WO2022054919A1 - 元素分析装置、取付治具、及び、取付方法 - Google Patents

元素分析装置、取付治具、及び、取付方法 Download PDF

Info

Publication number
WO2022054919A1
WO2022054919A1 PCT/JP2021/033379 JP2021033379W WO2022054919A1 WO 2022054919 A1 WO2022054919 A1 WO 2022054919A1 JP 2021033379 W JP2021033379 W JP 2021033379W WO 2022054919 A1 WO2022054919 A1 WO 2022054919A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
sample
main body
tip
accommodating recess
Prior art date
Application number
PCT/JP2021/033379
Other languages
English (en)
French (fr)
Inventor
貴仁 井上
博 内原
泰士 平田
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to CN202180038559.1A priority Critical patent/CN115715362A/zh
Priority to US18/000,046 priority patent/US20230213419A1/en
Priority to JP2022548361A priority patent/JPWO2022054919A1/ja
Publication of WO2022054919A1 publication Critical patent/WO2022054919A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat

Definitions

  • the present invention relates to an elemental analyzer that analyzes an element contained in a sample based on a sample gas generated by heating the sample.
  • An elemental analyzer is used to quantify elements such as nitrogen (N), hydrogen (H), and oxygen (O) contained in the sample.
  • a graphite crucible containing a sample is sandwiched between a pair of electrodes in a heating furnace, and an electric current is directly passed through the crucible to heat the crucible and the sample.
  • the sample gas generated by heating is led out from the heating furnace, and the concentration of various components consists of NDIR (Non Dispersive Infrared: non-dispersive infrared gas analyzer), TCD (Thermal Conductivity Detector), etc. Measured by the analytical mechanism.
  • the heating furnace of the elemental analyzer shown in Patent Document 1 includes an upper electrode having an accommodating recess formed therein and a lower electrode on which a crucible is placed.
  • the crucible is accommodated in the accommodating recess in a state of being sandwiched between the upper electrode and the lower electrode.
  • the upper electrode includes a substantially cylindrical upper electrode body in which the accommodating recess is formed, and an upper electrode tip brazed and fixed to the upper electrode body in the accommodating recess.
  • the present invention has been made in view of the above-mentioned problems, and is an elemental analyzer capable of exchanging only a part of a worn electrode tip for an electrode having a housing recess in which a pot is housed during elemental analysis.
  • the purpose is to provide.
  • the element analyzer heats the sample by sandwiching the pot containing the sample between the first electrode and the second electrode and passing a current between the first electrode and the second electrode.
  • the first electrode is partially exposed in the first electrode main body in which the accommodating recess in which the pot is accommodated and the accommodating recess in the first electrode main body.
  • a fixed structure provided between the first electrode main body and the first electrode chip, and the first electrode tip is detachably fixed to the first electrode main body, is provided. It is characterized by being prepared.
  • the first electrode tip is configured to be removable from the first electrode main body, only this part can be replaced when the first electrode tip is worn out. Therefore, as compared with the case where the entire first electrode is replaced as in the conventional case, the labor and cost required for the replacement can be significantly reduced.
  • the fixing structure is formed between the first electrode body and the first electrode tip.
  • a first screw structure including a male threaded portion and a female threaded portion can be mentioned.
  • the first electrode tip can be attached to and detached from the first electrode body, and the sample gas generated from the sample can be prevented from leaking to the outside between the first electrode tip and the first electrode body.
  • the first electrode main body has one end opened in the accommodating recess, further provided with a sample charging hole for charging a sample into the pot, and the first screw structure is the first electrode.
  • the male threaded portion and the female threaded portion formed between a part of the sample input hole of the first electrode main body and the first electrode tip may be formed.
  • the first electrode tip has the male screw portion on the outside.
  • An insertion cylinder formed on the peripheral surface and inserted into the sample input hole of the first electrode body, and a flange portion exposed in the accommodating recess and extending in the radial direction on one end side of the insertion cylinder.
  • a through hole formed so as to penetrate the insertion cylinder and the flange portion in the axial direction, and a gas outlet groove formed in the flange portion so that at least one end of the through hole is opened and extends in the radial direction. It suffices as long as it is equipped with.
  • the other end of the gas outlet groove may be formed so as to open to the outer peripheral surface of the flange portion.
  • a plurality of gas outlet grooves are formed, and the center of the first electrode tip is formed. It suffices if they are arranged axisymmetrically with respect to the axis.
  • the gas outlet groove also serves as an engagement groove to which a jig is engaged when the first electrode chip is removed from the first electrode main body, the accommodation is provided by using the configuration required for element analysis. Since the first electrode tip can be attached to and detached from the back of the recess, it is not necessary to separately provide an element such as an engagement groove that engages with the jig in the first electrode tip. Therefore, the first electrode tip can be attached to and detached from the first electrode main body, and the gas flow optimized for elemental analysis can be prevented from being obstructed by the element for attachment and detachment. Therefore, it is possible to perform elemental analysis with the same accuracy as when the entire first electrode is formed as an integral body as in the conventional case.
  • the crucible is sandwiched between the first electrode and the second electrode in the accommodating recess to heat the sample in the closed space, and all the generated sample gas can be easily taken out to the analyzer side.
  • the two electrodes are separated from the first position for sandwiching the crucible in the accommodating recess with the first electrode by a predetermined distance from the first position, and the crucible is arranged outside the accommodating recess. Any structure may be used so as to be movable between the second position and the second position.
  • the element analyzer is a mounting jig for mounting the first electrode chip on the first electrode main body, and is rotatable with respect to the guide fitted in the accommodating recess and the guide. If a mounting jig provided with a rotating shaft provided in the above and an engaging member provided so as to project radially at the tip of the rotating shaft and engage with the gas outlet groove, the accommodating recess can be provided. Even when the first electrode tip is screwed to the back side, it can be easily attached in a straight posture.
  • the first electrode tip is configured to be removable from the inside of the accommodating recess of the first electrode body, so that only this portion is replaced when the first electrode tip is worn out. can. Therefore, it is not necessary to replace the entire first electrode, and the labor and cost required for replacement can be significantly reduced as compared with the conventional case.
  • FIG. 6 is a schematic cross-sectional view showing a usage state of a mounting jig used in the elemental analyzer according to the second embodiment of the present invention.
  • FIG. 6 is a schematic view showing still another embodiment of the cap of the second electrode.
  • FIG. 1 shows an outline of the elemental analyzer 100 of the first embodiment.
  • the elemental analyzer 100 heats and dissolves, for example, a metal sample, a ceramics sample, or the like (hereinafter, simply referred to as a sample) contained in a graphite crucible MP, and analyzes the sample gas generated at that time, thereby forming the sample in the sample. It measures the amount of elements contained.
  • a metal sample for example, a metal sample, a ceramics sample, or the like (hereinafter, simply referred to as a sample) contained in a graphite crucible MP, and analyzes the sample gas generated at that time, thereby forming the sample in the sample. It measures the amount of elements contained.
  • C (carbon), H (hydrogen), and N (nitrogen) contained in the sample are the measurement targets.
  • the elemental analyzer 100 is provided from the heating furnace 3 in which the sample housed in the pot MP is heated, the introduction flow path L1 for introducing the carrier gas into the heating furnace 3, and the heating furnace 3. It is provided with a lead-out flow path L2 from which a mixed gas of a carrier gas and a sample gas is derived. More specifically, the elemental analyzer 100 controls the heating furnace 3, each device provided in the introduction flow path L1 or the lead flow path L2, control of each device, and control of arithmetic processing such as measured concentration. It is composed of the arithmetic mechanism COM.
  • the control calculation mechanism COM is a so-called computer equipped with, for example, a CPU, a memory, an A / D converter, a D / A converter, and various input / output means, and a program stored in the memory is executed and various devices cooperate with each other. Therefore, the function as the measured value calculation unit C1 described later is exhibited. Further, the control calculation mechanism COM displays the concentrations of various elements contained in the sample based on the outputs of, for example, CO detection unit 5, CO 2 detection unit 7, H 2 O detection unit 8, and N 2 detection unit 11, which will be described later. It also functions as a display unit (not shown).
  • a gas cylinder which is a carrier gas supply source 1, is connected to the base end of the introduction flow path L1.
  • He helium
  • a purifier 2 is provided on the introduction flow path L1 to remove a minute amount of hydrocarbons contained in the carrier gas to increase the purity of the carrier gas.
  • the refiner 2 is made of a material having the property of physically adsorbing hydrocarbons contained in the carrier gas and substantially not adsorbing the carrier gas itself.
  • the material forming the refiner 2 does not chemically react with the carrier gas or the hydrocarbon. That is, the refiner 2 is also used in, for example, a gas chromatograph, and for example, a zeolite-based molecular sieve can be used as the material for forming the refiner 2. Further, the material for forming the refiner 2 may be silica gel, activated carbon, ascarite or the like.
  • the purifier 2 can desorb the adsorbed molecules by heating, for example, and regenerate the adsorbing ability.
  • the heating furnace 3 is configured to sandwich the graphite crucible MP containing the sample between a pair of electrodes and directly pass an electric current through the crucible MP to heat the crucible MP and the sample.
  • the pressure of the carrier gas is increased by a pressure regulating valve (not shown) provided on the upstream side of the heating furnace 3 so that the pressure in the heating furnace 3 is 60 kPa or less, more preferably 40 kPa or less. Be adjusted.
  • the details of the electrodes of the heating furnace 3 will be described later.
  • the detection units 11 are provided side by side in this order from the upstream side.
  • the dust filter 4 filters out soot and the like contained in the sample gas and removes dust.
  • the CO detection unit 5 detects CO (carbon monoxide) contained in the mixed gas that has passed through the dust filter 4 and measures the concentration thereof, and is composed of an NDIR (non-dispersive infrared gas analyzer). There is.
  • the CO detection unit 5 operates effectively when the oxygen contained in the sample is high in concentration due to its measurement accuracy. Specifically, it is preferable to measure CO of 150 ppm or more.
  • the oxidizer 6 oxidizes CO and CO 2 contained in the mixed gas that has passed through the CO detection unit 5, and oxidizes H 2 into H 2 O (water) to generate water vapor.
  • Copper oxide is used as the oxidizer 6 in the first embodiment, and the temperature thereof is maintained at 450 ° C. or lower by a heat generating resistor provided around the copper oxide.
  • the CO 2 detection unit 7 is an NDIR that detects CO 2 in the mixed gas that has passed through the oxidizer 6 and measures its concentration.
  • the CO 2 detection unit 7 operates effectively when the oxygen contained in the sample is low (for example, less than 150 ppm) from the viewpoint of measurement accuracy.
  • the H 2 O detection unit 8 is an NDIR that detects H 2 O in the mixed gas that has passed through the CO 2 detection unit 7 and measures its concentration.
  • the flow path from the oxidizer 6 to the H 2 O detection unit 8 is configured such that the temperature of the mixed gas is maintained at 100 ° C. or higher and H 2 O maintains the state of steam. In this way, the measurement error due to dew condensation does not occur in the H 2 O detection unit 8.
  • the removal mechanism 9 adsorbs and removes CO 2 and H 2 O contained in the mixed gas.
  • the removing mechanism 9 is composed of an adsorbent, and for example, the same one as the purifier 2 provided in the introduction flow path L1 described above is used.
  • the mass flow controller 10 is a flow rate control device in which a flow rate sensor M1, a control valve M2, and a flow rate controller M3 are packaged together.
  • the mass flow controller 10 supplies a mixed gas kept constant at a set flow rate to the N 2 detection unit 11 on the downstream side. Therefore, even if the pressure of the mixed gas fluctuates due to the removal mechanism 9, the pressure of the mixed gas in the N 2 detection unit 11 can be maintained at a value suitable for measurement.
  • the mass flow controller 10 is configured to operate at a pressure lower than 60 kPa so that the pressure in the heating furnace 3 can be maintained at 60 kPa, for example, even if the differential pressure between the front and rear is 20 kPa. ing.
  • the N 2 detector 11 is a TCD (thermal conductivity detector), which is a predetermined component contained in the mixed gas based on the change in the thermal conductivity of the mixed gas and the flow rate of the supplied mixed gas. Measure the concentration of. That is, since the mixed gas supplied to the N 2 detection unit 11 is composed almost exclusively of the carrier gas and N 2 , the concentration of N 2 contained in the mixed gas corresponds to the change in the measured thermal conductivity. It becomes a value. Further, in the first embodiment, the flow meter is not provided on the downstream side of the N 2 detection unit 11, and the downstream side of the N 2 detection unit 11 is directly connected to the exhaust port of the lead-out flow path L2.
  • TCD thermal conductivity detector
  • a measurement signal indicating the concentration of each component obtained by each detection unit is input to the measured value calculation unit C1.
  • the measured value calculation unit C1 calculates the concentrations of O, H, and N contained in the sample based on each measurement signal.
  • the measured value calculation unit C1 outputs the oxygen concentration obtained by the CO detection unit 5 when the oxygen concentration inside the sample is equal to or higher than a predetermined threshold (150 ppm) when calculating the oxygen concentration contained in the sample. If it is less than the threshold value, the oxygen concentration obtained by the CO 2 detection unit 7 is used as the output value.
  • a predetermined threshold 150 ppm
  • the heating furnace 3 is provided with a first electrode 31 which is an upper electrode fixed at the upper side and a crucible MP placed at the lower side.
  • a second electrode 32 which is a lower electrode, is provided.
  • the first electrode 31 is a substantially two-stage cylindrical electrode having a fine cylindrical shape on the upper side and a flat disk shape on the lower side.
  • the first electrode 31 includes a first electrode main body 31B in which a hollow cylindrical accommodating recess 311 in which a crucible MP is accommodating is formed in the central portion of the lower portion, and the inside of the accommodating recess 311.
  • the first electrode tip 31C which is detachably provided with respect to the first electrode main body 31B, is provided.
  • the first electrode tip 31C is a portion that comes into direct contact with the upper end edge of the acupuncture point MP having a substantially cylindrical shape, and is consumed by repeating elemental analysis.
  • the first electrode body 31B is formed of, for example, copper
  • the first electrode tip 31C is formed of, for example, a copper alloy containing tungsten. That is, the first electrode tip 31C is made of a material having a higher hardness than the first electrode main body 31B.
  • the first electrode main body 31B forms the outer shape of the first electrode 31, and is formed so that a cylindrical accommodating recess 311 extends in the vertical direction in the central portion of the flat disk-shaped portion as shown in the cross-sectional view of FIG. Has been done. Further, a sample gas outlet hole 312 extending in the horizontal direction is formed so as to open on the side surface of the accommodating recess 311. Further, a sample input hole 313 for dropping a sample into the crucible MP is formed on the upper surface side of the accommodating recess 311.
  • the sample input hole 313 is a substantially fine hollow cylindrical hole having a diameter smaller than that of the accommodating recess 311 and is formed so as to extend in the vertical direction along the central axis of the first electrode 31.
  • the first electrode tip 31C has a substantially two-stage cylindrical shape, and as shown in FIGS. 2 and 3A, a fine cylindrical insertion inserted into the sample input hole 313 of the first electrode main body 31B.
  • a cylinder 314 and a flat plate-shaped flange portion 315 extending in the radial direction on the lower end side of the insertion cylinder 314 are provided.
  • the first electrode tip 31C has a through hole 316 formed so as to penetrate the insertion cylinder 314 and the flange portion 315 in the axial direction, and the flange portion 315 has at least one end opened on the side surface of the through hole 316 and has a radius. It further comprises a gas outlet groove 317 formed so as to extend in the direction.
  • the gas lead-out grooves 317 are provided every 90 ° so as to be axisymmetric with respect to the central axis.
  • the radial inner end of the gas outlet groove 317 is open to the inside of the crucible MP.
  • the gas outlet groove 317 has the other end opened on the outer peripheral surface of the flange portion 315. That is, the sample gas generated by heating from the sample in the crucible MP flows out of the crucible MP from the inside of the crucible MP via the gas lead-out groove 317. After that, the sample gas flows out from the accommodating recess 311 to the outlet flow path L2 via the outlet hole 312 formed in the first electrode main body 31B.
  • a fixing structure is provided between the first electrode main body 31B and the first electrode tip 31C to detachably fix the first electrode tip 31C to the first electrode main body 31B. More specifically, between the outer peripheral surface of the insertion cylinder 314 of the first electrode tip 31C and the inner peripheral surface of the sample input hole 313 of the first electrode main body 31B, a male screw portion S1 and a female screw portion are fixed as a fixing structure. A first screw structure 31S composed of S2 is formed. The first electrode tip 31C is detachably configured with respect to the first electrode main body 31B by the first screwing structure 31S. Further, the thread of the first screw structure 31S does not have a groove cut out in the pitch direction.
  • the flange portion 315 and the upper wall surface of the accommodating recess 311 are in close contact with each other, and the male screw portion S1 and the female screw portion S2 are in close contact with each other without any gap. It will be in the state of. Therefore, it is possible to prevent the sample gas flowing out from the crucible MP from being stored in the gap between the first electrode main body 31B and the first electrode tip 31C or flowing back.
  • the second electrode 32 is configured to be movable in the vertical direction by, for example, an air cylinder (not shown), and a part of the second electrode 32 is inserted into the accommodating recess 311 together with the crucible MP on which it is placed. Specifically, the second electrode 32 is separated from the first position for sandwiching the crucible in the accommodating recess 311 with the first electrode 31 by a predetermined distance, and the crucible is outside the accommodating recess 311. It is configured to be movable between the second position and the second position arranged in.
  • the second electrode 32 includes a second electrode main body 32B having a substantially cylindrical shape, a thin disk-shaped second electrode tip 32C provided on the tip surface of the second electrode main body 32B, and a second electrode tip 32C. Is provided with respect to the second electrode main body 32B, and a cap 32D having an exposed port for exposing the contact surface with the crucible MP in the second electrode tip 32C to the outside.
  • the second electrode body 32B and the cap 32D are made of copper, and the second electrode tip 32C is made of a copper alloy containing tungsten.
  • the second electrode 32 is composed of three separated parts, and only the second electrode chip 32C is replaceable. More specifically, a second screw structure 32S composed of a male screw portion S1 and a female screw portion S2 is formed between the outer peripheral surface of the tip portion of the second electrode main body 32B and the inner peripheral surface of the cap 32D. There is.
  • the structure of the second screw structure 32S is different from that of the first screw structure 31S formed on the first electrode 31. That is, as shown in FIG. 4, the male screw portion S1 of the second screw structure 32S is formed so as to extend in the pitch direction of the screw and cut out a part of the screw thread.
  • the degassing groove 321 is configured to be cut out from the thread to the height of the screw bottom, for example, but may be formed shallower. Further, four degassing grooves 321 are provided every 90 ° so as to be axially symmetric with respect to the central axis of the second electrode 32.
  • the number of degassing grooves 321 is not limited to four, and may be smaller or larger. Further, it does not necessarily have to be arranged axisymmetrically.
  • the degassing groove 321 is formed, even if the air in the gap between the threads of the second screw structure 32S is accumulated between the threads when the cap 32D is attached, it exists from the inside of the heating furnace 3, for example. When the existing air is replaced with the carrier gas, the air in the second electrode 32 can be discharged from the degassing groove 321 to the outside of the second electrode 32.
  • the second electrode main body 32B is formed with a recess 322 formed on the front end surface so that the back surface side of the second electrode tip 32C is substantially fitted, and is a step facing the edge of the cap 32D as shown in FIG.
  • the portion ST is formed on the tip side.
  • the tip surface to which the second electrode tip 32C is attached has the smallest diameter, and is expanded to substantially the same outer diameter as the outer diameter of the O-ring SL attached at the step portion ST. do.
  • the position of the second electrode tip 32C can be aligned with the second electrode main body 32B. Further, by screwing the cap 32D into the second electrode main body 32B in a state where the position of the second electrode tip 32C is fixed, the position of the second electrode tip 32C can be fixed while being kept at the correct position.
  • an O-ring SL is arranged in the ring-shaped groove RT formed between the step portion ST of the second electrode body 32B and the edge of the cap 32D. That is, in the state before the cap 32D is attached, there is no member that restricts the axial movement of the O-ring SL. Further, the ring-shaped groove RT is formed to be slightly larger than the thickness dimension of the O-ring SL. The O-ring SL slides toward the edge of the cap 32D in the process of inserting the second electrode 32 into the accommodating recess 311 of the first electrode body 31B in order to sandwich the crucible MP between each electrode and pass an electric current. A seal in the accommodating recess 311 is formed in contact with the accommodation recess. Since it is configured in this way, it is not necessary to mount the O-ring SL in a state where the inner diameter of the O-ring SL is greatly enlarged as in the conventional case, and the mounting work of the O-ring SL can be simplified.
  • the cap 32D includes a top surface portion D1 and a side surface portion D2.
  • the top surface portion D1 is provided with an exposed port 323 for exposing the second electrode tip 32C to the outside, and the second electrode tip 32C is provided around the exposed port 323 in a state where the cap 32D is screwed to the second electrode main body 32B.
  • a pressing plate 324 which is pressed against the tip surface of the second electrode body 32B, is provided.
  • a female screw portion S1 is formed on the inner peripheral surface of the side surface portion D2. Further, a gap is formed between the end surface of the side surface portion D2 and the second electrode main body 32B, and even when the cap 32D is completely screwed to the second electrode main body 32B, the lower edge of the cap 32D is formed. The air that has passed through the degassing groove 321 is prevented from hindering the discharge to the outside of the second electrode 32.
  • the first electrode tip 31C is detachably configured by the first screw structure 31S with respect to the first electrode main body 31B, so that the elemental analysis can be repeated.
  • the 1-electrode tip 31C is exhausted, only the 1st electrode tip 31C can be replaced. Therefore, it is not necessary to replace the entire first electrode 31 including the first electrode main body 31B as in the conventional case.
  • the second electrode tip 32C is detachably configured by the second screw structure 32S formed between the second electrode main body 32B and the cap 32D, only this part of the second electrode tip 32C is worn out. Can be exchanged.
  • the second screw structure 32S is provided with a gas vent groove 321 that penetrates the threads in the pitch direction, the carrier gas is filled in the heating furnace 3 before heating the sample, so that the second screw structure 32S can be used.
  • the air in the electrode 32 can be discharged to the outside from the degassing groove 321. Then, the air can be prevented from being present in the second electrode 32 when the sample is heated, and the thermally expanded air does not leak from the inside of the second electrode 32 when the sample gas is generated as in the conventional case.
  • the mounting jig 200 of the second embodiment is used to mount the first electrode tip 31C to the first electrode main body 31B of the elemental analyzer 100 described in the first embodiment. That is, the first electrode tip 31C formed as an axially symmetric component needs to be attached to the innermost part of the accommodating recess 311 of the first electrode body 31B, and the first electrode tip 31C has a hardness higher than that of the first electrode body 31B. Since it is expensive, if the mounting is performed without the mounting jig 200, the first electrode tip 31C may be mounted at an angle by scraping the first electrode main body 31B.
  • the first electrode tip 31C is placed in the accommodating recess 311 of the first electrode main body 31B in a state where the axial direction of the first electrode tip 31C coincides with the axial direction of the first electrode main body 31B. It needs to be rotated and screwed.
  • the mounting jig 200 is mounted so as to coincide with the cylindrical guide 20A fitted in the accommodating recess 311 and the axial direction of the guide 20A as shown in the cross-sectional view of FIG. 5 and the perspective view of FIG. It is a cylindrical rod-shaped member, and is provided so as to be rotatably provided with respect to the guide 20A and to be provided so as to protrude in the radial direction at the tip of the rotating shaft 20B. It is provided with an engaging member 20C having a substantially rectangular parallelepiped shape that engages with the groove 317.
  • the guide 20A has substantially the same outer diameter as the maximum diameter portion of the accommodating recess 311, and the guide 20A is fitted into the accommodating recess 311 in the axial direction of the guide 20A and the rotating shaft 20B. Can be substantially aligned with the axial direction of the accommodating recess 311 and the sample input hole 313 of the first electrode main body 31B.
  • the mounting jig 200 of the second embodiment it becomes easy to mount the first electrode tip 31C straight to the innermost part of the accommodating recess 311, and the flange portion 315 of the first electrode tip 31C The entire end face can be completely brought into contact with the edge of the crucible MP. Therefore, it is possible to prevent the sample from being unable to be heated as expected because a sufficient current does not flow due to the flange portion 315 not sufficiently contacting the crucible MP.
  • the shape of the gas lead-out groove 317 formed in the first electrode tip 31C is not limited to that described in each embodiment.
  • one end of the gas outlet groove 317 may be opened only with respect to the through hole 316, and the other end of the gas outlet groove 317 may not be opened on the outer peripheral surface of the flange portion 315.
  • the number of gas lead-out grooves 317 is not limited to four, and may be two or three.
  • a plurality of diameters of the through holes of the first electrode tip may be prepared.
  • the diameter may be changed to an appropriate diameter so as to prevent the sample from being stuck between the sample charging hole of the first electrode body and the crucible. That is, since the diameter of the path of the sample can be appropriately changed only by replacing the first electrode tip, it can be easily replaced with a sample according to the shape and properties of the sample.
  • the fixing structure for fixing the first electrode tip to the first electrode body in a detachable manner is not limited to the first screw structure.
  • the fixed structure may be, for example, an engaging structure composed of an engaging claw and an engaging groove formed between the first electrode tip and the first electrode main body, or a fitting structure.
  • the cap 32D is a part of the second electrode tip 32C on the top surface portion D1.
  • a vent 325 that opens on the outer peripheral side of the exposed port 323 for exposing the screw to the outside, and a degassing groove that extends in the pitch direction of the screw and is formed so as to cut out a part of the screw thread in the female screw portion S2. It may be provided with 321 and a gas discharge groove 326 extending in the radial direction on the lower end surface of the side surface portion D2 which is the edge of the cap 32D.
  • the vent 325 has the inside and the outside of the second electrode 32 in a state where the cap 32D is screwed into the second electrode main body 32B and the second electrode tip 32C is fixed. It is configured to communicate. That is, in this embodiment, the ventilation hole 325 is formed as a notch extending in the radial direction from the exposed port 323, and extends to the outside of the outermost periphery of the thin disk-shaped second electrode tip 32C fixed by the cap 32D. Extends to. Further, four vents 325 are provided every 90 ° so as to be axially symmetric with respect to the central axis of the second electrode 32.
  • the gas vent groove 321 and the gas discharge groove 326 are also provided at intervals of 90 ° so as to be axially symmetric with respect to the central axis so as to be substantially in phase with respect to the vent 325. Have been placed.
  • the vent 325 and the gas vent groove 321 are close to each other at their respective ends, and the gas vent groove 321 and the gas discharge groove 326 are formed as a continuous groove at right angles to each other.
  • the vent 325 is formed on the top surface portion D1 of the cap 32D in this way, the air in the gap between the threads of the second screw structure 32S can be more easily released from the top surface portion D1 side when the cap 32D is attached. Further, the gas discharge groove 326 makes it easy for air to escape from between the edge of the cap 32D and the O-ring SL. Therefore, even if the analysis is repeated and the degassing groove 321 is deformed or dust is accumulated due to the thermal effect on the second electrode 32, the degassing performance can be less likely to deteriorate.
  • the vent 325 may be formed, for example, as a through hole.
  • the position where the through hole is formed may be outside the second electrode tip 32C pressed by the cap 32D.
  • the vent port 325, the gas vent groove 321 and the gas discharge groove 326 were arranged so that their respective positions were in phase with each other. It may be offset with respect to the circumferential direction.
  • the cap 32D may be provided with at least one of a vent 325, a gas vent groove 321 and a gas discharge groove 326.
  • the cap 32D may include either the vent 325 or the gas discharge groove 326, and the gas vent groove 321 may be formed only in the second electrode main body 32B.
  • the external dimensions of the cap 32D itself are reduced so that the gap between the outside of the side surface portion D2 and the inner surface of the first electrode 31 is equal to or larger than a predetermined value, and more air is provided from the gas discharge groove 326. May be easily discharged.
  • the gas vent flow path 32F that communicates the inside of the second screw structure 32S and the outside of the second electrode 32 is formed, when the cap 32C is attached to the second electrode body 32B.
  • the air between the threads can be quickly discharged to the outside of the second electrode 32.
  • the gas vent groove 321 is formed in the female screw portion S2 of the cap 32C, as shown in FIG. 11A, the air existing between the threads passes through the vent port 325 from the gas vent groove 321. It can be discharged from the upper side of the cap 32C via the gas discharge groove 325 and also from the lower side of the cap 32C via the gas discharge groove 325.
  • the same degassing flow path 32F is also formed when the degassing groove 321 is formed in the male threaded portion S1 of the electrode body 32B instead of the female threaded portion S2 of the cap 32C.
  • a ring-shaped recess 327 formed in the vicinity of the base end of the male screw portion S1 is formed, and this ring-shaped recess 327 is formed so as to communicate with both the gas vent groove 321 and the gas discharge groove 325.
  • the ring-shaped recess 327 is formed by cutting the second electrode body 3B toward the inner circumference so as to have a depth substantially the same as the height of the thread of the male screw portion S1, for example.
  • the shapes of the second electrode tip and the cap are not limited to those shown in each embodiment.
  • a notch may be formed instead of a circular shape as a mark indicating the mounting direction of the cap.
  • the gas vent groove formed in the second screw structure of the second electrode may be formed not only in the male screw portion but also in the female screw portion. These degassing may be synchronized so that the positions in the circumferential direction are substantially the same when the cap is completely screwed to the second electrode body. That is, the degassing grooves formed in both the male threaded portion and the female threaded portion may be matched to increase the area through which air can pass.
  • a degassing groove may be formed only in the female thread portion.
  • the positional relationship between the first electrode and the second electrode and the direction of movement are not limited to those shown in each embodiment.
  • the second electrode may move horizontally with respect to the fixed first electrode so that the crucible is accommodated in the accommodating recess.
  • the present invention it is not necessary to replace the entire first electrode, and it is possible to provide an elemental analyzer capable of significantly reducing the labor and cost required for replacement as compared with the conventional case.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Combustion & Propulsion (AREA)
  • Engineering & Computer Science (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

元素分析時にるつぼが内部に収容される収容凹部が形成された電極について、消耗した電極チップの部分だけを交換可能な元素分析装置を提供するために、試料が入れられたるつぼMPを第1電極31と第2電極32との間で挟持し、前記第1電極31及び前記第2電極32間に電流を流すことで前記試料を加熱する元素分析装置100であって、前記第1電極31が、前記るつぼMPが収容される収容凹部311が形成された第1電極本体31Bと、前記収容凹部311内に一部が露出するように前記第1電極本体31Bに対して着脱可能に設けられた第1電極チップ31Cと、を備えた。

Description

元素分析装置、取付治具、及び、取付方法
 本発明は、試料を加熱して生成される試料ガスに基づいて、試料中に含まれる元素を分析する元素分析装置に関するものである。
 試料中に含まれる例えば窒素(N)、水素(H)、酸素(O)等の元素を定量するために元素分析装置が用いられる。このような元素分析装置は、試料を収容した黒鉛るつぼを加熱炉内において一対の電極により挟持し、当該るつぼに直接電流を流して、るつぼ及び試料を加熱する。加熱により発生した試料ガスは加熱炉から外部に導出されて、各種成分の濃度がNDIR(Non Dispersive Infrared:非分散型赤外線ガス分析計)やTCD(Thermal Conductivity Detector熱伝導度検出器)等からなる分析機構によって測定される。
 例えば特許文献1に示される元素分析装置の加熱炉は、内部に収容凹部が形成された上部電極と、るつぼが載置される下部電極と、を備えている。下部電極が上昇することで、るつぼが上部電極と下部電極に挟持された状態で収容凹部内に収容される。
 具体的に上部電極は、収容凹部が形成された概略円筒状の上部電極本体と、収容凹部内において上部電極本体にろう付されて固定された上部電極チップと、を備えている。
 このため、元素分析が繰り返されて上部電極チップが消耗してくると、上部電極全体を交換しなくてはならず、交換に非常に大きな手間やコストがかかってしまっている。
米国特許文献US9808797号公報
 本発明は上述したような問題に鑑みてなされたものであり、元素分析時にるつぼが内部に収容される収容凹部が形成された電極について、消耗した電極チップの部分だけを交換可能な元素分析装置を提供することを目的とする。
 本発明に係る元素分析装置は、試料が入れられたるつぼを第1電極と第2電極との間で挟持し、前記第1電極及び前記第2電極間に電流を流すことで前記試料を加熱する元素分析装置であって、前記第1電極が、前記るつぼが収容される収容凹部が形成された第1電極本体と、前記第1電極本体の前記収容凹部内に一部が露出するように設けられる第1電極チップと、前記第1電極本体と前記第1電極チップとの間に設けられ、前記第1電極チップを前記第1電極本体に対して着脱可能に固定する固定構造と、を備えたことを特徴とする。
 このようなものであれば、前記第1電極チップが前記第1電極本体に対して着脱可能に構成されているので、前記第1電極チップが消耗した場合にはこの部分だけを交換できる。したがって、従来のように前記第1電極全体を交換していた場合と比較して、交換にかかる手間やコストを大幅に低減できる。
 前記第1電極本体に対して前記第1電極チップを着脱可能に固定するための具体的な態様としては、前記固定構造が、前記第1電極本体及び前記第1電極チップとの間に形成された雄ねじ部と雌ネジ部とからなる第1螺合構造であるものが挙げられる。
 前記第1電極チップを前記第1電極本体に対して着脱可能にするとともに、前記第1電極チップと前記第1電極本体の間から試料から発生した試料ガスが外部に漏出するのを防げるようにするには、前記第1電極本体が、前記収容凹部に一端が開口し、前記るつぼ内に試料を投入するための試料投入孔をさらに具備し、前記第1螺合構造が、前記第1電極が、前記第1電極本体の試料投入孔の一部と前記第1電極チップとの間に形成された前記雄ネジ部と前記雌ネジ部とからなるものであればよい。
 前記るつぼ内の試料から発生する試料ガスが前記収容凹部内に速やかに導出されて、元素分析を短時間で正確に行えるようにするには、前記第1電極チップが、前記雄ネジ部が外側周面に形成され、前記第1電極本体の試料投入孔内に挿入される挿入筒と、前記収容凹部内に露出される部分であり、前記挿入筒の一端側において半径方向に広がるフランジ部と、前記挿入筒及び前記フランジ部を軸方向に貫通するように形成された貫通孔と、前記フランジ部において、少なくとも前記貫通孔に一端が開口するとともに半径方向に延びるように形成されたガス導出溝と、を備えたものであればよい。
 前記ガス導出溝に例えば取付治具等の器具を係合させて、前記第1電極本体に対して前記第1電極チップを螺合させる際に十分なトルクをかけられるようにするには、前記ガス導出溝の他端が前記フランジ部の外側周面に開口するように形成されたものであればよい。
 試料ガスの流れに偏りが生じないようにしつつ、前記第1電極チップの取り付け時にもトルクが均一にかかりやすくするには、前記ガス導出溝が複数形成されており、前記第1電極チップの中心軸に対して軸対称に配置されていればよい。
 前記ガス導出溝が、前記第1電極本体から前記第1電極チップを取り外す際に治具が係合される係合溝を兼ねるものであれば、元素分析に必要な構成を利用して前記収容凹部の奥に前記第1電極チップを着脱作業ができるので、治具と係合する係合溝等の要素を別途前記第1電極チップに設ける必要がない。このため、前記第1電極チップを前記第1電極本体に対して着脱可能にしつつ、着脱のための要素により元素分析のために最適化されたガスの流れ等が阻害されないようにできる。このため、従来のように第1電極全体を一体ものとして形成した場合と同等の精度で元素分析を行うことが可能となる。
 前記収容凹部内で前記るつぼを前記第1電極と前記第2電極により挟持して試料を閉鎖空間内で加熱し、発生した試料ガスをすべて分析装置側へと導出しやすくするには、前記第2電極が、前記第1電極との間で前記収容凹部内にある前記るつぼを挟持する第1位置と、前記第1位置から所定距離離間し、前記るつぼが前記収容凹部の外側に配置される第2位置との間を移動可能に構成されたものであればよい。
 本発明に係る元素分析装置において、前記第1電極本体に前記第1電極チップを取り付けるための取付治具であって、前記収容凹部に嵌合されるガイドと、前記ガイドに対して回動可能に設けられた回転軸と、前記回転軸の先端部において半径方向に突出させて設けられ、前記ガス導出溝と係合する係合部材と、を備えた取付治具を用いれば、収容凹部の奥側に前記第1電極チップを螺合させていく場合でもまっすぐな姿勢のまま取り付けることが容易になる。
 本発明によれば、前記第1電極チップが前記第1電極本体の前記収容凹部内に対して着脱可能に構成されているので、前記第1電極チップが消耗した場合にはこの部分だけを交換できる。したがって、前記第1電極全体を交換する必要がなく、交換にかかる手間やコストを従来よりも大幅に低減できる。
本発明の第1実施形態に係る元素分析装置を示す模式図。 第1実施形態の第1電極及び第2電極がるつぼを挟持している状態を示す模式的断面図。 第1実施形態の第1電極の模式的分解斜視図、及び、フランジ部の端面を示す模式図。 第1実施形態の第2電極の模式的分解斜視図。 本発明の第2実施形態に係る元素分析装置に用いられる取付治具の使用状態を示す模式的断面図。 第2実施形態の取付治具を示す模式的斜視図。 本発明のその他の実施形態に係る第1電極チップの例を示す模式図。 本発明のその他の実施形態に係る第2電極のキャップの表側示す模式図。 その他の実施形態に係る第2電極のキャップの裏側を示す模式図。 第2電極のキャップのさらに別の実施例を示す模式図。 雌ネジ部又は雄ネジ部のいずれかにガス抜き溝が形成されている場合におけるガス抜き流路を示す模式図。
100・・・元素分析装置
1  ・・・供給源
2  ・・・精製器
3  ・・・加熱炉
31 ・・・第1電極
31B・・・第1電極本体
311・・・収容凹部
312・・・流出孔
313・・・試料投入孔
31C・・・第1電極チップ
314・・・挿入筒
315・・・フランジ部
316・・・貫通孔
317・・・ガス導出溝
31S・・・第1螺合構造
32 ・・・第2電極
32B・・・第2電極本体
ST ・・・段部
322・・・凹部
32C・・・第2電極チップ
32D・・・キャップ
32S・・・第2螺合構造
323・・・露出口
324・・・押圧板
325・・・通気孔
326・・・ガス排出溝
327・・・リング状凹部
32F・・・ガス抜き流路
4  ・・・ダストフィルタ
5  ・・・CO検出部
6  ・・・酸化器
7  ・・・CO2検出部
8  ・・・H2O検出部
9  ・・・除去機構
10 ・・・マスフローコントローラ
11 ・・・N2検出部(熱伝導度分析部)
 本発明の第1実施形態に係る元素分析装置100について各図を参照しながら説明する。図1に第1実施形態の元素分析装置100の概略を示す。
 元素分析装置100は、黒鉛るつぼMP内に収容された例えば金属試料やセラミックス試料等(以下、単に試料という)を加熱溶解し、その際に発生する試料ガスを分析することにより、当該試料内に含まれている元素の量を測定するものである。第1実施形態では試料中に含まれているC(炭素)、H(水素)、N(窒素)が測定対象となる。
 図1に示すように、元素分析装置100は、るつぼMPに収容された試料が加熱される加熱炉3と、加熱炉3に対してキャリアガスを導入する導入流路L1と、加熱炉3からキャリアガスと試料ガスの混合ガスが導出される導出流路L2と、を備えている。より具体的には、元素分析装置100は、加熱炉3と、導入流路L1又は導出流路L2に設けられた各機器と、各機器の制御や測定された濃度等の演算処理を司る制御演算機構COMによって構成されている。制御演算機構COMは例えばCPU、メモリ、A/Dコンバータ、D/Aコンバータ、各種入出力手段を備えたいわゆるコンピュータであって、メモリに格納されているプログラムが実行され、各種機器が協業することにより後述する測定値算出部C1としての機能を発揮する。また、制御演算機構COMは後述する、例えばCO検出部5、CO2検出部7、H2O検出部8、N2検出部11の出力に基づいて試料中に含まれる各種元素の濃度を表示する表示部(図示しない)としての機能も発揮する。
 各部について詳述する。
 導入流路L1の基端にはキャリアガスの供給源1であるガスボンベが接続されている。第1実施形態では供給源1からHe(ヘリウム)が導入流路L1内に供給される。また、導入流路L1上にはキャリアガスに含まれる微小量の炭化水素を除去し、キャリアガスの純度を上昇させる精製器2が設けられている。
 精製器2はキャリアガス中に含まれる炭化水素を物理的に吸着し、キャリアガス自体は実質的に吸着しない特性を有する材料で形成されている。なお、精製器2を形成する材料はキャリアガス又は炭化水素とは化学的には反応しない。すなわち、この精製器2は例えばガスクロマトグラフにおいても用いられるものであり、この精製器2を形成する材料として例えばゼオライト系モレキュラーシーブを用いることができる。また、精製器2を形成する材料としてはシリカゲルや活性炭、アスカライト等であっても構わない。この精製器2は例えば加熱することにより吸着されている分子を脱着し、その吸着能を再生できる。
 加熱炉3は、試料を収容した黒鉛るつぼMPを一対の電極により挟持し、当該るつぼMPに直接電流を流して、るつぼMP及び試料を加熱するように構成されている。試料の加熱時には加熱炉3内の圧力が60kPa以下の圧力、より好ましくは40kPa以下の圧力となるように加熱炉3の上流側に設けられている調圧弁(図示しない)によってキャリアガスは圧力が調節される。加熱炉3の電極の詳細については後述する。
 次に導出流路L2上に設けられている各機器について説明する。
 導出流路L2上には、ダストフィルタ4、CO検出部5、酸化器6、CO2検出部7、H2O検出部8、除去機構9、マスフローコントローラ10、熱伝導度分析部であるN2検出部11が上流側からこの順番で並べて設けられている。
 ダストフィルタ4は、試料ガスに含まれているすすなどを濾し取り、除塵するものである。
 CO検出部5は、ダストフィルタ4を通過した混合ガスに含まれるCO(一酸化炭素)を検出し、その濃度を測定するものであり、NDIR(非分散型赤外線ガス分析計)で構成されている。このCO検出部5は、その測定精度から試料内部に含まれている酸素が高濃度の場合に有効に動作する。具体的には150ppm以上のCOを測定対象とするのが好ましい。
 酸化器6は、CO検出部5を通過した混合ガスに含まれるCOやCO2を酸化するとともに、H2をH2O(水)に酸化して水蒸気を生成するものである。この酸化器6として第1実施形態では酸化銅が用いられており、その温度は周囲に設けられた発熱抵抗体により450℃以下の温度に保たれている。
 CO2検出部7は、酸化器6を通過した混合ガス中のCO2を検出して、その濃度を測定するNDIRである。このCO2検出部7は、測定精度の観点から試料に含まれる酸素が低濃度(例えば150ppm未満)の場合に有効に動作する。
 H2O検出部8は、CO2検出部7を通過した混合ガス中のH2Oを検出して、その濃度を測定するNDIRである。なお、酸化器6からH2O検出部8に至るまでの流路は混合ガスの温度が100℃以上に保たれて、H2Oが水蒸気の状態を保つように構成されている。このようにして、結露による測定誤差がH2O検出部8において発生しないようにしている。
 除去機構9は、混合ガス中に含まれているCO2及びH2Oを吸着して除去するものである。この除去機構9は吸着剤によって構成されており、例えば前述した導入流路L1に設けられた精製器2と同じものが用いられる。
 マスフローコントローラ10は、流量センサM1、制御バルブM2、流量制御器M3が1つのパッケージとなった流量制御デバイスである。このマスフローコントローラ10は、下流側にあるN2検出部11には設定流量で一定に保たれた混合ガスを供給する。このため、除去機構9によって混合ガスに圧力の変動が生じても、N2検出部11における混合ガスの圧力を測定に適した値に保つことができる。第1実施形態では加熱炉3内の圧力を60kPaに保つことができるように、マスフローコントローラ10は、60kPaよりも低い圧力で動作するように例えば前後の差圧が20kPaでも動作するように構成されている。
 N2検出部11は、TCD(熱伝導度検出器)であり、混合ガスの熱伝導度の変化と、供給されている混合ガスの流量から混合ガスに含まれている所定成分であるN2の濃度を測定する。すなわち、N2検出部11に供給される混合ガスはほぼキャリアガスとN2だけで構成されているので、混合ガス中に含まれるN2の濃度は測定される熱伝導度の変化に対応した値となる。また、第1実施形態ではN2検出部11の下流側には流量計は設けられておらず、N2検出部11の下流側は導出流路L2の排気口に直結されている。
 各検出部で得られた各成分の濃度を示す測定信号は測定値算出部C1に対して入力される。測定値算出部C1は各測定信号に基づき、試料に含まれているO,H,Nの濃度を算出する。なお、測定値算出部C1は、試料に含まれる酸素濃度を算出する際に試料内部の酸素濃度が所定の閾値(150ppm)以上の場合にはCO検出部5で得られた酸素濃度を出力値とし、閾値未満の場合にはCO2検出部7で得られた酸素濃度を出力値とする。
 最後に加熱炉3に設けられている一対の電極について詳述する。
 加熱炉3は、図2の断面図、図3及び図4の斜視図に示すように、上方に固定された上部電極である第1電極31と、下方に設けられ、るつぼMPが載置される下部電極である第2電極32と、を備えている。
 第1電極31は、図3(a)に示すように上側が細円筒状をなし、下側が扁平円盤状をなす概略二段円筒状の電極である。この第1電極31は、図2の断面図に示すように内部にるつぼMPが収容される中空円筒状の収容凹部311が下部中央部に形成された第1電極本体31Bと、収容凹部311内において第1電極本体31Bに対して着脱可能に設けられた第1電極チップ31Cと、を備えている。第1電極チップ31Cは、概略円筒状をなするつぼMPの上端縁と直接接触する部分であり、元素分析を繰り返すことにより消耗する。また、第1電極本体31Bは例えば銅で形成されており、第1電極チップ31Cは例えばタングステンを含む銅合金で形成されている。すなわち、第1電極チップ31Cは第1電極本体31Bよりも硬度が高い材料で形成されている。
 第1電極本体31Bは、第1電極31の外形をなすものであり、図2の断面図に示すように扁平円盤状部分の中央部に円筒状の収容凹部311が上下方向に延びるように形成されている。また、収容凹部311の側面に開口するように水平方向に延びる試料ガスの導出孔312が形成されている。また、収容凹部311の上面側にはるつぼMP内に試料を投下するための試料投入孔313が形成してある。試料投入孔313は、収容凹部311よりも直径の小さい概略細中空円筒状の孔であり、第1電極31の中心軸に沿って上下方向に延びるように形成されている。
 第1電極チップ31Cは、概略二段円筒状をなすものであり、図2及び図3(a)に示すように第1電極本体31Bの試料投入孔313内に挿入される細円筒状の挿入筒314と、挿入筒314の下端側において半径方向に広がる扁平平板状のフランジ部315と、を備えている。また、第1電極チップ31Cは、挿入筒314及びフランジ部315を軸方向に貫通するように形成された貫通孔316と、フランジ部315において、少なくとも貫通孔316の側面に一端が開口するとともに半径方向に延びるように形成されたガス導出溝317と、をさらに備えている。ガス導出溝317は、図3(b)の第1電極チップ31Cの下側端面図に示すように中心軸に対して軸対称となるように90°ごとに4つ設けてある。図2(b)に示すようにガス導出溝317の半径方向内側端部は、るつぼMPの内側に開口している。また、第1実施形態ではガス導出溝317はフランジ部315の外側周面に他端部を開口させてある。すなわち、るつぼMP内の試料から加熱により発生する試料ガスは、るつぼMP内からガス導出溝317を経由してるつぼMPの外側に流れ出る。その後、試料ガスは収容凹部311から第1電極本体31Bに形成された導出孔312を経由して導出流路L2へと流れ出る。
 第1電極本体31Bと第1電極チップ31Cとの間には、第1電極チップ31Cを第1電極本体31Bに対して着脱可能に固定する固定構造が設けられている。より具体的には第1電極チップ31Cの挿入筒314の外側周面と第1電極本体31Bの試料投入孔313の内側周面との間には、固定構造として雄ネジ部S1と雌ネジ部S2とからなる第1螺合構造31Sが形成されている。この第1螺合構造31Sによって第1電極チップ31Cは第1電極本体31Bに対して着脱可能に構成されている。また、第1螺合構造31Sのねじ山にはピッチ方向に切り欠かれた溝は存在しない。したがって、第1螺合構造31Sを完全に螺合させた状態では、フランジ部315と収容凹部311の上側の壁面との間は密着するとともに、雄ネジ部S1と雌ネジ部S2が隙間なく密着した状態となる。このため、るつぼMPから流れ出る試料ガス第1電極本体31Bと第1電極チップ31Cとの隙間に蓄えられたり、逆流してしまったりするのを防ぐことができる。
 次に第2電極32について図2及び図4を参照しながら説明する。
 第2電極32は例えば図示しないエアシリンダによって上下方向に移動可能に構成されており、その一部が載置されているるつぼMPとともに収容凹部311内に差し込まれる。具体的には第2電極32は、第1電極31との間で収容凹部311内にあるるつぼを挟持する第1位置と、第1位置から所定距離離間し、るつぼが前記収容凹部311の外側に配置される第2位置との間を移動可能に構成してある。
 また、第2電極32は、概略に段円筒状をなす第2電極本体32Bと、第2電極本体32Bの先端面に設けられる薄円盤状をなす第2電極チップ32Cと、第2電極チップ32Cを第2電極本体32Bに対して固定するとともに、第2電極チップ32Cにおける、るつぼMPとの接触面が外部に露出させるための露出口が形成されたキャップ32Dと、を備えている。なお、第2電極本体32B及びキャップ32Dは銅で形成されており、第2電極チップ32Cはタングステンを含む銅合金で形成されている。
 このように第2電極32は3つの分離したパーツからなり、第2電極チップ32Cのみを交換可能に構成されている。より具体的には、第2電極本体32Bの先端部外側周面と、キャップ32Dの内側周面との間には雄ネジ部S1及び雌ネジ部S2からなる第2螺合構造32Sが形成してある。
 第2螺合構造32Sは、第1電極31に形成された第1螺合構造31Sとは構造が異なっている。すなわち、図4に示すように第2螺合構造32Sの雄ネジ部S1にはネジのピッチ方向に延び、ネジ山の一部を切り欠くように形成されている。ガス抜き溝321は例えばネジ山についてネジ底の高さまで切り欠くように構成されているが、もっと浅く形成してもよい。また、ガス抜き溝321は第2電極32の中心軸に対して軸対称となるように90°ごとに4つ設けてある。ガス抜き溝321を設ける個数については、4つに限られるものではなく、もっと少なくしてもよいし、もっと多くしてもよい。また、必ずしも軸対称に配置されていなくてもよい。
 このガス抜き溝321が形成されているので、キャップ32Dの取付時に第2螺合構造32Sのネジ山間の隙間にある空気はネジ山間に溜め込まれたとしても、例えば加熱炉3内から存在している空気からキャリアガスに置換する際に、第2電極32内の空気はガス抜き溝321から第2電極32の外部へと排出できる。
 第2電極本体32Bは、先端面に第2電極チップ32Cの裏面側がほぼ嵌合するように形成された凹部322が形成されているとともに、図2に示すようにキャップ32Dの縁と対向する段部STが先端側に形成されている。第2電極32の先端側は第2電極チップ32Cが取り付けられる先端面が最も直径が小さく形成してあり、段部STの部分において取り付けられるO‐リングSLの外径と略同じ外径に拡大する。
 具体的には予め凹部322に第2電極チップ32Cがはめ込まれた状態にしておくことで、第2電極本体32Bに対して第2電極チップ32Cの位置合わせを行うことができる。また、第2電極チップ32Cの位置が定まった状態でキャップ32Dを第2電極本体32Bに螺合させていくことで、第2電極チップ32Cの位置を正しい位置に保ちながら固定することができる。
 また、第2電極本体32Bの段部STとキャップ32Dの縁との間に形成されるリング状溝RTにはO‐リングSLが配置される。すなわち、キャップ32Dが取り付けられる前の状態では、O‐リングSLの軸方向の移動を規制する部材は存在しない。また、リング状溝RTはO‐リングSLの厚み寸法よりも若干大きく形成してある。るつぼMPを各電極で挟持し電流を流すために、第1電極本体31Bの収容凹部311内に第2電極32が差し込まれていく過程でO‐リングSLはキャップ32Dの縁側にずり動き、当接して収容凹部311内のシールが形成される。このように構成されているので、従来のようにO‐リングSLの内径を非常に大きく拡大した状態で取り付ける必要がなく、O‐リングSLの取付作業を簡単にすることができる。
 キャップ32Dは、天面部D1と側面部D2とを備えている。天面部D1には、第2電極チップ32Cを外部に露出させる露出口323と、露出口323の周囲に設けられ、キャップ32Dが第2電極本体32Bに螺合した状態において第2電極チップ32Cを第2電極本体32Bの先端面に対して押し付ける押圧板324、が設けられている。側面部D2には、内側周面に雌ネジ部S1が形成されている。また、側面部D2の端面と第2電極本体32Bとの間に隙間が形成されており、キャップ32Dが第2電極本体32Bに対して完全に螺合した状態でも、キャップ32Dの下側の縁からガス抜き溝321を通過した空気が第2電極32の外側への排出の妨げとならないようにしてある。
 このように構成された元素分析装置100であれば、第1電極本体31Bに対して第1電極チップ31Cは第1螺合構造31Sによって着脱可能に構成されているので、元素分析の繰り返しにより第1電極チップ31Cが消耗した場合には、第1電極チップ31Cだけを交換できる。したがって、従来のように第1電極本体31Bを含む第1電極31全体を交換する必要がない。
 また、第2電極チップ32Cは第2電極本体32Bとキャップ32Dとの間に形成された第2螺合構造32Sによって着脱可能に構成されているので、第2電極チップ32Cも消耗時にはこの部分だけを交換できる。
 これらのことから、加熱炉3において元素分析を継続するのに必要となる消耗品の交換作業にかかる手間とコストを従来と比較して大幅に低減できる。
 また、第2螺合構造32Sはネジ山をピッチ方向に各ネジ山を貫通するガス抜き溝321を備えているので、試料の加熱前に加熱炉3内にキャリアガスを満たすことで、第2電極32内の空気をガス抜き溝321から外部へと排出できる。そして、試料の加熱時には第2電極32内に空気が存在しないようにでき、従来のように試料ガスの発生時には第2電極32内から熱膨張した空気が漏出することがない。すなわち、試料ガス発生時には第2電極32内から誤差要因となる窒素(N)を含む空気の漏出がないので、N2検出部11において試料ガスに含まれる微量の窒素(N)の測定精度を向上させることができる。
 次に本発明の第2実施形態における元素分析装置に用いられる取付治具200について図5及び図6を参照しながら説明する。
 第2実施形態の取付治具200は、第1実施形態において説明した元素分析装置100の第1電極本体31Bに対して第1電極チップ31Cを取り付けるために用いるものである。すなわち、軸対称部品として形成されている第1電極チップ31Cは第1電極本体31Bの収容凹部311の最奥に取り付ける必要があるとともに、第1電極チップ31Cは第1電極本体31Bよりも硬度が高いため、取付治具200なしで取り付けを行うと、第1電極チップ31Cは第1電極本体31Bを削って斜めに取り付けられてしまう可能性がある。このような問題が解決されるように第1電極本体31Bの収容凹部311内において第1電極チップ31Cの軸方向が第1電極本体31Bの軸方向に一致させた状態で第1電極チップ31Cを回転させて螺合させる必要がある。
 具体的に取付治具200は、図5の断面図及び図6の斜視図に示すように収容凹部311に嵌合される円筒状のガイド20Aと、ガイド20Aの軸方向と一致するように取り付けられた円筒棒状の部材であり、ガイド20Aに対して回動可能に設けられた回転軸20Bと、回転軸20Bの先端部において半径方向に突出させて設けられ、第1電極チップ31Cのガス導出溝317と係合する概略直方体形状をなす係合部材20Cと、を備えたものである。
 第2実施形態ではガイド20Aは収容凹部311の最大直径部分とほぼ同じ外径寸法を有しており、このガイド20Aが収容凹部311内にはめ込まれることで、ガイド20A及び回転軸20Bの軸方向を第1電極本体31Bの収容凹部311及び試料投入孔313の軸方向とほぼ合致させることができる。このような状態で回転軸20Bをガイド20Aに対して回動させることで、係合部材20Cにガス導出溝317が係合された第1電極チップ31Cを正しい姿勢を保ちながら回転させて第1電極本体31Bに螺合させていくことができる。
 このように第2実施形態の取付治具200によれば、収容凹部311の最奥に対して第1電極チップ31Cをまっすぐに取り付けることが容易になり、第1電極チップ31Cのフランジ部315の端面全体をるつぼMPの縁に対して完全に当接させられるようになる。このため、るつぼMPに対してフランジ部315が十分に接触しないことにより十分な電流が流れず、想定されている通りに試料を加熱できないといったことを防げる。
 本発明のその他の実施形態について説明する。
 図7の各図に示すように第1電極チップ31Cに形成されるガス導出溝317の形状は各実施形態において説明したものに限られない。例えばガス導出溝317が貫通孔316に対してのみ一端が開口するようにして、フランジ部315の外側周面にはガス導出溝317の他端が開口しないようにしてもよい。また、ガス導出溝317の数については4つに限られず、2つや3つであっても構わない。
 第1電極チップの貫通孔の直径については複数通り用意してもよい。例えば投入される試料の形状が棒状等の場合に、第1電極本体の試料投入孔からるつぼに至るまでの間につっかえてしまうのを防げるように適切な直径に変更してもよい。すなわち、第1電極チップを取り換えるだけで、試料の通り道の直径を適宜変更できるので、試料の形状や性質に応じたものに簡単に換装できる。また、第1電極チップを第1電極本体に対して着脱可能に固定する固定構造は、第1螺合構造に限られない。固定構造は、例えば第1電極チップと第1電極本体との間に形成された係合爪と係合溝からなる係合構造や、嵌合構造であっても構わない。
 図8(a)、図8(b)、図9の各図に示すように第2電極32のキャップ32Dの変形例としては、キャップ32Dが、天面部D1において第2電極チップ32Cの一部を外部に露出させるための露出口323よりも外周側に開口する通気口325と、ネジのピッチ方向に延び、雌ネジ部S2においてネジ山の一部を切り欠くように形成されたガス抜き溝321と、キャップ32Dの縁である側面部D2の下側端面において半径方向に延びるガス排出溝326と、を備えたものであってもよい。
 通気口325は、図8(b)に示すようにキャップ32Dが第2電極本体32Bに対して螺合し、第2電極チップ32Cを固定している状態において第2電極32内と外部とが連通するように構成されている。すなわち、この実施例では通気孔325は露出口323から半径方向に延びる切り欠きとして形成されており、キャップ32Dで固定されている薄円盤状の第2電極チップ32Cの最外周よりも外側に至るまで延びている。また、通気口325は第2電極32の中心軸に対して軸対称となるように90°ごとに4つ設けてある。
 図9に示すようにガス抜き溝321及びガス排出溝326も、中心軸に対して軸対称となるように90°ごとに4つ設けてあり、通気口325に対して略同相となるように配置されている。通気口325とガス抜き溝321はそれぞれの端部において近接させてあり、ガス抜き溝321とガス排出溝326についてはそれぞれ直交させて一続きの溝として形成してある。
 このようにキャップ32Dの天面部D1に通気口325を形成すれば、キャップ32Dの取付時に第2螺合構造32Sのネジ山間の隙間にある空気を天面部D1側からさらに逃がしやすくできる。また、ガス排出溝326によってキャップ32Dの縁とO‐リングSLとの間からも空気を逃がしやすくなる。このため、分析が繰り返されて第2電極32への熱影響によりガス抜き溝321が変形したり、ダストが堆積したりしても、ガス抜け性能については低下しにくくできる。
 次にキャップ32Dのさらに別の変形例を図10に示す。通気口325を切り欠きとして形成するのではなく、例えばた貫通穴として形成してもよい。貫通穴が形成される位置はキャップ32Dによって押圧されている第2電極チップ32Cの外側となるようにすればよい。なお、図8乃至図10に示したキャップ32Dについては、通気口325、ガス抜き溝321、ガス排出溝326の3つがそれぞれの位置が同相となるように配置されていたが、それぞれの位置が円周方向に対してずれていてもよい。また、キャップ32Dは通気口325、ガス抜き溝321、ガス排出溝326の少なくとも1つを備えているものであってもよい。例えばキャップ32Dは通気口325又はガス排出溝326のいずれかを備えていて、第2電極本体32Bにのみガス抜き溝321が形成されていてもよい。加えて、キャップ32D自体の外形寸法を小さくして側面部D2の外側と第1電極31の内側面との間の隙間が所定値以上となるように構成して、ガス排出溝326からさらに空気が排出されやすくしてもよい。
 図11に示すように第2螺合構造32Sの内側と第2電極32の外側とを連通させるガス抜き流路32Fが形成されているので、第2電極本体32Bに対してキャップ32Cを取り付ける際にネジ山間にある空気を第2電極32の外側へと速やかに排出できる。具体的にはキャップ32Cの雌ネジ部S2にガス抜き溝321が形成されている場合には、図11(a)に示すようにネジ山間に存在する空気はガス抜き溝321から通気口325を介してキャップ32Cの上側から排出するとともに、ガス排出溝325を介してキャップ32Cの下側からも排出できる。
 また、図11(b)に示すようにキャップ32Cの雌ネジ部S2ではなく、電極本体32Bの雄ネジ部S1にガス抜き溝321が形成されている場合にも、同様のガス抜き流路32Fを形成できる。具体的には雄ネジ部S1の基端近傍に形成されたリング状凹部327が形成されており、このリング状凹部327はガス抜き溝321及びガス排出溝325の双方と連通するように形成されている。すなわち、リング状凹部327は例えば雄ネジ部S1のネジ山の高さと略同じ深さを有するに第2電極本体3Bを内周側へ削って形成されている。このように雄ネジ部S1にガス抜き溝321が形成されている場合でもキャップ32Cの通気孔325又はガス排出溝326を介してネジ山間に存在する空気を第2電極32の外部へと速やかに排出することが可能となる。
 第2電極チップやキャップの形状についても各実施形態に示したものに限られない。例えば第2螺合構造のガス抜き溝の位置を適正位置に調節しやすくするために、キャップの取り付け向きを示す印として円形状ではなく、一部切り欠き部を形成してもよい。また、第2電極の第2螺合構造に形成されるガス抜き溝は、雄ネジ部だけでなく雌ネジ部にも形成されるようにしてもよい。これらのガス抜きは第2電極本体に対してキャップが完全に螺合した状態において周方向の位置がほぼ一致するように同期させてもよい。すなわち、雄ネジ部及び雌ネジ部の双方に形成されたガス抜き溝が合致して空気の通過可能な面積を大きくできるようにしてもよい。加えて、雌ネジ部だけにガス抜き溝を形成してもよい。
 第1電極及び第2電極の位置関係や動く方向についても各実施形態に示したものに限られない。例えば固定されている第1電極に対して第2電極が水平方向に移動して、るつぼが収容凹部内に収容されるようにしてもよい。
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の変形や、各実施形態の一部同士の組み合わせを行っても構わない。
 本発明によれば、第1電極全体を交換する必要がなく、交換にかかる手間やコストを従来よりも大幅に低減可能な元素分析装置を提供できる。
 
 

Claims (10)

  1.  試料が入れられたるつぼを第1電極と第2電極との間で挟持し、前記第1電極及び前記第2電極間に電流を流すことで前記試料を加熱する元素分析装置であって、
     前記第1電極が、
      前記るつぼが収容される収容凹部が形成された第1電極本体と、
      前記第1電極本体の前記収容凹部内に一部が露出するように設けられる第1電極チップと、
      前記第1電極本体と前記第1電極チップとの間に設けられ、前記第1電極チップを前記第1電極本体に対して着脱可能に固定する固定構造と、を備えたことを特徴とする元素分析装置。
  2.  前記固定構造が、前記第1電極本体及び前記第1電極チップとの間に形成された雄ねじ部と雌ネジ部とからなる第1螺合構造である請求項1記載の元素分析装置。
  3.  前記第1電極本体が、前記収容凹部に一端が開口し、前記るつぼ内に試料を投入するための試料投入孔をさらに具備し、
     前記第1螺合構造が、前記第1電極本体の試料投入孔の一部と前記第1電極チップとの間に形成された前記雄ネジ部と前記雌ネジ部とからなる請求項2記載の元素分析装置。
  4.  前記第1電極チップが、
      前記雄ネジ部が外側周面に形成され、前記第1電極本体の試料投入孔内に挿入される挿入筒と、
      前記収容凹部内に露出される部分であり、前記挿入筒の一端側において半径方向に広がるフランジ部と、
      前記挿入筒及び前記フランジ部を軸方向に貫通するように形成された貫通孔と、
      前記フランジ部において、少なくとも前記貫通孔に一端が開口するとともに半径方向に延びるように形成されたガス導出溝と、を備えた請求項2又は3記載の元素分析装置。
  5.  前記ガス導出溝の他端が前記フランジ部の外側周面に開口するように形成された請求項4記載の元素分析装置。
  6.  前記ガス導出溝が複数形成されており、前記第1電極チップの中心軸に対して軸対称に配置されている請求項4又は5記載の元素分析装置。
  7.  前記ガス導出溝が、前記第1電極本体から前記第1電極チップを取り外す際に治具が係合される係合溝を兼ねる請求項4乃至6いずれかに記載の元素分析装置。
  8.  前記第2電極が、前記第1電極との間で前記収容凹部内にある前記るつぼを挟持する第1位置と、前記第1位置から所定距離離間し、前記るつぼが前記収容凹部の外側に配置される第2位置との間を移動可能に構成された請求項1乃至7いずれかに記載の元素分析装置。
  9.  請求項3乃至5いずれかに記載の元素分析装置において、前記第1電極本体に前記第1電極チップを取り付けるための取付治具であって、
     前記収容凹部に嵌合されるガイドと、
     前記ガイドに対して回動可能に設けられた回転軸と、
     前記回転軸の先端部において半径方向に突出させて設けられ、前記ガス導出溝と係合する係合部材と、を備えた取付治具。
  10.  請求項9記載の取付治具を用いた前記第1本体に対する前記第1電極チップの取付方法。
PCT/JP2021/033379 2020-09-14 2021-09-10 元素分析装置、取付治具、及び、取付方法 WO2022054919A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180038559.1A CN115715362A (zh) 2020-09-14 2021-09-10 元素分析装置、安装夹具及安装方法
US18/000,046 US20230213419A1 (en) 2020-09-14 2021-09-10 Element analysis device, mounting jig, and mounting method
JP2022548361A JPWO2022054919A1 (ja) 2020-09-14 2021-09-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020154063 2020-09-14
JP2020-154063 2020-09-14

Publications (1)

Publication Number Publication Date
WO2022054919A1 true WO2022054919A1 (ja) 2022-03-17

Family

ID=80631708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033379 WO2022054919A1 (ja) 2020-09-14 2021-09-10 元素分析装置、取付治具、及び、取付方法

Country Status (4)

Country Link
US (1) US20230213419A1 (ja)
JP (1) JPWO2022054919A1 (ja)
CN (1) CN115715362A (ja)
WO (1) WO2022054919A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228125A1 (fr) 2022-05-25 2023-11-30 Softcar Sa Véhicule tracteur solaire tous terrains à modules interchangeables

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936587A (en) * 1974-06-28 1976-02-03 Leco Corporation Electrode construction for resistance heating furnace
JPS52128194A (en) * 1976-04-19 1977-10-27 Leco Corp Electrode means for electric resistance furnace
JPS54103282U (ja) * 1977-12-28 1979-07-20
JPS58153087A (ja) * 1982-03-05 1983-09-10 ラコ コーポレイション 電極装置及びそれを用いた電気抵抗加熱炉
JP2009053119A (ja) * 2007-08-28 2009-03-12 Horiba Ltd 元素分析装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936587A (en) * 1974-06-28 1976-02-03 Leco Corporation Electrode construction for resistance heating furnace
JPS52128194A (en) * 1976-04-19 1977-10-27 Leco Corp Electrode means for electric resistance furnace
JPS54103282U (ja) * 1977-12-28 1979-07-20
JPS58153087A (ja) * 1982-03-05 1983-09-10 ラコ コーポレイション 電極装置及びそれを用いた電気抵抗加熱炉
JP2009053119A (ja) * 2007-08-28 2009-03-12 Horiba Ltd 元素分析装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228125A1 (fr) 2022-05-25 2023-11-30 Softcar Sa Véhicule tracteur solaire tous terrains à modules interchangeables

Also Published As

Publication number Publication date
CN115715362A (zh) 2023-02-24
JPWO2022054919A1 (ja) 2022-03-17
US20230213419A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
WO2022054919A1 (ja) 元素分析装置、取付治具、及び、取付方法
US9310308B2 (en) Micro-plasma emission detector unit and method
KR101018789B1 (ko) 고진공다중 기체시료 도입부를 갖춘 음압기체 시료의 정량적 주입에 의한 회분식 기체크로마토그라피 측정장치
US20180252690A1 (en) Nitric oxide detection device with reducing gas
WO2022054920A1 (ja) 元素分析装置
EP3006098B1 (en) Gas separation cartridge
JP3725441B2 (ja) 気体流れ中の不純物を分析するための方法
US6238622B1 (en) Flame ionization detector
HK1144601A1 (en) Replaceable cartridge for consumables having integrated air filter for analysis devices
WO2021131390A1 (ja) 元素分析装置
US20050178270A1 (en) Apparatus for separating gas into gas components using ionization
JP2007263678A (ja) 水素化物ガス中の微量不純物分析方法及び装置
JP2013108762A (ja) 一酸化炭素、二酸化炭素及びメタンの分析方法
US20190380810A1 (en) Automatic analyzer for the detection of chemical elements in organic compounds
JP2012163559A (ja) 脱着式最終スクラバ管
WO2022091748A1 (ja) 元素分析方法、元素分析装置、及び、元素分析装置用プログラム
JP4165341B2 (ja) 赤外線ガス分析装置
US6793786B2 (en) Flow gap gas distribution adapter for an electrochemical gas sensor
WO2021182058A1 (ja) 元素分析装置
JP2018169209A (ja) ニッケルカルボニル分析装置、及びニッケルカルボニルの分析方法
US11130126B2 (en) Sliding type replaceable fluid analysis chamber module
JP6879377B2 (ja) 分析装置および全有機体炭素測定装置
US8673224B2 (en) Apparatus for synthesis and assaying of materials
JP2000074882A (ja) ガス中の微量不純物の分析方法及び装置
JP2023077077A (ja) 呼気捕獲装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022548361

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866876

Country of ref document: EP

Kind code of ref document: A1