수 손실율을 1% 이내로 감소시킬 수 있으며, 아울러 가스 압축기(100)의 유입부 유량이 증가하지 않으면서 바이오가스의 고질화에 기여할 수 있다.
도 2를 참조하면, 본 발명의 구성요소인 분리막 공정부(200)는 제1 분리막(210), 제2 분리막(220) 및 제3 분리막(230)을 포함할 수 있다.
제1 분리막(210)을 통과하지 못하고 농축되는 제1 가스(G1)는 제2 분리막(220)으로 공급되고, 제1 분리막(210)에서 통과하여 분리되는 제2 가스(G2)는 제2 분리막(220)으로 공급될 수 있다.
제2 분리막(220)은 제2 분리막(220)을 통과되지 못하고 분리되는 베이오메탄과 제2 분리막(220)을 통과하는 제3 가스(G3)를 분리하며, 제3 분리막(230)은 제2 가스(G2)를 공급받아 제3 분리막(230)을 통과하여 분리되는 농축 이산화탄소와 제3 분리막(230)을 통과하지 못하고 농축되는 제4 가스(G4)로 분리할 수 있다.
이때, 메탄과 이산화탄소가 혼합된 부생가스는 제3 가스(G3)와 제4 가스(G4)를 포함할 수 있으며, 이러한 부생가스는 압축기(100)로 공급되어 재순환되거나, 가스발전기(300)로 공급되어 전력을 생산할 수 있다.
일실시예로, 제3 가스(G3)는 압축기(100)로 공급되며, 제4 가스(G4)는 가스발전기(300)로 공급될 수 있다. 제2 분리막(220)에서 생성되는 제3 가스(G3)는 제3 분리막(230)에서 생성되는 제4 가스(G4)에 비해 상대적으로 메탄함량이 낮다. 따라서 메탄함량이 낮은 제3 가스(G3)를 압축기(100)로 순환시켜 메탄 회수 효율을 증대할 수 있으며, 메탄함량이 높은 제4 가스(G4)는 가스발전기(300)로 공급하여 메탄 회수 효율을 증대할 수 있다.
도 3 내지 도 5를 참조하면, 분리막 공정부(200)에서 제1 분리막(210), 제2 분리막(220) 및 제3 분리막(230)의 막면적비는 제2 분리막(220)의 면적비가 가장 클 수 있다.
도 3 내지 도 5는 제1 분리막(210), 제2 분리막(220) 및 제3 분리막(230)의 면적비를 변화시키면서 바이오메탄의 농도 변화에 따른 CH4 회수율, CO2 제거율, Stage cut의 결과를 나타낸다.
도 3 내지 도 5에 나타나는 결과는 바이오가스 발전 현장의 실시예이며 하수 슬러지에서 발생된 바이오가스로 조성은 CH4농도 40~65%, CO2농도 35~60%, H2S농도 150~300ppm로 측정되었다.
도 3은 바이오메탄 농도에 따른 메탄회수율을 측정한 결과를 나타낸다.
도 3을 참조하면, 분리막 2단 운전결과 1단 막면적과 2단 막면적비가 1:1보다는 1:2에서 메탄의 회수율이 증가하는 것을 확인할 수 있다.
이는 2단 분리막의 면적 증가에 따라 2단 분리막의 투과량이 증가하고 재순환율이 증가하여 공급가스의 CO2 제거가 잘 이루어지게 되어 같은 메탄농도 생산기준으로 메탄회수율이 증가하는 결과를 확인할 수 이싸ㄷ.
또한, 분리막 3단 운전은 막면적 비를 1:1:1, 1:2:1, 1:2:2로 진행하였다.
결과에서와 같이 메탄회수율은 막면적 비를 1:2:1로 운전하였을 때 가장 높게 확인되었다.(95~98.5%) 이는 2단 운전결과와 마찬가지고 2단의 막면적비 증가에 따라 2단의 투과량이 증가하고 재순환율이 증가하여 메탄회수율을 증가함을 확인할 수 있다.
반면 3단의 막면적 증가는 메탄회수율을 감소시키는 결과를 나타내었는데 이는 1단에서 투과된 가스가 3단에 공급되어 막면적이 증가하면 투과량이 증가하고 투과량 증가에 따라 투과가스의 메탄농도가 증가되어 배출되기 때문에 3단에서의 재순환량은 감소하고 공정의 메탄회수율은 감소하는 결과를 확인할 수 있다.
도 4는 바이오메탄 농도에 따른 CO2 제거율을 나타낸 결과이다. 결과에서와 같이 CO2 제거율은 2단공정이 3단공정보다 높은 결과를 보이고 있다. 이는 2단공정의 경우 1단의 투과가스가 전부 배출되어 CO2 제거측면에서 좋은 결과를 보이고 있는 것이고 3단의 경우 1단에서 투과된 가스가 3단 분리막에서 CO2는 분리투과 배출되고 투과되지 않은 일부의 CO2는 재순환되기 때문에 나타나는 현상으로 설명할 수 있다.
2단 분리막 운전의 경우 2단 분리막의 막면적이 증가하게 되면 2단 분리막에서 투과되어 재순환되는 CO2의 증가에 따라 1단 분리막에서 투과되어 제거되는 CO2량은 감소하게 되어 CO2 제거율은 감소하게 된다.
3단운전의 경우 2단 분리막의 막면적 증가에 따른 영향보다는 3단 분리막의 막면적이 지배적인 역할을 하게 됨을 확인할 수 있다.
도 5를 참조하면, 바이오메탄 농도에 따른 재순환율을 나타낸 것으로 2단보다는 3단의 재순환율이 높고 2단의 막면적을 증가시킬수록 재순화율이 증가하며 3단 분리막의 막면적을 감소시킬수록 재순환율이 증가하는 결과를 확인할 수 있다.
한편, 이하에서는, 첨부된 도면을 참조하여 본 발명의 또 다른 실시예에 따른 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 방법을 설명하면 다음과 같다. 단, 본 발명의 일 실시예에 따른 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템에서 설명한 바와 동일한 것에 대해서는 그 설명을 생략하기로 한다.
도 6은 본 발명의 또 다른 실시예에 따른 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 방법의 순서도이다. 도 6의 설명에 있어서, 도 1 내지 도 5와 동일한 참조부호는 동일한 부재를 나타내며 상세한 설명은 생략하기로 한다.
도 6을 참조하면, 본 발명의 또 다른 실시예에 따른 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 방법은 압축기(100)로 바이오가스를 공급하는 공급단계(S100), 분리막 공정부(200)를 이용하여 공급된 상기 바이오가스를 정제는 정제단계(S200), 상기 정제단계에서 생성된 부생가스 중 일부를 재순환하는 가스 재순환단계(S300) 및 상기 정제단계에서 생성된 부생가스 중 일부를 가스발전기(300)로 공급하여 전기를 생산하는 전기 생산단계(S400)를 포함할 수 있다.
공급단계(S100)는 바이오가스를 공급받아 압축기(100)를 통해 압축을 진행하여 분리막 공정부(200)로 압축된 가스를 공급한다.
정제단계(S200)는 분리막 공정부(200)를 이용하여 공급된 상기 바이오가스를 정제할 수 있다. 정제단계에 사용되는 분리막 공정부(200)는 다단분리막 공정을 이용하여 바이오메탄의 회수율을 증대할 수 있다. 분리막 공정부(200)에서 생성되는 부생가스는 재순환을 하거나, 전기를 생산하도록 공급될 수 있다.
일실시예로, 분리막 공정부(200)는 제1 분리막(210), 제2 분리막(220) 및 제3 분리막(230)을 포함하며, 부생가스는 제2 분리막(220)에서 생성되는 제3 가스(G3)와 상기 제3 분리막(230) 공정에서 생성되는 제4 가스(G4)를 포함할 수 있다.
일실시예로, 제3 가스(G3)는 압축기(100)로 공급되어 재순환공정이 진행될 수 있으며, 제4 가스(G4)는 상기 가스발전기(300)로 공급되어 발전을 통해 메탄 회수율을 증대할 수 있다.
또한, 정제단계(S200)에 사용되는 분리막 공정부(200)는 제1 분리막(210), 제2 분리막(220) 및 제3 분리막(230)의 막면적비는 상기 제2 분리막(220)의 면적비가 가장크게 설정될 수 있다.
일실시예로, 제1 분리막(210), 제2 분리막(220) 및 제3 분리막(230)은 1:2:1의 비를 가질 수 있다.
가스 재순환단계(S300)는 정제단계(S200)에서 생성되는 부생가스 중 일부를 순환시켜 메탄 회수율을 증대할 수 있다.
전기 생산단계(S400)는 정제단계(S200)에서 생성되는 부생가스 중 일부를 가스발전기(300)로 공급하여 전력을 생산할 수 있으며, 가스 재순환단계에서 공급되는 가스량을 제어하여 압축기(100)의 효율을 증대할 수 있다.
이상으로 본 발명의 실시 예에 관하여 첨부된 도면을 참조하여 구체적으로 살펴보았다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
[부호의 설명] 100 : 압축기, 200 : 분리막 공정부, 210 : 제1 분리막, 220 : 제2 분리막, 230 : 제3 분리막, 300 : 가스발전기

Claims (16)

  1. 유입되는 바이오 가스를 압축하는 압축기;
    압축된 바이오가스를 바이오메탄, 농축 이산화탄소 및 부생가스로 분리하는 분리막 공정부;
    상기 부생가스를 이용하여 전력을 생산하는 가스발전기;
    를 포함하며,
    상기 분리막 공정부에서 생성되는 부생가스는 재순환되거나, 상기 가스발전기로 공급되어 전력을 생산하는 것을 특징으로 하는 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템.
  2. 제1 항에 있어서,
    상기 분리막 공정부는 다단분리막 공정을 이용하는 것을 특징으로 하는 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템.
  3. 제1 항에 있어서,
    상기 분리막 공정부의 분리막은 이산화탄소 투과도가 50GPU 이상인 것을 특징으로 하는 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템.
  4. 제1 항에 있어서,
    상기 분리막 공정부의 분리막은 이산화탄소/메탄의 선택도가 10이상인 것을 특징으로 하는 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템.
  5. 제1 항에 있어서,
    상기 분리막 공정부의 분리막 소재는 폴리이미드, 폴리에테르이미드, 폴리술폰, 폴리에테르술폰, 폴리카보네이트 및 셀룰로오즈아세테이트로 이루어진 군으로부터 선택된 어느 하나의 것이 사용되는 것을 특징으로 하는 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템.
  6. 제2 항에 있어서,
    상기 분리막 공정부는 제1 분리막, 제2 분리막 및 제3 분리막을 포함하며,
    상기 제1 분리막을 통과하지 못하고 농축되는 제1 가스는 상기 제2 분리막으로 공급되고,
    상기 제1 분리막을 통과하여 분리되는 제2 가스는 상기 제3 분리막으로 공급되며,
    상기 제2 분리막에서 통과되지 못하고 분리되는 바이오메탄과 상기 제2 분리막을 통과하는 제3 가스를 분리하고,
    상기 제3 분리막은 상기 제3 분리막을 통과하여 분리되는 농축 이산화탄소와 상기 제3 분리막을 통과하지 못하고 농축되는 제4 가스로 분리되는 것을 특징으로 하는 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템.
  7. 제6 항에 있어서,
    상기 부생가스는 상기 제3 가스와 상기 제4 가스를 포함하는 것을 특징으로 하는 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템.
  8. 제6 항에 있어서,
    상기 제3 가스는 상기 압축기로 공급되며, 상기 제4 가스는 가스발전기로 공급되는 것을 특징으로 하는 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템.
  9. 제6 항에 있어서,
    상기 제1 분리막, 상기 제2 분리막 및 상기 제3 분리막의 막면적비는 상기 제2 분리막의 면적비가 가장 큰 것을 특징으로 하는 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템.
  10. 제9 항에 있어서,
    상기 제1 분리막, 상기 제2 분리막 및 상기 제3 분리막은 1:2:1의 비를 가지는 것을 특징으로 하는 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템.
  11. 압축기로 바이오가스를 공급하는 공급단계;
    분리막 공정부를 이용하여 공급된 상기 바이오가스를 정제는 정제단계;
    상기 정제단계에서 생성된 부생가스 중 일부를 재순환하는 가스 재순환단계; 및
    상기 정제단계에서 생상된 부생가스 중 일부를 가스발전기로 공급하여 전기를 생산하는 전기 생산단계;
    를 포함하는 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 방법.
  12. 제11 항에 있어서,
    상기 분리막 공정부는 다단분리막 공정을 이용하는 것을 특징으로 하는 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 방법.
  13. 제12 항에 있어서,
    상기 분리막 공정부는 제1 분리막, 제2 분리막 및 제3 분리막을 포함하며,
    상기 부생가스는 상기 제2 분리막에서 생성되는 제3 가스와 상기 제3 분리막 공정에서 생성되는 제4 가스를 포함하는 것을 특징으로 하는 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 방법.
  14. 제13 항에 있어서,
    상기 제3 가스는 상기 압축기로 공급되며, 상기 제4 가스는 상기 가스발전기로 공급되는 것을 특징으로 하는 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 방법.
  15. 제13 항에 있어서,
    상기 제1 분리막, 상기 제2 분리막 및 상기 제3 분리막의 막면적비는 상기 제2 분리막의 면적비가 가장 큰 것을 특징으로 하는 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 방법.
  16. 제15 항에 있어서,
    상기 제1 분리막, 상기 제2 분리막 및 상기 제3 분리막은 1:2:1의 비를 가지는 것을 특징으로 하는 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 방법.
PCT/KR2021/009722 2020-09-10 2021-07-27 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템 및 방법 WO2022055125A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200116125A KR102409244B1 (ko) 2020-09-10 2020-09-10 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템 및 방법
KR10-2020-0116125 2020-09-10

Publications (1)

Publication Number Publication Date
WO2022055125A1 true WO2022055125A1 (ko) 2022-03-17

Family

ID=80630363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009722 WO2022055125A1 (ko) 2020-09-10 2021-07-27 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템 및 방법

Country Status (2)

Country Link
KR (1) KR102409244B1 (ko)
WO (1) WO2022055125A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116060574A (zh) * 2023-04-07 2023-05-05 山西金瑞高压环件有限公司 室式天然气节能减排锻造加热炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6601543B2 (en) * 2000-09-23 2003-08-05 G.A.S. Energietechnologie Gmbh Method of utilizing a methane-containing biogas
JP2009242773A (ja) * 2008-03-14 2009-10-22 Air Water Inc メタンガス濃縮装置および方法ならびに燃料ガスの製造装置および方法
KR101086798B1 (ko) * 2011-04-20 2011-11-25 한국화학연구원 매립지 가스로부터 고순도 메탄가스의 분리방법 및 메탄가스 정제장치
KR101529130B1 (ko) * 2014-09-18 2015-06-17 한국화학연구원 저온 저압의 운전조건을 특징으로 하는 고순도 메탄가스의 분리를 위한 다단계 막분리 정제공정 및 장치
KR101653362B1 (ko) * 2014-03-05 2016-09-01 한국기계연구원 막 분리와 엔진 연소기술을 이용한 바이오메탄 및 전기 동시 생산 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101444186B1 (ko) 2013-06-21 2014-09-26 현대건설주식회사 바이오가스 정제장치 및 정제방법
KR101529129B1 (ko) 2014-09-18 2015-06-17 한국화학연구원 고순도 메탄가스의 분리를 위한 다단계 막분리 정제공정 및 장치
KR101881090B1 (ko) 2015-12-18 2018-08-24 (주)에어레인 중공사 복합막 모듈을 이용한 다단 바이오가스 정제방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6601543B2 (en) * 2000-09-23 2003-08-05 G.A.S. Energietechnologie Gmbh Method of utilizing a methane-containing biogas
JP2009242773A (ja) * 2008-03-14 2009-10-22 Air Water Inc メタンガス濃縮装置および方法ならびに燃料ガスの製造装置および方法
KR101086798B1 (ko) * 2011-04-20 2011-11-25 한국화학연구원 매립지 가스로부터 고순도 메탄가스의 분리방법 및 메탄가스 정제장치
KR101653362B1 (ko) * 2014-03-05 2016-09-01 한국기계연구원 막 분리와 엔진 연소기술을 이용한 바이오메탄 및 전기 동시 생산 장치
KR101529130B1 (ko) * 2014-09-18 2015-06-17 한국화학연구원 저온 저압의 운전조건을 특징으로 하는 고순도 메탄가스의 분리를 위한 다단계 막분리 정제공정 및 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116060574A (zh) * 2023-04-07 2023-05-05 山西金瑞高压环件有限公司 室式天然气节能减排锻造加热炉
CN116060574B (zh) * 2023-04-07 2023-06-13 山西金瑞高压环件有限公司 室式天然气节能减排锻造加热炉

Also Published As

Publication number Publication date
KR102409244B1 (ko) 2022-06-20
KR20220033812A (ko) 2022-03-17

Similar Documents

Publication Publication Date Title
US5079103A (en) Fuel cells with hydrogen recycle
US9988326B2 (en) Method for the final purification of biogas for producing biomethane
WO2019172501A1 (ko) 배기가스 내 이산화탄소 포집 및 자원화 시스템
CN108321416B (zh) Co2近零排放的整体煤气化燃料电池发电系统及方法
US20090214902A1 (en) Adsorptive Bulk Separation for Upgrading Gas Streams
WO2022055125A1 (ko) 바이오가스내 메탄 회수 효율향상을 위한 정제 및 재순환 시스템 및 방법
CN1304780A (zh) 生产二氧化碳的方法和装置
KR20000053256A (ko) 몇몇의 내부 변환 연료 전지 스택을 포함하는 파워 시스템에서, 반응물 흐름을 위한 장치
JP2011523671A (ja) メタン抽出のためのバイオガス精製方法およびシステム
JPH03184270A (ja) 燃料を電気に変換する方法及び装置
JPS6486457A (en) Fuel cell recirculation system
WO2018066756A1 (ko) 이산화탄소 분리 장치
WO2016140536A1 (ko) 연료전지 시스템
CN102434890B (zh) 一种为水泥回转窑多通道燃烧器富氧助燃提供富氧气体的方法
CN112864438A (zh) 能够实现二氧化碳捕集的高温燃料电池耦合发电系统及方法
CN113501496A (zh) 一种钢铁厂富氢气体综合回收利用的方法和系统
WO2020218653A1 (ko) 연소배가스를 이용한 질소농축공기의 제조방법
ATE463463T1 (de) Stufensystem zur herstellung gereinigten wasserstoffs aus einer reaktionsgasmischung mit einer kohlenwasserstoffverbindung
CN115417378B (zh) 从含氢气体中回收和提纯氢气的方法及系统
WO2023027486A1 (ko) 수소 정제용 산소 제거 촉매제 및 이를 포함하는 수소 정제 장치
WO2019189994A1 (ko) 바이오가스 고질화 전처리 방법
CN212560043U (zh) 膜分离氢气分级回收利用系统
CN202643681U (zh) 一种用于气相底物发酵生产有机醇的系统
JP7468822B1 (ja) ガス分離システム及びメタン富化ガスの製造方法
CN211871895U (zh) 一种沼气脱碳压缩机余热回收利用系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866992

Country of ref document: EP

Kind code of ref document: A1