WO2022053024A1 - 多通道静态ct装置 - Google Patents

多通道静态ct装置 Download PDF

Info

Publication number
WO2022053024A1
WO2022053024A1 PCT/CN2021/117753 CN2021117753W WO2022053024A1 WO 2022053024 A1 WO2022053024 A1 WO 2022053024A1 CN 2021117753 W CN2021117753 W CN 2021117753W WO 2022053024 A1 WO2022053024 A1 WO 2022053024A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
scanning
sub
channels
detection
Prior art date
Application number
PCT/CN2021/117753
Other languages
English (en)
French (fr)
Inventor
陈志强
张丽
许晓飞
沈乐
常铭
唐虎
金鑫
孙运达
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Priority to EP21866076.9A priority Critical patent/EP4212917A1/en
Publication of WO2022053024A1 publication Critical patent/WO2022053024A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/10Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being confined in a container, e.g. in a luggage X-ray scanners
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/226Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays using tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/20Sources of radiation
    • G01N2223/204Sources of radiation source created from radiated target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3301Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts beam is modified for scan, e.g. moving collimator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3307Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts source and detector fixed; object moves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3308Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts object translates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/335Accessories, mechanical or electrical features electronic scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/639Specific applications or type of materials material in a container
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/643Specific applications or type of materials object on conveyor

Definitions

  • the present disclosure relates to the field of security inspection, in particular to a dual-channel static CT device for security inspection.
  • X-ray imaging technology is an important way of non-destructive testing, and it has been widely used in many fields. With the popularization of X-ray imaging technology in the field of security inspection, the market has also put forward higher requirements for relevant parameter indicators. The faster the inspection speed, the better, the smaller the equipment footprint, the better. In terms of accuracy, the more information, the better.
  • the conventional CT apparatus is generally unable to increase the scanning channel due to its structural limitation. While static CT devices are usually single-channel, this single-channel form cannot continue to improve its detection efficiency.
  • An object of the present disclosure is to address at least one aspect of the above-mentioned problems and deficiencies in the prior art.
  • a multi-channel static CT apparatus including: a scanning channel, the scanning channel includes a plurality of scanning sub-channels; a distributed X-ray source, the distributed X-ray source includes a plurality of rays an emission point, the plurality of ray emission points are arranged around the scanning channel; and a detector module, the detector module includes a plurality of detectors, the plurality of detectors are arranged around the scanning channel, the plurality of The detectors are arranged corresponding to the plurality of ray emission points.
  • each of the scanning sub-channels can be controlled individually or collectively based on scanning requirements.
  • the individually controlled variables include at least one of a transport speed, transport direction, pause, forward, and reverse of a transport mechanism within the scanning sub-channel.
  • the plurality of ray emission points and the plurality of detectors are located in a plane intersecting with the conveying direction of the object under inspection.
  • a plurality of ray emission points of the X-ray source are distributed in at least two planes intersecting with the conveying direction of the object to be inspected, and the X-ray source Among the multiple ray emission points and the multiple detectors of the detector module, the corresponding ray emission points and the detectors are arranged in the same plane.
  • a plurality of ray emission points located in the same plane are arranged in a linear shape, an L shape, a U shape, a semicircle, an arc shape, a parabola shape or a curve shape .
  • a plurality of detectors located in the same plane are arranged in a linear shape, an L shape, a U shape, a semicircle, an arc shape, a parabola shape or a curved shape.
  • the total coverage angle of the X-ray source is greater than 180°.
  • the X-ray beams emitted by the plurality of ray emission points of the X-ray source are perpendicular to the transmission direction of the object under inspection, or relative to the transmission direction of the object under inspection slanted direction.
  • a multi-channel static CT apparatus further includes a data and image processing system and a display apparatus, the data and processing system being configured to perform an analysis of all of the detector modules.
  • the collected signals are processed to reconstruct the image of the inspected object in the scanning channel, and the display device is used for displaying the image of the inspected object.
  • a portion of the plurality of ray emission points corresponding to each of the plurality of scanning sub-channels is independent of the plurality of scanning sub-channels
  • the part of the ray emission point corresponding to other scanning sub-channels in the plurality of scanning sub-channels works to realize a single-channel detection mode or a multi-channel detection mode.
  • the X-ray beams emitted by the portions of the plurality of ray emission points corresponding to each of the plurality of scanning sub-channels can cover The effective scanning area in the corresponding scanning sub-channel is used to realize the detection of the inspected object in the corresponding scanning sub-channel.
  • a portion of the plurality of ray emission points corresponding to each of the plurality of scanning sub-channels can emit X-ray beams from a single target point , so as to realize the single-view detection of the inspected object in the corresponding scanning sub-channel.
  • the multi-channel detection mode includes a first detection sub-mode, in which the working scanning sub-channels are individually controlled.
  • the reconstructed image of the inspected object in the scanning channel is segmented into sections corresponding to each scanning sub-channel currently in operation.
  • the image part corresponding to each scanning sub-channel is displayed on different display devices, or displayed in different display areas of the display device.
  • the parts of the plurality of ray emission points corresponding to each scanning sub-channel in operation alternately emit X ray beams to avoid mutual interference between scanning sub-channels.
  • the multi-channel detection mode further includes a second detection sub-mode, and in the second detection sub-mode, phases in the plurality of scanning sub-channels are At least two adjacent scanning sub-channels work, and the conveying mechanisms in the at least two scanning sub-channels that are working are uniformly controlled to keep running in the same direction and at the same speed, and the plurality of ray emission points and the at least The corresponding parts of the two scanning sub-channels work.
  • the X-rays emitted by the parts of the plurality of ray emission points corresponding to the at least two scanning sub-channels The ray beam covers the effective scanning area in the at least two scanning sub-channels, so as to realize the detection of the inspected object in the at least two scanning sub-channels.
  • the parts of the plurality of ray emission points corresponding to the at least two scanning sub-channels can be single-targeted
  • An X-ray beam is emitted to realize single-view detection of the inspected object in the at least two scanning sub-channels.
  • the number of the scanning sub-channels is two.
  • the aspect ratio of the scanning channels is not less than 1.5, wherein the total width of the scanning channels is not less than 1 meter and the height is not less than 0.6 meters.
  • the number of ray emission points of the X-ray source is not less than 120.
  • FIG. 1 is a schematic perspective view of a multi-channel static CT apparatus according to an exemplary embodiment of the present disclosure
  • Fig. 2 is a left side schematic view of the multi-channel static CT device shown in Fig. 1;
  • FIG. 3 is a schematic perspective view of a multi-channel static CT apparatus according to another exemplary embodiment of the present disclosure.
  • Fig. 4 is a left side schematic view of the multi-channel static CT device shown in Fig. 3;
  • Fig. 5 is another left side schematic diagram of the multi-channel static CT device shown in Fig. 3;
  • FIG. 6 is a schematic left view of a multi-channel static CT apparatus in a single-channel detection mode according to an exemplary embodiment of the present disclosure
  • FIG. 7 is a schematic top view of the multi-channel static CT device shown in FIG. 6;
  • FIG. 8 is a working schematic diagram of the multi-channel static CT device shown in FIG. 6 performing single-view detection in a single-channel detection mode;
  • FIG. 9 is a schematic left view of a multi-channel static CT apparatus in a first detection sub-mode of a multi-channel detection mode according to an exemplary embodiment of the present disclosure
  • FIG. 10 is a schematic top view of the multi-channel static CT device shown in FIG. 9;
  • FIG. 11 is a schematic diagram of the operation of the multi-channel static CT apparatus shown in FIG. 9 performing single-view detection in the first detection sub-mode of the multi-channel detection mode;
  • FIG. 12 is a schematic left view of a multi-channel static CT apparatus in a first detection sub-mode of a multi-channel detection mode according to an exemplary embodiment of the present disclosure
  • FIG. 13 is a schematic top view of the multi-channel static CT apparatus shown in FIG. 12.
  • FIG. 14 is a working schematic diagram of the multi-channel static CT apparatus shown in FIG. 12 performing single-view detection in the second detection sub-mode of the multi-channel detection mode.
  • a multi-channel static CT apparatus which includes a scanning channel including a plurality of scanning sub-channels; a distributed X-ray source, the distributed X-ray source includes a plurality of ray emission points, the plurality of ray emission points are arranged around the scanning channel; and a detector module, the detector module includes a plurality of detectors, the plurality of detectors are arranged around the scanning channel, the The plurality of detectors are arranged corresponding to the plurality of ray emission points.
  • FIG. 1 is a schematic perspective view of a multi-channel static CT apparatus according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a left-side schematic view of the multi-channel static CT apparatus shown in FIG. 1 .
  • a multi-channel static CT apparatus includes a scanning channel, a distributed X-ray source 20 and a detector module 30 .
  • the scanning channel includes a first scanning sub-channel 11 and a second scanning sub-channel 12 located approximately at the same height, and each scanning sub-channel includes a conveying mechanism for conveying the object to be inspected.
  • the X-ray source 20 has a plurality of ray emission points for sequentially generating X-ray beams at different angles.
  • the plurality of ray emission points are arranged around the first side and above the scanning channel, that is, the plurality of ray emission points are arranged in a substantially L-shape.
  • the X-ray output of the ray emission point is controllable, the emission time, interval and intensity of each ray emission point are adjustable, and each ray emission point can be controlled to be triggered at intervals or continuously.
  • the detector module 30 includes a plurality of detectors for photographing the projections of the inspected object at different angles. The plurality of detectors are arranged around and below the second side of the scanning channel opposite the first side, ie, the plurality of detectors are also arranged in a substantially L-shape.
  • the part of the plurality of detectors located on the second side of the scanning channel is referred to as the first subset 31 of detectors, and the part located below the scanning channel is referred to as the second subset 32 of detectors.
  • the emitters are arranged corresponding to the plurality of ray emission points.
  • multiple ray emission points of the X-ray source 20 emit beams in sequence, and the detector module 30 performs corresponding collection according to the beam output frequency. In this way, the projections of the inspected object at different angles can be obtained, and then the tomographic reconstruction image of the inspected object can be obtained according to the iterative reconstruction algorithm or the analytical reconstruction algorithm.
  • each scanning sub-channel can be controlled individually or collectively based on scanning requirements.
  • the individually controlled variables include at least one of the conveying speed, conveying direction, pause, forward and reverse, etc. of the conveying mechanism scanning the sub-channels.
  • both scanning sub-channels can be made to work (ie, the first detection sub-mode of the multi-channel detection mode), and when the inspected object volume is When the width is larger (for example, the width is larger), the two scanning sub-channels can work synchronously (ie, the second detection sub-mode of the multi-channel detection mode).
  • the multiple ray emission points of the X-ray source 20 and the multiple detectors of the detector module 30 are located in the same plane P, which is substantially perpendicular to the conveying direction of the object under inspection. It should be noted that, in some other embodiments of the present disclosure, the planes on which the multiple ray emission points of the X-ray source 20 and the multiple detectors of the detector module 30 are located may also be inclined relative to the transmission direction of the inspected object.
  • FIG. 3 is a schematic perspective view of a multi-channel static CT apparatus according to another exemplary embodiment of the present disclosure
  • FIG. 4 is a left side schematic view of the multi-channel static CT apparatus shown in FIG. 3
  • FIG. 5 is a schematic diagram of the multi-channel static CT apparatus shown in FIG. 3 Another left-side schematic diagram of the multi-channel static CT device.
  • a multi-channel static CT apparatus includes a scanning channel, a distributed X-ray source 20 and a detector module 30 .
  • the scanning channel includes a first scanning sub-channel 11 and a second scanning sub-channel 12 located approximately at the same height, and each scanning sub-channel includes a conveying mechanism for conveying the object to be inspected.
  • the X-ray source 20 has a plurality of ray emission points for sequentially generating X-ray beams at different angles.
  • the first subset 21 ′ of ray emission points is located in the first plane P1 and is arranged around the first side of the scanning channel, while the second subset 22 ′ of ray emission points is located in the second plane P2 and is arranged around the scanning channel above the channel.
  • the detector module 30 includes a plurality of detectors for photographing the projections of the inspected object at different angles.
  • the first subset 31 ′ of detectors is located in the first plane P1 and is arranged around a second side of the scanning channel opposite to the first side, so as to be aligned with the first subset of the ray emission points located in the first plane P1
  • the sets 21' are arranged correspondingly, while the second subset 32' of detectors are located in the second plane P2 and are arranged around the lower part of the scanning channel to correspond with the second subset 22' of ray emission points located in the second plane P2 corresponding settings.
  • the first plane P1 is substantially perpendicular to the conveying direction of the object to be inspected
  • the second plane P2 is also substantially perpendicular to the conveying direction of the object to be inspected.
  • the first plane P1 may also be inclined relative to the conveying direction of the inspected object; and/or the second plane P2 may also be inclined relative to the conveying direction of the inspected object.
  • the multiple ray emission points of the X-ray source 20 may also be distributed in more than two planes intersecting with the conveying direction of the object to be inspected, and the multiple rays of the X-ray source 20 Among the multiple detectors of the emission point and detector module 30, the corresponding ray emission points and detectors are arranged in the same plane.
  • the aspect ratio of the scanning channel is not less than 1.5, wherein the total width of the scanning channel is not less than 1 meter, and the height is not less than 0.6 meters.
  • the number of ray emission points of the X-ray source 20 Not less than 120. However, in some other embodiments of the present disclosure, the size of the scanning channel and the number of ray emission points may also vary.
  • the scanning channel only includes two scanning sub-channels
  • the scanning channel may also include more than two scanning sub-channels scan sub-channel.
  • the width and height of the two scanning sub-channels are approximately the same, however, in other embodiments of the present disclosure, the width and height of the two scanning sub-channels may also be different to adapt to different The size of the inspected object.
  • a plurality of ray emission points located in the same plane P are arranged in an L shape, while in the dual-channel static CT device shown in FIG. 3, they are located in the same plane (P1, P2 ) are arranged in a straight line, however, alternatively, multiple ray emission points located in the same plane can also be arranged in other shapes, such as U-shape, semi-circle, circular arc, parabola or curve Wait.
  • a plurality of detectors located in the same plane P are arranged in an L-shape, while in the dual-channel static CT apparatus shown in FIG.
  • the detectors located in the same plane are arranged in a straight line, however, alternatively, the detectors located in the same plane can also be arranged in other shapes, such as U-shape, semi-circle, circular arc, parabola or curve shape etc.
  • the detector module 30 may be composed of linear detectors or area array detectors.
  • the total coverage angle of the X-ray source 20 is greater than 180°.
  • the head and end ray emission points of the plurality of ray emission points and the center of the scanning channel channel
  • the sum of the included angle between the line connecting the center of the cross section) and the connecting line between the head and end detectors in the detector module 30 and the center of the scanning channel is greater than 180 degrees to ensure sufficient tomographic scanning. data is reconstructed. As shown in FIG. 1 , when a plurality of ray emission points of the X-ray source 20 are located on the same plane and are arranged in an L shape, the head and end ray emission points of the plurality of ray emission points and the center of the scanning channel (channel The sum of the included angle between the line connecting the center of the cross section) and the connecting line between the head and end detectors in the detector module 30 and the center of the scanning channel (that is, the total coverage angle) is greater than 180 degrees to ensure sufficient tomographic scanning. data is reconstructed. As shown in FIG.
  • the head and end ray emission points of the ray emission points located in the first plane P1 and the center of the scanning channel (channel cross-section
  • the sum of the angle between the line connecting the center) and the line connecting the head and end detectors in the detector module 30 located in the first plane P1 and the center of the channel is the first coverage angle
  • the ray located in the second plane P2 The angle between the first and last ray emission points in the emission points and the line connecting the center of the scanning channel (the center of the channel cross section) and the line connecting the head and end detectors in the detector module 30 located in the second plane P2 with the center of the channel
  • the sum of the included angles is the second coverage angle
  • the total coverage angle of the distributed X-ray source 20 is the combination of the first coverage angle and the second coverage angle, which should be greater than 180 degrees to ensure sufficient tomographic data for reconstruction.
  • the multi-channel static CT apparatus further includes a data and image processing system and a display device, the data and processing system being configured to perform processing on the signals collected by the detector module 30 . processing to reconstruct the image of the inspected object in the scanning channel, and the display device is used for displaying the image of the inspected object.
  • a portion of the plurality of ray emission points corresponding to each of the scanning sub-channels of the plurality of scanning sub-channels may be independent of the Parts corresponding to other scanning sub-channels in the plurality of scanning sub-channels work to realize a single-channel detection mode (as shown in FIGS. 6 to 8 ) or a multi-channel detection mode (as shown in FIGS. 9 to 14 ).
  • the part of the multiple ray emission points corresponding to each of the multiple scanning sub-channels should meet the data requirements for reconstruction. In this way, when the detection amount of the inspected object is relatively small, the single-channel detection mode can be used to image the inspected object in only one scanning sub-channel.
  • the first detection sub-mode of the multi-channel detection mode can be used to improve the detection efficiency.
  • the second detection sub-mode of the multi-channel detection mode can be used.
  • the X-ray beams emitted by the parts of the plurality of ray emission points of the X-ray source 20 corresponding to each of the plurality of scanning sub-channels may cover the corresponding scanning sub-channels
  • the effective scanning area in the channel can realize the detection of the inspected object in the corresponding scanning sub-channel. For example, as shown in FIG.
  • the multi-channel static CT apparatus is in a single-channel detection mode, in which the first subset 21 and the first part 22A of the second subset 22 of ray emission points corresponding to the first scanning sub-channel 11 are The emitted X-ray beam can cover the effective scanning area in the first scanning sub-channel 11 , so as to realize the detection of the inspected object 40A in the first scanning sub-channel 11 . As shown in FIG.
  • the multi-channel static CT apparatus is in the first detection sub-mode of the multi-channel detection mode, wherein the first subset 21 and the second subset 22 of ray emission points corresponding to the first scanning sub-channel 11 are
  • the X-ray beam emitted by the first part 22A can cover the effective scanning area in the first scanning sub-channel 11, so as to realize the detection of the object under inspection 40A in the first scanning sub-channel 11; corresponding to the second scanning sub-channel 12
  • the X-ray beams emitted by the first subset 21 of the ray emission points and the second part 22B of the second subset 22 can cover the effective scanning area in the second scanning sub-channel 12, so as to realize the scanning of the second scanning sub-channel 12. detection of the inspected object 40B. As shown in FIG.
  • the multi-channel static CT apparatus is in the second detection sub-mode of the multi-channel detection mode, wherein the first scanning sub-channel 11 and the second scanning sub-channel 12 corresponding to the working first scanning sub-channel 12 have the first
  • the X-ray beams emitted by the subset 21 and the second subset 22 can cover the effective scanning area in the first scanning sub-channel 11 and the second scanning sub-channel 12, so as to realize the detection of the first scanning sub-channel 11 and the second scanning sub-channel 12. Detection of the object under inspection 40C in the tunnel 12 .
  • a portion of the plurality of ray emission points corresponding to each of the plurality of scanning sub-channels can emit X-ray beams from a single target point, so as to realize the Single-view detection of the inspected object within the corresponding scanning sub-channel.
  • the multi-channel static CT apparatus is in a single-channel detection mode, wherein the first subset 21 and the first part 22A of the second subset 22 of ray emission points corresponding to the first scanning sub-channel 11 can be A single target point (ie, 22A) emits an X-ray beam, so as to realize single-view detection of the inspected object 40A in the first scanning sub-channel 11 .
  • a single target point ie, 22A
  • the multi-channel static CT apparatus is in the first detection sub-mode of the multi-channel detection mode, wherein the first subset 21 and the second subset 22 of ray emission points corresponding to the first scanning sub-channel 11 are
  • the first part 22A can emit an X-ray beam from a single target point (ie, 22X), so as to realize the single-view detection of the inspected object 40A in the first scanning sub-channel 11;
  • the first subset 21 and the second portion 22B of the second subset 22 are capable of emitting X-ray beams from a single target point (ie, 22Y) to achieve single-view detection of the inspected object 40B in the second scanning sub-channel 12 .
  • a single target point ie, 22Y
  • the multi-channel static CT apparatus is in the second detection sub-mode of the multi-channel detection mode, wherein the first scanning sub-channel 11 and the second scanning sub-channel 12 corresponding to the working first scanning sub-channel 12 have the first
  • the subset 21 and the second subset 22 are capable of emitting X-ray beams from a single target point (ie, 22Z) to achieve single-view detection of the inspected object 40C in the first scanning sub-channel 11 and the second scanning sub-channel 12 .
  • the detection mode of the multi-channel static CT apparatus provided by the present disclosure will be described in detail below.
  • the single-channel detection mode can be adopted, that is, only the transmission mechanism of one scanning sub-channel is turned on, and only the ray emission point corresponding to the scanning sub-channel is operated, so as to scan the corresponding scanning sub-channel.
  • the inspected object in the sub-channel is imaged.
  • the conveying mechanism of the first scanning sub-channel 11 works, and the conveying mechanism of the second scanning sub-channel 12 is closed. In this case, only the first part 22A of the first subset 21 and the second subset 22 of ray emission points in FIG. 6 works.
  • single-view detection when the detection accuracy is not high, single-view detection can be used.
  • the ray emission point 22X above the first scanning sub-channel 11 The X-ray beam emitted by the point 22X can cover the effective scanning area in the first scanning sub-channel 11 , so as to realize the single-view detection of the inspected object 40A in the first scanning sub-channel 11 .
  • the first detection sub-mode of the multi-channel detection mode can be used, that is, the transmission mechanism of at least two scanning sub-channels works, and the rays corresponding to the at least two scanning sub-channels work.
  • the emission point operates to image the object under inspection within the at least two scanning sub-channels.
  • the transmission mechanisms of the first scanning sub-channel 11 and the second scanning sub-channel 12 are both working, and the first subset 21 of ray emission points, the first part 22A of the second subset 22 and The second part 22B both works.
  • each scanning sub-channel can be individually controlled according to the inspection requirements, and the individually controlled variables include the conveying speed, conveying direction, pause, forward and reverse of the conveying mechanism. Since scanning is performed through multiple scanning sub-channels, the detection efficiency can be greatly improved.
  • parts of the plurality of ray emission points corresponding to each scanning sub-channel in operation alternately emit X-ray beams, To avoid mutual interference between scanning sub-channels.
  • the first part 22A and the second part 22B of the first subset 22 of ray emission points emit light alternately at high frequencies, and at the same time the data of the detector corresponding to the ray emission point 22A and the data of the detector corresponding to the ray emission point 22A and the ray emission point are intercepted.
  • 22B corresponds to the data of the detector to realize the detection in the dual-channel detection mode.
  • the beam output of the X-ray source 20 can be periodically controlled, and the ray emission point 22A and the ray emission point 22A can be quickly switched in a high-frequency mode.
  • the ray emission point 22B is used to avoid mutual interference between the scanning sub-channels (11, 12).
  • the reconstructed image of the inspected object in the working at least two scanning sub-channels can be divided into parts corresponding to each scanning sub-channel according to the motion state and geometric relationship of the conveying mechanism.
  • the image part corresponding to the channel is displayed, and the image part corresponding to each scanning sub-channel is displayed on different display devices, or displayed in different display areas of the display device.
  • the first detection sub-mode of the multi-channel detection mode when the detection accuracy is not high, single-view detection can be adopted. For example, as shown in FIG. 11 , a ray above the first scanning sub-channel 11 can be emitted The point 22X works, and the X-ray beam emitted by the ray emission point 22X can cover the effective scanning area in the first scanning sub-channel 11 to realize single-view detection of the inspected object 40A in the first scanning sub-channel 11 .
  • a ray emission point 22Y above the second scanning sub-channel 12 can be operated, and the X-ray beam emitted by the ray emission point 22Y can cover the effective scanning area in the second scanning sub-channel 12, so as to realize the second scanning Single-view detection of inspected object 40B within sub-channel 12 .
  • the ray emission point 22X and the ray emission point 22Y when performing single-view detection in the first detection sub-mode, emit light alternately under high frequency conditions, and the interception corresponding to the ray emission point 22X
  • the data of the detector and the data of the detector corresponding to the ray emission point 22Y are used to realize single-view detection in the first detection sub-mode.
  • the beam output of the X-ray source 20 can be periodically controlled, and the high-frequency mode can be quickly switched.
  • the ray emission point 22X and the ray emission point 22Y are used to avoid mutual interference between the scanning sub-channels (11, 12).
  • the second detection sub-mode can be used when the volume of the inspected object is relatively large.
  • the object to be inspected is placed in adjacent at least two scanning sub-channels to be conveyed by a conveying mechanism in the at least two scanning sub-channels, wherein the at least two scanning sub-channels are working
  • the conveying mechanisms in the sub-channels are uniformly controlled to keep the same direction and the same speed.
  • the ray emission points corresponding to the at least two scanning sub-channels all participate in the work, so as to image the inspected object in the at least two scanning sub-channels. For example, as shown in FIG. 12 and FIG.
  • the transmission mechanisms in the first scanning sub-channel 11 and the second scanning sub-channel 12 both work, and both the first subset 21 and the second subset 22 of ray emission points work.
  • the reconstructed images of the inspected object 40C in the first scanning sub-channel 11 and the second scanning sub-channel 12 can be transmitted to a display device for display.
  • the width of the inspected object can be at least doubled compared to the single-channel case.
  • the second detection sub-mode when the detection accuracy is not high, single-view detection can be adopted, and a ray emission point above the at least two scanning sub-channels can be operated, and the X-ray emission point emitted by the ray emission point can work.
  • the ray beam can cover the effective scanning area in the at least two scanning sub-channels, so as to realize the single-view detection of the inspected object in the at least two scanning sub-channels. For example, as shown in FIG.
  • a ray emission point 22Z above the entire scanning channel can be operated, and the X-ray beam emitted by the ray emission point 22Z can cover both the first scanning sub-channel 11 and the second scanning sub-channel 12
  • the effective scanning area within the first scanning sub-channel 11 and the second scanning sub-channel 12 can be used for single-view detection of the object under inspection 40C.
  • the above embodiment is only the case when the X-ray source 20 and the detector module 30 are in one plane, however, in some other embodiments of the present disclosure, the X-ray source 20 and the detector module 30 may also be distributed In multiple planes, the principle is the same.
  • the ray emission points shown for realizing single-view detection are all at the top of the scanning channel, however, in some other aspects of the present disclosure In the embodiment, the ray emission point shown for realizing single-view detection can also be at the bottom of the scanning channel, and the principle is similar.
  • the detection efficiency of the existing static CT device can be improved, and the detection of ultra-wide objects to be inspected can be supported, so as to achieve a The rate is doubled; under the premise of the same detection pass rate, the purpose of saving floor space.
  • the dual-channel static CT apparatus can have three detection modes based on the detection amount of the object under inspection and the size of the volume of the object under inspection, so as to be suitable for different scenarios.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pulmonology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Toxicology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

公开了一种多通道静态CT装置,其包括:扫描通道,所述扫描通道包括多条扫描子通道;分布式X射线源,所述分布式X射线源包括多个射线发射点,所述多个射线发射点围绕所述扫描通道布置;以及探测器模块,所述探测器模块包括多个探测器,所述多个探测器围绕所述扫描通道布置,所述多个探测器与所述多个射线发射点相应设置。

Description

多通道静态CT装置
本公开要求于2020年9月11日提交的、申请号为202010957793.1的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及安检领域,特别是涉及一种用于安检的双通道静态CT装置。
背景技术
X射线成像技术是无损检测的一种的重要方式,它现在已经广泛应用于众多领域。随着X射线成像技术在安全检查领域的普及,市场对于相关参数指标也提出了更高的需求,在检查速度方面越快越好,在设备占地体积方面越小越好,在对物体成像的准确度方面,信息越多越好。然而,传统的CT装置由于受到其结构限制,一般无法使得扫描通道增大。而静态CT装置通常是单通道的,这种单通道形式无法继续提高其检测效率。
发明内容
本公开的一个目的旨在解决现有技术中存在的上述问题和缺陷的至少一个方面。
根据本公开的实施例,提供了一种多通道静态CT装置,包括:扫描通道,所述扫描通道包括多条扫描子通道;分布式X射线源,所述分布式X射线源包括多个射线发射点,所述多个射线发射点围绕所述扫描通道布置;以及探测器模块,所述探测器模块包括多个探测器,所述多个探测器围绕所述扫描通道布置,所述多个探测器与所述多个射线发射点对应设置。
根据本公开的一种示例性实施例多通道静态CT装置,每条所述扫描子通道基于扫描需求能够单独控制或统一控制。
根据本公开的一种示例性实施例多通道静态CT装置,所述单独控制的变量包括所述扫描子通道内的传送机构的传送速度、传送方向、暂停、前进和倒退中的至少一者。
根据本公开的一种示例性实施例多通道静态CT装置,所述多个射线发射点与所述多个探测器位于与被检查物体的传送方向相交的一平面内。
根据本公开的一种示例性实施例多通道静态CT装置,所述X射线源的多个射线发 射点分布在与被检查物体的传送方向相交的至少两个平面内,所述X射线源的多个射线发射点和所述探测器模块的多个探测器中、对应的射线发射点和探测器在同一平面中布置。
根据本公开的一种示例性实施例多通道静态CT装置,位于同一平面内的多个射线发射点布置成直线形、L形、U形、半圆形、圆弧形、抛物线形或曲线形。
根据本公开的一种示例性实施例多通道静态CT装置,位于同一平面内的多个探测器布置成直线形、L形、U形、半圆形、圆弧形、抛物线形或曲线形。
根据本公开的一种示例性实施例多通道静态CT装置,所述X射线源的总覆盖角度大于180°。
根据本公开的一种示例性实施例多通道静态CT装置,所述X射线源的多个射线发射点所发射的X射线束垂直于被检查物体的传送方向,或相对于被检查物体的传送方向倾斜。
根据本公开的一种示例性实施例多通道静态CT装置,所述多通道静态CT装置还包括数据与图像处理系统以及显示装置,所述数据与处理系统被配置成对所述探测器模块所采集的信号进行处理,以重建所述扫描通道内的被检查物体的图像,所述显示装置用于对所述被检查物体的图像进行显示。
根据本公开的一种示例性实施例多通道静态CT装置,所述多个射线发射点的与所述多条扫描子通道中的每条所述扫描子通道对应的部分独立于所述多个射线发射点的与所述多条扫描子通道中的其他扫描子通道对应的部分工作,以实现单通道检测模式或多通道检测模式。
根据本公开的一种示例性实施例多通道静态CT装置,所述多个射线发射点的与所述多条扫描子通道中的每条扫描子通道对应的部分所发射的X射线束能够覆盖相应的扫描子通道内的有效扫描区域,以实现对相应的扫描子通道内的被检查物体的检测。
根据本公开的一种示例性实施例多通道静态CT装置,所述多个射线发射点的与所述多条扫描子通道中的每条扫描子通道对应的部分能够单靶点发射X射线束,以实现对相应的扫描子通道内的被检查物体的单视角检测。
根据本公开的一种示例性实施例多通道静态CT装置,所述多通道检测模式包括第一检测子模式,在所述第一检测子模式下,正在工作的扫描子通道是单独控制的。
根据本公开的一种示例性实施例多通道静态CT装置,在所述第一检测子模式下, 所述扫描通道的被检查物体的重建图像被分割成与正在工作的每条扫描子通道对应的图像部分,并将与每条扫描子通道对应的图像部分分别在不同的显示装置上显示,或者在显示装置的不同显示区域显示。
根据本公开的一种示例性实施例多通道静态CT装置,在所述第一检测子模式下,所述多个射线发射点的与正在工作的每条扫描子通道对应的部分交替地发射X射线束,以避免扫描子通道之间的相互干扰。
根据本公开的一种示例性实施例多通道静态CT装置,所述多通道检测模式还包括第二检测子模式,在所述第二检测子模式下,所述多条扫描子通道中的相邻的至少两条扫描子通道工作,正在工作的所述至少两条扫描子通道内的传送机构被统一控制,以保持同向同速运转,并且所述多个射线发射点的与所述至少两条扫描子通道对应的部分工作。
根据本公开的一种示例性实施例多通道静态CT装置,在所述第二检测子模式下,所述多个射线发射点的与所述至少两条扫描子通道对应的部分所发射的X射线束覆盖所述至少两条扫描子通道内的有效扫描区域,以实现对所述至少两条扫描子通道内的被检查物体的检测。
根据本公开的一种示例性实施例多通道静态CT装置,在所述第二检测子模式下,所述多个射线发射点的与所述至少两条扫描子通道对应的部分能够单靶点发射X射线束,以实现对所述至少两条扫描子通道内的被检查物体的单视角检测。
根据本公开的一种示例性实施例多通道静态CT装置,所述扫描子通道的数量为两条。
根据本公开的一种示例性实施例多通道静态CT装置,所述扫描通道的宽高比不小于1.5,其中所述扫描通道的总宽度不小于1米,高度不小于0.6米。
根据本公开的一种示例性实施例多通道静态CT装置,所述X射线源的射线发射点的数量不少于120个。
附图说明
图1是根据本公开的一示例性实施例的多通道静态CT装置的立体示意图;
图2是图1所示的多通道静态CT装置的左视示意图;
图3是根据本公开的另一示例性实施例的多通道静态CT装置的立体示意图;
图4是图3所示的多通道静态CT装置的一左视示意图;
图5是图3所示的多通道静态CT装置的另一左视示意图;
图6是根据本公开的一种示例性实施例的多通道静态CT装置在单通道检测模式下的左视示意图;
图7是图6所示的多通道静态CT装置的俯视示意图;
图8是图6所示的多通道静态CT装置在单通道检测模式下进行单视角检测的工作示意图;
图9是根据本公开的一种示例性实施例的多通道静态CT装置在多通道检测模式的第一检测子模式下的左视示意图;
图10是图9所示的多通道静态CT装置的俯视示意图;
图11是图9所示的多通道静态CT装置在多通道检测模式的第一检测子模式下进行单视角检测的工作示意图;
图12是根据本公开的一种示例性实施例的多通道静态CT装置在多通道检测模式的第一检测子模式下的左视示意图;
图13是图12所示的多通道静态CT装置的俯视示意图;以及
图14是图12所示的多通道静态CT装置在多通道检测模式的第二检测子模式下进行单视角检测的工作示意图。
具体实施方式
虽然将参照含有本公开的较佳实施例的附图充分描述本公开,但在此描述之前应了解本领域的普通技术人员可修改本文中所描述的实用新型,同时获得本公开的技术效果。因此,须了解以上的描述对本领域的普通技术人员而言为一广泛的揭示,且其内容不在于限制本公开所描述的示例性实施例。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
根据本公开的总体上的发明构思,提供了一种多通道静态CT装置,其包括扫描通道,所述扫描通道包括多条扫描子通道;分布式X射线源,所述分布式X射线源包 括多个射线发射点,所述多个射线发射点围绕所述扫描通道布置;以及探测器模块,所述探测器模块包括多个探测器,所述多个探测器围绕所述扫描通道布置,所述多个探测器与所述多个射线发射点对应设置。
图1是根据本公开的一示例性实施例的多通道静态CT装置的立体示意图;以及图2是图1所示的多通道静态CT装置的左视示意图。
如图1至图2所示,根据本公开的一实施例,多通道静态CT装置包括扫描通道、分布式X射线源20和探测器模块30。该扫描通道包括大致位于同一高度处的第一扫描子通道11和第二扫描子通道12,每个扫描子通道包括用于传送待检查物体的传送机构。X射线源20具有多个射线发射点,用于在不同角度依次产生X射线束。所述多个射线发射点围绕扫描通道的第一侧和上方布置,即,所述多个射线发射点呈大致L形布置。其中,所述多个射线发射点的位于扫描通道第一侧的部分称为射线发射点的第一子集21,位于扫描通道上方的部分称为射线发射点的第二子集22,每个射线发射点的X射线出束是可控制的,每个射线发射点的发射时间、间隔和强度是可调的,以及每个射线发射点可以间隔或连续控制触发。探测器模块30包括多个探测器,用于拍摄被检查物体在不同角度下的投影。所述多个探测器围绕扫描通道的与第一侧相反的第二侧和下方布置,即,所述多个探测器也呈大致L形布置。其中,所述多个探测器的位于扫描通道第二侧的部分称为探测器的第一子集31,位于扫描通道下方的部分称为探测器的第二子集32,所述多个探测器与所述多个射线发射点对应设置。使用时,X射线源20的多个射线发射点依次出束,探测器模块30按照出束频率进行相对应地采集。这样就能够获得被检查物体在不同角度下的投影,再根据迭代重建算法或者解析重建算法,获得被检查物体的断层重建图像。
如图1和图2所示,每条扫描子通道可以基于扫描需求单独控制或统一控制。其中单独控制的变量包括扫描子通道的传送机构的传送速度、传送方向、暂停、前进和倒退等中的至少一者。例如,在被检查物体检测量比较小时,可以仅使一条扫描子通道工作(即单通道检测模式),而在被检查物体检测量比较大,但被检查物体的体积小于某预定规格(即,被检查物体的体积可以使得其可以整个被放置在一条扫描子通道上)时,可以使两条扫描子通道均工作(即多通道检测模式的第一检测子模式),而在被检 查物体体积较大(例如宽度较大)时,可以将两条扫描子通道同步工作(即多通道检测模式的第二检测子模式)。
如图1和图2所示,X射线源20的多个射线发射点和探测器模块30的多个探测器位于同一平面P内,该平面P与被检查物体的传送方向大致垂直。需要说明的是,在本公开的其他一些实施例中,X射线源20的多个射线发射点和探测器模块30的多个探测器所在的平面也可以相对于被检查物体的传送方向倾斜。
图3是根据本公开的另一示例性实施例的多通道静态CT装置的立体示意图;图4是图3所示的多通道静态CT装置的一左视示意图;以及图5是图3所示的多通道静态CT装置的另一左视示意图。
如图3至图5所示,根据本公开的另一实施例,多通道静态CT装置包括扫描通道、分布式X射线源20和探测器模块30。该扫描通道包括大致位于同一高度处的第一扫描子通道11和第二扫描子通道12,每个扫描子通道包括用于传送待检查物体的传送机构。该X射线源20具有多个射线发射点,用于在不同角度依次产生X射线束。其中,射线发射点的第一子集21′位于第一平面P1内,并围绕扫描通道的第一侧布置,而射线发射点的第二子集22′位于第二平面P2内,并围绕扫描通道的上方布置。探测器模块30包括多个探测器,用于拍摄被检查物体在不同角度下的投影。其中,探测器的第一子集31′位于第一平面P1内,并围绕扫描通道的与第一侧相反的第二侧布置,以与位于第一平面P1内的射线发射点的第一子集21′对应设置,而探测器的第二子集32′位于第二平面P2内,并围绕扫描通道的下方布置,以与位于第二平面P2内的射线发射点的第二子集22′对应设置。由于X射线源20的多个射线发射点和探测器模块30的多个探测器分布于两个平面,因此需要计算被检查物体通过不同平面P1、P2的时间差,再根据时间差进行匹配对准,然后使用算法进行被检查物体的图像的高精度重建。
如图3至图5所示,第一平面P1与被检查物体的传送方向大致垂直,并且第二平面P2与被检查物体的传送方向也大致垂直。需要说明的是,在本公开的其他一些实施例中,第一平面P1也可以相对于被检查物体的传送方向倾斜;和/或第二平面P2也可以相对于被检查物体的传送方向倾斜。此外,在本公开的其他一些实施例中,X射线源20的多个射线发射点也可以分布在与被检查物体的传送方向相交的两个以上的平面 内,X射线源20的多个射线发射点和探测器模块30的多个探测器中、对应的射线发射点和探测器在同一平面中布置。
在图1和图3所示的实施例中,扫描通道的宽高比不小于1.5,其中扫描通道的总宽度不小于1米,高度不小于0.6米,X射线源20的射线发射点的数量不少于120个。然而,在本公开的其它一些实施例中,扫描通道的尺寸以及射线发射点的数量也可以变化。
需要说明的是,虽然在上述实施例中,扫描通道仅包括两条扫描子通道,然而,本领域的技术人员应当理解,在本公开的其他一些实施例中,扫描通道也可以包括两条以上的扫描子通道。此外,在该实施例中,两条扫描子通道的宽度和高度大致相同,然而,在本公开的其他实施例中,两条扫描子通道的宽度和高度也可以是不同的,以适应于不同规格的被检查物体。
在图1所示的多通道静态CT装置中,位于同一平面P内的多个射线发射点呈L形布置,而在图3所示的双通道静态CT装置中,位于同一平面(P1、P2)内的射线发射点呈直线布置,然而,作为选择,位于同一平面内的多个射线发射点也可以布置成其他的形状,例如U形、半圆形、圆弧形、抛物线形或曲线形等。类似地,在图1所示的多通道静态CT装置中,位于同一平面P内的多个探测器呈L形布置,而在图3所示的双通道静态CT装置中,位于同一平面(P1、P2)内的多个探测器呈直线布置,然而,作为选择,位于同一平面内的多个探测器也可以布置成其他的形状,例如U形、半圆形、圆弧形、抛物线形或曲线形等。其中探测器模块30可以由线性探测器构成,也可以由面阵式探测器构成。
在图1和图3所示的实施例中,X射线源20的总覆盖角度大于180°。例如,如图1所示,当X射线源20的多个射线发射点位于同一平面且呈L形布置时,所述多个射线发射点中的首末端射线发射点和与扫描通道中心(通道横截面的中心)连线的夹角和探测器模块30中的首末端探测器与扫描通道中心连线的夹角之和(即,总覆盖角度)大于180度,以保证得到足够的断层扫描数据进行重建。如图3所示,当分布式X射线源20的多个射线发射点位于不同平面时,位于第一平面P1内的射线发射点中的首末端射线发射点和与扫描通道中心(通道横截面的中心)连线的夹角和位于第一平面P1内的 探测器模块30中的首末端探测器与通道中心连线的夹角之和为第一覆盖角度,位于第二平面P2内的射线发射点中的首末端射线发射点和与扫描通道中心(通道横截面的中心)连线的夹角和位于第二平面P2内的探测器模块30中的首末端探测器与通道中心连线的夹角之和为第二覆盖角度,分布式X射线源20的总覆盖角度为第一覆盖角度与第二覆盖角度的组合,其应大于180度,以保证得到足够的断层扫描数据进行重建。
在本公开的一种示例性实施例中,根据本公开的多通道静态CT装置还包括数据与图像处理系统以及显示装置,该数据与处理系统被配置成对探测器模块30所采集的信号进行处理,以重建扫描通道内的被检查物体的图像,该显示装置用于对被检查物体的图像进行显示。
在本公开的一种实施例中,所述多个射线发射点的与所述多条扫描子通道中的每条所述扫描子通道对应的部分可以独立于所述多个射线发射点的与所述多条扫描子通道中的其他扫描子通道对应的部分工作,以实现单通道检测模式(如图6至图8所示)或多通道检测模式(如图9至图14所示)。其中,所述多个射线发射点的与所述多条扫描子通道中的每条扫描子通道对应的部分应满足重建的数据要求。这样,在被检查物体检测量比较小时,可以采用单通道检测模式,只对一条扫描子通道内的被检查物体进行成像,在这种情况下,仅与该扫描子通道对应的射线发射点工作。而在被检查物体检测量比较大,但被检查物体的体积小于某预定规格时,可以使用多通道检测模式的第一检测子模式,以提高检测效率。而当被检查物体体积大于某预定规格,例如不能整个被放置在一条扫描子通道上时,可以使用多通道检测模式的第二检测子模式。
在本公开的示例性实施例中,X射线源20的多个射线发射点与所述多条扫描子通道中的每条扫描子通道对应的部分所发射的X射线束可以覆盖相应的扫描子通道内的有效扫描区域,以实现对相应的扫描子通道内的被检查物体的检测。例如,如图6所示,该多通道静态CT装置处于单通道检测模式,其中与第一扫描子通道11对应的射线发射点的第一子集21和第二子集22的第一部分22A所发射的X射线束可以覆盖第一扫描子通道11内的有效扫描区域,以实现对第一扫描子通道11内的被检查物体40A的检测。如图9所示,该多通道静态CT装置处于多通道检测模式的第一检测子模式,其中与第 一扫描子通道11对应的射线发射点的第一子集21和第二子集22的第一部分22A所发射的X射线束可以覆盖第一扫描子通道11内的有效扫描区域,以实现对第一扫描子通道11内的被检查物体40A的检测;与第二扫描子通道12对应的射线发射点的第一子集21和第二子集22的第二部分22B所发射的X射线束可以覆盖第二扫描子通道12内的有效扫描区域,以实现对第二扫描子通道12内的被检查物体40B的检测。如图12所示,该多通道静态CT装置处于多通道检测模式的第二检测子模式,其中与正在工作的第一扫描子通道11和第二扫描子通道12对应的射线发射点的第一子集21和第二子集22所发射的X射线束可以覆盖第一扫描子通道11和第二扫描子通道12内的有效扫描区域,以实现对第一扫描子通道11和第二扫描子通道12内的被检查物体40C的检测。
在本公开的一种示例性实施例中,所述多个射线发射点的与所述多条扫描子通道中的每条扫描子通道对应的部分能够单靶点发射X射线束,以实现对相应的扫描子通道内的被检查物体的单视角检测。例如,如图6所示,该多通道静态CT装置处于单通道检测模式,其中与第一扫描子通道11对应的射线发射点的第一子集21和第二子集22的第一部分22A能够单靶点(即,22A)发射X射线束,以实现对第一扫描子通道11内的被检查物体40A的单视角检测。如图9所示,该多通道静态CT装置处于多通道检测模式的第一检测子模式,其中与第一扫描子通道11对应的射线发射点的第一子集21和第二子集22的第一部分22A能够单靶点(即,22X)发射X射线束,以实现对第一扫描子通道11内的被检查物体40A的单视角检测;与第二扫描子通道12对应的射线发射点的第一子集21和第二子集22的第二部分22B能够单靶点(即,22Y)发射X射线束,以实现对第二扫描子通道12内的被检查物体40B的单视角检测。如图12所示,该多通道静态CT装置处于多通道检测模式的第二检测子模式,其中与正在工作的第一扫描子通道11和第二扫描子通道12对应的射线发射点的第一子集21和第二子集22能够单靶点(即,22Z)发射X射线束,以实现对第一扫描子通道11和第二扫描子通道12内的被检查物体40C的单视角检测。
下面对本公开提供的多通道静态CT装置的检测模式进行详细说明。
1.单通道检测模式
在被检查物体检测量不大的情况下,可以采用单通道检测模式,即仅开启一条扫 描子通道的传送机构,并且仅使与该扫描子通道对应的射线发射点工作,以对相应的扫描子通道内的被检查物体进行成像。例如,如图6至图8所示,第一扫描子通道11的传送机构工作,第二扫描子通道12的传送机构关闭。在此情况下,仅图6中射线发射点的第一子集21和第二子集22的第一部分22A工作。在这种模式下,由于仅有部分射线发射点工作,这无疑会增加X射线源20的寿命。因此,在使用中,可以采用第一扫描子通道11和第二扫描子通道12轮流工作的模式以平衡X射线源20的寿命。
在单通道检测模式下,当对检测准确度要求不高时,可以采用单视角检测,例如,如图8所示,可以使第一扫描子通道11上方的射线发射点22X工作,该射线发射点22X所发射的X射线束可以覆盖第一扫描子通道11内的有效扫描区域,以实现对第一扫描子通道11内的被检查物体40A的单视角检测。
2.多通道检测模式
2.1第一检测子模式
在被检查物体检测量比较大的情况下,可以使用多通道检测模式的第一检测子模式,即至少两条扫描子通道的传送机构工作,并且与所述至少两条扫描子通道对应的射线发射点工作,以对所述至少两条扫描子通道内的被检查物体进行成像。例如,如图9至图10所示,第一扫描子通道11和第二扫描子通道12的传送机构均工作,射线发射点的第一子集21、第二子集22的第一部分22A和第二部分22B均工作。在这种模式下,每条扫描子通道都可以根据检查需求单独控制,单独控制的变量包括传送机构的传送速度、传送方向、暂停、前进和倒退等。由于通过多条扫描子通道进行扫描,因此可以大大提高检测效率。
在本公开的一种示例性实施例中,在第一检测子模式下进行检测时,所述多个射线发射点的与正在工作的每条扫描子通道对应的部分交替地发射X射线束,以避免扫描子通道之间的相互干扰。如图9所示,射线发射点的第一子集22的第一部分22A和第二部分22B在高频情况下交替发光,同时截取与射线发射点22A对应的探测器的数据和与射线发射点22B对应的探测器的数据,以实现双通道检测模式下的检测。与传统的双通道检测模式不同的是,由于采用的是多焦点分布式X射线源20,因而可以周期性地控制X射线源20的出束情况,以高频模式快速切换射线发射点22A和射线发射点 22B,以避免各条扫描子通道(11,12)之间的相互干扰。
在第一检测子模式的图像后处理中,可以将正在工作的所述至少两条扫描子通道内的被检查物体的重建图像按照传送机构的运动状态以及几何关系,分割成与每条扫描子通道对应的图像部分,并将与每条扫描子通道对应的图像部分分别在不同的显示装置上显示,或者在显示装置的不同显示区域显示。
在多通道检测模式的第一检测子模式下,当对检测准确度要求不高时,可以采用单视角检测,例如,如图11所示,可以使第一扫描子通道11上方的一射线发射点22X工作,该射线发射点22X所发射的X射线束可以覆盖第一扫描子通道11内的有效扫描区域,以实现对第一扫描子通道11内的被检查物体40A的单视角检测。同时,可以使第二扫描子通道12上方的一射线发射点22Y工作,该射线发射点22Y所发射的X射线束能够覆盖第二扫描子通道12内的有效扫描区域,以实现对第二扫描子通道12内的被检查物体40B的单视角检测。
在本公开的一种示例性实施例中,在第一检测子模式下进行单视角检测时,射线发射点22X和射线发射点22Y在高频情况下交替发光,同时截取与射线发射点22X对应的探测器的数据和与射线发射点22Y对应的探测器的数据,以实现第一检测子模式下的单视角检测。与传统的双通道检测模式下的单视角检测不同的是,由于采用的是多焦点分布式X射线源20,因而可以周期性地控制X射线源20的出束情况,以高频模式快速切换射线发射点22X和射线发射点22Y,以避免各条扫描子通道(11,12)之间的相互干扰。
2.1第二检测子模式
在被检查物体体积比较大的情况下,可以使用第二检测子模式。在这种情况下,将被检查物体放置在相邻的至少两条扫描子通道内,以通过所述至少两条扫描子通道内的传送机构进行传送,其中正在工作的所述至少两条扫描子通道内的传送机构被统一控制,以保持同向同速运转。与所述至少两条扫描子通道对应的射线发射点均参与工作,以对所述至少两条扫描子通道内的被检查物体进行成像。例如,如图12和图13所示,第一扫描子通道11和第二扫描子通道12内的传送机构均工作,射线发射点的第一子集21和第二子集22均工作。在第二检测子模式的图像后处理中,可以将第一扫描 子通道11和第二扫描子通道12内的被检查物体40C的重建图像传送到一显示装置上进行显示。在这种模式下,被检查物体的宽度相比单通道情况能够提高至少一倍。
在第二检测子模式下,当对检测准确度要求不高时,可以采用单视角检测,可以使所述至少两条扫描子通道上方的一射线发射点工作,该射线发射点所发射的X射线束可以覆盖所述至少两条扫描子通道内的有效扫描区域,以实现对所述至少两条扫描子通道内的被检查物体的单视角检测。例如,如图14所示,可以使整个扫描通道上方的一射线发射点22Z工作,该射线发射点22Z所发射的X射线束可以覆盖第一扫描子通道11和第二扫描子通道12两者内的有效扫描区域,以实现对第一扫描子通道11和第二扫描子通道12内的被检查物体40C的单视角检测。
需要注意的是,上述实施例仅是X射线源20和探测器模块30在一个平面时的情况,然而,在本公开的其他一些实施例中,X射线源20和探测器模块30也可以分布在多个平面,则在原理上是一样的。同样的,在图6、图9和图12所示出的实施例中,所示出的用于实现单视角检测的射线发射点都是在扫描通道的顶部,然而,在本公开的其他一些实施例中,所示出用于实现单视角检测的射线发射点也可以在扫描通道的底部,其原理类似。
根据本公开上述各种实施例所述的双通道静态CT装置,可以提高现有静态CT装置的检测效率,并支持超宽被检查物体的检测,以达到在几乎相同占地面积情况下,通过率提高一倍;在相同检测通过率的前提下,节约占地面积的目的。该双通道静态CT装置可以基于被检查物体检测量的大小和被检查物体体积的大小具有三种检测模式,以适用于不同的场景。
本领域的技术人员可以理解,上面所描述的实施例都是示例性的,并且本领域的技术人员可以对其进行改进,各种实施例中所描述的结构在不发生结构或者原理方面的冲突的情况下可以进行自由组合。
虽然结合附图对本公开进行了说明,但是附图中公开的实施例旨在对本公开实施方式进行示例性说明,而不能理解为对本公开的一种限制。
虽然本总体发明构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本公开 的范围以权利要求和它们的等同物限定。
应注意,措词“包括”不排除其他元件或步骤,措词“一”或“一个”不排除多个。另外,权利要求的任何元件标号不应理解为限制本公开的范围。

Claims (22)

  1. 一种多通道静态CT装置,包括:
    扫描通道,所述扫描通道包括多条扫描子通道;
    分布式X射线源,所述分布式X射线源包括多个射线发射点,所述多个射线发射点围绕所述扫描通道布置;以及
    探测器模块,所述探测器模块包括多个探测器,所述多个探测器围绕所述扫描通道布置,所述多个探测器与所述多个射线发射点对应设置。
  2. 根据权利要求1所述的多通道静态CT装置,其中,每条所述扫描子通道基于扫描需求能够单独控制或统一控制。
  3. 根据权利要求2所述的多通道静态CT装置,其中,所述单独控制的变量包括所述扫描子通道内的传送机构的传送速度、传送方向、暂停、前进和倒退中的至少一者。
  4. 根据权利要求1所述的多通道静态CT装置,其中,所述多个射线发射点与所述多个探测器位于与被检查物体的传送方向相交的一平面内。
  5. 根据权利要求1所述的多通道静态CT装置,其中,所述X射线源的多个射线发射点分布在与被检查物体的传送方向相交的至少两个平面内,所述X射线源的多个射线发射点和所述探测器模块的多个探测器中、对应的射线发射点和探测器在同一平面中布置。
  6. 根据权利要求4或5所述的多通道静态CT装置,其中,位于同一平面内的多个射线发射点布置成直线形、L形、U形、半圆形、圆弧形、抛物线形或曲线形。
  7. 根据权利要求4或5所述的多通道静态CT装置,其中,位于同一平面内的多个探测器布置成直线形、L形、U形、半圆形、圆弧形、抛物线形或曲线形。
  8. 根据权利要求1所述的多通道静态CT装置,其中,所述X射线源的总覆盖角度大于180°。
  9. 根据权利要求1所述的多通道静态CT装置,其中,所述X射线源的多个射线发射点所发射的X射线束垂直于被检查物体的传送方向,或相对于被检查物体的传送方向倾斜。
  10. 根据权利要求1所述的多通道静态CT装置,其中,所述多通道静态CT装置还包括数据与图像处理系统以及显示装置,所述数据与处理系统被配置成对所述探测器模块所采集的信号进行处理,以重建所述扫描通道内的被检查物体的图像,所述显示装置用于对所述被检查物体的图像进行显示。
  11. 根据权利要求10所述的多通道静态CT装置,其中,所述多个射线发射点的与所述多条扫描子通道中的每条所述扫描子通道对应的部分独立于所述多个射线发射点的与所述多条扫描子通道中的其他扫描子通道对应的部分工作,以实现单通道检测模式或多通道检测模式。
  12. 根据权利要求11所述的多通道静态CT装置,其中,所述多个射线发射点的与所述多条扫描子通道中的每条扫描子通道对应的部分所发射的X射线束能够覆盖相应的扫描子通道内的有效扫描区域,以实现对相应的扫描子通道内的被检查物体的检测。
  13. 根据权利要求12所述的多通道静态CT装置,其中,所述多个射线发射点的与所述多条扫描子通道中的每条扫描子通道对应的部分能够单靶点发射X射线束,以实现对相应的扫描子通道内的被检查物体的单视角检测。
  14. 根据权利要求11所述的多通道静态CT装置,其中,所述多通道检测模式包括第一检测子模式,在所述第一检测子模式下,正在工作的扫描子通道是单独控制的。
  15. 根据权利要求14所述的多通道静态CT装置,其中,在所述第一检测子模 式下,所述扫描通道的被检查物体的重建图像被分割成与正在工作的每条扫描子通道对应的图像部分,并将与每条扫描子通道对应的图像部分分别在不同的显示装置上显示,或者在显示装置的不同显示区域显示。
  16. 根据权利要求14所述的多通道静态CT装置,其中,在所述第一检测子模式下,所述多个射线发射点的与正在工作的每条扫描子通道对应的部分交替地发射X射线束,以避免扫描子通道之间的相互干扰。
  17. 根据权利要求14所述的多通道静态CT装置,其中,所述多通道检测模式还包括第二检测子模式,在所述第二检测子模式下,所述多条扫描子通道中的相邻的至少两条扫描子通道工作,正在工作的所述至少两条扫描子通道内的传送机构被统一控制,以保持同向同速运转,并且所述多个射线发射点的与所述至少两条扫描子通道对应的部分工作。
  18. 根据权利要求17所述的多通道静态CT装置,其中,在所述第二检测子模式下,所述多个射线发射点的与所述至少两条扫描子通道对应的部分所发射的X射线束覆盖所述至少两条扫描子通道内的有效扫描区域,以实现对所述至少两条扫描子通道内的被检查物体的检测。
  19. 根据权利要求18所述的多通道静态CT装置,其中,在所述第二检测子模式下,所述多个射线发射点的与所述至少两条扫描子通道对应的部分能够单靶点发射X射线束,以实现对所述至少两条扫描子通道内的被检查物体的单视角检测。
  20. 根据权利要求1所述的多通道静态CT装置,其中,所述扫描子通道的数量为两条。
  21. 根据权利要求20所述的多通道静态CT装置,其中,所述扫描通道的宽高比不小于1.5,其中所述扫描通道的总宽度不小于1米,高度不小于0.6米。
  22. 根据权利要求20所述的多通道静态CT装置,其中,所述X射线源的射线发射点的数量不少于120个。
PCT/CN2021/117753 2020-09-11 2021-09-10 多通道静态ct装置 WO2022053024A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21866076.9A EP4212917A1 (en) 2020-09-11 2021-09-10 Multi-channel static ct equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010957793.1 2020-09-11
CN202010957793.1A CN114167507B (zh) 2020-09-11 2020-09-11 多通道静态ct装置

Publications (1)

Publication Number Publication Date
WO2022053024A1 true WO2022053024A1 (zh) 2022-03-17

Family

ID=80476205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117753 WO2022053024A1 (zh) 2020-09-11 2021-09-10 多通道静态ct装置

Country Status (4)

Country Link
US (1) US11906447B2 (zh)
EP (1) EP4212917A1 (zh)
CN (1) CN114167507B (zh)
WO (1) WO2022053024A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020206440A1 (en) * 2019-04-05 2020-10-08 Arizona Board Of Regents On Behalf Of The University Of Arizona Multiplexed computed tomography x-ray imaging
CN114167507B (zh) * 2020-09-11 2023-07-11 同方威视技术股份有限公司 多通道静态ct装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87212001U (zh) * 1987-08-22 1988-07-13 公安部第一研究所 双通道x射线线扫描检查设备
CN203012155U (zh) * 2012-12-27 2013-06-19 同方威视技术股份有限公司 一种无机架ct装置
CN104749197A (zh) * 2013-12-26 2015-07-01 清华大学 Ct系统及其方法
US9778391B2 (en) * 2013-03-15 2017-10-03 Varex Imaging Corporation Systems and methods for multi-view imaging and tomography
CN208459303U (zh) * 2018-05-10 2019-02-01 同方威视技术股份有限公司 透射检查设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933450A (ja) * 1995-07-20 1997-02-07 Hitachi Medical Corp X線透視像取込用枠体及び可搬形x線検査装置
US7085343B2 (en) * 2001-10-18 2006-08-01 Kabushiki Kaisha Toshiba X-ray computed tomography apparatus
US7106830B2 (en) * 2002-06-12 2006-09-12 Agilent Technologies, Inc. 3D x-ray system adapted for high speed scanning of large articles
US8223919B2 (en) * 2003-04-25 2012-07-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
JP4215664B2 (ja) * 2004-03-11 2009-01-28 株式会社東芝 欠陥検出装置
US7428297B2 (en) * 2005-07-05 2008-09-23 L-3 Communications Security And Detection Systems, Inc. Methods and apparatus for e-beam scanning
JP2009236633A (ja) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd X線異物検査装置
JP5677301B2 (ja) * 2008-09-10 2015-02-25 アナロジック コーポレーション 複数ピクセルx線源を使用したコンピュータ断層撮影走査システム及び方法
JP2010230559A (ja) * 2009-03-27 2010-10-14 Ishida Co Ltd X線検査装置
EP2887056B1 (en) * 2012-10-17 2018-07-11 System Square Inc. Apparatus for inspecting packaging body
CN103901488A (zh) * 2012-12-27 2014-07-02 同方威视技术股份有限公司 固定式ct装置
CN105361900B (zh) * 2014-08-26 2019-01-22 北京纳米维景科技有限公司 静态实时ct成像系统及其成像控制方法
CN106645232B (zh) * 2017-01-25 2023-12-01 同方威视技术股份有限公司 安全检查系统
CN106596601B (zh) * 2017-01-25 2023-10-31 同方威视技术股份有限公司 安全检查系统
CN107015268B (zh) * 2017-02-22 2019-04-23 湖南华诺星空电子技术有限公司 一种车辆藏匿人员检测方法及装置
US10585206B2 (en) * 2017-09-06 2020-03-10 Rapiscan Systems, Inc. Method and system for a multi-view scanner
CN108693564A (zh) * 2018-03-16 2018-10-23 电子科技大学 用于人体安检的w波段主动毫米波双通道同步成像系统
CN209132182U (zh) * 2018-08-21 2019-07-19 公安部第一研究所 一种双通道双视角x射线安检设备
CN114167507B (zh) * 2020-09-11 2023-07-11 同方威视技术股份有限公司 多通道静态ct装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87212001U (zh) * 1987-08-22 1988-07-13 公安部第一研究所 双通道x射线线扫描检查设备
CN203012155U (zh) * 2012-12-27 2013-06-19 同方威视技术股份有限公司 一种无机架ct装置
US9778391B2 (en) * 2013-03-15 2017-10-03 Varex Imaging Corporation Systems and methods for multi-view imaging and tomography
CN104749197A (zh) * 2013-12-26 2015-07-01 清华大学 Ct系统及其方法
CN208459303U (zh) * 2018-05-10 2019-02-01 同方威视技术股份有限公司 透射检查设备

Also Published As

Publication number Publication date
US11906447B2 (en) 2024-02-20
CN114167507A (zh) 2022-03-11
CN114167507B (zh) 2023-07-11
US20220091051A1 (en) 2022-03-24
EP4212917A1 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
WO2022053024A1 (zh) 多通道静态ct装置
US8472583B2 (en) Radiation scanning of objects for contraband
US7197355B2 (en) Variable-motion optical tomography of small objects
JP5925752B2 (ja) ガントリーレスct装置
US7672422B2 (en) Radiation scanning of objects for contraband
CN100500098C (zh) 自动调准的闪烁器-射线准直仪组合件
CN106053497B (zh) 安全检测系统
EP2667184A1 (en) Handheld backscatter X-ray system for 3-D imaging
US9314218B2 (en) Integrated microtomography and optical imaging systems
WO2009094835A1 (fr) Structure de support de bras et système d'imagerie à rayonnement équipé de la structure de support de bras
US9895125B2 (en) Multi-source CT systems and pre-reconstruction inversion methods
RU2566525C2 (ru) Стационарное устройство компьютерной томографии
CN1720539A (zh) 使用平行射线照射的小对象的光学层析术和后标本光学放大
JP2009534669A (ja) 離散供給源のアレイおよび複数の平行ビームを用いた荷物および人間のx線画像化
US6380540B1 (en) Radiation imaging using simultaneous emission and transmission
WO2017101471A1 (zh) 液体检测方法和系统
CN1816304A (zh) 用于层析x射线照相组合的基于扫描的电离性辐射检测
CN101501530A (zh) 用于获得图像数据的系统和方法
US20170079609A1 (en) Echo-scintigraphic probe for medical applications and relevant diagnostic method
CN106896120A (zh) 多模态检测系统和方法
WO2023061340A1 (zh) 用于射线检查的成像系统和方法
WO1988001485A1 (en) Infrared radiation imaging system and method
CN212111830U (zh) 一种三维断层成像设备
CN104486997A (zh) X 射线扫描系统的射线源激发模式的最佳化
CN205808968U (zh) 安全检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021866076

Country of ref document: EP

Effective date: 20230411