WO2022050212A1 - 半導体レーザモジュール及びその組立方法 - Google Patents

半導体レーザモジュール及びその組立方法 Download PDF

Info

Publication number
WO2022050212A1
WO2022050212A1 PCT/JP2021/031670 JP2021031670W WO2022050212A1 WO 2022050212 A1 WO2022050212 A1 WO 2022050212A1 JP 2021031670 W JP2021031670 W JP 2021031670W WO 2022050212 A1 WO2022050212 A1 WO 2022050212A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
fixing block
light
lens fixing
laser beam
Prior art date
Application number
PCT/JP2021/031670
Other languages
English (en)
French (fr)
Inventor
優顕 鈴木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022546302A priority Critical patent/JPWO2022050212A1/ja
Publication of WO2022050212A1 publication Critical patent/WO2022050212A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses

Definitions

  • This disclosure relates to a semiconductor laser module and its assembly method.
  • a semiconductor laser module in which a semiconductor laser element having one or a plurality of emitters and an optical component for shaping a laser beam emitted from the emitter are integrated is known.
  • Patent Document 1 discloses a semiconductor laser element having a plurality of emitters, and a semiconductor laser module including a collimator lens and a beam twister.
  • the semiconductor laser element is sandwiched between two electrode blocks from above and below, and the collimator lens and the beam twister are attached to the front surface of one of the electrode blocks via a pedestal.
  • the optical component In the semiconductor laser module, the optical component is positioned and fixed to a predetermined support component after the positional relationship with the optical path of the laser beam is precisely determined. Therefore, normally, the laser beam is emitted in a state where the position of the optical component is tentatively determined with respect to the support component. The positioning of the optical component is performed while monitoring whether the laser beam transmitted through the optical component is accurately incident on the optical system of the next stage. After the position of the optical component is determined, the optical component is fixed to a predetermined support component.
  • a photocurable adhesive is usually used to enable the attachment of such optical components. That is, when the optical component is positioned, the photocurable adhesive is not cured and the optical component can be moved with respect to the support component. Next, by irradiating with ultraviolet light, the photocurable adhesive is cured, and the optical component is fixed to a predetermined support component.
  • laser light having a short wavelength for example, a wavelength of 300 nm to 500 nm is often used for applications such as laser processing.
  • the photocurable adhesive that is generally used cures easily with respect to light of this wavelength. Therefore, there is a possibility that the photocurable adhesive may be cured during the positioning of the above-mentioned optical component, and accurate positioning may not be possible.
  • the present disclosure has been made in view of such a point, and an object thereof is a semiconductor laser module capable of easily adjusting the position of an optical component in a semiconductor laser module that emits a laser beam having a short wavelength, and a method for assembling the semiconductor laser module. Is to provide.
  • the semiconductor laser module includes a semiconductor laser element that emits a laser beam forward, a holding component that holds the semiconductor laser element, and an optical component attached to the front surface of the holding component.
  • the laser beam has a wavelength of 300 nm or more and 500 nm or less, and the optical component holds and fixes a lens that receives the laser beam and performs a predetermined conversion, and the laser.
  • It has at least a lens fixing block that is transparent to light, and a reflection coating for the laser light is provided on the front surface and the first surface of the surface of the lens fixing block near the optical path of the laser light.
  • An antireflection coating for the laser beam is provided on the rear surface and the second surface facing the first surface, and the rear surface of the lens fixing block is adhesively fixed to the front surface of the holding component via a photocurable adhesive. It is characterized by being.
  • the method for assembling the semiconductor laser module according to the present disclosure is the method for assembling the semiconductor laser module, in which the photocurable adhesive material is interposed between the front surface of the holding component and the rear surface of the lens fixing block. Then, the photocurable adhesive is irradiated with light having a predetermined wavelength, which is light in a wavelength band in which the photocurable adhesive can be cured, in a positioning step of positioning the optical component with respect to the optical path of the laser beam.
  • the optical component is provided with at least a mounting step of adhering and fixing the lens fixing block to the holding component, while emitting the laser light from the semiconductor laser element held by the holding component. Positioning is performed, and in the mounting step, light of the predetermined wavelength is allowed to enter the inside of the lens fixing block from behind the semiconductor laser element, and the light of the predetermined wavelength is irradiated to the photocurable adhesive. It is characterized by that.
  • the present disclosure it is possible to prevent the laser light emitted from the semiconductor laser element from being unintentionally incident on the photocurable adhesive and curing the photocurable adhesive. This makes it possible to easily adjust the position of the optical component.
  • FIG. 1A is a perspective view of a semiconductor laser module according to an embodiment.
  • FIG. 1B is an exploded perspective view of the semiconductor laser module.
  • FIG. 1C is a cross-sectional view taken along the line IC-IC of FIG. 1A.
  • FIG. 2 is a diagram showing a part of the assembly process of the semiconductor laser module.
  • FIG. 3 is a diagram showing a part of an assembly process of a semiconductor laser module for comparison.
  • FIG. 4A is a perspective view of the semiconductor laser module according to the modified example.
  • FIG. 4B is a cross-sectional view taken along the line IVB-IVB of FIG. 4A.
  • FIG. 1A shows a perspective view of the semiconductor laser module according to the present embodiment
  • FIG. 1B shows an exploded perspective view
  • FIG. 1C shows a cross-sectional view taken along the IC-IC line of FIG. 1A.
  • the screw holes 11a of the insulating sheet 12, the first electrode block 11 and the screw holes 16a and 16b of the second electrode block 16 are not shown.
  • the direction in which the laser beam LB (see FIG. 1C) is emitted may be referred to as front, front, or front, and the opposite direction may be referred to as rear, rear, or rear.
  • the side on which the first electrode block 11 is arranged is referred to as a lower side, a lower side, or a lower side
  • the side on which the second electrode block 16 is arranged, which is the opposite side thereof is referred to as an upper side, an upper side, or an upper side. I may call it.
  • the semiconductor laser module 100 includes a semiconductor laser device 10 and an optical component 20.
  • the semiconductor laser device 10 includes a first electrode block 11, an insulating sheet 12, a submount 13, a semiconductor laser element 14, and a second electrode block 16.
  • the first electrode block 11 is a thick plate-shaped member made of a conductive material. For example, it is obtained by plating a plate made of copper (Cu) with nickel (Ni) and gold (Au) in this order. Further, the first electrode block 11 has a notched recess 11b in which a part of the upper surface and the front side surface is notched and opened. The recess 11b is a portion in which the submount 13 and the semiconductor laser element 14 are housed, and the laser light LB (see FIG. 1C) is emitted from the semiconductor laser element 14 through the front opening portion of the recess 11b. Further, the first electrode block 11 has screw holes 11a provided at one position on each side of the recess 11b and separated from the recess 11b.
  • the insulating sheet 12 is provided on the upper surface of the first electrode block 11 so as to surround the recess 11b, and an opening 12a is provided at a position corresponding to the screw hole 11a provided in the first electrode block 11. Further, the insulating sheet 12 has a function of electrically insulating the second electrode block 16 when the second electrode block 16 is attached to the first electrode block 11.
  • the insulating sheet 12 is made of an insulating material such as polyimide or ceramic.
  • the submount 13 is made of a conductive material such as copper tungsten (Cu: W).
  • the submount 13 and the first electrode block 11 are bonded to each other by a solder material (not shown) and are electrically connected to each other.
  • the solder material contains, for example, 96.5% tin (Sn) and 3.5% silver (Ag).
  • the semiconductor laser element 14 is an end face radiation type semiconductor laser element and has a plurality of emitters (not shown). Further, the semiconductor laser device 14 has a positive electrode (+ pole) on the lower surface and a negative electrode (-pole) on the upper surface (neither is shown). The semiconductor laser element 14 is electrically connected to the submount 13 by disposing a positive electrode on the upper surface of the submount 13 via gold tin (Au-Sn) solder or the like (not shown). The positive electrode of the semiconductor laser element 14 may be in direct contact with the upper surface of the submount 13. Further, a plurality of bumps 15 are provided on the upper surface of the negative electrode.
  • the emitter (not shown) of the semiconductor laser element 14 is provided so as to extend in the front-rear direction, and the front side surface of the semiconductor laser element 14 corresponds to the emission end surface of the laser beam LB.
  • the laser beam LB is emitted forward from each of the plurality of emitters.
  • the wavelength of the laser beam LB is set to about 400 nm. However, the wavelength of the laser beam LB is not particularly limited to this, and can be selected in the range of 300 nm or more and 500 nm or less. Further, the output of the semiconductor laser device 14 is about 100 W, but the output is not particularly limited to this. It can be appropriately changed depending on the number of emitters included in the semiconductor laser device 14 and the like.
  • the bump 15 is a gold bump formed by melting a wire made of, for example, gold (Au).
  • Au gold
  • the bump 15 is deformed, and the semiconductor laser element 14 and the second electrode block 16 are electrically connected to each other without causing much mechanical damage. Can be connected well to.
  • the material of the bump 15 is not limited to gold, and other conductive materials may be used. Further, although not shown, a metal sheet such as gold leaf may be inserted between the bump 15 and the second electrode block 16.
  • the second electrode block 16 is provided on the upper side of the first electrode block 11 with the insulating sheet 12 sandwiched so as to cover the upper part of the recess 11b, and is a thick plate-shaped member made of a conductive material. For example, it is obtained by plating a plate made of copper (Cu) with nickel (Ni) and gold (Au) in this order.
  • the second electrode block 16 has a screw hole 16a at a position communicating with the screw hole 11a provided in the first electrode block 11, and is on a line passing between the two screw holes 16a behind the screw hole 16a and when viewed from above. Has a screw hole 16b. The screw hole 16a penetrates the second electrode block 16, but the bottom surface of the screw hole 16b remains inside the second electrode block 16.
  • a screw (not shown) is inserted and fastened into the screw hole 16a provided in the second electrode block 16, the opening 12a provided in the insulating sheet 12, and the screw hole 11a provided in the first electrode block 11. As a result, these members are positioned and fixed.
  • the semiconductor laser element 14 is sandwiched and held between the first electrode block 11 and the second electrode block 16 in a state of being mounted on the submount 13. That is, the first electrode block 11 and the second electrode block 16 are electrodes for applying a current to the semiconductor laser element 14 from an external power source (not shown), and are also holding parts for holding the semiconductor laser element 14.
  • the optical component 20 has a collimator lens 21 and a lens fixing block 22.
  • the collimator lens 21 receives the laser beam LB emitted forward from each of the plurality of emitters located on the emission end face side of the semiconductor laser element 14, and parallelizes the spread in the first axial direction, in this case, the vertical direction. do.
  • the lens fixing block 22 is made of a material transparent to the laser beam LB, for example, quartz glass.
  • the collimator lens 21 is connected to the lens fixing block 22 and its position is fixed. Further, the rear surface 22d of the lens fixing block 22 is adhered to the front surface of the second electrode block 16 by the photocurable adhesive 30. That is, the optical component 20 is adhesively fixed to the second electrode block 16 which is a holding component of the semiconductor laser element 14.
  • the photocurable adhesive 30 is made of a known photocurable resin, for example, a photocurable epoxy resin.
  • the photocurable adhesive 30 has a large absorption coefficient for light in the blue to ultraviolet region, particularly light having a wavelength of 450 nm or less, and is cured when irradiated with light in the blue to ultraviolet region.
  • the wavelength range of ultraviolet light which is light in the ultraviolet region
  • the wavelength range of blue light which is light in the blue region
  • the wavelength range of blue light is 390 nm or more and 500 nm or less.
  • the lens fixing block 22 has a substantially rectangular parallelepiped shape, and has a lower surface (first surface) 22a, an upper surface (second surface) 22b, a front surface 22c, a rear surface 22d, and both side surfaces. As shown in FIG. 1C, the lower surface 22a of the surface of the lens fixing block 22 is located closest to the optical path of the laser beam LB.
  • the lower surface 22a and the front surface 22c have a shape in which a continuous corner portion is cut out, and an inclined surface 22e is provided.
  • the inclined surface 22e it is possible to prevent the optical path of the laser beam LB emitted from the emission end surface of the semiconductor laser element 14 via the optical component 20 from interfering with a part of the lens fixing block 22.
  • the inclined surface 22e may not be provided depending on the distance between the emission end surface of the semiconductor laser element 14 and the front surface 22c of the lens fixing block 22 and the spread of the laser beam LB.
  • a reflective coating 23 is provided on the lower surface 22a, the front surface 22c, and the inclined surface 22e of the lens fixing block 22.
  • the antireflection coating 24 is provided on the upper surface 22b and the rear surface 22d of the lens fixing block 22.
  • the reflection coating 23 reflects the laser beam LB. It also reflects light in the wavelength band from blue to ultraviolet. Specifically, the reflective coating 23 reflects the laser beam LB that has reached the front surface 22c, the inclined surface 22e, or the lower surface 22a of the lens fixing block 22 from the outside of the lens fixing block 22. Further, the reflective coating 23 enters the inside of the lens fixing block 22 and reflects the light in the blue to ultraviolet region reaching the front surface 22c or the inclined surface 22e or the lower surface 22a of the lens fixing block 22. As described above, the light in the blue to ultraviolet region is light in a wavelength band in which the photocurable adhesive 30 can be cured.
  • the antireflection coating 24 prevents light in the ultraviolet region incident on the antireflection coating 24 from being reflected. Specifically, the antireflection coating 24 prevents light in the wavelength band in the ultraviolet region reaching the upper surface 22b and the rear surface 22d of the lens fixing block 22 from being reflected from the outside of the lens fixing block 22. Therefore, when the light in the ultraviolet region reaches the upper surface 22b or the rear surface 22d of the lens fixing block 22 from the outside of the lens fixing block 22, the light in the ultraviolet region enters the inside of the lens fixing block 22.
  • Both the reflective coating 23 and the antireflection coating 24 have a dielectric multilayer film structure in which dielectric films having different dielectric constants are alternately laminated. However, the type and number of layers of the dielectric film contained in the reflective coating 23 and the antireflection coating 24 are different, and the thickness of each layer is different. By forming the reflective coating 23 and the antireflection coating 24 into a dielectric multilayer film structure, it becomes easy to adjust the reflectances of the reflective coating 23 and the antireflection coating 24, respectively.
  • the reflection coating 23 preferably has a reflectance of 99.9% or more with respect to light having the same wavelength as the laser light LB, for example.
  • the antireflection coating 24 preferably has a reflectance of 1% or less, and more preferably 0.5% or less, with respect to light having the same wavelength as the laser light LB, for example.
  • FIG. 2 shows a part of the semiconductor laser module assembly process
  • FIG. 3 shows a part of the semiconductor laser module assembly process for comparison.
  • the insulating sheet 12, the screw holes 11a of the first electrode block 11 and the screw holes 16a and 16b of the second electrode block 16 are not shown in FIGS.
  • the lens fixing block 25 shown in FIG. 3 is different from the lens fixing block 22 shown in FIGS. 1A to 1C in that the reflection coating 23 and the antireflection coating 24 are not provided.
  • the structure and material are the same for the lens fixing block 22 and the lens fixing block 25.
  • the light-curable adhesive 30 is interposed between the front surface of the second electrode block 16 and the rear surface 25d of the lens fixing block 25, and the light is emitted from the emission end surface of the semiconductor laser element 14.
  • Positioning of the optical component 20 with respect to the optical path of the laser beam LB positioning step).
  • the collimator lens 21 is positioned with respect to the optical path of the laser beam LB.
  • an optical system (not shown) is provided in front of the semiconductor laser module 110 apart from the semiconductor laser module 110.
  • the laser beam LB is emitted from the semiconductor laser element 14, and is provided at a distance from the holding component (first electrode block 11, second electrode block 16, or heat sink 40) of the semiconductor laser module 110 with respect to the optical path of the laser beam LB.
  • the lens fixing block 22 to which the optical component 20 is connected so that the beam quality and the output satisfy a predetermined condition while monitoring the beam quality and the output of the laser beam LB so as to position the optical component 20. To move.
  • the laser beam LB transmitted through the optical component 20 monitors the output signal of the light receiving device (not shown) provided on the emission side of the optical system in the next stage, and the output signal becomes equal to or higher than a predetermined value.
  • the lens fixing block 25 to which the collimator lens 21 as the optical component 20 is connected is moved so as to be. When the output signal becomes a predetermined value or more, the positioning of the collimator lens 21 is terminated.
  • the lens fixing block 25 is adhesively fixed to the second electrode block 16 as a holding component (attachment step).
  • the configuration shown in FIG. 3 may cause the above-mentioned problems. That is, since the wavelength of the laser light LB is in the bluish-purple to near-ultraviolet region, if the laser light LB is incident on the photocurable adhesive 30 in some way, the photocurable adhesive 30 is cured. For example, as shown in FIG. 3, depending on how the laser beam LB spreads, the laser beam LB may enter the inside of the lens fixing block 25, be reflected by the inclined surface 25e, and be incident on the photocurable adhesive material 30. There is sex.
  • the laser light LB transmitted through the above-mentioned optical component 20 is reflected by the optical system of the next stage to become the return light of the laser light LB, and the returned light of the reflected laser light LB is the front surface 25c of the lens fixing block 25.
  • the photocurable adhesive 30 There is a possibility of entering from and incident on the photocurable adhesive 30.
  • the photocurable adhesive 30 is cured, so that the collimator lens 21 as the optical component 20 cannot be positioned at a desired position with respect to the optical path of the laser beam LB, and the optical component 20 cannot be positioned.
  • the beam quality and output of the laser beam LB transmitted from the optical system are deteriorated. In this case, it may not be possible to irradiate the target object with the laser beam LB at a desired intensity. In addition, the laser beam LB may be lost, and the laser beam LB may cause some damage to the optical system.
  • the lens fixing block 22 in which the reflective coating 23 and the antireflection coating 24 are adhesively fixed to the front surface of the holding component via the photocurable adhesive 30. Each is provided on a predetermined surface.
  • the lens fixing block 22 holds the optical component 20.
  • the laser beam LB when the laser beam LB is emitted from the semiconductor laser element 14 in the positioning step, even if the laser beam LB spreads and enters the lower surface 22a of the lens fixing block 22, it is reflected by the reflective coating 23. Laser beam. Therefore, the laser beam LB does not enter the inside of the lens fixing block 22 and does not enter the photocurable adhesive 30. Further, even if the return light of the laser beam LB reflected by the above-mentioned optical system reaches the front surface 22c of the lens fixing block 22, it is reflected by the reflection coating 23. Therefore, the laser beam LB does not enter the inside of the lens fixing block 22 and does not enter the photocurable adhesive 30.
  • the positioning step it is possible to prevent the laser beam LB from unintentionally incident on the photocurable adhesive 30 and the photocurable adhesive 30 from being cured.
  • ultraviolet light is introduced into the inside of the lens fixing block 22 from the rear of the semiconductor laser element 14 through the upper surface 22b of the lens fixing block 22.
  • the photocurable adhesive 30 is irradiated with ultraviolet light to cure the photocurable adhesive 30.
  • the antireflection coating 24 is provided on the upper surface 22b and the rear surface 22d of the lens fixing block 22.
  • the antireflection coating 24 prevents light in the ultraviolet region incident on the antireflection coating 24 from being reflected. Specifically, the antireflection coating 24 prevents light in the wavelength band in the ultraviolet region reaching the upper surface 22b and the rear surface 22d of the lens fixing block 22 from being reflected from the outside of the lens fixing block 22. Therefore, when the light in the ultraviolet region where the photocurable adhesive 30 can be cured reaches the upper surface 22b or the rear surface 22d of the lens fixing block 22 from the outside of the lens fixing block 22, the light in the ultraviolet region is an antireflection coating. It passes through 24 and enters the inside of the lens fixing block 22.
  • the wavelength range of ultraviolet light, which is light in the ultraviolet region is 200 nm or more and less than 390 nm
  • the wavelength range of blue light, which is light in the blue region is 390 nm or more and 500 nm or less.
  • a reflective coating 23 is provided on the front surface 22c and the bottom surface 22a of the lens fixing block 22.
  • the reflection coating 23 reflects the laser beam LB. It also reflects light in the wavelength band from blue to ultraviolet.
  • the reflective coating 23 is emitted from the semiconductor laser element 14, reflects the laser light LB incident on the reflective coating 23 from the outside of the lens fixing block 22, and is incident on the upper surface 22b from the outside of the lens fixing block 22.
  • the light-curable adhesive 30 that has entered the inside of the lens fixing block 22 and is incident on the reflection coating 23 reflects light in the wavelength band from blue to ultraviolet as light having a predetermined curable wavelength.
  • ultraviolet light incident on the upper surface 22b provided with the antireflection coating 24 from the rear of the semiconductor laser element 14 through the upper surface 22b of the lens fixing block 22 and from the outside of the lens fixing block 22 is an antireflection coating. It passes through 24 and enters the inside of the lens fixing block 22 with almost no reflection.
  • the ultraviolet light that has entered the inside of the lens fixing block 22 is applied to the front surface 22c or the lower surface 22a, and is reflected by the reflective coating 23 toward the rear surface 22d provided with the antireflection coating 24.
  • the ultraviolet light incident on the rear surface 22d is hardly reflected and is applied to the photocurable adhesive 30 to cure the photocurable adhesive 30.
  • the optical component 20 including the lens fixing block 22 is adhesively fixed to the front surface of the second electrode block 16.
  • the semiconductor laser module 100 includes at least a semiconductor laser device 10 and an optical component 20. Further, the semiconductor laser device 10 includes at least a semiconductor laser element 14 that emits a laser light LB forward, and a first electrode block 11 and a second electrode block 16 that are holding parts for holding the semiconductor laser element 14. .. Further, the optical component 20 is attached to the front surface of the second electrode block 16.
  • the wavelength of the laser beam LB is in the range of 300 nm or more and 500 nm or less.
  • the optical component 20 receives the laser beam LB and performs a predetermined conversion.
  • the collimator lens 21 for parallelizing the spread of the laser element LB in the first axial direction and the collimator lens 21 are held and fixed, and the laser beam is applied. It has at least a lens fixing block 22 that is transparent to the LB.
  • a reflective coating 23 for the laser light LB and light of a predetermined wavelength is provided on the front surface 22c and the lower surface (first surface) 22a near the optical path of the laser light LB. Further, an antireflection coating 24 for light having a predetermined wavelength is provided on the rear surface 22d and the upper surface (second surface) 22b facing the lower surface 22a.
  • the rear surface 22d of the lens fixing block 22 is adhesively fixed to the front surface of the second electrode block 16 via a photocurable adhesive 30.
  • the antireflection coating 24 is incident on the upper surface 22b from the outside of the lens fixing block 22 so as to pass through the upper surface 22b of the lens fixing block 22 from the rear of the semiconductor laser element 14.
  • Light having a predetermined wavelength capable of curing the photocurable adhesive 30 passes through the antireflection coating 24 and enters the inside of the lens fixing block 22 with almost no reflection.
  • the reflection coating 23 reflects the laser light LB incident on the reflection coating 23 and the light having a predetermined wavelength. Specifically, the reflection coating 23 is emitted from the semiconductor laser element 14, and reaches the front surface 22c or the inclined surface 22e or the lower surface (first surface) 22a of the lens fixing block 22 from the outside of the lens fixing block 22. To reflect. Further, the reflective coating 23 is incident on the upper surface 22b from the outside of the lens fixing block 22 and enters the inside of the lens fixing block 22 to enter the front surface 22c or the inclined surface 22e or the lower surface (first surface) 22a of the lens fixing block 22.
  • the light that reaches the surface of the lens 30 reflects light having a predetermined curable wavelength, and is reflected toward the rear surface 22d provided with the antireflection coating 24.
  • the light of a predetermined wavelength incident on the rear surface 22d is irradiated to the photocurable adhesive 30 with almost no reflection, and the photocurable adhesive 30 is cured.
  • the light having a predetermined wavelength is the light in the blue to ultraviolet region described above, and is the light in the wavelength band in which the photocurable adhesive 30 can be cured.
  • the light having a predetermined wavelength is light having a wavelength of 200 nm or more and 500 nm or less.
  • the light has a wavelength in the range of 300 nm or more and 440 nm or less.
  • the optical component 20 particularly the collimator lens 21, can be positioned at a desired position.
  • the antireflection coating 24 on the rear surface 22d and the upper surface 22b of the lens fixing block 22, it is possible to suppress the ultraviolet light from being reflected on the surface of the lens fixing block 22.
  • the lens fixing block 22 is made of quartz glass, ultraviolet light causes a light amount loss of about 10% including internal reflection.
  • the light amount loss can be reduced to several percent or less, so that the process time of the mounting process can be shortened.
  • the optical path of the laser beam LB and the optical component 20 held by the holding component of the semiconductor laser module 100 are positioned, and the beam quality and output emitted from the optical system of the next stage are set to a desired state, and the target object is set.
  • the laser beam LB can be irradiated with a desired intensity.
  • the loss of the laser beam LB can be suppressed, and the damage caused by the laser beam LB generated in the optical system can be suppressed.
  • the semiconductor laser element 14 is sandwiched between the first electrode block 11 and the second electrode block 16.
  • the heat generated by the semiconductor laser element 14 can be quickly discharged to the outside via the first electrode block 11 and the second electrode block 16.
  • the lens fixing block 22 may be attached to the first electrode block 11.
  • the reflective coating 23 and the antireflection coating 24 are preferably dielectric laminated films in which dielectric films having different refractive indexes are laminated.
  • the semiconductor laser module 100 of the present disclosure is particularly useful when the wavelength of the laser beam LB is 300 nm or more and 440 nm or less.
  • the photocurable adhesive material 30 is interposed between the front surface of the second electrode block 16 which is a holding component and the rear surface 22d of the lens fixing block 22. It includes a positioning step for positioning the optical component 20 with respect to the optical path of the laser beam LB. Specifically, the collimator lens 21 as the optical component 20 is positioned with respect to the optical path of the laser beam LB emitted from the semiconductor laser element 14.
  • the optical component 20, particularly the collimator lens 21 is positioned while emitting the laser beam LB from the semiconductor laser element 14 held by the second electrode block 16.
  • light of a predetermined wavelength is made to enter the inside of the lens fixing block 22 from the rear of the semiconductor laser element 14 through the upper surface 22b, and the light of the predetermined wavelength is irradiated to the photocurable adhesive material 30.
  • the optical component 20 particularly the collimator lens 21, can be positioned at a desired position.
  • the optical coupling state between the optical system provided apart from the semiconductor laser module 100 and the laser beam LB is monitored, and when the optical coupling state satisfies a predetermined condition, the positioning step is terminated. Then, the mounting process may be subsequently performed.
  • the optical component 20 held by the holding component of the semiconductor laser module 100 is transmitted, and the beam quality and output of the laser beam LB emitted from the optical system of the next stage are set to a desired state, and the target object is set. It is possible to irradiate the laser beam LB with a desired intensity. In addition, the loss of the laser beam LB can be suppressed, and the damage caused by the laser beam LB generated in the optical system can be suppressed.
  • FIG. 4A shows a perspective view of the semiconductor laser module according to the present modification
  • FIG. 4B shows a cross-sectional view taken along the line IVB-IVB of FIG. 4A.
  • the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the configuration of this modification shown in FIGS. 4A and 4B is different from the configuration shown in the first embodiment in that the semiconductor laser element 14 is mounted and held on the heat sink 40 via the submount 13. That is, the heat sink 40 is a holding component that holds the semiconductor laser element 14. Further, the optical component 20 is different from the configuration shown in the first embodiment in that the optical component 20 is attached to the front surface of the heat sink 40.
  • the upper surface (first surface) 22b of the lens fixing block 22 is the surface closest to the optical path of the laser beam LB. Therefore, the reflection coating 23 is provided on the upper surface 22b, and the antireflection coating 24 is provided on the lower surface (second surface) 22a.
  • one or a plurality of metal wires are bonded to the upper surface of the semiconductor laser device 14, in this case, the negative electrode.
  • one or more metal wires are bonded to the upper surface of the submount 13. As described above, the submount 13 is electrically connected to the positive electrode of the semiconductor laser device 14. Therefore, these metal wires function as wiring for supplying a current to the semiconductor laser device 14 from the outside.
  • ultraviolet light is introduced into the inside of the lens fixing block 22 from the rear of the semiconductor laser element 14 through the lower surface 22a of the lens fixing block 22.
  • the ultraviolet light incident on the lower surface 22a passes through the antireflection coating 24 and enters the inside of the lens fixing block 22 with almost no reflection.
  • the ultraviolet light that has entered the inside of the lens fixing block 22 is applied to the front surface 22c or the upper surface 22b, and is reflected toward the rear surface 22d by the reflective coating 23.
  • the ultraviolet light incident on the rear surface 22d passes through the antireflection coating 24 and is irradiated on the photocurable adhesive 30 with almost no reflection, thereby curing the photocurable adhesive 30.
  • the optical component 20 including the lens fixing block 22 is adhesively fixed to the front surface of the heat sink 40.
  • the semiconductor laser module 100 may be configured, and in this case as well, the same effect as that of the configuration shown in the first embodiment can be obtained. That is, it is possible to prevent the laser beam LB emitted from the semiconductor laser element 14 from unintentionally incident on the photocurable adhesive 30 and the photocurable adhesive 30 from being cured. This makes it possible to easily adjust the position of the optical component 20. Further, the optical component 20, particularly the collimator lens 21, can be positioned at a desired position.
  • the laser light emitted from the semiconductor laser element 14 so as to pass through the optical component 20 of the semiconductor laser module 100 and bring the beam quality and output of the laser light LB emitted from the optical system of the next stage into a desired state.
  • the optical component 20 can be positioned with respect to the optical path of the LB, whereby the target object can be irradiated with the laser beam LB with a desired intensity.
  • the loss of the laser beam LB can be suppressed, and the damage caused by the laser beam LB generated in the optical system can be suppressed.
  • the heat sink 40 may be provided with a cooling mechanism for cooling the semiconductor laser element 14 mounted on the submount 13.
  • a pipe (not shown) for flowing cooling water may be provided inside the heat sink 40. It is preferable that the pipe is provided so as to pass through a portion of the semiconductor laser element 14 that generates the most heat, that is, below the front side surface of the semiconductor laser element 14.
  • the antireflection coating 24 is provided on the lower surface 22a or the upper surface 22b of the lens fixing block 22, but the present invention is not particularly limited to this.
  • the antireflection coating 24 may be provided on another surface of the lens fixing block 22.
  • a reflective coating 23 is applied to one side surface and the lower surface 22a of the lens fixing block 22, and the other side surface and the upper surface facing the one side surface.
  • the antireflection coating 24 may be provided on each of the 22b and the 22b.
  • one side surface of the lens fixing block 22 is a surface close to the optical path of the laser beam LB.
  • ultraviolet light is introduced into the inside of the lens fixing block 22 from the rear of the semiconductor laser element 14 through the other side surface of the lens fixing block 22.
  • the reflection coating 23 may be a single-layer dielectric film.
  • the antireflection coating 24 may be a single-layer dielectric film.
  • the reflective coating 23 may be a metal film having a predetermined thickness, for example, a silver thin film.
  • a beam twister (not shown) may be arranged in front of the collimator lens 21 at a distance from the collimator lens 21.
  • the beam twister rotates the polarization of the laser beam transmitted through the collimator lens 21 by 90 degrees.
  • the collimator lens 21 and the beam twister are connected to the lens fixing block 22.
  • a condensing lens (not shown) that condenses the laser beam LB at a predetermined condensing position may be connected to the lens fixing block 22.
  • a condenser lens may be arranged in front of the collimator lens 21.
  • the collimator lens 21 and the condenser lens are connected to the lens fixing block 22.
  • the beam twister may be placed either before or after the condenser lens. Further, components other than these may be included in the optical component 20.
  • the plurality of laser beam LBs are focused on the same focal point. You may make it shine.
  • the semiconductor laser module 100 of the present disclosure can easily adjust the position of the optical component 20 that performs a predetermined conversion on the laser beam LB. Therefore, it is suitable as a laser light source for a laser processing device, a laser projector, or the like, which requires polarization control and shape control of the laser beam LB.
  • a high output for example, an output of about 1 kW to several kW is required by a laser processing device or the like, a plurality of semiconductor laser modules 100 are arranged to serve as a laser light source.
  • the semiconductor laser module of the present disclosure is useful as a laser light source used in various devices because the position of optical components can be easily adjusted.
  • Second electrode block (holding component) 10
  • Optical parts 21 Collimator lenses 22, 25 Lens fixing blocks 22a, 25a Bottom surface of lens fixing block 22b, 25b Top surface of lens fixing block 22c, 25c Front surface of lens fixing block 22d, 25d Rear surface of lens fixing block 22e, 25e Lens fixing block Inclined surface 23
  • Reflective coating 24
  • Anti-reflection coating 30
  • Photocurable adhesive 40 Heat-shielding (holding component) 100,110 semiconductor laser module

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Abstract

半導体レーザモジュール100は、半導体レーザ素子14と、第1電極ブロック11及び第2電極ブロック16と、光学部品20とを少なくとも備えている。レーザ光LBの波長は、300nm以上、500nm以下である。光学部品20は、コリメータレンズ21とレンズ固定ブロック22とを有している。レンズ固定ブロック22の前面22cと下面22aとに反射コーティング23が、後面22dと上面22bとに反射防止コーティング24がそれぞれ設けられている。レンズ固定ブロック22の後面22dが、光硬化性接着材30を介して第2電極ブロック16の前面に接着固定されている。

Description

半導体レーザモジュール及びその組立方法
 本開示は、半導体レーザモジュール及びその組立方法に関する。
 従来、1または複数のエミッタを有する半導体レーザ素子と、エミッタから出射されるレーザ光を整形する光学部品とが集積された半導体レーザモジュールが知られている。
 例えば、特許文献1には、複数のエミッタを有する半導体レーザ素子と、コリメータレンズとビームツイスタとを備えた半導体レーザモジュールが開示されている。半導体レーザ素子は、2つの電極ブロックで上下から挟み込まれており、コリメータレンズとビームツイスタは、台座を介して一方の電極ブロックの前面に取り付けられている。
国際公開第2016/063436号
 半導体レーザモジュールにおいて、光学部品は、レーザ光の光路との位置関係が精密に決められた上で、所定の支持部品に位置決め固定される。このため、通常、支持部品に対して光学部品の位置を仮決めした状態で、レーザ光を出射させる。光学部品を透過したレーザ光が、次段の光学系に正確に入射しているかをモニターしつつ、光学部品の位置決めが行われる。光学部品の位置が定められた後に、光学部品が所定の支持部品に固定される。
 このような光学部品の取り付けを可能にするため、通常、光硬化性接着材が用いられる。つまり、光学部品の位置決め時には、光硬化性接着材は硬化しておらず、支持部品に対して光学部品を移動させることができる。次に、紫外光を照射することで、光硬化性接着材が硬化し、光学部品が所定の支持部品に固定される。
 ところで、近年、レーザ加工等の用途で、短波長、例えば、300nm~500nmの波長のレーザ光が用いられることが多くなってきている。
 しかし、この波長の光に対し、一般的に使用される光硬化性接着材は、容易に硬化してしまう。よって、前述した光学部品の位置決め時に光硬化性接着材が硬化し、正確な位置決めを行うことができないおそれがあった。
 本開示はかかる点に鑑みてなされたもので、その目的は、短波長のレーザ光を出射する半導体レーザモジュールにおいて、光学部品の位置調整を容易に行うことが可能な半導体レーザモジュール及びその組立方法を提供することにある。
 上記目的を達成するため、本開示に係る半導体レーザモジュールは、前方にレーザ光を出射する半導体レーザ素子と、前記半導体レーザ素子を保持する保持部品と、前記保持部品の前面に取り付けられた光学部品と、を少なくとも備え、前記レーザ光の波長は、300nm以上、500nm以下であり、前記光学部品は、前記レーザ光を受け取って所定の変換を施すレンズと、前記レンズを保持固定するとともに、前記レーザ光に対して透明であるレンズ固定ブロックと、を少なくとも有し、前記レンズ固定ブロックの表面のうち、前面と前記レーザ光の光路に近い第1面とに前記レーザ光に対する反射コーティングが設けられ、後面と前記第1面と対向する第2面とに前記レーザ光に対する反射防止コーティングが設けられ、前記レンズ固定ブロックの後面が、光硬化性接着材を介して前記保持部品の前面に接着固定されていることを特徴とする。
 本開示に係る半導体レーザモジュールの組立方法は、前記半導体レーザモジュールの組立方法であって、前記保持部品の前面と前記レンズ固定ブロックの後面との間に前記光硬化性接着材を介在させた状態で、前記レーザ光の光路に対する前記光学部品の位置決めを行う位置決め工程と、前記光硬化性接着材を硬化可能な波長帯の光である所定の波長の光を前記光硬化性接着材に照射し、前記レンズ固定ブロックを前記保持部品に接着固定させる取り付け工程と、を少なくとも備え、前記位置決め工程では、前記保持部品に保持された前記半導体レーザ素子から前記レーザ光を出射させながら、前記光学部品の位置決めを行い、前記取り付け工程では、前記半導体レーザ素子の後方から前記レンズ固定ブロックの内部に前記所定の波長の光を進入させて、前記光硬化性接着材に前記所定の波長の光を照射することを特徴とする。
 本開示によれば、半導体レーザ素子から出射されたレーザ光が意図せずに光硬化性接着材に入射し、光硬化性接着材が硬化されてしまうのを防止できる。このことにより、光学部品の位置調整を容易に行うことができる。
図1Aは、一実施形態に係る半導体レーザモジュールの斜視図である。 図1Bは、半導体レーザモジュールの分解斜視図である。 図1Cは、図1AのIC-IC線での断面図である。 図2は、半導体レーザモジュールの組立工程の一部を示す図である。 図3は、比較のための半導体レーザモジュールの組立工程の一部を示す図である。 図4Aは、変形例に係る半導体レーザモジュールの斜視図である。 図4Bは、図4AのIVB-IVB線での断面図である。
 以下、本開示の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものではない。
 (実施形態)
 [半導体レーザモジュールの構成]
 図1Aは、本実施形態に係る半導体レーザモジュールの斜視図を、図1Bは、分解斜視図を、図1Cは、図1AのIC-IC線での断面図をそれぞれ示す。なお、説明の便宜上、図1Cにおいて、絶縁シート12、第1電極ブロック11のねじ孔11a及び第2電極ブロック16のねじ孔16a,16bの図示を省略している。
 また、以降の説明において、レーザ光LB(図1C参照)が出射される方向を前または前方あるいは前側と呼び、その反対方向を後または後方あるいは後側と呼ぶことがある。また、半導体レーザ装置10において、第1電極ブロック11が配置された側を下または下方あるいは下側と呼び、その反対側である第2電極ブロック16が配置された側を上または上方あるいは上側と呼ぶことがある。
 図1A~1Cに示すように、半導体レーザモジュール100は、半導体レーザ装置10と光学部品20とを有している。半導体レーザ装置10は、第1電極ブロック11と絶縁シート12とサブマウント13と半導体レーザ素子14と第2電極ブロック16とを有している。
 第1電極ブロック11は、導電材料からなる厚板状の部材である。例えば、銅(Cu)からなる板材にニッケル(Ni)と金(Au)とをこの順にメッキして得られる。また、第1電極ブロック11は、上面及び前方側面の一部が切り欠かれて開放された切欠状の凹部11bを有している。凹部11bはサブマウント13及び半導体レーザ素子14が収容される部分であり、凹部11bの前方開放部を通して、半導体レーザ素子14からレーザ光LB(図1C参照)が出射される。また、第1電極ブロック11は、凹部11bの左右に1箇所ずつ、凹部11bと離間して設けられたねじ孔11aを有している。
 絶縁シート12は、第1電極ブロック11の上面に凹部11bを囲むように設けられており、第1電極ブロック11に設けられたねじ孔11aと対応する位置に開口12aが設けられている。また、絶縁シート12は、第1電極ブロック11に第2電極ブロック16を取り付ける際に、両者を電気的に絶縁する機能を有する。絶縁シート12は、例えば、ポリイミドやセラミック等の絶縁材料からなる。
 サブマウント13は、例えば銅タングステン(Cu:W)等の導電材料からなる。サブマウント13と第1電極ブロック11とは図示しないハンダ材料により接着され、電気的に接続されている。ハンダ材料は、例えば、スズ(Sn)を96.5%と銀(Ag)を3.5%とを含んでいる。
 半導体レーザ素子14は端面放射型の半導体レーザ素子であり、複数のエミッタ(図示せず)を有している。また、半導体レーザ素子14は、下面に正極(+極)を、上面に負極(-極)をそれぞれ有している(いずれも図示せず)。金スズ(Au-Sn)ハンダ等(図示せず)を介してサブマウント13の上面に正極が配設されることで、半導体レーザ素子14がサブマウント13に電気的に接続されている。なお、サブマウント13の上面に半導体レーザ素子14の正極が直接接するようにしてもよい。また、負極の上面には複数のバンプ15が設けられている。半導体レーザ素子14のエミッタ(図示せず)は、前後方向に延びて設けられており、半導体レーザ素子14の前方側面が、レーザ光LBの出射端面に相当する。複数のエミッタからそれぞれレーザ光LBが前方に向けて出射される。
 なお、レーザ光LBの波長は400nm程度に設定されている。ただし、これに特に限定されず、レーザ光LBの波長は、300nm以上、500nm以下の範囲で選択しうる。また、半導体レーザ素子14の出力は100W程度であるが、特にこれに限定されない。半導体レーザ素子14に含まれるエミッタの個数等に応じて適宜変更されうる。
 バンプ15は、例えば金(Au)を材料とするワイヤを溶融させて形成した金バンプである。半導体レーザ素子14と第2電極ブロック16とを接続する際にバンプ15が変形し、半導体レーザ素子14と第2電極ブロック16とに機械的なダメージをあまり与えることなく、両者の間を電気的に良好に接続することができる。なお、バンプ15の材料は金に限らず、他の導電材料でもよい。また、図示しないが、バンプ15と第2電極ブロック16との間に金箔等の金属シートが挿入されてもよい。
 第2電極ブロック16は、凹部11bの上方を覆うように、絶縁シート12を挟んで第1電極ブロック11の上側に設けられており、導電材料からなる厚板状の部材である。例えば、銅(Cu)からなる板材にニッケル(Ni)と金(Au)とをこの順にメッキして得られる。第2電極ブロック16は、第1電極ブロック11に設けられたねじ孔11aに連通する位置にねじ孔16aを有するとともに、ねじ孔16aの後方かつ上面視で2つのねじ孔16aの間を通る線上にねじ孔16bを有している。ねじ孔16aは第2電極ブロック16を貫通しているが、ねじ孔16bは、その底面が第2電極ブロック16の内部に留まっている。
 第2電極ブロック16に設けられたねじ孔16aと、絶縁シート12に設けられた開口12aと、第1電極ブロック11に設けられたねじ孔11aとに、図示しないねじが挿入されて締結されることで、これらの部材が位置決め固定される。
 半導体レーザ素子14は、サブマウント13に実装された状態で、第1電極ブロック11と第2電極ブロック16とに挟み込まれて保持されている。つまり、第1電極ブロック11及び第2電極ブロック16は、図示しない外部電源から半導体レーザ素子14に電流を印加するための電極であるとともに、半導体レーザ素子14を保持する保持部品でもある。
 光学部品20は、コリメータレンズ21とレンズ固定ブロック22とを有している。コリメータレンズ21は、半導体レーザ素子14の出射端面側に位置する複数のエミッタのそれぞれから前方に出射されるレーザ光LBを受け取って、これらのファースト軸方向、この場合は上下方向の拡がりを平行化する。
 レンズ固定ブロック22は、レーザ光LBに対して透明な材質、例えば、石英ガラスからなる。コリメータレンズ21は、レンズ固定ブロック22に接続されて、その位置が固定されている。また、レンズ固定ブロック22の後面22dは、光硬化性接着材30により第2電極ブロック16の前面に接着されている。つまり、光学部品20は、半導体レーザ素子14の保持部品である第2電極ブロック16に接着固定されている。
 なお、光硬化性接着材30は、公知の光硬化性樹脂、例えば、光硬化性エポキシ樹脂からなる。光硬化性接着材30は、青色から紫外領域の光、特に、450nm以下の波長の光に対する吸収係数が大きく、青色から紫外領域の光が照射されると硬化する。
 なお、本願明細書において、紫外領域の光である紫外光の波長域は、200nm以上、390nm未満であり、青色領域の光である青色光の波長域は、390nm以上、500nm以下である。
 レンズ固定ブロック22は、略直方体形状であり、下面(第1面)22aと上面(第2面)22bと前面22cと後面22dと両側面とを有している。図1Cに示すように、レンズ固定ブロック22の表面のうち、下面22aがレーザ光LBの光路の最も近くに位置している。
 また、下面22aと前面22cとが連続する角部が切り欠かれた形状となっており、傾斜面22eが設けられている。なお、傾斜面22eを設けることで、光学部品20を介して半導体レーザ素子14の出射端面から出射されるレーザ光LBの光路がレンズ固定ブロック22の一部に干渉するのを防止できる。ただし、半導体レーザ素子14の出射端面とレンズ固定ブロック22の前面22cとの距離やレーザ光LBの拡がりによっては、傾斜面22eを設けなくてもよい。
 レンズ固定ブロック22の下面22aと前面22cと傾斜面22eには反射コーティング23が設けられている。一方、レンズ固定ブロック22の上面22bと後面22dには反射防止コーティング24が設けられている。
 反射コーティング23は、レーザ光LBを反射する。また、青色から紫外領域の波長帯の光を反射する。具体的には、反射コーティング23は、レンズ固定ブロック22の外部からレンズ固定ブロック22の前面22cまたは傾斜面22eあるいは下面22aに到達したレーザ光LBを反射する。さらに、反射コーティング23は、レンズ固定ブロック22の内部に進入して、レンズ固定ブロック22の前面22cまたは傾斜面22eあるいは下面22aに到達した青色から紫外領域の光を反射する。前述したように、青色から紫外領域の光は、光硬化性接着材30を硬化可能な波長帯の光である。
 反射防止コーティング24は、反射防止コーティング24に入射した紫外領域の光が反射されるのを防止する。具体的には、反射防止コーティング24は、レンズ固定ブロック22の外部からレンズ固定ブロック22の上面22bと後面22dに到達した紫外領域の波長帯の光が反射されるのを防止する。このため、紫外領域の光が、レンズ固定ブロック22の外部からレンズ固定ブロック22の上面22bまたは後面22dに到達した場合、紫外領域の光は、レンズ固定ブロック22の内部に進入する。
 反射コーティング23、反射防止コーティング24ともに、互いに誘電率の異なる誘電体膜を交互に積層してなる誘電体多層膜構造を有している。ただし、反射コーティング23と反射防止コーティング24とで、含まれる誘電体膜の種類や層数、また、各層の厚さは異なっている。反射コーティング23及び反射防止コーティング24をそれぞれ誘電体多層膜構造とすることで、反射コーティング23及び反射防止コーティング24の反射率をそれぞれ調整することが容易となる。反射コーティング23は、例えば、レーザ光LBと同じ波長の光に対して99.9%以上の反射率を有するのが好ましい。反射防止コーティング24は、例えば、レーザ光LBと同じ波長の光に対して1%以下の反射率を有するのが好ましく、0.5%以下の反射率であるのがより好ましい。
 [半導体レーザモジュールの組立方法]
 図2は、半導体レーザモジュールの組立工程の一部を示し、図3は、比較のための半導体レーザモジュールの組立工程の一部を示す。なお、なお、説明の便宜上、図2,3において、絶縁シート12、第1電極ブロック11のねじ孔11a及び第2電極ブロック16のねじ孔16a,16bの図示を省略している。
 また、図3に示すレンズ固定ブロック25は、反射コーティング23及び反射防止コーティング24が設けられていない点で、図1A~1Cに示すレンズ固定ブロック22と異なる。それ以外の構造や材質は、レンズ固定ブロック22とレンズ固定ブロック25とで同じである。
 図3に示すように、第2電極ブロック16の前面とレンズ固定ブロック25の後面25dとの間に光硬化性接着材30を介在させた状態で、半導体レーザ素子14の出射端面から出射されるレーザ光LBの光路に対する光学部品20の位置決めを行う(位置決め工程)。具体的には、レーザ光LBの光路に対するコリメータレンズ21の位置決めを行う。このとき、半導体レーザモジュール110の前方には、半導体レーザモジュール110と離間して図示しない光学系が設けられている。半導体レーザ素子14からレーザ光LBを出射させ、レーザ光LBの光路に対する、半導体レーザモジュール110の保持部品(第1電極ブロック11、第2電極ブロック16、またはヒートシンク40)と離間して設けられた光学部品20の位置決めするように、レーザ光LBのビーム品質と出力とをモニターしながら、当該ビーム品質と出力とが所定の条件を満足するように、光学部品20が接続されたレンズ固定ブロック22を移動させる。
 例えば、光学部品20を透過したレーザ光LBが、次段の当該光学系の出射側に設けられた受光デバイス(図示せず)の出力信号をモニターしながら、当該出力信号が所定の値以上になるように、光学部品20としてのコリメータレンズ21が接続されたレンズ固定ブロック25を動かす。出力信号が所定の値以上になった場合、コリメータレンズ21の位置決めを終了する。
 続けて、レンズ固定ブロック25の前面25cから光硬化性接着材30に向けて紫外光を照射し、光硬化性接着材30を硬化させる。このようにして、レンズ固定ブロック25を保持部品としての第2電極ブロック16に接着固定させる(取り付け工程)。
 しかし、図3に示す構成では、前述した課題を生じるおそれがある。つまり、レーザ光LBの波長が青紫~近紫外域にあるため、レーザ光LBが何らかの形で光硬化性接着材30に入射されると、光硬化性接着材30が硬化してしまう。例えば、図3に示すように、レーザ光LBの拡がり方によっては、レーザ光LBがレンズ固定ブロック25の内部に進入し、傾斜面25eで反射されて、光硬化性接着材30に入射する可能性がある。また、前述の光学部品20を透過したレーザ光LBが次段の光学系で反射され、レーザ光LBの戻り光となり、この反射されたレーザ光LBの戻り光が、レンズ固定ブロック25の前面25cから進入し、光硬化性接着材30に入射する可能性がある。
 このようなことが起こると、光硬化性接着材30が硬化してしまうため、レーザ光LBの光路に対して所望の位置に光学部品20としてのコリメータレンズ21を位置決めできず、光学部品20を透過し、光学系から出射されるレーザ光LBのビーム品質と出力が低下してしまうという問題が生じる。この場合、対象物体に対して所望の強度でレーザ光LBを照射できないおそれがある。また、レーザ光LBの損失が生じるとともに、レーザ光LBによって何らかのダメージを光学系に生じさせるおそれがある。
 そこで、本実施形態では、図1A~1Cに示すように、反射コーティング23と反射防止コーティング24とを、光硬化性接着材30を介して保持部品の前面に接着固定されるレンズ固定ブロック22の所定の面にそれぞれ設けている。レンズ固定ブロック22は、光学部品20を保持する。
 図2に示すように、位置決め工程で、半導体レーザ素子14からレーザ光LBを出射させる場合、レーザ光LBが拡がって、レンズ固定ブロック22の下面22aに入射しても、反射コーティング23で反射される。このため、レーザ光LBは、レンズ固定ブロック22の内部に進入せず、光硬化性接着材30に入射しない。また、前述の光学系で反射されたレーザ光LBの戻り光が、レンズ固定ブロック22の前面22cに到達しても、反射コーティング23で反射される。このため、レーザ光LBは、レンズ固定ブロック22の内部に進入せず、光硬化性接着材30に入射しない。つまり、位置決め工程において、レーザ光LBが意図せずに光硬化性接着材30に入射し、光硬化性接着材30は硬化されてしまうのを防止できる。このことにより、所望の位置に光学部品20、特にコリメータレンズ21を位置決めすることができる。
 また、図2に示すように、取り付け工程において、半導体レーザ素子14の後方からレンズ固定ブロック22の上面22bを通って、レンズ固定ブロック22の内部に紫外光を進入させる。このことにより、光硬化性接着材30に紫外光を照射し、光硬化性接着材30を硬化させている。
 前述したように、レンズ固定ブロック22の上面22b及び後面22dには反射防止コーティング24が設けられている。反射防止コーティング24は、反射防止コーティング24に入射した紫外領域の光が反射されるのを防止する。具体的には、反射防止コーティング24は、レンズ固定ブロック22の外部からレンズ固定ブロック22の上面22bと後面22dに到達した紫外領域の波長帯の光が反射されるのを防止する。このため、光硬化性接着材30を硬化可能な紫外領域の光が、レンズ固定ブロック22の外部からレンズ固定ブロック22の上面22bまたは後面22dに到達した場合、紫外領域の光は、反射防止コーティング24を透過して、レンズ固定ブロック22の内部に進入する。なお、紫外領域の光である紫外光の波長域は、200nm以上、390nm未満であり、青色領域の光である青色光の波長域は、390nm以上、500nm以下である。
 また、レンズ固定ブロック22の前面22c及び下面22aには反射コーティング23が設けられている。反射コーティング23は、レーザ光LBを反射する。また、青色から紫外領域の波長帯の光を反射する。具体的には、反射コーティング23は、半導体レーザ素子14から出射され、レンズ固定ブロック22の外部から反射コーティング23に入射したレーザ光LBを反射するとともに、レンズ固定ブロック22の外部から上面22bに入射され、レンズ固定ブロック22の内部に進入して反射コーティング23に入射した、光硬化性接着材30を硬化可能な所定の波長の光としての青色から紫外領域の波長帯の光を反射する。
 このため、半導体レーザ素子14の後方からレンズ固定ブロック22の上面22bを通って、レンズ固定ブロック22の外部から、反射防止コーティング24が設けられた上面22bに入射される紫外光は、反射防止コーティング24を透過して、ほとんど反射されずにレンズ固定ブロック22の内部に進入する。レンズ固定ブロック22の内部に進入した紫外光が、前面22cまたは下面22aに照射され、反射コーティング23により、反射防止コーティング24が設けられた後面22dに向けて反射される。後面22dに入射された紫外光は、ほとんど反射されずに光硬化性接着材30に照射され、光硬化性接着材30を硬化させる。このようにして、第2電極ブロック16の前面にレンズ固定ブロック22を含む光学部品20が接着固定される。
 [効果等]
 以上説明したように、本実施形態に係る半導体レーザモジュール100は、半導体レーザ装置10と光学部品20とを少なくとも備えている。また、半導体レーザ装置10は、前方にレーザ光LBを出射する半導体レーザ素子14と、半導体レーザ素子14を保持する保持部品である第1電極ブロック11と第2電極ブロック16とを少なくとも備えている。また、光学部品20は、第2電極ブロック16の前面に取り付けられている。レーザ光LBの波長は、300nm以上、500nm以下の範囲である。
 光学部品20は、レーザ光LBを受け取って所定の変換を施す、この場合は、レーザ子LBのファースト軸方向の拡がりを平行化するコリメータレンズ21と、コリメータレンズ21を保持固定するとともに、レーザ光LBに対して透明であるレンズ固定ブロック22と、を少なくとも有している。
 レンズ固定ブロック22の表面のうち、前面22cとレーザ光LBの光路に近い下面(第1面)22aとにレーザ光LBや所定の波長の光に対する反射コーティング23が設けられている。また、後面22dと下面22aと対向する上面(第2面)22bとに所定の波長の光に対する反射防止コーティング24が設けられている。 レンズ固定ブロック22の後面22dが、光硬化性接着材30を介して第2電極ブロック16の前面に接着固定されている。
 反射防止コーティング24が上面(第2面)22bに設けられることにより、半導体レーザ素子14の後方からレンズ固定ブロック22の上面22bを通るように、レンズ固定ブロック22の外部から上面22bに入射され、かつ光硬化性接着材30を硬化可能な所定の波長の光が、反射防止コーティング24を透過して、ほとんど反射されずにレンズ固定ブロック22の内部に進入する。
 反射コーティング23は、反射コーティング23に入射したレーザ光LBや所定の波長の光を反射する。具体的には、反射コーティング23は、半導体レーザ素子14から出射され、レンズ固定ブロック22の外部からレンズ固定ブロック22の前面22cまたは傾斜面22eあるいは下面(第1面)22aに到達したレーザ光LBを反射する。さらに、反射コーティング23は、レンズ固定ブロック22の外部から上面22bに入射され、レンズ固定ブロック22の内部に進入して、レンズ固定ブロック22の前面22cまたは傾斜面22eあるいは下面(第1面)22aに到達した光であって、光硬化性接着材30を硬化可能な所定の波長の光を反射し、反射防止コーティング24が設けられた後面22dに向けて反射させる。後面22dに入射された所定の波長の光は、ほとんど反射されずに光硬化性接着材30に照射され、光硬化性接着材30を硬化させる。所定の波長の光は、前述した青色から紫外領域の光であり、光硬化性接着材30を硬化可能な波長帯の光である。具体的には、所定の波長の光は、200nm以上、500nm以下の波長を有する光である。好ましくは、300nm以上、440nm以下の範囲の波長を有する光である。
 本実施形態によれば、半導体レーザ素子14から出射されたレーザ光LBが意図せずに光硬化性接着材30に入射し、光硬化性接着材30が硬化されてしまうのを防止できる。このことにより、光学部品20の位置調整を容易に行うことができる。また、所望の位置に光学部品20、特にコリメータレンズ21を位置決めすることができる。
 また、レンズ固定ブロック22の後面22dと上面22bとに反射防止コーティング24が設けられることで、紫外光がレンズ固定ブロック22の表面で反射されるのを抑制できる。レンズ固定ブロック22が石英ガラスの場合、内部での反射も含めて紫外光は10%程度の光量ロスを生じてしまう。一方、本実施形態によれば、光量ロスが数%以下に低減できるため、取り付け工程の工程時間短縮が図れる。
 また、レーザ光LBの光路と半導体レーザモジュール100の保持部品に保持される光学部品20とを位置決めして、次段の光学系から出射されるビーム品質と出力とを所望の状態とし、対象物体に対して所望の強度でレーザ光LBを照射することができる。また、レーザ光LBの損失を抑制するとともに、光学系に発生するレーザ光LBによるダメージを抑制できる。
 半導体レーザ素子14は、第1電極ブロック11と第2電極ブロック16とで挟み込まれている。
 このようにすることで、半導体レーザ素子14で発生した熱を、第1電極ブロック11及び第2電極ブロック16を介して速やかに外部に排出できる。
 なお、レンズ固定ブロック22が取り付けられるのは、第1電極ブロック11であってもよい。
 反射コーティング23及び反射防止コーティング24は、互いに屈折率の異なる誘電体膜が積層されてなる誘電体積層膜であるのが好ましい。
 このようにすることで、反射コーティング23及び反射防止コーティング24の反射率をそれぞれ調整することが容易となる。
 また、レーザ光LBの波長が、300nm以上、440nm以下である場合、レーザ光LBが照射されると光硬化性接着材30は容易に硬化してしまう。よって、本開示の半導体レーザモジュール100は、レーザ光LBの波長が、300nm以上、440nm以下の場合に特に有用である。
 本実施形態に係る半導体レーザモジュール100の組立方法は、保持部品である第2電極ブロック16の前面とレンズ固定ブロック22の後面22dとの間に光硬化性接着材30を介在させた状態で、レーザ光LBの光路に対する光学部品20の位置決めを行う位置決め工程を備えている。具体的には、半導体レーザ素子14からレーザ光LBが出射されたレーザ光LBの光路に対する、光学部品20としてのコリメータレンズ21の位置決めを行う。
 また、光硬化性接着材30を硬化可能な波長帯の光である所定の波長の光を光硬化性接着材30に照射し、レンズ固定ブロック22を第2電極ブロック16に接着固定させる取り付け工程を少なくとも備えている。
 位置決め工程では、第2電極ブロック16に保持された半導体レーザ素子14からレーザ光LBを出射させながら、光学部品20、特にコリメータレンズ21の位置決めを行う。
 取り付け工程では、半導体レーザ素子14の後方から上面22bを通してレンズ固定ブロック22の内部に所定の波長の光を進入させて、光硬化性接着材30に所定の波長の光を照射する。
 このようにすることで、半導体レーザ素子14から出射されたレーザ光LBが意図せずに光硬化性接着材30に入射し、光硬化性接着材30が硬化されてしまうのを防止できる。このことにより、光学部品20の位置調整を容易に行うことができる。また、所望の位置に光学部品20、特にコリメータレンズ21を位置決めすることができる。
 また、位置決め工程では、半導体レーザモジュール100と離間して設けられた光学系とレーザ光LBとの光結合状態をモニターし、当該光結合状態が所定の条件を満足した場合に、位置決め工程を終了し、続けて、取り付け工程を実行してもよい。
 このようにすることで、半導体レーザモジュール100の保持部品に保持される光学部品20を透過し、次段の光学系から出射されるレーザ光LBのビーム品質と出力を所望の状態とし、対象物体に対して所望の強度でレーザ光LBを照射することができる。また、レーザ光LBの損失を抑制するとともに、光学系に発生するレーザ光LBによるダメージを抑制できる。
 <変形例>
 図4Aは、本変形例に係る半導体レーザモジュールの斜視図を、図4Bは、図4AのIVB-IVB線での断面図をそれぞれ示す。なお、図4A,4Bにおいて、実施形態1と同様の箇所については同一の符号を付して詳細な説明を省略する。
 図4A,4Bに示す本変形例の構成は、半導体レーザ素子14がサブマウント13を介してヒートシンク40に実装され保持されている点で、実施形態1に示す構成と異なる。つまり、ヒートシンク40は、半導体レーザ素子14を保持する保持部品である。また、光学部品20が、ヒートシンク40の前面に取り付けられている点で、実施形態1に示す構成と異なる。
 なお、本変形例では、レンズ固定ブロック22の上面(第1面)22bが、レーザ光LBの光路に最も近い面である。このため、上面22bに反射コーティング23が設けられ、下面(第2面)22aに反射防止コーティング24が設けられる。また、図示しないが、半導体レーザ素子14の上面、この場合は負極には、1または複数の金属ワイヤがボンディングされている。同様に、サブマウント13の上面には、1または複数の金属ワイヤがボンディングされている。前述したように、サブマウント13は、半導体レーザ素子14の正極と電気的に接続されている。したがって、これらの金属ワイヤは、外部から半導体レーザ素子14に電流を供給するための配線として機能する。
 また、取り付け工程において、半導体レーザ素子14の後方からレンズ固定ブロック22の下面22aを通って、レンズ固定ブロック22の内部に紫外光を進入させる。下面22aに入射された紫外光は、反射防止コーティング24を透過して、ほとんど反射されずにレンズ固定ブロック22の内部に進入する。レンズ固定ブロック22の内部に進入した紫外光が、前面22cまたは上面22bに照射され、反射コーティング23により後面22dに向けて反射される。後面22dに入射された紫外光は、反射防止コーティング24を透過して、ほとんど反射されずに光硬化性接着材30に照射され、光硬化性接着材30を硬化させる。このようにして、ヒートシンク40の前面にレンズ固定ブロック22を含む光学部品20が接着固定される。
 本変形例に示すように半導体レーザモジュール100を構成してもよく、この場合も、実施形態1に示す構成が奏するのと同様の効果を奏することができる。つまり、半導体レーザ素子14から出射されたレーザ光LBが意図せずに光硬化性接着材30に入射し、光硬化性接着材30が硬化されてしまうのを防止できる。このことにより、光学部品20の位置調整を容易に行うことができる。また、所望の位置に光学部品20、特にコリメータレンズ21を位置決めすることができる。
 また、半導体レーザモジュール100の光学部品20を透過し、次段の光学系から出射されるレーザ光LBのビーム品質と出力を所望の状態となるように、半導体レーザ素子14から出射されたレーザ光LBの光路に対して、光学部品20の位置決めし、これにより対象物体に対して所望の強度でレーザ光LBを照射することができる。また、レーザ光LBの損失を抑制するとともに、光学系に発生するレーザ光LBによるダメージを抑制できる。
 なお、ヒートシンク40には、サブマウント13に実装された半導体レーザ素子14を冷却するための冷却機構が設けられていてもよい。例えば、ヒートシンク40の内部に、冷却水を流すための配管(図示せず)が設けられていてもよい。当該配管は、半導体レーザ素子14で最も発熱する部分、つまり、半導体レーザ素子14の前方側面の下方を通るように設けられるのが好ましい。
 (その他の実施形態)
 なお、実施形態及び変形例において、レンズ固定ブロック22の下面22aまたは上面22bに反射防止コーティング24を設けるようにしたが、特にこれに限定されない。半導体レーザ素子14と光学部品20との配置関係によっては、レンズ固定ブロック22の別の面に反射防止コーティング24を設けてもよい。例えば、半導体レーザ素子14と光学部品20とが横並びの配置関係にある場合、レンズ固定ブロック22の一方の側面と下面22aとに反射コーティング23を、当該一方の側面と対向する他方の側面と上面22bとに反射防止コーティング24をそれぞれ設けてもよい。この場合、レンズ固定ブロック22の一方の側面が、レーザ光LBの光路に近い面となる。取り付け工程では、半導体レーザ素子14の後方からレンズ固定ブロック22の他方の側面を通って、レンズ固定ブロック22の内部に紫外光を進入させる。
 なお、レーザ光LBの波長によっては、反射コーティング23は、単層の誘電体膜であってもよい。また、反射防止コーティング24は、単層の誘電体膜であってもよい。また、反射コーティング23に許容される反射率の範囲によっては、反射コーティング23を所定の厚さの金属膜、例えば、銀薄膜としてもよい。
 また、光学部品20において、ビームツイスタ(図示せず)がコリメータレンズ21と離間して、その前方に配置されていてもよい。ビームツイスタは、コリメータレンズ21を透過したレーザ光の偏光を90度回転させる。なお、この場合も、レンズ固定ブロック22にコリメータレンズ21とビームツイスタとが接続される。また、コリメータレンズ21に代えて、レーザ光LBを所定の集光位置に集光される集光レンズ(図示せず)をレンズ固定ブロック22に接続してもよい。また、コリメータレンズ21の前方に集光レンズを配置してもよい。この場合も、レンズ固定ブロック22にコリメータレンズ21と集光レンズとが接続される。また、ビームツイスタを集光レンズの前後のいずれかに配置してもよい。また、これら以外の部品が光学部品20に含まれていてもよい。
 また、複数のエミッタ毎に異なるコリメータレンズ21またはそれ以外の光学部品20を設け、それぞれのエミッタから出射されるレーザ光LBの光軸を変化させることで、複数のレーザ光LBを同じ焦点に集光させるようにしてもよい。
 本開示の半導体レーザモジュール100は、レーザ光LBに所定の変換を施す光学部品20の位置調整を容易に行うことができる。このため、レーザ光LBの偏光制御や形状制御が必要となるレーザ加工装置やレーザプロジェクター等のレーザ光源として好適である。
 なお、レーザ加工装置等で、高出力、例えば、1kW~数kW程度の出力が要求される場合、半導体レーザモジュール100を複数配置してレーザ光源とする。
 本開示の半導体レーザモジュールは、光学部品の位置調整を容易に行うことができるため、種々の装置に用いられるレーザ光源として有用である。
10  半導体レーザ装置
11  第1電極ブロック(保持部品)
12  絶縁シート
13  サブマウント
14  半導体レーザ素子
15  バンプ
16  第2電極ブロック(保持部品)
20  光学部品
21  コリメータレンズ
22,25 レンズ固定ブロック
22a,25a レンズ固定ブロックの下面
22b,25b レンズ固定ブロックの上面
22c,25c レンズ固定ブロックの前面
22d,25d レンズ固定ブロックの後面
22e,25e レンズ固定ブロックの傾斜面
23  反射コーティング
24  反射防止コーティング
30  光硬化性接着材
40  ヒートシンク(保持部品)
100,110 半導体レーザモジュール

Claims (7)

  1.  前方にレーザ光を出射する半導体レーザ素子と、
     前記半導体レーザ素子を保持する保持部品と、
     前記保持部品の前面に取り付けられた光学部品と、を少なくとも備え、
     前記レーザ光の波長は、300nm以上、500nm以下であり、
     前記光学部品は、
      前記レーザ光を受け取って所定の変換を施すレンズと、
      前記レンズを保持固定するとともに、前記レーザ光に対して透明であるレンズ固定ブロックと、を少なくとも有し、
     前記レンズ固定ブロックの表面のうち、
      前面と前記レーザ光の光路に近い第1面とに前記レーザ光に対する反射コーティングが設けられ、
      後面と前記第1面と対向する第2面とに前記レーザ光に対する反射防止コーティングが設けられ、
     前記レンズ固定ブロックの後面が、光硬化性接着材を介して前記保持部品の前面に接着固定されていることを特徴とする半導体レーザモジュール。
  2.  請求項1に記載の半導体レーザモジュールにおいて、
     前記反射コーティングは、前記レンズ固定ブロックの外部から前記反射コーティングに入射した前記レーザ光を反射するとともに、前記レンズ固定ブロックの内部に進入して前記反射コーティングに入射した所定の波長の光を反射し、
     前記所定の波長の光は、前記光硬化性接着材を硬化可能な波長帯の光であることを特徴とする半導体レーザモジュール。
  3.  請求項1または2に記載の半導体レーザモジュールにおいて、
     前記半導体レーザ素子は、第1電極ブロックと第2電極ブロックとで挟み込まれており、
     前記保持部品は、前記第1電極ブロックまたは前記第2電極ブロックのいずれかであることを特徴とする半導体レーザモジュール。
  4.  請求項1ないし3のいずれか1項に記載の半導体レーザモジュールにおいて、
     前記反射コーティング及び前記反射防止コーティングの少なくとも一方は、互いに屈折率の異なる誘電体膜が積層されてなる誘電体積層膜であることを特徴とする半導体レーザモジュール。
  5.  請求項1ないし4のいずれか1項に記載の半導体レーザモジュールにおいて、
     前記レーザ光の波長は、300nm以上、440nm以下であることを特徴とする半導体レーザモジュール。
  6.  請求項1ないし5のいずれか1項に記載の半導体レーザモジュールの組立方法であって、
     前記保持部品の前面と前記レンズ固定ブロックの後面との間に前記光硬化性接着材を介在させた状態で、前記レーザ光の光路に対する前記光学部品の位置決めを行う位置決め工程と、
     前記光硬化性接着材を硬化可能な波長帯の光である所定の波長の光を前記光硬化性接着材に照射し、前記レンズ固定ブロックを前記保持部品に接着固定させる取り付け工程と、を少なくとも備え、
     前記位置決め工程では、前記保持部品に保持された前記半導体レーザ素子から前記レーザ光を出射させながら、前記光学部品の位置決めを行い、
     前記取り付け工程では、前記半導体レーザ素子の後方から前記レンズ固定ブロックの内部に前記所定の波長の光を進入させて、前記光硬化性接着材に前記所定の波長の光を照射することを特徴とする半導体レーザモジュールの組立方法。
  7.  請求項6に記載された半導体レーザモジュールの組立方法において、
     前記位置決め工程では、前記半導体レーザ素子から前記レーザ光が出射された前記レーザ光の光路に対する、前記半導体レーザモジュールの前記保持部品と離間して設けられた前記光学部品の位置決めをするように、前記レーザ光のビーム品質と出力とをモニターし、当該ビーム品質と出力とが所定の条件を満足した場合に、前記位置決め工程を終了し、
     続けて、前記取り付け工程を実行することを特徴とする半導体レーザモジュールの組立方法。
PCT/JP2021/031670 2020-09-01 2021-08-30 半導体レーザモジュール及びその組立方法 WO2022050212A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022546302A JPWO2022050212A1 (ja) 2020-09-01 2021-08-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020146942 2020-09-01
JP2020-146942 2020-09-01

Publications (1)

Publication Number Publication Date
WO2022050212A1 true WO2022050212A1 (ja) 2022-03-10

Family

ID=80491766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031670 WO2022050212A1 (ja) 2020-09-01 2021-08-30 半導体レーザモジュール及びその組立方法

Country Status (2)

Country Link
JP (1) JPWO2022050212A1 (ja)
WO (1) WO2022050212A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002232056A (ja) * 2001-01-31 2002-08-16 Hamamatsu Photonics Kk 半導体レーザ装置、及び、半導体レーザ装置のレンズ位置固定方法
JP2004103792A (ja) * 2002-09-09 2004-04-02 Ricoh Co Ltd 複合光学装置およびその製造方法
JP2008051979A (ja) * 2006-08-23 2008-03-06 Brother Ind Ltd 光源装置およびその製造方法、露光装置ならびに画像形成装置
US20150364901A1 (en) * 2014-06-14 2015-12-17 Michael Deutsch Lens mounting arrangements for high-power laser systems
WO2016063436A1 (ja) * 2014-10-22 2016-04-28 パナソニックIpマネジメント株式会社 レーザモジュール
JP2019114726A (ja) * 2017-12-26 2019-07-11 日亜化学工業株式会社 発光装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002232056A (ja) * 2001-01-31 2002-08-16 Hamamatsu Photonics Kk 半導体レーザ装置、及び、半導体レーザ装置のレンズ位置固定方法
JP2004103792A (ja) * 2002-09-09 2004-04-02 Ricoh Co Ltd 複合光学装置およびその製造方法
JP2008051979A (ja) * 2006-08-23 2008-03-06 Brother Ind Ltd 光源装置およびその製造方法、露光装置ならびに画像形成装置
US20150364901A1 (en) * 2014-06-14 2015-12-17 Michael Deutsch Lens mounting arrangements for high-power laser systems
WO2016063436A1 (ja) * 2014-10-22 2016-04-28 パナソニックIpマネジメント株式会社 レーザモジュール
JP2019114726A (ja) * 2017-12-26 2019-07-11 日亜化学工業株式会社 発光装置の製造方法

Also Published As

Publication number Publication date
JPWO2022050212A1 (ja) 2022-03-10

Similar Documents

Publication Publication Date Title
JP3996164B2 (ja) 発光ダイオード装置及び発光ダイオード装置の製造方法
JP4189692B2 (ja) 光モジュール用パッケージおよび光モジュール
JP5226856B1 (ja) レーザモジュール及びその製造方法
WO2016084833A1 (ja) 光モジュールの製造方法
JP2006284851A (ja) レンズホルダおよびそれを用いたレーザアレイユニット
JPH10321900A (ja) 光モジュール
US20200185881A1 (en) Light emitting device
KR100334366B1 (ko) 광학 모듈 및 이에 적용가능한 광반사 부재
JP2006301597A (ja) レーザー装置およびその組立方法
JP2018117088A (ja) 反射部材付基板及びその製造方法
JP2004253638A (ja) 光部品とその製造方法
WO2022050212A1 (ja) 半導体レーザモジュール及びその組立方法
WO2021010488A1 (ja) 半導体レーザモジュール、光源ユニット、光源装置および光ファイバレーザ
US20230100183A1 (en) Semiconductor light-emitting device and light source device including the same
JP6485002B2 (ja) 光源装置
JP2007248581A (ja) レーザーモジュール
JP7530726B2 (ja) 量子カスケードレーザ装置
JP7460880B2 (ja) 発光装置
WO2006030578A1 (ja) 集積光部品とその製造方法、及び光通信装置
JP2008041918A (ja) 光学装置および光学モジュール
JP6246397B2 (ja) 光源装置
JP2018170431A (ja) 半導体レーザ装置及びその製造方法
CN218896928U (zh) 一种多光路to封装耦合结构
JP7463149B2 (ja) 半導体レーザ装置
JP2019216178A (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546302

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864270

Country of ref document: EP

Kind code of ref document: A1