WO2022054979A1 - 전자파 차폐용 하이브리드 접착제 조성물, 전자파 차폐용 하이브리드 접착제의 제조방법 및 전자파차폐용 하이브리드 접착필름 - Google Patents

전자파 차폐용 하이브리드 접착제 조성물, 전자파 차폐용 하이브리드 접착제의 제조방법 및 전자파차폐용 하이브리드 접착필름 Download PDF

Info

Publication number
WO2022054979A1
WO2022054979A1 PCT/KR2020/012161 KR2020012161W WO2022054979A1 WO 2022054979 A1 WO2022054979 A1 WO 2022054979A1 KR 2020012161 W KR2020012161 W KR 2020012161W WO 2022054979 A1 WO2022054979 A1 WO 2022054979A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
group
adhesive
electromagnetic wave
wave shielding
Prior art date
Application number
PCT/KR2020/012161
Other languages
English (en)
French (fr)
Inventor
김명기
홍성민
오지택
김정훈
Original Assignee
베스트그래핀(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 베스트그래핀(주) filed Critical 베스트그래핀(주)
Priority to KR1020237012660A priority Critical patent/KR20230069183A/ko
Priority to PCT/KR2020/012161 priority patent/WO2022054979A1/ko
Priority to CN202080002491.7A priority patent/CN114502681A/zh
Publication of WO2022054979A1 publication Critical patent/WO2022054979A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper

Definitions

  • the present invention relates to a hybrid adhesive composition for electromagnetic wave shielding, a method for manufacturing a hybrid adhesive for electromagnetic wave shielding, and a hybrid adhesive film for electromagnetic wave shielding.
  • a shielding member is used to block electromagnetic waves by wrapping electronic devices or printed circuit boards.
  • the electromagnetic wave shielding member includes a metal film having excellent electrical conductivity, a conductive paste, a conductive film, and the like.
  • An electromagnetic wave shielding adhesive film is composed of an electromagnetic wave shielding layer and an adhesive layer.
  • the shielding layer is also required to be flexible and thin.
  • the ductility and thinning of the shielding layer there is a trade-off between the shielding performance and the demand for ductility and thinning.
  • the present invention relates to a hybrid adhesive composition for electromagnetic wave shielding used in the manufacture of an adhesive layer, which is one component of an adhesive film for shielding electric waves, the object of which is to provide an adhesive layer having electromagnetic wave shielding performance and at the same time high adhesion and high temperature stability It is to provide a hybrid adhesive composition for electromagnetic wave shielding that can be manufactured.
  • the hybrid adhesive composition for electromagnetic wave shielding includes conductive metal particles, a first graphene, an adhesive resin and a curing agent, wherein the first graphene is chemically modified graphene, and the adhesive resin is the It is characterized in that it binds to a functional group of chemically modified graphene.
  • the content of the conductive metal particles is 10 to 56 wt%
  • the content of the first graphene is 0.005 to 0.1 wt%
  • the content of the adhesive resin is 10 to 45 wt%
  • the curing agent is The content may be characterized as 1 to 10 wt%.
  • it may further include a second graphene, wherein the second graphene is non-oxidized graphene.
  • the content of the second graphene may be characterized in that 0.01 ⁇ 1 wt%.
  • the conductive metal particles may be characterized in that the shape of flakes or dendrites.
  • the functional group may be at least one selected from the group consisting of amine, amide, alcohol, epoxide, azide, mercapto, anhydride, and carboxyl.
  • a method of manufacturing a hybrid adhesive for electromagnetic wave shielding comprises the steps of: preparing a first colloid in which a first graphene is dispersed; pre-dispersing an adhesive resin to the first colloid in a solvent; dispersing the metal particles in a solvent in which the adhesive resin is pre-dispersed; and adding a curing agent in which the metal particles are mainly dispersed to form an adhesive, wherein the first graphene is chemically modified graphene, and the adhesive resin is bonded to a functional group of the chemically modified graphene. do it with
  • the step of preparing the first colloid comprises the steps of: treating graphite flakes with an oxidizing agent and irradiating microwaves after immersion treatment to prepare expanded graphite oxide; preparing graphene oxide by exfoliating the expanded graphite oxide; preparing a graphene oxide suspension by mixing the prepared graphene oxide with deionized water; and preparing a first colloid containing chemically modified graphene through a large-capacity circulating ultrasonic dispersion system after adding and stirring an additive for modifying graphene into the graphene oxide suspension, wherein the additive comprises the It may be characterized in that at least one selected from the group consisting of amine, amide, alcohol and carboxyl can be formed as a functional group of the chemically modified graphene.
  • the main dispersion may be performed by mixing a second colloid in which the second graphene is dispersed in the solvent, and the second graphene may be non-oxidized graphene.
  • the second colloid preparing expanded graphite; preparing graphene flakes by exfoliating the expanded graphite; and dispersing the exfoliated graphene flakes to prepare a second colloid.
  • the hybrid adhesive film for electromagnetic wave shielding according to another embodiment of the present invention according to another embodiment of the present invention includes a shielding layer and an adhesive layer, wherein the adhesive layer includes conductive metal particles, first graphene, and an adhesive resin,
  • the first graphene is chemically modified graphene, and the adhesive resin is characterized in that it binds to a functional group of the chemically modified graphene.
  • the hybrid adhesive composition for electromagnetic wave shielding of an example of the present invention includes conductive metal particles, chemically modified graphene, an adhesive resin, and a curing agent, so that the prepared adhesive layer maintains high adhesion and at the same time lowers the sheet resistance to improve shielding performance.
  • high-temperature stability is significantly improved.
  • 1 is a SEM image of metal particles used in the hybrid adhesive composition for electromagnetic wave shielding of the present invention.
  • Figure 2 is a reference diagram schematically showing the reaction of the chemically modified graphene with the resin in the hybrid adhesive film for electromagnetic wave shielding of the present invention.
  • FIG. 3 is a schematic flowchart of a method for manufacturing a hybrid adhesive for electromagnetic wave shielding of the present invention.
  • FIG. 4 is a schematic perspective view showing the structure of the hybrid adhesive film for electromagnetic wave shielding of the present invention.
  • FIG. 5 is a schematic schematic view showing the configuration of the adhesive layer of the hybrid adhesive film for electromagnetic wave shielding of the present invention.
  • 6 is an optical micrograph (c) of the adhesive (a), the prototype (b), and the surface of the formed adhesive layer prepared using the adhesive composition according to an embodiment of the present invention.
  • the hybrid adhesive composition for electromagnetic wave shielding according to an embodiment of the present invention (hereinafter, referred to as "adhesive composition”) includes conductive metal particles, first graphene, an adhesive resin, and a curing agent.
  • the conductive particles play a major role in making the adhesive layer contribute to electromagnetic wave shielding by imparting conductivity to the adhesive layer to be manufactured.
  • the conductive metal particles silver (Ag) or copper (Cu) coated with silver may be used, but the present invention is not limited thereto, and gold, platinum, nickel, or the like may be used.
  • anisotropic conductive metal particles may be used to improve connectivity to the same weight ratio.
  • a flake shape or a dendrite shape may be used as shown in FIG. 1 .
  • Fig. 1 (a) is copper coated with flake-shaped silver on the surface
  • Fig. 1 (b) is copper coated with dentrite-shaped silver on the surface.
  • the size of the conductive metal particles may be 3 ⁇ 30 um. However, since the thickness of the adhesive layer is generally 5 to 15 ⁇ m, the size of the conductive metal particles is more preferably a central particle diameter (D50) of 5 to 12 ⁇ m.
  • the content of the conductive metal particles may be included in an amount of 10 to 56 wt% based on the total amount of the adhesive composition.
  • the content of the conductive metal particles is less than 10 wt%, the sheet resistance is increased. That is, there is a problem in that the shielding performance is too low.
  • the content of the conductive metal particles exceeds 56 wt%, there is a problem that not only the adhesive strength is lowered to less than 1.0 kgf/cm but also the fairness is remarkably reduced.
  • the silver content in the conductive metal particles is preferably 5 to 30 wt%.
  • the silver content is less than 5%, the sheet resistance and high-temperature stability of the prepared adhesive layer are too low, and when the silver content is 30% or more, the effect of reducing the sheet resistance is insignificant.
  • the adhesive resin a resin capable of imparting adhesiveness to the adhesive layer after curing is used.
  • an epoxy resin or a polyurethane resin may be used, and in addition, a resin that can be used as an adhesive may be used.
  • Epoxy resins include bisphenol type (A type, F type), phenol novolac type, o-cresol novolac type, polyfunctional epoxy, amine type epoxy, heterocycle-containing epoxy, substitution type epoxy , naphthol-based epoxies and derivatives thereof.
  • the adhesive resin used in the adhesive composition of the present invention one capable of bonding to a functional group of chemically modified graphene used as first graphene to be described later is used. This will be described later.
  • the content of the adhesive resin may be included in an amount of 10 to 45 wt% based on the entire adhesive composition.
  • the adhesive strength is lowered to less than 1.0 kgf/cm, and when it exceeds 45 wt%, it is not possible to expect additional adhesive strength increase because sufficient adhesive strength is already secured, and a component that relatively contributes to the shielding performance There is a problem that this proportion is decreasing.
  • the curing agent may be appropriately selected according to the type of the adhesive resin.
  • a curing agent may be included in the adhesive composition together with the adhesive resin, and in the case of a two-component adhesive, it is provided separately from the adhesive resin.
  • the curing agent dicyandiamide, imidazole, amine, amide, polyphenol, phenol novolak, xyloc, or the like may be used.
  • the content of the curing agent may be included in an amount of 1 to 10 wt% based on the entire adhesive composition.
  • the content of the curing agent may be appropriately adjusted according to the content of the adhesive resin.
  • the adhesive composition of the present invention may further include a catalyst, an additive, and a surfactant, and the additive may include a curing accelerator, an organic/inorganic coupling agent, a toughening agent, a leveling agent, and the like.
  • a phosphine or boron-based curing catalyst and an imidazole-based catalyst may be used.
  • the phosphine-based curing catalyst triphenylphosphine may be used, but the present invention is not limited thereto.
  • the content of the catalyst may be included in an amount of 1 wt% or less with respect to the entire adhesive composition.
  • a phosphoric acid-based dispersant may be used, for example, Solvay's RE-610, BYK's BYK-103, or the like may be used.
  • an organic/inorganic coupling agent a silane coupling agent (3-glycid-oxypropyl trimethoxy-silane (GPTMS), etc.) can be used.
  • a curing accelerator, a toughening agent, a leveling agent, etc. may be further included as additives, and may be selected from known ones.
  • the content of the additive may be included in an amount of 3 wt% or less with respect to the adhesive composition.
  • a surfactant may also be included for dispersion stabilization, and the content may be included in an amount of 0.1 to 5 wt% with respect to the adhesive composition.
  • the solvent examples include amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone, alcohol solvents such as methanol, ethanol and isopropanol, aromatic solvents such as toluene and xylene, acetone, methyl ethyl ketone, and cyclohexa Ketone solvents, such as rice paddy, ester solvents, such as ethyl acetate, etc. can be used.
  • the content of the solvent may be included in an amount of 20 to 62 wt% with respect to the adhesive composition. If the content of the solvent is less than 20 wt%, there is a problem in that flowability and processability are lowered, and when it exceeds 62 wt%, there is a problem of reduced shielding performance and reduced stability due to void generation.
  • the additive composition according to an embodiment of the present invention is characterized in that it includes the first graphene.
  • the first graphene is chemically modified graphene, and in particular, includes a reactive group capable of bonding with an adhesive resin on the surface of the chemically modified graphene. That is, as shown in FIG. 2 , in the first graphene included in the additive composition according to an embodiment of the present invention, the adhesive resin binds to the functional group.
  • the functional group of the chemically modified graphene may be an amine group, a hydroxyl group, an amide, an azide, an epoxide, a mercapto, an anhydride, and a carboxyl group.
  • the functional group of chemically modified graphene may be anhydride, amine, amide, mercapto, carboxyl acid, pyridine, azide, acrylate, cycloepoxide, etc., and the functional group of chemically modified graphene and bisphenol A diglycidyl ether binds.
  • the additive composition according to an embodiment of the present invention remarkably improves the shielding performance of the adhesive layer by improving the connectivity between the conductive metal particles included in the adhesive layer by using the first graphene. That is, since the shielding performance of the adhesive layer is remarkably improved without an excessive increase in the content of the conductive metal particles, there is no problem of deterioration in workability and reduction in adhesive force due to the excessive amount of conductive metal particles. Moreover, as will be described later, adhesion is increased due to the participation of the first graphene in chemical bonding, and printing and coating properties are improved by improving mechanical properties and controlling rheological properties.
  • the first graphene participates in chemical bonding. That is, the functional group of the first graphene is combined with the adhesive resin, and accordingly, there is an advantage in that the high temperature stability of the adhesive layer is remarkably improved.
  • the first graphene may have a lateral size of 50 to 50000 nm and a thickness of a single layer or several layers.
  • the first graphene may be composed of 75 to 90 atomic % of carbon (C), 5 to 25 atomic % of oxygen (O), and 2 to 20 atomic % of nitrogen (O).
  • the first graphene may be negatively or positively charged. The negatively charged first graphene satisfies O/N>1, and the positively charged first graphene satisfies O/N ⁇ 1.
  • the content of the first graphene may be included in an amount of 0.005 to 0.1 wt% with respect to the adhesive composition.
  • the content of the first graphene is less than 0.005 wt%, it hardly contributes to a decrease in sheet resistance of the adhesive layer.
  • the content of the first graphene exceeds 0.1 wt%, the adhesive force is rather decreased due to the reaction between the adhesive resin and the first graphene, and furthermore, there is a problem in that fairness is significantly deteriorated due to the evidence of viscosity.
  • the additive composition according to an embodiment of the present invention may further include a second graphene.
  • a second graphene graphene flakes, preferably non-oxidized graphene, may be used.
  • the first graphene When the first graphene is added in a predetermined amount, sheet resistance and high temperature stability of the prepared adhesive layer are improved, but when the first graphene exceeds a certain amount, there is a problem in that adhesion and fairness are significantly reduced.
  • the second graphene when the second graphene is further included, the sheet resistance of the adhesive layer is reduced due to the first graphene while maintaining the adhesion and fairness, and the sheet resistance is further significantly reduced.
  • the additive composition according to an embodiment of the present invention uses non-oxidized graphene as the second graphene to prevent the conductive metal particles from being oxidized and to increase the moisture barrier effect. Above all, the stabilization effect of thermal performance due to the high carbon purity of non-oxidized graphene is excellent.
  • the thickness of the second graphene may be 2 to 10 nm.
  • the content of the second graphene may be included in an amount of 0.01 to 1.0 wt% with respect to the adhesive composition.
  • the content of the second graphene is less than 0.01 wt%, the effect of improving the shielding performance is insignificant, and when the content of the second graphene exceeds 1.0 wt%, there is a problem in that adhesion is significantly reduced and fairness is also deteriorated.
  • FIG. 3 is a schematic flowchart of a method for manufacturing a hybrid adhesive for electromagnetic wave shielding of the present invention.
  • the manufacturing method of the hybrid adhesive for electromagnetic wave shielding of the present invention includes the steps of preparing a first colloid in which the first graphene is dispersed, the second graphene is preparing a dispersed second colloid, pre-dispersing the first colloid and the adhesive resin in a solvent;
  • the method includes: dispersing the metal particles in the pre-dispersed solvent; and adding a curing agent to the pre-dispersed solvent to form an adhesive.
  • the step of preparing the first colloid in which the first graphene is dispersed is performed.
  • the step of preparing the expanded graphite oxide may be performed by immersing graphite flakes in an oxidizing agent for about 30 minutes and then irradiating microwaves with an output of 500 to 1000 W for 1 to 10 minutes.
  • an oxidizing agent a complex oxidizing agent in which two or more of potassium permanganate, sulfuric acid, hydrogen peroxide, or phosphoric acid is mixed may be used.
  • Graphite flakes having an average diameter of 100 to 500 ⁇ m may be used.
  • the graphite oxide obtained in this way is called microwaved expanded graphite oxide (MEGO: Microwaved Expanded Graphite Oxide).
  • the step of preparing the graphene oxide by exfoliating the expanded graphite oxide may be performed by a chemical exfoliation method, for example, an improved method using phosphoric acid, sulfuric acid and potassium permanate which is well known among chemical exfoliation methods may be used.
  • a step of preparing a graphene oxide suspension by mixing the prepared graphene oxide and deionized water is performed. That is, the exfoliated graphene oxide is dispersed in deionized water (DI water) to prepare a graphene oxide suspension. At this time, the graphene oxide suspension is composed of 0.05 to 1% by weight of graphene oxide and the remaining amount of deionized water.
  • DI water deionized water
  • an amine group, a hydroxyl group, an amide group, an azide group, an epoxide group, a mercapto group, an anhydride group, and a carboxyl group may be used as functional groups of the chemically modified graphene to be formed.
  • an organic single molecule having an amine group, a hydroxyl group, an azide group, anhydride, amide, mercapto, carboxyl acid, pyridine, azide, acrylate, cycloepoxide, or A high molecular weight can be used.
  • organic monomolecules or polymers having an amine group examples include ethylenediamine, triethylamine, paraphenylenediamine, 3,3',4,4'-tetraaminobiphenyl (3,3' ,4,4'-tetraaminobiphenyl), 3,3',4,4'-tetraaminoterphenyl (3,3',4,4'-tetraaminoterphenyl), benzidine, 1,5-diaminonaphthalene ( 1,5-diaminonaphthalene), (E)-4,4'-(diazene-1,2-diyl)dianiline ((E)-4,4'-(diazene-1,2-diyl)dianiline), Ethylenediamine, 1,6-diaminohexane (1,6-Diaminohexane), 1,8-diaminooctane (1,8-Diaminooactne), 4-aminophenol, 1,3-
  • any one selected from the group consisting of poly(vinyl alcohol) (PVA), hot strong alkaline solutions (KOH, NaOH), hydroxyl-amine, and the like may be used as the organic monomolecular or polymer having a hydroxyl group.
  • organic monomolecules or polymers having an azide group include Sodiumazide, 2-azidoethanol, 3-azidopropan-1-amine, 4-(2-azidoethoxy)-4-oxobutanoic acid, and 2-azido Any one selected from the group consisting of ethyl-2-bromo-2-methylpropanoate, chlorocarbonate, azidocarbonate, dichlorocarbene, carbene, arine, and nitrene may be used.
  • a first colloid containing 1 ton per hour of chemically modified graphene is prepared through a large-capacity circulating ultrasonic dispersion system. In this case, the chemically modified graphene may be dispersed in a solvent.
  • the solvent used to form the first colloid is preferably the same as the solvent of the adhesive composition.
  • the solvent is water, acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylformamide, dimethylacetamide.
  • N-methyl-2-pyrrolidone N-methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, distilled water, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, aniline, Dimethyl sulfoxide, methylene chloride, diethylene glycol methyl ethyl ether, ethyl acetate, carbon nanopane composite characterized in that any one is used as a mixed solvent, cosolvent, amide N,N-dimethylformamide (N,N-dimethylformamide, DMF), N-methylpyrrolidone (NMP), ammonium hydroxide aqueous solution, alpha-terpinol, chloroform ), methyl ethyl ketone, formic acid, nitroethane BBB, 2-eth
  • the first graphene included in the first colloid is chemically modified graphene having a functional group, and the functional group of the chemically modified graphene is combined with the adhesive resin during the curing process of the adhesive resin.
  • the conductive metal particles or the second graphene and the first graphene are dispersed together, the dispersibility of the first graphene is deteriorated, and accordingly, the effect of improving the connectivity of the conductive metal particles by the first graphene is significantly reduced.
  • the adhesive manufacturing method of the present invention increases the interaction between the first graphene and the adhesive resin by pre-dispersing the first graphene together with the adhesive resin in a solvent, so that the first graphene can contribute to improving the performance of the adhesive layer.
  • a step of dispersing the metal particles in the pre-dispersed solvent is performed.
  • the step of mixing the second colloid in which the second graphene is dispersed in the solvent in the main dispersion step may be performed together.
  • the second graphene may be non-oxidized graphene.
  • Preparing the second colloid includes preparing expanded graphite, preparing graphene flakes by exfoliating the expanded graphite, and dispersing the exfoliated graphene flakes to prepare a second colloid .
  • the step of preparing the expanded graphite may be performed by immersing the graphite flakes in an oxidizing agent for about 30 minutes and then irradiating microwaves with an output of 500 to 1000 W for 1 to 10 minutes.
  • an oxidizing agent a complex oxidizing agent in which two or more of potassium permanganate, sulfuric acid, hydrogen peroxide, or phosphoric acid is mixed may be used.
  • the expanded graphite flakes prepared in this way have an average diameter of 100 ⁇ m or less.
  • the step of preparing the graphene flakes by exfoliating the expanded graphite oxide is performed.
  • the exfoliation of the expanded graphite can be exfoliated using an intercalator such as a solvent or an ionic salt without an oxidizing agent.
  • a step of dispersing the exfoliated graphene flakes to prepare a second colloid is performed.
  • a step of forming an adhesive by adding a curing agent to the dispersed solvent is performed.
  • the step of adding the curing agent may be performed during the manufacturing process or performed in the field depending on whether it is a one-component type or a two-component type.
  • FIG. 4 is a schematic perspective view showing the structure of the hybrid adhesive film for electromagnetic wave shielding of the present invention
  • FIG. 5 is a schematic schematic view showing the configuration of the adhesive layer of the hybrid adhesive film for electromagnetic wave shielding of the present invention.
  • Hybrid adhesive film for electromagnetic wave shielding is an adhesive layer (1), a shielding layer (2, Cu layer, ⁇ 5 ⁇ m), a protective layer (3), Consists of a transparent layer (4).
  • the present invention relates to an adhesive layer (1), and as shown in FIG. 5 , may be composed of an adhesive resin (10), conductive metal particles (20), and first graphene (30). Furthermore, the second graphene 40 may be further included. The role of each component is the same as described in the adhesive composition.
  • Figure 6 is an adhesive (a), a prototype (b) and an optical microscope sizing (c) of the surface of the adhesive layer formed using the adhesive composition according to an embodiment of the present invention.
  • the sheet resistance, adhesion and fairness were checked while changing the content of the conductive metal particles.
  • the conductive metal particles copper coated with silver in an amount of 10 wt% of a dendrite shape was used. 35 wt% of bisphenol A diglycidyl ether as an adhesive resin, 6 wt% as a curing agent, 0.5 wt% as a catalyst, 3 wt% of an additive (coupling agent, toughening agent, curing accelerator, and leveling agent), 0.5 wt% of a surfactant and The solvent was included The content of the solvent was decreased according to the content of the conductive metal particles, Graphene was not included.
  • the adhesive layer was manufactured by bar casting on copper foil with a thickness of 5 ⁇ m to produce a 20 ⁇ m wet film, drying at 80° C. for 10 minutes, and curing at 180° C. for 60 minutes.
  • Table 2 shows the results of measuring the sheet resistance and adhesive force of the prepared adhesive layer, and the results of evaluating the high temperature stability by measuring the sheet resistance after heat treatment at 180° C.-300H under atmospheric conditions.
  • the sheet resistance is very high at 3.5 ⁇ 10 5 ⁇ /sq. can confirm that you have it. This is thought to be due to oxidation of copper. As such, if the characteristic degradation occurs significantly in the evaluation of high temperature stability, the possibility of occurrence of defects in reliability evaluation such as reflow evaluation, lead heat resistance evaluation, and moisture resistance when a shielding film is applied to an electronic device is remarkably high.
  • the initial sheet resistance is about 1,000 to 1,000,000 times lower than that of pure copper, and it can be seen that the high temperature stability evaluation result is also 100,000 times lower.
  • adhesiveness does not show a significant difference in A1, A2 to A5, since there is no difference in the content of the conductive metal particles contained in the entire adhesive composition.
  • Example 3 a shielding layer was prepared by controlling the content of chemically modified graphene having an amine functional group as the first graphene in the composition of A2, which showed the highest performance in Example 2. It was prepared in the same manner as in Example 1 except that the amount of the solvent was reduced according to the addition of the first graphene.
  • the sheet resistance is slightly decreased, but it can be seen that the high temperature stability is remarkably increased.
  • the connectivity between the conductive metal particles is improved, thereby improving the sheet resistance.
  • the first graphene is contained in an amount exceeding 0.1 wt%, there is a problem in that the adhesive strength falls below the target 1.0 kgf/cm due to an excessive reaction between the first graphene and the adhesive resin, and in particular, the fairness is remarkably deteriorated.
  • Example 4 a shielding layer was prepared by controlling the content of non-oxidized graphene with the second graphene in the composition in which C2 having the highest performance in Example 3 was prepared. It was prepared in the same manner as in Example 3 except that the amount of the solvent was reduced according to the addition of the second graphene.
  • an adhesive layer was formed by controlling the contents of conductive metal particles, first graphene, and second graphene, and electromagnetic wave shielding performance in the X-band region was confirmed with a network analyzer.
  • the electromagnetic wave shielding performance shows the measured value of shield effectiveness at 10GHz.
  • D1 D2 D3 D4 adhesive structure Cu DendriteAdhesive (10um) 10%Ag-Cu DendriteAdhesive (10um) 10%Ag-Cu Dendrite- 0.01% Graphene 1 - 0.1% Graphene 2 Adhesive (10um) 10%Ag-Cu Dendrite- 0.03% 1st Graphene - 0.5% 2nd Graphene Adhesive (10um) SE @10GHz 20 dB 28 dB 34 dB 39 dB
  • the shielding performance can be improved by lowering the sheet resistance while maintaining the high adhesive strength of the prepared adhesive layer, and furthermore, there is an advantage in that the stability at high temperature is significantly improved. Therefore, by using the adhesive composition of an example of the present invention, it is expected that it can greatly contribute to the ductility and thinning of the adhesive film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

본 발명은 도전성 금속입자, 제1그래핀, 접착수지 및 경화제를 포함하며, 상기 제1그래핀은 화학적 개질 그래핀이며, 상기 접착수지가 상기 화학적 개질 그래핀의 관능기에 결합하는 것을 특징으로 하는 전자파 차폐용 하이브리드 접착제 조성물에 관한 것이다.

Description

전자파 차폐용 하이브리드 접착제 조성물, 전자파 차폐용 하이브리드 접착제의 제조방법 및 전자파차폐용 하이브리드 접착필름
본 발명은 전자파 차폐용 하이브리드 접착제 조성물, 전자파 차폐용 하이브리드 접착제의 제조방법, 및 전자파 차폐용 하이브리드 접착 필름에 관한 것이다.
최근 전자기기의 발전 트랜드인 전자기기의 경량화, 소형화 및 다기능화에 따라 전자기기에 구비된 전자소자의 소형화 및 고집적화에 대한 연구가 활발히 진행되고 있다.
이러한 전자소자의 소형화 및 고집적화에 따라 전자소자에서 더 많은 열이 발생할 뿐만 아니라, 각 전자소자 사이의 거리가 가까워져서 하나의 전자소자에서 발생하는 전자파가 인접하는 다른 전자소자에 영향을 미쳐 정상적인 동작을 방해한다.
전자파에 따른 영향을 방지하기 위해 차폐부재 이용하여 전자소자나 인쇄회로기판을 감싸 전자파를 차단한다. 전자파 차폐부재로는 전기전도도가 우수한 금속막이나, 전도성 페이스트, 전도성 필름 등이 있다.
특히, 리지드 플렉스 기판(Rigid Flex Board)과 같은 다층 연성회로기판(Flexible Printed Circuit Board; FPCB)의 경우 단차 메꿈성 및 통전저항이 우수한 접착필름 형태의 차폐부재 제품에 대한 요구가 증가하고 있다.
전자파 차폐용 접착필름은 전자파 차폐층과 접착층으로 구성된다. 그런데 전자기기의 경박단소화 추세, 다기능화 및 웨어러블 요구 증가로 차폐층도 연성 및 박층화가 요구되고 있다. 차폐층의 연성 및 박층화는 차폐성능과 연성 및 박층화 요구가 서로 트레이드 오프 관계에 있는바, 부족한 차폐성능을 보완하기 위해 접착층에도 높은 차폐성능이 요구되고 있다.
접착층에 차폐성능을 향상시키기 위해서, 은, 구리 분말 등의 도전성 금속입자를 고농도로 충전하면, 점도가 높아져서 도포 작업성이 저하되거나, 도전성 금속입자의 침강에 의해 접착층이 불균일해지거나 차폐층의 후막화(厚膜化)가 발생한다. 나아가 고온안정성이 떨어지는 문제가 있다.
상술한 문제를 해결하기 위해서는 접착층을 형성하는 조성물의 점도를 낮추고, 고온 안정성을 향상시킬 수 있어야 한다. 그런데 점도를 저하시키기 위해 단순히 용매의 양을 증가시키면 접착층 조성물에 첨가되는 용매가 열에 의해 비산하여 보이드가 생성되는 문제가 있다. 보이드가 생성되면 접착필름의 전차파 차폐성능이 저하되고, 뿐만 아니라 내열성 저하에 따라 사용과정에서 차폐성능이 저하되는 문제가 있다.
따라서 이러한 문제를 해결할 수 있는 전자파 차폐용 접착필름에 이용되는 새로운 접착제 조성물이 필요하다.
본 발명은 전차파 차폐용 접착필름의 일 구성인 접착층의 제조에 이용되는 전자파 차폐용 하이브리드 접착제 조성물에 관한 것으로서, 그 목적은 전자파 차폐 성능을 구비하며, 동시에 높은 접착력과, 고온 안정성을 가지는 접착층을 제조할 수 있는 전자파 차폐용 하이브리드 접착제 조성물을 제공하는 것에 있다.
한편, 본 발명의 명시되지 않은 또 다른 목적들은 하기의 상세한 설명 및 그 효과로부터 용이하게 추론할 수 있는 범위 내에서 추가적으로 고려될 것이다.
위와 같은 과제를 달성하기 위해 전차파 차폐용 접착필름의 일 구성인 접착층의 제조에 이용되는 새로운 전자파 차폐용 하이브리드 접착제 조성물을 제안한다.
본 발명의 일 실시예에 따른 전자파 차폐용 하이브리드 접착제 조성물은, 도전성 금속입자, 제1그래핀, 접착수지 및 경화제를 포함하며, 상기 제1그래핀은 화학적 개질 그래핀이며, 상기 접착수지가 상기 화학적 개질 그래핀의 관능기에 결합하는 것을 특징으로 한다.
일 예에 있어서, 상기 도전성 금속입자의 함량은 10 ~ 56 wt%이며, 상기 제1그래핀의 함량은 0.005 ~ 0.1 wt%이며, 상기 접착수지의 함량은 10 ~ 45 wt%이며, 상기 경화제의 함량은 1 ~ 10 wt%이인 것을 특징으로 할 수 있다.
일 예에 있어서, 제2그래핀을 더 포함하고, 상기 제2그래핀은 비산화 그래핀인 것을 특징으로 할 수 있다.
일 예에 있어서, 상기 제2그래핀의 함량은 0.01 ~ 1 wt%인 것을 특징으로 할 수 있다.
일 예에 있어서, 상기 도전성 금속입자는 플레이크 또는 덴드라이트 형상인 것을 특징으로 할 수 있다.
일 예에 있어서, 상기 관능기는 아민, 아마이드, 알콜, 에폭사이드, 아지드, 머캅토, 언하이드라이드 및 카르복실로 이루어진 군에서 선택되는 적어도 어느 하나인 것을 특징으로 할 수 있다.
본 발명의 다른 실시예에 따른 전자파 차폐용 하이브리드 접착제의 제조방법은, 제1그래핀이 분산된 제1콜로이드를 준비하는 단계; 상기 제1콜로이드에 접착수지를 용매에 선분산시키는 단계; 상기 접착수지가 선분산된 용매에 금속입자를 본분산시키는 단계; 및 상기 금속입자가 본분산된 경화제를 첨가하여 접착제를 형성하는 단계;를 포함하고, 상기 제1그래핀은 화학적 개질 그래핀으로서, 상기 접착수지는 상기 화학적 개질 그래핀의 관능기에 결합하는 것을 특징으로 한다.
다른 예에 있어서, 제1콜로이드를 준비하는 단계는, 그라파이트 플레이크에 산화제를 처리하여 침적처리 후 마이크로웨이브를 조사하여 확장된 그라파이트 옥사이드 를 준비하는 단계; 상기 확장된 그라파이트 옥사이드를 박리하여 그래핀 옥사이드를 준비하는 단계; 상기 준비된 그래핀 옥사이드와 탈이온수를 혼합하여 그래핀 옥사이드 현탁액을 준비하는 단계; 및 상기 그래핀 옥사이드 현탁액에 그래핀의 개질을 위한 첨가제를 넣고 교반한 후 대용량 순환식 초음파 분산시스템을 통해 화학적 개질 그래핀을 포함하는 제1콜로이드를 제조하는 단계;를 포함하고, 상기 첨가제는 상기 화학적 개질 그래핀의 관능기로 아민, 아마이드, 알콜 및 카르복실로 이루어진 군에서 선택되는 적어도 어느 하나를 형성할 수 있는 것을 특징으로 할 수 있다.
다른 예에 있어서, 상기 본분산시키는 단계는 제2그래핀이 분산된 제2콜로이드를 상기 용매에 혼합하여 수행되며, 상기 제2그래핀은 비산화 그래핀인 것을 특징으로 할 수 있다. 이때, 상기 제2콜로이드는, 확장된 그라파이트를 준비하는 단계; 상기 확장된 그라파이트를 박리하여 그래핀 플레이크를 준비하는 단계; 및 상기 박리된 그래핀 플레이크를 분산시켜 제2콜로이드를 제조하는 단계;를 포함하여 준비되는 것을 특징으로 할 수 있다.
본 발명의 또 다른 실시예에 따른 본 발명의 다른 실시예에 따른 전자파 차폐용 하이브리드 접착필름은 차폐층 및 접착층을 포함하고, 상기 접착층은 도전성 금속입자, 제1그래핀 및 접착수지를 포함하고, 상기 제1그래핀은 화학적 개질 그래핀이며, 상기 접착수지가 상기 화학적 개질 그래핀의 관능기에 결합하는 것을 특징으로 한다.
본 발명의 일 예의 전자파 차폐용 하이브리드 접착제 조성물은 도전성 금속입자와, 화학적 개질 그래핀, 접착수지 및 경화제를 포함함으로써, 제조된 접착층이 높은 접착력을 유지하면서 동시에 면저항을 낮춰 차폐 성능이 향상된다. 뿐만 아니라 고온 안정성이 현저히 향상되는 장점이 있다.
한편, 여기에서 명시적으로 언급되지 않은 효과라 하더라도, 본 발명의 기술적 특징에 의해 기대되는 이하의 명세서에서 기재된 효과 및 그 잠정적인 효과는 본 발명의 명세서에 기재된 것과 같이 취급됨을 첨언한다.
도 1는 본 발명의 전자파 차폐용 하이브리드 접착제 조성물에서 이용한 금속입자들의 SEM 이미지이다.
도 2는 본 발명의 전자파 차폐용 하이브리드 접착필름에서 화학적 개질 그래핀이 수지와 반응하는 것을 개략적으로 도시한 참고도이다.
도 3은 본 발명의 전자파 차폐용 하이브리드 접착제의 제조방법의 개략적 플로우 차트이다.
도 4는 본 발명의 전자파 차폐용 하이브리드 접착필름의 구조를 도시한 개략적 사시도이다.
도 5는 본 발명의 전자파 차폐용 하이브리드 접착필름의 접착층의 구성을 도시한 개략적 모식도이다.
도 6은 본 발명의 일 실시예에 따른 접착제 조성물을 이용하여 제조한 접착제(a), 시제품(b) 및 형성된 접착층 표면의 광학현미경 사진(c)이다.
첨부된 도면은 본 발명의 기술사상에 대한 이해를 위하여 참조로서 예시된 것임을 밝히며, 그것에 의해 본 발명의 권리범위가 제한되지는 아니한다.
이하, 도면을 참조하여 본 발명의 다양한 실시예가 안내하는 본 발명의 구성과 그 구성으로부터 비롯되는 효과에 대해 살펴본다. 본 발명을 설명함에 있어서 관련된 공지기능에 대하여 이 분야의 기술자에게 자명한 사항으로서 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
본 발명의 일 실시예에 따른 전자파 차폐용 하이브리드 접착제 조성물(이하, "접착제 조성물"이라 함)은 도전성 금속입자, 제1그래핀, 접착수지 및 경화제를 포함한다.
도전성 급속입자는 제조되는 접착층에 도전성을 부여함으로써, 접착층이 전자파 차폐에 기여할 수 있도록 하는 주된 역할을 한다. 도전성 금속입자로는 은(Ag), 또는 은이 표면에 코팅된 구리(Cu)를 이용할 수 있으나, 본 발명이 이에 제한되는 것은 아니며, 금이나 백금, 니켈 등을 이용하는 것도 가능하다. 도전성 금속입자는 같은 중량대비 연결성을 향상시키기 위하여 이방성 도전성 금속입자를 사용할 수 있다. 예를 들어, 도전성 금속입자의 형상으로는 도 1에서 보는 바와 같이 플레이크 형상이나, 덴드라이트 형상인 것을 이용할 수 있다. 도 1(a)는 플레이크 형상의 은이 표면에 코팅된 구리이며, 도 1(b)는 덴트라이트 형상의 은이 표면에 코팅된 구리이다. 도전성 금속입자의 크기는 3 ~ 30 um일 수 있다. 다만, 일반적으로 접착층의 두께가 5 ~ 15 um인바, 도전성 금속입자의 크기는 보다 바람직하게는 중심입경(D50)이 5 ~ 12um 인 것을 이용할 수 있다.
도전성 금속입자의 함량은 접착제 조성물 전체에 대하여 10 ~ 56 wt%로 포함될 수 있다. 도전성 금속입자의 함량이 10 wt% 미만인 경우 면저항이 증가된다. 즉, 차폐 성능이 너무 낮은 문제가 있다. 또한, 도전성 금속입자의 함량이 56 wt%를 초과할 경우에는 접착력이 1.0 kgf/cm 미만으로 낮아질 뿐만아니라 공정성이 현저히 감소하는 문제가 있다.
한편, 도전성 금속입자가 은이 코팅된 구리입자인 경우 도전성 금속입자 중 은의 함량은 5 내지 30 wt%인 것이 바람직하다. 은의 함량이 5% 미만인 경우에는 제조된 접착층의 면저항 및 고온 안정성이 너무 낮고, 30% 이상의 경우에는 면저항 감소 효과가 미미하다.
접착수지는 경화 후에 접착층에 접착성을 부여할 수 있는 수지를 이용한다. 접착수지로는 에폭시 수지나 폴리우레탄 수지를 이용할 수 있으며, 이외에도 접착제로 이용될 수 있는 수지를 이용할 수 있다. 에폭시 수지로는 비스페놀계(A형, F형), 페놀 노볼락(Phenol novolac)계, o-크레졸 노볼락(Cresol novolac)계, 다관능 에폭시, 아민계 에폭시, 복소환 함유 에폭시, 치환형 에폭시, 나프톨계 에폭시 및 이들의 유도체가 있다. 본 발명의 접착제 조성물에서 이용되는 접착수지는 후술하는 제1그래핀으로 이용되는 화학적 개질 그래핀의 관능기와 결합할 수 있는 것이 이용된다. 이에 대해서는 후술하도록 한다.
접착수지의 함량은 접착제 조성물 전체에 대하여 10 ~ 45 wt%로 포함될 수 있다. 접착수지의 함량이 10 wt% 미만인 경우 접착력이 1.0 kgf/cm 미만으로 낮아지며, 45 wt% 초과할 경우에는 이미 충분한 접착력을 확보하여 추가적인 접착력 증대를 기대할 수 없을 뿐만 아니라 상대적으로 차폐성능에 기여하는 성분이 차지하는 비중이 감소하는 문제가 있다.
경화제는 접착수지의 종류에 따라 적절히 선택될 수 있다. 또한, 1액형 접착제인 경우에는 접착제 조성물에 경화제가 접착수지와 함께 포함될 수 있으며, 2액형 접착제인 경우에는 접착수지와 별개로 마련된다. 경화제로는 디시안디아미드, 이미다졸, 아민, 아미드, 폴리페놀, 페놀노볼락, 자일록 등을 이용할 수 있다. 경화제의 함량은 접착제 조성물 전체에 대하여 1 ~ 10 wt%로 포함될 수 있다. 경화제의 함량은 접착수지의 함량에 따라 적절히 조절될 수 있다.
또한, 본 발명의 접착제 조성물은 촉매, 첨가제, 계면활성제를 더 포함할 수 있으며, 첨가제로는 경화촉진제, 유·무기 커플링제, 강인화제(toughening), 레벨링제 등을 포함할 수 있다.
촉매로는 포스핀 또는 보론계 경화촉매와 이미다졸계의 촉매를 사용할 수 있다. 포스핀계 경화촉매로는 트리페닐포스핀을 이용할 수 있으며, 본 발명이 이에 제한되는 것은 아니다. 촉매의 함량은 접착제 조성물 전체에 대하여 1 wt% 이하로 포함될 수 있다.
분산제로는 인산계 분산제를 이용할 수 있으며, 예컨대 Solvay社 RE-610, BYK社 BYK-103 등을 이용할 수 있다. 유·무기 커플링제로는 실란계 커플링제(3-glycid- oxypropyl trimethoxy-silane(GPTMS) 등)를 이용할 수 있다.
이외에도 경화촉진제나, 강인화제, 레벨링제 등을 첨가제로 더 포함할 수 있으며, 공지된 것에서 선택될 수 있다. 첨가제의 함량은 접착제 조성물에 대하여 3 wt% 이하로 포함될 수 있다. 또한, 계면활성제도 분산 안정을 위해 포함될 수 있으며, 함량은 접착제 조성물에 대하여0.1 ~ 5 wt%로 포함될 수 있다.
용매로는 디메틸아세트아미드, N-메틸-2-피롤리돈 등의 아미드계 용매, 메탄올, 에탄올, 이소프로판올 등의 알코올계 용매, 톨루엔, 크실렌 등의 방향족계 용매, 아세톤, 메틸에틸케톤, 시클로헥사논 등의 케톤계 용매, 초산에틸 등의 에스테르계 용매 등을 이용할 수 있다. 용매의 함량은 접착제 조성물에 대하여 20 ~ 62 wt%로 포함될 수 있다. 용매의 함량이 20 wt% 미만인 경우 흐름성과 공정성이 저하되는 문제가 있으며, 62 wt%를 초과할 경우 보이드 발생에 따른 차폐성능 저하 및 안정성 저하 문제가 있다.
본 발명의 일 실시예에 따른 첨가제 조성물은 제1그래핀을 포함하는 것에 특징이 있다. 제1그래핀은 화학적 개질 그래핀이며, 특히 화학적 개질 그래핀의 표면에 접착수지와 결합할 수 있는 반응기를 포함한다. 즉, 도 2에서 보는 바와 같이, 본 발명의 일 실시예에 따른 첨가제 조성물에 포함된 제1그래핀은 접착수지가 관능기에 결합하게 된다. 예를 들어, 화학적 개질 그래핀의 관능기는 아민기, 하이드록실기, 아마이드, 아지드, 에폭사이드, 머캅토, 언하이드라이드 및 카르복실기 일 수 있다. 접착수지가 비스페놀 A 디글리시딜 에테르인 경우, 화학적 개질 그래핀의 관능기는 anhydride, amine, amide, mercapto, carboxyl acid, pyridine, azide, acrylate, cycloepoxide 등일 수 있으며, 화학적 개질 그래핀의 관능기와 비스페놀 A 디글리시딜 에테르가 결합한다.
배경기술에서 살펴본 바와 같이, 접착층의 차폐성능을 향상시키기 위해서는 도전성 금속입자가 다량 포함되어야 하는데, 도전성 금속입자의 양이 증가하면 작업성이 떨어지는 문제가 있다. 뿐만아니라 접착층을 점유하는 도전성 금속입자의 증가는 접착층의 접착력 저하와 함께 물성도 떨어트린다. 예컨대, 도전성 금속입자의 증가는 고온, 내습 환경에서의 안정성 저하 문제가 있다
본 발명의 일 실시예에 따른 첨가제 조성물은 제1그래핀을 이용하여 접착층에 포함된 도전성 금속입자 사이의 연결성을 향상시킴으로써 접착층의 차폐성능을 현저히 향상시킨다. 즉, 도전성 금속입자의 함량의 과량 증가 없이도 접착층의 차폐성능이 현저히 향상되므로, 과량의 도전성 금속입자에 의한 작업성 저하 및 접착력 감소 문제가 없다. 더욱이, 후술하는 바와 같이 제1그래핀의 화학결합 참여로 인해 접착력이 증가하며, 기계적 물성 향상 및 유변특성 조절로 인쇄, 코팅성 향상되는 장점이 있다.
상술한 바와 같이 제1그래핀이 화학결합에 참여한다. 즉, 제1그래핀의 관능기가 접착수지와 결합되는데, 이에 따라 접착층의 고온 안정성이 현저히 향상되는 장점이 있다.
제1그래핀은 래터럴 사이즈(lateral size)가 50 내지 50000 nm이고, 단층 내지 수층의 두께를 가지는 것을 이용할 수 있다. 이때, 제1그래핀은 75 ~ 90 atomic %의 탄소(C), 5 ~ 25 atomic %의 산소(O), 2 ~ 20 atomic %의 질소(O) 로 구성될 수 있다. 또한, 제1그래핀으로는 음전하 또는 양전하로 하전된 것을 이용할 수 있다. 음전하의 제1그래핀은 은 O/N>1를, 양전하의 제1그래핀은 O/N<1를 만족한다.
제1그래핀의 함량은 접착제 조성물에 대하여 0.005 내지0.1wt%로 포함될 수 있다. 제1그래핀의 함량이 0.005 wt% 미만인 경우 접착층의 면저항 저하에 거의 기여하는 바가 없다. 또한, 제1그래핀의 함량이 0.1 wt%를 초과할 경우에는 접착수지와 제1그래핀의 반응으로 인해 접착력이 오히려 감소하게 되고, 나아가 점도가 증거하여 공정성이 현저히 떨어지는 문제가 있다.
한편, 본 발명의 일 실시예에 따른 첨가제 조성물은 제2그래핀을 더 포함할 수 있다. 제2그래핀으로는 그래핀 플레이크, 바람직하게는 비산화 그래핀을 이용할 수 있다.
제1그래핀을 소정의 양으로 첨가할 경우 제조되는 접착층의 면저항 및 고온 안정성이 향상되나, 일정 양을 초과하면 접착력과 공정성이 현저히 감소하는 문제가 있다. 그런데 제2그래핀을 더 포함할 경우, 접착력과 공정성을 유지하면서 제1그래핀으로 인해 접착층의 면저항이 감소하는 것에 더불어 추가적으로 면저항이 현저히 감소한다.
또한, 제1그래핀은 개질된 그래핀으로서 표면에 관능기를 가지기 때문에 도전성 금속입자의 산화를 방지하거나, 수분을 차단하는 등의 배리어 효과가 부족하다. 본 발명의 일 실시예에 따른 첨가제 조성물은 제2그래핀으로 비산화 그래핀을 이용함으로써 도전성 금속입자가 산화되는 것을 방지하고, 수분 차단 효과가 증대된다. 무엇보다 비산화 그래핀의 높은 탄소 순도에 의한 열적 성능의 안정화 효과가 뛰어나다. 제2그래핀의 두께는 2 ~ 10 nm일 수 있다.
제2그래핀의 함량은 접착제 조성물에 대하여 0.01 ~ 1.0 wt%로 포함될 수 있다. 제2그래핀의 함량이 0.01 wt% 미만인 경우에 차폐성능 향상 효과가 미미하고, 1.0 wt%를 초과할 경우에 접착력이 현저히 감소하고, 공정성도 떨어지는 문제가 있다.
도 3은 본 발명의 전자파 차폐용 하이브리드 접착제의 제조방법의 개략적 플로우 차트이다.
도 3을 참조하면, 본 발명의 전자파 차폐용 하이브리드 접착제의 제조방법(이하, '접착제 제조방법'이라 함)은, 제1그래핀이 분산된 제1콜로이드를 준비하는 단계, 제2그래핀이 분산된 제2콜로이드를 준비하는 단계, 상기 제1콜로이드와 접착수지를 용매에 선분산시키는 단계; 상기 선분산된 용매에 금속입자를 본분산시키는 단계 및 상기 본분산된 용매에 경화제를 첨가하여 접착제를 형성하는 단계를 포함한다.
먼저, 제1그래핀이 분산된 제1콜로이드를 준비하는 단계가 수행된다.
제1콜로이드를 준비하는 단계를 구체적으로 살펴보면, 그라파이트 플레이크에 산화제를 처리하여 침적처리 후 마이크로웨이브를 조사하여 확장된 그라파이트 옥사이드를 준비하는 단계, 상기 확장된 그라파이트 옥사이드를 박리하여 그래핀 옥사이드를 준비하는 단계, 상기 준비된 그래핀 옥사이드와 탈이온수를 혼합하여 그래핀 옥사이드 현탁액을 준비하는 단계 및 상기 그래핀 옥사이드 현탁액에 그래핀의 개질을 위한 첨가제를 넣고 교반한 후 대용량 순환식 초음파 분산시스템을 통해 화학적 개질 그래핀을 포함하는 제1 콜로이드를 제조하는 단계를 포함한다.
확장된 그라파이트 옥사이드를 준비하는 단계는 그라파이트 플레이크를 산화제에 약 30분 정도 침적처리 후 500 내지 1000 W의 출력으로 1 내지 10분 동안 마이크로웨이브를 조사하여 수행될 수 있다. 이때, 산화제로 는 과망간산칼륨, 황산, 과산화수소, 또는 인산 중 2가지 이상을 혼합한 복합산화제를 이용할 수 있다. 그라파이트 플레이크로는 평균직경이 100 내지 500 μm인 것을 이용할 수 있다. 이와 같은 방법으로 수득한 그라파이트 옥사이드를 마이크로웨이브 처리된 확장된 그라파이트 옥사이드(MEGO: Microwaved Expanded Graphite Oxide)라 한다.
다음으로 확장된 그라파이트 옥사이드를 박리하여 그래핀 옥사이드를 준비하는 단계가 수행된다. 확장된 그라파이트 옥사이드를 박리하여 그래핀 옥사이드를 준비하는 단계는 화학적 박리법으로 수행될 수 있으며, 예를 들어 화학적 박리법 중 널리 알려진 인산, 황산과 과망산칼륨을 이용하는 improved method를 이용할 수 있다.
다음으로, 준비된 그래핀 옥사이드와 탈이온수를 혼합하여 그래핀 옥사이드 현탁액을 준비하는 단계가 수행된다. 즉, 박리된 그래핀 옥사이드는 탈이온수(DI water)에 분산시켜 그래핀 옥사이드 현탁액(suspension)으 로 제조한다. 이때 그래핀 옥사이드 현탁액은 그래핀 옥사이드 0.05 내지 1 중량%와 잔량의 탈이온수로 이루어 진다.
그래핀 옥사이드 현탁액을 제조한 후, 상기 그래핀 옥사이드 현탁액에 그래핀의 개질을 위한 첨가제를 넣고 교반한(합성반응) 후 대용량 순환식 초음파 분산시스템을 통해 화학적 개질 그래핀을 포함하는 제1콜로이드를 제조하는 단계를 수행한다.
이때, 첨가제로는 제조되는 화학적 개질 그래핀의 관능기로 아민기, 하이드록실기, 아마이드기, 아지드기, 에폭사이드기, 머캅토기, 언하이드라이드기 및 카르복실기가 형성될 수 있는 것을 이용할 수 있다. 예컨대, 첨가제로 그래핀의 개질을 위해 아민기(amine), 수산기(hydroxy), 아지드기(azide), anhydride, amide, mercapto, carboxyl acid, pyridine, azide, acrylate, cycloepoxide 를 갖는 유기 단분자 또는 고분자가를 이용할 수 있다. 아민기를 갖는 유기 단분자 또는 고분자로는 에틸렌디아민(ethylenediamine), 트리에틸아민(triethylamine), 파라페닐렌디아민(paraphenylenediamine), 3,3',4,4'-테트라아미노비페닐 (3,3',4,4'-tetraaminobiphenyl), 3,3',4,4'-테트라아미노터페닐(3,3',4,4'-tetraaminoterphenyl), 벤지딘 (benzidine), 1,5-디아미노나프탈렌(1,5-diaminonaphthalene), (E)-4,4'-(디아젠-1,2-디일)디아닐린((E)-4,4'- (diazene-1,2-diyl)dianiline), 에틸렌다이아민(Ethylenediamine), 1,6-다이아미노헥세인(1,6-Diaminohexane), 1,8-다이아미노옥테인(1,8-Diaminooactne), 4-아미노페놀, 1,3-니트로페닐아민으로 구성된 군에서 선택되는 어느 하나를 이용할 수 있다. 수산기를 갖는 유기 단분자 또는 고분자로는 Poly(vinyl alcohol)(PVA), hot strong alkaline solutions (KOH, NaOH), hydroxyl-amine 등으로 이루어진 군에서 선택되는 어느하나를 이용할 수 있다. 아지드기를 갖는 유기 단분자 또는 고분자로는 Sodiumazide, 2-아지도에탄올, 3-아지도프로판-1-아민, 4-(2-아지도에톡시)-4-옥소부탄산, 2-아지도에틸-2-브로모-2-메틸프로파노에이트, 클로로카보네이트, 아지도카보네이트, 디클로로카르벤, 카르벤, 아린 및 니트렌으로 구성된 군에서 선택되는 어느 하나를 이용할 수 있다.표면개질반응이 종료되면, 대용량 순환식 초음파 분산 시스템을 통해 시간당 1 톤(ton)의 화학적 개질 그래핀(chemically modified graphene)을 포함하는 제1콜로이드를 제조한다. 이때, 화학적 개질 그래핀은 용매에 분산될 수 있다.
제1콜로이드를 형성할 때 이용하는 용매는 접착제 조성물의 용매와 동일한 것을 사용하는 것이 바람직하다.
예컨대, 용매는 물, 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 에틸렌 글리콜, 폴리 에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류수, 디클로로벤젠, 디메틸벤젠, 트리메틸 벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드, 메틸렌클로라이드, 디에틸렌 글리콜 메틸 에틸 에테르(diehthylene glycol methyl ethyl ether), 에틸아세테이트(ethyl acetate), 혼합용매로서 중 어느 하나를 사용하는 것을 특징으로 하는 탄소나노판 복합체, 공용매, 아마이드 계 열의 N,N-디메틸포름아마이드(N,N-dimethylformamide, DMF), N-메틸피롤리돈(N-methylpyrrolidone,NMP), 수산 화암모늄 염산 수용액, 알파-테피놀(Terpinol), 클로로포름(chloroform), 메틸에틸키톤(methyl ethyl ketone), 포름산(formic acid), 니트로에탄 (nitroethane)BBB, 2-에톡시 에탄올(2-ethoxy ethanol), 2-methoxy ethanol, 2-부톡시 에탄올(2-butoxy ethanol), 2-메톡시 프로판올 (2-methoxy propanol), 에틸렌 글리콜, 아세톤, 메틸 알콜, 에틸알콜, 이소프BBB로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디 메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류 수, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나 프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실 아민, 아닐린, 디메틸설폭사이드, 메틸렌클로라, 2-메톡시 에탄올(2-methoxy ethanol), 감마-부티로락톤(γ GBL), 벤질 벤조에이트(Benzyl Benzoate), 1-메틸-2-피롤리디논(1-Methyl-2-pyrrolidinone, NMP), N,N- Dimethylacetamide (DMA), 1,3-Dimethyl-2-Imidazolidi none (DMEU), 1-Vinyl-2-pyrrolidone (NVP), 1- Dodecyl-2-pyrrolidinone (N12P), N,N-Dimethylformamide (DMF), Dimethyl sulfoxide (DMSO), Isopropoanol (IPA), 1-Octyl-2-pyrrolidone (N8P)) DGMEA(diethylene glycol monoethyl ether acetate), PGMEA (propylene glycol monomethyl ether acetate), PGME(propylene glycol monomethyl ether 중 어느 하나를 이용할 수 있다.
제1콜로이드를 준비한 후 제1콜로이드와 접착수지를 용매에 선분산시키는 단계가 수행된다. 제1콜로이드에 포함된 제1그래핀은 관능기를 가지는 화학적 개질 그래핀으로서, 화학적 개질 그래핀의 관능기가 접착수지의 경화과정에서 접착수지와 결합하게 된다. 그런데 도전성 금속입자나 제2그래핀과 제1그래핀을 함께 분산시킬 경우 제1그래핀의 분산성이 떨어지게 되며, 이에 따라 제1그래핀에 의한 도전성 금속입자의 연결성 향상효과가 현저히 떨어진다. 따라서 본 발명의 접착제 제조방법은 제1그래핀을 접착수지와 함께 용매에 선분산시킴으로써 제1그래핀과 접착수지 사이의 인터랙션(interaction)을 증가시켜 제1그래핀이 접착층의 성능 향상에 기여할 수 있게 된다.
다음으로 선분산된 용매에 금속입자를 본분산시키는 단계가 수행된다. 이때, 본분산시키는 단계에서 제2그래핀이 분산된 제2콜로이드를 상기 용매에 혼합하는 단계가 같이 수행될 수 있다. 제2그래핀은 비산화 그래핀인 것일 수 있다.
제2콜로이드를 준비하는 단계는 확장된 그라파이트를 준비하는 단계, 상기 확장된 그라파이트를 박리하여 그래핀 플레이크를 준비하는 단계 및 상기 박리된 그래핀 플레이크를 분산시켜 제2콜로이드를 제조 하는 단계를 포함한다.
확장된 그라파이트를 준비하는 단계는 그라파이트 플레이크를 산화제에 약 30분 정도 침적처리 후 500 내 지 1000 W의 출력으로 1 내지 10분 동안 마이크로웨이브를 조사하여 수행될 수 있다. 이때, 산화제로는 과망간 산칼륨, 황산, 과산화수소, 또는 인산 중 2가지 이상을 혼합한 복합산화제를 이용할 수 있다. 이와 같이 제조된 확장된 그라파이트 플레이크는 평균직경이 100 μm 이하이다. 한편, 확장된 그라파이트를 준비하는 단계는 평균직경이 100 μm 이하인 확장된 그라파이트를 구매하여 이용하는 것도 가능하다. 다음으로, 상기 확장된 그라파이트 옥사이드를 박리하여 그래핀 플레이크를 준비하는 단계가 수행된다. 확장된 그라파이트의 박리는 산화제 없이 용제나 이온염 등의 삽입체(intercalator)를 사용하여 박리할 수 있다. 다음으로 상기 박리된 그래핀 플레이크를 분산시켜 제2콜로이드를 제조하는 단계가 수행된다.
마지막으로 상기 본분산된 용매에 경화제를 첨가하여 접착제를 형성하는 단계가 수행된다. 경화제를 첨가하는 단계는 1액형인지 2액형인지 여부에 따라 제조과정에서 수행되거나 현장에서 수행될 수 있다.
도 4는 본 발명의 전자파 차폐용 하이브리드 접착필름의 구조를 도시한 개략적 사시도이며, 도 5는 본 발명의 전자파 차폐용 하이브리드 접착필름의 접착층의 구성을 도시한 개략적 모식도이다.
본 발명의 또 다른 실시예에 따른 전자파 차폐용 하이브리드 접착필름(이하, "접착필름"이라 함)은 접착층(1), 차폐층(2, Cu layer, ~ 5㎛), 보호층(3), 투명층(4)으로 구성된다. 본 발명은 접착층(1)에 관한 것으로서, 도 5에서 보는 바와 같이, 접착수지(10), 도전성 금속입자(20), 제1그래핀(30)으로 구성될 수 있다. 나아가 제2그래핀(40)을 더 포함할 수 있다. 각 구성의 역할은 접착제 조성물에서 설명한 바와 동일하다.
도 6은 본 발명의 일 실시예에 따른 접착제 조성물을 이용하여 제조한 접착제(a), 시제품(b) 및 형성된 접착층 표면의 광학현며경 사징(c)이다.
실시예 1
도전성 금속입자의 함량에 따른 영향을 살펴보기 위하여, 도전성 금속입자의 함량을 변화시키면서 면저항, 접착력 및 공정성을 확인하였다.
도전성 금속입자로는 덴드라이트 형상의 10wt%의 양으로 은이 코팅된 구리를 이용하였다. 접착수지로 비스페놀 A 디글리시딜 에테르 35 wt%, 경화제로 6 wt%, 촉매로 0.5 wt%, 첨가제(커플링제, 강인화제, 경화촉진제, 및 레벨링제 3 wt%, 계면활성제 0.5 wt% 및 용매를 포함하였다. 도전성 금속입자의 함량에 따라 용매의 함량을 감소시켰다. 그래핀은 포함하지 않았다.
샘플 도전성 금속 입자의 함량(wt.%) 면저항(Ω/sq) 접착력(kgf/㎝) 공정성
Z1 9 3.4 x 107 1.51 양호
Z2 10 5.6 x 106 1.42 양호
Z3 15 2.3 x 100 1.11 양호
Z4 30 2.4 x 10-1 1.07 양호
Z5 45 1.4 x 10-1 1.04 표면 거칠기 증가
Z6 56 2.9 x 10-2 1.01 점도 높으나 공정진행은 가능,표면 거칠기 증가
Z7 58 7.9 x 10-2 0.84 점도 상승으로 공정 불량
표 1을 참조하면, 도전성 금속입자를 금속입자 단독으로 사용 시 45wt% ~56wt% 함량에서 접착력, 면저항, 공정성 모두를 확보할 수 있으나, 이 또한 산화 안정성이 저하되어 후술하는 표 3의 A3에서 보는 바와 같이 고온안정성 평가 시 면저항 저하 발생한다. 또한, Z5~Z7에서 보는 바와 같이 덴트라이트 형상에 따른 특성 때문에 도전성 금속입자의 고충진이 불가능하며, 고충진 시 점도 상승 및 접착층의 표면 거칠기 증가의 공정 불량 발생이 나타나는 문제가 있다.
실시예 2
은으로 코팅된 구리를 도전성 금속입자로 이용할 경우 은의 함량에 따른 영향을 살펴보기 위해, 도전성 금속입자 18 wt%, 접착수지로 비스페놀 A 디글리시딜 에테르 35 wt%, 경화제로 6 wt%, 촉매로 0.5 wt%, 첨가제(커플링제, 강인화제, 경화촉진제, 및 레벨링제) 3 wt%, 계면활성제 0.5 wt% 및 용매 37 wt%를 포함하는 접착제 조성물을 마련하고, 이를 이용하여 접착층을 형성하였다. 도정성 금속입자는 덴드라이트 형상을 가지는 가지는 것으로 제조하였다.
접착층은 5㎛ 두께의 동박 위에 바 캐스팅(bar casting)을 실시하여 20um의 습식막을 제작하고, 80℃ - 10분 건조, 180℃ - 60분 경화를 진행하여 제조되었다. 표 2는 제조된 접착층의 면저항 및 접착력을 측정한 결과와, 그 후 대기 조건하 180℃ - 300H 열처리를 진행 후 면저항을 측정하여 고온안정성을 평가한 결과이다.
샘플 Ag 함량(wt.%) 면저항(Ω/sq) 접착력(kgf/㎝) 고온안정성(180℃/300H)면저항 (Ω/sq)
A1 0 3.5 × 105 1.10 8.1 × 109
A2 5 5.6 × 102 1.12 5.3 × 104
A3 10 2.4 × 100 1.11 3.7 × 102
A4 20 1.8 × 100 1.08 2.2 × 101
A5 30 7.9 × 10-1 1.09 8.6 × 100
도전성 급속입자가 구리만으로 구성된 A1의 경우 면저항이 3.5 × 105 Ω/sq 수준으로 면저항이 매우 높으며, 특히 고온 안정성 평가 결과 300 H 시점에서 8.1 × 109 Ω/sq 수준으로 사용이 불가능한 면저항 값을 가짐을 확인할 수 있다. 이는 구리의 산화에 의한 것으로 판단된다. 이처럼 고온안정성 평가에서 특성저하가 크게 발생할 경우 전자소자에 차폐필름이 적용될 때 reflow 평가, 납내열 평가, 내습 등의 신뢰성 평가에서 불량 발생의 소지가 현저히 높다.
이에 비해 은이 코팅된 A2 ~ A5 의 경우에는 초기면저항도 순수한 구리에 비해 약 1,000배 에서 1,000,000배 정도 낮고, 고온안정성 평가 결과도 100,000배 이상 낮은 것을 확인할 수 있다.
한편, 접착성은 도전성 금속입자가 접착제 조성물 전체에 포함된 함량의 차이가 없는바, A1, A2 ~ A5 에서 유의미한 차이를 보이지 않는다.
실시예 3
실시예 3은 실시예 2에서 가장 높은 성능을 보인 A2를 제조한 조성에서 제1그래핀으로 아민 관능기를 가지는 화학적 개질 그래핀의 함량을 조절하여 차폐층을 제조하였다. 제1그래핀의 추가에 따라 용매의 양이 줄어든 것 외에는 실시예 1과 동일한 방법으로 제조되었다.
제조된 차폐층의 면저항, 접착력, 고온안정성을 평가하였으며, 접착제 조성물의 공정성을 평가하여 그 결과를 표 3에 나타내었다.
샘플 제1그래핀(wt.%) 면저항(Ω/sq) 접착력(kgf/㎝) 고온안정성(180℃/300H)면저항 (Ω/sq) 공정성
A3 0 2.4 x 100 1.11 3.7 x 102 양호
C1 0.005 1.1 x 100 1.12 1.3 x 100 양호
C2 0.01 6.3 x 10-1 1.10 8.5 x 10-1 양호
C3 0.05 3.5 x 10-1 1.08 3.6 x 10-1 양호
C4 0.1 1.2 x 10-1 1.02 1.2 x 10-1 양호
C5 0.12 8.9 x 10-2 0.98 8.8 x 10-2 미흡
C6 1.0 2.4 x 10-2 0.86 2.5 x 10-2 미흡
제1 그래핀을 0.005 wt% 추가할 경우 면저항은 소폭 감소하나, 고온안정성이 현저하게 상승하는 것을 알 수 있다. 또한, 제1그래핀의 함량에 비례하여 도전성 금속입자 사이의 연결성이 향상되어 면저항이 향상된다. 다만, 제1그래핀이 0.1 wt% 를 초과하여 포함될 경우 제1그래핀과 접착수지의 과도한 반응으로 인해 접착력이 목표하는 1.0 kgf/㎝ 미만으로 떨어지는 문제가 있으며, 특히 공정성이 현저히 떨어진다.
실시예 4
실시예 4는 실시예 3에서 가장 높은 성능을 보인 C2를 제조한 조성에서 제2그래핀으로 비산화 그래핀의 함량을 조절하여 차폐층을 제조하였다. 제2그래핀의 추가에 따라 용매의 양이 줄어든 것 외에는 실시예 3과 동일한 방법으로 제조되었다.
제조된 차폐층의 면저항, 접착력, 고온안정성을 평가하였으며, 접착제 조성물의 공정성을 평가하여 그 결과를 표 4에 나타내었다.
샘플 제2그래핀(wt.%) 면저항(Ω/sq) 접착력(kgf/㎝) 고온안정성(180℃/300H)면저항 (Ω/sq) 공정성
B2 0 6.3 x 10-1 1.10 8.5 x 10-1 양호
C1 0.005 6.1 x 10-1 1.11 6.1 x 10-1 양호
C2 0.01 9.3 x 10-2 1.10 9.2 x 10-2 양호
C3 0.1 7.5 x 10-2 1.08 7.3 x 10-2 양호
C4 0.5 4.2 x 10-2 1.04 4.1 x 10-2 양호
C5 1.0 8.7 x 10-3 1.01 8.2 x 10-3 양호
C6 1.5 3.2 x 10-3 0.74 7.2 x 10-3 미흡
표 4를 참조하면, 제2그래핀은 0.01 wt% 미만으로 포함될 경우 면저항의 개선효과가 거의 없거나 미미하며, 0.01 wt% 이상으로 포함할 경우 추가적인 면저항 개선효과를 가진다. 특히, 위 표에는 표시하지 않았으나, 비산화 그래핀으로 인한 내습성 향상 효과가 있다.
다만, 제2그래핀의 함량이 1.0 wt%를 초과할 경우 공정성이 현저히 떨어질 뿐만 아니라, 제2그래핀의 부작용으로 접착수지 사이의 결합력 저하로 인해 접착력이 떨어지는 문제가 있다.
실시예 5
아래의 표 5와 같이 도전성 금속입자와 제1그래핀, 제2그래핀의 함량을 조절하여 접착층을 형성하고, Network analyzer로 X-band 영역에서의 전자파 차폐 성능을 확인하였다. 전자파 차폐성능은 10GHz에서의 Shield effectiveness 측정값을 나타낸다.
D1 D2 D3 D4
접착제구조 Cu DendriteAdhesive (10um) 10%Ag-Cu DendriteAdhesive (10um) 10%Ag-Cu Dendrite- 0.01% 제1그래핀- 0.1% 제2그래핀Adhesive (10um) 10%Ag-Cu Dendrite- 0.03% 제1그래핀- 0.5% 제2그래핀Adhesive (10um)
SE @10GHz 20 dB 28 dB 34 dB 39 dB
표 5를 참조하면, 제1그래핀 및 제2그래핀을 포함하는 D3 및 D4의 차폐성능이 그렇지 아니한 D1, D2에 비해 높은 것을 확인할 수 있다.
이상에서 설명한 본 발명의 일 예의 전자파 차폐용 하이브리드 접착제 조성물을 이용함으로써, 제조된 접착층이 높은 접착력을 유지하면서 동시에 면저항을 낮춰 차폐 성능이 향상시킬 수 있으며, 나아가 고온 안정성이 현저히 향상되는 장점이 있다. 따라서 본 발명의 일 예의 접착제 조성물을 이용함으로써, 접착필름의 연성 및 박층화에 크게 기여할 수 있을 것으로 기대된다.
본 발명의 보호범위가 이상에서 명시적으로 설명한 실시예의 기재와 표현에 제한되는 것은 아니다. 또한, 본 발명이 속하는 기술분야에서 자명한 변경이나 치환으로 말미암아 본 발명이 보호범위가 제한될 수도 없음을 다시 한 번 첨언한다.

Claims (11)

  1. 도전성 금속입자, 제1그래핀, 접착수지 및 경화제를 포함하며, 상기 제1그래핀은 화학적 개질 그래핀이며, 상기 접착수지가 상기 화학적 개질 그래핀의 관능기에 결합하는 것을 특징으로 하는 전자파 차폐용 하이브리드 접착제 조성물.
  2. 제1항에 있어서,
    상기 도전성 금속입자의 함량은 10 ~ 56 wt%이며, 상기 제1그래핀의 함량은 0.005 ~ 0.1 wt%이며, 상기 접착수지의 함량은 10 ~ 45 wt%이며, 상기 경화제의 함량은 1 ~ 10 wt%이인 것을 특징으로 하는 전자파 차폐용 하이브리드 접착제 조성물.
  3. 제1항에 있어서,
    제2그래핀을 더 포함하고, 상기 제2그래핀은 비산화 그래핀인 것을 특징으로 하는 전자파 차폐용 하이브리드 접착제 조성물.
  4. 제3항에 있어서,
    상기 제2그래핀의 함량은 0.01 ~ 1 wt%인 것을 특징으로 하는 전자파 차폐용 하이브리드 접착제 조성물.
  5. 제1항에 있어서,
    상기 도전성 금속입자는 플레이크 또는 덴드라이트 형상인 것을 특징으로 하는 전자파 차폐용 하이브리드 접착제 조성물.
  6. 제1항에 있어서,
    상기 관능기는 아민기, 하이드록실기, 아마이드기, 아지드기, 에폭사이드기, 머캅토기, 언하이드라이드기 및 카르복실기 이루어진 군에서 선택되는 적어도 어느 하나인 것을 특징으로 하는 전자파 차폐용 하이브리드 접착제 조성물.
  7. 제1그래핀이 분산된 제1콜로이드를 준비하는 단계;
    상기 제1콜로이드와 접착수지를 용매에 선분산시키는 단계;
    상기 선분산된 용매에 금속입자를 본분산시키는 단계; 및
    상기 본분산된 용매에 경화제를 첨가하여 접착제를 형성하는 단계;를 포함하고,
    상기 제1그래핀은 화학적 개질 그래핀으로서, 상기 접착수지는 상기 화학적 개질 그래핀의 관능기에 결합하는 것을 특징으로 하는 전자파 차폐용 하이브리드 접착제의 제조방법.
  8. 제7항에 있어서,
    제1콜로이드를 준비하는 단계는,
    그라파이트 플레이크에 산화제를 처리하여 침적처리 후 마이크로웨이브를 조사하여 확장된 그라파이트 옥사이드 를 준비하는 단계;
    상기 확장된 그라파이트 옥사이드를 박리하여 그래핀 옥사이드를 준비하는 단계;
    상기 준비된 그래핀 옥사이드와 탈이온수를 혼합하여 그래핀 옥사이드 현탁액을 준비하는 단계; 및
    상기 그래핀 옥사이드 현탁액에 그래핀의 개질을 위한 첨가제를 넣고 교반하여 반응시킨 후 대용량 순환식 초음파 분산시스템을 통해 하전된 화학적 개질 그래핀을 포함하는 제1콜로이드를 제조하는 단계;를 포함하고,
    상기 첨가제는 상기 화학적 개질 그래핀의 관능기로 아민기, 하이드록실기, 아마이드기, 아지드기, 에폭사이드기, 머캅토기, 언하이드라이드기 및 카르복실기 이루어진 군에서 선택되는 적어도 어느 하나를 형성할 수 있는 것을 특징으로 하는 전자파 차폐용 하이브리드 접착제의 제조방법.
  9. 제7항에 있어서,
    상기 본분산시키는 단계는 제2그래핀이 분산된 제2콜로이드를 상기 용매에 혼합하여 수행되며, 상기 제2그래핀은 비산화 그래핀인 것을 특징으로 하는 전자파 차폐용 하이브리드 접착제의 제조방법.
  10. 제9항에 있어서,
    상기 제2콜로이드는,
    확장된 그라파이트를 준비하는 단계;
    상기 확장된 그라파이트를 박리하여 그래핀 플레이크를 준비하는 단계; 및
    상기 박리된 그래핀 플레이크를 분산시켜 제2콜로이드를 제조하는 단계;를 포함하여 준비되는 것을 특징으로 하는 전자파 차폐용 하이브리드 접착제의 제조방법.
  11. 차폐층 및 접착층을 포함하는 전자파 차폐용 하이브리드 접착필름으로서,
    상기 접착층은 도전성 금속입자, 제1그래핀 및 접착수지를 포함하고, 상기 제1그래핀은 화학적 개질 그래핀이며, 상기 접착수지가 상기 화학적 개질 그래핀의 관능기에 결합하는 것을 특징으로 하는 전자파 차폐용 하이브리드 접착필름.
PCT/KR2020/012161 2020-09-09 2020-09-09 전자파 차폐용 하이브리드 접착제 조성물, 전자파 차폐용 하이브리드 접착제의 제조방법 및 전자파차폐용 하이브리드 접착필름 WO2022054979A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237012660A KR20230069183A (ko) 2020-09-09 2020-09-09 전자파 차폐용 하이브리드 접착제 조성물, 전자파 차폐용 하이브리드 접착제의 제조방법 및 전자파차폐용 하이브리드 접착필름
PCT/KR2020/012161 WO2022054979A1 (ko) 2020-09-09 2020-09-09 전자파 차폐용 하이브리드 접착제 조성물, 전자파 차폐용 하이브리드 접착제의 제조방법 및 전자파차폐용 하이브리드 접착필름
CN202080002491.7A CN114502681A (zh) 2020-09-09 2020-09-09 用于屏蔽电磁波的混合粘结剂组合物、用于屏蔽电磁波的混合粘结剂的制备方法及用于屏蔽电磁波的混合粘结膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/012161 WO2022054979A1 (ko) 2020-09-09 2020-09-09 전자파 차폐용 하이브리드 접착제 조성물, 전자파 차폐용 하이브리드 접착제의 제조방법 및 전자파차폐용 하이브리드 접착필름

Publications (1)

Publication Number Publication Date
WO2022054979A1 true WO2022054979A1 (ko) 2022-03-17

Family

ID=80630340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012161 WO2022054979A1 (ko) 2020-09-09 2020-09-09 전자파 차폐용 하이브리드 접착제 조성물, 전자파 차폐용 하이브리드 접착제의 제조방법 및 전자파차폐용 하이브리드 접착필름

Country Status (3)

Country Link
KR (1) KR20230069183A (ko)
CN (1) CN114502681A (ko)
WO (1) WO2022054979A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340768A (zh) * 2022-09-30 2022-11-15 宁波恒浩广新型电子材料有限公司 一种不锈钢基电磁屏蔽材料的制备工艺和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130086902A (ko) * 2012-01-26 2013-08-05 도레이첨단소재 주식회사 도전성 난연 접착제 및 이를 이용한 전자파 차폐필름
WO2013191809A1 (en) * 2012-06-21 2013-12-27 Tesla Nanocoatings, Inc. Tunable materials
KR101661583B1 (ko) * 2015-01-20 2016-10-10 (주)창성 전자파 차폐 흡수재 및 그 제조방법
KR20160140508A (ko) * 2015-05-28 2016-12-07 주식회사 동진쎄미켐 2종 이상의 아민을 포함하는 기능화 그래핀 및 그 제조방법
KR20200046235A (ko) * 2018-10-23 2020-05-07 현대자동차주식회사 전자파 차폐 기능을 갖는 복합소재 조성물 및 이를 포함하는 성형체
KR20200076565A (ko) * 2018-12-19 2020-06-29 베스트그래핀(주) 그래핀층을 포함하는 방열 및 차폐용 복합시트

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104099050A (zh) * 2014-07-17 2014-10-15 深圳市华星光电技术有限公司 导电胶的制备方法及导电胶
TWI770013B (zh) * 2016-03-29 2022-07-11 日商拓自達電線股份有限公司 導電性塗料及使用其之屏蔽封裝體之製造方法
WO2019073809A1 (ja) * 2017-10-13 2019-04-18 タツタ電線株式会社 シールドパッケージ
WO2020105821A1 (ko) * 2018-11-21 2020-05-28 베스트그래핀(주) 그래핀 잉크 조성물 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130086902A (ko) * 2012-01-26 2013-08-05 도레이첨단소재 주식회사 도전성 난연 접착제 및 이를 이용한 전자파 차폐필름
WO2013191809A1 (en) * 2012-06-21 2013-12-27 Tesla Nanocoatings, Inc. Tunable materials
KR101661583B1 (ko) * 2015-01-20 2016-10-10 (주)창성 전자파 차폐 흡수재 및 그 제조방법
KR20160140508A (ko) * 2015-05-28 2016-12-07 주식회사 동진쎄미켐 2종 이상의 아민을 포함하는 기능화 그래핀 및 그 제조방법
KR20200046235A (ko) * 2018-10-23 2020-05-07 현대자동차주식회사 전자파 차폐 기능을 갖는 복합소재 조성물 및 이를 포함하는 성형체
KR20200076565A (ko) * 2018-12-19 2020-06-29 베스트그래핀(주) 그래핀층을 포함하는 방열 및 차폐용 복합시트

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340768A (zh) * 2022-09-30 2022-11-15 宁波恒浩广新型电子材料有限公司 一种不锈钢基电磁屏蔽材料的制备工艺和应用

Also Published As

Publication number Publication date
CN114502681A (zh) 2022-05-13
KR20230069183A (ko) 2023-05-18

Similar Documents

Publication Publication Date Title
JP6769032B2 (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、接着補助層付き層間絶縁用樹脂フィルム、及びプリント配線板
WO2010101418A2 (en) Composition for conductive paste containing nanometer-thick metal microplates
WO2011074418A1 (ja) 多孔質層を有する積層体、及びそれを用いた機能性積層体
WO2017164437A1 (ko) 방열특성이 우수한 방열시트 및 이의 제조방법
JP4935592B2 (ja) 熱硬化型導電性ペースト
EP2053615A1 (en) Conductive paste, and conductive coating film and conductive film using the same
US20050145832A1 (en) Polyimide based compositions comprising doped polyaniline and methods and compositions relating thereto
KR102660753B1 (ko) 수지 조성물, 수지를 구비하는 구리박, 유전체층, 동장 적층판, 커패시터 소자 및 커패시터 내장 프린트 배선판
WO2010114300A2 (ko) 박막 금속적층필름의 제조방법
WO2015178696A1 (ko) 전도성 조성물
WO2018084518A1 (ko) 코어-쉘 구조의 은 코팅된 구리 나노와이어를 포함하는 에폭시 페이스트 조성물 및 이를 포함하는 도전성 필름
JP2003011270A (ja) 導電性箔付き誘電体層およびこれを用いたコンデンサ、ならびにその形成方法
WO2022054979A1 (ko) 전자파 차폐용 하이브리드 접착제 조성물, 전자파 차폐용 하이브리드 접착제의 제조방법 및 전자파차폐용 하이브리드 접착필름
WO2020105949A1 (ko) 수지 조성물, 이를 포함하는 프리프레그, 이를 포함하는 적층판, 및 이를 포함하는 수지 부착 금속박
CN105778848A (zh) 一种柔性印刷电路板用低介电常数黏合剂及其应用方法
KR20200076565A (ko) 그래핀층을 포함하는 방열 및 차폐용 복합시트
WO2010067965A2 (en) Electroconductive silver nanoparticle composition, ink and method for preparing the same
JP5010124B2 (ja) 熱可塑性樹脂組成物、シート、樹脂付き銅箔、プリント基板及びプリプレグ
WO2004113466A1 (ja) 半導体装置用接着剤組成物およびそれを用いたカバーレイフィルム、接着剤シート、銅張りポリイミドフィルム
WO2020105821A1 (ko) 그래핀 잉크 조성물 및 그 제조방법
WO2024096574A1 (ko) 전자파 차폐용 다층필름 및 이의 제조방법
WO2015115781A1 (ko) 전도성 고분자를 포함하는 도전성 접착제 및 접착필름
JP2004335764A (ja) 誘電体膜およびその製造方法
WO2024049027A1 (ko) 기둥형 노듈 구조를 갖는 표면처리동박,이를 포함하는 동박적층판 및 프린트 배선판
JP2020038915A (ja) 多層印刷回路板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20237012660

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20953381

Country of ref document: EP

Kind code of ref document: A1