WO2022052077A1 - Fibre optique monocristalline de germanate de bismuth dopé aux terres rares et procédé de gainage - Google Patents

Fibre optique monocristalline de germanate de bismuth dopé aux terres rares et procédé de gainage Download PDF

Info

Publication number
WO2022052077A1
WO2022052077A1 PCT/CN2020/114960 CN2020114960W WO2022052077A1 WO 2022052077 A1 WO2022052077 A1 WO 2022052077A1 CN 2020114960 W CN2020114960 W CN 2020114960W WO 2022052077 A1 WO2022052077 A1 WO 2022052077A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
fiber
single crystal
optical fiber
fiber core
Prior art date
Application number
PCT/CN2020/114960
Other languages
English (en)
Chinese (zh)
Inventor
李纳
徐军
徐晓东
王东海
王庆国
唐慧丽
吴锋
Original Assignee
南京同溧晶体材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京同溧晶体材料研究院有限公司 filed Critical 南京同溧晶体材料研究院有限公司
Priority to PCT/CN2020/114960 priority Critical patent/WO2022052077A1/fr
Publication of WO2022052077A1 publication Critical patent/WO2022052077A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/08Downward pulling
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Definitions

  • the invention belongs to the field of optical fiber materials, in particular to a method for cladding rare earth doped bismuth germanate single crystal optical fibers.
  • the widely used material for crystal cladding is quartz (SiO 2 ).
  • the basic function of the silica fiber is to confine and propagate the light beam, that is, to confine the light energy of a certain wavelength in the radial range of several to tens of micrometers and propagate along the length of the silica fiber with low loss. Due to the wide transmission wavelength range of silica fiber (from near-ultraviolet to near-infrared, wavelength from 0.38-2.1um), silica fiber is suitable for the transmission of signals and energy of various wavelengths from ultraviolet to infrared.
  • Silica fiber is the abbreviation of optical fiber, which is a fibrous waveguide structure made of silica glass with particularly high purity (with SiO2 as the main component).
  • the basic function of the silica fiber is to confine and propagate the light beam, that is, to confine the light energy of a certain wavelength in the radial range of several to tens of micrometers and propagate along the length of the silica fiber with low loss.
  • rare earth ion doped optical fiber has the characteristics of optical amplification, which can meet the requirements of optical communication, and the rare earth ion is rich in energy levels, and can emit light in different wavelength bands in different matrix environments. Therefore, rare earth doped crystal fiber has broad prospects. .
  • the present invention utilizes two powder raw materials, bismuth oxide and germanium oxide, to grow into single crystal and to prepare glass, and use BGO glass to realize the cladding of BGO single crystal, making it a high-efficiency and high-power laser
  • the output single crystal fiber specifically provides a rare earth doped bismuth germanate single crystal fiber, which includes two parts: an outer cladding and an inner core, the core is made of Bi 4 Ge 3 doped with a certain concentration of rare earth ions O 12 single crystal structure, the cladding layer is a Bi 4 Ge 3 O 12 structure, and the raw materials used in the preparation of the core are rare earth ion oxides, Bi 2 O 3 and GeO 2 , wherein Bi 2 O 3 and GeO 2 are The molar ratio is 1 ⁇ 2:3 ⁇ 4.
  • the rare earth ion is any one of Yb 3+ , Nd 3+ and Tm 3+ , wherein when the raw material is Yb 3+ ion oxide, the Yb 3+ ion concentration accounts for 0.5 ⁇ 0.75 mol of the fiber core. %; when the raw material is Nd 3+ ion oxide, the Nd 3+ ion concentration accounts for 0.2 ⁇ 0.35 mol.% of the fiber core; when the raw material is Tm 3+ ion oxide, the Tm 3+ ion concentration accounts for 3% of the fiber core -5.5 mol.%.
  • step (2) Pressing: the raw materials prepared in step (1) are pressed under the water pressure of 48-75MPa to form a rod.
  • Core annealing treatment put the fiber into a muffle furnace for annealing.
  • Preform insert the fiber core in step (5) into the hollow tube structure in step (6) to obtain a preform.
  • Optical fiber drawing fix the preform in step (7) on the drawing tower, and draw the preform into an optical fiber at a temperature of 900-1050 degrees Celsius.
  • step (4) the pulling speed of the micro-pull-down method is: 0.2-0.5mm/min; the pulling rate of the laser heating pedestal method is 3-20mm/h.
  • step (7) the initial length of the fiber core and the length of the hollow tube structure is the same.
  • the rare earth doped bismuth germanate single crystal optical fiber provided by the present invention is provided with a two - layer structure, including an outer cladding layer and an inner core.
  • the Bi 4 Ge 3 O 12 single crystal structure doped with rare earth ions also provides a preparation method of the above-mentioned optical fiber. Compared with the prior art, the prepared optical fiber outputs a more efficient and higher power laser.
  • FIG. 1 is a schematic diagram of the growth process of the present invention in a micro-pull-down furnace.
  • FIG. 2 is a schematic diagram of the growth process of the present invention in a laser heating furnace.
  • Figure 3 shows the resulting fiber and cladding.
  • a rare-earth-doped bismuth germanate single-crystal optical fiber comprising an outer cladding and an inner core, the core is a single-crystal structure of Bi 4 Ge 3 O 12 doped with rare earth ions of a certain concentration, the cladding
  • the layer is a Bi 4 Ge 3 O 12 structure, and the raw materials used in the preparation of the core are rare earth ion oxides, Bi 2 O 3 and GeO 2 , wherein the molar ratio of Bi 2 O 3 and GeO 2 is 1 ⁇ 2:3 ⁇ 4.
  • the molar ratio is set to 2:3.
  • the above-mentioned rare earth ions are any one of Yb 3+ , Nd 3+ , and Tm 3+ , wherein when the raw material is Yb 3+ ion oxide, the Yb 3+ ion concentration accounts for 0.5 ⁇ 0.75 mol.% of the fiber core, preferably is 0.5 mol.%; when the raw material is Nd 3+ ion oxide, the Nd 3+ ion concentration accounts for 0.2 ⁇ 0.35 mol.% of the core, preferably 0.3 mol.%; when the raw material is Tm 3+ ion oxide , the Tm 3+ ion concentration is 3-5.5 mol.% of the core, preferably 4 mol.%.
  • the growth device in the micro-pull furnace shown in FIG. 1 can be optionally used to obtain the first core 22, and then the first core 22 is prepared by preparing the Bi 4 Ge 3 O 12 structure.
  • a cladding tube 21 is placed, the first fiber core 22 is placed inside the first cladding tube 21, the preform 3 is prepared, and the optical fiber is drawn to obtain the final optical fiber.
  • the laser heating pedestal method in FIG. 2 can be used to obtain the second core 12, and then the second core 12 is placed in the second cladding tube 11 by preparing the hollow second cladding tube 11 of the Bi 4 Ge 3 O 12 structure. Inside the layer tube 11, a preform is prepared, and the optical fiber is drawn to obtain the final optical fiber.
  • step (2) Pressing: the raw materials prepared in step (1) are pressed under the water pressure of 48-75MPa to form a rod.
  • Core annealing treatment put the fiber into a muffle furnace for annealing.
  • Preform insert the fiber core in step (5) into the hollow tube structure in step (6) to obtain a preform.
  • Optical fiber drawing fix the preform in step (7) on the drawing tower, and draw the preform into an optical fiber at a temperature of 900-1050 degrees Celsius.
  • step (4) the pulling speed of the micro-pull-down method is 0.2-0.5 mm/min; the pulling rate of the laser heating pedestal method is 3-20 mm/h.
  • step (7) the fiber core and the hollow tube structure have the same initial length, which is used in the drawing process of step (8), which saves production time and costs.
  • a preparation method of rare earth ion doped silicate optical fiber and its cladding method the rare earth ion is selected as Yb 3+ , and is specifically prepared by the following method.
  • Rare earth ion-doped silicate fibers with a diameter of 1 mm were prepared by micro-pull-down method or laser heating pedestal method. Among them, the pulling speed of the micro-pull-down method is: 0.2-0.35mm/min. The pulling degree of the laser heating pedestal method is 3-12mm/h.
  • Annealing treatment put the optical fiber into a muffle furnace for annealing.
  • Processing of cladding tube use Bi 4 Ge 3 O 12 structure as raw material to make BGO glass tube, and then make the length of BGO glass tube the same as that of bismuth germanate single crystal fiber, and the inner diameter is 1.1-2.1mm.
  • Preform insert the bismuth germanate single crystal fiber core into the BGO glass tube to obtain a preform.
  • Optical fiber drawing fix the optical fiber preform on the drawing tower, and draw the glass optical fiber preform into an optical fiber at a temperature of 900 degrees Celsius.
  • a preparation method of rare earth ion doped silicate optical fiber and its cladding method the rare earth ion is selected as Yb 3+ , and is specifically prepared by the following method.
  • a silicate fiber doped with rare earth ions with a diameter of 2 mm was prepared by the micro-pull-down method or the laser heating pedestal method. Among them, the pulling speed of the micro-pull-down method is: 0.3-0.5mm/min. The pull rate of the laser heating pedestal method is 10-20mm/h.
  • Annealing treatment put the optical fiber into a muffle furnace for annealing.
  • Processing of cladding tube use Bi 4 Ge 3 O 12 structure as raw material to make BGO glass tube, and then make the length of BGO glass tube the same as that of bismuth germanate single crystal fiber, and the inner diameter is 1.1-2.1mm.
  • Preform insert the bismuth germanate single crystal fiber core into the BGO glass tube to obtain a preform.
  • Optical fiber drawing The optical fiber preform is fixed on the drawing tower, and the glass optical fiber preform is drawn into an optical fiber at a temperature of 1050 degrees Celsius.
  • a preparation method of rare earth ion doped silicate optical fiber and its cladding method the rare earth ion is selected as Tm 3+ , and is specifically prepared by the following method.
  • Burning material Put the material rod into the muffle furnace.
  • the heating rate is 150°C/h
  • the constant temperature is 650°C (constant temperature time is 30h)
  • the cooling rate is 60-120°C/h.
  • Rare earth ion-doped silicate fibers with a diameter of 1.5 mm were prepared by micro-pull-down method or laser-heated susceptor method. Among them, the pulling speed of the micro-pull-down method is: 0.3-0.5mm/min. The pull rate of the laser heating pedestal method is 10-20mm/h.
  • Annealing treatment put the optical fiber into a muffle furnace for annealing.
  • Processing of cladding tube use Bi 4 Ge 3 O 12 structure as raw material to make BGO glass tube, and then make the length of BGO glass tube the same as that of bismuth germanate single crystal fiber, and the inner diameter is 1.1-2.1mm.
  • Preform insert the bismuth germanate single crystal fiber core into the BGO glass tube to obtain a preform.
  • Optical fiber drawing Fix the optical fiber preform on the drawing tower, and draw the glass optical fiber preform into an optical fiber at a temperature of 1000 degrees Celsius.
  • a preparation method of rare earth ion doped silicate optical fiber and its cladding method the rare earth ion is selected as Nd 3+ , and the preparation is specifically carried out by the following method.
  • Rare earth ion-doped silicate fiber with diameter of 1.6 mm was prepared by micro-pull-down method or laser heating pedestal method. Among them, the pulling speed of the micro-pull-down method is: 0.3-0.5mm/min. The draw rate of the laser heating pedestal method is 10-20mm/h.
  • Annealing treatment put the optical fiber into a muffle furnace for annealing.
  • Processing of cladding tube use Bi 4 Ge 3 O 12 structure as raw material to make BGO glass tube, and then make the length of BGO glass tube the same as that of bismuth germanate single crystal fiber, and the inner diameter is 1.1-2.1mm.
  • Preform insert the bismuth germanate single crystal fiber core into the BGO glass tube to obtain a preform.
  • Optical fiber drawing Fix the optical fiber preform on the drawing tower, and draw the glass optical fiber preform into an optical fiber at a temperature of 980 degrees Celsius.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

La présente invention concerne une fibre optique monocristalline de germanate de bismuth dopé aux terres rares, comprenant deux parties : une gaine externe et une âme de fibre interne. L'âme de fibre a une structure monocristalline de Bi4Ge3O12 dopée avec une certaine concentration d'ions de terres rares. La gaine a une structure Bi4Ge3O12. Les matières premières utilisées pour préparer l'âme de fibre comprennent des oxydes d'ions de terres rares, Bi2O3 et GeO2, le rapport molaire de Bi2O3 à GeO2 étant de 1-2 : 3-4. La présente invention concerne une structure à deux couches, comprenant deux parties : une gaine externe et une âme de fibre interne. La gaine externe utilise une structure de verre préparée par Bi4Ge3O12, et l'âme de fibre interne est une structure monocristalline de Bi4Ge3O12 dopée avec des ions de terres rares. L'invention concerne en outre un procédé de préparation pour ladite fibre optique. Par rapport à l'état de la technique, la fibre optique préparée présente une sortie laser plus efficace et une puissance plus élevée.
PCT/CN2020/114960 2020-09-14 2020-09-14 Fibre optique monocristalline de germanate de bismuth dopé aux terres rares et procédé de gainage WO2022052077A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114960 WO2022052077A1 (fr) 2020-09-14 2020-09-14 Fibre optique monocristalline de germanate de bismuth dopé aux terres rares et procédé de gainage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114960 WO2022052077A1 (fr) 2020-09-14 2020-09-14 Fibre optique monocristalline de germanate de bismuth dopé aux terres rares et procédé de gainage

Publications (1)

Publication Number Publication Date
WO2022052077A1 true WO2022052077A1 (fr) 2022-03-17

Family

ID=80632003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114960 WO2022052077A1 (fr) 2020-09-14 2020-09-14 Fibre optique monocristalline de germanate de bismuth dopé aux terres rares et procédé de gainage

Country Status (1)

Country Link
WO (1) WO2022052077A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4552434A (en) * 1982-03-16 1985-11-12 Sumitomo Electric Industries, Ltd. Crystalline infrared optical fiber with a small gap and a process for the production of same
CN108456926A (zh) * 2018-02-27 2018-08-28 同济大学 一种晶体包层内生长晶体光纤纤芯的方法
CN109052973A (zh) * 2018-09-04 2018-12-21 同济大学 一种稀土离子掺杂硅酸盐光纤及其制备方法
CN110331443A (zh) * 2019-07-09 2019-10-15 同济大学 一种稀土离子掺杂锗酸盐共晶材料及其制备方法
CN111424318A (zh) * 2020-06-10 2020-07-17 眉山博雅新材料有限公司 一种用于制备掺杂yag单晶光纤的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4552434A (en) * 1982-03-16 1985-11-12 Sumitomo Electric Industries, Ltd. Crystalline infrared optical fiber with a small gap and a process for the production of same
CN108456926A (zh) * 2018-02-27 2018-08-28 同济大学 一种晶体包层内生长晶体光纤纤芯的方法
CN109052973A (zh) * 2018-09-04 2018-12-21 同济大学 一种稀土离子掺杂硅酸盐光纤及其制备方法
CN110331443A (zh) * 2019-07-09 2019-10-15 同济大学 一种稀土离子掺杂锗酸盐共晶材料及其制备方法
CN111424318A (zh) * 2020-06-10 2020-07-17 眉山博雅新材料有限公司 一种用于制备掺杂yag单晶光纤的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BALLATO J., MCMILLEN C., HAWKINS T., FOY P., STOLEN R., RICE R., ZHU L., STAFSUDD O.: "Reactive molten core fabrication of glass-clad amorphous and crystalline oxide optical fibers", OPTICAL MATERIALS EXPRESS, vol. 2, no. 2, 1 February 2012 (2012-02-01), pages 153, XP055910629, DOI: 10.1364/OME.2.000153 *
FAUGAS BENOÎT, THOMAS HAWKINS, COURTNEY KUCERA, KLAUS BOHNERT, JOHN BALLATO: "Molten core fabrication of bismuth germanium oxide Bi4Ge3O12 crystalline core fibers", J AM CERAM SOC., vol. 101, 16 April 2018 (2018-04-16), pages 4340 - 4349, XP055910619, DOI: 10.1111/jace.15696 *
FAUGAS BENOIT: "Molten Core Fabrication of Bismuth-containing Optical Fibers", PHD DISSERTATION, CLEMSON UNIVERSITY, PROQUEST DISSERTATIONS PUBLISHING, 31 May 2018 (2018-05-31), XP055910624, ISBN: 978-0-438-05328-1, Retrieved from the Internet <URL:https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=3169&context=all_dissertations> *
KAMINSKII A. A., S. E. SARKISOV, T. I. BUTAEVA, G. A. DENISENKO, B. HERMONEIT, J. BOHM, W. GROSSKREUTZ, D. SCHULTZE : "Growth, Spectroscopy, and Stimulated Emission of Cubic Bi4Ge3O12 Crystals Doped with Dy3+, Ho3+, Er3+, Tm3+, or Yb3+ Ions", PHYS. STAT. SOL., vol. 56, no. 2, 16 December 1979 (1979-12-16), pages 725 - 736, XP055910620, DOI: 10.1002/pssa.2210560240 *
LI NA, YANYAN XUE, DONGHAI WANG, BIN LIU, CHAO GUO, QINGSONG SONG, XIAODONG XU, JUNFANG LIU, DONGZHEN LI, JUN XU, ZIAN XU, JIAYUE : "Optical properties of Nd:Bi4Ge3O12 crystals grown by the micro-pullingdown method", JOURNAL OF LUMINESCENCE, vol. 206, 19 October 2018 (2018-10-19), pages 412 - 416, XP055910627, DOI: 10.1016/j.jlumin.2018.10.083 *
SHAW L. BRANDON; BAYYA SHYAM; KIM WOOHONG; MYERS JASON; RHONEHOUSE DAN; QADRI S. NOOR; ASKINS CHARLES; PEELE JOHN; THAPA RAJESH; G: "Cladded Single Crystal Fibers for All-Crystalline Fiber Lasers", 2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 13 May 2018 (2018-05-13), pages 1 - 2, XP033381688, DOI: 10.1364/CLEO_SI.2018.SF3I.3 *

Similar Documents

Publication Publication Date Title
CN101351934B (zh) 在1000-1700nm的波长范围工作的放大光纤,其制备方法和纤维激光器
CN101923189B (zh) 掺铥碲酸盐玻璃双包层光纤及其制备方法
CN104556678A (zh) 一种量子点掺杂微晶玻璃光纤的制备方法
CN110927866B (zh) 高增益的稀土掺杂锗酸盐玻璃芯复合玻璃光纤及器件
CN106995277B (zh) 一种硫系玻璃光子晶体光纤预制棒的制备方法
CN104609722B (zh) 一种管‑熔体共拉铋掺杂光纤的制备方法
CN102023318B (zh) 超大模面积硅酸盐光纤的组成及其制备方法
KR20130119048A (ko) 형광 효율이 우수한 이득매질용 광학유리 및 이를 이용한 광섬유
CN114409263A (zh) 一种用作增益介质的掺铋多组分玻璃光纤及其制备方法
Zhou et al. Preparation of Er3+/Yb3+ co‐doped citrate microstructure fiber of large mode field and its 3.0 μm laser performance
CN110255882B (zh) 一种1.7μm光纤激光器用Tm/Tb共掺石英光纤及其制备方法
CN108456926A (zh) 一种晶体包层内生长晶体光纤纤芯的方法
CN109052973B (zh) 一种稀土离子掺杂硅酸盐光纤及其制备方法
US20020041750A1 (en) Rare earth element-doped, Bi-Sb-Al-Si glass and its use in optical amplifiers
WO2022052077A1 (fr) Fibre optique monocristalline de germanate de bismuth dopé aux terres rares et procédé de gainage
CN106495470A (zh) 钕镱共掺杂石英激光玻璃及其制备方法
CN112723751B (zh) 一种稀土掺杂锗酸铋单晶光纤及包层方法
CN115395356A (zh) 一种掺铒双包层氟化锆基玻璃光纤及其制备方法
CN109180010B (zh) 一种高增益的Tm3+/Ho3+共掺多组分锗酸盐玻璃单模光纤及其制备方法
CN106277806A (zh) 一种稀土掺杂氟氧化物微晶玻璃光纤及制造方法
CN106517759B (zh) 稀土掺杂石英玻璃棒的均化制备方法
CN109143459B (zh) 一种稀土离子掺杂的低温石榴石晶棒的包层方法
CN112851127B (zh) 一种高增益Ho3+/Tm3+/Yb3+共掺石英光纤及其制备方法
JPH03265537A (ja) 希土類元素ドープガラスの製造方法
WO2024113480A1 (fr) Fibre optique à composants multiples dopée au bismuth ayant une émission dans le proche infrarouge multimode, son procédé de préparation et son utilisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952865

Country of ref document: EP

Kind code of ref document: A1