WO2022050740A1 - 리튬이차전지용 전해질 첨가제 및 이를 포함하는 리튬이차전지 - Google Patents

리튬이차전지용 전해질 첨가제 및 이를 포함하는 리튬이차전지 Download PDF

Info

Publication number
WO2022050740A1
WO2022050740A1 PCT/KR2021/011896 KR2021011896W WO2022050740A1 WO 2022050740 A1 WO2022050740 A1 WO 2022050740A1 KR 2021011896 W KR2021011896 W KR 2021011896W WO 2022050740 A1 WO2022050740 A1 WO 2022050740A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
electrolyte
secondary battery
group
carbon
Prior art date
Application number
PCT/KR2021/011896
Other languages
English (en)
French (fr)
Inventor
백용구
양원기
박성준
Original Assignee
주식회사 테크늄
백용구
얍엑스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 테크늄, 백용구, 얍엑스 주식회사 filed Critical 주식회사 테크늄
Publication of WO2022050740A1 publication Critical patent/WO2022050740A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte additive for a lithium secondary battery, an electrolyte comprising the same, and a lithium secondary battery.
  • the charging and driving voltage of the battery can be improved, and a silicon-based material rather than a carbon-based material is used as the negative electrode active material. Because it can be used as a battery, the capacity of the battery can be improved.
  • lithium salt dissolved in a solvent is used as an electrolyte.
  • the over-lithium positive electrode active material creates a high voltage environment while generating oxygen gas during the first charge. Severe volume expansion occurs and cracks are formed on the surface, and eventually, electrolyte decomposition reaction is commonly induced on the surface of the electrode to which each active material is applied.
  • additives such as 1,3-propanesultone and 1,3-propenesultone, which have been studied extensively as electrolyte additives in the prior art, improve the high-temperature storage characteristics of secondary batteries during long-time high-temperature storage, but high-temperature lifespan characteristics of secondary batteries. This diminishing problem arises.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2019-0022382
  • Patent Document 2 Republic of Korea Patent Publication No. 10-2018-0015219
  • the present invention is to solve the problem of cell swelling by adding a special additive to an electrolyte for a lithium secondary battery so that a by-product generated by reacting with HF becomes a liquid at room temperature.
  • an object of the present invention to provide an electrolyte additive having a function of efficiently removing HF in a secondary battery and forming a passivation film on the surface of an anode as the produced material acts as a reductive decomposition additive.
  • an object of the present invention to provide an electrolyte additive capable of protecting the positive electrode while protecting the negative electrode.
  • an object of the present invention is to provide an electrolyte additive that can be efficiently applied to a perlithium positive electrode active material and a silicon-based negative electrode active material.
  • the electrolyte additive for a secondary battery according to an embodiment of the present invention includes a compound represented by the following formula (1).
  • R1, R2 and R3 are the same as or different from each other, and each independently represent hydrogen, a substituted or unsubstituted C1-C6 alkyl group, a C1-C6 alkenyl group, a C1-C6 alkynyl group, A linear or branched functional group including a C6-C10 aryl group, a C1-C6 alkoxy group, or a nitrile group,
  • At least one of R1, R2, and R3 includes at least one of a carbon-carbon double bond, a carbon-carbon triple bond, and a nitrile group.
  • the electrolyte additive for a secondary battery according to an embodiment of the present invention may include at least one compound selected from the following Chemical Formulas 1-1 to 1-31.
  • the electrolyte additive for a secondary battery according to an embodiment of the present invention may react with HF in a lithium secondary battery to form a compound represented by the following formula (2).
  • R1, R2 and R3 are the same as or different from each other, and each independently represent hydrogen, a substituted or unsubstituted C1-C6 alkyl group, a C1-C6 alkenyl group, a C1-C6 alkynyl group, and C6 A linear or branched functional group including a -C10 aryl group, a C1-C6 alkoxy group, or a nitrile group,
  • At least one of R1, R2, and R3 includes at least one of a carbon-carbon double bond, a carbon-carbon triple bond, and a nitrile group.
  • the compound represented by Formula 2 may be in a liquid state at room temperature (25° C.).
  • the electrolyte for a secondary battery includes an electrolyte additive for a secondary battery represented by Chemical Formula 1; lithium salt; and a solvent;
  • the electrolyte for a secondary battery according to an embodiment of the present invention may further include an oxidative decomposition type additive.
  • the electrolyte additive for a secondary battery represented by Formula 1 may be included in an amount of 0.01 to 10% by weight based on the total weight of the electrolyte.
  • a secondary battery includes a positive electrode; cathode; a separator interposed between the anode and the cathode; and an electrolyte for the secondary battery.
  • the positive electrode of the secondary battery according to an embodiment of the present invention may include a lithium-rich positive electrode active material.
  • the negative electrode of the secondary battery according to an embodiment of the present invention may include a silicon negative electrode active material.
  • An object of the present invention is to solve the problem of cell swelling by allowing the by-product generated by reacting with the electrolyte HF for a secondary battery according to an embodiment of the present invention to become a liquid at room temperature.
  • the electrolyte additive for a secondary battery can efficiently remove HF in the secondary battery, and at the same time, the produced material acts as a reductive decomposition additive to form a passivation film on the surface of the anode.
  • the electrolyte additive for a secondary battery may protect the negative electrode and the positive electrode at the same time.
  • the electrolyte additive for a secondary battery by applying the electrolyte additive for a secondary battery to a secondary battery, the electrochemical performance, reaction rate, and stability of the battery can be improved.
  • the electrolyte additive for a secondary battery according to an embodiment of the present invention includes a compound represented by the following formula (1).
  • R1, R2 and R3 are the same as or different from each other, and each independently represent hydrogen, a substituted or unsubstituted C1-C6 alkyl group, a C1-C6 alkenyl group, a C1-C6 alkynyl group, A linear or branched functional group including a C6-C10 aryl group, a C1-C6 alkoxy group, or a nitrile group,
  • At least one of R1, R2, and R3 includes at least one of a carbon-carbon double bond, a carbon-carbon triple bond, and a nitrile group.
  • the electrolyte additive represented by Chemical Formula 1 may be purchased or manufactured, and the place of purchase or a manufacturing method thereof is not particularly limited.
  • the electrolyte additive may be at least one compound selected from the following Chemical Formulas 1-1 to 1-31.
  • the electrolyte additive may react with HF in the lithium secondary battery to form a compound represented by Formula 2 below.
  • R1, R2 and R3 are the same as or different from each other, and each independently represent hydrogen, a substituted or unsubstituted C1-C6 alkyl group, a C1-C6 alkenyl group, a C1-C6 alkynyl group, A linear or branched functional group including a C6-C10 aryl group, a C1-C6 alkoxy group, or a nitrile group,
  • At least one of R1, R2, and R3 includes at least one of a carbon-carbon double bond, a carbon-carbon triple bond, and a nitrile group.
  • the compound represented by Formula 2 as a by-product acts as a reductive decomposition additive to form a passivation film on the surface of the anode It is possible to obtain the effect of improving the lifespan of the electrode and capacity retention rate by preventing the formation or decomposition or oxidation of the electrolyte.
  • the mechanism of generating HF in the lithium secondary battery and the mechanism in which the electrolyte additive represented by Formula 1 reacts with HF in the lithium secondary battery to form the compound represented by Formula 2 are as follows.
  • the thickness of the battery expands during charging.
  • the negative electrode passivation film is gradually collapsed by the increased electrochemical energy and thermal energy over time, and a side reaction in which the surrounding electrolyte reacts with the newly exposed surface of the negative electrode continues to occur.
  • the internal pressure of the secondary battery increases, and performance degradation occurs such as a decrease in the lifespan of the secondary battery at a high temperature due to volume expansion of the secondary battery.
  • the electrolyte additive according to an embodiment of the present invention can suppress the shortening of the battery life by removing HF generated by moisture as in the above mechanism.
  • the compound represented by Formula 2 generated by the reaction of the electrolyte additive with HF may be in a liquid state at room temperature (25° C.).
  • the existing HF skivenzer has a problem in that the cell swells due to the formation of gas due to the low boiling point of the generated by-product.
  • the present invention can solve the problem of cell swelling by generating a by-product in a liquid state.
  • the 4-Hydroxy-1,2-oxathiolane 2,2-dioxide compound which is formed at the same time as removing HF, acts as a reductive decomposition additive to form a solid electrolyte interphase (SEI) on the surface of the anode. can do.
  • SEIs have ion conductivity and serve to help lithium ions move.
  • the electrolyte additive serves to protect the positive electrode at the same time.
  • a compound represented by the compound of Formula 2 acts as a reductive decomposition additive to form a solid electrolyte interphase (SEI) on the surface of the anode.
  • SEI solid electrolyte interphase
  • the additive according to the embodiment of the present invention when applied to a lithium secondary battery, the electrochemical performance, reaction rate and stability of the lithium secondary battery can be improved, and the capacity and lifespan maintenance rate can be sufficiently improved.
  • the lithium secondary battery electrolyte of the present invention is generally stable in a temperature range of -20 to 60°C, and can maintain electrochemically stable characteristics even at a voltage of 4.5V, so it can be applied to all lithium secondary batteries such as lithium ion batteries and lithium polymer batteries.
  • the electrolyte for a secondary battery according to an embodiment of the present invention includes an electrolyte additive for a secondary battery represented by Chemical Formula 1; lithium salt; and solvents; includes
  • the electrolyte additive for a secondary battery represented by Chemical Formula 1 is the same as described above.
  • the electrolyte additive may be included in an amount of 0.01 to 10% by weight, or 0.01 to 5% by weight, or 0.01 to 3% by weight based on the total weight of the electrolyte.
  • the electrolyte additive is included in the above content, it is possible to remove HF in the secondary battery and at the same time form a passivation film formed on the surface of the negative electrode and the positive electrode in an appropriate amount.
  • the lithium salt is preferably LiPF 6 , LiBF 4 , LiClO 4 , LiCl, LiBr, LiI, LiB 10 Cl 10 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiN(SO 2 C 2 F 5 ) 2 , Li(CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiB(C 6 H 5 ) 4 , Li(SO 2 F) 2 N(LiFSI) and (CF 3 SO 2 ) 2 NLi may be at least one selected from, but not particularly limited to.
  • the concentration of the lithium salt in the electrolyte of the present invention may be 0.1 to 2 M.
  • the solvent may be a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, aprotic solvent, or a combination thereof.
  • the solvent is preferably ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (dimethyl catbonate, DMC), diethyl carbonate (diethyl catbonate, DEC), or a combination thereof.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • the electrolyte for a secondary battery according to an embodiment of the present invention may further include an oxidative decomposition type additive.
  • the oxidative decomposition additive may be the following LiFOB, LiBOB, WCA1, WCA2, WCA3.
  • the electrolyte for a secondary battery according to an embodiment of the present invention may further include a reductive decomposition additive.
  • the reductive decomposition additive is selected from fluoroethylene carbonate (FEC) and vinylene carbonate (VC), propanesultone (PS), and propanylsultone (PRS) It may be at least any one or more.
  • the reductive decomposition additive may be included in an amount of 0.1 to 10% by weight, preferably 0.5 to 5% by weight, more preferably 1 to 3% by weight relative to the total weight of the electrolyte.
  • the reductive decomposition additive is included in the above content, it is possible to prevent decomposition of the electrolyte and prevent damage to the negative electrode active material and the positive electrode active material.
  • a secondary battery includes a positive electrode; cathode; a separator interposed between the anode and the cathode; and an electrolyte for the secondary battery.
  • the secondary battery may be a lithium secondary battery, and may be classified into a lithium ion battery, a lithium ion polymer battery, and a lithium polymer battery according to the type of a separator and an electrolyte.
  • the lithium secondary battery may be classified into a cylindrical shape, a prismatic shape, a coin type, a pouch type, etc. according to the shape, and may be divided into a bulk type and a thin film type according to the size.
  • the lithium secondary battery may have a form in which a negative electrode, a separator, and a positive electrode are sequentially stacked and then accommodated in a battery container while being wound on a spiral.
  • the positive electrode may include a current collector and a positive electrode active material layer formed on the current collector, and the positive electrode active material layer may include a positive electrode active material.
  • the cathode active material is a compound capable of reversible intercalation and deintercalation of lithium (lithiated intercalation compound), and any cathode active material available in the art may be used.
  • the positive electrode active material is a lithium-containing transition metal oxide, that is, a lithium cobalt-based oxide, a lithium manganese-based oxide, a lithium copper oxide, a lithium nickel-based oxide, a lithium manganese composite oxide, and a lithium-nickel-manganese-cobalt-based oxide It may be at least any one or more selected from the group consisting of.
  • the positive electrode active material may include a lithium-rich positive electrode active material.
  • the positive electrode active material is a perlithium positive electrode active material, and may include a compound represented by the following formula (3).
  • the positive electrode active material layer may also include a binder and/or a conductive material.
  • the binder serves to well adhere the positive electrode active material particles to each other and the positive electrode active material to the current collector.
  • the conductive material serves to impart conductivity to the electrode.
  • any electronically conductive material that does not cause chemical change in the battery may be used.
  • metal powders such as natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, copper, nickel, aluminum, silver, and metal fibers, metal fibers, etc. may be used, and conductive materials such as polyphenylene derivatives may be used alone or in combination of one or more.
  • the negative electrode may include a current collector and an anode active material layer formed on the current collector, and the anode active material layer may include an anode active material.
  • the negative electrode active material is a material capable of reversibly intercalating and deintercalating lithium ions. oxides and the like can be used.
  • the carbon-based material includes crystalline carbon and amorphous carbon.
  • the crystalline carbon include graphite such as amorphous, plate-like, flake, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon (low-temperature calcined carbon). or hard carbon, mesophase pitch carbide, and calcined coke.
  • the lithium metal alloy includes lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al and Sn from the group consisting of Alloys of metals of choice may be used.
  • silicon-based material a combination of graphite and silicon, a material in which silicon is coated on the surface of graphite particles, or a material in which silicon and carbon are simultaneously coated on the surface of graphite particles may be SiO x , Si may be carbon-based.
  • transition metal oxide examples include vanadium oxide and lithium vanadium oxide.
  • a carbon-based material such as graphite is widely known as a material capable of reversibly intercalating and deintercalating lithium ions.
  • Graphite has a low discharge voltage of -0.2V compared to lithium, and a battery using graphite as an anode active material exhibits a high discharge voltage of 3.6V, providing an advantage in terms of energy density of a lithium battery.
  • secondary batteries using graphite as an anode active material are the most widely used because they guarantee a long lifespan of lithium secondary batteries with excellent reversibility.
  • the graphite anode active material has a problem with low capacity in terms of energy density per unit volume of the electrode plate due to the low density of graphite (theoretical density 2.2 g/cc) during the manufacture of the electrode plate, and a side reaction with the organic electrolyte at a high discharge voltage is easy to occur, the battery There is a problem of swelling and capacity degradation. Therefore, in recent years, as a material capable of doping and de-doping lithium, a silicon-based material having a high capacity has been in the spotlight as an alternative.
  • an electrolyte of a general lithium secondary battery a lithium salt dissolved in a solvent is used as an electrolyte.
  • the overlithium positive electrode active material creates a high voltage environment while generating oxygen gas during the first charge, and the silicon-based negative electrode active material is repeatedly charged and discharged.
  • serious volume expansion occurs and cracks are formed on the surface, and eventually, a decomposition reaction of the electrolyte solution is commonly induced on the surface of the electrode to which each of the active materials is applied.
  • the electrolyte according to the embodiment of the present invention can be efficiently applied to an overlithium positive electrode active material and a silicon-based negative electrode active material.
  • the anode active material layer may further include a binder and/or a conductive material.
  • the roles and representative examples described in the positive electrode active material for the negative electrode active material are similarly applied, and there is no particular limitation as long as the binder and the conductive material can be used in the related field.
  • the average charging voltage of the lithium secondary battery may be 4.5 V or more. This is a high-range voltage that can be expressed when the positive electrode containing the overlithium positive electrode active material and the negative electrode containing the silicon-based negative electrode active material are applied, and can be stably maintained by the functional additive included in the electrolyte of the present invention. there is.
  • 1M LiPF 6 and FEC fluoroethylene carbonate
  • a non-aqueous organic solvent in which ethylene carbonate (EC), ethylmethyl carbonate (EMC), and diethyl carbonate (DEC) are mixed in a ratio of 2:5:5 (v/v/v) ) 1% by weight, and 1% by weight of the electrolyte additives according to Examples 1 to 5 below, respectively, to prepare an electrolyte solution for a secondary battery.
  • the compound (4.4 g, 32%) was synthesized (4-Hydroxy-1,2-oxathiolane-2,2-dioxide 8 g, 57.9 mmol) in the same manner as in Example 2, except that 2-(chlorodimethylsilyl)acetonitrile was used. yield) was obtained.
  • An electrolyte solution was prepared in the same manner as in Examples 1 to 5 except that the additives of Examples 1 to 5 were not added.
  • An electrolyte solution was prepared in the same manner as in Examples above, except that an additive represented by the following Chemical Formula 4 was added instead of the additives of Examples 1 to 5.
  • An electrolyte solution was prepared in the same manner as in Examples above, except that an additive represented by the following Chemical Formula 5 was added instead of the additives of Examples 1 to 5.
  • a positive electrode was manufactured using a composition for forming a positive electrode active material layer comprising 94% by weight of LiCoO 2 as a positive electrode active material, 3% by weight of PVDF (polyvinylidene fluoride) as a binder, and 3% by weight of carbon black as a conductive material.
  • an anode was prepared by including a composition for forming an anode active material layer comprising 96 wt% of graphite as an anode active material, 3 wt% of PVDF as a binder, and 1 wt% of carbon black as a conductive material.
  • the electrolyte solution according to the Examples and Comparative Examples was injected, respectively, and vacuum packaging was performed to prepare a lithium secondary battery.
  • the battery prepared in Preparation Example was charged at 1C to 4.5V at room temperature (25°C), discharged at 2.75V at 1C, charged at 0.5C to 4.2V, left at high temperature (45°C) for 1 week, and then charged at 1C to 4.2V, 2.75 After 2 cycles of V 1C discharge, the capacity of the 2nd cycle was measured and compared.
  • the battery prepared in Preparation Example was charged at room temperature (25° C.) at 1C to 4.5V and then discharged at 2C to 2.75V to measure the initial capacity, and the capacity after repeating this for 500 times was measured.
  • life retention (capacity/initial capacity after 500 repetitions) * 100, room temperature life retention was calculated and shown in Table 2 below.
  • the battery prepared in Preparation Example was charged at a high temperature (45° C.) at 1C to 4.5V, and then discharged at 2C to 2.75V to measure the initial capacity, and the capacity after repeating this 500 times was measured.
  • life retention (capacity / initial capacity after 500 repetitions) * 100, life retention at room temperature was calculated and shown in Table 2 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 실시예에 의한 이차전지용 전해질 첨가제는 하기 [화학식 1]로 표시되는 화합물을 포함한다: 상기 화학식 1에서, 상기 R1, R2 및 R3는 서로 동일하거나 상이하고, 각각 독립적으로, 수소, 치환 또는 비치환된 C1-C6의 알킬기, C1-C6의 알케닐기, C1-C6의 알카이닐기, C6-C10의 아릴기, C1-C6의 알콕시기, 또는 니트릴기를 포함하는 선형 또는 측쇄형의 작용기로서, 상기 R1, R2 및 R3중 적어도 어느 하나 이상은 탄소-탄소 이중결합, 탄소-탄소 삼중결합, 및 니트릴기 중 적어도 어느 하나 이상을 포함한다.

Description

리튬이차전지용 전해질 첨가제 및 이를 포함하는 리튬이차전지
본 발명은 리튬이차전지용 전해질 첨가제, 이를 포함하는 전해질 및 리튬이차전지에 관한 것이다.
최근, 차세대 자동차용 전원 등에 적용하기 위한 중대용량 리튬 이차전지에 관한 관심이 증대되고 있다.
특히, 리튬을 과량으로 포함하고 있는(즉, 과리튬; Lithium-rich) 층상형 산화물을 양극활물질로 사용할 경우, 전지의 충전 구동 전압을 향상시킬 수 있고, 카본계 물질이 아닌 실리콘계 물질을 음극활물질로 사용할 수 있기 때문에 전지의 용량을 개선시킬 수 있다.
한편, 일반적인 리튬 이차전지에서는 리튬염을 용제에 용해시킨 것을 전해질로 사용하는데, 과리튬 양극활물질은 고전압 환경을 조성하는 한편 첫 충전시 산소 기체를 발생시키며, 실리콘계 음극활물질은 반복적인 충방전에 따라 심각한 부피 팽창이 일어나 그 표면에 크랙킹(cracking)이 형성되어, 결국 상기 각 활물질이 적용된 전극의 표면에서는 공통적으로 전해질의 분해 반응이 유발된다.
그 결과, 전해질이 점차 고갈되어 전지의 전기 화학적 성능이 급격하게 열화됨은 물론이고, 각각의 전극 표면에 저항으로 작용되는 두꺼운 피막이 형성됨에 따라 전지의 전기 화학적 반응 속도가 저하된다. 또한, 전해질의 분해 결과 생성되는 산성 물질(예를 들어, HF 등)이 각 전극 피막을 녹이거나 양극활물질을 손상시켜 전지의 전기 화학적 안정성이 보장되지 못하는 문제가 있다.
그러나, 종래에 전해질 첨가제로서 많은 연구가 진행된 1,3-프로판설톤 및 1,3-프로펜설톤의 첨가제 등은 장시간의 고온 저장 시 이차전지의 고온저장특성은 개선되지만, 이차전지의 고온수명특성이 감소하는 문제가 발생한다.
한편, 공개특허공보 10-2018-0015219에서는 특정 위치의 탄소가 특정 치환기로 치환된 프로판 설톤 유도체 화합물을 전해질의 분해 결과 생성되는 산성 물질인 HF를 제거하기 위한 전해질 첨가제로서 개시하고 있으나, 셀부풀음 문제가 발생한다는 문제가 있다.
-참고 선행문헌-
(특허문헌 1) 대한민국 공개특허공보 10-2019-0022382
(특허문헌 2) 대한민국 공개특허공보 10-2018-0015219
본 발명은 리튬 이차전지용 전해질에 특수한 첨가제를 첨가하여 HF와 반응하여 생성된 부산물이 상온에서 액체가 되도록 함으로서 셀부풀음 문제를 해소하고자 한다.
또한, 이차전지 내의 HF를 효율적으로 제거함과 동시에, 생성된 물질이 환원 분해형 첨가제로 작용하여 음극 표면에 부동태막이 형성되는 기능을 가지는 전해질 첨가제를 제공하고자 한다.
또한, 음극을 보호함과 동시에 양극을 보호할 수 있는 전해질 첨가제를 제공하고자 한다.
또한, 과리튬 양극활물질 및 실리콘계 음극활물질에 효율적으로 적용 가능한 전해질 첨가제를 제공하고자 한다.
또한, 상기 전해질 첨가제를 적용하여 고전압 및 고용량의 리튬 이차전지를 구현하고자 한다.
본 발명의 실시예에 의한 이차전지용 전해질 첨가제는 하기 화학식 1로 표시되는 화합물을 포함한다.
[화학식 1]
Figure PCTKR2021011896-appb-img-000001
(상기 화학식 1에서, 상기 R1, R2 및 R3는 서로 동일하거나 상이하고, 각각 독립적으로, 수소, 치환 또는 비치환된 C1-C6의 알킬기, C1-C6의 알케닐기, C1-C6의 알카이닐기, C6-C10의 아릴기, C1-C6의 알콕시기, 또는 니트릴기를 포함하는 선형 또는 측쇄형의 작용기로서,
상기 R1, R2 및 R3중 적어도 어느 하나 이상은 탄소-탄소 이중결합, 탄소-탄소 삼중결합, 및 니트릴기 중 적어도 어느 하나 이상을 포함한다.
본 발명의 실시예에 의한 이차전지용 전해질 첨가제는 하기 화학식 1-1 내지 1-31 중 선택되는 적어도 어느 하나 이상의 화합물을 포함할 수 있다.
[화학식 1-1]
Figure PCTKR2021011896-appb-img-000002
[화학식 1-2]
Figure PCTKR2021011896-appb-img-000003
[화학식 1-3]
Figure PCTKR2021011896-appb-img-000004
[화학식 1-4]
Figure PCTKR2021011896-appb-img-000005
[화학식 1-5]
Figure PCTKR2021011896-appb-img-000006
[화학식 1-6]
Figure PCTKR2021011896-appb-img-000007
[화학식 1-7]
Figure PCTKR2021011896-appb-img-000008
[화학식 1-8]
Figure PCTKR2021011896-appb-img-000009
[화학식 1-9]
Figure PCTKR2021011896-appb-img-000010
[화학식 1-10]
Figure PCTKR2021011896-appb-img-000011
[화학식 1-11]
Figure PCTKR2021011896-appb-img-000012
[화학식 1-12]
Figure PCTKR2021011896-appb-img-000013
[화학식 1-13]
Figure PCTKR2021011896-appb-img-000014
[화학식 1-14]
Figure PCTKR2021011896-appb-img-000015
[화학식 1-15]
Figure PCTKR2021011896-appb-img-000016
[화학식 1-16]
Figure PCTKR2021011896-appb-img-000017
[화학식 1-17]
Figure PCTKR2021011896-appb-img-000018
[화학식 1-18]
Figure PCTKR2021011896-appb-img-000019
[화학식 1-19]
Figure PCTKR2021011896-appb-img-000020
[화학식 1-20]
Figure PCTKR2021011896-appb-img-000021
[화학식 1-21]
Figure PCTKR2021011896-appb-img-000022
[화학식 1-22]
Figure PCTKR2021011896-appb-img-000023
[화학식 1-23]
Figure PCTKR2021011896-appb-img-000024
[화학식 1-24]
Figure PCTKR2021011896-appb-img-000025
[화학식 1-25]
Figure PCTKR2021011896-appb-img-000026
[화학식 1-26]
Figure PCTKR2021011896-appb-img-000027
[화학식 1-27]
Figure PCTKR2021011896-appb-img-000028
[화학식 1-28]
Figure PCTKR2021011896-appb-img-000029
[화학식 1-29]
Figure PCTKR2021011896-appb-img-000030
[화학식 1-30]
Figure PCTKR2021011896-appb-img-000031
[화학식 1-31]
Figure PCTKR2021011896-appb-img-000032
본 발명의 실시예에 의한 이차전지용 전해질 첨가제는 리튬 이차전지 내의 HF와 반응하여 하기 화학식 2로 표시되는 화합물을 형성할 수 있다.
[화학식 2]
Figure PCTKR2021011896-appb-img-000033
상기 화학식 1에서, 상기 R1, R2 및 R3는 서로 동일하거나 상이하고, 각각 독립적으로, 수소, 치환 또는 비치환된 C1-C6의 알킬기, C1-C6의 알케닐기, C1-C6의 알카이닐기, C6-C10의 아릴기, C1-C6의 알콕시기, 또는 니트릴기를 포함하는 선형 또는 측쇄형의 작용기로서,
상기 R1, R2 및 R3중 적어도 어느 하나 이상은 탄소-탄소 이중결합, 탄소-탄소 삼중결합, 및 니트릴기 중 적어도 어느 하나 이상을 포함한다.
본 발명의 실시예에 의한 상기 화학식 2로 표시되는 화합물은 상온(25℃)에서 액체 상태일 수 있다.
본 발명의 실시예에 의한 이차전지용 전해질은 상기 화학식 1로 표시되는 이차전지용 전해질 첨가제; 리튬염; 및용제;를 포함한다.
본 발명의 실시예에 의한 이차전지용 전해질은 산화 분해형 첨가제를 더 포함할 수 있다.
본 발명의 실시예에 의한 이차전지용 전해질은 상기 화학식 1로 표시되는 이차전지용 전해질 첨가제가 전해질 총 중량을 기준으로 0.01 내지 10중량%로 포함될 수 있다.
본 발명의 실시예에 의한 이차전지는 양극; 음극; 상기 양극과 음극 사이에 개재되는 분리막; 및 상기 이차전지용 전해질을 포함한다.
본 발명의 실시예에 의한 이차전지의상기 양극은 과리튬(Lithium-rich) 양극활물질을 포함할 수 있다.
본 발명의 실시예에 의한 이차전지의 상기 음극은 실리콘 음극활물질을 포함할 수 있다.
본 발명의 실시예에 의한 이차전지용 전해질 HF와 반응하여 생성된 부산물이 상온에서 액체가 되도록 함으로서 셀부풀음의 문제를 해소하고자 한다.
또한, 상기 이차전지용전해질 첨가제는 이차전지 내의 HF를 효율적으로 제거함과 동시에, 생성된 물질이 환원 분해형 첨가제로 작용하여 음극 표면에 부동태막을 형성할 수 있다.
또한, 상기 이차전지용 전해질 첨가제는 음극을 보호함과 동시에 양극을 보호할 수 있다.
또한, 상기 이차전지용 전해질 첨가제를 이차전지에 적용하여 전지의 전기화학적 성능, 반응 속도 및 안정성을 향상시킬 수 있다.
또한, 과리튬 양극활물질 및 실리콘계 음극활물질이 적용된 이차전지에 최적으로 적용 가능하므로, 보다 고전압 및 고용량의 리튬 이차전지를 구현할 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
본 명세서에서 사용되는 "포함하는"과 같은 표현은, 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.
본 명세서에서 사용되는 "바람직한" 및 "바람직하게"는 소정 환경 하에서 소정의 이점을 제공할 수 있는 본 발명의 실시 형태를 지칭한다. 그러나, 동일한 환경 또는 다른 환경 하에서, 다른 실시 형태가 또한 바람직할 수 있다. 추가로, 하나 이상의 바람직한 실시 형태의 언급은 다른 실시 형태가 유용하지 않다는 것을 의미하지 않으며, 본 발명의 범주로부터 다른 실시 형태를 배제하고자 하는 것은 아니다.
본 발명의 실시예에 의한 이차전지용 전해질 첨가제는 하기 화학식 1로 표시되는 화합물을 포함한다.
[화학식 1]
Figure PCTKR2021011896-appb-img-000034
(상기 화학식 1에서, 상기 R1, R2 및 R3는 서로 동일하거나 상이하고, 각각 독립적으로, 수소, 치환 또는 비치환된 C1-C6의 알킬기, C1-C6의 알케닐기, C1-C6의 알카이닐기, C6-C10의 아릴기, C1-C6의 알콕시기, 또는 니트릴기를 포함하는 선형 또는 측쇄형의 작용기로서,
상기 R1, R2 및 R3중 적어도 어느 하나 이상은 탄소-탄소 이중결합, 탄소-탄소 삼중결합, 및 니트릴기 중 적어도 어느 하나 이상을 포함한다.
상기 화학식 1로 표시되는 전해질 첨가제는 구입할 수도 있고, 제조할 수도 있으며, 구입처 또는 그 제조방법은 특별히 제한되지 않는다.
보다 바람직한 일 실시예로서, 상기 전해질 첨가제는 하기 화학식 1-1 내지 1-31 중 선택되는 적어도 어느 하나 이상의 화합물일 수 있다.
[화학식 1-1]
Figure PCTKR2021011896-appb-img-000035
[화학식 1-2]
Figure PCTKR2021011896-appb-img-000036
[화학식 1-3]
Figure PCTKR2021011896-appb-img-000037
[화학식 1-4]
Figure PCTKR2021011896-appb-img-000038
[화학식 1-5]
Figure PCTKR2021011896-appb-img-000039
[화학식 1-6]
Figure PCTKR2021011896-appb-img-000040
[화학식 1-7]
Figure PCTKR2021011896-appb-img-000041
[화학식 1-8]
Figure PCTKR2021011896-appb-img-000042
[화학식 1-9]
Figure PCTKR2021011896-appb-img-000043
[화학식 1-10]
Figure PCTKR2021011896-appb-img-000044
[화학식 1-11]
Figure PCTKR2021011896-appb-img-000045
[화학식 1-12]
Figure PCTKR2021011896-appb-img-000046
[화학식 1-13]
Figure PCTKR2021011896-appb-img-000047
[화학식 1-14]
Figure PCTKR2021011896-appb-img-000048
[화학식 1-15]
Figure PCTKR2021011896-appb-img-000049
[화학식 1-16]
Figure PCTKR2021011896-appb-img-000050
[화학식 1-17]
Figure PCTKR2021011896-appb-img-000051
[화학식 1-18]
Figure PCTKR2021011896-appb-img-000052
[화학식 1-19]
Figure PCTKR2021011896-appb-img-000053
[화학식 1-20]
Figure PCTKR2021011896-appb-img-000054
[화학식 1-21]
Figure PCTKR2021011896-appb-img-000055
[화학식 1-22]
Figure PCTKR2021011896-appb-img-000056
[화학식 1-23]
Figure PCTKR2021011896-appb-img-000057
[화학식 1-24]
Figure PCTKR2021011896-appb-img-000058
[화학식 1-25]
Figure PCTKR2021011896-appb-img-000059
[화학식 1-26]
Figure PCTKR2021011896-appb-img-000060
[화학식 1-27]
Figure PCTKR2021011896-appb-img-000061
[화학식 1-28]
Figure PCTKR2021011896-appb-img-000062
[화학식 1-29]
Figure PCTKR2021011896-appb-img-000063
[화학식 1-30]
Figure PCTKR2021011896-appb-img-000064
[화학식 1-31]
Figure PCTKR2021011896-appb-img-000065
상기 전해질 첨가제는 리튬 이차전지 내의 HF와 반응하여 하기 화학식 2로 표시되는 화합물을 형성할 수 있다.
[화학식 2]
Figure PCTKR2021011896-appb-img-000066
(상기 화학식 1에서, 상기 R1, R2 및 R3는 서로 동일하거나 상이하고, 각각 독립적으로, 수소, 치환 또는 비치환된 C1-C6의 알킬기, C1-C6의 알케닐기, C1-C6의 알카이닐기, C6-C10의 아릴기, C1-C6의 알콕시기, 또는 니트릴기를 포함하는 선형 또는 측쇄형의 작용기로서,
상기 R1, R2 및 R3중 적어도 어느 하나 이상은 탄소-탄소 이중결합, 탄소-탄소 삼중결합, 및 니트릴기 중 적어도 어느 하나 이상을 포함한다.
본 발명의 실시예는 탄소-탄소 이중결합, 탄소-탄소 삼중결합, 및 니트릴기 중 적어도 어느 하나 이상 포함하므로서, 부산물인 화학식2로 표시되는 화합물이 환원 분해형 첨가제로 작용하여 양극 표면에 부동태막을 형성하거나 전해액의 분해나 산화를 방지하여 전극의 수명과 용량 유지율을 향상시키는 효과를 얻을 수 있다.
리튬 이차전지 내에서 HF가 생성되는 메커니즘 및 상기 화학식 1로 표시되는 전해질 첨가제가 상기 리튬 이차전지 내의 HF와 반응하여 상기 화학식 2로 표시되는 화합물을 형성하는 메커니즘은 다음과 같다.
[메커니즘 1]
Figure PCTKR2021011896-appb-img-000067
이차전지에서 HF와 같은 가스 들이 발생함으로서 충전시 전지의 두께가 팽창된다. 또한, 만충전 상태에서 고온 방치되었을때, 음극 부동태막은 시간이 경과함에 따라 증가된 전기화학적 에너지와 열에너지에 의해 서서히 붕괴되어, 주위의 전해질이 새롭게 노출된 음극 표면과 반응하는 부반응을 지속적으로 일으키게 된다. 이러한 계속적인 가스 발생으로 인하여 이차전지의 내부 압력이 상승하고, 이차전지의 부피 팽창으로 인해 고온에서 이차전지의 수명 감소가 발생하는 등의 성능 저하가 일어난다.
본 발명의 실시예에 의한 상기 전해질 첨가제는 상기 메커니즘과 같이 수분에 의해서 생성된 HF를 제거하여 전지의 수명단축을 억제할 수 있다.
또한, 상기 전해질 첨가제와 HF와의 반응에 의해 생성되는 상기 화학식 2로 표시되는 화합물은 상온(25℃)에서 액체 상태일 수 있다.
기존의 HF스키벤저는 생성되는 부산물의 낮은 끓는점으로 기체가 형성되어 셀이 부푸는 문제가 있다. 본 발명은 액체 상태의 부산물을 생성시킴으로서 셀이 부푸는 문제를 해소할 수 있다.
또한, 상기 전해질 첨가제는 HF를 제거하면서도 동시에 형성되는 4-Hydroxy-1,2-oxathiolane 2,2-dioxide 화합물이 환원 분해형 첨가제로 작용하여 음극 표면에 부동태막(solid electrolyte interphase, SEI)을 형성할 수 있다. 이러한 SEI는 이온전도성을 가지고 있어 리튬이온 이동을 도와주는 역할을 한다. 또한, 상기 전해질 첨가제에 의해 생성된 부동태막으로 인해 전해질의 추가적인 분해를 억제시키고 가역 용량을 향상시킬 수 있다.
또한, 상기 전해질 첨가제는 양극을 보호하는 역할을 동시에 수행한다. HF와 반응하여 생성된 부산물인 화학식 2 화합물로 표시되는 화합물이 환원 분해형 첨가제로 작용하여 양극 표면에 부동태막(solid electrolyte interphase, SEI)을 형성할 수 있다. 이러한 SEI는 양극 활물질이 전해액과 직접 접촉하는 것을 방지하고 전해액의 분해나 산화를 방지하여 전극의 수명과 용량 유지율을 향상시키며 전극의 열방출을 줄일 수 있다.
또한, 본 발명의 실시예에 의한 첨가제를 리튬 이차전지에 적용 시, 리튬 이차전지의 전기화학적 성능, 반응 속도 및 안정성을 향상시키고 또한 용량 및 수명유지율을 충분히 향상시킬 수 있다.
본 발명의 리튬 이차전지 전해액은 통상 -20 내지 60℃의 온도범위에서 안정하며, 4.5V영역의 전압에서도 전기화학적으로 안정적인 특성을 유지할 수 있으므로 리튬 이온 전지 및 리튬 폴리머 전지 등 모든 리튬 이차전지에 적용될 수 있다.
본 발명의 실시예에 의한 이차전지용 전해질은 상기 화학식 1로 표시되는 이차전지용 전해질 첨가제; 리튬염; 및 용제; 를 포함한다.
상기 화학식 1로 표시되는 이차전지용 전해질 첨가제는 전술한 바와 같다.
상기 전해질 첨가제는 전해질 총 중량을 기준으로 0.01 내지 10중량%, 또는 0.01 내지 5중량%, 또는 0.01 내지 3중량%로 포함될 수 있다. 상기 전해질 첨가제가 상기 함량으로 포함되는 경우, 이차전지 내의 HF를 제거함과 동시에 형성되는 음극 및 양극 표면에 형성되는 부동태막을 적정량으로 형성시킬 수 있다.
일 실시예로서, 상기 리튬염은 바람직하게는 LiPF6, LiBF4, LiClO4, LiCl, LiBr, LiI, LiB10Cl10, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiC4F9SO3, LiB(C6H5)4, Li(SO2F)2N(LiFSI) 및 (CF3SO2)2NLi 중에서 선택되는 적어도 어느 하나 이상일 수 있으나, 이에 특별히 제한되지는 않는다.
본 발명의 전해액 중 리튬염의 농도는0.1 내지 2 M일 수 있다.
상기 용제는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계, 비양성자성 용매, 또는 이들의 조합인 용제일 수 있다.
일 실시예로서, 상기 용제는 바람직하게는 에틸렌 카보네이트(ethylene carbonate, EC), 에틸 메틸카보네이트(ethyl methyl carbonate, EMC), 디메틸카보네이트(dimethyl catbonate, DMC), 디에틸카보네이트(diethyl catbonate, DEC), 또는 이들의 조합일 수 있다.
본 발명의 실시예에 의한 이차전지용 전해질은 산화 분해형 첨가제를 더 포함할 수 있다.
일 실시예로서, 상기 산화분해형 첨가제는 하기의 LiFOB, LiBOB, WCA1, WCA2, WCA3 일 수 있다.
Figure PCTKR2021011896-appb-img-000068
본 발명의 실시예에 의한 이차전지용 전해질은 환원 분해형 첨가제를 더 포함할 수 있다.
일 실시예로서, 상기 환원 분해형 첨가제는 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC) 및 비닐렌 카보네이트(vinylidene carbonate, VC), 프로판설톤(propanesultone, PS), 프로페닐설톤(propanylsultone, PRS)에서 선택되는 적어도 어느 하나 이상일 수 있다.
상기 환원 분해형 첨가제는 전해액 총 중량대비 0.1 내지 10 중량%, 바람직하게는 0.5~5중량%, 더욱 바람직하게는 1 내지 3중량%으로 포함될 수 있다. 상기 환원 분해형 첨가제가 상기 함량으로 포함되는 경우 전해액의 분해를 막고 음극활물질 및 양극활물질의 손상을 막을 수 있다.
본 발명의 실시예에 의한 이차전지는 양극; 음극; 상기 양극과 음극 사이에 개재되는 분리막; 및 상기 이차전지용 전해질을 포함한다.
상기 이차전지는 리튬 이차전지일 수 있으며, 분리막과 전해질의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지로 분류될 수 있다.
또한, 상기 리튬 이차전지는 그 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다.
이들 전지의 구조와 제조방법은 특별한 제한이 없으며, 본 발명이 속하는 기술 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.
일 실시예로서, 상기 리튬 이차전지는 음극, 세퍼레이터및 양극을 차례로 적층한 다음 스피럴 상으로 권취된 상태로 전지 용기에 수납되는 형태일 수 있다.
상기 양극은 전류 집전체 및 상기 전류 집전체에 형성되는 양극활물질 층을 포함하고, 상기 양극활물질층은 양극활물질을 포함할 수 있다.
상기 양극활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)로서, 당해 기술분야에서 이용 가능한 모든 양극활물질이 사용 가능하다.
일 예로서, 상기 양극활물질은 리튬 함유 전이금속 산화물, 즉, 리튬코발트계 산화물, 리튬 망간계 산화물, 리튬 구리 산화물, 리튬 니켈계 산화물, 리튬 망간 복합 산화물, 및 리튬-니켈-망간-코발트계 산화물로 이루어진 군에서 선택되는 적어도 어느 하나 이상일 수 있다.
또한, 일 예로서, 상기 양극활물질은 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2(O<y<1), LiCo1-yMnyO2(O<y<1), LiNi1-yMnyO2(O≤y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4(0<z<2), LiMn2-zCozO4(0<z<2), LiCoPO4 및 LiFePO4로 이루어진 군에서 선택되는 적어도 어느 하나 이상일 수 있다.
또한, 보다 바람직하게는, 상기 양극활물질은 과리튬(Lithium-rich) 양극활물질을 포함할 수 있다.
또한, 상기 양극활물질은 과리튬 양극활물질로서, 하기 화학식 3으로 표시되는 화합물을 포함할 수 있다.
[화학식 3]
LixNiyMnzCowO2
상기 화학식 3에서, 1<x≤2, 0<y≤1, 0<z≤1, 및 0<w≤1이다.
최근에는, 리튬을 과량으로 포함하고 있는 과리튬 층상형 산화물을 양극활물질로 사용함으로써, 전지의 충전 구동 전압을 향상시키는 기술이 연구되고 있다. 이 경우, 카본계 물질이 아닌 실리콘계 물질을 음극활물질로 사용할 수 있기 때문에 전지의 용량을 더욱 개선할 수 있다.
상기 양극활물질층은 또한, 바인더 및/또는 도전재를 포함할 수 있다.
상기 바인더는 양극활물질 입자들을 서로 잘 부착시키고, 양극활물질을 전류 집전체에 잘 부착시키는 역할을 한다. 일 실시예로서, 상기 바인더로서 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드(PVDF), 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔러버, 아크릴레이티드스티렌-부타디엔러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 특별히 제한되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하는 역할을 한다. 상기 도전재로서 전지의 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다. 일 예로서, 천연 흑연, 인조 흑연, 카본블랙, 아세틸렌블랙, 케첸블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말, 금속 섬유 등을 사용할 수 있고, 폴리페닐렌 유도체 등의 도전성 재료를 1종 또는 1종 이상을 혼합하여 사용할 수 있다.
상기 음극은 집전체 및 상기 집전체 위에 형성된 음극활물질층을 포함하며, 상기 음극활물질층은 음극활물질을 포함할 수 있다.
상기 음극활물질로는 리튬 이온을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 물질로탄소계 물질, 리튬 금속, 리튬 금속의 합금, 리튬을도프 및 탈도프할 수 있는 물질, 실리콘계또는 전이 금속 산화물 등이 사용될 수 있다.
상기 탄소계 물질은 결정질 탄소, 비정질 탄소를 포함한다. 상기 결정질 탄소의 예로는 무정형, 판상, 린편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.
상기 실리콘계로는 흑연과 실리콘의 조합, 흑연 입자의 표면에 실리콘이 코팅된 물질, 혹은, 흑연 입자의 표면에 실리콘 및 카본이 동시에 코팅된 물질일 수 있는 것으로 SiOx, Si탄소계일 수 있다.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극활물질 중, 리튬 이온을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 물질로는 흑연 등 탄소 계열 물질이 널리 알려져 있다. 흑연은 리튬 대비 방전 전압이 -0.2V로 낮아, 흑연을 음극활물질로 사용한 전지는 3.6V의 높은 방전 전압을 나타내어, 리튬 전지의 에너지 밀도면에서 이점을 제공한다. 또한 흑연을 음극활물질로 사용한 이차전지는 뛰어난 가역성으로 리튬 이차전지의 장수명을 보장하여 가장 널리 사용되고 있다.
그러나 흑연 음극활물질은 극판제조시 흑연의 밀도(이론 밀도 2.2g/cc)가 낮아 극판의 단위 부피당 에너지 밀도 측면에서는 용량이 낮은 문제점이 있고, 높은 방전 전압에서는 유기 전해액과의 부반응이 일어나기 쉬워, 전지의 스웰링 발생 및 이에 따른 용량 저하의 문제가 있다. 따라서 최근에는 리튬을 도프 및 탈도프할 수 있는 물질로 용량이 높은 실리콘계 물질이 대체제로 각광받고 있다.
그러나, 일반적인 리튬 이차전지의 전해액으로서 리튬염을 용제에 용해시킨 것을 전해액으로 사용하는데, 과리튬 양극활물질은 고전압 환경을 조성하는 한편 첫 충전시 산소 기체를 발생시키며, 실리콘계 음극활물질은 반복적인 충방전에 따라 심각한 부피 팽창이 일어나 그 표면에 크랙킹(cracking)이 형성되어, 결국 상기 각 활물질이 적용된 전극의 표면에서는 공통적으로 전해액의 분해 반응이 유발된다.
그 결과, 전해액이 점차 고갈되어 전지의 전기 화학적 성능이 급격하게 열화됨은 물론이고, 각각의 전극 표면에 저항으로 작용되는 정도의 두꺼운 피막이 형성됨에 따라 전지의 전기 화학적 반응 속도가 저하된다. 또한 전해액의 분해 결과 생성되는 산성 물질(예를 들어, HF 등)이 각 전극 피막을 녹이거나 양극활물질을 손상시켜 전지의 전기 화학적 안정성이 보장되지 못하는 문제가 있다. 그러나, 본 발명의 실시예에 의한 전해질은 과리튬 양극활물질 및 실리콘계 음극활물질에 효율적으로 적용 가능하다.
상기 음극활물질층은 바인더 및/또는 도전재를 더 포함할 수 있다.
상기 바인더 및 도전재는 음극활물질에 대하여 상기 양극활물질에서 서술한 역할 및 대표적인 예가 마찬가지로 적용되며, 당해 분야에서 사용될 수 있는 바인더 및 도전재라면 특별한 제한이 없다.
상기 리튬 이차전지의 평균 충전 전압이 4.5 V 이상일 수 있다. 이는, 상기 과리튬 양극활물질을 포함하는 양극 및 상기 실리콘계 음극활물질을 포함하는 음극이 적용됨에 따라 발현될 수 있는 높은 범위의 전압이며, 본 발명의 전해액에 포함되는 기능성 첨가제에 의하여 안정적으로 유지될 수 있다.
[실시예] 하기 각각의 전해질 첨가제를 포함하는 전해질의 제조
에틸렌카보네이트(EC), 에틸메틸카보네이트(EMC), 디에틸카보네이트(DEC)가 2:5:5(v/v/v)로 혼합된 비수 유기용매에 1M의 LiPF6과 FEC(플루오로에틸렌카보네이트) 1중량%를 첨가하고, 하기 실시예1 내지 5에 의한 전해질 첨가제 1중량%를 각각 첨가하여 이차전지용 전해액을 제조하였다.
[실시예 1] 4-((Dimethyl(vinyl)silyl)oxy)-1,2-oxathiolane 2,2-dioxide 의 합성
Figure PCTKR2021011896-appb-img-000069
500ml 3구 반응용기에 합성된 4-Hydroxy-1,2-oxathiolane-2,2-dioxide (10 g, 72.4 mmol, Journal of the Society of Dyers and Colourists, 1998, 114(5-6), 160-164방법 이용 합성)을 dichloromethane 200ml 에 교반 용해한다. Icebath 사용하여 내부 온도를 2℃이하로 냉각하고 유지한다. 냉각된 반응물에 pyridine (7.4g, 94.1 mmol) 천천히 적가한다. 반응물의 온도는 5℃ 넘지 않게 주의 한다. 냉각된 반응물에 chlorodimethyl(vinyl)silane(10.5g, 86.8mmol, 1.20eq)를 dichloromethane 20ml 에 희석하여 천천히 적가한다. 적가중의 반응물의 온도는 5 ℃넘지 않게 주의한다. 추가로 5 ℃이하에서 1시간 동안 교반한다. 이후에 반응물의 온도를 상온 (20 ~ 25℃)로 올린 다음 12시간 동안 교반한다. 반응액에 정제수 (200ml) 를 첨가하여 반응을 종료 한다. 유기층을 추출한 다음, 추가로 정제수 (200ml)를 사용하여 유기층을 세척한다. 유기층을 무수 Na2SO4로 건조하고 유기용매를 농축한 다음 농축액을 column chromatography를 이용하여 정제하여 white powder 상기 화합물 (7.1 g, 44 % yield)을 얻었다
[실시예2] 4-((Dimethyl(prop-2-ynyl)silyl)oxy)-1,2-oxathiolane 2,2-dioxide 의 합성
Figure PCTKR2021011896-appb-img-000070
500ml 3구 반응용기에 합성된 4-Hydroxy-1,2-oxathiolane-2,2-dioxide (10 g, 72.4mmol, Journal of the Society of Dyers and Colourists, 1998, 114(5-6), 160-164방법 이용 합성)와 1H-imidazole (9.85g, 144.7 mmol), dimethylaminopyridine (1.97g, 28.9 mmol) 첨가하고 dichloromethane 200ml 에 교반 용해한다. Icebath 사용하여 내부 온도를 2℃이하로 냉각하고 유지한다. 냉각된 반응물에 chlorodimethyl(prop-2-ynyl)silane(11.5 g, 86.8mmol, 1.20eq)를 천천히 적가한다.적가중의 반응물의 온도는 5℃넘지 않게 주의한다. 추가로 5℃ 이하에서 1시간 동안 교반 한다. 이후에 반응물의 온도를 상온 (20~25℃)로 올린 다음 12시간 동안 교반한다. 반응액에 포화된 NH4Cl (aq) 200ml 첨가하여 반응을 종료한다. 유기층을 추출한 다음, 추가로 정제수 (200ml) 유기층을 세척한다. 유기층을 무수 Na2SO4로 건조하고 유기용매를 농축한 다음 농축액을 column chromatography를 이용하여 정제하여 white powder 상기 화합물 (6.5 g, 38 % yield)을 얻었다
[실시예3] 4-((Dimethyl(2-ethanenitrile)silyl)oxy)-1,2-oxathiolane 2,2-dioxide 의 합성
Figure PCTKR2021011896-appb-img-000071
2-(chlorodimethylsilyl)acetonitrile 을 사용한 것을 제외하고 상기 실시예2의 방법으로 합성 (4-Hydroxy-1,2-oxathiolane-2,2-dioxide 8 g, 57.9 mmol) 하여 상기 화합물 (4.4 g, 32 % yield)을 얻었다.
[실시예 4] (E)-3-(((2,2-Dioxido-1,2-oxathiolan-4-yl)oxy)dimethylsilyl) acrylonitrile 의 합성
Figure PCTKR2021011896-appb-img-000072
(E)-3-(Chlorodimethylsilyl)acrylonitrile 을 사용한 것을 제외하고 상기 실시예1의 방법으로 합성 (4-Hydroxy-1,2-oxathiolane-2,2-dioxide 8 g, 57.9 mmol) 하여 상기 화합물 (5.7 g, 40 % yield)을 얻었다.
[실시예5] 3-((((2,2-Dioxido-1,2-oxathiolan-4-yl)oxy)dimethylsilyl)oxy) propanenitrile 의 합성
Figure PCTKR2021011896-appb-img-000073
3-((Chlorodimethylsilyl)oxy)propanenitrile 을 사용한 것을 제외하고 상기 실시예2의 방법으로 합성 (4-Hydroxy-1,2-oxathiolane-2,2-dioxide 8 g, 57.9 mmol) 하여 상기 화합물 (5.4 g, 35 % yield)을 얻었다.
이와 같은 제조방법에 의해 합성된 상기 실시예를 포함하여 1H NMR 및 GC-Mass 결과를 하기 표 1에 나타내었다.
Figure PCTKR2021011896-appb-img-000074
[비교예 1]
상기 실시예에서 상기 실시예 1 내지 5의 첨가제를 첨가하지 않는 것을 제외하고 동일한 방법으로 전해액을 제조하였다.
[비교예 2]
상기 실시예에서 상기 실시예 1 내지 5의 첨가제 대신에 하기 화학식 4로 표시되는 첨가제를 첨가하는 것을 제외하고, 동일한 방법으로 전해액을 제조하였다.
[화학식 4]
Figure PCTKR2021011896-appb-img-000075
[비교예3]
상기 실시예에서 상기 실시예 1 내지 5의 첨가제 대신에 하기 화학식 5로 표시되는 첨가제를 첨가하는 것을 제외하고, 동일한 방법으로 전해액을 제조하였다.
[화학식 5]
Figure PCTKR2021011896-appb-img-000076
[제조예] 이차전지의 제조
양극활물질로서 LiCoO2 94중량%, 바인더로서 PVDF(폴리비닐리덴플루오라이드) 3중량%, 도전재로서 카본블랙3%를 포함하는 양극 활물질층 형성용 조성물을 사용하여 양극을 제조하였다. 또한, 음극 활물질로서 흑연 96중량%, 바인더로서 PVDF 3중량%, 도전재로서 카본블랙 1중량%를 포함하는 음극 활물질층 형성용 조성물을 포함하여 음극을 제조하였다.
상기 제조된 양극 위에 분리막을 놓고 다시 여기에 상기 제조된 음극을 올려놓은 후, 상기 실시예 및 비교예에 의한 전해액을 각각 주입하고, 진공포장하여 리튬 이차전지를 제조하였다.
[실험예 1] 용량 유지율(%)의 평가
상기 제조예에서 제조된 전지를 상온(25℃)에서 4.5V까지 1C 충전, 2.75V 1C 방전 후, 4.2V까지 0.5C 충전하여 고온(45℃)에서 1주 방치 후 4.2V까지 1C 충전, 2.75V 1C 방전 2사이클 진행하여 2사이클째 방전시킨 용량을 측정하여 비교하였다.
상기 실시예 및 비교예에 의한 이차전지의 전지특성을 다음과 같이 평가하고, 그 결과를 하기 표 2에 나타내었다.
[실험예2] 상온 수명 유지율(%)의 평가
상기 제조예에서 제조된 전지를, 상온(25℃)에서, 4.5V까지 1C 충전 후, 2.75V까지 2C 방전하여 초기 용량을 측정하고, 이를 500회 반복 한 후의 용량을 측정하였다. 다음으로, 식: 수명유지율=(500회반복 후 용량/초기용량)*100 으로부터 상온 수명 유지율을 계산하여 하기 표 2에 나타내었다.
[실험예3] 고온 수명 유지율(%)의 평가
상기 제조예에서 제조된 전지를, 고온(45℃)에서, 4.5V까지 1C 충전 후, 2.75V까지 2C 방전하여 초기용량을 측정하고, 이를 500회 반복 한 후의 용량을 측정하였다. 다음으로, 식: 수명유지율=(500회반복 후 용량/초기용량)*100 으로부터 상온 수명유지율을 계산하여 하기 표 2에 나타내었다.
Figure PCTKR2021011896-appb-img-000077
상기 표 2에 따르면, 본 발명의 실시예에 의한 첨가제를 포함하는 전해질을 사용하여 제조한 이차전지의 경우, 비교예에 의한 경우에 비해 용량유지율 및 수명유지율이 우수한 것을 확인할 수 있다.

Claims (10)

  1. 하기 화학식1로 표시되는 화합물을 포함하는,
    이차전지용 전해질 첨가제:
    [화학식 1]
    Figure PCTKR2021011896-appb-img-000078
    상기 화학식 1에서, 상기 R1, R2 및 R3는 서로 동일하거나 상이하고, 각각 독립적으로, 수소, 치환 또는 비치환된 C1-C6의 알킬기, C1-C6의 알케닐기, C1-C6의 알카이닐기, C6-C10의 아릴기, C1-C6의 알콕시기, 또는 니트릴기를 포함하는 선형 또는 측쇄형의 작용기로서,
    상기 R1, R2 및 R3중 적어도 어느 하나 이상은 탄소-탄소 이중결합, 탄소-탄소 삼중결합, 및 니트릴기 중 적어도 어느 하나 이상을 포함한다.
  2. 제 1 항에 있어서,
    하기 화학식 1-1 내지 1-31 중 선택되는 적어도 어느 하나 이상의 화합물을 포함하는,
    이차전지용 전해질 첨가제:
    [화학식 1-1]
    Figure PCTKR2021011896-appb-img-000079
    [화학식 1-2]
    Figure PCTKR2021011896-appb-img-000080
    [화학식 1-3]
    Figure PCTKR2021011896-appb-img-000081
    [화학식 1-4]
    Figure PCTKR2021011896-appb-img-000082
    [화학식 1-5]
    Figure PCTKR2021011896-appb-img-000083
    [화학식 1-6]
    Figure PCTKR2021011896-appb-img-000084
    [화학식 1-7]
    Figure PCTKR2021011896-appb-img-000085
    [화학식 1-8]
    Figure PCTKR2021011896-appb-img-000086
    [화학식 1-9]
    Figure PCTKR2021011896-appb-img-000087
    [화학식 1-10]
    Figure PCTKR2021011896-appb-img-000088
    [화학식 1-11]
    Figure PCTKR2021011896-appb-img-000089
    [화학식 1-12]
    Figure PCTKR2021011896-appb-img-000090
    [화학식 1-13]
    Figure PCTKR2021011896-appb-img-000091
    [화학식 1-14]
    Figure PCTKR2021011896-appb-img-000092
    [화학식 1-15]
    Figure PCTKR2021011896-appb-img-000093
    [화학식 1-16]
    Figure PCTKR2021011896-appb-img-000094
    [화학식 1-17]
    Figure PCTKR2021011896-appb-img-000095
    [화학식 1-18]
    Figure PCTKR2021011896-appb-img-000096
    [화학식 1-19]
    Figure PCTKR2021011896-appb-img-000097
    [화학식 1-20]
    Figure PCTKR2021011896-appb-img-000098
    [화학식 1-21]
    Figure PCTKR2021011896-appb-img-000099
    [화학식 1-22]
    Figure PCTKR2021011896-appb-img-000100
    [화학식 1-23]
    Figure PCTKR2021011896-appb-img-000101
    [화학식 1-24]
    Figure PCTKR2021011896-appb-img-000102
    [화학식 1-25]
    Figure PCTKR2021011896-appb-img-000103
    [화학식 1-26]
    Figure PCTKR2021011896-appb-img-000104
    [화학식 1-27]
    Figure PCTKR2021011896-appb-img-000105
    [화학식 1-28]
    Figure PCTKR2021011896-appb-img-000106
    [화학식 1-29]
    Figure PCTKR2021011896-appb-img-000107
    [화학식 1-30]
    Figure PCTKR2021011896-appb-img-000108
    [화학식 1-31]
    Figure PCTKR2021011896-appb-img-000109
  3. 제 1 항에 있어서,
    상기 이차전지용 전해질 첨가제는 리튬 이차전지 내의 HF와 반응하여 하기 화학식 2로 표시되는 화합물을 형성하는,
    이차전지용 전해질 첨가제:
    [화학식 2]
    Figure PCTKR2021011896-appb-img-000110
    상기 화학식 1에서, 상기 R1, R2 및 R3는 서로 동일하거나 상이하고, 각각 독립적으로, 수소, 치환 또는 비치환된 C1-C6의 알킬기, C1-C6의 알케닐기, C1-C6의 알카이닐기, C6-C10의 아릴기, C1-C6의 알콕시기, 또는 니트릴기를 포함하는 선형 또는 측쇄형의 작용기로서,
    상기 R1, R2 및 R3중 적어도 어느 하나 이상은 탄소-탄소 이중결합, 탄소-탄소 삼중결합, 및 니트릴기 중 적어도 어느 하나 이상을 포함한다.
  4. 제 3 항에 있어서,
    상기 화학식 2로 표시되는 화합물은 상온(25℃)에서 액체 상태인, 이차전지용 전해질 첨가제.
  5. 제 1 항의 화학식 1로 표시되는 이차전지용 전해질 첨가제; 리튬염; 및 용제;를 포함하는,
    이차전지용 전해질.
  6. 제 5 항에 있어서,
    상기 이차전지용 전해질은 산화 분해형 첨가제를 더 포함하는,
    이차전지용 전해질.
  7. 제 5 항에 있어서,
    상기화학식 1로 표시되는 이차전지용 전해질 첨가제는 전해질 총 중량을 기준으로 0.01 내지 10중량%로 포함되는,
    이차전지용 전해질.
  8. 양극; 음극; 상기 양극과 음극 사이에 개재되는 분리막; 및
    상기 제 5 항에 의한 이차전지용 전해질을 포함하는,
    이차전지.
  9. 제 8 항에 있어서,
    상기 양극은 과리튬(Lithium-rich) 양극활물질을 포함하는,
    이차전지.
  10. 제 8 항에 있어서,
    상기 음극은 실리콘 음극활물질을 포함하는,
    이차전지.
PCT/KR2021/011896 2020-09-03 2021-09-02 리튬이차전지용 전해질 첨가제 및 이를 포함하는 리튬이차전지 WO2022050740A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200112116A KR102467447B1 (ko) 2020-09-03 2020-09-03 리튬이차전지용 전해질 첨가제 및 이를 포함하는 리튬이차전지
KR10-2020-0112116 2020-09-03

Publications (1)

Publication Number Publication Date
WO2022050740A1 true WO2022050740A1 (ko) 2022-03-10

Family

ID=80491254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011896 WO2022050740A1 (ko) 2020-09-03 2021-09-02 리튬이차전지용 전해질 첨가제 및 이를 포함하는 리튬이차전지

Country Status (2)

Country Link
KR (1) KR102467447B1 (ko)
WO (1) WO2022050740A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089390A (ja) * 2011-10-14 2013-05-13 Ube Ind Ltd 非水電解液及びそれを用いた蓄電デバイス
KR20140092746A (ko) * 2013-01-16 2014-07-24 삼성에스디아이 주식회사 리튬 전지
KR101941401B1 (ko) * 2018-02-07 2019-01-22 동우 화인켐 주식회사 전해액 조성물 및 이를 이용한 이차전지
CN110676511A (zh) * 2019-09-02 2020-01-10 孚能科技(赣州)股份有限公司 一种锂离子电池电解液和锂离子二次电池
KR20200062016A (ko) * 2018-11-26 2020-06-03 동우 화인켐 주식회사 전해액 조성물 및 이를 이용한 이차전지

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3304591A2 (en) 2015-06-04 2018-04-11 Raytheon Company Micro-hoses for integrated circuit and device level cooling
KR102264733B1 (ko) 2017-08-24 2021-06-15 주식회사 엘지에너지솔루션 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089390A (ja) * 2011-10-14 2013-05-13 Ube Ind Ltd 非水電解液及びそれを用いた蓄電デバイス
KR20140092746A (ko) * 2013-01-16 2014-07-24 삼성에스디아이 주식회사 리튬 전지
KR101941401B1 (ko) * 2018-02-07 2019-01-22 동우 화인켐 주식회사 전해액 조성물 및 이를 이용한 이차전지
KR20200062016A (ko) * 2018-11-26 2020-06-03 동우 화인켐 주식회사 전해액 조성물 및 이를 이용한 이차전지
CN110676511A (zh) * 2019-09-02 2020-01-10 孚能科技(赣州)股份有限公司 一种锂离子电池电解液和锂离子二次电池

Also Published As

Publication number Publication date
KR20220030575A (ko) 2022-03-11
KR102467447B1 (ko) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2021034141A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2012169843A2 (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2019093853A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019164164A1 (ko) 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
WO2021033987A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022158728A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2022203206A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2022211320A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수성 전해액 및 리튬 이차전지
WO2022158920A1 (ko) 전해액 및 이를 포함하는 이차전지
WO2022050740A1 (ko) 리튬이차전지용 전해질 첨가제 및 이를 포함하는 리튬이차전지
WO2020197035A1 (ko) 화합물, 이를 포함하는 리튬 이차전지용 전해질 및 리튬 이차전지
WO2020190076A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2023182647A1 (ko) 리튬 이차 전지용 유기 용매, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지
WO2021256700A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2019009595A1 (ko) 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 비수전해액
WO2022010227A1 (ko) 리튬 이차전지용 전해질 첨가제 및 이를 포함하는 리튬이차전지
WO2021125478A1 (ko) 이차전지용 전해액 첨가제 및 이를 포함하는 이차전지용 전해액
WO2023090665A1 (ko) 신규한 비수계 전해액용 첨가제 및 이를 포함하는 리튬 이차전지
WO2023003128A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2021149910A1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지
WO2023003127A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2023090664A1 (ko) 신규한 비수계 전해액용 첨가제 및 이를 포함하는 리튬 이차전지
WO2022015072A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022211425A1 (ko) 리튬 이차전지용 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2021080197A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864699

Country of ref document: EP

Kind code of ref document: A1