WO2022050328A1 - 導電材分散体、バインダー樹脂含有導電材分散体、電極膜用スラリー、電極膜、及び、非水電解質二次電池 - Google Patents

導電材分散体、バインダー樹脂含有導電材分散体、電極膜用スラリー、電極膜、及び、非水電解質二次電池 Download PDF

Info

Publication number
WO2022050328A1
WO2022050328A1 PCT/JP2021/032213 JP2021032213W WO2022050328A1 WO 2022050328 A1 WO2022050328 A1 WO 2022050328A1 JP 2021032213 W JP2021032213 W JP 2021032213W WO 2022050328 A1 WO2022050328 A1 WO 2022050328A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive material
mass
copolymer
material dispersion
structural unit
Prior art date
Application number
PCT/JP2021/032213
Other languages
English (en)
French (fr)
Inventor
穂波 平林
Original Assignee
東洋インキScホールディングス株式会社
トーヨーカラー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=77549984&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022050328(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東洋インキScホールディングス株式会社, トーヨーカラー株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to CN202410667889.2A priority Critical patent/CN118588349A/zh
Priority to KR1020227003616A priority patent/KR102462780B1/ko
Priority to CN202180004479.4A priority patent/CN114342006B/zh
Priority to EP21835927.1A priority patent/EP3995537A4/en
Priority to US17/676,795 priority patent/US11658303B2/en
Publication of WO2022050328A1 publication Critical patent/WO2022050328A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/025Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One embodiment of the present invention relates to a conductive material dispersion. Another embodiment of the present invention relates to a conductive composition such as a binder resin-containing conductive material dispersion and a slurry for an electrode membrane. Yet another embodiment of the present invention relates to an electrode membrane using the above conductive composition and a non-aqueous electrolyte secondary battery provided with the electrode membrane.
  • Lithium-ion secondary batteries are widely used as batteries for electric vehicles and mobile devices. With the improvement of high performance of electric vehicles and mobile devices, the demand for high capacity, high output, and small size and light weight of lithium ion secondary batteries is increasing year by year.
  • the capacity of the lithium ion secondary battery largely depends on the positive electrode active material and the negative electrode active material, which are the main materials. Therefore, various materials for use as electrode active materials for lithium ion secondary batteries are being actively researched. However, when the electrode active material that has been put into practical use is used, the charge capacity of the above secondary batteries has reached a level close to the theoretical value, and the improvement is near the limit. On the other hand, if the filling amount of the electrode active material in the electrode film is increased, the charging capacity can be easily increased. Therefore, attempts have been made to reduce the amount of the conductive material and the binder resin added, which do not directly contribute to the charge capacity.
  • the conductive material plays a role of forming a conductive path inside the electrode film and connecting particles of the electrode active material.
  • conductive path and the connection between particles it is required that cutting due to expansion and contraction of the electrode film is unlikely to occur.
  • nanocarbon having a large specific surface area As the conductive material.
  • the use of carbon nanotubes (CNTs) is effective for forming efficient conductive networks.
  • nanocarbon having a large specific surface area has a strong cohesive force, there is a problem that it is difficult to satisfactorily disperse the nanocarbon in the slurry for the electrode film and / or in the electrode film.
  • Patent Document 1 and Patent Document 2 propose a method of improving the initial characteristics and cycle life of a battery by using a polymer such as polyvinylpyrrolidone or polyvinyl alcohol as a dispersant and dispersing a conductive material in a solvent in advance. ing.
  • a polymer such as polyvinylpyrrolidone or polyvinyl alcohol
  • the use of polyvinylpyrrolidone or polyvinyl alcohol can produce a conductive material dispersion in a good dispersed state.
  • the conductive material dispersion has a problem that the dispersion state becomes poor in the process of forming the electrode film and the conductivity deteriorates.
  • Patent Document 3 and Patent Document 4 propose a conductive material dispersion using hydrogenated nitrile rubber as a dispersant.
  • hydrogenated nitrile rubbers have poor dispersibility, it is difficult to form a good conductive network with the conductor dispersion.
  • hydrogenated nitrile rubber has a high viscosity, there is a problem that it takes a long time to manufacture a conductive material dispersion, or the obtained conductive material dispersion has poor fluidity and handling is poor, so that it is industrially practical. It is difficult to make it.
  • Patent Document 5 also proposes a conductive material dispersion using hydrogenated nitrile rubber as a dispersant.
  • the dispersibility of the conductive material can be improved by using hydrogenated nitrile rubber showing specific physical properties.
  • the dispersed state of the conductive material cannot be maintained without the presence of other binders such as polyvinylidene fluoride, and it is difficult to uniformly disperse CNTs having strong cohesive force at a high concentration.
  • the present inventors satisfactorily disperse the conductive material in the conductive material dispersion in order to improve the output and cycle life of the battery with a small amount of the conductive material added, and the electrodes.
  • a conductive material dispersion having a good dispersed state could be produced as in the methods proposed in Patent Documents 1 and 2 described above, a slurry for an electrode membrane was prepared by further mixing with an electrode active material. In some cases, it was found that poor dispersion was likely to occur during the preparation stage.
  • the conductive material is dispersed in the conductive material dispersion. It is required to achieve both good dispersibility and stability at the stage of preparing the slurry for the electrode film.
  • the causes of performance deterioration and short circuit due to metal components are (1) mixing of metal impurities such as copper and iron derived from raw materials such as conductive materials or dispersants, (2) mixing of metal impurities such as copper and iron in the manufacturing process, and (3) It is conceivable that the metal ions contained in the positive electrode, the current collector, the battery container, etc. are eluted into the electrolytic solution and then reduced / precipitated on the negative electrode.
  • the method for removing metallic foreign substances include methods such as iron removal with a magnet, filtration, and centrifugation.
  • the viscosity was high, the metallic foreign matter could not be removed efficiently, and the deterioration of the battery performance due to the residual metallic foreign matter was confirmed.
  • one embodiment of the present invention provides a conductive material dispersion capable of achieving both good dispersibility and stability.
  • Another embodiment of the present invention provides, more specifically, a binder resin-containing conductive material dispersion as a conductive composition using the above-mentioned conductive material dispersion material.
  • another embodiment of the present invention provides a slurry for an electrode membrane having good dispersibility as a conductive composition using the above-mentioned conductive material dispersant.
  • another embodiment of the present invention provides an electrode film capable of improving the output and cycle life of the non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery having high output and good cycle life.
  • the dispersed state of the conductive material dispersion is good, a dispersion having excellent handleability can be obtained even if it contains a high concentration of carbon fibers, and the efficiency of removing metallic foreign substances which are obstacles to the conductive network is improved. Is possible. These make it possible to improve the rate characteristics and cycle characteristics of the battery.
  • the present invention includes the following embodiments. However, the present invention is not limited to the embodiments described below, and includes various embodiments.
  • One embodiment of the present invention is a conductive material dispersion containing a conductive material containing carbon fibers, a dispersant, and a dispersion medium, wherein the dispersant is a nitrile group-containing structural unit and an aliphatic hydrocarbon structural unit.
  • the copolymer A containing the above-mentioned copolymer A has a Mooney viscosity (ML 1 + 4 , 100 ° C.) of 40 to 70, and the above-mentioned conductive material dispersion has a phase at a frequency of 1 Hz by dynamic viscoelasticity measurement. It relates to a conductive material dispersion having an angle of 19 ° or more.
  • the complex elastic modulus by dynamic viscoelasticity measurement is preferably less than 20 Pa.
  • the carbon fiber concentration x (mass%) in the conductive material dispersion and the complex elastic modulus y (Pa) of the conductive material dispersion measured by dynamic viscoelasticity are the following equations (1) and (1). It is preferable to satisfy the relationship of 2) and the formula (3). y ⁇ 8x (1) y ⁇ 20 (2) 0.1 ⁇ x ⁇ 10 (3)
  • the content of the nitrile group-containing structural unit is 15% by mass or more and 50% by mass or less, and the content of the aliphatic hydrocarbon structural unit is 40% by mass or more and 85% by mass based on the mass of the copolymer A. It is preferably less than% by mass.
  • the conductive material dispersion further preferably contains 1% by mass or more and 10% by mass or less of the base based on the copolymer A.
  • the present invention relates to a conductive composition using a conductive material dispersion.
  • the conductive composition may be a binder resin-containing conductive material dispersion containing the conductive material dispersion of the above embodiment and a binder resin.
  • the conductive composition may be an electrode film slurry used to form an electrode film.
  • the electrode film slurry preferably contains the conductive material dispersion of the above embodiment, or the binder resin-containing conductive material dispersion of the above embodiment, and the electrode active material.
  • the electrode film is a film formed by using the conductive material dispersion of the above embodiment, a film formed by using the binder resin-containing conductive material dispersion of the above embodiment, and an electrode film of the above embodiment. It is preferable to contain at least one selected from the group consisting of films formed by using the slurry.
  • Another embodiment of the present invention is a non-aqueous electrolyte secondary battery containing a positive electrode, a negative electrode, and an electrolyte, and at least one selected from the group consisting of the positive electrode and the negative electrode is the electrode film of the embodiment.
  • non-aqueous electrolyte secondary batteries including.
  • the disclosure of this application is related to the subject matter described in Japanese Patent Application No. 2020-148208 filed on September 3, 2020, the content of which is incorporated herein by reference.
  • a conductive material dispersion capable of coexisting with good dispersibility and good stability.
  • a conductive composition containing the above-mentioned conductive material dispersion More specifically, it is possible to provide a binder resin-containing conductive material dispersion. Further, it is possible to provide a slurry for an electrode film having good dispersibility. Further, according to another embodiment of the present invention, there is provided an electrode film capable of improving the output and cycle life of the non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery having high output and good cycle life. It is possible.
  • FIG. 1 shows the CNT concentrations (mass%) of the dispersions 16, 19 to 21 and the comparative dispersions 7 to 10 prepared in Examples and the complex elastic modulus [G * ] (Pa) by dynamic viscoelasticity measurement. It is a graph which shows the relationship of.
  • a conductive material dispersion a binder resin-containing conductive material dispersion, a slurry for an electrode film, an electrode film, a non-aqueous electrolyte secondary battery, and the like will be described in detail.
  • the present invention is not limited to the embodiments described below.
  • the present invention also includes embodiments that are carried out without changing the gist.
  • the conductive material dispersion according to the embodiment of the present invention contains a conductive material containing carbon fibers, a dispersant containing the copolymer A, and a dispersion medium. That is, the conductive material dispersion contains at least the copolymer A, the solvent, and the carbon fibers.
  • the conductive material dispersion material may further contain components such as a base and an acid that can be blended in the secondary battery electrode.
  • the conductive material contains at least carbon fibers, and may contain a conductive material other than carbon fibers (hereinafter, referred to as other conductive materials), if necessary.
  • a conductive material other than carbon fibers hereinafter, referred to as other conductive materials
  • the carbon fibers it is preferable to contain carbon ultrashort fibers such as carbon nanotubes and vapor-grown carbon fibers, and it is more preferable to contain carbon nanotubes.
  • Other conductive materials include, for example, gold, silver, copper, silver-plated copper powder, silver-copper composite powder, silver-copper alloy, amorphous copper, nickel, chromium, palladium, rhodium, ruthenium, indium, silicon, aluminum, etc.
  • Examples thereof include metal powders such as tungsten, morphten, and platinum, and inorganic powders coated with these metals. Further, for example, powders of metal oxides such as silver oxide, indium oxide, tin oxide, zinc oxide and ruthenium oxide, inorganic powders coated with these metal oxides, and carbon materials such as carbon black and graphite can be mentioned. .. Other conductive materials may be used alone or in combination of two or more. When the above-mentioned other conductive materials are used, carbon black is preferable from the viewpoint of the adsorption performance of the dispersant. In the present specification, the carbon fiber, carbon black, and other carbon-based conductive materials are collectively referred to as "carbon-based conductive material". It is preferable to use a carbon-based conductive material as the conductive material. However, the conductive material is a substance (material) different from the electrode active material described later.
  • Carbon nanotubes include flat graphite wound in a cylindrical shape, single-walled carbon nanotubes, and multi-walled carbon nanotubes, and these may be mixed.
  • Single-walled carbon nanotubes have a structure in which one layer of graphite is wound.
  • Multi-walled carbon nanotubes have a structure in which two or three or more layers of graphite are wound.
  • the side wall of the carbon nanotube does not have to have a graphite structure.
  • the carbon nanotube may be a carbon nanotube having a side wall having an amorphous structure.
  • the shape of carbon nanotubes is not limited.
  • the carbon nanotubes may have various shapes, and specific examples thereof include needle shape, cylindrical tube shape, fish bone shape (fishbone or cup laminated type), playing card shape (platelet), and coil shape. Etc. can be mentioned.
  • the shape of the carbon nanotubes is preferably needle-shaped or cylindrical tube-shaped.
  • the carbon nanotubes may be a single shape or a combination of two or more kinds of shapes.
  • Examples of the form of carbon nanotubes include graphite whisker, carbonentas carbon, graphite fiber, ultrafine carbon tube, carbon tube, carbon fibril, carbon microtube, carbon nanofiber and the like.
  • the carbon nanotubes may have a single form thereof or a combination of two or more kinds thereof.
  • carbon black examples include acetylene black, furnace black, hollow carbon black, channel black, thermal black, and Ketjen black. Further, the carbon black may be neutral, acidic or basic, and an oxidation-treated carbon black or a graphitized carbon black may be used.
  • the carbon purity of the carbon-based conductive material can be determined by general CHN elemental analysis, and is represented by the content of carbon atoms (mass%) in the carbon-based conductive material.
  • the carbon purity is preferably 90% by mass or more, more preferably 95% by mass or more, still more preferably 98% by mass or more, based on the mass of the carbon-based conductive material (assuming the mass of the carbon-based conductive material is 100% by mass). It is preferable to set the carbon purity within the above range because it is possible to prevent problems such as dendrite formation due to impurities and short circuit when used in a secondary battery.
  • the amount of metal contained in the carbon-based conductive material is preferably less than 10% by mass, more preferably less than 5% by mass, still more preferably less than 2% by mass, based on 100% by mass of the carbon-based conductive material.
  • the metal contained in the carbon nanotube include a metal and a metal oxide used as a catalyst in synthesizing the carbon nanotube. Specific examples thereof include metals such as iron, cobalt, nickel, aluminum, magnesium, silica, manganese, and molybdenum, metal oxides, and composite oxides thereof.
  • the carbon-based conductive material may contain an iron metal element of 50 ppm or less, more specifically, 20 ppm or less of the catalyst used in the manufacturing process. As described above, by significantly reducing the iron content as an impurity remaining in the carbon-based conductive material, side reactions in the electrode can be suppressed and more excellent conductivity can be exhibited. The content of metal impurities remaining in the conductive material can be analyzed using high frequency inductively coupled plasma (ICP). In one embodiment, the carbon-based conductive material preferably does not contain an iron metal element.
  • the BET specific surface area of the conductive material is preferably 20 to 1,000 m 2 / g, and more preferably 30 to 500 m 2 / g.
  • the content of carbon fibers contained in the conductive material dispersion is preferably 0.1% by mass or more, preferably 0.5% by mass, based on the mass of the conductive material dispersion (assuming the mass of the conductive material dispersion is 100% by mass). % Or more is more preferable.
  • the content of the carbon fiber is 10% by mass or less, more preferably 8% by mass or less, based on the mass of the conductive material dispersion (assuming the mass of the conductive material dispersion is 100% by mass).
  • the content of the conductive material contained in the conductive material dispersion is preferably 0.1% by mass or more based on the mass of the conductive material dispersion (assuming the mass of the conductive material dispersion is 100% by mass), and is 0. 5% by mass or more is more preferable.
  • the content of the conductive material is preferably 30% by mass or less, more preferably 20% by mass or less, based on the mass of the conductive material dispersion (assuming the mass of the conductive material dispersion is 100% by mass).
  • the conductive material can be satisfactorily and stably present in the dispersion without causing sedimentation or gelation.
  • the content of the conductive material may be 10% by mass or less, preferably 8% by mass or less, based on the mass of the conductive material dispersion. be.
  • carbon fiber (CNT or the like) having a high specific surface area is used as the conductive material, so that the content is preferably in the above range.
  • the content of the conductive material may be 5% by mass or more, or may be more than 10% by mass.
  • the dispersant contains a copolymer A containing an aliphatic hydrocarbon structural unit and a nitrile group-containing structural unit.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the copolymer A is preferably 40 or more and 70 or less.
  • the aliphatic hydrocarbon structural unit is a structural unit including an aliphatic hydrocarbon structure, preferably a structural unit consisting only of an aliphatic hydrocarbon structure.
  • the aliphatic hydrocarbon structure includes at least a saturated aliphatic hydrocarbon structure, and may further contain an unsaturated aliphatic hydrocarbon structure.
  • the aliphatic hydrocarbon structure preferably contains at least a linear aliphatic hydrocarbon structure, and may further contain a branched aliphatic hydrocarbon structure.
  • Examples of the aliphatic hydrocarbon structural unit include an alkylene structural unit, an alkenylene structural unit, an alkyl structural unit, an alkanetriyl structural unit, an alkanetetrayl structural unit, and the like.
  • the aliphatic hydrocarbon structural unit preferably contains at least an alkylene structural unit.
  • the alkylene structural unit is a structural unit including an alkylene structure, preferably a structural unit consisting of only an alkylene structure.
  • the alkylene structure is preferably a linear alkylene structure or a branched alkylene structure.
  • the alkylene structural unit preferably includes a structural unit represented by the following general formula (1A).
  • n represents an integer of 1 or more.
  • n is preferably an integer of 2 or more, more preferably an integer of 3 or more, and particularly preferably an integer of 4 or more.
  • n is preferably an integer of 6 or less, and more preferably an integer of 5 or less.
  • n is preferably 4.
  • "*" represents a joint with another structure.
  • the alkylene structural unit preferably includes a structural unit represented by the following general formula (1B).
  • n represents an integer of 1 or more.
  • n is preferably an integer of 2 or more, and more preferably an integer of 3 or more.
  • n is preferably an integer of 5 or less, and more preferably an integer of 4 or less.
  • n is preferably 3.
  • the alkylene structural unit preferably includes a structural unit represented by the following general formula (1C).
  • n represents an integer of 1 or more.
  • n is preferably an integer of 4 or less, more preferably an integer of 3 or less, and even more preferably an integer of 2 or less.
  • n is preferably 2.
  • the method for introducing the alkylene structural unit in the copolymer A is not particularly limited.
  • the following method (1a) or (1b) can be mentioned.
  • a monomer composition containing a conjugated diene monomer is used, and a copolymer is prepared by a polymerization reaction thereof.
  • the prepared copolymer contains a monomer unit derived from a conjugated diene monomer.
  • the "monomer unit derived from the conjugated diene monomer” may be referred to as the "conjugated diene monomer unit”, and the monomer unit derived from other monomers is also omitted in the same manner. May be done.
  • by hydrogenating the conjugated diene monomer unit at least a part of the conjugated diene monomer unit is converted into an alkylene structural unit.
  • “hydrogenation” may be referred to as "hydrogenation”.
  • the finally obtained copolymer A contains a unit obtained by hydrogenating a conjugated diene monomer unit as an alkylene structural unit.
  • the conjugated diene monomer unit contains at least a monomer unit having one carbon-carbon double bond.
  • the 1,3-butadiene monomer unit which is a conjugated diene monomer unit, is a monomer unit having a cis-1,4 structure, a monomer unit having a trans-1,4 structure, and 1, It may contain at least one monomer unit selected from the group consisting of monomer units having two structures, or two or more kinds of monomer units.
  • the conjugated diene monomer unit is a monomer unit having no carbon-carbon double bond, and may further contain a monomer unit containing a branch point.
  • the term "branch point" means a branch point in a branched polymer.
  • a monomer composition containing an ⁇ -olefin monomer is used, and a copolymer is prepared by a polymerization reaction thereof.
  • the prepared copolymer contains an ⁇ -olefin monomer unit.
  • the finally obtained copolymer A contains an ⁇ -olefin monomer unit as an alkylene structural unit.
  • the conjugated diene monomer has 4 or more carbon atoms, preferably 4 or more and 6 or less carbon atoms.
  • Examples of the conjugated diene monomer include conjugated diene compounds such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, and 1,3-pentadiene. Of these, 1,3-butadiene is preferable.
  • the alkylene structural unit preferably contains a structural unit (hydrogenated conjugated diene monomer unit) obtained by hydrogenating a conjugated diene monomer unit.
  • the alkylene structural unit contains a structural unit (hydrogenated 1,3-butadiene monomer unit) obtained by hydrogenating a 1,3-butadiene monomer unit.
  • the conjugated diene monomer may be used alone or in combination of two or more.
  • Hydrogenation is preferably a method capable of selectively hydrogenating a conjugated diene monomer unit.
  • the hydrogenation method include known methods such as an oil layer hydrogenation method and an aqueous layer hydrogenation method.
  • Hydrogenation can be performed by a normal method. Hydrogenation can be carried out, for example, by treating a copolymer having a conjugated diene monomer unit with hydrogen gas in the presence of a hydrogenation catalyst in a state of being dissolved in an appropriate solvent.
  • a hydrogenation catalyst include iron, nickel, palladium, platinum, copper and the like.
  • the ⁇ -olefin monomer has 2 or more carbon atoms, preferably 3 or more, and more preferably 4 or more.
  • the carbon number of the ⁇ -olefin monomer is preferably 6 or less, and more preferably 5 or less.
  • Examples of the ⁇ -olefin monomer include ⁇ -olefin compounds such as ethylene, propylene, 1-butene and 1-hexene. The ⁇ -olefin monomer may be used alone or in combination of two or more.
  • the alkylene structural unit preferably includes at least one selected from the group consisting of a structural unit including a linear alkylene structure and a structural unit including a branched alkylene structure. It is more preferable that the alkylene structural unit contains at least one selected from the group consisting of a structural unit consisting only of a linear alkylene structure and a structural unit consisting of only a branched alkylene structure. It is more preferable that the alkylene structural unit contains at least one selected from the group consisting of the structural unit represented by the above formula (1B) and the structural unit represented by the above formula (1C).
  • the alkylene structural unit may include a structural unit including a linear alkylene structure and a structural unit including a branched alkylene structure.
  • the content of the branched alkylene structure is based on the mass of the alkylene structural unit (that is, alkylene).
  • the mass of the structural unit is 100% by mass
  • it is preferably 70% by mass or less, and more preferably 65% by mass or less.
  • the content is preferably 20% by mass or less, more preferably 18% by mass or less, and further preferably 15% by mass or less.
  • the content of the branched alkylene structure is based on the mass of the alkylene structural unit (that is, that is). (When the mass of the alkylene structural unit is 100% by mass), for example, it may be 1% by mass or more, 5% by mass or more, and further 10% by mass or more.
  • the content of the alkylene structural unit is based on the total mass of the aliphatic hydrocarbon structural unit (that is, when the mass of the aliphatic hydrocarbon structural unit is 100% by mass). It is preferably 60% by mass or more. The content is more preferably 70% by mass or more, further preferably 80% by mass or more, and particularly preferably 90% by mass or more. The content of the alkylene structural unit is, for example, less than 100% by mass based on the total mass of the aliphatic hydrocarbon structural units (that is, when the mass of the aliphatic hydrocarbon structural unit is 100% by mass). , 99.5% by mass or less, 99% by mass or less, or 98% by mass or less. In one embodiment, the content of the alkylene structural unit may be 100% by mass.
  • the content of the aliphatic hydrocarbon structural unit is preferably 40% by mass or more, preferably 50% by mass or more, based on the mass of the copolymer A (that is, when the mass of the copolymer A is 100% by mass). It is more preferably mass% or more, and even more preferably 60% by mass or more.
  • the content of the aliphatic hydrocarbon structural unit is preferably less than 85% by mass, preferably less than 85% by mass, based on the mass of the copolymer A (that is, when the mass of the copolymer I is 100% by mass). It is more preferably 70% by mass or less, and further preferably 70% by mass or less.
  • the nitrile group-containing structural unit is a structural unit containing a nitrile group, and preferably includes a structural unit containing an alkylene structure in which at least one hydrogen atom is substituted with a nitrile group. More preferably, the nitrile group-containing structural unit includes a structural unit consisting only of an alkylene structure in which at least one hydrogen atom is substituted with a nitrile group.
  • the alkylene structure is preferably a linear or branched alkylene structure.
  • the nitrile group-containing structural unit may further include a structural unit containing (or consisting of only) an alkyl structure substituted with a nitrile group.
  • the number of nitrile groups contained in the nitrile group-containing structural unit is preferably one.
  • the nitrile group-containing structural unit preferably contains a structural unit represented by the following general formula (2A).
  • n represents an integer of 2 or more.
  • n is preferably an integer of 6 or less, more preferably an integer of 4 or less, and even more preferably an integer of 3 or less.
  • n is preferably 2.
  • the nitrile group-containing structural unit preferably contains a structural unit represented by the following general formula (2B).
  • R represents a hydrogen atom or a methyl group.
  • R is preferably a hydrogen atom.
  • the method for introducing the nitrile group-containing structural unit in the copolymer A is not particularly limited.
  • a method (method (2a)) in which a monomer composition containing a nitrile group-containing monomer is used and a copolymer is prepared by a polymerization reaction thereof can be preferably used.
  • the finally obtained copolymer A contains a unit derived from the nitrile group-containing monomer as a nitrile group-containing structural unit.
  • the nitrile group-containing monomer that can form a nitrile group-containing structural unit include a monomer containing a polymerizable carbon-carbon double bond and a nitrile group.
  • an ⁇ , ⁇ -ethylenically unsaturated group-containing compound having a nitrile group can be mentioned, and specific examples thereof include acrylonitrile and methacrylonitrile.
  • the nitrile group-containing monomer preferably contains acrylonitrile from the viewpoint of increasing the intermolecular force between the copolymers A and / or the copolymer A and the object to be dispersed (the adsorbed substance).
  • the nitrile group-containing monomer may be used alone or in combination of two or more.
  • the content of the nitrile group-containing structural unit is preferably 15% by mass or more, preferably 20% by mass, based on the mass of the copolymer A (that is, when the mass of the copolymer A is 100% by mass). % Or more, more preferably 30% by mass or more.
  • the content of the nitrile group-containing structural unit is preferably 50% by mass or less, preferably 46% by mass, based on the mass of the copolymer A (that is, when the mass of the copolymer A is 100% by mass). % Or less, more preferably 40% by mass or less.
  • the adsorptivity to the dispersion and the affinity for the dispersion medium can be controlled, and the dispersion can be stably present in the dispersion medium. Can be done.
  • the affinity of the copolymer A for the electrolytic solution can be controlled, and problems such as the copolymer A dissolving in the electrolytic solution in the battery and increasing the resistance of the electrolytic solution can be prevented.
  • the copolymer A may further contain any structural unit.
  • the arbitrary structural unit include an amide group-containing structural unit; a carboxyl group-containing structural unit; an alkenylene structural unit; an alkyl structural unit; an alkanetriyl structural unit, and a structural unit containing a branch point such as an alkanetetrayl structural unit. ..
  • the structural unit including the branch point is a structural unit different from the structural unit including the branched alkylene structure and the structural unit including the branched alkyl structure.
  • the copolymer A preferably further contains an amide group-containing structural unit as an arbitrary structural unit.
  • the amide group-containing structural unit is a structural unit containing an amide group.
  • it may be a structural unit containing an alkylene structure substituted with an amide group.
  • the alkylene structure is preferably a linear or branched alkylene structure.
  • the amide group-containing structural unit may further include a structural unit containing (or consisting of only) an alkyl structure substituted with an amide group.
  • the number of amide groups contained in the amide group-containing structural unit is preferably one.
  • the amide group-containing structural unit preferably contains a structural unit represented by the following general formula (3A).
  • n represents an integer of 2 or more. n is preferably an integer of 6 or less, more preferably an integer of 4 or less, and even more preferably an integer of 3 or less. In particular, n is preferably 2.
  • R'independently represents a hydrogen atom or a substituent. The substituent is preferably an alkyl group or a hydroxyalkyl group. It is preferable that at least one R'is a hydrogen atom, and more preferably two are hydrogen atoms.
  • the amide group-containing structural unit preferably contains a structural unit represented by the following general formula (3B).
  • R represents a hydrogen atom or a methyl group.
  • R is preferably a hydrogen atom.
  • R'independently represents a hydrogen atom or a substituent.
  • the substituent is preferably an alkyl group or a hydroxyalkyl group. It is preferable that at least one R'is a hydrogen atom, and more preferably two are hydrogen atoms.
  • the method for introducing the amide group-containing structural unit in the copolymer A is not particularly limited.
  • the following method (3a) can be mentioned.
  • a monomer composition containing an amide group-containing monomer is used, and a copolymer is prepared by a polymerization reaction thereof.
  • the prepared copolymer contains an amide group-containing monomer unit.
  • the finally obtained copolymer A contains an amide group-containing monomer unit as an amide group-containing structural unit.
  • amide group-containing monomer examples include mono (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, and N-isopropyl (meth) acrylamide.
  • Alkyl (meth) acrylamides Alkyl (meth) acrylamides; Dialkyl (meth) acrylamides such as N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide; N- (2-hydroxyethyl) (meth) acrylamide, N -(2-Hydroxypropyl) (meth) acrylamide, N- (hydroxyalkyl) (meth) acrylamide such as N- (2-hydroxybutyl) (meth) acrylamide; diacetone (meth) acrylamide; acryloylmorpholine and the like. ..
  • the term "(meth) acrylic” refers to acrylic or methacrylic.
  • the amide group-containing monomer preferably contains at least one selected from the group consisting of acrylamide, methacrylamide, and N, N-dimethylacrylamide.
  • the amide group-containing monomer may be used alone or in combination of two or more.
  • the content of the amide group-containing structural unit is preferably 10% by mass or less, preferably 5% by mass or less, based on the mass of the copolymer A (that is, when the mass of the copolymer A is 100% by mass). More preferably, 3% by mass or less is further preferable, and 1% by mass or less is particularly preferable.
  • the content of the amide group-containing structural unit is not more than the above range, it is possible to prevent the problem of gelation of the conductive material dispersion during storage, which may occur due to excessively strong hydrogen bonds between the copolymers A. can.
  • the copolymer A may further contain a carboxyl group-containing structural unit as an arbitrary structural unit.
  • the carboxyl group-containing structural unit is a structural unit containing a carboxyl group.
  • it may be a structural unit containing an alkylene structure substituted with a carboxyl group.
  • the alkylene structure is preferably a linear or branched alkylene structure.
  • the carboxyl group-containing structural unit may further include a structural unit containing (or consisting of only) an alkyl structure substituted with a carboxyl group.
  • the number of carboxyl groups contained in the carboxyl group-containing structural unit is preferably one or two.
  • the carboxyl group-containing structural unit preferably contains a structural unit represented by the following general formula (4A).
  • n represents an integer of 2 or more. n is preferably an integer of 6 or less, more preferably an integer of 4 or less, and even more preferably an integer of 3 or less. In particular, n is preferably 2.
  • the carboxyl group-containing structural unit preferably contains a structural unit represented by the following general formula (4B).
  • R represents a hydrogen atom or a methyl group.
  • R is preferably a hydrogen atom.
  • the content of the carboxyl group-containing structural unit is preferably less than 1% by mass, preferably 0.5% by mass, based on the mass of the copolymer A (that is, when the mass of the copolymer A is 100% by mass). The following is more preferable, and 0.3% by mass or less is further preferable. If the hydrogen bonds between the copolymers A are too strong, the problem that the conductive material dispersion gels during storage is likely to occur. On the other hand, when the content of the carboxyl group-containing structural unit in the copolymer A is less than (or less than) the above range, the problem of gelation of the conductive material dispersion during storage can be prevented.
  • the conjugated diene monomer unit is a monomer unit having no carbon-carbon double bond in the unit. Therefore, it may be introduced into the molecule as a monomer unit containing a branch point.
  • the finally obtained copolymer A is a branched polymer, and contains a conjugated diene monomer unit as an aliphatic hydrocarbon structural unit containing a branch point such as an alkanetriyl structural unit or an alkanetetrayl structural unit. But it may be.
  • the aliphatic hydrocarbon structural unit contains a structural unit containing a branch point
  • the copolymer A is a branched polymer.
  • the branched polymer may be a mesh polymer. Since the copolymer A containing the structural unit including the branch point can be three-dimensionally adsorbed on the object to be dispersed, the dispersibility and stability can be improved more easily.
  • Preferred embodiments of the copolymer A include the following.
  • (A1) The total content of the aliphatic hydrocarbon structural unit and the nitrile group-containing structural unit contained in the copolymer A is 80% by mass or more and 100% by mass or less based on the mass of the copolymer A.
  • the total content of each of the structural units is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 98% by mass or more.
  • A2 The total content of the aliphatic hydrocarbon structural unit, the nitrile group-containing structural unit, and the amide group-containing structural unit contained in the copolymer A is 80% by mass or more and 100% by mass based on the mass of the copolymer A.
  • the total content of each of the structural units is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 98% by mass or more.
  • A3 The total content of the aliphatic hydrocarbon structural unit, the nitrile group-containing structural unit, the amide group-containing structural unit, and the carboxyl group-containing structural unit contained in the copolymer A is based on the mass of the copolymer A.
  • the copolymer A is 80% by mass or more and 100% by mass or less.
  • the total content of each of the structural units is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 98% by mass or more.
  • the content of each structural unit in the copolymer A can be determined by using the amount of the monomer used, NMR (nuclear magnetic resonance) and / or IR (infrared spectroscopy) measurement. ..
  • the copolymer A preferably has Mooney viscosity (ML 1 + 4 , 100 ° C.) of 40 to 70.
  • the copolymer A may contain a nitrile group-containing structural unit and an aliphatic hydrocarbon structural unit, and may have Mooney viscosity (ML 1 + 4 , 100 ° C.) of 40 to 70.
  • Mooney viscosity (ML 1 + 4 , 100 ° C.) can be satisfactorily dispersed.
  • the "Moony viscosity (ML 1 + 4 , 100 ° C.)" in the present invention can be measured at a temperature of 100 ° C. in accordance with JIS K6300-1.
  • the Mooney viscosity of the copolymer A may be 40 or more and 70 or less.
  • the Mooney viscosity of the copolymer A is preferably 60 or less, more preferably 55 or less, and even more preferably 50 or less.
  • the upper limit of the Mooney viscosity of the copolymer A is adjusted to the above range, the adsorption force of the copolymer A to the carbon fiber surface becomes low, the carbon fiber having a strong cohesive force cannot be dispersed, and uniform conductivity is obtained. Problems that make it difficult to prepare a material dispersion can be easily suppressed.
  • the obtained conductive material dispersion has a high viscosity, and metallic foreign substances mixed from the raw materials cannot be efficiently removed by methods such as iron removal with a magnet, filtration, and centrifugation, and the remaining metallic foreign substances cannot be used for battery performance. It is possible to suppress the problem of deterioration.
  • the method for adjusting the Mooney viscosity of the copolymer A is not particularly limited.
  • the Mooney viscosity can be adjusted by changing the composition (eg, type, content, hydrogenation rate), structure (eg, linearity), and molecular weight of the copolymer A.
  • the Mooney viscosity can be adjusted by changing the conditions (for example, the polymerization temperature, the amount of the molecular weight adjusting agent) and the like when preparing the copolymer A.
  • the Mooney viscosity of the copolymer A can be adjusted by the following method. In the method (5a), the Mooney viscosity is lowered by increasing the amount of the molecular weight adjusting agent used for preparing the copolymer A.
  • the Mooney viscosity of the copolymer A is lowered by adding a base to hydrolyze the nitrile group contained in the nitrile group-containing structural unit of the copolymer A.
  • the Mooney viscosity is lowered by applying a mechanical shearing force to the copolymer A or the dispersant containing the copolymer A by using a disperser in which a larger shearing force is applied. ..
  • Examples of the molecular weight adjusting agent that can be used in the method (5a) above include alkyl mercaptans such as octyl mercaptan, nonyl mercaptan, decyl mercaptan, dodecyl mercaptan, 3-mercapto-1,2-propanediol, and thioglycolic acid.
  • alkyl mercaptans such as octyl mercaptan, nonyl mercaptan, decyl mercaptan, dodecyl mercaptan, 3-mercapto-1,2-propanediol, and thioglycolic acid.
  • Thioglycolic acid esters such as octyl, nonyl thioglycolate, -2-ethylhexyl thioglycolic acid, 2,4-diphenyl-4-methyl-1-pentene, 1-methyl-4-isopropylidene-1-cyclohexene, ⁇ -Pinen, ⁇ -Pinen and the like can be mentioned.
  • a base may be added to prepare the copolymer A containing a nitrile group-containing structural unit and an aliphatic hydrocarbon structural unit. Further, the copolymer containing the nitrile group-containing structural unit and the aliphatic hydrocarbon structural unit already prepared may be dissolved in a solvent capable of dissolving the copolymer, and then a base may be added to prepare the copolymer. ..
  • a base As the base to be added, at least one selected from the group consisting of an inorganic base and an organic hydroxide (organic base) can be used.
  • Examples of the inorganic base include chlorides, hydroxides, carbonates, nitrates, sulfates, phosphates, tungstates, vanadium salts, molybdenates and niobates of alkali metals or alkaline earth metals. , Or borate; and ammonium hydroxide and the like.
  • hydroxides of alkali metals or alkaline earth metals are preferable from the viewpoint of easily supplying cations.
  • Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide and the like.
  • Examples of the hydroxide of the alkaline earth metal include calcium hydroxide and magnesium hydroxide. Among these, it is more preferable to use at least one selected from the group consisting of lithium hydroxide, sodium hydroxide, and potassium hydroxide.
  • the metal contained in the inorganic base may be a transition metal.
  • Organic hydroxide is a salt containing organic cations and hydroxide ions.
  • the organic hydroxide include trimethyl-2-hydroxyethylammonium hydroxide, tetramethylammonium hydroxide, cetyltrimethylammonium hydroxide, hexadecyltrimethylammonium hydroxide, trimethylphenylammonium hydroxide, and 3-trifluoromethyl-.
  • examples thereof include phenyltrimethylammonium hydroxide and benzyltrimethylammonium hydroxide.
  • the amount of the base used is preferably 1% by mass or more, more preferably 2% by mass or more, still more preferably 3% by mass or more, based on the mass of the copolymer A.
  • the amount of the base used is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less, based on the mass of the copolymer. If the amount used is too small, denaturation of the nitrile group due to hydrolysis tends to be less likely to occur. If used too much, it can cause corrosion inside the disperser and / or the battery. From such a viewpoint, in one embodiment, the conductor dispersion may further contain 1% by mass or more and 10% by mass or less of the base based on the mass of the copolymer A.
  • the modification of the nitrile group by hydrolysis can be performed by mixing the copolymer A containing the aliphatic hydrocarbon structural unit and the nitrile group-containing structural unit, the base, and the solvent. .. Further, any component may be mixed.
  • the order in which the copolymer A, the base, and the solvent are added to the container and the mixing method are not limited, and these may be added to the container at the same time. For example, the copolymer A, the base and the solvent may be added to the container separately.
  • one or both of the copolymer A and the base are mixed with a solvent to prepare a copolymer-containing liquid and / or a base-containing liquid, and the copolymer-containing liquid and / or the base-containing liquid is placed in a container. May be added to.
  • the base dispersion in which the base is dispersed in the solvent is stirred in the copolymer solution in which the copolymer A is dissolved in the solvent.
  • the method of adding is preferable.
  • a disperser, a homogenizer, or the like can be used for stirring.
  • the solvent a solvent described later can be used.
  • a trace amount of water and / or alcohol may be added to the container. Water and / or alcohol may be added to the container while mixing the copolymer A and the base, or may be added to the container before adding the copolymer A and the base to the container, or the copolymer. It may be added to the container simultaneously with A and the base or subsequently. Further, when the copolymer A, the base, and any component used as necessary have high hygroscopicity, water may be contained as hygroscopic water.
  • the amount of water and / or alcohol is preferably 0.05 to 20% by mass, more preferably 0.05 to 5% by mass, still more preferably 0.05 to 1% by mass, based on the mass of the copolymer A. ..
  • alcohols examples include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, benzyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol and polypropylene glycol. , Butylene glycol, hexanediol, pentandiol, glycerin, hexanetriol, thiodiglycol and the like. Alcohol may be used alone or in combination of two or more.
  • the hydrolysis is preferably carried out in the presence of at least one selected from the group consisting of methanol, ethanol and water, particularly preferably in the presence of water.
  • the copolymer A is used as a dispersant in a state where the copolymer A is dissolved in a solvent capable of dissolving the copolymer A, it is more preferable to apply a shearing force in the state of the copolymer solution.
  • a method of applying a shearing force in the state of the copolymer A solution a method using a dispersion means such as a homogenizer or a Silberson mixer can be mentioned.
  • a dispersion means capable of applying a higher shearing force such as a homogenizer or a Silberson mixer.
  • Examples of the method of applying a mechanical shearing force to the copolymer A before dissolution include a method using a dispersion means such as a kneader and a two-roll mill.
  • Preferred embodiments of the method for producing the copolymer A include the following.
  • P1 Using a monomer composition containing a conjugated diene monomer and a nitrile group-containing monomer, a copolymer is prepared by a polymerization reaction thereof (methods (1a) and (2a)).
  • a method for producing a copolymer A which comprises hydrogenating a unit derived from the conjugated diene monomer contained in the copolymer (conjugated diene monomer unit) (method (1a)). In this method, some or all of the conjugated diene monomer units are hydrogenated.
  • a copolymer is prepared by a polymerization reaction thereof ((1a). (2a) and (3a)), and a method for producing the copolymer A, which comprises hydrogenating the conjugated diene monomer unit contained in the copolymer (method (1a)). In this method, some or all of the conjugated diene monomer units are hydrogenated.
  • a copolymer is prepared by a polymerization reaction thereof (methods (1a) and (2a)). Hydrogenation to the conjugated diene monomer unit contained in the copolymer (method (1a)) and addition of a base to hydrolyze the nitrile group-containing structural unit contained in the copolymer.
  • a method for producing the copolymer A which comprises (the method of (5b)). In this method, some or all of the conjugated diene monomer units are hydrogenated.
  • a part (not all) of the nitrile group-containing structural unit is hydrolyzed so that the copolymer A contains the nitrile group-containing structural unit.
  • P4 Using a monomer composition containing a conjugated diene monomer and a nitrile group-containing monomer, a copolymer is prepared by a polymerization reaction thereof (methods (1a) and (2a)).
  • the present invention comprises hydrogenating the conjugated diene monomer unit contained in the copolymer (method (1a)) and applying a mechanical shearing force to the copolymer solution (method (5c)).
  • a method for producing the copolymer A In this method, some or all of the conjugated diene monomer units are hydrogenated.
  • the above-mentioned monomer composition may further contain an amide group-containing monomer and / or a carboxyl group-containing monomer.
  • the polymerization reaction used for the preparation of the copolymer A is preferably an emulsion polymerization reaction, and a usual emulsion polymerization method can be used.
  • the polymerization agents such as emulsifiers (surfactants), polymerization initiators, chelating agents, oxygen scavengers, and molecular weight modifiers used for emulsion polymerization are not particularly limited, and conventionally known agents can be used.
  • emulsifier an anionic or anionic and nonionic (nonionic) emulsifiers are usually used.
  • anionic emulsifier examples include fatty acid salts such as potassium beef fatty acid, partially hydrogenated beef fatty acid potassium oleate, potassium oleate, and sodium oleate; Resin acid salts such as; alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate and the like can be mentioned.
  • nonionic emulsifier examples include polyethylene glycol ester type, polypropylene glycol ester type, and pluronic (registered trademark) type emulsifiers such as block copolymers of ethylene oxide and propylene oxide.
  • the polymerization initiator examples include thermal decomposition initiators such as persulfates such as potassium persulfate and ammonium persulfate; t-butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, octanoyl peroxide, and the like.
  • Thermal decomposition initiators such as persulfates such as potassium persulfate and ammonium persulfate; t-butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, octanoyl peroxide, and the like.
  • Organic peroxides such as 3,5,5-trimethylhexanoyl peroxide; azo compounds such as azobisisobutyronitrile; redox-based initiators composed of these and reducing agents such as divalent iron ions. Be done. Of these, redox-based initiators are preferred.
  • the emulsion polymerization reaction may be either a continuous type or a batch type.
  • the polymerization temperature may be any of low temperature to high temperature polymerization. In one embodiment, the polymerization temperature is preferably 0 to 50 ° C, more preferably 0 to 35 ° C.
  • the method for adding the monomer (collective addition, partial addition, etc.), polymerization time, polymerization conversion rate, etc. are not particularly limited. The conversion rate is preferably 85% by mass or more, more preferably 90% by mass or more.
  • the weight average molecular weight of the copolymer A is preferably 5,000 or more, more preferably 10,000 or more, and even more preferably 50,000 or more.
  • the weight average molecular weight of the copolymer A is preferably 400,000 or less, more preferably 350,000 or less, still more preferably 300,000 or less.
  • the weight average molecular weight is a polystyrene-equivalent weight average molecular weight and can be measured by gel permeation chromatography (GPC). Specifically, it can be measured by the method described in Examples.
  • the dispersant contains at least the copolymer A.
  • the dispersant may further contain any polymer, any copolymer and the like.
  • the content of the copolymer A in the dispersant is preferably 50% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more. In one embodiment, the content of the copolymer A in the dispersant may be 100% by mass. That is, in this case, the dispersant consists only of the copolymer A.
  • the conductive material dispersion contains a solvent.
  • the solvent is not particularly limited, but is preferably a solvent capable of dissolving the copolymer A, and is a solvent consisting of any one of the water-soluble organic solvents or a mixed solvent consisting of two or more of the water-soluble organic solvents. Is preferable.
  • amides N-methyl-2-pyrrolidone (NMP), N-ethyl-2-pyrrolidone (NEP), N, N-dimethylformamide, N, N-dimethylacetamide, N, N- Diethylacetamide, N-methylcaprolactam, etc.
  • heterocyclic system cyclohexylpyrrolidone, 2-oxazolidone, 1,3-dimethyl-2-imidazolidinone, ⁇ -butyrolactone, etc.
  • sulfoxide system dimethyl sulfoxide, etc.
  • sulfone system dimethyl sulfoxide, etc.
  • lower ketones acetone, methylethylketone, etc.
  • tetrahydrofuran urea, acetonitrile, etc.
  • the water-soluble organic solvent preferably contains an amide-based organic solvent, and may contain at least one selected from the group consisting of N-methyl-2-pyrrolidone and N-ethyl-2-pyrrolidone. More preferred.
  • the dispersibility of the conductive material in the conductive material dispersion can be evaluated by the phase angle and the complex elastic modulus by the dynamic viscoelasticity measurement.
  • the phase angle means the phase shift of the stress wave when the strain applied to the conductive material dispersion is a sine wave. In the case of a pure elastic body, the phase angle is 0 ° because the sine wave has the same phase as the applied strain. On the other hand, if it is a pure viscous body, the stress wave is advanced by 90 °. In a general sample for measuring viscoelasticity, a sine wave having a phase angle larger than 0 ° and smaller than 90 ° is obtained.
  • the phase angle approaches 90 °, which is a pure viscous body. Further, the complex elastic modulus of the conductive material dispersion becomes smaller as the dispersibility of the conductive material is good and the viscosity of the conductive material dispersion is lower.
  • phase angle and complex elastic modulus measured by dynamic viscoelasticity depend on the concentration of the conductive material in the dispersion.
  • carbon fibers having a high specific surface area CNT or the like
  • the smaller the content of the conductive material containing the carbon fibers the closer the obtained dispersion is to a pure viscous body, and the closer the phase angle is to 90 °.
  • the phase angle of the obtained dispersion is less than 19 °.
  • good dispersibility and stability can be achieved by using the copolymer A. Therefore, in one embodiment, it is possible to obtain a conductive material dispersion having a phase angle of 19 ° or more at a frequency of 1 Hz even when the concentration of the conductive material is high.
  • the conductive material dispersion has a phase angle of 19 ° or more at a frequency of 1 Hz by dynamic viscoelasticity measurement, more preferably 30 ° or more, still more preferably 45 ° or more.
  • the phase angle at a frequency of 1 Hz is preferably 90 ° or less, more preferably 85 ° or less, and even more preferably 80 ° or less.
  • the complex elastic modulus of the conductive material dispersion measured by dynamic viscoelasticity is preferably less than 20 Pa, more preferably 10 Pa or less, still more preferably 5 Pa or less.
  • the complex elastic modulus of the conductive material dispersion is preferably 0.01 Pa or more, more preferably 0.05 Pa or more, still more preferably 0.1 Pa or more.
  • the complex elastic modulus and the phase angle can be measured by the method described in the examples.
  • the agglomeration of carbon fibers is loosened by the effect of the dispersant containing the copolymer A, so that the complex elastic modulus becomes small.
  • the conductive material dispersion has the following formulas, that is, the carbon fiber concentration x (mass%) in the conductive material dispersion and the complex elastic modulus y (Pa) of the conductive material dispersion measured by dynamic viscoelasticity measurement. It is preferable to satisfy the relations of (1), the formula (2), and the formula (3). y ⁇ 8x (1) y ⁇ 20 (2) 0.1 ⁇ x ⁇ 10 (3)
  • the complex elastic modulus y of the conductive material dispersion measured by dynamic viscoelasticity is less than 20 Pa and y ⁇ 8x is satisfied.
  • the carbon fiber concentration x (mass%) is preferably in the range of 0.1 ⁇ x ⁇ 10.
  • the dispersibility of the conductive material can be determined from the complex elastic modulus and the phase angle.
  • a manufacturing method including the following steps I and II can be mentioned. According to this manufacturing method, it is possible to obtain a conductive material dispersion having both good dispersibility and stability.
  • Step I A step of mixing a conductive material containing carbon fibers, a dispersant containing the copolymer A, and a dispersion medium.
  • Step II A step of performing a dispersion treatment after the step I to obtain a dispersion having a rheometer measurement result showing a phase angle of 19 ° or more at a frequency of 1 Hz and a complex elastic modulus of less than 20 Pa.
  • the conductive material When carbon nanotubes (CNTs) are included as the conductive material, the structure, crystallineness, and form of the unit layer constituting the CNT, the structure or shape of the CNT composed of the unit layer, and the content of metal elements contained in the CNT, etc. It can have different physical properties depending on the condition. However, according to the embodiment of the present invention, the desired physical properties can be obtained by controlling the phase angle of the conductive material dispersion to the above-mentioned value by using the dispersant containing the copolymer A.
  • the method for producing the conductive material dispersion is not particularly limited.
  • the conductive material dispersion can be obtained by mixing a dispersant, a solvent, and a conductive material, and dispersing the conductive material in the solvent.
  • any component may be mixed in addition to the dispersant, the solvent, and the conductive material.
  • the conductive material dispersion can be obtained by dissolving the dispersant in a solvent, mixing the conductive material, and dispersing the conductive material in the solvent.
  • any component such as an additional solvent may be mixed.
  • the solvent is the same as the solvent that dissolves the dispersant.
  • the order in which the dispersant or the conductive material is added to the container is not particularly limited. It is preferable that the dispersant is present together with the conductive material at any time in the process of dispersing the conductive material.
  • Disperser methods include disperser, homogenizer, silverson mixer, kneader, 2-roll mill, 3-roll mill, ball mill, horizontal sand mill, vertical sand mill, annular bead mill, attritor, planetary mixer, or high-pressure homogenizer. Examples thereof include a method using various dispersion means such as.
  • the conductive material containing carbon fibers and the dispersant containing the copolymer A contain metallic foreign substances derived from their manufacturing process (as a line contamination or a catalyst). Removing these metallic foreign substances is very important to prevent a short circuit of the battery.
  • the metallic foreign matter is iron, nickel, chromium, etc. that exist in the form of particles in the conductive material dispersion, and does not include those that are dissolved and exist in the metal ion state.
  • the effect of the dispersant containing the copolymer A loosens the agglomeration of carbon fibers and lowers the viscosity of the obtained conductive material dispersion. Therefore, as compared with the case where the copolymer A is not contained as a dispersant, even when the content of carbon fibers in the conductive material dispersion is high, the metal foreign matter can be efficiently removed.
  • the method for removing the particulate metallic foreign matter from the conductive material dispersion is not particularly limited.
  • a method of removing by filtration using a filter for example, a method of removing by a vibrating sieve, a method of removing by centrifugation, a method of removing by magnetic force, and the like can be mentioned.
  • metallic foreign substances such as iron, nickel, and chromium have magnetism
  • a method of removing them by magnetic force is preferable.
  • a method of combining a step of removing by magnetic force and a step of removing by filtration using a filter is more preferable.
  • the type of metallic foreign matter contained in the conductive material dispersion is not particularly limited.
  • Specific examples of the metal foreign matter include metals such as iron, cobalt, nickel, chromium, aluminum, magnesium, silica, manganese, and molybdenum, metal oxides thereof, and composite oxides thereof.
  • the method for removing by magnetic force is not particularly limited as long as it is a method capable of removing metallic foreign substances. Considering productivity and removal efficiency, a method of arranging a magnetic filter in the production line of the conductive material dispersion and allowing the conductive material dispersion to pass through is preferable.
  • the step of removing metallic foreign matter from the conductive material dispersion by a magnetic filter is preferably performed by passing through a magnetic filter that forms a magnetic field having a magnetic flux density of 1,000 gauss or more. If the magnetic flux density is low, the efficiency of removing metal components decreases. Therefore, in one embodiment, the magnetic flux density may be preferably 5,000 gauss or more.
  • the magnetic flux density may be more preferably 10,000 gauss or more, and most preferably 12,000 gauss or more.
  • a filter such as a cartridge filter on the upstream side of the magnetic filter. This is because coarse metal particles may pass through a magnetic filter depending on the flow rate of filtration.
  • the magnetic filter is effective even if it is filtered only once, but it is more preferable that it is a circulation type. This is because the circulation type improves the efficiency of removing metal particles.
  • the place where the magnetic filter is placed is not particularly limited.
  • the conductive material dispersion is immediately before being filled in the container and there is a filtration step by the filtration filter before the container is filled, it is preferable to arrange the material before the filtration filter. This is to prevent the metal component from being mixed into the product when the metal component is desorbed from the magnetic filter.
  • the metal content in the conductive material dispersion can be analyzed using high frequency inductively coupled plasma (ICP) after the conductive material dispersion is dried.
  • ICP inductively coupled plasma
  • the metal content of iron, nickel, and chromium detected by ICP analysis includes metal foreign substances existing in the form of particles and those present in the dissolved metal ion state. That is, the metal content of the conductive material dispersion that has undergone the step of removing the metal foreign matter includes the metal foreign matter that could not be completely removed and the one that is dissolved and exists in the metal ion state.
  • the Fe metal element content is preferably 10 ppm or less as the metal content (metal foreign matter amount) in the conductive material dispersion.
  • the Fe metal element content is more preferably 5 ppm or less, and further preferably 1 ppm or less.
  • the present invention relates to a conductive composition using the conductive material dispersion of the above embodiment.
  • the conductive composition may be a binder resin-containing conductive material dispersion.
  • the conductive composition may be a slurry for electrodes.
  • the binder resin-containing conductive material dispersion contains the binder resin and the conductive material dispersion of the above-described embodiment. That is, the binder resin-containing conductive material dispersion contains at least the above-mentioned dispersant, a solvent, a conductive material, and a binder resin. In other words, the binder resin-containing conductive material dispersion contains at least the copolymer A, the solvent, the carbon fibers, and the binder resin.
  • the binder resin-containing conductive material dispersion may further contain any component such as a base and an acid.
  • the binder resin-containing conductive material dispersion can be produced by mixing the binder resin and the conductive material dispersion of the above embodiment. At the time of manufacture, any component may be further mixed together with the binder resin and the conductive material dispersion. At the time of manufacturing the binder resin-containing conductive material dispersion, a step of removing contamination such as metallic foreign matter described in the above-mentioned conductive material dispersion may be provided.
  • the binder resin is a resin capable of bonding between substances such as an electrode active material and a conductive material.
  • the binder resin is a resin different from the copolymer A. That is, the binder resin is selected from the resins other than the copolymer A.
  • the binder resin include ethylene, propylene, vinyl chloride, vinyl acetate, vinyl alcohol, maleic acid, acrylic acid, acrylic acid ester, methacrylic acid, methacrylic acid ester, acrylonitrile, styrene, vinyl butyral, vinyl acetal, vinyl pyrrolidone and the like.
  • Polymers or copolymers containing as a structural unit resins such as polyurethane resin, polyester resin, phenol resin, epoxy resin, phenoxy resin, urea resin, melamine resin, alkyd resin, acrylic resin, formaldehyde resin, silicon resin, fluororesin, etc.
  • Cellulous resins such as carboxymethyl cellulose; rubbers such as styrene butadiene rubber and fluororubber; conductive resins such as polyaniline and polyacetylene. Further, these modified products, mixtures, or copolymers may be used.
  • a polymer or a copolymer having a fluorine atom in the molecule can be preferably used as the binder resin from the viewpoint of resistance.
  • a polymer or a copolymer having a fluorine atom in the molecule can be preferably used as the binder resin from the viewpoint of resistance.
  • polyvinylidene fluoride, polyvinyl fluoride, tetrafluoroethylene and the like are preferable.
  • carboxymethyl cellulose, styrene butadiene rubber, polyacrylic acid and the like can be preferably used as the binder resin because of its good adhesion.
  • the weight average molecular weight of the binder resin is preferably 10,000 to 2,000,000, more preferably 100,000 to 1,000,000, and even more preferably 200,000 to 1,000,000.
  • the content of the copolymer A contained in the binder resin-containing conductive material dispersion (BD) is 0. 1 to 200% by mass is preferable, 1 to 100% by mass is more preferable, and 2 to 50% by mass is further preferable.
  • the content of the conductive material contained in the binder resin-containing conductive material dispersion (BD) is 0.05 based on the mass of the dispersion (BD) (assuming the mass of the dispersion (BD) is 100% by mass). It is preferably from 30% by mass, more preferably from 0.1 to 20% by mass.
  • the content of the binder resin contained in the binder resin-containing conductive material dispersion (BD) is 0.05 based on the mass of the dispersion (BD) (assuming the mass of the dispersion (BD) is 100% by mass). It is preferably from 25% by mass, more preferably from 0.1 to 15% by mass.
  • the binder resin-containing conductive material dispersion contains a solvent.
  • the solvent is not particularly limited, but for example, the solvent exemplified in the description of the conductive material dispersion can be used. Further, it is preferable to use the same solvent as the solvent contained in the conductive material dispersion.
  • the conductive material dispersion or the conductive composition using the conductive material dispersion can be suitably used as a material for forming the electrode film. Therefore, one embodiment of the present invention relates to an electrode membrane slurry. Further, another embodiment of the present invention relates to a method for producing a slurry for electrodes. Hereinafter, these embodiments will be specifically described.
  • the electrode film slurry contains the conductive material dispersion or the binder resin-containing conductive material dispersion of the above embodiment, and the electrode active material. That is, in one embodiment, the electrode film slurry contains at least the conductive material dispersion of the above embodiment and the electrode active material.
  • the electrode film slurry contains at least the binder resin-containing conductive material dispersion of the above embodiment and the electrode active material.
  • the electrode film slurry contains at least the copolymer A, the carbon fibers, the solvent, and the electrode active material.
  • the slurry for an electrode film may further contain any component such as a binder resin, a base, and an acid. In the present specification, "slurry" may be referred to as “mixture slurry”.
  • the electrode active material is the material that is the basis of the battery reaction.
  • the electrode active material is divided into a positive electrode active material and a negative electrode active material according to the electromotive force.
  • the positive electrode active material is not particularly limited, but a material capable of reversibly doping or intercalating lithium ions can be used.
  • metal compounds such as metal oxides and metal sulfides can be mentioned. Specific examples thereof include oxides of transition metals such as Fe, Co, Ni and Mn, composite oxides with lithium, and inorganic compounds such as transition metal sulfides. More specifically, transition metal oxide powders such as MnO , V2O5 , V6O13 , TiO2 ; layered lithium nickelate, lithium cobaltate, lithium manganate, spinel - structured lithium manganate, etc.
  • a composite oxide powder of lithium and a transition metal; a lithium iron phosphate-based material which is a phosphoric acid compound having an olivine structure; a transition metal sulfide powder such as TiS 2 and FeS can be mentioned.
  • the positive electrode active material is preferably a substance containing at least Ni.
  • the positive electrode active material may be used alone or in combination of two or more.
  • the negative electrode active material a material capable of reversibly doping or intercalating lithium ions can be used.
  • an alloy system such as metallic Li, its alloys such as tin alloy, silicon alloy, and lead alloy; Li X Fe 2 O 3 , Li X Fe 3 O 4 , Li X WO 2 (x is a number of 0 ⁇ x ⁇ 1).
  • Metal oxides such as lithium titanate, lithium vanadium, lithium siliconate; Conductive polymers such as polyacetylene and poly-p-phenylene; Artificial graphite such as highly graphitized carbon materials, natural graphite Such as carbonaceous powder; carbon-based materials such as resin-fired carbon materials can be mentioned.
  • the negative electrode active material may be used alone or in combination of two or more.
  • the content of the copolymer A in the slurry for the electrode film is preferably 0.01 to 10% by mass, preferably 0 to 10% by mass, based on the mass of the electrode active material (assuming the mass of the electrode active material is 100% by mass). It is more preferably 0.05 to 5% by mass.
  • the content of the conductive material in the slurry for the electrode film is preferably 0.01 to 10% by mass, preferably 0.02, based on the mass of the electrode active material (assuming the mass of the electrode active material is 100% by mass). It is more preferably to 5% by mass, and even more preferably 0.03 to 3% by mass.
  • the electrode film slurry may contain a binder resin.
  • the content of the binder resin in the slurry for the electrode film is preferably 0.1 to 30% by mass based on the mass of the electrode active material (assuming the mass of the electrode active material is 100% by mass). It is more preferably 0.5 to 20% by mass, and even more preferably 1 to 10% by mass.
  • the solid content in the electrode film slurry is preferably 30 to 90% by mass based on the total mass of the electrode film slurry (assuming the total mass of the electrode film slurry is 100% by mass). , 30 to 80% by mass, more preferably 40 to 75% by mass.
  • the electrode film slurry can be produced by various conventionally known methods. For example, a method of adding an electrode active material to a conductive material dispersion and a method of adding an electrode active material after adding a binder resin to the conductive material dispersion can be mentioned. Further, for example, a method of adding an electrode active material to the conductive material dispersion and then adding a binder resin to prepare the material, a method of adding an electrode active material to the binder resin-containing conductive material dispersion, and the like can be mentioned. ..
  • a method for producing the slurry for the electrode membrane a method of adding a binder resin to the conductive material dispersion and then further adding an electrode active material to disperse the slurry is preferable.
  • the distribution device used for distribution is not particularly limited.
  • a slurry for an electrode film can be obtained by using the dispersion means mentioned in the description of the conductive material dispersion.
  • the copolymer A also has a function as a binder. Therefore, in one embodiment, a slurry for an electrode film can be obtained without adding a binder resin. Therefore, as a method for producing the slurry for the electrode membrane, a method in which the electrode active material is added and dispersed without adding the binder resin to the conductive material dispersion is also preferable.
  • the electrode film according to an embodiment of the present invention includes a film formed by using the conductive material dispersion of the above embodiment or a conductive composition using the same. That is, the electrode film is a group consisting of a film formed by using the conductive material dispersion, a film formed by using the binder resin-containing conductive material dispersion, and a film formed by using the electrode film slurry. Includes at least one selected from.
  • the electrode membrane may further include a current collector.
  • the electrode film can be obtained by applying a slurry for an electrode film on a current collector and drying it, and includes the current collector and the film.
  • the "film formed by using the electrode film slurry" may be referred to as an "electrode mixture layer".
  • the material and shape of the current collector used to form the electrode film are not particularly limited, and those suitable for various secondary batteries can be appropriately selected.
  • examples of the material of the current collector include metals or alloys such as aluminum, copper, nickel, titanium, and stainless steel.
  • a flat plate-shaped foil is generally used as the shape of the current collector.
  • the present invention is not limited to this, and a current collector having a roughened surface, a perforated foil-shaped current collector, or a mesh-shaped current collector can also be used.
  • the method for coating the conductive material dispersion, the binder resin-containing conductive material dispersion, or the slurry for electrodes on the current collector is not particularly limited, and a known method can be used. Specifically, examples of available methods include die coating, dip coating, roll coating, doctor coating, knife coating, spray coating, gravure coating, screen printing, or electrostatic coating. The law etc. can be mentioned.
  • As the drying method for example, it can be left to dry, or a blower dryer, a warm air dryer, an infrared heater, a far infrared heater, or the like can be used, but the drying method is not particularly limited thereto.
  • rolling processing may be performed by a lithographic press, a calendar roll, or the like.
  • the thickness of the formed film is, for example, 1 ⁇ m or more and 500 ⁇ m or less, preferably 10 ⁇ m or more and 300 ⁇ m or less.
  • the film formed by using the conductive material dispersion or the binder resin-containing conductive material dispersion can also be used as the base layer of the electrode mixture layer.
  • the adhesion between the electrode mixture layer and the current collector can be improved, or the conductivity of the electrode film can be improved.
  • the non-aqueous electrolyte secondary battery according to an embodiment of the present invention includes a positive electrode, a negative electrode, and an electrolyte, and at least one selected from the group consisting of a positive electrode and a negative electrode includes the electrode film of the above embodiment.
  • the positive electrode for example, an electrode film obtained by applying a slurry for an electrode film containing a positive electrode active material on a current collector and drying the slurry can be used.
  • an electrode film obtained by applying a slurry for an electrode film containing a negative electrode active material on a current collector and drying the slurry can be used.
  • the electrolytes include LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , and so on. It may contain a lithium salt such as Li (CF 3 SO 2 ) 3 C, LiI, LiBr, LiCl, LiAlCl, LiHF 2 , LiSCN, or LiBPh 4 (where Ph is a phenyl group).
  • the electrolyte is preferably dissolved in a non-aqueous solvent and used as an electrolytic solution.
  • the non-aqueous solvent is not particularly limited, and is, for example, carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethylmethyl carbonate, and diethyl carbonate; ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ .
  • -Lactones such as octanoic lactones; tetrahydrofuran, 2-methyltetrachloride, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-methoxyethane, 1,2-ethoxyethane, and 1, Glymes such as 2-dibutoxyetane; esters such as methylformate, methylacetate, and methylpropionate; sulfoxides such as dimethyl sulfoxide and sulfolane; and nitriles such as acetonitrile.
  • solvents may be used alone, or two or more kinds may be mixed and used.
  • the non-aqueous electrolyte secondary battery preferably contains a separator.
  • the separator include, but are not limited to, polyethylene non-woven fabric, polypropylene non-woven fabric, polyamide non-woven fabric, and non-woven fabric obtained by subjecting them to a hydrophilic treatment.
  • the structure of the non-aqueous electrolyte secondary battery according to the embodiment of the present invention is not particularly limited.
  • the non-aqueous electrolyte secondary battery may usually include a positive electrode and a negative electrode, and a separator provided if necessary.
  • the non-aqueous electrolyte secondary battery can be configured in various shapes such as a paper type, a cylindrical type, a button type, and a laminated type, depending on the purpose of use.
  • the present invention will be described in more detail with reference to examples.
  • the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.
  • "parts” means “parts by mass” and "%” means “% by mass”.
  • the "copolymer A” may be referred to as a “copolymer” or a “dispersant”.
  • a "dispersant-containing liquid” containing a "dispersant” and a solvent may be referred to as a "dispersant solution”.
  • iron is the target for measuring the metal content in the conductive material dispersion, but the metal in the conductive material dispersion is not limited to iron.
  • the concentration of the copolymer solution was adjusted to a concentration of 1% using the solvent consisting of the above eluent, and 20 microliters of the adjusted solution was injected into the apparatus.
  • the weight average molecular weight is a polystyrene-equivalent value.
  • the hydrogen addition rate was determined from the measured value obtained by performing IR measurement by the method of infrared spectroscopic analysis by the total reflection measurement method. Specifically, the double bond derived from the conjugated diene monomer unit has a peak at 970 cm -1 , and the hydrogenated single bond has a peak at 723 cm -1 . Therefore, the hydrogenation rate was calculated from the ratio of the heights of these two peaks.
  • the Mooney viscosity of the copolymer A is measured by preparing a measurement sample using a copolymer solution containing a solvent capable of dissolving the copolymer A. Specifically, in the preparation of the measurement sample, first, when the copolymer A is dissolved in NMP, the NMP solution of the copolymer A is coagulated with water. Then, it is washed with methanol and vacuum dried at a temperature of 60 ° C. for 12 hours.
  • Mooney viscosity (ML 1 + 4 , 100 ° C.) was measured using an L-shaped rotor at a temperature of 100 ° C. in accordance with Japanese Industrial Standards JIS K6300-1. ..
  • ⁇ Measurement of initial viscosity of conductive material dispersion> To measure the viscosity value, first, a B-type viscometer (“BL” manufactured by Toki Sangyo Co., Ltd.) was used, and the conductive material dispersion was sufficiently stirred with a spatula at a temperature of 25 ° C. Then, the viscosity value of the conductive material dispersion was immediately measured at a rotor rotation speed of 60 rpm of the B-type viscometer. In the measurement, when the viscosity value is less than 100 mPA ⁇ s, No. The rotor of 1 was used. If the viscosity value is 100 or more and less than 500 mPa ⁇ s, No.
  • the complex elastic modulus and the phase angle of the conductive material dispersion were measured using a leometer (RheoStress 1 rotary leometer manufactured by Thermo Fisher Scientific Co., Ltd.) with a cone having a diameter of 60 mm and 2 °.
  • the dynamic viscoelasticity was measured at a strain rate of 0.01% to 5% at 25 ° C. and a frequency of 1 Hz, and evaluated according to the following criteria. The larger the value of the obtained phase angle, the better the dispersibility, and the smaller the value, the poorer the dispersibility.
  • the metal content in the conductive material dispersion was analyzed using inductively coupled plasma (ICP).
  • the conductive material dispersion was pretreated by the acid decomposition method according to Japanese Industrial Standards JIS K 0116; 2014, and the content of iron ions and atoms was measured by the ICP emission spectrometry method.
  • ⁇ Evaluation of conductivity of positive electrode mixture layer The mixture slurry for the positive electrode is applied to a PET film (thickness 100 ⁇ m) using an applicator with a gap of 175 ⁇ m, and dried in a hot air oven at 70 ° C. for 10 minutes and in a hot air oven at 120 ° C. for 15 minutes to evaluate conductivity. A positive electrode film for use was obtained.
  • the surface resistivity ( ⁇ / ⁇ ) of the positive electrode mixture layer was measured using Mitsubishi Chemical Analytech Co., Ltd .: Lorester GP, MCP-T610. After the measurement, the volume resistivity ( ⁇ ⁇ cm) was obtained by multiplying the thickness of the positive electrode mixture layer formed on the PET film.
  • the thickness of the positive electrode mixture layer is determined by measuring three points in the positive electrode film using a film thickness meter (DIKON Co., Ltd., DIGIMICRO MH-15M) to obtain the average value of the positive electrode film, and using the average value of the positive electrode film. It was determined as the difference from the film thickness of the PET film.
  • Volume resistivity ( ⁇ ⁇ cm) of the positive electrode mixture layer is less than 10 (excellent)
  • Volume resistivity ( ⁇ ⁇ cm) of the positive electrode mixture layer is 10 or more and less than 20 (good)
  • ⁇ : Volume resistivity ( ⁇ ⁇ cm) of the positive electrode mixture layer is 20 or more (defective)
  • a non-aqueous electrolyte secondary battery was installed in a constant temperature room at 25 ° C., and charge / discharge measurement was performed using a charge / discharge device (SM-8, manufactured by Hokuto Denko Co., Ltd.). After performing constant current constant voltage charging (cutoff current 1mA (0.02C)) at a charging end voltage of 4.3V at a charging current of 10mA (0.2C), discharge at a discharge current of 10mA (0.2C). A constant current discharge was performed at a cutoff voltage of 3 V.
  • Rate characteristics 3C discharge capacity / 3rd 0.2C discharge capacity x 100 (%) (criterion) ⁇ : Rate characteristic is 80% or more (excellent) ⁇ : Rate characteristics are 60% or more and less than 80% (good) X: Rate characteristic is 30% or more and less than 60% (defective) XX: Rate characteristics are less than 30% (extremely poor)
  • a non-aqueous electrolyte secondary battery was installed in a constant temperature room at 25 ° C., and charge / discharge measurement was performed using a charge / discharge device (SM-8, manufactured by Hokuto Denko Co., Ltd.). After performing constant current constant voltage charging (cutoff current 2.5mA (0.05C)) with a charging end voltage of 4.3V at a charging current of 25mA (0.5C), a discharge current of 25mA (0.5C). , Constant current discharge was performed with a discharge cutoff voltage of 3 V. This operation was repeated 200 times.
  • the cycle characteristics can be expressed by the ratio of the third 0.5C discharge capacity and the 200th 0.5C discharge capacity at 25 ° C. (formula 2 below).
  • Cycle characteristics 3rd 0.5C discharge capacity / 200th 0.5C discharge capacity x 100 (%) (criterion) ⁇ : Cycle characteristics of 85% or more (excellent) ⁇ : Cycle characteristics of 80% or more and less than 85% (good) X: Cycle characteristics of 60% or more and less than 80% (defective) XX: Cycle characteristics are less than 60% (extremely poor)
  • the unreacted monomer was removed by vacuum stripping to obtain an acrylonitrile-conjugated diene rubber latex having a solid content concentration of about 30%.
  • ion-exchanged water was added to the latex to adjust the total solid content concentration to 12%, and the mixture was placed in an autoclave with a stirrer having a volume of 1 L, and nitrogen gas was allowed to flow for 10 minutes to dissolve dissolved oxygen in the contents.
  • a catalyst solution was prepared by dissolving 75 mg of palladium acetate as a hydrogenation catalyst in 180 mL of ion-exchanged water supplemented with 4-fold mol of nitrate with respect to palladium.
  • This catalyst solution was added to the autoclave, and the inside of the autoclave was replaced with hydrogen gas twice. Then, the contents of the autoclave were heated to 50 ° C. under pressure with hydrogen gas up to 3 MPa, and a hydrogenation reaction was carried out for 6 hours. Next, the contents were returned to room temperature, the inside of the autoclave was made to have a nitrogen atmosphere, and then the solid content was dried to recover the copolymer 1.
  • the hydrogenation rate of the copolymer 1 was 99.5%, and the weight average molecular weight (Mw) was 150,000.
  • the content of the conjugated diene monomer unit is 70% and the content of the nitrile group-containing monomer unit is 30% based on the mass of the acrylonitrile-conjugated diene rubber. rice field.
  • the content of the aliphatic hydrocarbon structural unit including the alkylene structural unit is 70% and the content of the nitrile group-containing monomer unit is 30 based on the mass of the copolymer 1. %Met. The content of these monomer units and the content of structural units were determined from the amount of the monomer used (the same applies to the following synthesis examples).
  • the Mooney viscosity of the copolymer 2 was adjusted to obtain a dispersant 2-containing liquid containing the dispersant 2 (copolymer 2 after mixing with the NaOH suspension), NaOH, and NMP. ..
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the dispersant 2 was measured and found to be 42.
  • Dispersant 3 Containing Liquid
  • a liquid containing Dispersant 3 was obtained in the same manner as in Production Example 1 except that the copolymer 3 was used and the disperser used was changed to a homogenizer to apply a shearing force to the solution.
  • the dispersant 3 containing liquid contains a copolymer 3 (dispersant 3) whose Mooney viscosity has been adjusted by shearing treatment, and NMP.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the dispersant 3 was measured and found to be 55.
  • H-NBR1 H-NBR (hydrogenated acrylonitrile-butadiene rubber)
  • Theban (R) 3406, acrylonitrile content 34%) and NMP were added to the stainless steel container 1 and dissolved with a disper, and a homogenizer was further added.
  • a high shearing force was applied to the H-NBR1 solution using the solution to obtain a dispersant 10-containing solution.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the dispersant 10 was measured and found to be 50.
  • the Mooney viscosity of H-NBR2 was adjusted to obtain a dispersant 12-containing liquid containing dispersant 12 (H-NBR2 after mixing with NaOH suspension), NaOH, and NMP.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the dispersant 12 was measured and found to be 48.
  • the mixing of the base and the copolymer is not limited to the order and method described in the examples.
  • the contact efficiency between the base and the copolymer is high, so that hydrolysis is likely to proceed. It is also effective in stabilizing quality control and shortening manufacturing time.
  • Example 1-1 Preparation of Conductive Material Dispersion (Example 1-1)
  • the dispersant-containing liquid containing the dispersant, NMP, and base if described
  • NMP is further added to adjust the concentration, and then the concentration is adjusted.
  • the mixture was stirred with a dispersion until uniform.
  • the conductive material was added while stirring with a dispersion, and a square hole high shea screen was attached to a high shea mixer (L5MA, manufactured by SILVERSON). Batch dispersion was performed until the dispersion particle size was 250 ⁇ m or less.
  • a liquid to be dispersed was supplied from a stainless steel container to a high-pressure homogenizer (Starburst Lab HJP-17007, manufactured by Sugino Machine Limited) via a pipe, and a pass-type dispersion treatment was performed 25 times.
  • the dispersion treatment was performed using a single nozzle chamber with a nozzle diameter of 0.25 mm and a pressure of 100 MPa.
  • the mixture is filtered through a magnetic filter (manufactured by Tok Engineering) under the conditions of room temperature and a magnetic flux density of 12,000 gauss to obtain a conductive material dispersion (dispersion 1). Obtained.
  • the composition of the obtained conductive material dispersion of Example 1-1 contains 5% of 100T and 1% of the dispersant 1 based on the total mass of the dispersion, and the remaining 94. % Is NMP. On the magnetic filter after filtration, adhesion of magnetic granular metal pieces was observed. Further, as shown in Table 2, the dispersion 1 had a low viscosity and good stability, and the Fe metal element content measured by the ICP analysis method was 0.9 ppm.
  • Examples 1-2 to 1-21, Comparative Examples 1-1 to 1-5, 1-7 to 1 to 10 According to the composition shown in Table 2, each dispersion (dispersions 2 to 21, comparative dispersions 1 to 5, 7 to 10) was obtained in the same manner as in Example 1-1. As shown in Table 3, all of the conductive material dispersions (dispersions 2 to 21) of the present invention had low viscosity and good stability.
  • Comparative Example 1-6 According to the composition shown in Table 2, a liquid containing Dispersant 1 (containing Dispersant 1 and NMP) was added to the stainless steel container, NMP was added to adjust the concentration, and the mixture was stirred with a disper until uniform. After that, the conductive material was added while stirring with a dispersion, and a square hole high shea screen was attached to a high shea mixer (L5MA, manufactured by SILVERSON). Batch dispersion was performed until the dispersion particle size was 250 ⁇ m or less.
  • a liquid containing Dispersant 1 containing Dispersant 1 and NMP
  • NMP was added to adjust the concentration
  • the mixture was stirred with a disper until uniform.
  • the conductive material was added while stirring with a dispersion, and a square hole high shea screen was attached to a high shea mixer (L5MA, manufactured by SILVERSON). Batch dispersion was performed until the dispersion particle size was 250 ⁇ m or less.
  • a liquid to be dispersed was supplied from a stainless steel container to a high-pressure homogenizer (Starburst Lab HJP-17007, manufactured by Sugino Machine Limited) via a pipe, and a pass-type dispersion treatment was performed 10 times.
  • the dispersion treatment was performed using a single nozzle chamber with a nozzle diameter of 0.25 mm and a pressure of 100 MPa.
  • the mixture was passed through a nylon mesh having an opening of 48 ⁇ m three times and then filtered through a magnetic filter (manufactured by Tok Engineering) under the conditions of room temperature and a magnetic flux density of 12,000 gauss to obtain a comparative dispersion 6.
  • the initial viscosity of the obtained comparative dispersion 6 was 5000 mPa ⁇ s, and the phase angle was measured and found to be 14 °.
  • Table 4 shows the Fe metal element content measured by the ICP analysis methods of Examples 1-1 and 1-6 and Comparative Examples 1-1, 1-2 and 1-6. As shown in Table 4, it can be confirmed that the iron removal and the filtration step by the magnet can be efficiently performed at the time of producing the dispersion by obtaining the conductive material dispersion having a low viscosity like the dispersion 1 and the dispersion 6. .. On the other hand, the comparative dispersions 1, 2 and 6 have high viscosities, and the metal foreign matter removing step could not be carried out efficiently.
  • the dispersant (copolymer A) used in the examples has a Mooney viscosity of 70 or less with respect to a general nitrile rubber having a high Mooney viscosity, so that the adsorptivity to the conductive material is improved and the dispersibility is improved. It is considered that a good conductive material dispersion can be easily obtained. Further, nitrile rubber having a Mooney viscosity of less than 40, such as Comparative Dispersant 3, has low adsorption stability for the conductive material of the copolymer, and carbon fibers having strong cohesive force could not be dispersed at a high concentration. Conceivable.
  • the dispersions 16 and 19-21 and the comparative dispersions 7 to 10 obtained in Examples 1-16 and 1-19 to 1-21 and Comparative Examples 1-7 to 1-10 are all the same conductive material (CNT (CNT). 8S)) is used.
  • CNT CNT
  • 8S conductive material
  • the CNT concentrations are 2.5, 2.0, 1.5 and 1.0 (% by mass), respectively.
  • the copolymer 6 having particularly excellent dispersibility and stability is used (Mooney viscosity 45 (measured value)).
  • the relationship is shown in the graph of FIG. 1 with the CNT concentration (% by mass) in the dispersion on the x-axis and the complex elastic modulus [G * ] (Pa) measured by dynamic viscoelasticity on the y-axis.
  • the dispersions obtained in Examples 1-19 to 1-22 are complex by dynamic viscoelasticity measurement as compared with the comparative dispersions.
  • the elastic modulus y is small. The difference is remarkable, and it can be confirmed that y ⁇ 8x is satisfied.
  • the conductive material dispersion containing the carbon fibers of the examples satisfies the relationship of the following formula (1) and the following formulas (2) and (3). y ⁇ 8x (1) y ⁇ 20 (2) 0.1 ⁇ x ⁇ 10 (3)
  • the mixture slurry for the positive electrode was applied onto an aluminum foil having a thickness of 20 ⁇ m as a current collector using an applicator. Then, the coating film was dried in an electric oven at 120 ° C. ⁇ 5 ° C. for 25 minutes to adjust the basis weight per unit area of the electrode to 20 mg / cm 2 . Further, a rolling process was performed by a roll press (3t hydraulic roll press manufactured by Thunk Metal Co., Ltd.) to prepare a positive electrode film 1a having a density of a positive electrode mixture layer of 3.1 g / cm 3 .
  • Examples 2-2-2-18, Comparative Examples 2-1 to 2-6) Positive electrode films 2a to 18a and comparative positive electrode films 1a to 6a were produced by the same method as in Example 2-1 except that the type of the conductive material dispersion was changed.
  • Examples 3-1 and 3-2, Comparative Examples 3-1 to 3-4) As shown in Table 5, the positive electrode films 1b and 2b and the comparison were carried out by the same methods as in Examples 2-1 to 2-18 and Comparative Examples 2-1 to 2-6 except that the electrode active material was changed to NCA. Positive electrode films 1b to 4b were produced.
  • NMC NCM523 (manufactured by Nippon Chemical Industrial Co., Ltd., composition: LiNi 0.5 Co 0.2 Mn 0.3 O 2 , solid content 100%)
  • NCA HED (registered trademark)
  • NAT-7050 manufactured by BASF Toda Battery Materials LLC, composition: LiNi 0.8 Co 0.15 Al 0.05 O 2 ), 100% solid content
  • PVDF Polyvinylidene fluoride (Solf # 5130 (manufactured by Solvay Co., Ltd.), 100% solid content)
  • Table 6 shows the evaluation results of the electrodes.
  • the copolymer A having a Mooney viscosity of 40 to 70 has a high adsorptive power to the conductive material and the electrode active material particles, and is considered to have a high ability to disperse them. Therefore, it is considered that good dispersibility of the conductive material and the electrode active material was maintained even after the electrode film was formed as well as the conductive material dispersion, and as a result, excellent resistance was exhibited.
  • the electrolytic solution a mixed solvent was prepared by mixing ethylene carbonate, dimethyl carbonate and diethyl carbonate at a ratio of 1: 1: 1 (volume ratio), and VC (vinylene carbonate) was added to 100 parts of the electrolytic solution as an additive. After adding 1 part to the solution, a non-aqueous electrolyte solution in which LiPF 6 was dissolved at a concentration of 1 M was used.
  • the solid content of the standard negative electrode mixture slurry was 48% by mass.
  • the solid content ratio of the negative electrode active material: conductive material: CMC: SBR in the standard negative electrode mixture slurry is 97: 0.5: 1: 1.5.
  • HS-100 Denka Black HS-100 (manufactured by Denka Co., Ltd., acetylene black, average primary particle diameter 48 nm, specific surface area 39 m 2 / g)
  • -Artificial graphite CGB-20 (manufactured by Nippon Graphite Industry Co., Ltd.), 100% solid content -CMC: # 1190 (manufactured by Daicel FineChem Co., Ltd.), 100% solid content -SBR: TRD2001 (manufactured by JSR Corporation), solid content 48%
  • the conductive material dispersion of the comparative example in which the metallic foreign matter could not be sufficiently removed in the manufacturing process is provided in the positive electrode film
  • the residual metallic foreign matter derived from the conductive material dispersion (for example, iron or copper) is reduced on the negative electrode.
  • the battery performance deteriorated due to the precipitation, and as a result, the battery was short-circuited.
  • the embodiment of the present invention by achieving both dispersibility and stability, it is possible to maintain a good dispersed state in the electrode film and form an efficient conductive network. It is possible to manufacture a battery having good rate characteristics and cycle characteristics. Further, since the conductive material dispersion is obtained with a low viscosity, the metal foreign matter removing efficiency can be improved, and as a result, a battery having good rate characteristics and cycle characteristics can be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

炭素繊維を含む導電材と、分散剤と、分散媒とを含む導電材分散体であって、上記分散剤がニトリル基含有構造単位及び脂肪族炭化水素構造単位を含有する共重合体Aを含み、上記共重合体Aのムーニー粘度(ML1+4、100℃)が40~70であり、上記導電材分散体が、周波数1Hzでの位相角が19°以上である、導電材分散体。

Description

導電材分散体、バインダー樹脂含有導電材分散体、電極膜用スラリー、電極膜、及び、非水電解質二次電池
 本発明の一実施形態は、導電材分散体に関する。本発明の他の実施形態は、バインダー樹脂含有導電材分散体、及び電極膜用スラリーといった導電性組成物に関する。本発明のさらに他の実施形態は、上記導電性組成物を用いた電極膜、及び当該電極膜を備えた非水電解質二次電池に関する。
 リチウムイオン二次電池は、電気自動車及び携帯機器等のバッテリーとして広く用いられている。電気自動車及び携帯機器等の高性能化に伴い、リチウムイオン二次電池には、高容量、高出力、及び小型軽量化といった要求が年々高まっている。
 リチウムイオン二次電池の容量は、主材料である正極活物質及び負極活物質に大きく依存する。そのため、リチウムイオン二次電池の電極活物質に用いるための各種材料について盛んに研究されている。しかし、実用化されている電極活物質を使用した場合、上記二次電池の充電容量は、いずれも理論値に近いレベルまで到達しており、改良は限界に近い。一方、電極膜における電極活物質の充填量を増加させれば、簡単に充電容量を増加させることができる。そのため、充電容量には直接寄与しない導電材及びバインダー樹脂の添加量を削減することが試みられている。
 導電材は、電極膜の内部で導電パスを形成したり、電極活物質の粒子間を繋いだりする役割を担っている。上記導電パス及び粒子間の繋がりでは、電極膜の膨張収縮による切断が生じにくいことが求められる。少ない添加量の導電材によって導電パス及び繋がりを維持するためには、導電材として比表面積が大きいナノカーボンを使用することが好ましい。特に、カーボンナノチューブ(CNT)の使用は、効率的な導電ネットワークを形成するために有効である。しかし、比表面積が大きいナノカーボンは、凝集力が強いため、ナノカーボンを電極膜用スラリー中及び/又は電極膜中に良好に分散させることが難しいという問題があった。
 こうした背景から、各種分散剤を用いて導電材分散体を作製し、導電材分散体を経由して電極膜用スラリーを製造する方法が多く提案されている(例えば、特許文献1~5参照)。
特開2005-162877号公報 特開2014-193986号公報 特表2018-522803号公報 特開2015-128012号公報 国際公開2017-010093号公報
 例えば、特許文献1及び特許文献2では、ポリビニルピロリドン又はポリビニルアルコールといった重合体を分散剤として用い、導電材を予め溶媒に分散することによって、電池の初期特性及びサイクル寿命を向上させる方法が提案されている。これらの方法によれば、ポリビニルピロリドン又はポリビニルアルコールの使用によって、良好な分散状態の導電材分散体を製造することができる。しかし、上記導電材分散体は、電極膜形成の過程において分散状態が不良となり、導電性が悪化するという課題がある。
 特許文献3及び特許文献4では、水素化ニトリルゴムを分散剤として用いた導電材分散体が提案されている。しかし、これらの水素化ニトリルゴムは分散性に乏しいため、上記導電体分散体によって良好な導電ネットワークを形成することは困難である。また、水素化ニトリルゴムは粘度が高いため、導電材分散体の製造に長時間を要する、又は、得られる導電材分散体は流動性が乏しくハンドリングが悪くなるといった問題があり、工業的に実用化が困難である。
 特許文献5でも、水素化ニトリルゴムを分散剤として用いた導電材分散体が提案されている。上記導電材分散体では、特定の物性を示す水素化ニトリルゴムを使用することによって、導電材の分散性の向上を可能にしている。しかし、ポリフッ化ビニリデン等の他の結着剤の存在なしでは導電材の分散状態を維持することができず、また、凝集力の強いCNTを高濃度で均一に分散させることは困難である。
 このような状況に鑑み、本発明者らは、導電材の少ない添加量で、電池の出力及びサイクル寿命を向上させるために、導電材分散体中に導電材を良好に分散させ、かつ、電極膜中でも良好な導電ネットワークを維持させる方法について鋭意検討した。その結果、前述の特許文献1及び2において提案された方法のように、良好な分散状態の導電材分散体を製造できたとしても、さらに電極活物質と混合して電極膜用スラリーを調製した場合には、その調製段階で分散不良が起きやすいことが判明した。このような電極膜用スラリーの分散不良によって、電極膜中で良好な導電ネットワークを形成できなくなり、所望とする電池特性を得ることが困難となると思われる。
 したがって、電極膜中で良好な導電ネットワークを形成させ、導電材の添加量が少なくても電池の出力及びサイクル寿命を向上させるためには、導電材を導電材分散体中に分散させる段階での良好な分散性と、電極膜用スラリーを調製する段階での安定性とを両立させることが求められる。
 さらにリチウム二次電池においては、上述の問題の他に、金属成分の負極上での還元・析出による電池性能劣化の問題、及び、短絡の発生による過剰発熱又は発火といった安全性にかかわる問題もある。金属成分による性能劣化や短絡の要因としては、(1)導電材又は分散剤等の原料由来の銅及び鉄といった金属不純物の混入、(2)製造工程における銅及び鉄といった金属不純物の混入、及び(3)正極、集電体、電池容器等に含まれる金属イオンが電解液中へ溶出した後に負極上で還元・析出すること、等が考えられる。
 特に(1)及び(2)の要因を除くため、導電材分散体の製造時に、金属異物等のコンタミを除く工程を設けることが好ましい。金属異物を除く方法としては、磁石による除鉄、又は、ろ過、及び遠心分離等の方法が挙げられる。しかし、いずれの方法においても、金属異物除去の効果を得るためには、導電材分散体の低粘度化が必要となる。前述の特許文献3及び4において提案された導電材分散体では、粘度が高く、金属異物を効率よく除去できず、残存金属異物による電池性能の劣化が確認された。
 そこで、本発明の一実施形態は、良好な分散性と安定性とを両立できる導電材分散体を提供する。本発明の他の実施形態は、上記導電材分散材を用いた導電性組成物として、より具体的には、バインダー樹脂含有導電材分散体を提供する。また、本発明の他の実施形態は、上記導電材分散材を用いた導電性組成物として、良好な分散性を有する電極膜用スラリーを提供する。さらに、本発明の他の実施形態は、非水電解質二次電池の出力及びサイクル寿命を向上できる電極膜、及び、高い出力かつ良好なサイクル寿命を有する非水電解質二次電池を提供する。
 本発明者らが鋭意検討した結果、特定のムーニー粘度(ML1+4、100℃)を有する共重合体を分散剤として好適に使用できることを見出した。分散剤として上記共重合体を使用した場合、高濃度の炭素繊維を溶媒中に良好に分散させることができる。さらに、電極膜用スラリーを調製する際及び電極膜を製造する際にも、その良好な分散状態を維持することができ、電極中で良好な導電ネットワークを形成することが可能となる。また、導電材分散体の分散状態が良好であると、高濃度の炭素繊維を含んでいてもハンドリング性に優れる分散体が得られ、導電ネットワークの阻害因子である金属異物の除去効率を向上することが可能となる。これらにより、電池のレート特性及びサイクル特性を向上させることが可能となる。
 すなわち、本発明は、以下の実施形態を含む。但し、本発明は、以下に記載する実施形態に限定されず、様々な実施形態を含む。
 本発明の一実施形態は、炭素繊維を含む導電材と、分散剤と、分散媒とを含む導電材分散体であって、上記分散剤が、ニトリル基含有構造単位及び脂肪族炭化水素構造単位を含有する共重合体Aを含み、上記共重合体Aのムーニー粘度(ML1+4、100℃)が40~70であり、上記導電材分散体は、動的粘弾性測定による周波数1Hzでの位相角が19°以上である導電材分散体に関する。
 上記実施形態において、動的粘弾性測定による複素弾性率は、20Pa未満であることが好ましい。
 上記実施形態において、導電材分散体中の炭素繊維濃度x(質量%)と、動的粘弾性測定による導電材分散体の複素弾性率y(Pa)とが、下記式(1)、式(2)、及び式(3)の関係を満足することが好ましい。
      y<8x                  (1)
      y<20                  (2)
      0.1≦x≦10       (3)
 上記実施形態において、共重合体Aの質量を基準として、ニトリル基含有構造単位の含有量は15質量%以上50質量%以下であり、脂肪族炭化水素構造単位の含有量は40質量%以上85質量%未満であることが好ましい。
 上記実施形態において、導電材分散体は、さらに、共重合体Aを基準として、1質量%以上10質量%以下の塩基を含むことが好ましい。
 本発明の他の実施形態は、導電材分散体を用いた導電性組成物に関する。
 一実施形態において、導電性組成物は、上記実施形態の導電材分散体と、バインダー樹脂とを含むバインダー樹脂含有導電材分散体であってよい。
 一実施形態において、導電性組成物は、電極膜を形成するために使用される電極膜用スラリーであってよい。上記電極膜用スラリーは、上記実施形態の導電材分散体、又は上記実施形態のバインダー樹脂含有導電材分散体と、電極活物質とを含むことが好ましい。
 本発明の他の実施形態は、導電性組成物を用いて形成した電極膜に関する。一実施形態において、電極膜は、上記実施形態の導電材分散体を用いて形成した膜、上記実施形態のバインダー樹脂含有導電材分散体を用いて形成した膜、及び、上記実施形態の電極膜用スラリーを用いて形成した膜からなる群から選択される少なくとも1種を含むことが好ましい。
 本発明の他の実施形態は、正極と、負極と、電解質とを含む非水電解質二次電池であって、上記正極及び上記負極からなる群から選択される少なくとも1つが上記実施形態の電極膜を含む、非水電解質二次電池に関する。
 本願の開示は、2020年9月3日に出願された特願2020-148208号に記載の主題と関連しており、この開示内容は引用によりここに援用される。
 本発明の一実施形態によれば、良好な分散性と良好な安定性とを共立できる導電材分散体を提供することが可能である。
 本発明の他の実施形態によれば、上記導電材分散体を含む導電性組成物を提供することが可能である。より具体的には、バインダー樹脂含有導電材分散体を提供することが可能である。また、良好な分散性を有する電極膜用スラリーを提供することが可能である。
 さらに、本発明の他の実施形態によれば、非水電解質二次電池の出力及びサイクル寿命を向上できる電極膜、及び、高い出力かつ良好なサイクル寿命を有する非水電解質二次電池を提供することが可能である。
図1は、実施例において調製した、分散体16、19~21、及び比較分散体7~10のCNT濃度(質量%)と動的粘弾性測定による複素弾性率[G](Pa)との関係を示すグラフである。
 以下、本発明の実施形態の具体例として、導電材分散体、バインダー樹脂含有導電材分散体、電極膜用スラリー、電極膜、及び非水電解質二次電池等について詳しく説明する。しかし、本発明は、以下に記載する実施形態に限定されるものではない。本発明は、要旨を変更しない範囲において実施される実施形態も含む。
<導電材分散体>
 本発明の一実施形態である導電材分散体は、炭素繊維を含む導電材と、共重合体Aを含む分散剤と、分散媒とを含有する。すなわち、導電材分散体は、共重合体Aと、溶媒と、炭素繊維とを少なくとも含有する。導電材分散材は、二次電池電極に配合され得る、塩基及び酸等の成分を更に含有してもよい。
<導電材>
 導電材は、少なくとも炭素繊維を含み、必要に応じて、炭素繊維以外の導電材(以下、その他の導電材という)を含んでもよい。炭素繊維のなかでも、カーボンナノチューブ及び気相成長炭素繊維のような炭素超短繊維を含むことが好ましく、カーボンナノチューブを含むことがより好ましい。
 その他の導電材としては、例えば、金、銀、銅、銀メッキ銅粉、銀-銅複合粉、銀-銅合金、アモルファス銅、ニッケル、クロム、パラジウム、ロジウム、ルテニウム、インジウム、ケイ素、アルミニウム、タングステン、モルブテン、及び白金等の金属粉、並びにこれらの金属で被覆した無機物粉体が挙げられる。さらに、例えば、酸化銀、酸化インジウム、酸化スズ、酸化亜鉛、酸化ルテニウム等の金属酸化物の粉末、及びこれらの金属酸化物で被覆した無機物粉末、並びにカーボンブラック、グラファイト等の炭素材料が挙げられる。その他の導電材は、1種を単独で、又は2種以上組み合わせて用いてもよい。
 上記その他の導電材を用いる場合、分散剤の吸着性能の観点から、カーボンブラックが好ましい。本明細書において、上記炭素繊維、カーボンブラック、及びその他の炭素系導電材を総じて「炭素系導電材」と称する。導電材として炭素系導電材を使用することが好ましい。但し、導電材は、後述する電極活物質とは異なる物質(材料)である。
 カーボンナノチューブ(CNT)は、平面的なグラファイトを円筒状に巻いた形状、単層カーボンナノチューブ、多層カーボンナノチューブを含み、これらが混在してもよい。単層カーボンナノチューブは一層のグラファイトを巻いた構造を有する。多層カーボンナノチューブは、二又は三以上の層のグラファイトを巻いた構造を有する。カーボンナノチューブの側壁は、グラファイト構造でなくともよい。例えば、一実施形態において、カーボンナノチューブは、アモルファス構造を有する側壁を備えるカーボンナノチューブであってもよい。
 カーボンナノチューブの形状は限定されない。かかる形状は、カーボンナノチューブは様々な形状を有していてよく、具体例として、針状、円筒チューブ状、魚骨状(フィッシュボーン又はカップ積層型)、トランプ状(プレートレット)、及びコイル状等の形状が挙げられる。本実施形態において、カーボンナノチューブの形状は、針状、又は、円筒チューブ状であることが好ましい。カーボンナノチューブは、単独の形状、または2種以上の形状の組み合わせであってもよい。
 カーボンナノチューブの形態としては、例えば、グラファイトウィスカー、フィラメンタスカーボン、グラファイトファイバー、極細炭素チューブ、カーボンチューブ、カーボンフィブリル、カーボンマイクロチューブ及びカーボンナノファイバー等が挙げられる。カーボンナノチューブは、これらの単独の形態又は二種以上を組み合わせられた形態を有していてもよい。
 カーボンブラックとしては、例えば、アセチレンブラック、ファーネスブラック、中空カーボンブラック、チャンネルブラック、サーマルブラック、ケッチェンブラック等が挙げられる。また、カーボンブラックは、中性、酸性、塩基性のいずれでもよく、酸化処理されたカーボンブラック、又は黒鉛化処理されたカーボンブラックを使用してもよい。
 炭素系導電材の炭素純度は、一般的なCHN元素分析により求めることができ、炭素系導電材中の炭素原子の含有率(質量%)で表される。炭素純度は、炭素系導電材の質量を基準として(炭素系導電材の質量を100質量%として)、90質量%以上が好ましく、95質量%以上がより好ましく、98質量%以上が更に好ましい。炭素純度を上記範囲にすることにより、二次電池に用いる際に、不純物によってデンドライトが形成されショートが起こる等の不具合を防ぐことができるため好ましい。
 炭素系導電材中に含まれる金属量は、炭素系導電材100質量%に対して、10質量%未満が好ましく、5質量%未満がより好ましく、2質量%未満がさらに好ましい。特に、カーボンナノチューブに含まれる金属として、カーボンナノチューブを合成する際に触媒として使用される金属及び金属酸化物が挙げられる。具体的には、鉄、コバルト、ニッケル、アルミニウム、マグネシウム、シリカ、マンガン、及びモリブデン等の金属、金属酸化物、並びにこれらの複合酸化物が挙げられる。
 一実施形態において、炭素系導電材は、製造過程で使用される触媒のうち鉄金属元素を50ppm以下、より具体的には、20ppm以下の含有量で含んでもよい。このように、炭素系導電材内に残留する不純物としての鉄含有量を著しく減少させることで、電極内での副反応を抑制し、より優れた伝導性を示すことができる。導電材内に残留する金属不純物の含有量は、高周波誘導結合プラズマ(inductively  coupled  plasma、ICP)を用いて分析することができる。一実施形態において、炭素系導電材は、鉄金属元素を含まないことが好ましい。
 導電材のBET比表面積は、20~1,000m/gであることが好ましく、30~500m/gであることがより好ましい。
 導電材分散体に含まれる炭素繊維の含有量は、導電材分散体の質量を基準として(導電材分散体の質量を100質量%として)、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。炭素繊維の含有量は、導電材分散体の質量を基準として(導電材分散体の質量を100質量%として)、10質量%以下であり、8質量%以下がより好ましい。
 また、導電材分散体に含まれる導電材の含有量は、導電材分散体の質量を基準として(導電材分散体の質量を100質量%として)、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。導電材の含有量は、導電材分散体の質量を基準として(導電材分散体の質量を100質量%として)、30質量%以下が好ましく、20質量%以下がより好ましい。
 導電材分散体に含まれる導電材の含有量を上記範囲にした場合、沈降又はゲル化を起こすことなく、導電材を良好に、かつ安定して分散体中に存在させることができる。また、導電材の含有量は、導電材の比表面積、及び分散媒への親和性等を考慮して、適当な粘性を示す導電材分散体が得られるよう適宜調整することが好ましい。
 例えば、良好な分散性と安定性との両立の観点から、導電材の含有量は、導電材分散体の質量を基準として、10質量%以下であってもよく、好ましくは8質量%以下である。本発明の実施形態では、導電材として高比表面積の炭素繊維(CNTなど)を使用するため、上記範囲の含有量とすることが好ましい。但し、本発明の実施形態によれば、例えば、導電材の濃度が高い場合であっても共重合体Aによって良好な分散性と安定性とを両立できる。そのため、一実施形態において、導電材の含有量は、5質量%以上であってもよく、10質量%超であってもよい。
<分散剤>
 分散剤は、脂肪族炭化水素構造単位と、ニトリル基含有構造単位とを含む共重合体Aを含有する。導電材分散体において、共重合体Aのムーニー粘度(ML1+4、100℃)は、40以上70以下であることが好ましい。
 共重合体Aにおいて、脂肪族炭化水素構造単位は、脂肪族炭化水素構造を含む構造単位であり、好ましくは脂肪族炭化水素構造のみからなる構造単位である。脂肪族炭化水素構造は、飽和脂肪族炭化水素構造を少なくとも含み、不飽和脂肪族炭化水素構造を更に含んでもよい。脂肪族炭化水素構造は、直鎖状脂肪族炭化水素構造を少なくとも含むことが好ましく、分岐状脂肪族炭化水素構造を更に含んでもよい。
 脂肪族炭化水素構造単位の例として、アルキレン構造単位、アルケニレン構造単位、アルキル構造単位、アルカントリイル構造単位、アルカンテトライル構造単位等が挙げられる。脂肪族炭化水素構造単位は、少なくともアルキレン構造単位を含むことが好ましい。
 アルキレン構造単位は、アルキレン構造を含む構造単位であり、好ましくはアルキレン構造のみからなる構造単位である。アルキレン構造は、直鎖状アルキレン構造又は分岐状アルキレン構造であることが好ましい。
 一実施形態において、アルキレン構造単位は、下記一般式(1A)で表される構造単位を含むことが好ましい。
一般式(1A)
Figure JPOXMLDOC01-appb-C000001
 一般式(1A)中、nは、1以上の整数を表す。nは、2以上の整数であることが好ましく、3以上の整数であることがより好ましく、4以上の整数であることが特に好ましい。nは、6以下の整数であることが好ましく、5以下の整数であることがより好ましい。特に、nは、4であることが好ましい。
 本明細書において「*」は、他の構造との結合部を表す。
 一実施形態において、アルキレン構造単位は、下記一般式(1B)で表される構造単位を含むことが好ましい。
一般式(1B)
Figure JPOXMLDOC01-appb-C000002
 一般式(1B)中、nは、1以上の整数を表す。nは、2以上の整数であることが好ましく、3以上の整数であることがより好ましい。nは、5以下の整数であることが好ましく、4以下の整数であることがより好ましい。特に、nは、3であることが好ましい。
 一実施形態において、アルキレン構造単位は、下記一般式(1C)で表される構造単位を含むことが好ましい。
一般式(1C)
Figure JPOXMLDOC01-appb-C000003
 一般式(1C)中、nは、1以上の整数を表す。nは、4以下の整数であることが好ましく、3以下の整数であることがより好ましく、2以下の整数であることが更に好ましい。特に、nは、2であることが好ましい。
 共重合体Aにおけるアルキレン構造単位の導入方法は、特に限定はされない。例えば、以下の(1a)又は(1b)の方法が挙げられる。
 (1a)の方法では、共役ジエン単量体を含有する単量体組成物を用い、その重合反応によって共重合体を調製する。調製した共重合体は、共役ジエン単量体に由来する単量体単位を含む。本明細書において、「共役ジエン単量体に由来する単量体単位」を「共役ジエン単量体単位」という場合があり、他の単量体に由来する単量体単位についても同様に省略する場合がある。次いで、共役ジエン単量体単位に水素添加することで、共役ジエン単量体単位の少なくとも一部をアルキレン構造単位に変換する。以下、「水素添加」を「水素化」という場合がある。最終的に得られる共重合体Aは、共役ジエン単量体単位を水素化した単位をアルキレン構造単位として含む。
 なお、共役ジエン単量体単位は、炭素-炭素二重結合を1つ持つ単量体単位を少なくとも含む。例えば、共役ジエン単量体単位である1,3-ブタジエン単量体単位は、cis-1,4構造を持つ単量体単位、trans-1,4構造を持つ単量体単位、及び1,2構造を持つ単量体単位からなる群から選択される少なくとも1種の単量体単位、又は2種以上の単量体単位を含んでいてもよい。
 一実施形態において、共役ジエン単量体単位は、炭素-炭素二重結合を持たない単量体単位であって、分岐点を含む単量体単位を更に含んでいてもよい。本明細書において、「分岐点」とは、分岐ポリマーにおける分岐点を意味する。共役ジエン単量体単位が、分岐点を含む単量体単位を含む場合、得られる共重合体及び共重合体Aは分岐ポリマーである。
 (1b)の方法では、α-オレフィン単量体を含む単量体組成物を用い、その重合反応によって共重合体を調製する。調製した共重合体は、α-オレフィン単量体単位を含む。最終的に得られる共重合体Aは、α-オレフィン単量体単位をアルキレン構造単位として含む。
 これらのなかでも、共重合体の製造が容易であることから、(1a)の方法が好ましい。
 共役ジエン単量体の炭素数は、4以上であり、好ましくは4以上6以下である。共役ジエン単量体としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどの共役ジエン化合物が挙げられる。中でも、1,3-ブタジエンが好ましい。
 一実施形態において、アルキレン構造単位は、共役ジエン単量体単位を水素化して得られる構造単位(水素化共役ジエン単量体単位)を含むことが好ましい。アルキレン構造単位は、1,3-ブタジエン単量体単位を水素化して得られる構造単位(水素化1,3-ブタジエン単量体単位)を含むことがより好ましい。共役ジエン単量体は、1種を単独で、又は2種以上を組み合わせて用いることができる。
 水素化は、共役ジエン単量体単位を選択的に水素化できる方法であることが好ましい。水素化の方法として、例えば、油層水素添加法又は水層水素添加法などの公知の方法が挙げられる。
 水素化は、通常の方法により行うことができる。水素化は、例えば、共役ジエン単量体単位を有する共重合体を、適切な溶媒に溶解させた状態において、水素化触媒の存在下で水素ガス処理することにより行うことができる。水素化触媒としては、鉄、ニッケル、パラジウム、白金、銅等が挙げられる。
 (1b)の方法において、α-オレフィン単量体の炭素数は、2以上であり、好ましくは3以上であり、より好ましくは4以上である。α-オレフィン単量体の炭素数は、6以下であることが好ましく、5以下であることがより好ましい。α-オレフィン単量体としては、例えば、エチレン、プロピレン、1-ブテン、1-ヘキセンなどのα-オレフィン化合物が挙げられる。α-オレフィン単量体は、1種を単独で、又は、2種以上を組み合わせて用いることができる。
 一実施形態において、アルキレン構造単位は、直鎖状アルキレン構造を含む構造単位、及び、分岐状アルキレン構造を含む構造単位からなる群から選択される少なくとも1種を含むことが好ましい。アルキレン構造単位は、直鎖状アルキレン構造のみからなる構造単位、及び、分岐状アルキレン構造のみからなる構造単位からなる群から選択される少なくとも1種を含むことがより好ましい。アルキレン構造単位は、上記式(1B)で表される構造単位、及び、上記式(1C)で表される構造単位からなる群から選択される少なくとも1種を含むことが更に好ましい。
 アルキレン構造単位は、直鎖状アルキレン構造を含む構造単位と、分岐状アルキレン構造を含む構造単位とを含んでもよい。アルキレン構造単位が、直鎖状アルキレン構造を含む構造単位と、分岐状アルキレン構造を含む構造単位とを含む場合、分岐状アルキレン構造の含有量は、アルキレン構造単位の質量を基準として(すなわち、アルキレン構造単位の質量を100質量%とした場合に)、70質量%以下であることが好ましく、65質量%以下であることがより好ましい。特に、一実施形態において、上記含有量は、20質量%以下であることが好ましく、18質量%以下であることがより好ましく、15質量%以下であることが更に好ましい。
 共重合体Aが、直鎖状アルキレン構造を含む構造単位と、分岐状アルキレン構造を含む構造単位とを含む場合、分岐状アルキレン構造の含有量は、アルキレン構造単位の質量を基準として(すなわち、アルキレン構造単位の質量を100質量%とした場合に)、例えば、1質量%以上であり、5質量%以上あってもよく、更に10質量%以上であってもよい。
 脂肪族炭化水素構造単位において、アルキレン構造単位の含有量は、脂肪族炭化水素構造単位の合計の質量を基準として(すなわち、脂肪族炭化水素構造単位の質量を100質量%とした場合に)、60質量%以上であることが好ましい。上記含有量は、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。アルキレン構造単位の含有量は、脂肪族炭化水素構造単位の合計の質量を基準として(すなわち、脂肪族炭化水素構造単位の質量を100質量%とした場合に)、例えば、100質量%未満であり、99.5質量%以下、99質量%以下、又は98質量%以下であってもよい。一実施形態において、アルキレン構造単位の含有量は、100質量%であってもよい。
 脂肪族炭化水素構造単位の含有量は、共重合体Aの質量を基準として(すなわち、共重合体Aの質量を100質量%とした場合に)、40質量%以上であることが好ましく、50質量%以上であることがより好ましく、60質量%以上であることが更に好ましい。脂肪族炭化水素構造単位の含有量は、共重合体Aの質量を基準として(すなわち、共重合体Iの質量を100質量%とした場合に)、85質量%未満であることが好ましく、75質量%以下であることがより好ましく、70質量%以下であることが更に好ましい。
 ニトリル基含有構造単位は、ニトリル基を含む構造単位であり、好ましくは少なくとも1つの水素原子がニトリル基により置換されたアルキレン構造を含む構造単位を含む。より好ましくは、ニトリル基含有構造単位は、少なくとも1つの水素原子がニトリル基により置換されたアルキレン構造のみからなる構造単位を含む。アルキレン構造は、直鎖状又は分岐状のアルキレン構造であることが好ましい。ニトリル基含有構造単位は、ニトリル基により置換されたアルキル構造を含む(又はのみからなる)構造単位を更に含んでもよい。ニトリル基含有構造単位に含まれるニトリル基の数は、1つであることが好ましい。
 ニトリル基含有構造単位は、下記一般式(2A)で表される構造単位を含むことが好ましい。
一般式(2A)
Figure JPOXMLDOC01-appb-C000004
 一般式(2A)中、nは、2以上の整数を表す。nは、6以下の整数であることが好ましく、4以下の整数であることがより好ましく、3以下の整数であることが更に好ましい。特に、nは、2であることが好ましい。
 ニトリル基含有構造単位は、下記一般式(2B)で表される構造単位を含むことが好ましい。
一般式(2B)
Figure JPOXMLDOC01-appb-C000005
 一般式(2B)中、Rは、水素原子又はメチル基を表す。Rは、水素原子であることが好ましい。
 共重合体Aにおけるニトリル基含有構造単位の導入方法は、特に限定されない。例えば、ニトリル基含有単量体を含有する単量体組成物を用い、その重合反応によって共重合体を調製する方法((2a)の方法)を好ましく用いることができる。最終的に得られる共重合体Aは、ニトリル基含有単量体に由来する単位をニトリル基含有構造単位として含む。
 ニトリル基含有構造単位を形成し得るニトリル基含有単量体としては、重合性炭素-炭素二重結合とニトリル基とを含む単量体が挙げられる。例えば、ニトリル基を有するα,β-エチレン性不飽和基含有化合物が挙げられ、具体的には、アクリロニトリル、メタクリロニトリルなどが挙げられる。特に、共重合体A同士及び/又は共重合体Aと被分散物(被吸着物)との分子間力を高める観点から、ニトリル基含有単量体は、アクリロニトリルを含むことが好ましい。ニトリル基含有単量体は、1種を単独で、又は、2種以上を組み合わせて用いることができる。
 ニトリル基含有構造単位の含有量は、共重合体Aの質量を基準として(すなわち、共重合体Aの質量を100質量%とした場合に)、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが更に好ましい。ニトリル基含有構造単位の含有量は、共重合体Aの質量を基準として(すなわち、共重合体Aの質量を100質量%とした場合に)、50質量%以下であることが好ましく、46質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。
 ニトリル基含有構造単位の含有量を上記範囲にすることで、被分散物への吸着性及び分散媒への親和性をコントロールすることができ、被分散物を分散媒中に安定に存在させることができる。また、共重合体Aの電解液への親和性もコントロールでき、電池内で共重合体Aが電解液に溶解して電解液の抵抗を増大させるなどの不具合を防ぐことができる。
 共重合体Aは、さらに任意の構造単位を含んでもよい。任意の構造単位として、アミド基含有構造単位;カルボキシル基含有構造単位;アルケニレン構造単位;アルキル構造単位;アルカントリイル構造単位、及びアルカンテトライル構造単位等の分岐点を含む構造単位などが挙げられる。分岐点を含む構造単位は、分岐状アルキレン構造を含む構造単位及び分岐状アルキル構造を含む構造単位とは異なる構造単位である。
 一実施形態において、共重合体Aは、任意の構造単位として、アミド基含有構造単位をさらに含むことが好ましい。
 アミド基含有構造単位は、アミド基を含む構造単位である。好ましくは、アミド基により置換されたアルキレン構造を含む構造単位であってよい。より好ましくは、アミド基により置換されたアルキレン構造のみからなる構造単位であってよい。アルキレン構造は、直鎖状又は分岐状のアルキレン構造であることが好ましい。アミド基含有構造単位は、アミド基により置換されたアルキル構造を含む(又は、のみからなる)構造単位を更に含んでもよい。アミド基含有構造単位に含まれるアミド基の数は、1つであることが好ましい。
 一実施形態において、アミド基含有構造単位は、下記一般式(3A)で表される構造単位を含むことが好ましい。
一般式(3A)
Figure JPOXMLDOC01-appb-C000006
 一般式(3A)中、nは、2以上の整数を表す。nは、6以下の整数であることが好ましく、4以下の整数であることがより好ましく、3以下の整数であることが更に好ましい。特に、nは、2であることが好ましい。R’は、それぞれ独立に、水素原子又は置換基を表す。置換基は、アルキル基又はヒドロキシアルキル基であることが好ましい。R’は、少なくとも1つが水素原子であることが好ましく、2つが水素原子であることがより好ましい。
 一実施形態において、アミド基含有構造単位は、下記一般式(3B)で表される構造単位を含むことが好ましい。
一般式(3B)
Figure JPOXMLDOC01-appb-C000007
 一般式(3B)中、Rは、水素原子又はメチル基を表す。Rは、水素原子であることが好ましい。R’は、それぞれ独立に、水素原子又は置換基を表す。置換基は、アルキル基又はヒドロキシアルキル基であることが好ましい。R’は、少なくとも1つが水素原子であることが好ましく、2つが水素原子であることがより好ましい。
 共重合体Aにおけるアミド基含有構造単位の導入方法は、特に限定はされない。例えば、以下(3a)の方法が挙げられる。
 (3a)の方法では、アミド基含有単量体を含有する単量体組成物を用い、その重合反応によって共重合体を調製する。調製した共重合体は、アミド基含有単量体単位を含む。最終的に得られる共重合体Aは、アミド基含有単量体単位をアミド基含有構造単位として含む。
 アミド基含有単量体としては、例えば、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミドなどのモノアルキル(メタ)アクリルアミド類;N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド等などのジアルキル(メタ)アクリルアミド類;N-(2-ヒドロキシエチル)(メタ)アクリルアミド、N-(2-ヒドロキシプロピル)(メタ)アクリルアミド、N-(2-ヒドロキシブチル)(メタ)アクリルアミドなどのN-(ヒドロキシアルキル)(メタ)アクリルアミド;ダイアセトン(メタ)アクリルアミド;アクリロイルモルホリン等が挙げられる。
 本明細書において、「(メタ)アクリル」とは、アクリル又はメタクリルを表す。特に、一実施形態において、アミド基含有単量体は、アクリルアミド、メタクリルアミド、及びN,N-ジメチルアクリルアミドからなる群から選択される少なくとも1種を含むことが好ましい。アミド基含有単量体は、1種を単独で、又は、2種以上を組み合わせて用いることができる。
 アミド基含有構造単位の含有量は、共重合体Aの質量を基準として(すなわち、共重合体Aの質量を100質量%とした場合に)、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましく、1質量%以下が特に好ましい。アミド基含有構造単位の含有量が上記範囲以下であると、共重合体A同士の水素結合が強くなりすぎることによって起こり得る、導電材分散体が貯蔵中にゲル化するという問題を防ぐことができる。
 一実施形態において、共重合体Aは、任意の構造単位として、カルボキシル基含有構造単位をさらに含んでもよい。
 カルボキシル基含有構造単位は、カルボキシル基を含む構造単位である。好ましくは、カルボキシル基により置換されたアルキレン構造を含む構造単位であってよい。より好ましくは、カルボキシル基により置換されたアルキレン構造のみからなる構造単位であってよい。アルキレン構造は、直鎖状又は分岐状のアルキレン構造であることが好ましい。カルボキシル基含有構造単位は、カルボキシル基により置換されたアルキル構造を含む(又は、のみからなる)構造単位を更に含んでもよい。カルボキシル基含有構造単位に含まれるカルボキシル基の数は、1つ又は2つであることが好ましい。共重合体Aにカルボキシル基含有構造単位を含ませることで、被分散物への吸着力を向上させるとともに、導電材分散体の粘性を低下させ、分散効率を向上させることができる。
 一実施形態において、カルボキシル基含有構造単位は、下記一般式(4A)で表される構造単位を含むことが好ましい。
一般式(4A)
Figure JPOXMLDOC01-appb-C000008
 一般式(4A)中、nは、2以上の整数を表す。nは、6以下の整数であることが好ましく、4以下の整数であることがより好ましく、3以下の整数であることが更に好ましい。特に、nは、2であることが好ましい。
 一実施形態において、カルボキシル基含有構造単位は、下記一般式(4B)で表される構造単位を含むことが好ましい。
一般式(4B)
Figure JPOXMLDOC01-appb-C000009
 一般式(4B)中、Rは、水素原子又はメチル基を表す。Rは、水素原子であることが好ましい。
 カルボキシル基含有構造単位の含有量は、共重合体Aの質量を基準として(すなわち、共重合体Aの質量を100質量%とした場合に)、1質量%未満が好ましく、0.5質量%以下がより好ましく、0.3質量%以下が更に好ましい。共重合体A同士の水素結合が強すぎる場合、導電材分散体が貯蔵中にゲル化する問題が生じやすい。これに対し、共重合体Aにおけるカルボキシル基含有構造単位の含有量が上記範囲未満(又は以下)である場合、貯蔵中の導電材分散体のゲル化の問題を防ぐことができる。
 例えば、上記(1a)の方法を経て共重合体Aを得る場合、共重合体Aには、共役ジエン単量体単位が、単位内に炭素-炭素二重結合を持たない単量体単位であって、分岐点を含む単量体単位として分子内に導入されることがある。この場合、最終的に得られる共重合体Aは分岐ポリマーであり、共役ジエン単量体単位をアルカントリイル構造単位、アルカンテトライル構造単位等の分岐点を含む脂肪族炭化水素構造単位として含んでもよい。
 脂肪族炭化水素構造単位が分岐点を含む構造単位を含む場合、共重合体Aは分岐ポリマーである。分岐ポリマーは、網目ポリマーであってもよい。分岐点を含む構造単位を含む共重合体Aは、被分散物に三次元的に吸着することができるため、分散性と安定性をより容易に向上させることができる。
 共重合体Aの好ましい実施形態として、以下が挙げられる。
 (A1)共重合体Aに含まれる脂肪族炭化水素構造単位、ニトリル基含有構造単位の合計の含有量が、共重合体Aの質量を基準として、80質量%以上100質量%以下である共重合体A。上記各構造単位の合計の含有量は、好ましくは90質量%以上、より好ましくは95質量%以上、更に好ましくは98質量%以上である。
 (A2)共重合体Aに含まれる脂肪族炭化水素構造単位、ニトリル基含有構造単位、アミド基含有構造単位の合計の含有量が、共重合体Aの質量を基準として80質量%以上100質量%以下である共重合体A。上記各構造単位の合計の含有量は、好ましくは90質量%以上、より好ましくは95質量%以上、更に好ましくは98質量%以上である。
 (A3)共重合体Aに含まれる脂肪族炭化水素構造単位、ニトリル基含有構造単位、アミド基含有構造単位、及びカルボキシル基含有構造単位の合計の含有量が、共重合体Aの質量を基準として、80質量%以上100質量%以下である共重合体A。上記各構造単位の合計の含有量は、好ましくは90質量%以上、より好ましくは95質量%以上、更に好ましくは98質量%以上である。
 本明細書において、共重合体Aにおける各構造単位の含有量は、単量体の使用量、NMR(核磁気共鳴)及び/又はIR(赤外分光法)測定を利用して求めることができる。
 本発明の実施形態において、共重合体Aは、ムーニー粘度(ML1+4、100℃)が40~70であることが好ましい。一実施形態において、共重合体Aは、ニトリル基含有構造単位及び脂肪族炭化水素構造単位を含有し、且つ、ムーニー粘度(ML1+4、100℃)が40~70であってよい。このような共重合体Aを分散剤として使用し、導電材として炭素繊維を含む分散体を調製した場合、炭素繊維を良好に分散させることができる。
 本発明における「ムーニー粘度(ML1+4、100℃)」は、JIS K6300-1に準拠して、温度100℃で測定することができる。
 一実施形態において、共重合体Aのムーニー粘度は、40以上70以下であってよい。共重合体Aのムーニー粘度は、60以下であることが好ましく、55以下であることがより好ましく、50以下であることが更に好ましい。共重合体Aのムーニー粘度の上限を上記範囲に調整した場合、共重合体Aの炭素繊維表面への吸着力が低くなり、凝集力の強い炭素繊維を分散させることができず、均一な導電材分散体を調製することが困難となる不具合を容易に抑制することができる。また、得られる導電材分散体が高粘度となり、原料由来で混入する金属異物を、磁石による除鉄、又はろ過、及び遠心分離等の方法によって効率よく除去できず、残存する金属異物によって電池性能が低下する不具合を抑制することができる。
 共重合体Aのムーニー粘度の調整方法は、特に限定されない。例えば、上記ムーニー粘度は共重合体Aの組成(例えば、構造単位の種類、含有量、水素化率)、構造(例えば、直鎖率)、及び分子量を変更することによって調整することができる。また、上記ムーニー粘度は、共重合体Aを調製するときの条件(例えば、重合温度、分子量調整剤量)などを変更することによって調整することもができる。
 具体的には、以下の方法によって、共重合体Aのムーニー粘度を調整することができる。
 (5a)の方法では、共重合体Aの調製に用いる分子量調整剤の使用量を増やすことでムーニー粘度を低下させる。
 (5b)の方法では、塩基を添加して共重合体Aのニトリル基含有構造単位に含まれるニトリル基を加水分解することで、共重合体Aのムーニー粘度を低下させる。
 (5c)の方法では、共重合体Aあるいは共重合体Aを含む分散剤に、より大きいせん断力を負荷する分散機を用いて、機械的なせん断力を負荷することでムーニー粘度を低下させる。
 上記(5a)の方法で用いることができる分子量調整剤としては、例えば、オクチルメルカプタン、ノニルメルカプタン、デシルメルカプタン、ドデシルメルカプタン、3-メルカプト-1,2-プロパンジオール等のアルキルメルカプタン類、チオグリコール酸オクチル、チオグリコール酸ノニル、チオグリコール酸-2-エチルヘキシル等のチオグリコール酸エステル類、2,4-ジフェニル-4-メチル-1-ペンテン、1-メチル-4-イソプロピリデン-1-シクロヘキセン、α-ピネン、β-ピネン等が挙げられる。
 上記(5b)の方法としては、ニトリル基含有構造単位及び脂肪族炭化水素構造単位を含有する共重合体Aを調製する際に、塩基を添加して調整してもよい。また、既に調製されたニトリル基含有構造単位及び脂肪族炭化水素構造単位を含有する共重合体を、この共重合体を溶解できる溶媒に溶解させた後、塩基を添加して調整してもよい。添加する塩基としては、無機塩基、及び、有機水酸化物(有機塩基)からなる群から選ばれる少なくとも1種を用いることができる。
 無機塩基としては、例えば、アルカリ金属又はアルカリ土類金属の、塩化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、リン酸塩、タングステン酸塩、バナジウム酸塩、モリブデン酸塩、ニオブ酸塩、又はホウ酸塩;及び、水酸化アンモニウム等が挙げられる。これらのなかでも、容易にカチオンを供給できる観点から、アルカリ金属又はアルカリ土類金属の水酸化物が好ましい。アルカリ金属の水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。アルカリ土類金属の水酸化物としては、例えば、水酸化カルシウム、水酸化マグネシウム等が挙げられる。これらのなかでも、水酸化リチウム、水酸化ナトリウム、及び水酸化カリウムからなる群から選択される少なくとも1種を用いることがより好ましい。なお、無機塩基に含まれる金属は、遷移金属であってもよい。
 有機水酸化物は、有機カチオンと水酸化物イオンとを含む塩である。有機水酸化物としては、例えば、トリメチル-2-ヒドロキシエチルアンモニウムヒドロキシド、テトラメチルアンモニウムヒドロキシド、セチルトリメチルアンモニウムヒドロキシド、ヘキサデシルトリメチルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、3-トリフルオロメチル-フェニルトリメチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド等が挙げられる。これらのなかでも、トリメチル-2-ヒドロキシエチルアンモニウムヒドロキシド及びテトラメチルアンモニウムヒドロキシドからなる群から選択される少なくとも1種を用いることが特に好ましい。
 塩基の使用量は、共重合体Aの質量を基準として、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、3質量%以上であることが更に好ましい。塩基の使用量は、共重合体の質量を基準として、20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。
 使用量が少なすぎると、加水分解によるニトリル基の変性が起こりにくい傾向がある。使用量が多すぎると、分散装置及び/又は電池内部の腐食の原因となり得る。このような観点から、一実施形態において、導電体分散体は、共重合体Aの質量を基準として、1質量%以上10質量%以下の塩基をさらに含んでもよい。
 (5b)の方法において、加水分解によるニトリル基の変性は、脂肪族炭化水素構造単位及びニトリル基含有構造単位を含む共重合体Aと、塩基と、溶媒とを混合することによって行うことができる。更に、任意の成分を混合してもよい。
 共重合体A、塩基、及び溶媒の容器への添加順序及び混合方法に制限はなく、これらを同時に容器に添加してもよい。例えば、共重合体A、塩基及び溶媒をそれぞれ別に容器に添加してもよい。あるいは、例えば、共重合体A及び塩基のいずれか一方又は両方を溶媒と混合し、共重合体含有液及び/又は塩基含有液を調製し、共重合体含有液及び/又は塩基含有液を容器に添加してもよい。
 特に、一実施形態において、ニトリル基を効率よく変性させることができることから、共重合体Aを溶媒に溶解させた共重合体溶液に、塩基を溶媒中に分散させた塩基分散液を、撹拌しながら添加する方法が好ましい。撹拌には、ディスパー(分散機)又はホモジナイザー等を用いることができる。溶媒としては、後述する溶媒を用いることができる。
 混合する際の温度に制限はないが、30℃以上に加温することで変性を早めることができる。また、共重合体Aの変性を促進するために、微量の水分及び/又はアルコールを容器に添加してもよい。水及び/又はアルコールは、共重合体A及び塩基を混合しながら容器に添加してもよいし、共重合体A及び塩基を容器に加える前に容器に添加してもよいし、共重合体A及び塩基と同時又はこれらに続けて容器に添加してもよい。また、共重合体A、塩基、必要に応じて用いられる任意の成分の吸湿性が高い場合は、水は、吸湿された水として含まれていてもよい。水及び/又はアルコールの量は、共重合体Aの質量を基準として、0.05~20質量%が好ましく、0.05~5質量%がより好ましく、0.05~1質量%が更に好ましい。
 アルコールとしては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ベンジルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコールなどが挙げられる。アルコールは、1種類を単独で、又は、2種類以上を組み合わせて用いることができる。加水分解は、メタノール、エタノール、及び水からなる群から選択される少なくとも1種の存在下で行われることが好ましく、特に、水の存在下で行われることが好ましい。
 上記(5c)の方法では、ニトリル基含有構造単位及び脂肪族炭化水素構造単位を含有する共重合体Aを調製する際に、機械的なせん断力を負荷することでムーニー粘度を調整してもよい。また、既に調製されたニトリル基含有単量体単位及び脂肪族炭化水素構造単位を含有する共重合体を、共重合体を溶解できる溶媒に溶解させた後、機械的なせん断力を負荷することで調整してもよい。溶解前の共重合体Aにロールやニーダーなどを用いて機械的なせん断力を負荷することによってもムーニー粘度を低下させることができる。共重合体Aは、共重合体Aを溶解できる溶媒に溶解させた状態で分散剤として使用するため、共重合体溶液状態でせん断力を負荷することがより好ましい。
 共重合体A溶液状態でせん断力を負荷する方法としては、ホモジナイザー、シルバーソンミキサー等の分散手段を用いる方法が挙げられる。ディスパーなどを用いてもせん断力を負荷することができるが、ホモジナイザー、シルバーソンミキサー等の、より高いせん断力を負荷することができる分散手段を用いることが好ましい。溶解前の共重合体Aに機械的なせん断力を負荷する方法としては、ニーダー、2本ロールミル等の分散手段を用いる方法が挙げられる。
 共重合体Aの製造方法の好ましい実施形態として、以下が挙げられる。
 (P1)共役ジエン単量体及びニトリル基含有単量体を含有する単量体組成物を用い、その重合反応によって共重合体を調製すること((1a)及び(2a)の方法)、上記共重合体に含まれる共役ジエン単量体に由来する単位(共役ジエン単量体単位)に水素添加すること((1a)の方法)を含む、共重合体Aの製造方法。この方法においては、共役ジエン単量体単位の一部又は全部に水素添加する。
 (P2)共役ジエン単量体、ニトリル基含有単量体、及びアミド基含有単量体を含有する単量体組成物を用い、その重合反応によって共重合体を調製すること((1a)、(2a)及び(3a)の方法)、及び、上記共重合体に含まれる共役ジエン単量体単位に水素添加すること((1a)の方法)を含む、共重合体Aの製造方法。この方法においては、共役ジエン単量体単位の一部又は全部を水素添加する。
 (P3)共役ジエン単量体及びニトリル基含有単量体を含有する単量体組成物を用い、その重合反応によって共重合体を調製すること((1a)及び(2a)の方法)、上記共重合体に含まれる共役ジエン単量体単位に水素添加すること((1a)の方法)、及び、塩基を添加して、上記共重合体に含まれるニトリル基含有構造単位を加水分解すること((5b)の方法)を含む、共重合体Aの製造方法。この方法においては、共役ジエン単量体単位の一部又は全部に水素添加する。また、共重合体Aにニトリル基含有構造単位が含まれるよう、ニトリル基含有構造単位の一部(全部ではない。)を加水分解する。
 (P4)共役ジエン単量体及びニトリル基含有単量体を含有する単量体組成物を用い、その重合反応によって共重合体を調製すること((1a)及び(2a)の方法)、上記共重合体に含まれる共役ジエン単量体単位に水素添加すること((1a)の方法)、及び、共重合体溶液に機械的なせん断力を負荷する((5c)の方法)を含む、共重合体Aの製造方法。この方法においては、共役ジエン単量体単位の一部又は全部に水素添加する。
 上記実施形態の製造方法において、上記単量体組成物は、アミド基含有単量体、及び/または、カルボキシル基含有単量体を更に含んでいてもよい。
 共重合体Aの調製に用いられる重合反応は、乳化重合反応であることが好ましく、通常の乳化重合の方法を用いることができる。乳化重合に使用する乳化剤(界面活性剤)、重合開始剤、キレート剤、酸素捕捉剤、分子量調整剤等の重合薬剤は、特に限定されず、それぞれ従来公知の薬剤を使用できる。例えば、乳化剤としては、通常、アニオン系又はアニオン系とノニオン(非イオン)系の乳化剤が使用される。
 アニオン系乳化剤としては、例えば、牛脂脂肪酸カリウム、部分水添牛脂脂肪酸カリウム、オレイン酸カリウム、オレイン酸ナトリウム等の脂肪酸塩;ロジン酸カリウム、ロジン酸ナトリウム、水添ロジン酸カリウム、水添ロジン酸ナトリウム等の樹脂酸塩;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩等が挙げられる。
 ノニオン系乳化剤としては、例えば、ポリエチレングリコールエステル型、ポリプロピレングリコールエステル型、エチレンオキサイドとプロピレンオキサイドのブロック共重合体等のプルロニック(登録商標)型等の乳化剤が挙げられる。
 重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩等の熱分解型開始剤;t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、オクタノイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル等のアゾ化合物;これらと二価の鉄イオン等の還元剤とからなるレドックス系開始剤等が挙げられる。
 これらのなかでも、レドックス系開始剤が好ましい。開始剤の使用量は、例えば、単量体の全質量を基準として、0.01~10質量%の範囲であってよい。
 乳化重合反応は、連続式又は回分式のいずれでもよい。重合温度は、低温~高温重合のいずれでもよい。一実施形態において、重合温度は、好ましくは0~50℃、更に好ましくは0~35℃である。また、単量体の添加方法(一括添加、分割添加等)、重合時間、重合転化率等も特に限定されない。転化率は、85質量%以上が好ましく、90質量%以上であることがより好ましい。
 共重合体Aの重量平均分子量は、5,000以上が好ましく、10,000以上がより好ましく、50,000以上が更に好ましい。共重合体Aの重量平均分子量は、400,000以下が好ましく、350,000以下がより好ましく、300,000以下が更に好ましい。
 共重合体Aの重量平均分子量が、5,000以上、かつ、400,000以下である場合、被分散物への吸着性及び分散媒への親和性が良好となり、分散体の安定性が向上する傾向がある。
 重量平均分子量は、ポリスチレン換算の重量平均分子量であり、ゲルバーミエーションクロマトグラフィ(GPC)により測定できる。具体的には、実施例に記載の方法によって測定できる。
 本発明の一実施形態である導電材分散体において、分散剤は、少なくとも共重合体Aを含有する。分散剤は、任意の重合体、任意の共重合体等を更に含んでもよい。分散剤における共重合体Aの含有量は、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがより好ましい。一実施形態において、分散剤における共重合体Aの含有量は100質量%であってもよい。すなわち、この場合、分散剤は共重合体Aのみからなる。
 導電材分散体は、溶媒を含む。溶媒は特に限定されないが、共重合体Aを溶解できる溶媒であることが好ましく、水溶性有機溶媒のいずれか1種からなる溶媒、又は、水溶性有機溶媒のいずれか2種以上からなる混合溶媒であることが好ましい。
 水溶性有機溶媒としては、アミド系(N-メチル-2-ピロリドン(NMP)、N-エチル-2-ピロリドン(NEP)、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチルカプロラクタムなど)、複素環系(シクロヘキシルピロリドン、2-オキサゾリドン、1,3-ジメチル-2-イミダゾリジノン、γ-ブチロラクトンなど)、スルホキシド系(ジメチルスルホキシドなど)、スルホン系(ヘキサメチルホスホロトリアミド、スルホランなど)、低級ケトン系(アセトン、メチルエチルケトンなど)、その他、テトラヒドロフラン、尿素、アセトニトリルなどを使用することができる。
 一実施形態において、水溶性有機溶媒は、アミド系有機溶媒を含むことが好ましく、N-メチル-2-ピロリドン及びN-エチル-2-ピロリドンからなる群から選択される少なくとも1種を含むことがより好ましい。
 導電材分散体における導電材の分散性は、動的粘弾性測定による位相角及び複素弾性率で評価できる。位相角は、導電材分散体に与えるひずみを正弦波とした場合の応力波の位相ズレを意味している。純弾性体であれば、与えたひずみと同位相の正弦波となるため、位相角0°となる。一方で、純粘性体であれば90°進んだ応力波となる。
 一般的な粘弾性測定用試料では、位相角が0°より大きく90°より小さい正弦波となる。導電材分散体における導電材の分散性が良好であれば、位相角は純粘性体である90°に近づく。また、導電材分散体の複素弾性率は、導電材の分散性が良好で、導電材分散体が低粘度であるほど小さくなる。
 動的粘弾性測定による位相角及び複素弾性率は、分散体中の導電材の濃度に依存する。導電材として高比表面積の炭素繊維(CNTなど)を使用する場合、炭素繊維を含む導電材の含有量が少ないほど、得られる分散体は純粘性体に近づくため位相角は90°に近づく。逆に、炭素繊維を含む導電材を高濃度で含む分散体は、導電材を均一に分散することが困難であり、得られる分散体の位相角は19°未満となる。本発明の実施形態によれば、共重合体Aの使用によって、良好な分散性と安定性とを両立できる。そのため、一実施形態において、導電材の濃度が高い場合であっても周波数1Hzでの位相角が19°以上である導電材分散体を得ることができる。
 一実施形態において、導電材分散体は、動的粘弾性測定による周波数1Hzでの位相角は19°以上であり、30°以上がより好ましく、45°以上が更に好ましい。周波数1Hzでの位相角は、90°以下が好ましく、85°以下がより好ましく、80°以下が更に好ましい。
 また、一実施形態において、導電材分散体の動的粘弾性測定による複素弾性率は、20Pa未満が好ましく、10Pa以下がより好ましく、5Pa以下が更に好ましい。導電材分散体の複素弾性率は、0.01Pa以上が好ましく、0.05Pa以上がより好ましく、0.1Pa以上が更に好ましい。複素弾性率と位相角は、実施例に記載の方法により測定することができる。
 本発明の一実施形態である導電材分散体は、共重合体Aを含む分散剤の効果によって炭素繊維の凝集がほぐされることから、複素弾性率は小さくなる。一実施形態において、導電材分散体は、導電材分散体中の炭素繊維濃度x(質量%)と、動的粘弾性測定による導電材分散体の複素弾性率y(Pa)とが、下記式(1)、式(2)、及び式(3)の関係を満足することが好ましい。
      y<8x                  (1)
      y<20                  (2)
      0.1≦x≦10       (3)
 すなわち、上記式(1)、及び式(2)より、動的粘弾性測定による導電材分散体の複素弾性率yは20Pa未満であり、かつ、y<8xを満たすことが好ましい。また、上記式(3)より、炭素繊維濃度x(質量%)は0.1≦x≦10の範囲であることが好ましい。
 前述のように、複素弾性率及び位相角によって導電材の分散性を判断することができる。このような観点から、導電材分散体の好ましい製造方法の態様として、以下の工程I及び工程IIを含む製造方法が挙げられる。この製造方法によれば、良好な分散性と安定性とを両立できる導電材分散体を得ることができる。
(工程I)炭素繊維を含む導電材と、共重合体Aを含む分散剤と、分散媒とを混合する工程。
(工程II)工程Iの後、分散処理を行い、レオメーター測定結果が周波数1Hzでの位相角が19°以上、及び複素弾性率が20Pa未満を示す、分散体を得る工程。
 導電材としてカーボンナノチューブ(CNT)を含む場合、CNTを構成する単位層の構造、結晶性、及び形態、並びに上記単位層からなるCNTの構造又は形状、及びCNTに含まれる金属元素の含有量などに応じて、異なる物性になり得る。しかし、本発明の実施形態によれば、共重合体Aを含む分散剤を用いて、導電材分散体の位相角を上述の値に制御することによって、所望とする物性を得ることができる。
 導電材分散体の製造方法は特に限定されない。一例として、導電材分散体は、分散剤と、溶媒と、導電材とを混合し、導電材を溶媒中に分散させることにより得ることができる。このような製造方法において、分散剤、溶媒、及び導電材に加え、任意の成分を混合してもよい。他の例として、導電材分散体は、分散剤を溶媒に溶解させた後、導電材を混合し、導電材を溶媒中に分散させることにより得ることができる。このような製造方法において、分散剤、溶媒、及び導電材に加え、追加溶媒等の任意の成分を混合してもよい。溶媒を混合する場合は、分散剤を溶解させる溶媒と同じ溶媒であることが好ましい。容器に分散剤又は導電材を加える順序は、特に限定されない。導電材を分散する過程のいずれかの時点で、導電材と共に分散剤が存在していることが好ましい。
 分散方法としては、ディスパー(分散機)、ホモジナイザー、シルバーソンミキサー、ニーダー、2本ロールミル、3本ロールミル、ボールミル、横型サンドミル、縦型サンドミル、アニュラー型ビーズミル、アトライター、プラネタリーミキサー、又は高圧ホモジナイザー等の各種の分散手段を用いる方法が挙げられる。
 一実施形態において、導電材分散体の製造時に、金属異物等のコンタミを除く工程を入れることが好ましい。炭素繊維を含む導電材、及び共重合体Aを含む分散剤には、それらの製造工程由来(ラインコンタミや触媒として)の金属異物が含まれている場合が多い。これら金属異物を除去することは、電池の短絡を防ぐために非常に重要となる。金属異物とは、導電材分散体中に粒子状で存在している鉄、ニッケル、クロム等であり、溶解し金属イオン状態で存在しているものは含まない。
 本発明の一実施形態によれば、共重合体Aを含む分散剤の効果によって、炭素繊維の凝集がほぐされ、得られる導電材分散体の粘度が低くなる。そのため、共重合体Aを分散剤として含まない場合と比べて、導電材分散体における炭素繊維の含有量が高い場合でも、金属異物を効率よく取り除くことができる。
 金属異物を除去する工程において、導電材分散体から、粒子状の金属異物を除去する方法は、特に限定されない。例えば、フィルターを用いた濾過によって除去する方法、振動ふるいにより除去する方法、遠心分離によって除去する方法、磁力によって除去する方法等が挙げられる。なかでも、鉄、ニッケル、クロム等の金属異物は、磁性を有するため、磁力によって除去する方法が好ましい。一実施形態において、磁力によって除去する工程とフィルターを用いた濾過によって除去する工程とを組み合わせる方法がより好ましい。
 導電材分散体に含まれる金属異物の種類は、特に限定されない。金属異物の具体例として、鉄、コバルト、ニッケル、クロム、アルミニウム、マグネシウム、シリカ、マンガン、及びモリブデン等の金属、又はこれらの金属酸化物、及びこれらの複合酸化物が挙げられる。
 磁力によって除去する方法としては、金属異物を除去できる方法であればよく、特に限定はされない。生産性及び除去効率を考慮すると、導電材分散体の製造ライン中に、磁気フィルターを配置して、導電材分散体を通過させることにより除去する方法が好ましい。
 磁気フィルターによって導電材分散体中から金属異物を除去する工程は、1,000ガウス以上の磁束密度以上の磁場を形成する磁気フィルターを通過させることにより行われることが好ましい。磁束密度が低いと金属成分の除去効率が低下する。そのため、一実施形態において、磁束密度は、好ましくは5,000ガウス以上であってよい。磁性の弱いステンレスを除去することを考慮すると、磁束密度は、さらに好ましくは10,000ガウス以上、最も好ましくは12,000ガウス以上であってよい。
 製造ライン中に磁気フィルターを配置する際には、磁気フィルターの上流側に、カートリッジフィルターなどのフィルターにより粗大な異物、あるいは金属粒子を除く工程を設けることが好ましい。粗大な金属粒子は、濾過する流速によっては、磁気フィルターを通過してしまう恐れがあるためである。また、磁気フィルターは、一回のろ過のみでも効果はあるが、循環式であることがより好ましい。循環式とすることで、金属粒子の除去効率が向上するためである。
 導電材分散体の製造ライン中に、磁気フィルターを配置する場合、磁気フィルターの配置場所は特に制限されない。例えば、導電材分散体を容器に充填する直前であり、容器への充填前に濾過フィルターによる濾過工程が存在する場合には、濾過フィルターの前に配置することが好ましい。これは、磁気フィルターから金属成分が脱離した場合に、製品への混入を防止するためである。
 導電材分散体中の金属含有量は、導電材分散体を乾燥した後、高周波誘導結合プラズマ(inductively  coupled  plasma、ICP)を用いて分析することができる。ICP分析によって検出される鉄、ニッケル、クロムからなる金属含有量は、粒子状で存在している金属異物、及び、溶解し金属イオン状態で存在しているものを含む。すなわち、金属異物の除去工程を経た導電材分散体の金属含有量は、除去しきれなかった金属異物、及び、溶解し金属イオン状態で存在しているものを含む。
 一実施形態において、導電材分散体における金属含有量(金属異物量)として、Fe金属元素含有量を10ppm以下とすることが好ましい。上記Fe金属元素含有量は、5ppm以下とすることがより好ましく、1ppm以下とすることがさらに好ましい。このように、導電材分散体内に残留する不純物としてのFe金属の含有量を著しく減少させることで、電極内での副反応を抑制し、より優れた伝導性を容易に得ることができる。
 本発明の他の実施形態は、上記実施形態の導電材分散体を用いた導電性組成物に関する。一実施形態において、導電性組成物は、バインダー樹脂含有導電材分散体であってよい。また、一実施形態において、導電性組成物は、電極用スラリーであってよい。以下、これらの実施形態について具体的に説明する。
<バインダー樹脂含有導電材分散体>
 バインダー樹脂含有導電材分散体は、バインダー樹脂と、上記実施形態の導電材分散体とを含有する。すなわち、バインダー樹脂含有導電材分散体は、上記分散剤と、溶媒と、導電材と、バインダー樹脂とを少なくとも含む。更に換言すると、バインダー樹脂含有導電材分散体は、共重合体Aと、溶媒と、炭素繊維と、バインダー樹脂とを少なくとも含有する。バインダー樹脂含有導電材分散体は、塩基、酸等の任意の成分を更に含有してもよい。
 一実施形態において、バインダー樹脂含有導電材分散体は、バインダー樹脂と、上記実施形態の導電材分散体とを混合することによって製造することができる。製造時に、バインダー樹脂と導電材分散体と共に、任意の成分を更に混合してもよい。バインダー樹脂含有導電材分散体の製造時に、前述の導電材分散体で説明した金属異物等のコンタミを除く工程を設けてもよい。
 バインダー樹脂は、電極活物質、導電材等の物質間を結合することができる樹脂である。本明細書において、バインダー樹脂は、共重合体Aとは異なる樹脂である。つまり、バインダー樹脂は、共重合体Aを除く樹脂から選択される。
 バインダー樹脂としては、例えば、エチレン、プロピレン、塩化ビニル、酢酸ビニル、ビニルアルコール、マレイン酸、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、アクリロニトリル、スチレン、ビニルブチラール、ビニルアセタール、ビニルピロリドン等を構造単位として含む重合体又は共重合体;ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、アクリル樹脂、ホルムアルデヒド樹脂、シリコン樹脂、フッ素樹脂等の樹脂;カルボキシメチルセルロースのようなセルロース樹脂;スチレンブタジエンゴム、フッ素ゴムのようなゴム類;ポリアニリン、ポリアセチレンのような導電性樹脂等が挙げられる。また、これらの変性体、混合物、又は共重合体でもよい。
 これらのなかでも、正極膜を形成する場合、バインダー樹脂としては、耐性面から、分子内にフッ素原子を有する重合体又は共重合体を好適に使用できる。例えば、ポリフッ化ビニリデン、ポリフッ化ビニル、テトラフルオロエチレン等が好ましい。また、負極膜を形成する場合、バインダー樹脂としては、密着性が良好であることから、カルボキシメチルセルロース、スチレンブタジエンゴム、ポリアクリル酸等を好適に使用できる。
 バインダー樹脂の重量平均分子量は、10,000~2,000,000が好ましく、100,000~1,000,000がより好ましく、200,000~1,000,000が更に好ましい。
 バインダー樹脂含有導電材分散体(BD)に含まれる共重合体Aの含有量は、上記分散体(BD)における導電材の質量を基準として(導電材の質量を100質量%として)、0.1~200質量%が好ましく、1~100質量%がより好ましく、2~50質量%が更に好ましい。
 バインダー樹脂含有導電材分散体(BD)に含まれる導電材の含有量は、上記分散体(BD)の質量を基準として(上記分散体(BD)の質量を100質量%として)、0.05~30質量%が好ましく、0.1~20質量%がより好ましい。
 バインダー樹脂含有導電材分散体(BD)に含まれるバインダー樹脂の含有量は、上記分散体(BD)の質量を基準として(上記分散体(BD)の質量を100質量%として)、0.05~25質量%が好ましく、0.1~15質量%がより好ましい。
 バインダー樹脂含有導電材分散体は、溶媒を含む。溶媒は特に限定されないが、例えば、導電材分散体の説明において例示した溶媒を用いることができる。また、導電材分散体に含まれる溶媒と同じ溶媒を用いることが好ましい。
<電極膜用スラリー>
 一実施形態において、上記導電材分散体、又は上記導電材分散体を用いた導電性組成物は、電極膜を形成する材料として好適に使用することができる。したがって、本発明の一実施形態は、電極膜用スラリーに関する。また、本発明の他の実施形態は、電極用スラリーを作製する方法に関する。以下、これらの実施形態について具体的に説明する。
 電極膜用スラリーは、上記実施形態の導電材分散体又はバインダー樹脂含有導電材分散体と、電極活物質とを含有する。すなわち、一実施形態において、電極膜用スラリーは、上記実施形態の導電材分散体と、電極活物質とを少なくとも含有する。他の実施形態において、電極膜用スラリーは、上記実施形態のバインダー樹脂含有導電材分散体と、電極活物質とを少なくとも含有する。更に換言すると、電極膜用スラリーは、共重合体Aと、炭素繊維と、溶媒と、電極活物質とを少なくとも含有する。電極膜用スラリーは、バインダー樹脂、塩基、酸等の任意の成分を更に含有してもよい。本明細書において、「スラリー」を「合材スラリー」という場合がある。
 電極活物質とは、電池反応の基となる材料のことである。電極活物質は、起電力から正極活物質と負極活物質とに分けられる。
 正極活物質としては、特に限定はされないが、リチウムイオンを可逆的にドーピング又はインターカレーション可能な材料を用いることができる。例えば、金属酸化物、金属硫化物等の金属化合物等が挙げられる。具体的には、Fe、Co、Ni、Mn等の遷移金属の酸化物、リチウムとの複合酸化物、遷移金属硫化物等の無機化合物等が挙げられる。より具体的には、MnO、V、V13、TiO2等の遷移金属酸化物粉末;層状構造のニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、スピネル構造のマンガン酸リチウムなどのリチウムと遷移金属との複合酸化物粉末;オリビン構造のリン酸化合物であるリン酸鉄リチウム系材料;TiS、FeSなどの遷移金属硫化物粉末等が挙げられる。
 正極活物質は、少なくともNiを含有する物質であることが好ましい。正極活物質は、1種を単独で、又は複数を組み合わせて使用することもできる。
 負極活物質としては、リチウムイオンを可逆的にドーピング又はインターカレーション可能な材料を用いることができる。例えば、金属Li、その合金であるスズ合金、シリコン合金、鉛合金等の合金系;LiFe、LiFe、LiWO(xは0<x<1の数である。)、チタン酸リチウム、バナジウム酸リチウム、ケイ素酸リチウム等の金属酸化物系;ポリアセチレン、ポリ-p-フェニレン等の導電性高分子系;高黒鉛化炭素材料等の人造黒鉛、天然黒鉛等の炭素質粉末;樹脂焼成炭素材料などの炭素系材料が挙げられる。負極活物質は、1種を単独で、又は複数を組み合わせて使用することもできる。
 電極膜用スラリー中の共重合体Aの含有量は、電極活物質の質量を基準として(電極活物質の質量を100質量%として)、0.01~10質量%であることが好ましく、0.05~5質量%であることがより好ましい。
 電極膜用スラリー中の導電材の含有量は、電極活物質の質量を基準として(電極活物質の質量を100質量%として)、0.01~10質量%であることが好ましく、0.02~5質量%であることがより好ましく、0.03~3質量%であることが更に好ましい。
 一実施形態において、電極膜用スラリーはバインダー樹脂を含有してもよい。この場合、電極膜用スラリー中のバインダー樹脂の含有量は、電極活物質の質量を基準として(電極活物質の質量を100質量%として)、0.1~30質量%であることが好ましく、0.5~20質量%であることがより好ましく、1~10質量%であることが更に好ましい。
 一実施形態において、電極膜用スラリー中の固形分量は、電極膜用スラリーの全質量を基準として(電極膜用スラリーの全質量を100質量%として)、30~90質量%であることが好ましく、30~80質量%であることがより好ましく、40~75質量%であることが更に好ましい。
 電極膜用スラリーは、従来公知の様々な方法で作製することができる。例えば、導電材分散体に電極活物質を添加して作製する方法、及び、導電材分散体にバインダー樹脂を添加した後、電極活物質を添加して作製する方法が挙げられる。さらに、例えば、導電材分散体に電極活物質を添加した後、バインダー樹脂を添加して作製する方法、及びバインダー樹脂含有導電材分散体に電極活物質を添加して作製する方法などが挙げられる。
 電極膜用スラリーを作製する方法としては、導電材分散体にバインダー樹脂を添加した後、電極活物質を更に加えて分散させる処理を行う方法が好ましい。分散に使用される分散装置は特に限定されない。導電材分散体の説明において挙げた分散手段を用いて、電極膜用スラリーを得ることができる。
 共重合体Aはバインダーとしての機能も有する。そのため、一実施形態では、バインダー樹脂を加えなくとも電極膜用スラリーを得ることができる。したがって、電極膜用スラリーを作製する方法としては、導電材分散体にバインダー樹脂を添加することなく、電極活物質を加えて分散させる処理を行う方法も好ましい。
<電極膜>
 本発明の一実施形態である電極膜は、上記実施形態の導電材分散体、又はこれを用いた導電性組成物を用いて形成した膜を含む。すなわち、電極膜は、上記導電材分散体を用いて形成した膜、上記バインダー樹脂含有導電材分散体を用いて形成した膜、及び、上記電極膜用スラリーを用いて形成した膜、からなる群から選択される少なくとも1種を含む。
 一実施形態において、電極膜は、更に、集電体を含んでもよい。例えば、電極膜は、集電体上に電極膜用スラリーを塗工し、乾燥させることで得ることができ、集電体と膜とを含む。本明細書において、「電極膜用スラリーを用いて形成した膜」を「電極合材層」という場合がある。
 電極膜の形成に用いられる集電体の材質及び形状は特に限定されず、各種二次電池にあったものを適宜選択することができる。例えば、集電体の材質としては、アルミニウム、銅、ニッケル、チタン、又はステンレス等の金属又は合金が挙げられる。また、集電体の形状としては、一般的には平板形状の箔が用いられる。しかし、これに限定されず、表面を粗面化した集電体、穴あき箔状の集電体、又はメッシュ状の集電体も使用できる。
 集電体の上に、導電材分散体、バインダー樹脂含有導電材分散体、又は電極用スラリーを塗工する方法としては、特に制限はなく、公知の方法を用いることができる。具体的には、使用可能な方法の例として、ダイコーティング法、ディップコーティング法、ロールコーティング法、ドクターコーティング法、ナイフコーティング法、スプレーコティング法、グラビアコーティング法、スクリーン印刷法、又は静電塗装法等を挙げることができる。乾燥方法としては、例えば、放置乾燥、又は、送風乾燥機、温風乾燥機、赤外線加熱機、若しくは遠赤外線加熱機等を用いることができる、しかし、乾燥方法は、特にこれらに限定されない。
 上記塗工後に、平版プレス、カレンダーロール等による圧延処理を行ってもよい。形成された膜の厚みは、例えば、1μm以上500μm以下であり、好ましくは10μm以上300μm以下である。
 一実施形態において、導電材分散体又はバインダー樹脂含有導電材分散体を用いて形成された膜は、電極合材層の下地層として用いることも可能である。このような下地層を設けることによって、電極合材層と集電体との密着性を向上させるか、又は、電極膜の導電性を向上させることができる。
<非水電解質二次電池>
 本発明の一実施形態である非水電解質二次電池は、正極と、負極と、電解質とを含み、正極及び負極からなる群から選択される少なくとも1つが、上記実施形態の電極膜を含む。
 正極としては、例えば、集電体上に正極活物質を含む電極膜用スラリーを塗工し、乾燥させて膜を作製した電極膜を使用することができる。
 負極としては、例えば、集電体上に負極活物質を含む電極膜用スラリーを塗工し、乾燥させて膜を作製した電極膜を使用することができる。
 電解質としては、イオンが移動可能な従来公知の様々なものを使用することができる。例えば、特に限定するものではないが、電解質は、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiCFSO、Li(CFSON、LiCSO、Li(CFSOC、LiI、LiBr、LiCl、LiAlCl、LiHF、LiSCN、又はLiBPh(ただし、Phはフェニル基である)等のリチウム塩を含んでよい。電解質は、非水系の溶媒に溶解して、電解液として使用することが好ましい。
 非水系の溶媒としては、特に限定はされないが、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、及びジエチルカーボネート等のカーボネート類;γ-ブチロラクトン、γ-バレロラクトン、及びγ-オクタノイックラクトン等のラクトン類;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,2-メトキシエタン、1,2-エトキシエタン、及び1,2-ジブトキシエタン等のグライム類;メチルフォルメート、メチルアセテート、及びメチルプロピオネート等のエステル類;ジメチルスルホキシド、及びスルホラン等のスルホキシド類;並びに、アセトニトリル等のニトリル類等が挙げられる。これらの溶媒は、それぞれ単独で使用してもよいが、2種以上を混合して使用してもよい。
 一実施形態において、非水電解質二次電池は、セパレーターを含むことが好ましい。セパレーターとしては、特にこれらに限定されないが、例えば、ポリエチレン不織布、ポリプロピレン不織布、ポリアミド不織布、及びこれらに親水性処理を施した不織布が挙げられる。
 本発明の一実施形態である非水電解質二次電池の構造は、特に限定されない。一実施形態において、非水電解質二次電池は、通常、正極及び負極と、必要に応じて設けられるセパレーターとを備えてよい。非水電解質二次電池は、使用する目的に応じて、ペーパー型、円筒型、ボタン型、積層型等の種々の形状として構成することができる。
 以下に実施例を挙げて、本発明を更に具体的に説明する。本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、特に断らない限り、「部」は「質量部」、「%」は「質量%」を表す。
 また、実施例において、「共重合体A」を「共重合体」または「分散剤」という場合がある。さらに、「分散剤」と溶媒とを含む「分散剤含有液」を「分散剤溶液」という場合がある。また、実施例では、導電材分散体における金属含有量の測定対象を鉄としているが、導電材分散体中の金属は鉄に限定されない。
 後述する実施例における各種測定及び評価は、以下のようにして実施した。
<共重合体の重量平均分子量(Mw)の測定>
 共重合体の重量平均分子量(Mw)は、RI検出器を装備したゲルパーミエーションクロマトグラフィー(GPC)で測定した。装置としてHLC-8320GPC(東ソー株式会社製)を用い、分離カラムを3本直列に繋いだ。上記分離カラムに対し、充填剤として、順に、東ソー株式会社製「TSK-GEL SUPER AW-4000」、「AW-3000」、及び「AW-2500」を用いた。オーブン温度40℃で、溶離液として30mMのトリエチルアミン及び10mMのLiBrのN,N-ジメチルホルムアミド溶液を用い、流速0.6mL/minで測定を行った。測定サンプルとして、上記溶離液からなる溶剤を用いて1%の濃度となるように共重合体溶液の濃度を調整し、調整後の溶液20マイクロリットルを装置に注入した。重量平均分子量はポリスチレン換算値である。
<共重合体の水素添加率の測定>
 水素添加率は、全反射測定法による赤外分光分析の方法でIR測定を行い、その測定値から求めた。具体的には、共役ジエン単量体単位に由来する二重結合は970cm-1にピークが表れ、水素添加された単結合は723cm-1にピークが表れる。したがって、この二つのピークの高さの比率から、水素添加率を計算した。
<共重合体のムーニー粘度(ML1+4、100℃)の測定>
 共重合体Aのムーニー粘度は、共重合体Aを溶解することができる溶媒を含む共重合体溶液を用いて測定試料を調製し、測定する。具体的に、測定試料の調製は、先ず、共重合体AがNMPに溶解している場合、共重合体AのNMP溶液を水で凝固させる。次いで、メタノールで洗浄し、温度60℃で12時間真空乾燥する。このようにして得た測定試料40gを使用し、日本工業規格JIS K6300-1に準拠して、温度100℃で、L形ローターを使用して、ムーニー粘度(ML1+4、100℃)を測定した。
<導電材分散体の初期粘度の測定>
 粘度値の測定は、先ず、B型粘度計(東機産業株式会社製「BL」)を用い、温度25℃にて、導電材分散体をヘラで十分に撹拌した。その後、B型粘度計ローター回転速度60rpmにて、直ちに、導電材分散体の粘度値の測定を行った。
 測定では、粘度値が100mPA・s未満の場合は、No.1のローターを使用した。粘度値が100以上500mPa・s未満の場合は、No.2のローターを使用した。粘度値が500以上2,000mPa・s未満の場合は、No.3のローターを使用した。さらに、粘度値が2,000以上10,000mPa・s未満の場合は、No.4のローターを使用した。低粘度であるほど分散性が良好であり、高粘度であるほど分散性が不良である。得られた導電材分散体が明らかに分離又は沈降しているものは、分散性不良と判定した。
(初期粘度の判定基準)
 ◎:500mPa・s未満(優良)
 ○:500mPa・s以上2,000mPa・s未満(良)
 △:2,000mPa・s以上10,000mPa・s未満(可)
 ×:10,000mPa・s以上、沈降又は分離(不良)
<導電材分散体の複素弾性率及び位相角の測定>
 導電材分散体の複素弾性率及び位相角の測定は、直径60mm、2°のコーンにてレオメーター(Thermo Fisher Scientific株式会社製RheoStress1回転式レオメーター)を用いて実施した。25℃、周波数1Hzにて、ひずみ率0.01%から5%の範囲で動的粘弾性率の測定を実施し、以下の基準にしたがい評価した。得られた位相角の値が大きいほど分散性が良好であり、小さいほど分散性に劣る。また、得られた複素弾性率が小さいほど分散性が良好であり、大きいほど分散性が不良である。
(位相角の判定基準)
 ◎:45°以上(優良)
 ○:30°以上45°未満(良)
 △:19°以上30°未満(可)
 ×:19°未満(不良)
(複素弾性率の判定基準)
 ◎:5Pa未満(優良)
 ○:5Pa以上20Pa未満(可)
 ×:20Pa以上(不良)
 ××:100Pa以上(極めて不良)
<導電材分散体の安定性評価>
 貯蔵安定性の評価は、導電材分散体を50℃にて7日間静置して保存した後の、液性状の変化から評価した。液性状の変化は、ヘラで撹拌した際の撹拌しやすさから判断した。
(判定基準)
 ○:問題なし(良好)
 △:粘度は上昇しているがゲル化はしていない(可)
 ×:ゲル化している(極めて不良)
<導電材分散体における金属含有量の測定>
 導電材分散体における金属含有量は、高周波誘導結合プラズマ(inductively  coupled  plasma、ICP)を用いて分析した。導電材分散体を、日本工業規格JIS K 0116;2014に従い酸分解法にて前処理し、ICP発光分析法にて鉄イオン・原子の含有量測定を行った。
<正極合材層の導電性評価>
 正極用合材スラリーを、ギャップ175μmのアプリケーターを用いてPETフィルム(厚さ100μm)に塗工し、70℃の熱風オーブンで10分、120℃の熱風オーブンで15分乾燥させて、導電性評価用の正極膜を得た。
 正極合材層の表面抵抗率(Ω/□)は、株式会社三菱化学アナリテック製:ロレスターGP、MCP-T610を用いて測定した。測定後、PETフィルム上に形成した正極合材層の厚みを乗じて、体積抵抗率(Ω・cm)とした。正極合材層の厚みは、膜厚計(株式会社NIKON製、DIGIMICRO MH-15M)を用いて、正極膜中の3点を測定して正極膜の平均値を求め、正極膜の平均値とPETフィルムの膜厚との差として求めた。
(判定基準)
 ◎:正極合材層の体積抵抗率(Ω・cm)が10未満(優良)
 〇:正極合材層の体積抵抗率(Ω・cm)が10以上20未満(良)
 ×:正極合材層の体積抵抗率(Ω・cm)が20以上(不良)
<非水電解質二次電池のレート特性評価>
 非水電解質二次電池を25℃の恒温室内に設置し、充放電装置(北斗電工株式会社製、SM-8)を用いて充放電測定を行った。充電電流10mA(0.2C)にて充電終止電圧4.3Vで定電流定電圧充電(カットオフ電流1mA(0.02C))を行った後、放電電流10mA(0.2C)にて、放電終止電圧3Vで定電流放電を行った。この操作を3回繰り返した後、充電電流10mA(0.2C)にて充電終止電圧4.3Vで定電流定電圧充電(カットオフ電流(1mA(0.02C))を行い、放電電流0.2C及び3Cで放電終止電圧3.0Vに達するまで定電流放電を行って、それぞれ放電容量を求めた。レート特性は、0.2C放電容量と3C放電容量の比(下記式1)で表すことができる。
 (式1)
 レート特性 = 3C放電容量/3回目の0.2C放電容量 ×100 (%)
(判定基準)
 ◎:レート特性が80%以上(優良)
 〇:レート特性が60%以上80%未満(良)
 ×:レート特性が30%以上60%未満(不良)
 ××:レート特性が30%未満(極めて不良)
<非水電解質二次電池のサイクル特性評価方法>
 非水電解質二次電池を25℃の恒温室内に設置し、充放電装置(北斗電工株式会社製、SM-8)を用いて充放電測定を行った。充電電流25mA(0.5C)にて充電終止電圧4.3Vで定電流定電圧充電(カットオフ電流2.5mA(0.05C))を行った後、放電電流25mA(0.5C)にて、放電終止電圧3Vで定電流放電を行った。この操作を200回繰り返した。サイクル特性は25℃における3回目の0.5C放電容量と200回目の0.5C放電容量の比(下記式2)で表すことができる。
 (式2)
 サイクル特性 = 3回目の0.5C放電容量/200回目の0.5C放電容量 ×100(%)
(判定基準)
 ◎:サイクル特性が85%以上を(優良)
 〇:サイクル特性が80%以上85%未満を(良)
 ×:サイクル特性が60%以上80%未満を(不良)
 ××:サイクル特性が60%未満(極めて不良)
<1>分散剤の製造(共重合体の合成例、及び分散剤含有液の作製例)
(合成例1:共重合体1の作製)
 ステンレス製重合反応器に、アクリロニトリル30部、1,3-ブタジエン70部、オレイン酸カリ石ケン3部、アゾビスイソブチロニトリル0.3部、t-ドデシルメルカプタン0.55部、及びイオン交換水200部を加えた。窒素雰囲気下において、撹拌しながら、45℃で20時間の重合を行い、転化率90%で重合を終了した。未反応のモノマーを減圧ストリッピングにより除き、固形分濃度約30%のアクリロニトリル-共役ジエン系ゴムラテックスを得た。
 続いて、ラテックスにイオン交換水を追加して全固形分濃度を12%に調整し、容積1Lの撹拌機付きオートクレーブに投入して、窒素ガスを10分間にわたり流して、内容物中の溶存酸素を除去した。水素化触媒としての酢酸パラジウム75mgを、パラジウムに対して4倍モルの硝酸を添加したイオン交換水180mLに溶解して触媒液を調製した。
 この触媒液をオートクレーブに添加し、オートクレーブ内を水素ガスで2回置換した。その後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間の水素化反応を行った。次いで、内容物を常温に戻し、オートクレーブ内を窒素雰囲気とした後、固形分を乾燥させて共重合体1を回収した。
 共重合体1の水素添加率は99.5%であり、重量平均分子量(Mw)は150,000であった。アクリロニトリル-共役ジエン系ゴムにおいて、アクリロニトリル-共役ジエン系ゴムの質量を基準として、共役ジエン単量体単位の含有量は70%であり、ニトリル基含有単量体単位の含有量は30%であった。また、共重合体1において、共重合体1の質量を基準として、アルキレン構造単位を含む脂肪族炭化水素構造単位の含有量は70%であり、ニトリル基含有単量体単位の含有量は30%であった。これらの単量体単位の含有量及び構造単位の含有量は、単量体の使用量から求めた(以下の合成例においても同様である。)。
(製造例1:分散剤1含有液の作製)
 ステンレス製容器1に、合成例1で得た共重合体1を9部、及びNMP91部を入れ、ディスパーにより1時間撹拌し、共重合体1(分散剤1)と、NMPとを含む分散剤1含有液を得た。
 分散剤1のムーニー粘度(ML1+4、100℃)を測定したところ、50であった。分散剤1において、分散剤1の質量を基準として、脂肪族炭化水素構造単位の含有量は70%であり、ニトリル基含有単量体単位の含有量は30%であった。これらの構造単位の含有量は、単量体の使用量、NMR(核磁気共鳴)及び/又はIR(赤外分光法)測定を利用して求めた(以下の合成例においても同様である。)。
(合成例2:共重合体2の作製)
 分子量調整剤として使用したt-ドデシルメルカプタンの含有量を0.35部に変更した以外は、合成例1と同様にして、共重合体2を得た。
 共重合体2の水素添加率は99.2%であり、重量平均分子量(Mw)は180,000であった。共重合体2において、共重合体2の質量を基準として、アルキレン構造単位を含む脂肪族炭化水素構造単位の含有量は70%であり、ニトリル基含有単量体単位の含有量は30%であった。
(製造例2:分散剤2含有液の作製)
 ステンレス製容器1に、NaOH16部及びNMP84部を入れ、ディスパーにより1時間撹拌し、NaOHの懸濁液を調製した。ステンレス製容器2に、合成例2で得た共重合体2を9部、及びNMP91部を入れ、ディスパーにより1時間撹拌し、共重合体2の溶液を調製した。
 続いて、NMPを除いた組成が表1に示す組成となるように、NaOHの懸濁液及び共重合体2の溶液をステンレス製容器に入れ、更にNMPを加えて濃度を調整し、ディスパーで2時間撹拌した。このようにして、共重合体2のムーニー粘度を調整し、分散剤2(NaOH懸濁液と混合後の共重合体2)と、NaOHと、NMPとを含む分散剤2含有液を得た。分散剤2のムーニー粘度(ML1+4、100℃)を測定したところ、42であった。
(合成例3:共重合体3の作製)
 分子量調整剤として使用したt-ドデシルメルカプタンの含有量を0.25部に変更した以外は、合成例1と同様にして、共重合体3を得た。
 共重合体3の水素添加率は99.1%であり、重量平均分子量(Mw)は230,000であった。共重合体3において、共重合体3の質量を基準として、アルキレン構造単位を含む脂肪族炭化水素構造単位の含有量は70%であり、ニトリル基含有単量体単位の含有量は30%であった。
(製造例3:分散剤3含有液の作製)
 共重合体3を使用し、かつ使用する分散機をホモジナイザーに変更して、溶液にせん断力を負荷する以外は、製造例1と同様にして、分散剤3含有液を得た。分散剤3含有液は、せん断処理によってムーニー粘度を調整した共重合体3(分散剤3)と、NMPとを含む。分散剤3のムーニー粘度(ML1+4、100℃)を測定したところ、55であった。
 なお、表1のモノマー及び分子量調整剤の欄に記した略号は、以下を意味する。
 BD:1,3-ブタジエン
 MBD:2-メチル-1,3-ブタジエン
 AN:アクリロニトリル
 AAm:アクリルアミド
 BA:ブチルアクリレート
 TDM:t-ドデシルメルカプタン
(製造例4~9:分散剤4~9含有液の作製、及び比較製造例1~3:比較分散剤1~3含有液の作製)
 共重合体を構成するために使用するモノマー組成、及び塩基の量、及び調製時のせん断処理の有無を表1に従って変更し、製造例1~3を参考にして、分散剤4~9含有液、比較分散剤1~3含有液を得た。各分散剤のムーニー粘度は、表1に示す通りである。
(製造例10:分散剤10含有液の作製)
 ステンレス製容器1に、H-NBR1(ARLANXEO社製H-NBR(水素化アクリロニトリル-ブタジエンゴム) Therban(R)3406、アクリロニトリル含有量34%)、及びNMPを加えてディスパーで溶解させ、さらにホモジナイザーを用いてH-NBR1溶液に高いせん断力を負荷して、分散剤10含有液を得た。分散剤10のムーニー粘度(ML1+4、100℃)を測定したところ、50であった。
(製造例12:分散剤12含有液の作製)
 NaOH及びH-NBR2(日本ゼオン株式会社製H-NBR(水素化アクリロニトリル-ブタジエンゴム) Zetpol(R)2000L、アクリロニトリル含有量36.2%)が表1に示す組成となるように、製造例2と同様にして作製したNaOH懸濁液及びH-NBR2の溶液をステンレス製容器1に入れた。更に、NMPを加えて濃度を調整し、ホモジナイザーで2時間撹拌して溶液に高いせん断力を負荷した。このようにして、H-NBR2のムーニー粘度を調整し、分散剤12(NaOH懸濁液と混合後のH-NBR2)と、NaOHと、NMPとを含む分散剤12含有液を得た。分散剤12のムーニー粘度(ML1+4、100℃)を測定したところ、48であった。
(製造例11、13:分散剤11、13含有液の作製)
 共重合体のムーニー粘度を調整するために使用する塩基の種類、及び量を、表1に従って変更し、製造例10、12を参考にして、それぞれ分散剤11、13含有液を得た。各分散剤11、13のムーニー粘度は表1に示す通りである。
Figure JPOXMLDOC01-appb-T000010
 なお、塩基と共重合体との混合は、実施例に記載の順序及び方法に限らない。一実施形態において、塩基を予め溶媒中に分散(又は溶解)させ、共重合体溶液に添加した方が、塩基と共重合体との接触効率が高くなるため加水分解が進みやすい。また、品質管理の安定化及び製造時間の短縮にも効果的である。
<2>導電材分散体の作製
(実施例1-1)
 表2に示す組成に従い、ステンレス容器に、先に調製した分散剤含有液(分散剤、NMP、及び記載のある場合は塩基を含む)を加え、更にNMPを追加して濃度を調整した後、ディスパーで均一になるまで撹拌した。
 その後、導電材をディスパーで撹拌しながら添加し、ハイシアミキサー(L5M-A、SILVERSON製)に角穴ハイシアスクリーンを装着し、8,500rpmの速度で全体が均一になり、グラインドゲージにて分散粒度が250μm以下になるまで、バッチ式分散を行った。続いて、ステンレス容器から、配管を介して高圧ホモジナイザー(スターバーストラボHJP-17007、スギノマシン製)に被分散液を供給し、25回パス式分散処理を行った。
 上記分散処理は、シングルノズルチャンバーを使用し、ノズル径0.25mm、圧力100MPaにて行った。さらに、目開き48μmのナイロンメッシュに3度通過させた後、磁気フィルター(トックエンジニアリング製)を介し、室温、磁束密度12,000ガウスの条件で濾過し、導電材分散体(分散体1)を得た。表2に示すように、得られた実施例1-1の導電材分散体の組成は、分散体の全質量を基準として、100Tを5%、及び分散剤1を1%含み、残りの94%はNMPである。
 濾過後の磁気フィルターには、磁性を有する粒状の金属片の付着が見られた。また、表2に示す通り、分散体1は低粘度かつ安定性が良好であり、ICP分析法で測定したFe金属元素含有量は0.9ppmだった。
(実施例1-2~1-21、比較例1-1~1-5、1-7~1~10)
 表2に示す組成に従い、実施例1-1と同様にして、各分散体(分散体2~21、比較分散体1~5、7~10)を得た。表3に示す通り、本発明の導電材分散体(分散体2~21)はいずれも低粘度かつ安定性が良好であった。
(比較例1-6)
 表2に示す組成に従い、ステンレス容器に、分散剤1含有液(分散剤1と、NMPとを含む)を加え、NMPを追加して濃度を調整した後、ディスパーで均一になるまで撹拌した。
 その後、導電材をディスパーで撹拌しながら添加し、ハイシアミキサー(L5M-A、SILVERSON製)に角穴ハイシアスクリーンを装着し、8,500rpmの速度で全体が均一になり、グラインドゲージにて分散粒度が250μm以下になるまでバッチ式分散を行った。続いて、ステンレス容器から、配管を介して高圧ホモジナイザー(スターバーストラボHJP-17007、スギノマシン製)に被分散液を供給し、10回パス式分散処理を行った。
 上記分散処理は、シングルノズルチャンバーを使用し、ノズル径0.25mm、圧力100MPaにて行った。さらに、目開き48μmのナイロンメッシュに3度通過させた後、磁気フィルター(トックエンジニアリング製)を介し、室温、磁束密度12,000ガウスの条件で濾過し、比較分散体6を得た。
 得られた比較分散体6の初期粘度は5000mPa・sであり、位相角を測定したところ、14°であった。
 なお、表2に記した略号は、以下を意味する。
・100T:K-Nanos 100T(Kumho Petrochemical株式会社製、多層CNT、外径10~15nm)
・Flotube9110:Cnano FT9110CNT(Cnano Technology Ltd製、多層CNT、平均外径11nm)
・BT1003M:LUCAN BT1003M(LG Chem Ltd製、多層CNT、平均外径13nm)
・8S:JENOTUBE8S(株式会社JEIO製、多層CNT、外径6~9nm)
・HS-100:デンカブラックHS-100(デンカ株式会社製、アセチレンブラック、平均一次粒子径48nm、比表面積39m/g)
・PVP:ポリビニルピロリドンK-30(株式会社日本触媒製、固形分100%)
・H-NBR3:Zetpole(R)3300(日本ゼオン株式会社製、ムーニー粘度(ML1+4、100℃)80、アクリロニトリル含有量23.6%)
Figure JPOXMLDOC01-appb-T000011
 表3に示す通り、実施例の導電材分散体(分散体1~21)は、いずれも低粘度かつ貯蔵安定性が良好であった。特に、分散剤に含まれる共重合体Aのムーニー粘度(ML1+4、100℃)の測定値が40以上50以下である分散体は、極めて低粘度であった。
 比較分散体1~10は、高粘度かつ貯蔵安定性が不良であった。特に、比較分散体1~3は、極めて貯蔵安定性が不良であった。
 また、複素弾性率及び位相角についても同様に、分散体1~18はいずれも良好であった。これに対し、比較分散体1~3、5は、不良であった。特に、比較分散体1の複素弾性率は約300Paであり、極めて不良であった。
 表4に、実施例1-1、1-6と比較例1-1、1-2、1-6のICP分析法で測定したFe金属元素含有量を示す。表4に示す通り、分散体1及び分散体6のように導電材分散体を低粘度で得られることで、分散体製造時に磁石による除鉄及びろ過工程を効率よく行うことができることが確認できる。
 一方、比較分散体1、2、6は高粘度であり、金属異物除去工程を効率よく実施することができなかった。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 実施例で使用された分散剤(共重合体A)は、ムーニー粘度が高い一般的なニトリルゴムに対し、ムーニー粘度が70以下であることで、導電材への吸着力が向上し、分散性が良好な導電材分散体が容易に得られるようになったと考えられる。また、比較分散剤3のようなムーニー粘度が40未満であるニトリルゴムは、共重合体の導電材に対する吸着安定性が低く、凝集力の強い炭素繊維を高濃度で分散させることができなかったと考えられる。
 すなわち、ムーニー粘度が40以上70以下を示す共重合体を分散剤として含むことで、炭素繊維の凝集を抑制し良好な分散状態にすることができるだけでなく、高濃度で分散させても分散性と安定性を両立することができると考えられる。
 実施例1-16、1-19~1-21、比較例1-7~1-10で得られた分散体16、19~21、比較分散体7~10は、全て同じ導電材(CNT(8S))を使用している。上記分散体において、CNT濃度は、それぞれ、2.5、2.0、1.5、1.0(質量%)である。
 実施例1-16、1-19~1-21は、特に分散性と安定性に優れる、共重合体6を用いている(ムーニー粘度45(実測値))。
 分散体中CNT濃度(質量%)をx軸、動的粘弾性測定による複素弾性率[G](Pa)をy軸として、その関係を図1のグラフに示す。
 図1に示されるように、同一のCNT濃度の分散体で比較すると、実施例1-19~1-22で得た分散体は、比較分散体と比較して、動的粘弾性測定による複素弾性率yが小さい。その差は顕著であり、y<8xを満たすことが確認できる。
 実施例1-16、1-19~1-21、比較例1-7~1-10のように、凝集力の強いCNTを分散させる場合、CNT濃度が低くなるにつれて、図1に示すように複素弾性率の値は小さくなるが、表3に示すように比較分散体では貯蔵安定性は不良であった。これは、分散体において、共重合体Aを含まない分散体では、導電材への分散剤の吸着力が低く、導電材の濃度によらず安定な状態で分散を保持することができなかったと考えられる。
 すなわち、実施例の炭素繊維を含む導電材分散体は、下記式(1)、並びに、下記式(2)及び式(3)の関係を満足するものである。
   y<8x         (1)
      y<20                  (2)
      0.1≦x≦10       (3)
<3>正極用合材スラリー及び正極膜の作製
(実施例2-1)
 表5に示す組成に従い、容量150mLのプラスチック容器に導電材分散体(分散体1)と、8質量%PVDFを溶解したNMPとを加えた。その後、自転及び公転ミキサー(株式会社シンキー製のあわとり練太郎、ARE-310)を用いて、2,000rpmで30秒間撹拌し、バインダー樹脂含有導電材分散体を得た。
 その後、上記バインダー樹脂含有導電材分散体に、電極活物質としてNMCを添加し、自転及び公転ミキサーを用いて、2,000rpmで20分間にわたり撹拌した。さらにその後、NMPを添加し、自転及び公転ミキサーを用いて、2,000rpmで30秒間撹拌して、正極用合材スラリーを得た。正極用合材スラリーの固形分は74質量%であった。
 正極用合材スラリーを、集電体となる厚さ20μmのアルミ箔上に、アプリケーターを用いて塗工した。その後、電気オーブン中で120℃±5℃で25分間にわたり、塗膜を乾燥させて、電極の単位面積当たりの目付量が20mg/cmとなるように調整した。さらにロールプレス(株式会社サンクメタル製、3t油圧式ロールプレス)による圧延処理を行い、正極合材層の密度が3.1g/cmとなる正極膜1aを作製した。
(実施例2-2~2-18、比較例2-1~2-6)
 導電材分散体の種類を変更した以外は実施例2-1と同様の方法により、正極膜2a~18a、比較正極膜1a~6aを作製した。
(実施例3-1、3-2、比較例3-1~3-4)
 表5に示す通り、電極活物質をNCAに変更した以外は実施例2-1~2-18、及び比較例2-1~2-6と同様の方法により、正極膜1b、2b、及び比較正極膜1b~4bを作製した。
 なお、表5に記した略号は、以下を意味する。
・NMC:NCM523(日本化学工業株式会社製、組成:LiNi0.5Co0.2Mn0.3、固形分100%)
・NCA:HED(登録商標)NAT-7050(BASF戸田バッテリーマテリアルズ合同会社製、組成:LiNi0.8Co0.15Al0.05)、固形分100%
・PVDF:ポリフッ化ビニリデン(Solef#5130(Solvey株式会社製)、固形分100%)
Figure JPOXMLDOC01-appb-T000014
 表6に、電極の評価結果を示す。低粘度かつ安定性良好である導電材分散体を用いて作成した電極膜は、いずれも抵抗が良い値を示した。これより、比較例と比較して、CNTが効率的に導電ネットワークを形成することができていると考えられる。
 また、実施例では、導電材分散体製造時における金属異物除去を効率よく行えた。これに対し、比較例の導電材分散体では、粘度が高く、金属異物を効率よく除去できず、金属異物が残存しており、結果として抵抗が悪くなったと考えられる。
 実施例2-1、及び比較例2-6より、分散剤として共重合体Aを含んでいても、位相角が19°未満、すなわち分散度が低い場合には、抵抗値が悪化することが確認された。
 ムーニー粘度が高い一般的なニトリルゴムに対し、ムーニー粘度が40~70である共重合体Aは、導電材及び電極活物質粒子に対する吸着力が高く、これらを分散させる能力が高いと考えられる。そのため、導電材分散体だけでなく、電極膜を形成した後でも導電材及び電極活物質の良好な分散性が保たれ、結果として優れた抵抗を示したと考えられる。
Figure JPOXMLDOC01-appb-T000015
<4>非水電解質二次電池の作製
(実施例4-1~4-18、比較例4-1~4-6、実施例5-1、5-2、及び比較例5-1~5-4)
 下記の標準負極と、表6に示す正極膜とを、各々50mm×45mm、及び45mm×40mmの寸法で打ち抜いた。これら電極材料と、その間に挿入されるセパレーター(多孔質ポリプロプレンフィルム)とをアルミ製ラミネート袋に挿入し、電気オーブン中、70℃で1時間乾燥させた。
 続いて、アルゴンガスで満たされたグローブボックス内で、電解液を2mL注入し、アルミ製ラミネート袋を封口して、電池1a~18a、電池1b~2b、比較電池1a~6a、及び比較電池1b~4bを作製した。電解液としては、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートを1:1:1(体積比)の割合で混合した混合溶媒を作製し、さらに添加剤として、VC(ビニレンカーボネート)を電解液100部に対して1部加えた後、LiPFを1Mの濃度で溶解させた非水電解液を用いた。
(製造例1:標準負極用合材スラリーの作製)
 容量150mLのプラスチック容器にアセチレンブラック(デンカ株式会社製、デンカブラック(登録商標)HS-100)と、CMCと、水とを加えた後、自転及び公転ミキサー(株式会社シンキー製のあわとり練太郎、ARE-310)を用いて、2,000rpmで30秒間撹拌した。
 さらに負極活物質として人造黒鉛を添加し、自転及び公転ミキサーを用いて、2,000rpmで150秒間撹拌した。続いてSBRを加えて、自転及び公転ミキサーを用いて、2,000rpmで30秒間撹拌し、標準負極用合材スラリーを得た。
 標準負極用合材スラリーの固形分は48質量%であった。標準負極用合材スラリー中の負極活物質:導電材:CMC:SBRの固形分比率は、97:0.5:1:1.5である。
 なお、上記に記した略号は、以下を意味する。
・HS-100:デンカブラックHS-100(デンカ株式会社製、アセチレンブラック、平均一次粒子径48nm、比表面積39m/g)
・人造黒鉛:CGB-20(日本黒鉛工業株式会社製)、固形分100%
・CMC:#1190(ダイセルファインケム株式会社製)、固形分100%
・SBR:TRD2001(JSR株式会社製)、固形分48%
(製造例2:標準負極の作製)
 負極用合材スラリーを、集電体となる厚さ20μmの銅箔上に、アプリケーターを用いて塗工した。その後、塗膜を、電気オーブン中で80℃±5℃で25分間にわたり乾燥させて、電極の単位面積当たりの目付量が10mg/cmとなるように調整した。さらにロールプレス(株式会社サンクメタル製、3t油圧式ロールプレス)による圧延処理を行い、負極合材層の密度が1.6g/cmとなる負極を作製した。
<レート試験及びサイクル試験の結果及び考察>
 表6に示す通り、分散性が良好な導電材分散体を正極膜に備えた電池は、レート特性及びサイクル特性が良好であった。これに対し、分散不良である導電材分散体を正極膜に備えた電池は、いずれの特性も悪かった。低抵抗な正極膜は、電池としても抵抗が低く、レート特性が良化するものと考えられる。
 また、比較的では、低抵抗である電極活物質粒子にサイクルの負荷が集中するため、劣化が促進されてしまうのに対し、全体に良好な導電ネットワークが形成されている場合は、負荷が分散されるため、劣化しにくくなると考えられる。
 さらに、製造工程において金属異物を十分に除去できなかった比較例の導電材分散体を正極膜に備えた場合、導電材分散体由来の残存金属異物(例えば鉄や銅など)が負極上で還元・析出することによって電池性能劣化し、結果として電池の短絡が起こったとも考えられる。
 以上のように、本発明の実施形態によれば、分散性と安定性とを両立することで、電極膜中で良好な分散状態を維持して効率的な導電ネットワークを形成することができ、レート特性及びサイクル特性が良好な電池を製造することが可能となる。また、導電材分散体が低粘度で得られることによって、金属異物除去効率を向上させることができ、その結果としてレート特性及びサイクル特性が良好な電池を製造することが可能となる。
 上述のように、代表的な実施形態を参照して本発明を説明したが、本発明は上記によって限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。

Claims (9)

  1.  炭素繊維を含む導電材と、分散剤と、分散媒と、を含む導電材分散体であって、
     前記分散剤が、ニトリル基含有構造単位及び脂肪族炭化水素構造単位を含有する共重合体Aを含み、前記共重合体Aのムーニー粘度(ML1+4、100℃)が40~70であり、
     前記導電材分散体が、動的粘弾性測定による周波数1Hzでの位相角が19°以上である、導電材分散体。
  2.  動的粘弾性測定による複素弾性率が20Pa未満である、請求項1に記載の導電材分散体。
  3.  導電材分散体中の炭素繊維濃度x(質量%)と、動的粘弾性測定による導電材分散体の複素弾性率y(Pa)とが、下記式(1)、式(2)、及び式(3)の関係を満足する、請求項2に記載の導電材分散体。
          y<8x                  (1)
          y<20                  (2)
          0.1≦x≦10         (3)
  4.  前記共重合体Aの質量を基準として、前記ニトリル基含有構造単位の含有量が15質量%以上50質量%以下であり、前記脂肪族炭化水素構造単位の含有量が40質量%以上85質量%未満である、請求項1~3のいずれか1項に記載の導電材分散体。
  5.  さらに、前記共重合体Aの質量を基準として、1質量%以上10質量%以下の塩基を含む、請求項1~4のいずれかに記載の導電材分散体。
  6.  請求項1~5のいずれかに記載の導電材分散体と、バインダー樹脂とを含むバインダー樹脂含有導電材分散体。
  7.  請求項1~5のいずれかに記載の導電材分散体、又は請求項6に記載のバインダー樹脂含有導電材分散体と、電極活物質とを含む電極膜用スラリー。
  8.  請求項1~5のいずれかに記載の導電材分散体を用いて形成した膜、請求項6記載のバインダー樹脂含有導電材分散体を用いて形成した膜、及び、請求項7記載の電極膜用スラリーを用いて形成した膜からなる群から選択される少なくとも1種を含む、電極膜。
  9.  正極と、負極と、電解質とを具備してなる非水電解質二次電池であって、正極または負極の少なくとも一方に請求項8に記載の電極膜を用いた、非水電解質二次電池。
PCT/JP2021/032213 2020-09-03 2021-09-02 導電材分散体、バインダー樹脂含有導電材分散体、電極膜用スラリー、電極膜、及び、非水電解質二次電池 WO2022050328A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202410667889.2A CN118588349A (zh) 2020-09-03 2021-09-02 导电材分散体及其制造方法、含有粘合剂树脂的导电材分散体、电极膜用浆料、电极膜、及非水电解质二次电池
KR1020227003616A KR102462780B1 (ko) 2020-09-03 2021-09-02 도전재분산체, 바인더 수지함유 도전재분산체, 전극막용 슬러리, 전극막, 및, 비수전해질 이차전지
CN202180004479.4A CN114342006B (zh) 2020-09-03 2021-09-02 非水电解质二次电池用导电材分散体、电极膜用浆料、电极膜、及非水电解质二次电池
EP21835927.1A EP3995537A4 (en) 2020-09-03 2021-09-02 CONDUCTIVE MATERIAL DISPERSION, CONDUCTIVE MATERIAL DISPERSION CONTAINING BINDING RESIN, SPURRY FOR ELECTRODE MEMBRANES, ELECTRODE MEMBRANE AND NON-AQUEOUS ELECTROLYTE ACCUMULATOR
US17/676,795 US11658303B2 (en) 2020-09-03 2022-02-21 Conductive material dispersion, binder resin-containing conductive material dispersion, slurry for electrode film, electrode film, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020148208A JP6933285B1 (ja) 2020-09-03 2020-09-03 導電材分散体、バインダー樹脂含有導電材分散体、電極膜用スラリー、電極膜、及び、非水電解質二次電池
JP2020-148208 2020-09-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/676,795 Continuation US11658303B2 (en) 2020-09-03 2022-02-21 Conductive material dispersion, binder resin-containing conductive material dispersion, slurry for electrode film, electrode film, and non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2022050328A1 true WO2022050328A1 (ja) 2022-03-10

Family

ID=77549984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032213 WO2022050328A1 (ja) 2020-09-03 2021-09-02 導電材分散体、バインダー樹脂含有導電材分散体、電極膜用スラリー、電極膜、及び、非水電解質二次電池

Country Status (6)

Country Link
US (1) US11658303B2 (ja)
EP (1) EP3995537A4 (ja)
JP (2) JP6933285B1 (ja)
KR (1) KR102462780B1 (ja)
CN (2) CN118588349A (ja)
WO (1) WO2022050328A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6962428B1 (ja) * 2020-09-03 2021-11-05 東洋インキScホールディングス株式会社 導電材分散体、バインダー樹脂含有導電材分散体、電極膜用スラリー、電極膜、及び、非水電解質二次電池
JP7092232B1 (ja) * 2021-04-19 2022-06-28 東洋インキScホールディングス株式会社 導電材分散液、およびそれを用いた二次電池電極用組成物、電極膜、二次電池。
JP7568665B2 (ja) 2022-03-04 2024-10-16 プライムプラネットエナジー&ソリューションズ株式会社 正極の製造方法および二次電池の製造方法
KR20240074491A (ko) 2022-11-21 2024-05-28 주식회사 나노솔루션 이차전지 전극용 탄소 나노튜브 선분산 슬러리 및 이의 제조 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162877A (ja) 2003-12-02 2005-06-23 National Institute Of Advanced Industrial & Technology カーボンナノチューブ分散極性有機溶媒及びその製造方法
JP2014193986A (ja) 2013-02-27 2014-10-09 Toyo Ink Sc Holdings Co Ltd カーボンブラック分散液およびその利用
JP2015128012A (ja) 2013-12-27 2015-07-09 日本ゼオン株式会社 二次電池正極用スラリーの製造方法、二次電池用正極の製造方法、及び二次電池
WO2017010093A1 (ja) 2015-07-14 2017-01-19 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
KR20170111749A (ko) 2016-03-29 2017-10-12 주식회사 엘지화학 이차전지의 양극 형성용 조성물, 및 이를 이용하여 제조한 이차전지용 양극 및 이차전지
WO2018123624A1 (ja) * 2016-12-28 2018-07-05 日本ゼオン株式会社 非水系二次電池負極用スラリー組成物及びその製造方法、非水系二次電池用負極、並びに非水系二次電池
JP2018522803A (ja) * 2015-09-09 2018-08-16 エルジー・ケム・リミテッド カーボンナノチューブ分散液およびその製造方法
US20190044150A1 (en) 2016-03-24 2019-02-07 Lg Chem, Ltd. Conductive material dispersed liquid and secondary battery manufactured using the same
JP2020148208A (ja) 2019-03-11 2020-09-17 株式会社コガネイ ショックアブソーバ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052053A1 (ja) 2003-11-27 2005-06-09 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブ分散極性有機溶媒及びその製造方法
KR101588985B1 (ko) * 2011-06-15 2016-01-26 토요잉크Sc홀딩스주식회사 이차전지 전극 형성용 조성물, 이차전지 전극 및 이차전지
US8809468B2 (en) 2012-03-09 2014-08-19 Ppg Industries Ohio, Inc. Epoxy siloxane coating compositions
WO2014132809A1 (ja) 2013-02-27 2014-09-04 東洋インキScホールディングス株式会社 カーボンブラック分散液およびその利用
CN105814718B (zh) 2013-12-27 2020-06-02 日本瑞翁株式会社 电极用导电材料糊、正极用浆料的制造方法、正极的制造方法以及二次电池
US10312522B2 (en) 2015-03-27 2019-06-04 Zeon Corporation Binder composition for lithium ion secondary battery positive electrode, slurry composition for lithium ion secondary battery positive electrode, positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2017002361A1 (ja) * 2015-06-29 2017-01-05 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
EP3843182B1 (en) * 2018-08-21 2024-07-24 LG Energy Solution, Ltd. Conductive material dispersion solution, and electrode and lithium secondary battery which are manufactured using same
JP7216344B2 (ja) * 2020-01-31 2023-02-01 東洋インキScホールディングス株式会社 分散剤、導電材分散体、及び電極膜用スラリー
JP7092232B1 (ja) * 2021-04-19 2022-06-28 東洋インキScホールディングス株式会社 導電材分散液、およびそれを用いた二次電池電極用組成物、電極膜、二次電池。

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162877A (ja) 2003-12-02 2005-06-23 National Institute Of Advanced Industrial & Technology カーボンナノチューブ分散極性有機溶媒及びその製造方法
JP2014193986A (ja) 2013-02-27 2014-10-09 Toyo Ink Sc Holdings Co Ltd カーボンブラック分散液およびその利用
JP2015128012A (ja) 2013-12-27 2015-07-09 日本ゼオン株式会社 二次電池正極用スラリーの製造方法、二次電池用正極の製造方法、及び二次電池
WO2017010093A1 (ja) 2015-07-14 2017-01-19 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
JP2018522803A (ja) * 2015-09-09 2018-08-16 エルジー・ケム・リミテッド カーボンナノチューブ分散液およびその製造方法
US20190044150A1 (en) 2016-03-24 2019-02-07 Lg Chem, Ltd. Conductive material dispersed liquid and secondary battery manufactured using the same
KR20170111749A (ko) 2016-03-29 2017-10-12 주식회사 엘지화학 이차전지의 양극 형성용 조성물, 및 이를 이용하여 제조한 이차전지용 양극 및 이차전지
WO2018123624A1 (ja) * 2016-12-28 2018-07-05 日本ゼオン株式会社 非水系二次電池負極用スラリー組成物及びその製造方法、非水系二次電池用負極、並びに非水系二次電池
JP2020148208A (ja) 2019-03-11 2020-09-17 株式会社コガネイ ショックアブソーバ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3995537A4

Also Published As

Publication number Publication date
JP2022042689A (ja) 2022-03-15
CN114342006B (zh) 2024-06-14
CN118588349A (zh) 2024-09-03
KR102462780B1 (ko) 2022-11-03
JP6933285B1 (ja) 2021-09-08
KR20220042364A (ko) 2022-04-05
EP3995537A1 (en) 2022-05-11
US20220181636A1 (en) 2022-06-09
JP2022042965A (ja) 2022-03-15
EP3995537A4 (en) 2023-03-15
US11658303B2 (en) 2023-05-23
CN114342006A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2022050328A1 (ja) 導電材分散体、バインダー樹脂含有導電材分散体、電極膜用スラリー、電極膜、及び、非水電解質二次電池
WO2021152875A1 (ja) 分散剤、導電材分散体、及び電極膜用スラリー
WO2022050329A1 (ja) 導電材分散体、バインダー樹脂含有導電材分散体、電極膜用スラリー、電極膜、及び、非水電解質二次電池
JP6569548B2 (ja) リチウムイオン二次電池用カーボンブラック分散液の製造方法
JP7318489B2 (ja) 分散剤の製造方法、該分散剤を用いた導電材分散体、合材スラリーおよび非水電解質二次電池の製造方法
WO2022138496A1 (ja) カーボンナノチューブ分散液、カーボンナノチューブ分散組成物、電極膜用スラリー、電極膜、及び、二次電池
JP2020187991A (ja) 導電材分散体およびその利用
JP2020187866A (ja) 導電材分散体およびその利用
JP7092232B1 (ja) 導電材分散液、およびそれを用いた二次電池電極用組成物、電極膜、二次電池。
JP7543856B2 (ja) カーボンナノチューブ分散体、バインダー樹脂含有カーボンナノチューブ分散組成物、電極用合材スラリー、電極膜、及び非水電解質二次電池
JP7457228B1 (ja) 二次電池電極用複合物の製造方法
WO2023189294A1 (ja) 正極膜用スラリー、正極膜、二次電池、及び正極膜の製造方法
JP2021111567A (ja) 非水電解質二次電池用導電材分散体およびその利用
JP2023096879A (ja) 電極膜用スラリー組成物の製造方法、電極膜の製造方法、電池用電極の製造方法、及び非水電解質二次電池の製造方法
JP2024003640A (ja) 導電材分散液、およびそれを用いた二次電池電極用合材組成物、電極膜、二次電池
CN115968509A (zh) 二次电池电极用树脂组合物的制造方法、二次电池电极用复合材浆料的制造方法、电极膜的制造方法、及二次电池的制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021835927

Country of ref document: EP

Effective date: 20220113

NENP Non-entry into the national phase

Ref country code: DE