WO2017101471A1 - 液体检测方法和系统 - Google Patents

液体检测方法和系统 Download PDF

Info

Publication number
WO2017101471A1
WO2017101471A1 PCT/CN2016/095059 CN2016095059W WO2017101471A1 WO 2017101471 A1 WO2017101471 A1 WO 2017101471A1 CN 2016095059 W CN2016095059 W CN 2016095059W WO 2017101471 A1 WO2017101471 A1 WO 2017101471A1
Authority
WO
WIPO (PCT)
Prior art keywords
xrd
imaging
liquid
ray
detection
Prior art date
Application number
PCT/CN2016/095059
Other languages
English (en)
French (fr)
Inventor
陈志强
张丽
杨戴天杙
赵骥
金鑫
常铭
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Publication of WO2017101471A1 publication Critical patent/WO2017101471A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by using a combination of at least two measurements at least one being a transmission measurement and one a scatter measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/226Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays using tomography
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/316Accessories, mechanical or electrical features collimators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/637Specific applications or type of materials liquid

Definitions

  • the present invention relates to the field of substance identification, and more particularly to a liquid detection method and system.
  • one of the main means to achieve non-destructive testing is the diffraction imaging technique, that is, the principle of using different molecular structures to generate different X-ray diffraction (XRD) spectra. Achieve non-invasive inspection of liquid materials.
  • the present invention provides a liquid detection method and system, and a front collimator and a rear collimator for use in a liquid detection system.
  • a liquid detecting method comprising: scanning an X-ray from a same source through a whole container of one or more liquid levels of a liquid in a container by rotating a container containing a liquid a region in which CT imaging and XRD imaging are simultaneously performed; and a substance recognition result for the liquid in the container is generated from the CT image and the XRD image, wherein the CT imaging and the XRD imaging are the same or different The liquid level is carried out.
  • a liquid detection system includes: a radiation source configured to emit X-rays; a front collimator disposed downstream of the radiation source, configured to form X-rays from the radiation source for CT imaging a ray portion and a ray portion for XRD imaging; a CT imaging device configured to perform CT imaging using a ray portion for CT imaging; an XRD imaging device configured to perform XRD imaging using a ray portion for XRD imaging; Means configured to rotate the container containing the liquid such that X-rays from the source are scanned through the entire area of each of the one or more levels of liquid in the container, wherein the CT imaging device Simultaneous CT imaging with the XRD imaging device on the one or more fluid levels XRD imaging, and CT images and XRD images were used to generate material recognition results for the liquid in the container.
  • a rear collimator for use in a liquid detecting system includes: a small hole at a center position; and a plurality of circular arc slits centered on the small hole, wherein a radius of the plurality of circular arc slits Same or different.
  • a front collimator for use in a liquid detection system includes: a CT slit or a small hole forming a ray portion for CT imaging; and an XRD aperture forming a ray portion for XRD imaging,
  • the CT slit or the small hole and the XRD small hole are located on the same straight line in the same plane, or on the different straight lines of the predetermined distance in the same plane.
  • the liquid detecting method and system according to an embodiment of the present invention simultaneously perform CT and XRD detection on one or more liquid levels using the same radiation source, so that the substance components contained in the liquid can be quickly and accurately determined.
  • FIG. 1 is a flow chart showing a liquid detecting method according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view showing a liquid detecting system according to an embodiment of the present invention.
  • FIG 3 is a schematic view showing a rear collimator used in the liquid detecting system shown in Figure 2;
  • FIG. 4 is a schematic diagram showing XRD detection using the rear collimator shown in FIG. 3;
  • Figure 5 is a schematic view showing a front collimator used in the liquid detecting system shown in Figure 2 (i.e., a front collimator used in performing XRD detection and CT detection on the same liquid level);
  • Figure 6 is a schematic diagram showing XRD detection using the rear collimator shown in Figure 3 and the front collimator shown in Figure 5;
  • Figure 7 is a schematic diagram showing CT detection and XRD detection in two different liquid level layers
  • Figure 8 is a schematic diagram showing a first example of a front collimator used in performing XRD detection and CT detection on two different liquid level layers;
  • Figure 9 is a schematic diagram showing XRD detection using the front collimator shown in Figure 8.
  • Figure 10 is a schematic diagram showing a second example of a front collimator used in performing XRD detection and CT detection on two different liquid level layers;
  • Figure 11 is a schematic diagram showing XRD detection using the front collimator shown in Figure 10;
  • Figure 12 is a schematic view showing a first example of an XRD detector used in the liquid detecting system shown in Figure 2;
  • Fig. 13 is a schematic view showing a second example of the XRD detector used in the liquid detecting system shown in Fig. 2.
  • the XRD signal is weak and the detection efficiency is relatively low.
  • the design of the cone scattering structure can effectively improve the signal strength, its point-by-point measurement method requires the relative motion of the detector and the radiation source in multiple directions to scan the entire detection plane. Less efficient.
  • Other ways to improve the efficiency of XRD inspection have greatly increased the use of radiation sources and detectors.
  • the design and processing of the front and rear collimators are also difficult and costly.
  • the present invention provides a novel liquid detection method and system.
  • DR, CT, and XRD techniques will be used in combination.
  • a liquid detecting method and system according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
  • FIG. 1 shows a flow chart of a liquid detecting method according to an embodiment of the present invention.
  • the liquid detecting method includes: S102, by rotating a container filled with a liquid, X-rays from the same source are scanned through each layer of one or more liquid levels of the liquid in the container. The entire area, CT imaging and XRD imaging are simultaneously performed on the one or more liquid levels; S104, the substance recognition result for the liquid is generated according to the CT image and the XRD image, wherein the CT imaging and the XRD imaging may be the same or different The liquid level is carried out.
  • DR imaging may be performed before CT imaging and XRD imaging to select the one or more liquid levels according to the DR image, or the one or more liquid levels may be specified by the user as needed (the one A layer or layers of liquid are also referred to as one or more liquid levels). Since CT detection and XRD detection are performed on the one or more liquid level layers, the one or more liquid levels are also referred to as CT detection planes and/or XRD detection planes.
  • the liquid detection system includes a source 202, a detector system 204, a detection channel 206, and a stage 208.
  • the ray source 202 may be a single source or a distributed ray source disposed at the periphery of the detection channel 206.
  • the detector system 204 is opposite to the ray source 202 and is disposed at the periphery of the detection channel 206, including the CT detector portion and The XRD detector portion; the detection channel 206 is intermediate the source 202 and the detector system 204; the stage 208 is within the detection channel 206 for carrying objects that are raised or lowered within the detection channel 206.
  • the XRD detector portion can be used to receive transmitted photons as well as scattered photons, and can include one or more XRD detection/post collimation modules; the CT detector portion can include one or more CT detectors; downstream of the radiation source 202 There is a front collimator; the XRD detection/post collimation module includes an XRD detector and a rear collimator; the rear collimator is disposed upstream of the XRD detector so that XRD detectors measure X-rays that meet certain geometric conditions.
  • the liquid detection system can perform DR imaging, XRD imaging, and CT/ dual energy CT/spectral CT imaging (for brevity, CT imaging, dual energy CT imaging, and energy spectrum CT imaging are collectively referred to as CT below). Imaging) to achieve accurate identification of the constituents of the liquid contained in the liquid.
  • CT dual energy CT/spectral CT imaging
  • Imaging to achieve accurate identification of the constituents of the liquid contained in the liquid.
  • the stage 208 carries the container down along the detection channel 206, during which DR imaging is completed.
  • an intermediate liquid level layer is automatically selected (or the inspector is prompted to manually select a liquid level layer of interest), and the stage 208 is adjusted to move up and down to adjust the selected liquid level layer to the XRD/CT detection plane.
  • the XRD detection plane and the CT detection plane are the same detection plane, that is, the selected liquid level layer.
  • the ray source 202 emits X-rays, while the detector system 204 receives the data, and the stage 208 carries the rotation of the container to complete the scanning of the selected liquid level layer, thereby obtaining an XRD image and a CT image; integrating the XRD image and the CT image, The result of substance recognition for the liquid is obtained.
  • the CT detector portion can be used for DR imaging, the highest liquid level of the liquid is obtained from the DR image, and the inspector is automatically or prompted to manually select, for example, an intermediate liquid level layer for subsequent XRD detection and CT detection.
  • FIG 3 shows a schematic view of a rear collimator used in the liquid detection system shown in Figure 2.
  • the rear collimator is made of a material having high X-ray shielding capability (for example, tungsten).
  • the rear collimator is mainly divided into two parts: a slit and a small hole. The small hole in the middle faces the transmission line (co-linear with the incoming ray), and the transmission line passes through the hole into the XRD detector for measuring the transmission energy spectrum.
  • a certain distance is a circular arc with two parts at the radius. Different radii correspond to different scattering angles, and the two partial arcs can correspond to the same or different radii.
  • the two circular slits are broken near the Y-axis, on the one hand for the connection of the material and on the other hand to avoid interference from the scattered rays of adjacent incoming rays.
  • the rear collimator has a thickness sufficient to shield unwanted incoming rays and to provide sufficient angular resolution for the XRD detector.
  • Fig. 4 shows a schematic diagram of XRD detection using the rear collimator shown in Fig. 3 (the figure shows a stroke-cone type XRD detection method).
  • an incoming ray from the ray source for XRD detection forms a beam of ray radiation to The object, and scattering occurs at the center of the scattering.
  • the scattering center as the apex, the scattering line of the predetermined scattering angle constitutes a conical surface, the central axis is the incident ray (transmission line), and the scattering line is distributed on the conical surface (corresponding to the busbar of the conical surface).
  • the XRD detector measures the energy spectrum of the scattering line and the transmission line on the corresponding conical surface under the restriction of the rear collimator (the rear collimator has slits and small holes, allowing the transmission line and the scattering line of the predetermined scattering angle to enter XRD detector, other rays will be shielded).
  • the scattering center is limited by a scattering angle, a size of the rear collimator, and the size of the XRD detector, at a fixed position between the source and the XRD detector.
  • This type of pen-cone-type XRD detection method has a larger signal intensity than the pen-and-beam type XRD detection method (both the ray and the scattered line are a pen beam, and the two intersect at a certain angle). Increase.
  • the XRD detector requires only two parts of the output: the transmitted energy spectrum and the scattered energy spectrum.
  • the XRD detector can superimpose the scattering information on the conical surface, or output the scattering energy spectrum at different busbars on the conical surface (in this case, the XRD detector is a pixel-level energy spectrum detector). .
  • Fig. 5 is a schematic view showing a front collimator used in the liquid detecting system shown in Fig. 2 (i.e., a front collimator used in performing XRD detection and CT detection on the same liquid level).
  • the slit (or small hole) corresponding to the CT on the front collimator is on the same line as the small hole corresponding to the XRD, and is parallel to the Y-axis direction.
  • the pitches in the Y direction between the adjacent small holes corresponding to the XRD shown in FIG. 5 are equal, the spacing between them in the Y direction may not be equal.
  • the front collimator is also made of a material with high X-ray shielding capability and has sufficient thickness to shield unwanted rays.
  • Fig. 6 shows a schematic diagram of XRD detection using the rear collimator shown in Fig. 3 and the front collimator shown in Fig. 5.
  • CT detection and XRD detection are performed on the same detection plane (i.e., the CT detection plane and the XRD detection plane coincide, and CT detection and XRD detection are performed on the selected liquid level layer).
  • the detection area is divided into two parts: the left side is the CT detection area, and the half detector measurement method is used for CT detection; the right side is the XRD detection area, and the scattering center is only distributed on the right side.
  • a plurality of scattering centers located in the XRD detection area on the right side of the CT/XRD detection plane are distributed on one arc, but actually scattered
  • the center can also be distributed on a straight line passing through the center of rotation of the stage, or on other curves.
  • the specific location of the scattering center depends on the geometric position, relative position, and size of the XRD detection/post collimation module, and the aperture corresponding to the XRD on the front collimator.
  • adjacent scattering centers ie, measuring points
  • Figures 2-6 illustrate the case where XRD and CT are performed on the same detection plane (ie, XRD and CT are performed at the selected level), in fact XRD and CT can be performed separately.
  • XRD and CT can be performed separately.
  • the XRD detection plane can be above or below the CT detection plane or above and below. That is, there may be one or more CT detection planes, and/or one or more XRD detection planes.
  • the upper and lower circular arcs of the rear collimator shown in FIG. 3 can also be disconnected in the portion close to the Z-axis, so that when the CT detection plane is close to the XRD detection plane, Scattering interference from incoming rays for CT detection can be effectively avoided.
  • Figure 7 shows a schematic diagram of CT detection and XRD detection at two different liquid level layers.
  • the X-rays emitted by the radiation source are divided into two parts under the restriction of the front collimator: a ray portion shifted in the Z-axis direction, and a ray portion parallel to the X-axis.
  • the portion of the ray parallel to the X-axis is an incident ray for CT detection, and may be a parallel beam or a fan beam.
  • the portion of the ray that is offset in the Z-axis direction is an incoming ray for XRD detection, and may include a plurality of pencil beam rays (the beam rays may form a parallel beam or a fan beam).
  • Each incoming ray for XRD detection corresponds to an XRD detection/post-collimation module.
  • the XRD detector measures the transmission line and the scattered line energy spectrum at a fixed scattering angle. Scattering lines scattered at the same angle from the same scattering center form a conical surface that passes through the rear collimator into the XRD detector.
  • the scattering center for XRD detection has a certain distance in the Z direction from the fault for CT detection. This distance can be far enough to ensure that the extended line of the scattered line for XRD detection does not intersect the incoming ray for CT detection (i.e., the incoming ray in the CT detection plane) (as shown in Figure 3). The distance may also be relatively close, at which point the scattered line whose extension line intersects the incoming ray for CT detection will not be used for XRD detection.
  • the X-ray is expanded in the Y direction, and the scattering center for XDR detection is also It can be extended along the Y-axis direction.
  • the stage carries the rotation of the container containing the liquid, which can simultaneously meet the needs of CT imaging; on the other hand, multiple scattering centers scan through the entire liquid level to meet the needs of XRD imaging (ie, the entire liquid level can be obtained). XRD information for each point within).
  • Figure 8 shows a schematic diagram of a first example of a front collimator used in performing XRD detection and CT detection on two different liquid level layers.
  • the incoming rays for CT detection form a fan beam through the slits below the front collimator (in other embodiments, there may be a plurality of small holes that cooperate with the distributed radiation source to form a parallel beam).
  • the incoming ray for XRD detection passes through a small hole in the front collimator to form a pen bundle.
  • the small holes are on the same straight line, parallel to the Y-axis direction, and a certain distance from the lower slit in the Z direction (h, which can be considered as the height difference in the Z direction, can also be regarded as the opening angle of the relative source).
  • the spacing between adjacent small holes in the Y direction is equal (a, which may be considered as the lateral distance in the Y direction, or may be the opening angle of the relative source).
  • Fig. 9 shows a schematic diagram of XRD detection using the front collimator shown in Fig. 8.
  • the incident ray used for XRD is parallel to the X-Y plane, that is, the incident ray plane coincides with the XRD detecting plane.
  • the incident ray for XRD and the XRD detection plane that is, the plane scanned by the scattering center
  • the scattering center is distributed at the intersection of the incident ray plane and the detection plane.
  • the incoming ray for XRD is divided into several beam rays. These pen beams form a fan. In other embodiments, a distributed source of radiation may also be employed, in which case the beam of rays may form other forms such as parallel beams.
  • the rear collimator and the corresponding detector form a rear collimation/detection module, each module corresponding to a pen beam, and the XRD detector measures a certain angle of scattered rays (distributed on the conical surface) under the definition of the rear collimator ) and the transmission line.
  • the scattering center is distributed in the detection area (the liquid level above the stage, parallel to the X-Y plane) between the source and the detector.
  • the scattering centers are distributed on an arc passing through the center of the detection area.
  • the rear collimation/detection module only needs to follow a certain distance behind each incoming radiation, and the distance is related to the size of the slit of the rear collimator and the selection of the scattering angle.
  • the stage carries the container containing the liquid for rotation (in the direction indicated by the curved arrow in the figure or in the opposite direction), so that the scattering center sweeps across the liquid level as shown by the dotted circle in FIG. 9 to obtain the liquid level XRD information of each pixel within.
  • the energy spectrum of each transmission line measured at each time can be used for energy spectrum correction of XRD images.
  • Figure 10 shows a schematic diagram of a second example of a front collimator used in performing XRD detection and CT detection on two different liquid level layers.
  • the other structure of the front collimator shown in FIG. 10 is as shown and described with respect to FIG. 8, and the only difference between them is that at the small holes corresponding to the XRD, the left and right sides are equidistant holes, and There is a certain offset between the left side and the right side (the distance between the two holes in the middle is b, instead of a, where b can be 1.5 times that of a), which makes the scattering center scan track staggered, improving the spatial resolution of XRD detection. .
  • Fig. 11 is a schematic diagram showing XRD detection using the front collimator shown in Fig. 10.
  • the centerline divides the XRD detection plane into two parts: left and right.
  • the scattering center is equidistant (or corresponding to the equi-angle of the source).
  • a detection trajectory as shown by the dashed line is formed in the detection plane.
  • the scattering center is also equidistant (or corresponding to the equi-angle of the source), the spacing is the same as the right, but an offset is generated at the center of the adjacent right scattering center, so that the detection trajectory of the left scattering center is the same as the detection on the right.
  • the tracks are staggered as shown by the solid circles in the figure. This design reduces the sampling interval in the XRD detection plane and increases the spatial resolution.
  • FIG. 12 and 13 respectively show schematic views of a first example and a second example of an XRD detector used in the liquid detecting system shown in Fig. 2.
  • the XRD detector is divided into two parts, and the circular area in the middle is a transmission detector unit for measuring the energy spectrum of the transmission line, and the specific unit shape may not be circular.
  • the transmission detector unit can be a single pixel or can be divided into a plurality of pixels.
  • the scatter detector unit is on the outer circumference of the transmission detector unit.
  • the transmission detector unit is divided into a plurality of pixels for respectively outputting scattered line energy spectra scattered in different directions.
  • the transmission detector unit is the same as Fig. 12, and the scattering detector unit is an entire pixel, and all the scattered line spectra are summed and output.
  • the uniformity of the liquid is fully utilized, the liquid level layer of interest is selected by DR irradiation, and the selected liquid level layer is subjected to XRD detection and CT detection.
  • XRD detection and CT detection share a set of ray sources, and the scanning of the selected liquid level is completed simultaneously by the rotation of the object. Combine XRD images and CT images are used to accurately identify the constituents of the liquid and thus perform a safe inspection of the liquid.
  • the same set of sources and detectors can be used for CT and DR detection.
  • XRD and CT, DR share the same set of ray sources, while scanning, reducing the amount of ray source and system volume compared to multi-stage liquid detection systems.
  • both the CT detection and the XRD detection in the liquid detection system according to the embodiment of the present invention require only one column (several) of detector units, and the detector of the surface array greatly reduces the amount of the detector and reduces the cost.
  • the pen-cone measurement mode used in XRD detection greatly improves the signal intensity.
  • the method of rotating the object also makes the method easy to complete the measurement of the entire liquid surface, which is completed together with the CT scan, saving the entire liquid detection system. Measurement time.
  • the selection of the liquid level layer described above, the DR information obtained by the probe, the CT information, and the XRD information are processed by DR imaging, CT imaging, and XRD imaging, and the processing of the substance recognition result based on the CT image and the XRD image.
  • DR imaging, CT imaging, and XRD imaging It can be implemented by a function module not shown in the figure.
  • these functional modules may be implemented as hardware, software, firmware, or a combination thereof.
  • it can be, for example, an electronic circuit, an application specific integrated circuit (ASIC), suitable firmware, plug-ins, function cards, and the like.
  • ASIC application specific integrated circuit
  • the elements of the present invention are programs or code segments that are used to perform the required tasks.
  • the program or code segments can be stored in a machine readable medium or transmitted over a transmission medium or communication link through a data signal carried in the carrier.
  • a "machine-readable medium” can include any medium that can store or transfer information. Examples of machine-readable media include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and the like.
  • the code segments can be downloaded via a computer network such as the Internet, an intranet, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pulmonology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种液体检测方法和系统。液体检测方法包括:通过旋转装有液体的容器使得来自相同的射线源的X射线扫描通过容器中的液体的一层或多层液面中的每层液面的整个区域,在一层或多层液面上同时进行CT成像和XRD成像(S102);以及根据CT图像和XRD图像生成针对容器中的液体的物质识别结果(S104),其中,CT成像和XRD成像在相同或者不同的液面层进行。本发明可以快速且准确地确定液体包含的物质成分。

Description

液体检测方法和系统 技术领域
本发明涉及物质识别领域,更具体地涉及一种液体检测方法和系统。
背景技术
在现有的辐射成像技术中,实现无损检测的一种主要手段是衍射成像技术,即利用不同分子结构的物质会产生不同的X射线衍射(X-Ray Diffraction,简称XRD)图谱这一原理,实现对液体物质的非侵入式检查。
发明内容
本发明提供了一种液体检测方法和系统、以及用在液体检测系统中的前准直器和后准直器。
根据本发明实施例的液体检测方法,包括:通过旋转装有液体的容器使得来自相同的射线源的X射线扫描通过容器中的液体的一层或多层液面中的每层液面的整个区域,在该一层或多层液面上同时进行CT成像和XRD成像;以及根据CT图像和XRD图像生成针对容器中的液体的物质识别结果,其中,CT成像和XRD成像在相同或者不同的液面层进行。
根据本发明实施例的液体检测系统,包括:射线源,被配置为发射X射线;前准直器,设置在射线源的下游,被配置为从来自射线源的X射线形成用于CT成像的射线部分和用于XRD成像的射线部分;CT成像装置,被配置为利用用于CT成像的射线部分进行CT成像;XRD成像装置,被配置为利用用于XRD成像的射线部分进行XRD成像;承载装置,被配置为对装有液体的容器进行旋转,从而使得来自射线源的X射线扫描通过容器中的液体的一层或多层液面中的每层液面的整个区域,其中CT成像装置和XRD成像装置在该一层或多层液面上同时进行CT成像和 XRD成像,并且CT图像和XRD图像被用来生成针对容器中的液体的物质识别结果。
根据本发明实施例的用在液体检测系统中的后准直器,包括:位于中心位置的小孔;以及以该小孔为中心的多个圆弧缝隙,其中,多个圆弧缝隙的半径相同或者不同。
根据本发明实施例的用在液体检测系统中的前准直器,包括:形成用于CT成像的射线部分的CT细缝或者小孔;以及形成用于XRD成像的射线部分的XRD小孔,其中CT细缝或者小孔与XRD小孔位于同一平面内的同一条直线上、或者位于同一平面内的上下相距预定距离的不同直线上。
根据本发明实施例的液体检测方法和系统利用相同的射线源在在一层或多层液面上同时进行CT和XRD检测,从而可以快速且准确地确定液体包含的物质成分。
附图说明
从下面结合附图对本发明的具体实施方式的描述中可以更好地理解本发明,其中:
图1是示出根据本发明实施例的液体检测方法的流程图;
图2是示出根据本发明实施例的液体检测系统的结构示意图;
图3是示出在图2所示的液体检测系统中使用的后准直器的示意图;
图4是示出利用图3所示的后准直器进行XRD检测的原理图;
图5是示出在图2所示的液体检测系统中使用的前准直器(即,在相同液面层进行XRD检测和CT检测时使用的前准直器)的示意图;
图6是示出利用图3所示的后准直器和图5所示的前准直器进行XRD检测的原理图;
图7是示出在两个不同液面层进行CT检测和XRD检测的原理图;
图8是示出在两个不同液面层进行XRD检测和CT检测时使用的前准直器的第一示例的示意图;
图9是示出利用图8所示的前准直器进行XRD检测的原理图;
图10是示出在两个不同液面层进行XRD检测和CT检测时使用的前准直器的第二示例的示意图;
图11是示出利用图10所示的前准直器进行XRD检测的原理图;
图12是示出在图2所示的液体检测系统中使用的XRD探测器的第一示例的示意图;
图13是示出在图2所示的液体检测系统中使用的XRD探测器的第二示例的示意图。
具体实施方式
下面将详细描述本发明的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本发明的全面理解。但是,对于本领域技术人员来说很明显的是,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明的更好的理解。本发明决不限于下面所提出的任何具体配置和算法,而是在不脱离本发明的精神的前提下覆盖了元素、部件和算法的任何修改、替换和改进。在附图和下面的描述中,没有示出公知的结构和技术,以便避免对本发明造成不必要的模糊。
对于液体安检技术而言,如何更好地识别液体物质中的违禁物品是其核心内容。现有的透视成像技术(例如,双能电子计算机断层扫描(CT)/多能CT)具有局限性,安检误报率很高。现有的XRD检测技术具有很高的物质识别能力,结合双能CT/能谱CT可以有效地提高检测准确率,但是依旧存在较多问题。
一方面,XRD信号较弱,检测效率比较低。在现有的XRD检测技术中,采用锥形散射结构的设计虽然可以有效提高信号强度,但是其基于逐点测量的方式需要探测器和射线源多个方向的相对运动才能扫描整个探测平面,探测效率较低。其他提高XRD检量效率的方式,都大大增加了射线源和探测器的使用量,前后准直器的设计、加工难度也很高,成本较高。目前,没有针对液体检测的高效率、高质量、低成本的小型XRD检测系统。
另一方面,在现有的液体安检技术中,为了提高检测准确率,可以将CT/双能CT/多能CT和XRD结合起来,采用多级检测的策略。这使得整个XRD检测系统操作复杂、效率降低并体积庞大,成本较高。
鉴于以上所述的液体检测技术中存在的一个或多个问题,本发明提供了一种新颖的液体检测方法和系统。这里,为了更准确地识别液体中含有的物质成分,将结合使用DR、CT、以及XRD技术。下面,结合附图,详细描述根据本发明实施例的液体检测方法和系统。
图1示出了根据本发明实施例的液体检测方法的流程图。如图1所示,该液体检测方法包括:S102,通过旋转装有液体的容器使得来自相同的射线源的X射线扫描通过容器中的液体的一层或多层液面中的每层液面的整个区域,在该一层或多层液面上同时进行CT成像和XRD成像;S104,根据CT图像和XRD图像生成针对液体的物质识别结果,其中CT成像和XRD成像可以在相同或者不同的液面层进行。在本实施例中,可以在CT成像和XRD成像之前进行DR成像从而根据DR图像来选择该一层或多层液面,也可以由用户根据需要指定该一层或多层液面(该一层或多层液面也被称为一个或多个液面层)。由于在该一个或多个液面层上进行CT检测和XRD检测,所以该一层或多层液面也被称为CT检测平面和/或XRD检测平面。
图2示出了根据本发明实施例的液体检测系统的结构示意图。如图2所示,该液体检测系统包括射线源202、探测器系统204、检测通道206、以及载物台208。其中,射线源202可以是单源,也可以是分布式射线源,设置在检测通道206的外围;探测器系统204与射线源202相对,设置在检测通道206的外围,包括CT探测器部分和XRD探测器部分;检测通道206在射线源202和探测器系统204中间;载物台208在检测通道206内,用于承载着物体在检测通道206内升降或旋转。
具体地,XRD探测器部分可用来接收透射光子以及散射光子,可以包括一个或多个XRD探测/后准直模块;CT探测器部分可以包括一个或多个CT探测器;射线源202的下游设置有前准直器;XRD探测/后准直模块包括XRD探测器和后准直器;后准直器设置在XRD探测器上游,以使 XRD探测器测量满足一定几何条件的X射线。
根据本发明实施例的液体检测系统可完成DR成像、XRD成像、以及CT/双能CT/能谱CT成像(为了简洁,下面将CT成像、双能CT成像、以及能谱CT成像统称为CT成像),从而实现对液体所包含的物质成分的准确识别。具体地,当装有液体的容器被放置在载物台208后,载物台208承载着容器沿检测通道206下降,在此过程中完成DR成像。根据DR图像,自动选取例如中间液面层(或者,提示检测员手动选取感兴趣的一个液面层),并调节载物台208升降从而将所选取的液面层调节到XRD/CT检测平面(在图2所示的实施例中,XRD检测平面和CT检测平面是同一个检测平面,即所选取的液面层)。射线源202发射X射线,同时探测器系统204接收数据,载物台208承载着容器旋转,完成对所选取的液面层的扫描,从而得到XRD图像和CT图像;综合XRD图像和CT图像,得出针对液体的物质识别结果。这里,可以使用CT探测器部分进行DR成像,根据DR图像得到液体的最高液面层,并且自动或者提示检测员手动选取例如,中间液面层用于后续的XRD检测和CT检测。
图3示出了在图2所示的液体检测系统中使用的后准直器的示意图。在任意一个XRD探测/后准直模块中,后准直器与XRD探测器的位置相对固定,对着某一条分布在XRD检测平面内的入射线。后准直器由具有X射线高屏蔽能力的材料(例如,钨)制成。如图3所示,后准直器主要分为两部分:细缝和小孔。位于中间的小孔对着透射线(和入射线共线),透射线通过该孔进入XRD探测器用于测量透射能谱。以中间的小孔为圆心,一定距离为半径处有两部分的圆弧。不同的半径对应不同的散射角,两部分圆弧可对应同样或者不同的半径。两圆弧细缝在靠近Y轴方向处断开,一方面原因是为了材料的连接,另一方面是为了避免来自相邻入射线的散射线的干扰。后准直器具有一定的厚度,足够屏蔽不需要的入射线,且使得XRD检测器具有足够的角度分辨率。
图4示出了利用图3所示的后准直器进行XRD检测的原理图(该图示出了笔束-锥面型XRD检测方式)。如图4所示,在前准直器的限制下,来自射线源的用于XRD检测的一条入射线形成一条笔束射线照射到 物体,并在散射中心处发生散射。以散射中心为顶点,预定散射角的散射线组成一个圆锥面,中轴线为入射线(透射线),散射线分布在圆锥面表面(对应于圆锥面的母线)。XRD探测器在后准直器的限制下,测量对应圆锥面上的散射线以及透射线的能谱(后准直器开有细缝和小孔,允许透射线和预定散射角的散射线进入XRD探测器,其他射线将被屏蔽)。散射中心在射线源和XRD探测器中间某固定位置,受到散射角、后准直器尺寸、XRD探测器尺寸等限制。
这种笔束-锥面型XRD检测方式相比笔束-笔束型XRD检测方式(入射线和散射线均为一条笔束射线,两者相交,成一定的夹角)信号强度得到大幅度的增加。XRD探测器只需要两部分的输出:透射能谱和散射能谱。这里,XRD探测器可以将圆锥面上的散射信息叠加在一起输出,也可以将圆锥面上的不同母线处的散射能谱分别输出(此时,XRD探测器为像素级的能谱探测器)。
图5示出了在图2所示的液体检测系统中使用的前准直器(即,在相同液面层进行XRD检测和CT检测时使用的前准直器)的示意图。如图5所示,前准直器上对应于CT的细缝(或小孔)与对应于XRD的小孔处于同一直线上,与Y轴方向平行。虽然图5示出的对应于XRD的相邻小孔之间在Y方向的间距相等,但是它们之间在Y方向的间距也可以不相等。前准直器也是由具有X射线高屏蔽能力的材料制成,且具有足够的厚度屏蔽不需要的射线。
图6示出了利用图3所示的后准直器和图5所示的前准直器进行XRD检测的原理图。如图6所示,CT检测和XRD检测在同一检测平面进行(即,CT检测平面和XRD检测平面重合,在所选取的一个液面层进行CT检测和XRD检测)。在CT/XRD检测平面内,检测区域被分为了两部分:左边为CT检测区,采用半探测器测量方式进行CT检测;右边为XRD检测区,散射中心仅分布在右边。当装有液体的容器旋转后,两部分都可以得到完整的数据。
需要说明的是,虽然在图6所示的实施例中位于CT/XRD检测平面右边的XRD检测区内的多个散射中心分布在一条弧线上,但是实际上散射 中心也可以分布在一条穿过载物台的旋转中心的直线上,或者其他曲线上。这里,散射中心的具体位置取决于XRD探测/后准直模块、以及前准直器上的对应于XRD的小孔的几何位置、相对位置、以及尺寸。另外,相邻散射中心(即,测量点)可以是等距离的,也可以不是等距离的。
虽然图2-图6描述了在同一个检测平面进行XRD检测和CT检测(即,XRD检测和CT检测在所选取的液面层进行)的情况,但是实际上XRD检测和CT检测可以分别在根据DR图像选取的液面层上方和下方的两个液面层进行。考虑到液体的均一性,虽然XRD检测和CT检测在不同液面层进行,但是仍可以认为XRD检测和CT检测是针对同一物质的。XRD检测平面可以在CT检测平面上方或者下方或者上方下方都有。也就是说,可以有一个或多个CT检测平面、和/或一个或多个XRD检测平面。在CT检测和XRD检测在不同检测平面进行时,图3所示的后准直器的上下圆弧在靠近Z轴的部分也可以断开,这样在CT检测平面与XRD检测平面距离较近时可以有效避免来自用于CT检测的入射线的散射干扰。
图7示出了在两个不同液面层进行CT检测和XRD检测的原理图。如图7所示,射线源发射的X射线在前准直器的限制下被分为两部分:在Z轴方向偏移的射线部分、和与X轴平行的射线部分。这里,与X轴平行的射线部分为用于CT检测的入射线,可以为平行束或者扇形束。在Z轴方向偏移的射线部分为用于XRD检测的入射线,可以包括复数条笔束射线(这些笔束射线可以形成平行束或者扇形束)。用于XRD检测的每条入射线对应一个XRD探测/后准直模块。在后准直器的限定下,XRD探测器可测量透射线以及固定散射角下的散射线能谱。从同一个散射中心以相同角度散射的散射线组成一个圆锥面,通过后准直器进入XRD探测器。
如图7所示,用于XRD检测的散射中心与用于CT检测的断层在Z方向上存在一定的距离。该距离可足够远,以保证用于XRD检测的散射线的延长线与用于CT检测的入射线(即,CT检测平面内的入射线)不相交(如图3所示)。该距离也可以相对较近,此时其延长线与用于CT检测的入射线相交的散射线将不被用于XRD检测。
如图7所示,X射线在Y方向扩展开,用于XDR检测的散射中心也 可沿着Y轴方向延伸开。载物台承载着装有液体的容器旋转,一方面可同时满足CT成像的需要;另一方面多个散射中心扫描通过整个液面层从而可以满足XRD成像的需要(即,可以得到整个液面层内各个点的XRD信息)。
图8示出了在两个不同液面层进行XRD检测和CT检测时使用的前准直器的第一示例的示意图。如图8所示,用于CT检测的入射线通过前准直器下方的细缝形成扇形束(在其他实施例中,也可以是若干小孔,配合分布式射线源形成平行束)。用于XRD检测的入射线通过前准直器上的小孔,形成笔束。小孔处于同一直线上,平行于Y轴方向,在Z方向距离下方的细缝一定的距离(h,此处可以认为是Z方向的高度差,也可以认为是相对射线源的张角)。相邻小孔之间在Y方向的间距相等(a,此处可认为是Y方向的横向距离,也可以是相对射线源的张角)。
图9示出了利用图8所示的前准直器进行XRD检测的原理图。这里,为了描述与作图的方便,使用于XRD的入射线平行于X-Y平面,即入射线平面与XRD检测平面重合。实际情况下,如图7所示,用于XRD的入射线与XRD检测平面(即,散射中心扫描过的平面)存在一定的夹角,散射中心正分布在入射线平面与检测平面的交线上。此处的基本原理、思想以及系统功能是一致的,图9的作图并不影响理解。在XRD检测平面内,在前准直器的限制下(前准直器在射线源和载物台之间,图中未示出),用于XRD的入射线被分为若干条笔束射线,这些笔束射线组成一个扇面。在其他实施例中,也可以采用分布式射线源,此时笔束射线可形成平行束等其他形式。后准直器和相应的探测器组成后准直/探测模块,每个模块对应一条笔束射线,并且XRD探测器在后准直器的限定下测量一定角度的散射线(分布在圆锥面上)以及透射线。散射中心分布在探测区域(载物台上方的液面上,平行于X-Y平面)中,在射线源和探测器之间。
如图9所示,散射中心分布在一条经过探测区域中心的弧线上。后准直/探测模块仅需要跟在每一条入射线后方一定距离处即可,距离与后准直器开缝半径大小、散射角选择等有关。
载物台承载着装有液体的容器旋转(沿着图中弧形箭头所示方向或反方向),这样如图9中虚线圆所示,散射中心扫过整个液面层,获得该液面层内各像素的XRD信息。同时测得的每一时刻每条透射线的能谱,可用于XRD图像的能谱校正。
图10示出了在两个不同液面层进行XRD检测和CT检测时使用的前准直器的第二示例的示意图。如图10所示的前准直器的其他结构同图8所示和说明,并且它们之间的不同仅在于:在XRD对应的小孔处,左边和右边都是等距离的小孔,而左边相对右边有一定的偏移(如图中中间两孔的距离为b,而非a,此处b可以为a的1.5倍),使得散射中心扫描轨迹错开,提高了XRD检测的空间分辨率。
图11示出利用图10所示的前准直器进行XRD检测的原理图。如图11所示,中心线将XRD检测平面分为两部分:左边和右边。在右半区,散射中心等距离(或对应射线源等角)分布,当物体旋转的过程中,在检测平面内形成如图虚线所示的检测轨迹。在左半区,散射中心也是等距离(或对应射线源等角)分布,间距和右边一样,但是在中间相邻右边散射中心处产生一个偏移,使得左边散射中心的检测轨迹同右边的检测轨迹错开,如图中的实线圆圈所示。这种设计可缩小XRD检测平面内的采样间隔,使空间分辨率提高。
图12和图13分别示出了在图2所示的液体检测系统中使用的XRD探测器的第一示例和第二示例的示意图。在图12所示的示例中,XRD探测器被分为两部分,中间的圆形区域为透射探测器单元,用于测量透射线的能谱,具体单元形状可以不为圆形。透射探测器单元可以是单像素,也可以分为多个像素。散射探测器单元在透射探测器单元的外圈,在图12所示的实施例中,透射探测器单元被分为多个像素,分别输出以不同方向散射的散射线能谱。在图13所示的示例中,透射探测器单元同图12,而散射探测器单元为一整个像素,所有的散射线能谱加和后输出。
这里,充分利用液体的均一性质,通过DR照射选择感兴趣的液面层并对所选择的液面层进行XRD检测和CT检测。XRD检测和CT检测共用一套射线源,通过物体的旋转,同时完成对所选择的液面层的扫描。结合 XRD图像和CT图像来准确识别液体所包含的物质成分,从而对液体进行安全检查。CT检测和DR检测可用同一套射线源和探测器。XRD和CT、DR共用同一套射线源,同时扫描,相比多级液体检测系统,减少了射线源的用量和系统体积。另外,根据本发明实施例的液体检测系统中的CT检测和XRD检测均仅需一列(若干个)探测器单元,相比面阵列的探测器大大减少了探测器的用量,降低了成本。XRD检测所采用的笔束-锥面测量模式大大提高了信号的强度,物体旋转扫描的方式也使得该方法可以简单的完成整个液面的测量,同CT扫描一同完成,节省了整个液体检测系统的测量时间。
但是,需要明确,本发明并不局限于上文所描述并在图中示出的特定配置和处理。并且,为了简明起见,这里省略对已知方法技术的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本发明的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本发明的精神之后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的液面层的选择、利用探测器得到的DR信息、CT信息、和XRD信息进行DR成像、CT成像、和XRD成像的处理、以及根据CT图像和XRD图像生成物质识别结果的处理可以由图中未示出的功能模块实现。这里,这些功能模块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本发明的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
本发明可以以其他的具体形式实现,而不脱离其精神和本质特征。例如,特定实施例中所描述的算法可以被修改,而系统体系结构并不脱离本 发明的基本精神。因此,当前的实施例在所有方面都被看作是示例性的而非限定性的,本发明的范围由所附权利要求而非上述描述定义,并且,落入权利要求的含义和等同物的范围内的全部改变从而都被包括在本发明的范围之中。

Claims (23)

  1. 一种液体检测方法,包括:
    通过旋转装有液体的容器使得来自相同的射线源的X射线扫描通过所述容器中的液体的一层或多层液面中的每层液面的整个区域,在所述一层或多层液面上同时进行CT成像和XRD成像;以及
    根据CT图像和XRD图像生成针对所述容器中的液体的物质识别结果,其中,CT成像和XRD成像在相同或者不同的液面层进行。
  2. 如权利要求1所述的液体检测方法,其特征在于,还包括:
    通过前准直器,从来自所述射线源的X射线形成用于CT成像的射线部分和用于XRD成像的射线部分。
  3. 如权利要求1所述的液体检测方法,其特征在于,还包括:
    通过后准直器,利用来自所述射线源的X射线照射到散射中心时产生的一个或多个特定散射角的散射线进行XRD成像。
  4. 如权利要求1或2所述的液体检测方法,其特征在于,还包括:
    利用所述射线源对所述容器中的液体进行DR成像,并根据DR图像选择所述一层或多层液面。
  5. 如权利要求4所述的液体检测方法,其特征在于,利用所述用于CT成像的射线部分进行DR成像。
  6. 如权利要求2所述的液体检测方法,其特征在于,当CT成像和XRD成像在相同液面层进行时,所述前准直器上的形成所述用于CT成像的射线部分的CT细缝或者小孔、与形成所述用于XRD成像的射线部分的XRD小孔位于同一平面内的同一条直线上。
  7. 如权利要求2所述的液体检测方法,其特征在于,当CT成像和XRD成像在不同液面层进行时,所述前准直器上的形成所述用于CT成像的射线部分的CT细缝或者小孔、与形成所述用于XRD成像的射线部分的XRD小孔位于同一平面内的上下相距预定距离的不同直线上。
  8. 如权利要求3所述的液体检测方法,其特征在于,还包括:
    通过所述后准直器,利用来自所述射线源的X射线穿过所述散射中心 时产生的透射线进行透射能谱的测量,并利用透射能谱数据来校正所述XRD图像。
  9. 如权利要求1至8中任一项所述的液体检测方法,其特征在于,所述射线源是单点射线源或者分布式射线源。
  10. 一种液体检测系统,包括:
    射线源,被配置为发射X射线;
    前准直器,设置在所述射线源的下游,被配置为从来自所述射线源的X射线形成用于CT成像的射线部分和用于XRD成像的射线部分;
    CT成像装置,被配置为利用所述用于CT成像的射线部分进行CT成像;
    XRD成像装置,被配置为利用所述用于XRD成像的射线部分进行XRD成像;
    承载装置,被配置为对装有液体的容器进行旋转,从而使得来自所述射线源的X射线扫描通过所述容器中的液体的一层或多层液面中的每层液面的整个区域,其中
    所述CT成像装置和所述XRD成像装置在所述一层或多层液面上同时进行CT成像和XRD成像,并且CT图像和XRD图像被用来生成针对所述容器中的液体的物质识别结果。
  11. 如权利要求10所述的液体检测系统,其特征在于,所述XRD成像装置包括一个或多个XRD后准直/探测模块,其中所述一个或多个XRD后准直/探测模块中的任意一个包括:
    XRD探测器,被配置为通过后准直器接收散射线,
    所述后准直器,设置在所述XRD探测器的上游,被配置为仅允许由所述用于XRD成像的射线部分中的一条X射线照射到散射中心时产生的部分散射线被所述XRD探测器接收到。
  12. 如权利要求10所述的液体检测系统,其特征在于,所述前准直器包括形成所述用于CT成像的射线部分的CT细缝或者小孔、以及形成所述用于XRD成像的射线部分的XRD小孔,并且所述CT细缝或者小孔与所述XRD小孔位于同一平面内的同一条直线上、或者位于同一平面内的 上下相距预定距离的不同直线上。
  13. 如权利要求12所述的液体检测系统,其特征在于,所述XRD小孔是位于同一条直线上的一系列小孔。
  14. 如权利要求13所述的液体检测系统,其特征在于,当所述CT细缝或者小孔与所述XRD小孔位于同一平面内的上下相距所述预定距离的不同直线上时,所述XRD小孔中的位于所述前准直器的左半部分的小孔与位于所述前准直器的右半部分的小孔之间存在预定偏移。
  15. 如权利要求11所述的液体检测系统,其特征在于,所述后准直器进一步被配置为仅允许由所述用于XRD成像的射线部分中的一条X射线照射到散射中心时产生的一个或多个特定散射角的散射线被所述XRD探测器接收到。
  16. 如权利要求11所述的液体检测系统,其特征在于,所述后准直器进一步被配置为还允许由所述用于XRD成像的射线部分中的一条X射线穿过散射中心时产生的透射线被所述XRD探测器接收到。
  17. 如权利要求16所述的液体检测系统,其特征在于,所述XRD探测器包括透射探测器单元和一个或多个散射探测器单元,其中所述一个或多个散射探测器单元围绕在所述透射探测器单元周围。
  18. 如权利要求10所述的液体检测系统,其特征在于,所述CT成像装置还被配置为利用所述用于CT成像的射线部分进行DR成像,其中所述CT成像装置和所述XRD成像装置在根据DR图像选择的所述一层或多层液面上进行CT成像和XRD成像。
  19. 如权利要求10至18中任一项所述的液体检测系统,其特征在于,所述射线源是单点射线源或者分布式射线源。
  20. 一种用在液体检测系统中的后准直器,包括:
    位于中心的小孔;以及
    以所述小孔为中心的多个圆弧缝隙,其中,所述多个圆弧缝隙的半径相同或者不同。
  21. 一种用在液体检测系统中的前准直器,包括:
    形成用于CT成像的射线部分的CT细缝或者小孔;以及
    形成用于XRD成像的射线部分的XRD小孔,其中
    所述CT细缝或者小孔与所述XRD小孔位于同一平面内的同一条直线上、或者位于同一平面内的上下相距预定距离的不同直线上。
  22. 如权利要求21所述的前准直器,其特征在于,所述XRD小孔是位于同一条直线上的一系列小孔。
  23. 如权利要求22所述的前准直器,其特征在于,当所述CT细缝或者小孔与所述XRD小孔位于同一平面内的上下相距所述预定距离的不同直线上时,所述XRD小孔中的位于所述前准直器的左半部分的小孔与位于所述前准直器的右半部分的小孔之间存在预定偏移。
PCT/CN2016/095059 2015-12-18 2016-08-12 液体检测方法和系统 WO2017101471A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510958981.5A CN106896122B (zh) 2015-12-18 2015-12-18 液体检测方法和系统
CN201510958981.5 2015-12-18

Publications (1)

Publication Number Publication Date
WO2017101471A1 true WO2017101471A1 (zh) 2017-06-22

Family

ID=56893716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095059 WO2017101471A1 (zh) 2015-12-18 2016-08-12 液体检测方法和系统

Country Status (5)

Country Link
US (1) US10379067B2 (zh)
EP (1) EP3182105B1 (zh)
CN (1) CN106896122B (zh)
ES (1) ES2751664T3 (zh)
WO (1) WO2017101471A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107345925B (zh) * 2016-05-05 2019-10-15 同方威视技术股份有限公司 液体检测方法和系统
JP7330213B2 (ja) * 2018-06-07 2023-08-21 ヴィルコ・アーゲー 部分的に液体で満たされた容器に運動を誘導するための自動検査システムの駆動機構を監視するための方法及び装置
CN109932376B (zh) * 2019-04-30 2023-11-28 王振 一种液体检测方法及装置
CN111380882A (zh) * 2020-04-24 2020-07-07 中国工程物理研究院材料研究所 单源角度分辨式x射线衍射分析与断层成像耦合装置
CN111380884A (zh) * 2020-04-24 2020-07-07 中国工程物理研究院材料研究所 单源能量分辨式x射线衍射分析与断层成像耦合装置
CN111380881A (zh) * 2020-04-24 2020-07-07 中国工程物理研究院材料研究所 单源面探测器式x射线衍射分析与断层成像耦合装置
CN111380883A (zh) * 2020-04-24 2020-07-07 中国工程物理研究院材料研究所 双源角度分辨式x射线衍射分析与断层成像耦合装置
CN111426711A (zh) * 2020-04-24 2020-07-17 中国工程物理研究院材料研究所 双源能量分辨式x射线衍射分析与断层成像耦合装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7924978B2 (en) * 2008-02-22 2011-04-12 Morpho Detection Inc. System and method for XRD-based threat detection
US20130251100A1 (en) * 2012-03-23 2013-09-26 Rigaku Corporation X-ray composite apparatus
WO2014124522A1 (en) * 2013-02-15 2014-08-21 Inversa Systems Ltd. Collection of tomographic inspection data using compton scattering
CN102253065B (zh) * 2010-02-16 2014-12-31 帕纳科有限公司 X射线衍射和计算机层析成像

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010500553A (ja) * 2006-08-11 2010-01-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 画像データを取得するシステム及び方法
US7486760B2 (en) * 2006-08-15 2009-02-03 Ge Security, Inc. Compact systems and methods for generating a diffraction profile
US7844027B2 (en) * 2008-02-22 2010-11-30 Morpho Detection, Inc. XRD-based false alarm resolution in megavoltage computed tomography systems
US20110188632A1 (en) * 2010-02-03 2011-08-04 Geoffrey Harding Multiple plane multi-inverse fan-beam detection systems and method for using the same
US8582718B2 (en) * 2010-11-30 2013-11-12 Morpho Detection, Inc. Method and system for deriving molecular interference functions from XRD profiles
CN104089944A (zh) * 2014-07-21 2014-10-08 同方威视技术股份有限公司 对液体物品进行安全检查的方法和设备
CN104949910B (zh) * 2015-05-29 2018-08-24 广州埃克森生物科技有限公司 五分类血液分析仪光学系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7924978B2 (en) * 2008-02-22 2011-04-12 Morpho Detection Inc. System and method for XRD-based threat detection
CN102253065B (zh) * 2010-02-16 2014-12-31 帕纳科有限公司 X射线衍射和计算机层析成像
US20130251100A1 (en) * 2012-03-23 2013-09-26 Rigaku Corporation X-ray composite apparatus
WO2014124522A1 (en) * 2013-02-15 2014-08-21 Inversa Systems Ltd. Collection of tomographic inspection data using compton scattering

Also Published As

Publication number Publication date
US20170176351A1 (en) 2017-06-22
EP3182105A1 (en) 2017-06-21
US10379067B2 (en) 2019-08-13
ES2751664T3 (es) 2020-04-01
EP3182105B1 (en) 2019-09-25
CN106896122A (zh) 2017-06-27
CN106896122B (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2017101471A1 (zh) 液体检测方法和系统
US10339673B2 (en) Dual-energy ray imaging methods and systems
KR102033233B1 (ko) 멀티 모달 검출 시스템 및 방법
US7724869B2 (en) Detector array and device using the same
US7924978B2 (en) System and method for XRD-based threat detection
US7499522B2 (en) Cargo security inspection system and method
US10068322B2 (en) Inspection system
CN101410727A (zh) 高效的双能x射线衰减测量
RU2636810C1 (ru) Устройства обследования, способы обследования и системы обследования
US9433391B2 (en) Scintillator and radiation detection device
WO2011097386A1 (en) Multiple plane multi-inverse fan-beam detection systems and method for using the same
US9696452B2 (en) Volumetric and projection image generation
EP3182175B1 (en) X-ray diffraction detection system and method
JP2007508561A (ja) 非対称csct
CN110325846A (zh) 采用衍射检测器的样本检查设备
CN109142404B (zh) 背散射成像系统、扫描检查系统和背散射图像成像方法
CN104287767B (zh) 一种单源能量检测器及数据补偿方法
US9618462B2 (en) Systems and methods for imaging and determining a signature of an object
CN108078580A (zh) 放射成像方法及其系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874531

Country of ref document: EP

Kind code of ref document: A1