WO2013154367A1 - 정삼투-연료전지 하이브리드 담수화 및 발전방법 및 이를 이용한 정삼투-연료전지 하이브리드 담수화 및 발전시스템 - Google Patents

정삼투-연료전지 하이브리드 담수화 및 발전방법 및 이를 이용한 정삼투-연료전지 하이브리드 담수화 및 발전시스템 Download PDF

Info

Publication number
WO2013154367A1
WO2013154367A1 PCT/KR2013/003049 KR2013003049W WO2013154367A1 WO 2013154367 A1 WO2013154367 A1 WO 2013154367A1 KR 2013003049 W KR2013003049 W KR 2013003049W WO 2013154367 A1 WO2013154367 A1 WO 2013154367A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
solution
forward osmosis
power generation
hydrocarbon
Prior art date
Application number
PCT/KR2013/003049
Other languages
English (en)
French (fr)
Inventor
김영
이공훈
이정호
최준석
박인섭
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2013154367A1 publication Critical patent/WO2013154367A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Definitions

  • the present invention relates to a forward osmosis-fuel cell hybrid desalination and power generation method and a forward osmosis-fuel cell hybrid desalination and power generation system using the same, and more particularly, by combining the forward osmosis process and a fuel cell power generation system,
  • the present invention relates to a forward osmosis-fuel cell hybrid desalination and power generation method, and a forward osmosis-fuel cell hybrid desalination and power generation system using the same.
  • the renewable energy that is in the spotlight includes energy using solar light, wind power, and hydropower (hydropower), and the current direction of development of renewable energy is concentrated on them.
  • Such major renewable energy has problems such as high initial investment cost, output instability, and ecosystem disturbance.
  • the method using the salinity difference between seawater and fresh water as energy has the advantage of being stable without disturbing the ecosystem in addition to the advantages of renewable energy.
  • the desalination technology of seawater is proposed among the technologies using the salinity difference between seawater and freshwater, but it is commercialized in part.
  • the energy required in the step of separating the water from the induction solute is high, causing a decrease in the overall energy efficiency.
  • the present invention is to solve the above problems, unlike the conventional, by effectively combining the forward osmosis process and the fuel cell power generation system, the induction solution used in the forward osmosis process can be used as a raw material of the fuel cell, as a separate It is an object of the present invention to provide a forward osmosis-fuel cell hybrid desalination and power generation method that can save energy used in the solute separation process, and a forward osmosis-fuel cell hybrid desalination and power generation system using the same.
  • the induction solution used in the forward osmosis process can generate heat and power through the internal reaction as a raw material of the fuel cell.
  • the aim is to significantly improve the power generation efficiency.
  • the induction solution after the forward osmosis process can be used as an optimized raw material for fuel cells without post-treatment, thereby maximizing energy saving and generating efficiency. It aims to be able to do it.
  • a step of adding a solution containing a salt and a hydrocarbon solution having a higher concentration than the solution containing the salt into the osmotic chamber a step of adding a solution containing a salt and a hydrocarbon solution having a higher concentration than the solution containing the salt into the osmotic chamber.
  • the fresh water is mixed with the hydrocarbon solution Forward osmosis step of producing a mixed solution; An anode input step of injecting the mixed solution into an anode of a fuel cell; A cathode input step of injecting oxygen into the cathode of the fuel cell; And a fresh water and power generation step of generating heat, power, and fresh water by the reaction in the fuel cell.
  • the freshwater and power generation step may include: an anode reaction step of delivering hydrogen ions and electrons to a cathode of the fuel cell by reacting hydrocarbons and fresh water in the mixed solution in the anode of the fuel cell; A cathode reaction step of reacting the hydrogen ions and electrons with the oxygen in the cathode of the fuel cell to generate fresh water; And a power generation step in which heat and power are generated by the reaction of the anode reaction step and the cathode reaction step.
  • the fuel cell may be a direct alcohol fuel cell, a polymer electrolyte fuel cell, a molten carbonate fuel cell, or an indirect alcohol type fuel cell.
  • the mixed solution may include hydrocarbon and water. It is made, and with respect to 100 parts by weight of the mixed solution, the hydrocarbon is characterized in that it comprises 3 to 50 parts by weight.
  • the osmotic chamber a boundary of the semi-permeable membrane is formed therein, characterized in that the solution containing the salt and the hydrocarbon solution are separately introduced into the semi-permeable membrane boundary.
  • the hydrocarbon solution is characterized in that it comprises at least one of propanol, butanol, ethanol or methanol.
  • the forward osmosis-fuel cell hybrid desalination and power generation system includes a forward osmosis part that generates forward osmosis by using a concentration difference between a solution containing a salt and a hydrocarbon solution having a higher concentration than the solution containing a salt; It comprises an anode layer, a cathode layer and an electrolyte layer, the hydrocarbon solution is passed through the forward osmosis, fuel cell unit for generating heat, power and fresh water by the internal reaction; characterized in that it comprises a.
  • the internal reaction is a hydrocarbon solution passing through the forward osmosis part into the anode layer, the hydrocarbon and fresh water react with the injected hydrocarbon solution to generate hydrogen ions and electrons, the hydrogen ions and Electrons are transferred to the cathode layer through the electrolyte layer, and react with oxygen introduced into the cathode layer to generate heat, power, and fresh water.
  • the fuel cell unit may be any one of a direct alcohol fuel cell, a polymer electrolyte fuel cell, a molten carbonate fuel cell, and an indirect alcohol fuel cell.
  • the forward osmosis unit is a solution containing the salt and the hydrocarbon solution are separated and introduced into the semi-permeable membrane, the fresh water contained in the solution containing the salt by the concentration difference between the solution containing the salt and the hydrocarbon solution Some of the movement to the hydrocarbon solution, characterized in that to lower the concentration of the hydrocarbon solution.
  • the hydrocarbon solution passed through the forward osmosis comprises a hydrocarbon and water, characterized in that the hydrocarbon comprises 3 to 50 parts by weight based on 100 parts by weight of the hydrocarbon solution passed through the forward osmosis.
  • the hydrocarbon solution is characterized in that it comprises at least one of propanol, butanol, ethanol or methanol.
  • the forward osmosis-fuel cell hybrid desalination and power generation method of the present invention and the forward osmosis-fuel cell hybrid desalination and power generation system using the same, unlike the conventional method, by effectively combining the forward osmosis process and the fuel cell power generation system, Since the used induction solution can be used as a raw material of the fuel cell, there is an advantage in that it is possible to save energy used in the separation process of the induction solute.
  • the induction solution used in the forward osmosis process can generate heat and power through the internal reaction as a raw material of the fuel cell. Therefore, there is an advantage that can significantly improve the power generation efficiency.
  • the induction solution after the forward osmosis process can be used as an optimized raw material for fuel cells without post-treatment, thereby maximizing energy saving and generating efficiency. There is an advantage to this.
  • FIG. 1 is a flow chart sequentially showing a forward osmosis-fuel cell hybrid desalination and power generation method according to the present invention
  • Figure 2 is a plan view showing a forward osmosis-fuel cell hybrid desalination and power generation system according to the present invention
  • the forward osmosis-fuel cell hybrid desalination and power generation method of the present invention the input step (S10), forward osmosis step (S20), anode input step (S30), cathode input step (S40) And freshwater and power generation step (S50).
  • the input step (S10) is a step of introducing a solution containing a salt and a hydrocarbon solution having a higher concentration than the solution containing the salt into the osmotic chamber. This is a process in which a hydrocarbon solution is used as an induction solution, and a solution containing an induction solution and a salt is separated and introduced into an osmotic chamber.
  • the solution containing the salt means all the solution containing the salt, it is preferably effective to use sea water.
  • the hydrocarbon solution is a solution capable of generating osmotic pressure, but may be a solution containing a hydrocarbon, but more preferably, at least one of propanol, butanol, ethanol or methanol is effective. .
  • the hydrocarbon solution is preferably higher in concentration than the solution containing the salt in order to perform the forward osmosis process, more preferably, after the following forward osmosis step (S20) to the optimum content ratio of the hydrocarbon in the induction solution It is effective to set the concentration of the hydrocarbon solution to match.
  • the osmosis chamber has a boundary of a semi-permeable membrane formed therein, so that the solution containing the salt and the hydrocarbon solution are separately introduced into the semi-permeable membrane.
  • the hydrocarbon solution is preferably higher in concentration than the salt-containing solution, otherwise, there is a problem that fresh water contained in the salt-containing solution does not move to the hydrocarbon solution.
  • the salt-containing solution is composed of fresh water and salt, and forward osmosis moves the fresh water contained in the salt-containing solution into the hydrocarbon solution having a high concentration.
  • the mixed solution having a lower concentration of the hydrocarbon solution is obtained. Is generated. That is, the fresh water is added to the hydrocarbon solution is defined as a mixed solution.
  • the mixed solution is preferably lower in concentration than the hydrocarbon solution. This is because the mixed solution is a mixture of a hydrocarbon solution and fresh water, so that the concentration of the hydrocarbon solution must be mixed with the fresh water.
  • the mixed solution is used as a raw material of the fuel cell.
  • the mixed solution comprises a hydrocarbon and water, with respect to 100 parts by weight of the mixed solution, the hydrocarbon preferably comprises 3 to 50 parts by weight, more preferably Preferably it is effective to include 10 to 30 parts by weight, most preferably 20 parts by weight.
  • the anode input step (S30) is a step of injecting the mixed solution to the anode of the fuel cell. This is a process for injecting the mixed solution generated in the forward osmosis step (S20) to the anode for the reaction in the anode.
  • the mixed solution is added to the anode.
  • the cathode injection step S40 is a step of injecting oxygen into the cathode of the fuel cell. This is a process of injecting oxygen from the outside to the cathode to cause a cathode reaction, that is, the reaction with the material delivered in the anode input step (S30).
  • the anode input step (S30) and the cathode input step (S40) is preferably carried out at the same time.
  • the fuel cell is a fuel cell capable of generating electric power from a hydrocarbon solution, and is preferably a direct alcohol fuel cell, a polymer electrolyte fuel cell, a molten carbonate fuel cell or an indirect alcohol fuel cell, more preferably, It is effective to be a direct alcohol fuel cell or a polymer electrolyte fuel cell.
  • Molten carbonate fuel cell requires high temperature heat and indirect alcohol fuel cell requires additional process such as hydrocarbon reforming process and carbon monoxide removal process, but direct alcohol fuel cell and polymer electrolyte fuel cell can be directly applied without additional process. This makes it more suitable for the present invention.
  • the fresh water and power production step (S50) is a step of generating heat, power and fresh water by the reaction in the fuel cell. This is the process in which power generation reactions occur in fuel cells.
  • Fresh water and power production step (S50) preferably comprises an anode reaction step (S51), the cathode reaction step (S52) and the power generation step (S53).
  • the anode reaction step (S51) is a step of delivering hydrogen ions and electrons to the cathode of the fuel cell by reacting the hydrocarbon and fresh water in the mixed solution in the anode of the fuel cell. This relates to the reaction mechanism that occurs at the anode, which is represented as follows.
  • the cathode reaction step (S52) is a step of generating fresh water by reacting the hydrogen ions, electrons, and oxygen in the cathode of the fuel cell. This is a process in which hydrogen ions and electrons generated in the anode reaction step (S51) react with oxygen introduced into the cathode from the outside to generate fresh water.
  • This is a process in which hydrogen ions and electrons generated in the anode reaction step (S51) react with oxygen introduced into the cathode from the outside to generate fresh water.
  • the reaction mechanism and represented by a more specific reaction formula is as follows.
  • the power generation step (S53) is a step of generating heat and power by the reaction of the anode reaction step (S51) and the cathode reaction step (S52). This is a process in which heat and power are generated by the fuel cell internal reaction.
  • the forward osmosis-fuel cell hybrid desalination and power generation system of the present invention is characterized by including an forward osmosis unit 10 and a fuel cell unit 20.
  • This is the same principle as the forward osmosis-fuel cell hybrid desalination and power generation method of the present invention, and the following description is as described above.
  • the forward osmosis part 10 serves to generate the forward osmosis phenomenon by using a concentration difference between a solution containing a salt and a hydrocarbon solution having a higher concentration than the solution containing the salt. This is a device for causing forward osmosis by the concentration difference.
  • the forward osmosis unit 10 is a solution containing the salt and the hydrocarbon solution is separated and introduced to the semi-permeable membrane, the solution containing the salt by the difference in concentration between the solution containing the salt and the hydrocarbon solution Some of the contained fresh water moves to the hydrocarbon solution, thereby lowering the concentration of the hydrocarbon solution.
  • the hydrocarbon solution passed through the forward osmosis unit 10 is made of a hydrocarbon and water, with respect to 100 parts by weight of the hydrocarbon solution passed through the forward osmosis unit 10, the hydrocarbon comprises 3 to 50 parts by weight. desirable.
  • the description of this content ratio is as mentioned above.
  • the fuel cell unit 20 includes an anode layer 21, a cathode layer 23, and an electrolyte layer 22, and a hydrocarbon solution passed through the forward osmosis unit 10 is introduced thereinto, and is heated by internal reaction. , To generate power and fresh water.
  • This is a device for producing power and fresh water as a raw material of a hydrocarbon solution of low concentration produced in the forward osmosis unit (10).
  • the fuel cell unit 20 is a fuel cell capable of generating electric power from a hydrocarbon solution.
  • the fuel cell unit 20 may be any one of a direct alcohol fuel cell, a polymer electrolyte fuel cell, a molten carbonate fuel cell, and an indirect alcohol fuel cell. The description thereof is as mentioned above.
  • the hydrocarbon solution is a solution capable of generating osmotic pressure, but may be a solution containing a hydrocarbon, but more preferably, at least one of propanol, butanol, ethanol or methanol is effective. .
  • the reactor operation inside the fuel cell unit 20 is as follows.
  • a hydrocarbon solution passed through the forward osmosis part 10 is introduced into the anode layer 21, and hydrocarbons and fresh water react in the injected hydrocarbon solution to generate hydrogen ions and electrons, and the hydrogen ions and electrons are
  • the electrolyte layer 22 is transferred to the cathode layer 23 and reacts with oxygen introduced into the cathode layer 23 to generate heat, power, and fresh water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)

Abstract

본 발명은 정삼투-연료전지 하이브리드 담수화 및 발전방법 및 이를 이용한 정삼투-연료전지 하이브리드 담수화 및 발전시스템에 관한 것으로서, 염이 포함된 용액과 상기 염이 포함된 용액보다 농도가 높은 탄화수소 용액을 삼투압챔버에 투입하는 투입단계; 상기 삼투압챔버에서, 상기 염이 포함된 용액과 상기 탄화수소 용액간의 농도차에 의해, 상기 염이 포함된 용액에 포함된 담수 중 일부가 상기 탄화수소 용액으로 이동하여, 상기 탄화수소 용액에 상기 담수가 혼합된 혼합용액을 생성하는 정삼투단계; 상기 혼합용액을 연료전지의 애노드에 투입하는 애노드투입단계; 산소를 상기 연료전지의 캐소드에 투입하는 캐소드투입단계; 및 상기 연료전지 내의 반응에 의해 열, 전력 및 담수를 생성하는 담수 및 전력생성단계;를 포함하여 이루어지는 것을 특징으로 한다.

Description

정삼투-연료전지 하이브리드 담수화 및 발전방법 및 이를 이용한 정삼투-연료전지 하이브리드 담수화 및 발전시스템
본 발명은 정삼투-연료전지 하이브리드 담수화 및 발전방법 및 이를 이용한 정삼투-연료전지 하이브리드 담수화 및 발전시스템에 관한 것으로, 더욱 상세하게는, 정삼투공정과 연료전지 발전시스템을 결합함으로써, 정삼투공정에 사용된 유도용액을 연료전지의 원료로 재활용할 수 있어, 에너지효율을 극대화시킬 수 있는 정삼투-연료전지 하이브리드 담수화 및 발전방법 및 이를 이용한 정삼투-연료전지 하이브리드 담수화 및 발전시스템에 관한 것이다.
최근 산업화로 인하여 화석에너지가 무분별하게 사용되었고, 이로 인하여 온실가스의 농도는 점차 증가한 반면 화석 연료의 부존량은 점차 감소하고 있다. 특히 온실가스의 농도 증가는 기온 및 염이 포함된 용액면 상승을 야기하였으며, 이상기후 현상을 초래하게 되었다.
이에, 에너지의 효율적인 사용 및 절약은 일차적인 대책으로 일부 효과가 있지만 근본적으로 온실가스 배출의 84%를 차지하는 에너지 연소부분 자체를 감소시켜야 하며, 이를 위해서는 미래에너지원으로 지속가능하고 탄소배출이 없는 새로운 에너지에 대한 연구개발 및 실용화가 필요한 시점이다.
현재 각광받고 있는 신재생에너지로는 태양광, 풍력 및 수력(소수력)을 이용한 에너지가 있고, 현재 신재생에너지 개발 방향은 이들에 편중되어 있다. 이 같은 주요 신재생에너지는 높은 초기 투자비용 및 출력의 불안정성, 생태계 교란과 같은 문제점을 가지고 있다. 이에 반하여, 해수와 담수의 염도 차이를 에너지로 이용하는 방식은 신재생에너지의 장점에 더하여, 생태계를 교란시키지 않으면서도 안정적인 장점이 있다.
이렇게 해수와 담수의 염도차를 이용하는 기술 중에 해수의 담수화기술이 제시되고, 이를 일부 상용화하고 있으나, 해수와 담수의 분리공정에서 소모되는 에너지가 많아 효율이 떨어지는 문제가 있다. 특히, 효율을 높이기 위해, 유도용액을 사용하는 정삼투식 담수방법을 도입함에 있어서, 유도용질로부터 물을 분리하는 공정에서 소요되는 에너지가 높아, 전체적인 에너지효율을 저하시키는 원인이 되고 있다.
또한, 종래의 발전방법에 비해, 전력생산효율이 높은 연료전지(fuel cell)를 이용한 발전시스템에 대한 연구가 이루어지고 있으며, 특히, 연료전지에 소요되는 연료로써, 운송 및 저장에 많은 에너지가 소모되고, 안전성에 대한 우려가 있는 수소를 대체할 수 있는 연료를 개발하기 위한 연구가 이루어지고 있다.
따라서, 해수의 담수화 공정에 있어서의 에너지효율의 향상 기술 및 연료전지의 발전효율 향상 기술에 대한 개발이 요구되고 있다.
본 발명은 상기 문제점을 해결하기 위한 것으로서, 종래와 달리, 정삼투공정과 연료전지 발전시스템을 효과적으로 결합함으로써, 정삼투공정에 사용된 유도용액을 그대로 연료전지의 원료로 사용할 수 있어, 별도의 유도용질의 분리공정에 사용되는 에너지를 절약할 수 있는 정삼투-연료전지 하이브리드 담수화 및 발전방법 및 이를 이용한 정삼투-연료전지 하이브리드 담수화 및 발전시스템을 제공하는 것을 목적으로 한다.
또한, 정삼투공정에 사용된 유도용액이 연료전지의 원료로 내부반응을 통해, 열 및 전력을 생성할 수 있어, 재활용에너지를 통한 발전으로 종래에 비해, 연료전지의 원료비용절감으로, 친환경적이며, 발전효율을 현저히 향상시킬 수 있는 것을 목적으로 한다.
또한, 연료전지의 발전반응으로 인해, 전력이 생성될 뿐만 아니라, 유도용액을 담수화하는 역할을 수행하는 바, 별도로 분리공정에 에너지를 소비하지 않으면서도 해수를 담수화할 수 있어, 에너지 효율을 극대화할 수 있는 것을 목적으로 한다.
뿐만 아니라, 정삼투공정에 유도용액으로 사용되는 탄화수소 용액의 탄화수소 함량을 최적화함으로써, 정삼투공정 후의 유도용액을 후처리없이 연료전지에 최적화된 원료로 사용할 수 있어, 에너지절감 및 발전효율 극대화를 달성할 수 있는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 정삼투-연료전지 하이브리드 담수화 및 발전방법은, 염이 포함된 용액과 상기 염이 포함된 용액보다 농도가 높은 탄화수소 용액을 삼투압챔버에 투입하는 투입단계; 상기 삼투압챔버에서, 상기 염이 포함된 용액과 상기 탄화수소 용액간의 농도차에 의해, 상기 염이 포함된 용액에 포함된 담수 중 일부가 상기 탄화수소 용액으로 이동하여, 상기 탄화수소 용액에 상기 담수가 혼합된 혼합용액을 생성하는 정삼투단계; 상기 혼합용액을 연료전지의 애노드에 투입하는 애노드투입단계; 산소를 상기 연료전지의 캐소드에 투입하는 캐소드투입단계; 및 상기 연료전지 내의 반응에 의해 열, 전력 및 담수를 생성하는 담수 및 전력생성단계;를 포함하여 이루어지는 것을 특징으로 한다.
상기 담수 및 전력생성단계는, 상기 연료전지의 애노드에서, 상기 혼합용액 내의 탄화수소와 담수가 반응하여, 상기 연료전지의 캐소드에 수소이온 및 전자를 전달하는 애노드반응단계; 상기 연료전지의 캐소드에서, 상기 수소이온 및 전자와 상기 산소가 반응하여, 담수를 생성하는 캐소드반응단계; 및 상기 애노드반응단계 및 상기 캐소드반응단계의 반응에 의하여, 열 및 전력이 생성되는 발전단계;를 포함하여 이루어지는 것을 특징으로 한다.
또한, 상기 연료전지는, 직접알코올형 연료전지, 고분자전해질 연료전지, 용융탄산염 연료전지 또는 간접알코올형 연료전지인 것을 특징으로 하며, 상기 정삼투단계에서, 상기 혼합용액은, 탄화수소 및 물을 포함하여 이루어지며, 상기 혼합용액 100중량부에 대하여, 상기 탄화수소는 3 내지 50중량부를 포함하는 것을 특징으로 한다.
또한, 상기 투입단계에서, 상기 삼투압챔버는, 내부에 반투막의 경계가 형성되어, 상기 반투막을 경계로, 상기 염이 포함된 용액과 상기 탄화수소 용액이 각각 분리투입되는 것을 특징으로 한다.
또한, 상기 탄화수소용액은, 프로판올, 부탄올, 에탄올 또는 메탄올 중 적어도 하나를 포함하는 것을 특징으로 한다.
본 발명에 따른 정삼투-연료전지 하이브리드 담수화 및 발전시스템은, 염이 포함된 용액과 상기 염이 포함된 용액보다 농도가 높은 탄화수소 용액간의 농도차를 이용하여, 정삼투현상을 발생시키는 정삼투부; 애노드층, 캐소드층 및 전해질층을 포함하며, 상기 정삼투부를 거친 탄화수소 용액이 투입되어, 내부반응에 의해 열, 전력 및 담수를 생성하는 연료전지부;를 포함하여 이루어지는 것을 특징으로 한다.
상기 연료전지부에서, 상기 내부반응은, 상기 애노드층에 상기 정삼투부를 거친 탄화수소 용액이 투입되며, 상기 투입된 탄화수소 용액 내의 탄화수소와 담수가 반응하여, 수소이온 및 전자를 생성하고, 상기 수소이온 및 전자는 상기 전해질층을 거쳐, 상기 캐소드층으로 전달되어, 상기 캐소드층에 투입된 산소와 반응하여, 열, 전력 및 담수를 생성하는 것을 특징으로 한다.
또한, 상기 연료전지부는, 직접알코올형 연료전지, 고분자전해질 연료전지, 용융탄산염 연료전지 또는 간접알코올형 연료전지 중 어느 하나인 것을 특징으로 한다.
상기 정삼투부는, 반투막을 경계로 상기 염이 포함된 용액 및 상기 탄화수소 용액이 분리되어 투입되며, 상기 염이 포함된 용액과 상기 탄화수소 용액간의 농도차에 의해 상기 염이 포함된 용액에 포함된 담수 중 일부가 상기 탄화수소 용액으로 이동하여, 상기 탄화수소 용액의 농도를 낮추는 것을 특징으로 한다.
또한, 상기 정삼투부를 거친 탄화수소 용액은, 탄화수소 및 물을 포함하여 이루어지며, 상기 정삼투부를 거친 탄화수소 용액 100중량부에 대하여, 상기 탄화수소는 3 내지 50중량부를 포함하는 것을 특징으로 한다.
또한, 상기 탄화수소용액은, 프로판올, 부탄올, 에탄올 또는 메탄올 중 적어도 하나를 포함하는 것을 특징으로 한다.
본 발명의 정삼투-연료전지 하이브리드 담수화 및 발전방법 및 이를 이용한 정삼투-연료전지 하이브리드 담수화 및 발전시스템에 따르면, 종래와 달리, 정삼투공정과 연료전지 발전시스템을 효과적으로 결합함으로써, 정삼투공정에 사용된 유도용액을 그대로 연료전지의 원료로 사용할 수 있어, 별도의 유도용질의 분리공정에 사용되는 에너지를 절약할 수 있는 장점이 있다.
또한, 정삼투공정에 사용된 유도용액이 연료전지의 원료로 내부반응을 통해, 열 및 전력을 생성할 수 있어, 재활용에너지를 통한 발전으로 종래에 비해, 연료전지의 원료비용절감으로, 친환경적이며, 발전효율을 현저히 향상시킬 수 있는 장점이 있다.
또한, 연료전지의 발전반응으로 인해, 전력이 생성될 뿐만 아니라, 유도용액을 담수화하는 역할을 수행하는 바, 별도로 분리공정에 에너지를 소비하지 않으면서도 해수를 담수화할 수 있어, 에너지 효율을 극대화할 수 있는 장점이 있다.
뿐만 아니라, 정삼투공정에 유도용액으로 사용되는 탄화수소 용액의 탄화수소 함량을 최적화함으로써, 정삼투공정 후의 유도용액을 후처리없이 연료전지에 최적화된 원료로 사용할 수 있어, 에너지절감 및 발전효율 극대화를 달성할 수 있는 장점이 있다.
도 1은 본 발명에 따른 정삼투-연료전지 하이브리드 담수화 및 발전방법을 순차적으로 나타낸 순서도
도 2는 본 발명에 따른 정삼투-연료전지 하이브리드 담수화 및 발전시스템을 나타낸 평면도
이하, 본 발명에 의한 정삼투-연료전지 하이브리드 담수화 및 발전방법 및 이를 이용한 정삼투-연료전지 하이브리드 담수화 및 발전시스템에 대하여 본 발명의 바람직한 하나의 실시형태를 첨부된 도면을 참조하여 상세히 설명한다. 본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시목적을 위한 것이고, 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.
먼저, 도 1에 나타난 바와 같이, 본 발명의 정삼투-연료전지 하이브리드 담수화 및 발전방법은, 투입단계(S10), 정삼투단계(S20), 애노드투입단계(S30), 캐소드투입단계(S40) 및 담수 및 전력생성단계(S50)를 포함하여 이루어지는 것을 특징으로 한다.
투입단계(S10)는 염이 포함된 용액과 상기 염이 포함된 용액보다 농도가 높은 탄화수소 용액을 삼투압챔버에 투입하는 단계이다. 이는 유도용액으로 탄화수소용액을 사용하여, 유도용액과 염이 포함된 용액을 분리하여 삼투압챔버에 투입시키는 공정이다.
여기서, 염이 포함된 용액은 염이 포함된 모든 용액을 의미하며, 바람직하게는 해수를 사용하는 것이 효과적이다.
또한, 여기서, 탄화수소 용액은, 삼투압을 발생시킬 수 있는 용액으로서, 탄화수소(Hydrocarbon)가 포함된 용액이면 무방하나, 더 바람직하게는, 프로판올, 부탄올, 에탄올 또는 메탄올 중 적어도 하나를 포함하는 것이 효과적이다.
또한, 탄화수소 용액은 정삼투공정을 수행하기 위해, 염이 포함된 용액보다 농도가 높은 것이 바람직하며, 더욱 바람직하게는, 이하의 정삼투단계(S20)후에 유도용액 내의 탄화수소의 최적의 함량비율에 부합하도록 탄화수소 용액의 농도를 설정하는 것이 효과적이다.
또한, 투입단계(S10)에서, 상기 삼투압챔버는 내부에 반투막의 경계가 형성되어, 상기 반투막을 경계로, 상기 염이 포함된 용액과 상기 탄화수소 용액이 각각 분리투입되는 것이 바람직하다. 삼투압챔버 내에 반투막을 경계로, 한쪽에는 염이 포함된 용액, 한쪽에는 탄화수소 용액을 분리하여 투입함으로써, 반투막을 통해, 농도차에 의한 정삼투현상이 일어나게 된다.
다음으로, 정삼투단계(S20)는 상기 삼투압챔버에서, 상기 염이 포함된 용액과 상기 탄화수소 용액간의 농도차에 의해, 상기 염이 포함된 용액에 포함된 담수 중 일부가 상기 탄화수소 용액으로 이동하여, 상기 탄화수소 용액에 상기 담수가 혼합된 혼합용액을 생성하는 단계이다. 이는 농도차에 의한 정삼투현상이 일어나는 공정이다.
여기서, 상기 탄화수소 용액은 염이 포함된 용액에 비해 농도가 높은 것이 바람직하며, 그렇지 않으면, 탄화수소 용액으로 염이 포함된 용액내에 포함된 담수가 이동하지 않는 문제가 있다.
염이 포함된 용액은 담수, 염분을 포함하여 구성되는데, 정삼투에 의해 염이 포함된 용액내에 포함되었던 담수가 농도가 높은 탄화수소 용액으로 이동하게 되어, 결과적으로 탄화수소 용액의 농도가 낮아진 혼합용액이 생성되는 것이다. 즉, 탄화수소 용액에 담수가 첨가된 것을 혼합용액으로 정의한 것이다.
즉, 염이 포함된 용액보다 탄화수소 용액의 농도가 높으며, 염이 포함된 용액과 탄화수소 용액간의 경계에 반투막이 존재하기 때문에, 반투막을 통해 염이 포함된 용액내의 담수가 탄화수소 용액쪽으로 이동하는 정삼투현상이 발생하게 된다.
또한, 정삼투단계(S20)에서, 상기 혼합용액은 상기 탄화수소 용액보다 농도가 낮은 것이 바람직하다. 이는 혼합용액이 탄화수소 용액과 담수가 혼합된 것이므로, 탄화수소 용액이 담수와 혼합되어 농도가 낮아져야만 하기 때문이다.
여기서, 혼합용액은, 연료전지의 원료로 사용된다.
또한, 상기 정삼투단계(S20)에서, 상기 혼합용액은, 탄화수소 및 물을 포함하여 이루어지며, 상기 혼합용액 100중량부에 대하여, 상기 탄화수소는 3 내지 50중량부를 포함하는 것이 바람직하며, 더욱 바람직하게는 10 내지 30중량부, 가장 바람직하게는 20중량부를 포함하는 것이 효과적이다.
탄화수소의 함량이 3중량부 미만인 경우에는, 정삼투단계(S20)에서의 정삼투현상이 원활하게 이루어지지 않을 뿐만 아니라, 연료전지의 반응이 충분히 일어나지 않아, 전력이 효과적으로 생성되기 어려운 문제가 있으며, 50중량부를 초과하는 경우에는, 오히려 연료전지의 전력생산효율이 크게 저하될 뿐만 아니라, 원료비 증가 등 경제성이 떨어지는 문제가 있다.
다음으로, 애노드투입단계(S30)는 상기 혼합용액을 연료전지의 애노드에 투입하는 단계이다. 이는 애노드에서의 반응을 위해, 정삼투단계(S20)에서 생성된 혼합용액을 애노드에 투입하는 공정이다.
상기 정삼투단계(S20)에서의 삼투압력에 의해, 혼합용액이 애노드에 투입된다.
캐소드투입단계(S40)는 산소를 상기 연료전지의 캐소드에 투입하는 단계이다. 이는 캐소드반응, 즉, 애노드투입단계(S30)에서 전달된 물질과의 반응을 일으키기 위해 외부에서 산소를 캐소드에 투입하는 공정이다.
상기 애노드투입단계(S30)와 캐소드투입단계(S40)는 동시에 진행되는 것이 바람직하다.
여기서, 연료전지는, 탄화수소 용액으로부터 전력을 생성할 수 있는 연료전지로서, 직접알코올형 연료전지, 고분자전해질 연료전지, 용융탄산염 연료전지 또는 간접알코올형 연료전지인 것이 바람직하며, 더욱 바람직하게는, 직접알코올형 연료전지 또는 고분자전해질 연료전지인 것이 효과적이다.
용융탄산염 연료전지는 고온의 열을 필요로 하고, 간접알코올형 연료전지는 탄화수소 개질공정, 일산화탄소 제거공정 등의 추가적인 공정이 필요하나, 직접알코올형 연료전지 및 고분자전해질 연료전지는 추가공정없이 바로 적용이 가능함으로, 본 발명에 보다 적합하다.
다음으로, 담수 및 전력생산단계(S50)는 상기 연료전지 내의 반응에 의해 열, 전력 및 담수를 생성하는 단계이다. 이는 연료전지에서의 발전반응이 일어나는 공정이다.
담수 및 전력생산단계(S50)는, 애노드반응단계(S51), 캐소드반응단계(S52) 및 발전단계(S53)를 포함하여 이루어지는 것이 바람직하다.
애노드반응단계(S51)는 상기 연료전지의 애노드에서, 상기 혼합용액 내의 탄화수소와 담수가 반응하여, 상기 연료전지의 캐소드에 수소이온 및 전자를 전달하는 단계이다. 이는 애노드에서 일어나는 반응 기작에 관한 것으로, 보다 구체적인 반응식으로 나타내면 다음과 같다.
CH3OH + H2O -> 6H+ + 6e- + CO2 (g)
캐소드반응단계(S52)는 상기 연료전지의 캐소드에서, 상기 수소이온 및 전자와 상기 산소가 반응하여, 담수를 생성하는 단계이다. 이는 애노드반응단계(S51)에서 생성된 수소이온과 전자가 외부로부터 캐소드로 투입된 산소와 반응하여, 담수를 생성하는 공정이다. 반응 기작에 관한 것으로, 보다 구체적인 반응식으로 나타내면 다음과 같다.
3/2 O2 + 6H+ + 6e- -> 3H2O
마지막으로, 발전단계(S53)는 상기 애노드반응단계(S51) 및 상기 캐소드반응단계(S52)의 반응에 의하여, 열 및 전력이 생성되는 단계이다. 이는 연료전지 내부반응에 의해, 열 및 전력이 생성되는 공정이다.
연료전지 내부의 반응기작인 상기 애노드반응단계(S51), 상기 캐소드반응단계(S52) 및 발전단계(S53)는 사실상 거의 동시에 일어나는 것이 바람직하며, 이를 화학식으로 간단히 나타내면 다음과 같다.
CH3OH + 3/2 O2 -> CO2 (g) + 2H2O + 전력 + 열
다음으로, 도 2에 나타난 바와 같이, 본 발명의 정삼투-연료전지 하이브리드 담수화 및 발전시스템은, 정삼투부(10) 및 연료전지부(20)를 포함하여 이루어지는 것을 특징으로 한다. 이는 상기 본 발명의 정삼투-연료전지 하이브리드 담수화 및 발전방법과 그 원리가 동일하며, 이하에서 설명하지 않는 내용은 상기에서 언급한 바와 같다.
먼저, 정삼투부(10)는 염이 포함된 용액과 상기 염이 포함된 용액보다 농도가 높은 탄화수소 용액간의 농도차를 이용하여, 정삼투현상을 발생시키는 역할을 한다. 이는 농도차에 의한 정삼투현상을 일으키기 위한 장치이다.
상기 정삼투부(10)는, 반투막을 경계로 상기 염이 포함된 용액 및 상기 탄화수소 용액이 분리되어 투입되며, 상기 염이 포함된 용액과 상기 탄화수소 용액간의 농도차에 의해 상기 염이 포함된 용액에 포함된 담수 중 일부가 상기 탄화수소 용액으로 이동하여, 상기 탄화수소 용액의 농도를 낮추는 역할을 한다.
또한, 상기 정삼투부(10)를 거친 탄화수소 용액은, 탄화수소 및 물을 포함하여 이루어지며, 상기 정삼투부(10)를 거친 탄화수소 용액 100중량부에 대하여, 상기 탄화수소는 3 내지 50중량부를 포함하는 것이 바람직하다. 이 함량비율에 대한 설명은 상기 언급된 바와 같다.
다음으로, 연료전지부(20)는 애노드층(21), 캐소드층(23) 및 전해질층(22)을 포함하며, 상기 정삼투부(10)를 거친 탄화수소 용액이 투입되어, 내부반응에 의해 열, 전력 및 담수를 생성하는 역할을 한다. 이는 정삼투부(10)에서 생성된 농도가 낮아진 탄화수소 용액을 원료로, 전력 및 담수를 생산하기 위한 장치이다.
상기 연료전지부(20)는, 탄화수소 용액으로부터 전력을 생성할 수 있는 연료전지로서, 직접알코올형 연료전지, 고분자전해질 연료전지, 용융탄산염 연료전지 또는 간접알코올형 연료전지 중 어느 하나인 것이 바람직하며, 이에 대한 설명은 상기 언급된 바와 같다.
또한, 여기서, 탄화수소 용액은, 삼투압을 발생시킬 수 있는 용액으로서, 탄화수소(Hydrocarbon)가 포함된 용액이면 무방하나, 더 바람직하게는, 프로판올, 부탄올, 에탄올 또는 메탄올 중 적어도 하나를 포함하는 것이 효과적이다.
한편, 연료전지부(20)에, 상기 정삼투부(10)를 거친 탄화수소 용액이 원료로 투입된 이후, 연료전지부(20) 내부의 반응기작은, 다음과 같다.
먼저, 상기 애노드층(21)에 상기 정삼투부(10)를 거친 탄화수소 용액이 투입되며, 상기 투입된 탄화수소 용액 내의 탄화수소와 담수가 반응하여, 수소이온 및 전자를 생성하고, 상기 수소이온 및 전자는 상기 전해질층(22)을 거쳐, 상기 캐소드층(23)으로 전달되어, 상기 캐소드층(23)에 투입된 산소와 반응하여, 열, 전력 및 담수를 생성하게 된다.
여기서, 반응을 위해, 상기 캐소드층(23)에는 산소를 추가적으로 투입하는 것이 바람직하다.
이상에서 본 발명의 바람직한 실시예를 설명하였으나, 본 발명은 다양한 변화와 변경 및 균등물을 사용할 수 있다. 본 발명은 상기 실시예를 적절히 변형하여 동일하게 응용할 수 있음이 명확하다. 따라서 상기 기재 내용은 하기 특허청구범위의 한계에 의해 정해지는 본 발명의 범위를 한정하는 것이 아니다.
부호의 설명
1: 염이 포함된 용액
2: 탄화수소 용액
3: 농도가 높아진 염이 포함된 용액
4: 혼합용액
5: 산소
6: 담수
10: 정삼투부
20: 연료전지부
21: 애노드층
22: 전해질층
23: 캐소드층

Claims (12)

  1. 염이 포함된 용액과 상기 염이 포함된 용액보다 농도가 높은 탄화수소 용액을 삼투압챔버에 투입하는 투입단계;
    상기 삼투압챔버에서, 상기 염이 포함된 용액과 상기 탄화수소 용액간의 농도차에 의해, 상기 염이 포함된 용액에 포함된 담수 중 일부가 상기 탄화수소 용액으로 이동하여, 상기 탄화수소 용액에 상기 담수가 혼합된 혼합용액을 생성하는 정삼투단계;
    상기 혼합용액을 연료전지의 애노드에 투입하는 애노드투입단계;
    산소를 상기 연료전지의 캐소드에 투입하는 캐소드투입단계; 및
    상기 연료전지 내의 반응에 의해 열, 전력 및 담수를 생성하는 담수 및 전력생성단계;를 포함하여 이루어지는 것을 특징으로 하는 정삼투-연료전지 하이브리드 담수화 및 발전방법
  2. 제 1항에 있어서,
    상기 담수 및 전력생성단계는,
    상기 연료전지의 애노드에서, 상기 혼합용액 내의 탄화수소와 담수가 반응하여, 상기 연료전지의 캐소드에 수소이온 및 전자를 전달하는 애노드반응단계;
    상기 연료전지의 캐소드에서, 상기 수소이온 및 전자와 상기 산소가 반응하여, 담수를 생성하는 캐소드반응단계; 및
    상기 애노드반응단계 및 상기 캐소드반응단계의 반응에 의하여, 열 및 전력이 생성되는 발전단계;를 포함하여 이루어지는 것을 특징으로 하는 정삼투-연료전지 하이브리드 담수화 및 발전방법
  3. 제 1항 또는 제 2항에 있어서,
    상기 연료전지는, 직접알코올형 연료전지, 고분자전해질 연료전지, 용융탄산염 연료전지 또는 간접알코올형 연료전지 중 어느 하나인 것을 특징으로 하는 정삼투-연료전지 하이브리드 담수화 및 발전방법
  4. 제 1항 또는 제 2항에 있어서,
    상기 정삼투단계에서, 상기 혼합용액은, 탄화수소 및 물을 포함하여 이루어지며, 상기 혼합용액 100중량부에 대하여, 상기 탄화수소는 3 내지 50중량부를 포함하는 것을 특징으로 하는 정삼투-연료전지 하이브리드 담수화 및 발전방법
  5. 제 1항 또는 제 2항에 있어서,
    상기 투입단계에서, 상기 삼투압챔버는, 내부에 반투막의 경계가 형성되어, 상기 반투막을 경계로, 상기 염이 포함된 용액과 상기 탄화수소 용액이 각각 분리투입되는 것을 특징으로 하는 정삼투-연료전지 하이브리드 담수화 및 발전방법
  6. 제 1항 또는 제 2항에 있어서,
    상기 탄화수소 용액은, 프로판올, 부탄올, 에탄올 및 메탄올 중 적어도 하나를 포함하는 것을 특징으로 하는 정삼투-연료전지 하이브리드 담수화 및 발전방법
  7. 염이 포함된 용액과 상기 염이 포함된 용액보다 농도가 높은 탄화수소 용액간의 농도차를 이용하여, 정삼투현상을 발생시키는 정삼투부;
    애노드층, 캐소드층 및 전해질층을 포함하며, 상기 정삼투부를 거친 탄화수소 용액이 투입되어, 내부반응에 의해 열, 전력 및 담수를 생성하는 연료전지부;를 포함하여 이루어지는 것을 특징으로 하는 정삼투-연료전지 하이브리드 담수화 및 발전시스템
  8. 제 7항에 있어서,
    상기 연료전지부에서, 상기 내부반응은, 상기 애노드층에 상기 정삼투부를 거친 탄화수소 용액이 투입되며, 상기 투입된 탄화수소 용액 내의 탄화수소와 담수가 반응하여, 수소이온 및 전자를 생성하고, 상기 수소이온 및 전자는 상기 전해질층을 거쳐, 상기 캐소드층으로 전달되어, 상기 캐소드층에 투입된 산소와 반응하여, 열, 전력 및 담수를 생성하는 것을 특징으로 하는 정삼투-연료전지 하이브리드 담수화 및 발전시스템
  9. 제 7항 또는 제 8항에 있어서,
    상기 연료전지부는, 직접알코올형 연료전지, 고분자전해질 연료전지, 용융탄산염 연료전지 또는 간접알코올형 연료전지 중 어느 하나인 것을 특징으로 하는 정삼투-연료전지 하이브리드 담수화 및 발전시스템
  10. 제 7항 또는 제 8항에 있어서,
    상기 정삼투부는, 반투막을 경계로 상기 염이 포함된 용액 및 상기 탄화수소 용액이 분리되어 투입되며, 상기 염이 포함된 용액과 상기 탄화수소 용액간의 농도차에 의해 상기 염이 포함된 용액에 포함된 담수 중 일부가 상기 탄화수소 용액으로 이동하여, 상기 탄화수소 용액의 농도를 낮추는 것을 특징으로 하는 정삼투-연료전지 하이브리드 담수화 및 발전시스템
  11. 제 7항 또는 제 8항에 있어서,
    상기 정삼투부를 거친 탄화수소 용액은, 탄화수소 및 물을 포함하여 이루어지며, 상기 정삼투부를 거친 탄화수소 용액 100중량부에 대하여, 상기 탄화수소는 3 내지 50중량부를 포함하는 것을 특징으로 하는 정삼투-연료전지 하이브리드 담수화 및 발전시스템
  12. 제 7항 또는 제 8항에 있어서,
    상기 탄화수소 용액은, 프로판올, 부탄올, 에탄올 및 메탄올 중 적어도 하나를 포함하는 것을 특징으로 하는 정삼투-연료전지 하이브리드 담수화 및 발전시스템
PCT/KR2013/003049 2012-04-13 2013-04-11 정삼투-연료전지 하이브리드 담수화 및 발전방법 및 이를 이용한 정삼투-연료전지 하이브리드 담수화 및 발전시스템 WO2013154367A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120038555A KR101190610B1 (ko) 2012-04-13 2012-04-13 정삼투-연료전지 하이브리드 담수화 및 발전방법 및 이를 이용한 정삼투-연료전지 하이브리드 담수화 및 발전시스템
KR10-2012-0038555 2012-04-13

Publications (1)

Publication Number Publication Date
WO2013154367A1 true WO2013154367A1 (ko) 2013-10-17

Family

ID=47287921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003049 WO2013154367A1 (ko) 2012-04-13 2013-04-11 정삼투-연료전지 하이브리드 담수화 및 발전방법 및 이를 이용한 정삼투-연료전지 하이브리드 담수화 및 발전시스템

Country Status (2)

Country Link
KR (1) KR101190610B1 (ko)
WO (1) WO2013154367A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10886548B2 (en) 2014-05-07 2021-01-05 L3 Open Water Power, Inc. Hydrogen management in electrochemical systems
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101352521B1 (ko) 2012-12-31 2014-01-17 두산중공업 주식회사 정삼투식 담수 복합시스템
WO2015119414A1 (ko) * 2014-02-04 2015-08-13 국립대학법인 울산과학기술대학교 산학협력단 담수 생산 이차전지
KR20160134421A (ko) 2015-05-13 2016-11-23 광주과학기술원 정삼투-미생물 연료전지 시스템을 포함하는 해수 담수용 전처리 설비 및 이를 포함하는 해수 담수화 설비
KR20210067116A (ko) 2019-11-29 2021-06-08 한국전력공사 폐열을 이용한 하이브리드 발전 시스템, 이의 제어 장치 및 그 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267643A (ja) * 1998-01-26 1999-10-05 Toray Ind Inc 逆浸透膜海水淡水化装置および方法
US20030132097A1 (en) * 2002-01-15 2003-07-17 Brian Kenet Fuel-cell powered desalination device
US20040219400A1 (en) * 2003-01-22 2004-11-04 Said Al-Hallaj Hybrid fuel cell/desalination systems and method for use
KR20120064320A (ko) * 2010-12-09 2012-06-19 두산중공업 주식회사 배가스를 이용한 정삼투식 담수 및 co2 포집 연계 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267643A (ja) * 1998-01-26 1999-10-05 Toray Ind Inc 逆浸透膜海水淡水化装置および方法
US20030132097A1 (en) * 2002-01-15 2003-07-17 Brian Kenet Fuel-cell powered desalination device
US20040219400A1 (en) * 2003-01-22 2004-11-04 Said Al-Hallaj Hybrid fuel cell/desalination systems and method for use
KR20120064320A (ko) * 2010-12-09 2012-06-19 두산중공업 주식회사 배가스를 이용한 정삼투식 담수 및 co2 포집 연계 시스템

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10886548B2 (en) 2014-05-07 2021-01-05 L3 Open Water Power, Inc. Hydrogen management in electrochemical systems
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11563229B1 (en) 2022-05-09 2023-01-24 Rahul S Nana Reverse electrodialysis cell with heat pump
US11611099B1 (en) 2022-05-09 2023-03-21 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11699803B1 (en) 2022-05-09 2023-07-11 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Also Published As

Publication number Publication date
KR101190610B1 (ko) 2012-10-15

Similar Documents

Publication Publication Date Title
WO2013154367A1 (ko) 정삼투-연료전지 하이브리드 담수화 및 발전방법 및 이를 이용한 정삼투-연료전지 하이브리드 담수화 및 발전시스템
US10297849B2 (en) Method and system for producing carbon dioxide, purified hydrogen and electricity from a reformed process gas feed
CN1023435C (zh) 燃料电池发电系统的操作方法
CN101306302B (zh) 分离和净化含氢工业废气方法
KR101142472B1 (ko) 탄화수소발생장치를 포함하는 용융탄산염연료전지시스템
WO2013162223A1 (ko) 해수전해설비를 이용한 연료전지, 해수전해설비를 이용한 가성소다, 암모니아, 요소, pvc의 제조방법 및 그 통합시스템
WO2013085216A1 (ko) 연료 전지 시스템과 그 구동 방법
US20130008081A1 (en) Methods and systems for making liquid fuel from cellulose in thermal reactors
CN110690855A (zh) 一种基于氢储能的新型净零能耗建筑的能源系统
US20110300411A1 (en) Photoelectromethanogenic microbial fuel cell for co-generation of electricity and methane from carbon dioxide
CN104935037A (zh) 一种具有多组甲醇水重整制氢发电模组的充电站及方法
KR101992794B1 (ko) 부분 산화와 함께 rep를 사용한 수소 및 일산화탄소 생성
CN105423218A (zh) 一种路灯
WO2016140536A1 (ko) 연료전지 시스템
WO2014104613A1 (ko) 정삼투식 담수 복합시스템
CN203242705U (zh) 小型制氢发电设备
CN1938188A (zh) 潜水船
JP2008223098A (ja) 水素製造装置
CN111628190A (zh) 一种燃料电池系统
JP2003135088A (ja) 微生物を用いた水素製造及び発電方法、ならびにそれらの装置
TWI557980B (zh) 燃料電池複合系統
WO2020085594A1 (ko) 수중용 연료전지 시스템
CN109638331B (zh) 一种基于甲醇的燃料电池混合发电系统
WO2016003011A1 (ko) 우수한 연료 효율을 갖는 직접탄소 연료전지 시스템
KR20190042846A (ko) 합성가스를 이용한 연료전지 발전 장치 및 이를 이용한 연료전지 발전 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13776164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13776164

Country of ref document: EP

Kind code of ref document: A1