WO2022049916A1 - プレス成形品の製造方法及びプレス成形装置 - Google Patents

プレス成形品の製造方法及びプレス成形装置 Download PDF

Info

Publication number
WO2022049916A1
WO2022049916A1 PCT/JP2021/027336 JP2021027336W WO2022049916A1 WO 2022049916 A1 WO2022049916 A1 WO 2022049916A1 JP 2021027336 W JP2021027336 W JP 2021027336W WO 2022049916 A1 WO2022049916 A1 WO 2022049916A1
Authority
WO
WIPO (PCT)
Prior art keywords
top plate
press
outward flange
vertical wall
ridge line
Prior art date
Application number
PCT/JP2021/027336
Other languages
English (en)
French (fr)
Inventor
裕之 田中
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2023002215A priority Critical patent/MX2023002215A/es
Priority to JP2022546150A priority patent/JP7302747B2/ja
Priority to US18/022,913 priority patent/US20230364664A1/en
Priority to KR1020237006860A priority patent/KR20230042747A/ko
Priority to CN202180054311.4A priority patent/CN116323028A/zh
Priority to EP21863974.8A priority patent/EP4209286A4/en
Publication of WO2022049916A1 publication Critical patent/WO2022049916A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/01Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/26Deep-drawing for making peculiarly, e.g. irregularly, shaped articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D19/00Flanging or other edge treatment, e.g. of tubes
    • B21D19/08Flanging or other edge treatment, e.g. of tubes by single or successive action of pressing tools, e.g. vice jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D47/00Making rigid structural elements or units, e.g. honeycomb structures
    • B21D47/01Making rigid structural elements or units, e.g. honeycomb structures beams or pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/30Deep-drawing to finish articles formed by deep-drawing

Definitions

  • the present invention relates to a technique for producing a saddle-shaped press-molded product by press-molding a metal plate with a die.
  • the saddle-shaped press-molded product has a top plate portion, a vertical wall portion continuous via a convex ridgeline portion in the width direction of the top plate portion, and an end portion and a convex shape of the top plate portion in the longitudinal direction of the top plate portion. It is provided with an outward flange portion that is continuous with the end portion of the ridge line portion and the end portion of the vertical wall portion via the concave ridge line portion.
  • Press forming is a processing method for deforming a metal plate using a press machine and a die incorporated in the press machine. Normally, the metal plate before processing is flat. Therefore, in order to deform the metal plate into a complicated three-dimensional shape, the metal plate must be expanded and contracted according to the target three-dimensional shape.
  • the more complicated the shape of the pressed part the more difficult it is to give the metal plate expansion and contraction according to the three-dimensional shape.
  • a difficult-to-mold member made of a high-strength steel plate or an aluminum alloy plate having a tensile strength of 590 MPa or more and having inferior ductility and Rankford value is used for the metal plate, the above difficulties are likely to occur.
  • the metal plate cannot be expanded or contracted according to the three-dimensional shape, molding defects such as cracks and wrinkles occur in the metal plate. That is, when the metal plate is deformed into a three-dimensional shape, the metal plate has to stretch at a portion where the length of the metal plate is insufficient to make up for the shortage from the surroundings.
  • a saddle-shaped press-molded product is an example of a part shape that is difficult to press-mold.
  • the saddle-shaped press molding has a continuous outward flange portion straddling the top plate portion and the vertical wall portions formed on both sides of the top plate portion.
  • the outward flange portion is a flange portion at the end in the longitudinal direction.
  • Patent Document 1 As a countermeasure for this problem, for example, there is a method for manufacturing a saddle-shaped press-molded product described in Patent Document 1.
  • Patent Document 1 when a saddle-shaped press-molded product is manufactured, a top plate constituent portion is curved, and in the curvature, a first force is applied to the top plate constituent portion from the inner surface side to the outer surface side. Further, Patent Document 1 describes that a combined force of a second force in a direction facing each other and a third force in the opposite direction to the first force is applied to each of the outer surface sides of the vertical wall constituent portion. ing.
  • Patent Document 1 has a problem that the mold becomes complicated and the cost of the mold becomes high.
  • a press-molded product having a continuous outward flange portion straddling the top plate portion and the vertical wall portion is manufactured, there is the following problem when the metal plate is simply press-molded. That is, the portion of the outward flange portion located at the corner portion (corner portion) connecting the top plate surface and the vertical wall surface is subjected to tensile deformation. Then, strain is concentrated on that portion, and cracks may occur at the corner portion. Therefore, conventionally, it has not been possible to widen the flange width of the corner portion of the outward flange portion, that is, the portion continuous with the longitudinal end portion of the convex ridge line portion. Therefore, it was necessary to cut out the width of the flange portion of the ridge line portion to the width that can be molded (see reference numeral 1Ec (position having the notch) in FIG. 17).
  • Patent Document 1 a pad that can be raised and lowered up and down is added to the center of the top plate of the lower mold, and the pad is molded in a protruding state.
  • the constituent portion of the top plate of the metal plate is curved to disperse the strain of the outward flange portion located at the end in the longitudinal direction to the top plate portion.
  • Patent Document 1 it is necessary to add a pad mechanism that protrudes to the lower mold. This complicates the mold and increases costs. In addition, it is necessary to control the movement of the lower pad, which is inferior in productivity.
  • the present invention has been made by paying attention to the above points, and is an outward flange formed across the top plate portion, the vertical wall portion, and the longitudinal end portion of the top plate portion and the vertical wall portion.
  • the purpose is to mold a saddle-shaped press-molded product having a portion with a simpler die structure.
  • the inventors have created a saddle-shaped press-molded product having a top plate portion, left and right vertical wall portions, and an outward flange portion formed so as to straddle the top plate portion and the longitudinal end portion of the vertical wall portion.
  • Various studies were conducted on the press molding method. Specifically, various studies have been conducted on a press molding method that can be molded without cracking and does not require a complicated mold structure. As a result of the examination, the following findings (1) and (2) were obtained. (1) After forming the metal plate into a U-shaped cross section, when bending the outward flange portion, the forming of the flange portion is started from the top plate portion and the vertical wall portion.
  • the strain of the outward flange portion located at the end portion in the longitudinal direction can be dispersed to the top plate portion side and the vertical wall portion side.
  • one aspect of the present invention includes a top plate portion, a vertical wall portion continuous via a convex ridgeline portion in the width direction of the top plate portion, and a longitudinal end portion of the top plate portion.
  • another aspect of the present invention includes a top plate portion, a vertical wall portion continuous via a convex ridgeline portion in the width direction of the top plate portion, a longitudinal end portion of the top plate portion, and a convex shape.
  • the press-molded product provided with the longitudinal end portion of the ridge line portion and the outward flange portion continuous with the concave ridge line portion at the longitudinal end portion of the vertical wall portion is described above.
  • the metal plate is bent at the position of the convex ridge to form an L-shaped cross section, bent at the position of the concave ridge to form the outward flange, and bent at the position of the concave ridge.
  • the outward flange portion of the region to be the outward flange portion, a region continuous with the longitudinal end portion of the top plate portion via the concave ridge line portion and the longitudinal end portion of the vertical wall portion.
  • the bending force is input to the region continuous to the longitudinal end portion of the convex ridge line portion via the concave ridge line portion, and the cross section is L-shaped. It is a gist that after the molding is completed, the molding of the region continuous with the longitudinal end portion of the convex ridge line portion via the concave ridge line portion in the outward flange portion is completed.
  • another aspect of the present invention includes a top plate portion, a vertical wall portion continuous via a convex ridge line portion in the width direction of the top plate portion, a longitudinal end portion of the top plate portion, and a convex shape.
  • Press molding for manufacturing a press-molded product provided with a longitudinal end portion of a ridge portion and an outward flange portion continuous with a concave ridge portion at the longitudinal end portion of the vertical wall portion from a metal plate.
  • the top plate portion and the vertical wall portion continuous with the top plate portion having a molding surface capable of forming the region to be the top plate portion and the vertical wall portion at the position of the convex ridge line portion.
  • the molding surface of the portion where the bending force is applied to the region to be the outward flange portion to form the outward flange portion is the top portion and the left and right of the top portion when viewed from the longitudinal direction of the top plate portion. It is provided with a pair of continuous slopes on both sides, and has a chevron shape that is convex in the bending direction of the outward flange portion as a whole.
  • the gist is that the top plate portion is set so as to be able to come into contact with a region continuous with the longitudinal end portion via the concave ridge line portion.
  • a saddle-shaped press-molded product having a top plate portion, a vertical wall portion, and an outward flange portion formed so as to straddle the top plate portion and the longitudinal end portion of the vertical wall portion.
  • the vertical wall portion formed on both sides of the top plate portion and the top plate portion, and the top plate portion and the vertical wall portion are continuous without having a complicated mold structure. It is possible to disperse the strain of the outward flange portion in the press-molded product provided with the outward flange portion (the flange portion at the end in the longitudinal direction). As a result, it becomes possible to form a saddle-shaped press-molded product having a shape in which the flange width of the ridgeline portion is expanded with a simple mold structure.
  • FIG. 3 is a front view of the press-molded product of FIG. 1 as viewed from the longitudinal direction of the top plate portion.
  • FIG. 3 is a schematic perspective view which shows the structural example of the die used in the press molding apparatus which concerns on embodiment based on this invention. It is a figure which shows the state which moved the 1st lower die to the upper side. It is a figure explaining the action by the chevron shape of the second lower mold.
  • FIG. 1 It is a schematic perspective view which shows the shape of the molded article after performing 1st molding process and a part of 2nd molding process by 1st step. It is a figure which shows the example of the contour shape of the chevron-shaped slope in the second lower die, (a) is a linear shape, (b) is a curved shape of an upward convex fold shape, (c) is a downward convex. This is the case of a curved shape with a bent shape. It is a figure which shows the deformation example of the top of a chevron shape. It is a figure which shows the distribution state of the plate thickness reduction rate along the width direction of the top plate part in the invention example and the comparative example based on an embodiment.
  • the press-molded product 1 shown in FIG. 1 has a top plate portion 1A, left and right vertical wall portions 1C continuous via left and right convex ridge line portions 1B on both sides in the width direction of the top plate portion 1A, and an outward flange portion. 1E and.
  • the outward flange portion 1E is provided via the concave ridge line portion 1D with respect to the longitudinal direction end portion of the top plate portion 1A, the longitudinal direction end portion of the convex ridge line portion 1B, and the longitudinal direction end portions of the left and right vertical wall portions 1C.
  • the press-molded product 1 shown in FIG. 1 has a lower flange portion 1F continuous with the lower end portion of the vertical wall portion 1C.
  • the saddle-shaped press-molded product may not have the lower flange portion 1F.
  • the cross section is U-shaped.
  • the shape of the press-molded product 1 may be the shape of a pressed part having a vertical wall portion 1C on only one side in the width direction of the top plate portion 1A and having an L-shaped cross section.
  • the present invention can be applied even to such a press-molded product 1.
  • the cross-sectional U-shape and the cross-sectional L-shape also include a cross-sectional shape having a flange portion at the lower end portion of the vertical wall portion 1C. Further, in FIG.
  • the saddle-shaped press-molded product 1 may have a configuration in which the outward flange portion 1E is provided only at one end in the longitudinal direction.
  • the outward flange portion 1E is continuous with the longitudinal end portion of the top plate portion 1A, the longitudinal end portion of the convex ridge line portion 1B, and the longitudinal end portion of the left and right vertical wall portions 1C, and the width of the top plate portion 1A. It is formed as one flange portion straddling along the direction. That is, as shown in FIG. 2, the outward flange portion 1E includes a top plate portion side region 1Ea (a region continuous with the longitudinal end portion of the top plate portion 1A) and left and right vertical wall portion side regions 1Eb (vertical walls).
  • the region that becomes the top plate portion side region 1Ea is defined as the top plate portion side component portion and the region that becomes the vertical wall portion side region 1Eb.
  • the vertical wall side component and the ridgeline side area 1Ec may be described as a corner component, respectively.
  • the same reference numerals will be given to the top plate portion side region 1Ea and the top plate portion side constituent portion to be described.
  • the vertical wall portion side region 1Eb and the vertical wall portion side component portion will be described with the same reference numerals.
  • the ridgeline portion side region 1Ec and the corner constituent portion will be described with the same reference numerals.
  • First embodiment A first embodiment based on the present invention will be described with reference to the drawings. (Manufacturing method of pressed part shape) First, a method for manufacturing a pressed part shape according to the present embodiment will be described. The method for manufacturing a pressed part shape according to the present embodiment includes a first step and a second step.
  • the first step is a step of forming a metal plate (blank) at the positions of the left and right convex ridges 1B to form a U-shaped cross section.
  • a metal plate blade
  • the pressing method may be pad foam using a pad or draw molding using a blank holder.
  • the first step With the region to be the outward flange portion 1E open, press molding is performed on the region to be the top plate portion 1A and the region to be the vertical wall portion 1C, and the metal plate has a U-shaped cross section ( It is preferable to mold it into an L-shaped cross section).
  • the above-mentioned "opened state” refers to a state in which the region to be the outward flange portion 1E is not constrained. That is, the molding of the first step is executed in a state where the region to be the outward flange portion 1E is free. This makes it easier to execute the second step in succession to the first step.
  • the second step is a step of bending the metal plate having a U-shaped cross section in the first step at the position of the concave ridge line portion 1D to form the outward flange portion 1E.
  • it is bent at the position of the concave ridge line portion 1D to form the outward flange portion 1E.
  • the bending force is input to the corner constituent portion 1Ec. It is preferable to set so as to.
  • the top plate portion side component portion 1Ea is a portion continuous to the longitudinal end portion of the top plate portion 1A via the concave ridge line portion 1D.
  • the vertical wall portion side component 1Eb is a portion continuous to the longitudinal end portion of the vertical wall portion 1C via the concave ridge line portion 1D.
  • the corner constituent portion 1Ec is a portion continuous to the longitudinal end portion of the convex ridge line portion 1B via the concave ridge line portion 1D.
  • the input of the bending force to the top plate side component 1Ea is set as follows, for example. That is, the input of the bending force is started from the widthwise central portion side of the top plate portion 1A in the top plate portion side constituent portion 1Ea, and the bending force is input in order toward the corner constituent portion 1Ec side. Set. There is no problem as long as the starting position of the input of the bending force to the top plate portion side constituent portion 1Ea is an intermediate position in the width direction of the top plate portion 1A in the top plate portion side constituent portion 1Ea.
  • the starting position for inputting the bending force to the top plate portion side constituent portion 1Ea is preferably 0 mm or more, preferably 3 mm or more away from the end of the corner constituent portion 1Ec.
  • the corner component 1Ec is set to the input start position of the bending force by the top 12A of the second lower mold 12. It was confirmed that the plate thickness reduction rate in the corner constituent portion 1Ec was improved by setting the position at a position 0 mm or more, preferably 3 mm or more away from the end of the corner. In particular, by separating the corner constituent portion 1Ec by 3 mm or more, the input start position of the bending force by the top portion 12A of the second lower die 12 can be more reliably set inside the corner constituent portion 1Ec.
  • the end of the corner component 1Ec refers to the boundary between the arcuate corner component 1Ec and the top plate side component 1Ea and the vertical wall side component 1Eb.
  • the first step and the second step can be continuously executed by one press working.
  • the angle of the L-shaped cross section after the first step may be different from the angle of the L-shaped cross section of the target saddle-shaped press-molded product 1.
  • it is preferable that the angles of both are equal.
  • the first step and the second step may be executed by using different molds. It should be noted that after the second step, there may be a rest-like processing step for improving the accuracy of the shape and dimensions.
  • the second step may be started from the middle of the first step.
  • the present embodiment includes a first upper die and a first lower die, and a second upper die and a second lower die as a die for press molding.
  • the press forming apparatus exemplifies a case where the first upper mold and the second upper mold are composed of one upper mold 10 (die). Further, the first lower mold 11 and the second lower mold 12 are arranged in a state of being offset in the longitudinal direction of the top plate portion 1A. According to this configuration, the press forming of the first step and the press forming of the second step can be performed by one press working.
  • the first upper mold 10 and lower mold 11 and the second upper mold and lower mold 12 may be formed as independent molds.
  • the apparatus configuration may be such that the first upper die 10 and lower die 11 and the second upper die and lower die 12 are individually set in the press machine to perform press working.
  • the first upper mold 10 and the lower mold 11 are molds for executing the first step.
  • the first upper die 10 and lower die 11 have a molding surface capable of forming a region of the metal plate 2 to be the top plate portion 1A and the vertical wall portion 1C at a position where the convex ridge line portion 1B is formed.
  • the first upper mold 10 and lower mold 11 are molds for forming the metal plate 2 into a U-shaped cross section.
  • the first lower mold 11 constitutes a punch. As shown in FIG. 3, which represents the molding surface of the mold, the first lower mold 11 has a U-shaped cross section, and is a region of the metal plate 2 that becomes the top plate portion 1A.
  • the first top plate surface 11A that abuts on the lower surface
  • the punch shoulder portion 11C that abuts on the lower surface of the region that becomes the convex ridge line portion 1B
  • the left and right first that abuts on the lower surface (inner surface) of the region that forms the vertical wall portion 1C.
  • the side surface 11B has left and right first flange surfaces 11D that abut on the lower surface of the region to be the lower flange portion.
  • the first upper mold 10 constitutes a die and faces the first lower mold 11 in the vertical direction (press direction). As shown in FIG. 3, the first upper mold 10 has a U-shaped cross section. Specifically, the first upper die 10 is the upper surface of the region of the metal plate 2 that becomes the second top plate surface 10A and the convex ridge line portion 1B that abuts on the upper surface of the region that becomes the top plate portion 1A. Left and right second side surfaces 10B abutting on the upper surface (outer surface) of the region forming the vertical wall portion 1C, and left and right second flange surfaces abutting on the upper surface of the region to be the lower flange portion. Has 10D.
  • the press forming apparatus is configured such that the first lower mold 11 relatively moves toward the first upper mold 10 as in the movement from the position of FIG. 3 to the position of FIG. .. From this, as shown in FIG. 6, the metal plate 2 is sandwiched between the first lower mold 11 and the first upper mold 10. As a result, the metal plate 2 bends at the convex ridge line portion 1B and is formed into a U-shaped cross section. At this time, in the present embodiment, as shown in FIG. 6, the molded surfaces of the first lower mold 11 and the first upper mold 10 do not abut on the region serving as the outward flange portion 1E. However, the region to be the outward flange portion 1E has a U-shaped cross section, similarly to the top plate portion 1A and the vertical wall portion 1C.
  • the second upper mold and lower mold 12 are molds for executing the second step.
  • the second upper mold and lower mold 12 are formed by forming a metal plate 2 having a U-shaped cross section (L-shaped cross section) formed by the first upper mold and the first lower mold 11 at the concave ridge line portion 1D. It is a mold for forming the outward flange portion 1E by bending molding.
  • the first upper mold and the second upper mold are configured as one upper mold 10.
  • the second upper mold has a molded surface 10E that can abut on the upper surface side of the bent outward flange portion 1E, as shown in FIGS. 3 and 6.
  • the molded surface 10E is composed of rising surfaces that rise upward from the longitudinal end portions of the first upper mold 10.
  • the second lower mold 12 is arranged in the press machine in a state of being offset in the longitudinal direction of the top plate portion 1A with respect to the first lower mold 11.
  • the molding surface of the portion where the bending force is applied to the region to be the outward flange portion to form the outward flange portion is viewed from the longitudinal direction of the top plate portion 1A.
  • a top portion 12A and a pair of continuous slopes 12B on both the left and right sides of the top portion 12A are provided.
  • the molded surface has a chevron shape that is convex in the bending direction (pressing direction) of the outward flange portion 1E as a whole, with the top portion 12A as the apex.
  • the chevron-shaped top portion 12A is first set so as to be able to come into contact with the top plate portion side component portion 1Ea (see FIGS. 5 and 6).
  • the chevron-shaped top portion 12A is set so as to abut on a position continuous with the center portion in the width direction of the top plate portion 1A in the top plate portion side component portion 1Ea.
  • the width of the top portion 12A (the arcuate portion in FIG. 5) is smaller than the width of the top plate portion 1A (the length of the top plate portion side component portion 1Ea).
  • the punch angle ⁇ formed by the intersection angle of the extension lines of the left and right slopes 12B forming the chevron shape is the top plate portion 1A and the vertical wall portion 1C in the metal plate 2 having an L-shaped cross section. It is wider than twice the angle formed by subtracting 90 degrees from the angle formed by. Twice the angle formed by subtracting 90 degrees from the angle formed by the top plate portion 1A and the vertical wall portion 1C is equal to the crossing angle ⁇ formed by the left and right vertical wall portions 1C (see FIG. 2).
  • the crossing angle ⁇ is an angle on the top plate portion 1A side. That is, as shown in FIG. 5, the punch angle ⁇ is set wider than the crossing angle ⁇ (see FIG.
  • the punch angle ⁇ is, for example, in the range of 60 degrees or more and 180 degrees or less, preferably 80 degrees or more and 140 degrees or less.
  • the crossing angle ⁇ is, for example, less than 40 degrees.
  • the angle formed by the top plate portion 1A and the vertical wall portion 1C is the angle on the inner surface side.
  • the left and right slopes 12B first have the vertical wall portion side constituent portion 1Eb with respect to the lower end portion side to the upper end portion side (corner constituent portion). It is possible to start the contact in order toward 1Ec) and start inputting the bending force in order. That is, it is possible to set the vertical wall portion side component 1Eb to be molded from the lower side to the upper side on the left and right slopes 12B.
  • the chevron-shaped slope 12B starts inputting the bending force to the vertical wall side constituent portion 1Eb.
  • the chevron-shaped top portion 12A starts inputting the bending force to the top plate portion side constituent portion 1Ea.
  • the input of the bending force is started by the top portion 12A at the portion of the top plate portion side constituent portion 1Ea continuous with the central portion in the width direction of the top plate portion 1A.
  • the input of the bending force is sequentially started toward the corner component 1Ec side. That is, molding is started from the central portion side to the end portion side of the top plate portion side constituent portion 1Ea, and molding is performed. If the length (height) of the vertical wall side constituent portion 1Eb is short, the top plate portion side constituent portion 1Ea may start molding first.
  • the input of the bending force to the corner constituent portion 1Ec is started, and the outward flange portion 1E is formed. Will be done.
  • the input start of the bending force to the corner component 1Ec may be different from the input start from the vertical wall side component 1Eb and the input start from the top plate side component 1Ea, or at the same time. good. It is preferable to set both to start input at the same time.
  • the strain is set to be evenly input to the vertical wall side component 1Eb and the top plate side component 1Ea, the input from the vertical wall side component 1Eb and the input from the top plate side component 1Ea are started. Will be at the same time.
  • the press-molded product 1 is manufactured using the above press-molding apparatus, for example, a cross section of a region where the first upper die 10 and the lower die 11 form a top plate portion 1A and a vertical wall portion 1C in the metal plate 2. Press-mold into a U-shape. Subsequently, the second upper die and lower die form the outward flange portion 1E with respect to the metal plate 2 press-molded into a U-shaped cross section. At this time, in the present embodiment, the second upper mold and lower mold are kept in a state where the metal plate 2 is constrained to the U-shaped cross section (L-shaped cross section) by the first upper mold 10 and the lower mold 11. The outward flange portion 1E is formed. The formation of the outward flange portion 1E may be started from the middle of press forming into a U-shaped cross section.
  • the metal plate 2 is cross-sectionally formed by sandwiching the regions of the metal plate 2 to be the top plate portion 1A and the vertical wall portion 1C between the first upper mold 10 and the lower mold 11. It is molded into a shape (L-shaped cross section).
  • the region from the first upper mold 10 and the lower mold 11 to the outward flange portion 1E is in the lateral direction (left side in FIG. 6) in a cantilever shape. It is in a state of overhanging.
  • the second step is executed with the metal plate 2 restrained by the first upper mold 10 and the lower mold 11. That is, the first lower mold 11 is used as the lower pad in the second step to restrain the positions of the top plate portion 1A and the vertical wall portion 1C in the metal plate 2.
  • the metal plate 2 is sandwiched between the first upper mold 10 and the lower mold 11, the metal plate 2 is made of a material in both the width direction of the top plate portion 1A and the height direction of the vertical wall portion 1C. Is in a difficult state to move.
  • the process of the second step is executed in this state, and the process of forming the outward flange portion 1E is executed.
  • the convex chevron-shaped second lower mold 12 is raised (approaching the second upper mold).
  • the slope 12B of the second lower die 12 abuts on the vertical wall portion side component 1Eb in order from the lower end side to the upper side. Therefore, while the bending force is input from the lower side to the upper side with respect to the region that becomes the outward flange portion 1E continuous to the vertical wall portion 1C, the surface 12C of the second lower mold 12 and the surface of the upper mold 10 It is sandwiched between 10E and 10E.
  • the vertical wall portion side region 1Eb of the outward flange portion 1E is formed by bending and molding in order from the lower side to the upper side at the position of the concave ridge line portion 1D (see FIG. 5).
  • the vertical wall portion side region 1Eb is sequentially molded from the lower side (lower end portion) toward the upper side, but the molding amount is small. Further, the concave ridge line portion 1D at that position extends along the moving direction of the second lower die 12 in a straight line or in a state close to a straight line. Therefore, it is possible to reduce the strain input to the vertical wall portion side region 1Eb by this molding.
  • the chevron-shaped top portion 12A of the second lower mold 12 is in the width direction of the top plate portion 1A in the top plate portion side component portion 1Ea. It corresponds to the part continuous with the central part.
  • the input of the bending force to the top plate portion side constituent portion 1Ea is started. It should be noted that the bending force may be input to the top plate side constituent portion 1Ea side before the vertical wall portion side region 1Eb side.
  • the top plate portion side component 1Ea is lifted upward with the portion continuous with the center portion in the width direction of the top plate portion 1A in the top plate portion side component 1Ea as the center.
  • the portion of the top plate portion side component portion 1Ea that is continuous with the center portion in the width direction of the top plate portion 1A is distorted.
  • the shoulder ridge line portion (corner portion extending along the chevron shape) of the lower mold 12 is squeezed and strained.
  • the vertical wall side region 1Eb and the top plate side region 1Ea are formed while the molding proceeds toward the corner constituent portion 1Ec, and the vertical wall portion side region 1Eb and the top plate portion are formed. Strain enters the side region 1Ea in a well-balanced manner. Subsequently, the lower mold 12 rises, and immediately before the corner constituent portion 1Ec is completely bent, the bent ridge line at the concave ridge line portion 1D position becomes close to a straight line. As a result, even if the corner component 1Ec is bent, the plate thickness reduction rate in the corner component 1Ec can be kept small.
  • the outward flange portion 1E is formed by the above mechanism.
  • the strain input to the outward flange portion 1E is dispersed.
  • the strain of the ridgeline side region 1Ec can be dispersed in the vertical wall side region 1Eb and the top plate side region 1Ea. Therefore, the concentration of strain on the ridge side region 1Ec is suppressed, and the plate thickness reduction rate in the ridge side region 1Ec is improved. As a result, it becomes possible to manufacture the press-molded product 1 as shown in FIGS. 1 and 2 in which the flange width of the ridgeline portion side region 1Ec (corner portion) in the outward flange portion 1E is widened.
  • a saddle type having a top plate portion, a vertical wall portion, and an outward flange portion formed so as to straddle the top plate portion and the longitudinal end portion of the vertical wall portion. It is possible to mold the press-molded product of the above with a simpler mold configuration.
  • the method for manufacturing a pressed part shape of the present embodiment includes a first molding process and a second molding process shown below as a press molding process.
  • This embodiment is different from the first embodiment in that the second molding process is also performed while the first molding process is performed. That is, the first molding process and the second molding process are performed in synchronization with each other.
  • the first molding process and the second molding process may be started first, but the first molding process is configured to end first.
  • the first molding process is a process of molding a metal plate (blank) at the positions of the left and right convex ridges 1B to form a U-shaped cross section.
  • the first molding process paying attention to one vertical wall portion 1C side in the width direction of the top plate portion 1A, it is synonymous with the process of bending at the convex ridge line portion 1B position to form an L-shaped cross section. ..
  • a pressing method in the present embodiment (manufacturing method described later), a foam method in which the upper die and the lower die are simply sandwiched is exemplified. Pad foam using a pad or draw molding using a blank holder may be used.
  • the first molding process With the region to be the outward flange portion 1E open, press molding is performed on the region to be the top plate portion 1A and the region to be the vertical wall portion 1C, and the metal plate has a U-shaped cross section. Mold into (L-shaped cross section). That is, by executing the molding of the first molding process in a state where the region to be the outward flange portion 1E is free, it becomes easy to execute the second molding process together with the first molding process.
  • This first molding process corresponds to the first step in the first embodiment.
  • the second molding process is a process of bending the metal plate to be molded into a U-shaped cross section at the position of the concave ridge line portion 1D in the first molding process to form the outward flange portion 1E.
  • the second molding process of the present embodiment is executed in synchronization with the first molding process.
  • a process of forming a region to be the outward flange portion 1E, which is not pressed in the first molding process, that is, is free, in the outward flange portion 1E is executed.
  • the second molding process may be started before the start of the first molding process, but the second molding process ends later.
  • the second molding process is the same as the second step in the first embodiment, except that the second molding process is performed while performing the first molding process.
  • the top plate portion side constituent portion 1Ea and the vertical wall portion side constituent portion The input of the bending force is started for 1Eb. After that, the input of the bending force is started to the corner constituent portion 1Ec continuous to the longitudinal end portion of the convex ridge line portion 1B via the concave ridge line portion 1D. As a result, the outward flange portion 1E is formed in the second molding process.
  • the input of the bending force is set to start sequentially (continuously) from the lower position away from the corner component 1Ec toward the corner component 1Ec. For example, it is set so that the input of the bending force is started to the top plate portion side constituent portion 1Ea after the input of the bending force is started to the vertical wall portion side constituent portion 1Eb.
  • the bending force is input to the top plate side constituent portion 1Ea, for example, from the widthwise central portion side of the top plate portion 1A in the top plate portion side constituent portion 1Ea toward the corner constituent portion 1Ec side.
  • the starting position of the input of the bending force to the top plate portion side constituent portion 1Ea is an intermediate position in the width direction of the top plate portion 1A in the top plate portion side constituent portion 1Ea.
  • the starting position of the input of the bending force to the top plate portion side constituent portion 1Ea is preferably 0 mm or more, preferably 3 mm or more away from the boundary between the corner constituent portion 1Ec and the top plate portion side constituent portion 1Ea.
  • the corner component sets the bending force input start position by the top 12A of the second lower mold 12. It was confirmed that the plate thickness reduction rate in the corner constituent portion 1Ec was improved by press molding at a distance of 0 mm or more, preferably 3 mm or more from the boundary between 1Ec and the top plate portion side constituent portion 1Ea. In particular, by separating the corner constituent portion 1Ec by 3 mm or more, the input start position of the bending force by the top portion 12A of the second lower die 12 can be more reliably set inside the corner constituent portion 1Ec.
  • the outward flange portion 1E is provided in a state where at least a part (for example, a region to be the top plate portion) of the metal portion having a U-shaped cross section (L-shaped cross section) is constrained. It is preferable that the forming process is completed. In this case, it is possible to execute the first molding process and the second molding process by one press working.
  • the first molding process and the second molding process may be performed using different molds. Further, after the second molding process, a rest-like process may be provided to improve the accuracy of the shape and dimensions.
  • a press forming apparatus for executing the method for manufacturing a pressed part shape in the present embodiment will be described below.
  • a die for press molding a first upper die and a second lower die for performing a first molding process, and a second upper die and a second lower die for performing a second molding process. And prepare.
  • the case where the first upper mold and the second upper mold are composed of one upper mold 10 (die) is exemplified (see FIG. 3). ..
  • the first lower mold 11 and the second lower mold 12 are arranged side by side in a state of being offset in the longitudinal direction of the top plate portion 1A.
  • press forming for the first forming process and press forming for the second forming process can be performed in one press working.
  • the first upper mold 10 and the first lower mold 11 and the second upper mold and the second lower mold 12 have the first upper mold 10 and the second lower mold 12 as independent mold configurations.
  • the upper die 10 and the lower die 11 and the second upper die and the second lower die 12 may be individually set in the press machine to execute the press working.
  • the first upper mold 10 and the first lower mold 11 are molds for performing the first molding process. Since the device configurations of the first upper die 10 and the first lower die 11 are the same as the devices of the first embodiment, the description thereof will be omitted (see FIG. 3).
  • the second upper mold and the second lower mold 12 are molds for performing the second molding process. Since the device configurations of the second upper die and the second lower die 12 are the same as those of the device of the first embodiment, the description thereof will be omitted (see FIG. 3).
  • FIG. 3 shows a state before the start of molding.
  • the positional relationship between the first lower mold 11 and the second lower mold 12 in the vertical direction (stroke method) shown in FIG. 3 is the first molding process and the second. It is the positional relationship at the end of molding and in the initial state of the molding process of. That is, in FIG. 3, when viewed from the arrangement direction of the first lower mold 11 and the second lower mold 12, the slope 12B of the second lower mold 12 is pressed more than the punch shoulder portion 11C of the first lower mold 11.
  • the first lower mold 11 is relatively stroked upward by the stroke amount S with respect to the second lower mold 12.
  • the state shown in FIG. 7 is assumed.
  • the top portion 12A of the second lower mold 12 protrudes in the pressing direction (upper in FIG. 7) from the first top plate surface 11A of the first lower mold 11.
  • the slope 12B of the second lower die 12 is displaced downward in the pressing direction from the punch shoulder portion 11C of the first lower die 11.
  • the surface 12C of the second lower die 12 is not exposed on the other side (back side) of the punch shoulder portion 11C. ..
  • the input of the bending force to the corner component 1Ec is not started on the slope 12B. That is, the surface 12C of the second lower die 12 is not visible above the punch shoulder portion 11C of the first lower die 11, that is, the slope 12B is lower or at the same height at the position of the punch shoulder portion 11C. It is in a state of being in the middle.
  • the upper part is the pressing direction for the lower dies 11 and 12, and the lower part is the pressing direction for the upper dies 10.
  • first step in the second embodiment The first step in the second embodiment will be described.
  • the first lower mold 11 is stroked upward to set the first lower mold 11 and the second lower mold 12 to the state shown in FIG. 7.
  • the upper mold 10 is relatively pressed toward the lower molds 11 and 12, and the first molding process and a part of the second molding process are performed.
  • the blank is formed into a shape as shown in FIG. In the shape shown in FIG. 8, the blank is bent at the position of the convex ridge portion 1B to form a U-shaped cross section (L-shaped cross section), and at the same time, the blank is bent at the position of the concave ridge portion 1D to form an outward flange.
  • a part of part 1E is also molded.
  • the input of the bending force is started to at least a part of the vertical wall side component 1Eb and the top plate side component 1Ea, but the bending force to the corner component 1Ec is started. Input has not started. Alternatively, the input of the bending force to the corner component 1Ec is partially started.
  • the input of the bending force to the vertical wall side component 1Eb and the top plate side component 1Ea is sequentially directed toward the corner component 1Ec side. Execute. note that. Even if the first step is completed, the input of the bending force to the vertical wall portion side constituent portion 1Eb and the top plate portion side constituent portion 1Ea may not be completed.
  • the bending force is input to 1Eb and the top plate side component 1Ea in order toward the corner component 1Ec side.
  • the input of the bending force to the corner constituent portion 1Ec is also started, and the outward flange portion 1E is formed.
  • the metal plate in the first step, is bent at the position of the convex ridge line portion to form a U-shaped cross section (L-shaped cross section), and is bent at the position of the concave ridge line portion. Form a part of the outward flange portion. Further, in the second step, the formation of the outward flange portion is continued to form the outward flange portion.
  • the prestroke amount of the first lower die 11 can be reduced. That is, the first lower die 11 may be pre-stroked slightly upward, the upper die 10 may be lowered and pressed, and then the first lower die 11 may be stroked to return to the initial position.
  • the regions to be the top plate portion 1A and the vertical wall portion 1C of the metal plate 2 are sandwiched between the first upper mold 10 and the lower mold 11.
  • the metal plate 2 is formed into a U-shaped cross section (L-shaped cross section).
  • the region from the first upper die 10 and the lower die 11 to the outward flange portion 1E is in the lateral direction (FIG. 4). It is in a state of overhanging like a cantilever in the middle and left direction).
  • the first step a part of the second molding process is executed together with the first molding process.
  • the second molding process is continued to form the outward flange portion.
  • the metal plate 2 is sandwiched between the first upper mold 10 and the first lower mold 11. Therefore, in the metal plate 2, the material is difficult to move in both the width direction of the top plate portion 1A and the height direction of the vertical wall portion 1C.
  • the second molding process is continued in this state to complete the formation of the outward flange portion 1E.
  • the second molding process is started, and the second lower mold 12 having a convex chevron shape is relatively raised (approaching the second upper mold) with respect to the upper mold 10.
  • the slope 12B of the second lower die 12 abuts on the wall-side component 1Eb in order from the lower end side to the upper side. Therefore, while the input of the bending force is started from the lower side to the upper side with respect to the region serving as the outward flange portion 1E continuous with the vertical wall portion 1C, the surface 12C and the upper mold 10 of the second lower mold 12 are started. It is sandwiched between the surface 10E and the surface 10E. As a result, the vertical wall portion side region 1Eb of the outward flange portion 1E is formed by bending and molding in order from the lower side to the upper side at the position of the concave ridge line portion 1D (see FIG. 5).
  • the vertical wall portion side region 1Eb is sequentially molded from the lower side (lower end portion) toward the upper side, but the molding amount is small. Further, the concave ridge line portion 1D at that position extends along the moving direction of the second lower die 12 in a straight line or in a state close to a straight line. Therefore, the strain input to the vertical wall portion side region 1Eb in this molding can be reduced.
  • the chevron-shaped top portion 12A of the second lower mold 12 is in the width direction of the top plate portion 1A in the top plate portion side component portion 1Ea. It corresponds to the part continuous with the central part. As a result, the input of the bending force is started to the top plate portion side constituent portion 1Ea. It should be noted that the bending force may be input to the top plate portion side constituent portion 1Ea side before the vertical wall portion side region 1Eb side.
  • the top plate portion side component 1Ea is lifted upward with the portion continuous with the center portion in the width direction of the top plate portion 1A in the top plate portion side component 1Ea as the center.
  • the portion of the top plate portion side component portion 1Ea that is continuous with the center portion in the width direction of the top plate portion 1A is distorted.
  • the shoulder ridge line portion (corner portion extending along the chevron shape) of the lower mold 12 is squeezed and strained.
  • the lower mold 12 rises, the vertical wall portion side region 1Eb and the top plate portion side region 1Ea are molded while the molding proceeds toward the corner constituent portion 1Ec. At this time, strain is applied to the vertical wall side region 1Eb and the top plate side region 1Ea in a well-balanced manner. Subsequently, the lower mold 12 rises, and immediately before the corner constituent portion 1Ec is completely bent, the bent ridge line at the concave ridge line portion 1D position becomes close to a straight line. Therefore, even if the corner component 1Ec is bent, the plate thickness reduction rate in the corner component 1Ec can be kept small.
  • the metal plate 2 is formed into a U-shaped cross section (L-shaped cross section) by the above mechanism, and a part of the outward flange portion 1E is formed. Further, the outward flange portion 1E is formed by continuing the formation of the outward flange portion 1E even after the molding of the U-shaped cross section is completed. Further, the corner portion is finally formed for the outward flange portion 1E.
  • the strain input to the outward flange portion 1E is dispersed.
  • the strain of the ridgeline side region 1Ec can be dispersed in the vertical wall side region 1Eb and the top plate side region 1Ea.
  • a saddle type having a top plate portion, a vertical wall portion, and an outward flange portion formed so as to straddle the top plate portion and the longitudinal end portion of the vertical wall portion. It is possible to mold the press-molded product of the above with a simpler mold configuration.
  • the second molding process may be started earlier than the first molding process, or may be started at the same time. It is preferable to start the first molding process first.
  • FIG. 9A The contour shape of the slope 12B of the second lower mold 12 in the inclined direction toward the direction away from the top 12A does not have to be a linear shape (see FIG. 9A). It suffices to have a slope shape that goes in the direction opposite to the pressing direction as the distance from the top portion 12A increases.
  • FIGS. 9 (b) and 9 (c) Other examples of the contour shape of the slope 12B are shown in FIGS. 9 (b) and 9 (c).
  • FIG. 9B is an example in which the contour shape of the slope 12B is a curved shape that is convex in the pressing direction (upper side in FIG. 9).
  • FIG. 9C is an example in which the contour shape of the slope 12B is a curved shape that is convex in the direction opposite to the pressing direction.
  • FIGS. 9 (a) to 9 (c) the curved shape of FIG. 9 (c) is preferable.
  • FIGS. 9 (b) and 9 (c) exemplify a curved shape bent at the inflection point Q, that is, a curved shape in which two straight lines are connected at the inflection point Q position.
  • the curved shape may be an arc shape or the like.
  • the cross-sectional shape of the top portion 12A as viewed from the longitudinal direction of the top plate portion is an arc shape convex in the press direction is illustrated.
  • the cross-sectional shape of the top portion 12A may be flat (see FIG. 10A).
  • the cross-sectional shape of the top portion 12A may have irregularities (see FIG. 10B). If the width of the top portion 12A is smaller than the width of the top plate portion, the top portion 12A can be set so as to abut only on the top plate portion side constituent portion 1Ea. Therefore, the cross-sectional shape of the top portion 12A is not limited.
  • the upper mold and the lower mold having the same molding surface as the press-molded product 1 were used for pad foam molding (pad pressure: 15 ton).
  • the punch angle ⁇ of the second lower die 12 was set to 90 degrees.
  • the contour shape of the slope 12B is a straight line shape.
  • the ridgeline portion (1Ec) corresponds to the ridgeline portion side region.
  • the horizontal axis indicates the distance in the width direction of the top plate portion 1A starting from a position continuous with the central portion in the width direction of the top plate portion 1A.
  • FIG. 12 described later.
  • the strain is widely distributed in the width direction of the top plate portion 1A as compared with the comparative example. Then, it was found that in the invention example, the plate thickness reduction rate in the ridgeline portion side region 1Ec, which is the corner portion, was reduced.
  • the punch angle ⁇ of the second lower die 12 was changed and the effect was evaluated.
  • the analysis result is shown in FIG.
  • FIG. 12 shows a case where the punch angle ⁇ is 60 degrees to 180 degrees.
  • the tendency of improvement in the plate thickness reduction rate in the ridgeline side region 1Ec, which is the corner portion is the same as in the case of 90 degrees. I have also confirmed.
  • FIG. 13 shows a plate in a region near the ridgeline portion side region 1Ec and the ridgeline portion side region 1Ec (vertical wall portion side constituent portion 1Eb side and top plate portion side constituent portion 1Ea side) due to the change of the punch angle ⁇ .
  • the maximum plate thickness reduction rate becomes the minimum when the punch angle ⁇ is around 110 degrees.
  • the punch angle ⁇ becomes obtuse, the rate of decrease in plate thickness on the vertical wall portion side constituent portion 1Eb side becomes larger. From this, it was found that the punch angle ⁇ is preferably 80 degrees to 140 degrees. It was more preferably 90 degrees to 120 degrees, and even more preferably 100 degrees to 110 degrees.
  • FIG. 14 the horizontal axis shows the stroke amount S (see FIG. 7) that causes the first lower die 11 to be stroked upward from the initial position (see FIG. 3) for the first step.
  • the stroke amount S 79 mm
  • the top portion 12A of the second lower mold 12 comes into contact with the metal plate 2. The bending molding was not started.
  • the top portion 12A of the second lower die 12 is arranged in a protruding state with respect to the first lower die 11. Therefore, when the metal plate 2 is molded into a U-shaped cross section, the molding amount of the outward flange portion 1E also increases. On the other hand, in the region where the stroke amount S is smaller than 44 mm, the protrusion amount of the top portion 12A of the second lower mold 12 becomes large, and at the same time as forming into a U-shaped cross section, a part of the top plate portion side constituent portion 1Ea is also formed. rice field.
  • the ridgeline portion side region 1Ec which is the ridgeline portion side region, is a plate regardless of the stroke of the first lower mold 11 as compared with the normal construction method (comparative example). It was found that the amount of thickness reduction was reduced. Further, it can be confirmed that even if the stroke amount S is reduced to 29 mm, the amount of decrease in plate thickness on the vertical wall side component 1Eb side and the top plate side component 1Ea side does not deteriorate, and the strain is efficiently dispersed. rice field.
  • FIG. 15 shows a plate in a region near the ridgeline portion side region 1Ec and the ridgeline portion side region 1Ec (vertical wall portion side constituent portion 1Eb side and top plate portion side constituent portion 1Ea side) due to the change of the punch angle ⁇ .
  • the punch angle ⁇ is around 110 degrees, the maximum plate thickness reduction rate becomes the minimum. The sharper the punch angle ⁇ is, the greater the rate of decrease in plate thickness on the top plate side constituent portion 1Ea side.
  • the punch angle ⁇ becomes obtuse, the rate of decrease in plate thickness on the vertical wall portion side constituent portion 1Eb side becomes larger.
  • the punch angle ⁇ is preferably 80 degrees to 140 degrees. It is more preferably 90 degrees to 120 degrees, and even more preferably 100 degrees to 110 degrees.
  • the amount of decrease in the plate thickness of the ridgeline portion side region 1Ec, which is the ridgeline portion side region, is smaller than that in the linear shape (FIG. 9A). From this, when the strain distribution is non-uniform, the degree of dispersion can be adjusted by changing the shape of the slope 12B.
  • the present disclosure may also have the following structure.
  • the metal plate is bent at the position of the convex ridge to be formed into an L-shaped cross section, and is bent at the position of the concave ridge after the L-shaped cross section is formed or during the molding of the L-shaped cross section.
  • the outward flange portion is formed.
  • the process of bending at the position of the convex ridge line portion to form an L-shaped cross section is executed in a state where the region to be the outward flange portion is open. According to this configuration, it is possible to suppress the input of strain to the region to be the outward flange portion when molding into an L-shaped cross section.
  • the outward flange portion is formed by bending at the position of the concave ridge line portion, the longitudinal end portion of the top plate portion via the concave ridge line portion in the region to be the outward flange portion.
  • the region continuous to the longitudinal end portion of the convex ridge line portion via the concave ridge line portion is the first bending force at a position 0 mm or more away from the end of the convex ridge line portion. It is preferable to enter it.
  • "From the convex ridgeline portion" represents from the end position (boundary with other portions) of the radius of the convex ridgeline portion having a cross-sectional arc shape or the like.
  • the strain (plate thickness reduction rate) dispersed in the concave ridge line portion 1D (corner portion) in the outward flange portion can be suppressed more reliably (see FIG. 11).
  • the molding of the concave ridge line portion 1D is executed after the molding is started from the position away from the concave ridge line portion 1D in the outward flange portion.
  • the region that becomes the outward flange portion is continuous with the longitudinal end portion of the top plate portion via the concave ridge line portion.
  • the bending force is applied to the region continuous with the longitudinal end portion of the convex ridge line portion via the concave ridge line portion.
  • the molding of the L-shaped cross section is completed, the molding of the region of the outward flange portion continuous with the longitudinal end portion of the convex ridge line portion via the concave ridge line portion is completed.
  • the bending force input to the region continuous to the longitudinal end of the top plate via the concave ridge is the first bending at a position 0 mm or more, preferably 3 mm or more away from the end of the convex ridge. It is preferable to input the force.
  • “From the convex ridgeline portion” means from the end position of the radius of the convex ridgeline portion having an arcuate cross section. According to this configuration, the strain (plate thickness reduction rate) dispersed in the concave ridge line portion 1D (corner portion) in the outward flange portion can be suppressed more reliably (see FIG. 8).
  • the molding of the concave ridge line portion 1D is executed after the molding is started from the position away from the concave ridge line portion 1D in the outward flange portion.
  • the first bending force is input to a position inside the convex ridge line portion.
  • the strain (plate thickness reduction rate) dispersed in the concave ridge line portion 1D (corner portion) in the outward flange portion can be suppressed more reliably.
  • the shape of the press-molded product is the top plate portion, the left and right vertical wall portions continuous via the left and right convex ridges on both sides in the width direction of the top plate portion, and the longitudinal direction of the top plate portion. It is provided with an end portion, a longitudinal end portion of the left and right convex ridge portions, and an outward flange portion continuous with a concave ridge line portion at the longitudinal end portion of the left and right vertical wall portions. According to this configuration, a saddle-shaped press-molded product is manufactured.
  • a press-molding device for manufacturing a press-molded product from a metal plate comprising, and an outward flange portion continuous with a concave ridge line at the longitudinal end of the vertical wall portion.
  • a second lower mold for forming the outward flange portion by bending the metal plate at the concave ridge line portion is provided.
  • the molding surface of the portion where the bending force is applied to the region to be the outward flange portion to form the outward flange portion is the top portion and the top portion when viewed from the longitudinal direction of the top plate portion. It has a pair of continuous slopes on both the left and right sides of the top, and has a chevron shape that is convex in the bending direction of the outward flange portion as a whole.
  • the top of the chevron shape is set so as to be able to come into contact with a region of the region serving as the outward flange portion, which is continuous with the longitudinal end portion of the top plate portion via the concave ridge line portion.
  • the width of the corner portion of the outward flange portion which is the flange portion located at the end portion in the longitudinal direction, can be set wide. Further, for example, it is not necessary to cut out so that the width of the corner component 1Ec of the outward flange portion becomes narrow as shown in FIG. 17, and as shown in FIG. 1, it cracks even if it is set to the same width as other portions. It is possible to suppress the occurrence of such factors.
  • a second upper mold facing the second lower mold in the pressing direction is provided.
  • the metal plate formed by the second lower mold is a metal plate formed by the first upper mold and the first lower mold.
  • the first upper mold and the second upper mold are composed of one upper mold.
  • the first lower mold and the second lower mold are arranged in a state of being offset in the longitudinal direction of the top plate portion. According to this configuration, it is possible to form an outward flange portion by one press working.
  • the first lower mold and the second lower mold are arranged in a state of being offset in the longitudinal direction of the top plate portion, and the first lower mold is the second lower mold.
  • the chevron shape is a top plate portion of the metal plate in which the punch angle consisting of the crossing angle connecting the left and right slopes forming the chevron shape is formed by the first upper mold and the first lower mold. It is wider than twice the angle formed by subtracting 90 degrees from the angle formed by the vertical wall.
  • the second lower mold starts molding from the lower end portion of the vertical wall side constituent portion in the outward flange portion, and then starts molding from the central portion of the top plate portion side constituent portion. Then, the molding position is set to move toward the corner component.
  • the strain (plate thickness reduction rate) dispersed in the concave ridge line portion 1D (corner portion) in the outward flange portion can be suppressed more reliably (see FIG. 11).
  • the punch angle is in the range of 60 degrees or more and 180 degrees or less.
  • the contour shape of the slope in the chevron shape is a curved shape that is convex in the direction opposite to the pressing direction along the slope direction of the slope. Depending on the degree of strain, the amount of reduction in the plate thickness at the corners can be further reduced depending on this configuration.
  • a manufacturing method for manufacturing the press-molded product from a metal plate using the press-molding apparatus of the present disclosure Using the first upper mold and the first lower mold, the regions of the metal plate to be the top plate portion and the vertical wall portion are press-molded into an L-shaped cross section. Using the second upper die and lower die, the outward flange portion is formed on the metal plate press-molded into the L-shaped cross section. According to this configuration, the strain (plate thickness reduction rate) dispersed in the concave ridge line portion 1D (corner portion) in the outward flange portion can be suppressed more reliably.
  • the outward flange portion is formed by the second upper mold and the lower mold in a state where the metal plate is constrained to have an L-shaped cross section in the first upper mold and the first lower mold. According to this configuration, the strain (plate thickness reduction rate) dispersed in the concave ridge line portion 1D (corner portion) in the outward flange portion can be more reliably suppressed to a small value.
  • a manufacturing method for manufacturing the press-molded product from a metal plate using the press-molding apparatus of the present disclosure Using the first upper mold and the first lower mold, the second lower mold is formed while press-molding the regions of the metal plate to be the top plate portion and the vertical wall portion into an L-shaped cross section. It is used to form a part of the outward flange portion. According to this configuration, the strain (plate thickness reduction rate) dispersed in the concave ridge line portion 1D (corner portion) in the outward flange portion can be suppressed more reliably.
  • Top plate 1B Convex ridge 1C Vertical wall 1D Concave ridge 1E Outward flange 1Ea Top plate side region (top plate side component) 1Eb Vertical wall side area (vertical wall side component) 1Ec Ridge side area (corner component) 2 Metal plate 10
  • Upper mold (1st upper mold, 2nd upper mold) 11 First lower mold 12
  • Second lower mold 12A 12B Slope ⁇ Second lower mold punch angle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

天板部と縦壁部と該天板部及び縦壁部の長手方向端部に跨がって形成される外向きフランジ部とを有する鞍型のプレス成形品を、より簡易な金型の構成で成形する。天板部(1A)と、上記天板部(1A)の幅方向に凸状稜線部(1B)を介して連続する縦壁部(1C)と、上記天板部(1A)の長手方向端部、上記凸状稜線部(1B)の長手方向端部、及び上記縦壁部(1C)の長手方向端部に凹状稜線部(1D)を介して連続する外向きフランジ部(1E)と、を備えたプレス成形品(1)を、金属板(2)から製造する際に、上記金属板(2)を、上記外向きフランジ部(1E)となる領域を解法した状態で、上記凸状稜線部(1B)の位置で曲げて断面L字形状に成形し、その後、上記凹状稜線部(1D)の位置で曲げて上記外向きフランジ部(1E)を形成する。

Description

プレス成形品の製造方法及びプレス成形装置
 本発明は、金型により金属板をプレス成形して、鞍型のプレス成形品を製造するための技術に関する。
 鞍型のプレス成形品は、天板部と、天板部の幅方向に凸状稜線部を介して連続する縦壁部と、天板部の長手方向における天板部の端部、凸状稜線部の端部、及び縦壁部の端部に対し凹状稜線部を介して連続する外向きフランジ部と、を備える。
 自動車や家電をはじめ、多くのプレス部品は、平坦な金属板を様々な形状に変形させることで作られる。プレス部品を大量生産する場合、プレス成形(プレス加工)が広く用いられている。プレス成形は、プレス機とプレス機に組み込まれる金型を用いて金属板を変形させる加工方法である。通常、加工前の金属板は平坦である。このため、その金属板を複雑な立体形状に変形させるには、金属板を、目的とする立体形状に合わせて伸び縮みをしなければならない。
 しかし、プレス部品形状が複雑になるほど、立体形状に合わせた伸び縮みを金属板に与えることは困難になる。特に、引張強度が590MPa以上の高張力鋼板やアルミニウム合金板等からなり、延性やランクフォード値が劣る難成形部材を金属板に採用した場合、上記の困難が生じやすくなる。
 プレス成形の際に、立体形状に合わせた伸び縮みを金属板に与えられない場合、金属板に割れやしわといった成形不良が発生する。すなわち、金属板が立体形状に変形させられる際、金属板の長さが不足して周囲から不足分を補えない部位では、金属板は伸びざるを得ない。そして、金属板が自身の延性を超えて引っ張られると、割れが発生する。一方、立体形状に変形させられる際に金属板の長さが縮まなければならない場合や、周囲から過剰に流入する部位では、しわが発生する傾向にある。
 プレス成形が困難な部品形状の例として、鞍型のプレス成形品がある。鞍型のプレス成形は、天板部とその天板部の両側に形成された縦壁部とに跨って連続した外向きフランジ部を有する。外向きフランジ部は、長手方向端部のフランジ部である。このような複雑な部品形状を平坦な金属板から成形する場合、成形途中で引張変形や圧縮変形が発生する。このため、金属板に割れやしわが発生しやすい。
 上記のような複雑な形状を有する製品を金属板からプレス成形する場合、例えば、パンチ、ダイ、及びパッドからなる金型を用いた曲げ加工が行われる。このとき、成形途中の線長不足により、長手方向端部に位置するフランジ部に割れが発生し、加工が成形不良となるおそれがある。
 この問題の対策として、例えば特許文献1に記載の鞍型プレス成形品の製造方法がある。特許文献1では、鞍型プレス成形品を製造する際に、天板構成箇所を湾曲させ、その湾曲において、天板構成箇所に内面側から外面側へ向けた第一力を付与する。更に、特許文献1には、縦壁構成箇所の外面側の各々に、互いに向き合う方向へ向けた第二力及び第一力と逆向きの第三力の合成力を付与することが、記載されている。
国際公開第2019/216317号
 特許文献1に記載の製造方法は、金型が複雑となり、金型のコストも高くなるといった課題がある。
 ここで、天板部と縦壁部に跨る連続した外向きフランジ部を有するプレス成形品を製造する際に、単純に金属板をプレス成形した場合、次の課題がある。すなわち、外向きフランジ部における、天板面と縦壁面を繋ぐコーナー部(角部)に位置する部分が引張変形を受ける。そして、その部分にひずみが集中し、当該コーナー部で割れが発生するおそれがある。そのため、従来、外向きフランジ部におけるコーナー部、つまり凸状稜線部の長手方向端部に連続する部分のフランジ幅を広げることができなかった。このため、成形可能な幅まで稜線部のフランジ部の幅を切り欠く必要があった(図17の符号1Ec(切欠きを有する位置)を参照)。
 特許文献1では、下型の天板部中央に上下に昇降可能なパッドを追加し、パッドを突き出した状態で成形する。これによって、金属板における天板構成箇所を湾曲させて長手方向端部に位置する外向きフランジ部のひずみを、天板部へ分散させている。しかし、特許文献1では、下型に突出するパッドの機構を追加する必要がある。このため、金型が複雑になり、コストも増加する。また下型のパッドの動きを制御する必要があり、生産性が劣る。
 本発明は、上記のような点に着目してなされたもので、天板部と縦壁部と該天板部及び縦壁部の長手方向端部に跨がって形成される外向きフランジ部とを有する鞍型のプレス成形品を、より簡易な金型の構成で成形することを目的としている。
 発明者らは、天板部と左右の縦壁部と該天板部及び縦壁部の長手方向端部に跨がって形成された外向きフランジ部とを有する鞍型のプレス成形品を対象に、プレス成形方法について、種々検討を行った。具体的には、割れが発生することなく成形でき、かつ複雑な金型構成を要しないプレス成形方法について、種々検討を行った。その検討の結果、下記(1)(2)の知見を得た。
 (1)金属板を断面コ字形状の形状に成形した後に、外向きフランジ部を曲げ起こす際に、天板部と縦壁部からフランジ部の成形を開始する。これによって、長手方向端部に位置する外向きフランジ部のひずみを、天板部側及び縦壁部側に分散できる。
 (2)外向きフランジ部を成形するパンチ形状(下型の形状)を変更することで、外向きフランジ部でのひずみ分布を制御可能である。
 本発明は、このような知見に基づき、成したものである。
 課題解決のために、本発明の一態様は、天板部と、上記天板部の幅方向に凸状稜線部を介して連続する縦壁部と、上記天板部の長手方向端部、上記凸状稜線部の長手方向端部、及び上記縦壁部の長手方向端部に凹状稜線部を介して連続する外向きフランジ部と、を備えたプレス成形品を、金属板から製造する際に、上記金属板を、上記外向きフランジ部となる領域を解放した状態で、上記凸状稜線部の位置で曲げて断面L字形状に成形し、その後、上記凹状稜線部の位置で曲げて上記外向きフランジ部を形成する、ことを要旨とする。
 また、本発明の他の態様は、天板部と、上記天板部の幅方向に凸状稜線部を介して連続する縦壁部と、上記天板部の長手方向端部、上記凸状稜線部の長手方向端部、及び上記縦壁部の長手方向端部に凹状稜線部を介して連続する外向きフランジ部と、を備えたプレス成形品を、金属板から製造する際に、上記金属板を、上記凸状稜線部の位置で曲げて断面L字形状に成形すると共に上記凹状稜線部の位置で曲げて上記外向きフランジ部を形成し、上記凹状稜線部の位置で曲げて上記外向きフランジ部を形成する際に、上記外向きフランジ部となる領域のうち、上記凹状稜線部を介して上記天板部の長手方向端部に連続する領域及び上記縦壁部の長手方向端部に連続する領域に対し曲げ力の入力を開始した後に、上記凹状稜線部を介して上記凸状稜線部の長手方向端部に連続する領域に曲げ力を入力し、上記断面L字形状の成形が終了した後に、上記外向きフランジ部における、上記凹状稜線部を介して上記凸状稜線部の長手方向端部に連続する領域の成形が終了する、ことを要旨とする。
 また、本発明の他の態様は、天板部と、上記天板部の幅方向に凸状稜線部を介して連続する縦壁部と、上記天板部の長手方向端部、上記凸状稜線部の長手方向端部、及び上記縦壁部の長手方向端部に凹状稜線部を介して連続する外向きフランジ部と、を備えたプレス成形品を、金属板から製造するためのプレス成形装置であって、上記天板部及び上記縦壁部となる領域を、上記凸状稜線部となる位置で成形可能な成形面を有して、上記天板部とそれに連続する上記縦壁部を成形する第1の上型及び第1の下型と、上記金属板を、上記凹状稜線部で曲げて上記外向きフランジ部を成形する第2の下型と、を備え、上記第2の下型における、上記外向きフランジ部となる領域に曲げ力を入力して上記外向きフランジ部を成形する部分の成形面は、上記天板部の長手方向からみて、頂部と、その頂部の左右両側に連続する一対の斜面とを備えて、全体として上記外向きフランジ部の曲げ方向に凸の山形形状となっていて、上記山形形状の頂部が、上記外向きフランジ部となる領域のうち、上記凹状稜線部を介して上記天板部の長手方向端部に連続する領域に当接可能に設定される、ことを要旨とする。
 本発明の態様によれば、天板部と縦壁部と該天板部及び縦壁部の長手方向端部に跨がって形成された外向きフランジ部とを有する鞍型のプレス成形品を、より簡易な金型の構成で成形することが可能となる。
 例えば、本発明の態様によれば、複雑な金型構造を有することなく、天板部とその天板部の両側に形成された縦壁部と天板部と縦壁部に跨った連続した外向きフランジ部(長手方向端部のフランジ部)とを備えたプレス成形品における、当該外向きフランジ部のひずみを分散できる。この結果、簡易な金型構造で、稜線部のフランジ幅を拡大した形状の鞍型のプレス成形品を成形可能となる。
本発明に基づく実施形態に係るプレス成形品の例を示し斜視図である。 図1のプレス成形品を、天板部の長手方向からみた正面図である。 本発明に基づく実施形態に係るプレス成形装置で用いられる金型の構成例を示す、模式的斜視図である。 第1の下型を上側に移動した状態を示す図である。 第2の下型の山形形状による作用を説明する図である。 第1の上型及び第1の下型でプレス成形した状態を示す模式的斜視図である。 第1の工程を行うために、第2の下型を下側にストロークさせた状態を示す図である。 第1の工程により、第1の成形処理と第2の成形処理の一部とを実行した後の、成形品の形状を示す、模式的斜視図である。 第2の下型における山形形状の斜面の輪郭形状の例を示す図であり、(a)は直線形状の場合、(b)が上凸折れ形状の曲線形状の場合、(c)が下凸折れ形状の曲線形状の場合である。 山形形状の頂部の変形例を示す図である。 実施形態に基づく発明例と比較例における、天板部幅方向に沿った板厚減少率の分布状態を示す図である。 複数のパンチ角での、天板部幅方向に沿った板厚減少率の分布状態を示す図である。 パンチ角と板厚減少率との関係を示す図である。 第2の下型のストロークと板厚減少率との関係を示す図である。 パンチ角と板厚減少率との関係を示す図である。 第2の下型の斜面形状と板厚減少率との関係を示す図である。 プレス成形品の別例を示す斜視図である。
 次に、本発明の実施形態について図面を参照しつつ説明する。
 ここで、図面は模式的なものであり、各部品の厚さと平面寸法との関係、各部品の比率等は現実のものとは異なる。また、以下に示す実施形態は、本開示の技術的思想を具体化するための構成を例示するものであって、本開示の技術的思想は、構成部品の形状、構造等が下記のものに特定するものでない。本開示の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。また、同一の構成については、同一の符号を付する。
 「プレス成形品1」
 後述の各実施形態では、図1に示すような鞍型のプレス成形品1を製造する場合を例に挙げて説明する。
 図1に示すプレス成形品1は、天板部1Aと、天板部1Aの幅方向両側にそれぞれ左右の凸状稜線部1Bを介して連続する左右の縦壁部1Cと、外向きフランジ部1Eと、を備える。外向きフランジ部1Eは、天板部1Aの長手方向端部、凸状稜線部1Bの長手方向端部、及び左右の縦壁部1Cの長手方向端部に対し、凹状稜線部1Dを介して連続する。
 なお、図1に示すプレス成形品1は、縦壁部1Cの下端部に連続する下側フランジ部1Fを有する。鞍型のプレス成形品は、この下側フランジ部1Fが存在していなくても構わない。
 また図1に示す形状では、天板部1Aの幅方向両側にそれぞれ縦壁部1Cを有して断面コ字形状となっている。しかし、プレス成形品1の形状は、天板部1Aの幅方向一方だけに縦壁部1Cを有して断面L字形状となったプレス部品形状であっても構わない。そのようなプレス成形品1であっても、本発明は適用可能である。ここで、断面コ字形状及び断面L字形状は、縦壁部1Cの下端部にフランジ部を有する断面形状も含む。
 また、図1では、長手方向両端部にそれぞれ外向きフランジ部1Eが形成されている場合が例示されている。鞍型のプレス成形品1は、長手方向の一方の端部にだけ外向きフランジ部1Eを有する構成であっても良い。
 外向きフランジ部1Eは、天板部1Aの長手方向端部、凸状稜線部1Bの長手方向端部、及び左右の縦壁部1Cの長手方向端部に連続し、天板部1Aの幅方向に沿って跨がった1つのフランジ部として形成されている。すなわち、外向きフランジ部1Eは、図2に示すように、天板部側領域1Ea(天板部1Aの長手方向端部と連続する領域)と、左右の縦壁部側領域1Eb(縦壁部1Cの長手方向端部と連続する領域)と、天板部側領域1Eaと縦壁部側領域1Ebとを繋ぐ左右の稜線部側領域1Ec(凸状稜線部1Bの長手方向端部と連続する領域)と、を備える。
 以下の説明において、金属板(ブランク)における外向きフランジ部1Eとなる領域のうち、天板部側領域1Eaとなる領域を天板部側構成部と、縦壁部側領域1Ebとなる領域を縦壁部側構成部と、稜線部側領域1Ecとなる領域をコーナー構成部と、それぞれ記載する場合もある。また、天板部側領域1Eaと天板部側構成部に同じ符号を付して説明する。縦壁部側領域1Ebと縦壁部側構成部に同じ符号を付して説明する。稜線部側領域1Ecとコーナー構成部に同じ符号を付して説明する。
 「第1の実施形態」
 本発明に基づく第1の実施形態について、図面を参照して説明する。
 (プレス部品形状の製造方法)
 まず、本実施形態のプレス部品形状の製造方法について説明する。
 本実施形態のプレス部品形状の製造方法は、第1の工程と第2の工程とを備える。
 <第1の工程>
 第1の工程は、金属板(ブランク)を、左右の凸状稜線部1Bの位置で成形して断面コ字形状に成形する工程である。なお、第1の工程において、天板部1Aの幅方向の一方の縦壁部1C側に着目すれば、凸状稜線部1B位置で曲げて断面L字形状に成形する工程と同義である。
 また、プレス方法として、本実施形態では単純に上型と下型で挟むフォーム工法を例示している。プレス方法が、パッドを用いたパッドフォームやブランクホルダーを用いたドロー成形であっても良い。
 第1の工程では、外向きフランジ部1Eとなる領域を解放した状態で、天板部1Aとなる領域及び縦壁部1Cとなる領域にプレス成形を施して、金属板を断面コ字形状(断面L字形状)に成形することが好ましい。上記「解放した状態」とは、外向きフランジ部1Eとなる領域を拘束しない状態を指す。すなわち、外向きフランジ部1Eとなる領域がフリーな状態で、第1の工程の成形を実行する。これよって、第1の工程に連続して、第2の工程を実行しやすくなる。
 <第2の工程>
 第2の工程は、第1の工程で断面コ字形状とした金属板について、凹状稜線部1Dの位置で曲げて外向きフランジ部1Eを形成する工程である。
 第2の工程において、凹状稜線部1Dの位置で曲げて外向きフランジ部1Eを形成する。その際に、外向きフランジ部1Eとなる領域のうち、天板部側構成部1Ea及び縦壁部側構成部1Ebに対し曲げ力の入力を開始した後に、コーナー構成部1Ecに曲げ力を入力する、ように設定することが好ましい。天板部側構成部1Eaは、凹状稜線部1Dを介して天板部1Aの長手方向端部に連続する部分である。縦壁部側構成部1Ebは、凹状稜線部1Dを介して縦壁部1Cの長手方向端部に連続する部分である。コーナー構成部1Ecは、凹状稜線部1Dを介して凸状稜線部1Bの長手方向端部に連続する部分である。
 例えば、縦壁部側構成部1Ebについて、コーナー構成部1Ecから離れた下側位置からコーナー構成部1Ecに向けて順番に曲げ力の入力が開始するように設定する。そして、縦壁部側構成部1Ebに曲げ力の入力が開始された後に、天板部側構成部1Eaに対し、曲げ力の入力が開始されるように設定する。
 天板部側構成部1Eaへの曲げ力の入力は、例えば、次のように設定する。すなわち、天板部側構成部1Eaにおける、天板部1Aの幅方向中央部側から曲げ力の入力が開始し、コーナー構成部1Ec側に向けて順番に、曲げ力の入力が行われるように設定する。天板部側構成部1Eaへの曲げ力の入力の開始位置は、天板部側構成部1Eaのおける天板部1Aの幅方向の途中位置であれば問題はない。天板部側構成部1Eaへの曲げ力の入力の開始位置は、コーナー構成部1Ecの端から0mm以上、好ましくは3mm以上離れていることが好ましい。ここで、実験により、天板部側構成部1Ea及びコーナー構成部1Ecに同時に曲げ力を入力する場合に比べ、第2の下型12の頂部12Aによる曲げ力の入力開始位置をコーナー構成部1Ecの端から0mm以上、好ましくは3mm以上離した位置に設定してプレス成形することで、コーナー構成部1Ecでの板厚減少率が改善することを確認した。特に、コーナー構成部1Ecから3mm以上離すことで、より確実に、第2の下型12の頂部12Aによる曲げ力の入力開始位置を、コーナー構成部1Ecよりも内側に設定することができる。
 なお、コーナー構成部1Ecの端とは、円弧状のコーナー構成部1Ecと、天板部側構成部1Eaや縦壁部側構成部1Ebとの境界部を指す。
 また、成形した断面コ字形状(断面L字形状)に金属板を拘束した状態で、外向きフランジ部1Eを形成する処理を実行することが好ましい。この場合、1回のプレス加工で、第1の工程と第2の工程を連続して実行することが可能となる。
 ここで、第1の工程後の断面L字形状の角度と、目的とする鞍型のプレス成形品1での断面L字形状の角度とが異なっていても良い。しかし、両者の角度は等しいことが好ましい。第1の工程後、外向きフランジ部1Eを形成することで、天板部1Aに対する縦壁部1Cのスプリングバックが抑制される。この結果、離型時の形状変化を小さくする方向に抑えることが可能となる。
 第1の工程と第2の工程は、別々の金型を用いて実行するようにしても良い。
 なお、第2の工程後に、形状寸法の精度を上げるためのリストライク処理の工程を有していてもよい。
 ここで、第1の工程の途中から、第2の工程を開始しても良い。
 (プレス成形装置)
 本実施形態における、プレス部品形状の製造方法を実行するための、プレス成形装置の一例を次に説明する。
 本実施形態は、プレス成形する金型として、第1の上型及び第1の下型と、第2の上型及び第2の下型とを備える。
 本実施形態では、プレス成形装置が、図3に示すように、第1の上型と第2の上型とが、1つの上型10(ダイ)から構成される場合を例示する。また、第1の下型11と第2の下型12とは、天板部1Aの長手方向にオフセットされた状態で配置されている構成とする。この構成によれば、第1の工程のプレス成形と第2の工程のプレス成形とを、1回のプレス加工で実行可能となる。
 第1の上型10及び下型11と、第2の上型及び下型12とを独立した金型構成としても良い。第1の上型10及び下型11と、第2の上型及び下型12とを、個々にプレス機に設定してプレス加工を実行する装置構成であっても良い。
 <第1の上型10及び下型11>
 第1の上型10及び下型11は、第1の工程を実行するための金型である。
 第1の上型10及び下型11は、金属板2における天板部1A及び縦壁部1Cとなる領域を、凸状稜線部1Bとなる位置で成形可能な成形面を有する。第1の上型10及び下型11は、金属板2を断面コ字形状に成形するための金型である。
 第1の下型11は、パンチを構成する。第1の下型11は、金型の成形面を表す図3に示すように、成形面の形状が断面コ字形状であって、金属板2のうちの、天板部1Aとなる領域の下面に当接する第1の天板面11A、凸状稜線部1Bとなる領域の下面に当接するパンチ肩部11C、縦壁部1Cを形成する領域の下面(内面)に当接する左右の第1の側面11B、下部フランジ部となる領域の下面に当接する左右の第1のフランジ面11Dを有する。
 第1の上型10は、ダイを構成し、第1の下型11と上下(プレス方向)で対向する。第1の上型10は、図3に示すように、成形面の形状が断面コ字形状である。具体的には、第1の上型10は、金属板2のうちの、天板部1Aとなる領域の上面に当接する第2の天板面10A、凸状稜線部1Bとなる領域の上面に当接するダイ肩部10C、縦壁部1Cを形成する領域の上面(外面)に当接する左右の第2の側面10B、下部フランジ部となる領域の上面に当接する左右の第2のフランジ面10Dを有する。
 そして、プレス成形装置は、図3の位置から図4の位置への移動のように、相対的に、第1の下型11が第1の上型10に向けて移動する構成となっている。これより、図6に示すように、第1の下型11と第1の上型10とで金属板2を挟み込む。この結果、金属板2は、凸状稜線部1Bで曲がり、断面コ字形状の形状に成形される。
 このとき、本実施形態では、図6に示すように、外向きフランジ部1Eとなる領域には、第1の下型11と第1の上型10の各成形面が当接しない。しかし、外向きフランジ部1Eとなる領域が、天板部1A及び縦壁部1Cと同様に、断面コ字形状となる。
 <第2の上型及び下型>
 第2の上型及び下型12は、第2の工程を実行するための金型である。
 第2の上型及び下型12は、第1の上型及び第1の下型11で成形されて断面コ字形状(断面L字形状)となった金属板2を、凹状稜線部1Dで曲げ成形して、外向きフランジ部1Eを成形するための金型である。
 なお、本実施形態では、上述の通り、第1の上型と第2の上型とは、1つの上型10として構成されている。
 第2の上型は、図3や図6のように、曲げられた外向きフランジ部1Eの上面側に当接可能な成形面10Eを有する。その成形面10Eは、第1の上型10の長手方向端部からそれぞれ上方に立ち上がった立上り面で構成される。
 また、第2の下型12は、図3や図6に示すように、第1の下型11に対し、天板部1Aの長手方向にオフセットされた状態で、プレス機に配置される。
 本実施形態の第2の下型12のうち、外向きフランジ部となる領域に曲げ力を入力して外向きフランジ部を成形する部分の成形面は、天板部1Aの長手方向からみて、図3及び図4に示すように、頂部12Aと、その頂部12Aの左右両側に連続する一対の斜面12Bとを備えている。これによって、当該成形面は、頂部12Aを頂点とした、全体として外向きフランジ部1Eの曲げ方向(プレス方向)に凸の山形形状となっている。
 その山形形状の頂部12Aが、天板部側構成部1Eaへ最初に当接可能に設定される(図5、図6参照)。好ましくは、山形形状の頂部12Aが、天板部側構成部1Eaにおける、天板部1Aの幅方向中央部に連続する位置に当接するように設定する。
 山形形状は、図5に示すように、頂部12Aの幅(図5では円弧状の部分)が、天板部1Aの幅(天板部側構成部1Eaの長さ)よりも小さい。
 また、図5に示すように、山形形状を形成する左右の斜面12Bの延長線の交差角からなるパンチ角αが、断面L字形状の金属板2における、天板部1Aと縦壁部1Cの成す角度から90度を引いた角度の2倍よりも広い。天板部1Aと縦壁部1Cの成す角度から90度を引いた角度の2倍は、左右の縦壁部1Cが成す交差角β(図2参照)に等しい。交差角βは、天板部1A側の角度である。すなわち、図5のように、パンチ角αが、左右の縦壁部1Cの延長線が成す交差角β(図2参照)よりも広く設定する。すなわち、成形(当接)する縦壁部1Cの傾きよりも、斜面12Bの傾きの方が大きくなるように設定される。
 パンチ角αは、例えば、60度以上180度以下、好ましくは、80度以上140度以下の範囲である。ここで、交差角βは、例えば40度未満である。天板部1Aと縦壁部1Cの成す角度は、内面側の角度である。
 このように設定すると、図5に示すように、第2の下型12は、左右の斜面12Bが、まず縦壁部側構成部1Ebに対し、その下端部側から上端部側(コーナー構成部1Ec分)に向けて順番に当接を開始して、順番に曲げ力の入力を開始可能となる。すなわち、左右の斜面12Bで、縦壁部側構成部1Ebを下側から上側に向けて成形を行うように設定可能となる。
 また、図5に示すように、山形形状の斜面12Bによって、縦壁部側構成部1Ebに対し曲げ力の入力が開始される。その後に、山形形状の頂部12Aによって、天板部側構成部1Eaに対し曲げ力の入力が開始される。具体的には、まず、天板部側構成部1Eaにおける、天板部1A幅方向中央部に連続する部分に、頂部12Aによって曲げ力の入力が開始される。それに続いて、コーナー構成部1Ec側に向けて順番に曲げ力の入力が開始される。すなわち、天板部側構成部1Eaの中央部側から端部側に向けて成形が開始されて、成形が行われる。
 なお、縦壁部側構成部1Ebの長さ(高さ)が短い場合には、天板部側構成部1Eaの方が先に成形を開始する場合もある。
 そして、縦壁部側構成部1Eb及び天板部側構成部1Eaでの成形が開始された後に、コーナー構成部1Ecへの曲げ力の入力開始が実行されて、外向きフランジ部1Eの成形が行われる。
 コーナー構成部1Ecへの曲げ力の入力開始は、縦壁部側構成部1Ebからの入力開始と天板部側構成部1Eaからの入力開始とが、ずれていても良いし同時であってもよい。両者の入力開始が、同時になるように設定することが好ましい。縦壁部側構成部1Ebと天板部側構成部1Eaに均等にひずみが入力するように設定すると、縦壁部側構成部1Ebからの入力開始と天板部側構成部1Eaからの入力開始が同時になる。
 以上のプレス成形装置を用いてプレス成形品1を製造する場合、例えば、第1の上型10及び下型11が、金属板2における天板部1A及び縦壁部1Cとなる領域を、断面コ字形状にプレス成形する。続いて、第2の上型及び下型が、断面コ字形状にプレス成形した金属板2に対し、外向きフランジ部1Eを形成する。
 このとき、本実施形態では、第1の上型10及び下型11で金属板2を断面コ字形状(断面L字形状)に拘束した状態を保持したまま、第2の上型及び下型で外向きフランジ部1Eが形成される。
 なお、外向きフランジ部1Eの形成開始は、断面コ字形状へのプレス成形の途中から実施しても良い。
 (動作その他)
 本実施形態では、第1の工程として、第1の上型10と下型11で金属板2における天板部1A及び縦壁部1Cとなる領域を挟み込むことで、金属板2を、断面コ字形状(断面L字形状)に成形する。
 この成形後の状態では、図6に示すように、第1の上型10及び下型11から外向きフランジ部1Eとなる領域が横方向(図6中、左側方向)に、片持ち梁状に張り出した状態となっている。
 本実施形態では、第1の上型10と下型11で金属板2を拘束した状態で、第2の工程を実行する。すなわち、第1の下型11を、第2の工程における下側パットとして利用して、金属板2のうちの天板部1A及び縦壁部1Cの位置を拘束する。
 この状態では、金属板2は第1の上型10と下型11で挟まれているため、金属板2は、天板部1Aの幅方向にも縦壁部1Cの高さ方向にも材料が動き難い状態となっている。本実施形態では、この状態で第2の工程の処理を実行して、外向きフランジ部1Eを形成する処理を実行する。
 第2の工程の開始により、凸の山形形状の第2の下型12を上昇(第2の上型に接近)する。これより、縦壁部側構成部1Ebに対し、下端部側から上方に向けて、第2の下型12の斜面12Bが順番に当接する。このため、縦壁部1Cに連続する外向きフランジ部1Eとなる領域に対し、下側から上側に向けて曲げ力が入力されつつ、第2の下型12の面12Cと上型10の面10Eとに挟まれる。この結果、外向きフランジ部1Eの縦壁部側領域1Ebが、凹状稜線部1Dの位置で、下側から上方に向けて順番に曲げ成形されて、形成される(図5を参照)。
 このとき、縦壁部側領域1Ebが、下側(下端部)から上側に向けて順番に成形されていくが、その成形量は少ない。更に、その位置の凹状稜線部1Dが、第2の下型12の移動方向に沿って直線若しくは直線に近い状態で延びている。このため、この成形で縦壁部側領域1Ebに入力されるひずみも少ない状態とすることができる。
 この縦壁部側領域1Ebを成形している途中において、図5に示すように、第2の下型12の山形形状の頂部12Aが、天板部側構成部1Eaにおける天板部1A幅方向中央部に連続する部分に当たる。これによって、天板部側構成部1Eaに対し曲げ力の入力が開始される。なお、縦壁部側領域1Eb側よりも先に、天板部側構成部1Ea側に曲げ力の入力が開始されるように構成してもよい。
 このとき、その天板部側構成部1Eaにおける天板部1A幅方向中央部に連続する部分を中心として、当該天板部側構成部1Eaが上側に持ち上げられる。この結果、天板部側構成部1Eaにおける天板部1A幅方向中央部に連続する部分にゆがみが入る。
 また、下側からの縦壁部側領域1Ebの成形がコーナー構成部1Ecに近づくと、相対的に剛性があるものを強引に曲げ起こす状態になる。このため、下型12の肩稜線部(山形形状に沿って延在する角部)でしごかれてひずみが入る。
 更に、下型12が上昇するに伴い、コーナー構成部1Ecに向けて成形が進みながら縦壁部側領域1Ebと天板部側領域1Eaが成形されつつ、縦壁部側領域1Ebと天板部側領域1Eaにバランス良くひずみが入っていく。
 続いて、下型12が上昇し、コーナー構成部1Ecを完全に曲げ起こす直前には、凹状稜線部1D位置の曲げ稜線は直線に近くなる。この結果、コーナー構成部1Ecを曲げ起こしても、コーナー構成部1Ecでの板厚減少率を小さく抑えられる。
 本実施形態では、以上のような機序によって、外向きフランジ部1Eが形成される。
 この結果、本実施形態では、外向きフランジ部1Eに入力されるひずみが分散される。特に稜線部側領域1Ecのひずみを縦壁部側領域1Eb及び天板部側領域1Eaに分散できる。このため、稜線部側領域1Ecへのひずみの集中が抑制されて稜線部側領域1Ecでの板厚減少率が改善される。この結果、外向きフランジ部1Eにおける稜線部側領域1Ec(コーナー部)のフランジ幅を広くした図1や図2に示すようなプレス成形品1を製造可能となる。
 以上のように、本実施形態によれば、天板部と縦壁部と該天板部及び縦壁部の長手方向端部に跨がって形成された外向きフランジ部とを有する鞍型のプレス成形品を、より簡易な金型の構成で成形することが可能となる。
 「第2の実施形態」
 次に、本発明に基づく第2の実施形態について、図面を参照して説明する。
 なお、第1の実施形態と同様な構成などについては、同一の符号を付して説明する。
 (プレス部品形状の製造方法)
 本実施形態のプレス部品形状の製造方法について説明する。
 本実施形態のプレス部品形状の製造方法は、プレス成形の処理として、下記に示す第1の成形処理と第2の成形処理とを備える。
 本実施形態は、第1の成形処理を行いながら、第2の成形処理も行う点が、第1の実施形態とは異なる。すなわち、同期をとって、第1の成形処理と第2の成形処理とが行われる。ただし、第1の成形処理と第2の成形処理とは、どちらの処理が先に開始されても構わないが、第1の成形処理が先に終了するように構成する。
 <第1の成形処理>
 第1の成形処理は、金属板(ブランク)を、左右の凸状稜線部1Bの位置で成形して断面コ字形状に成形する処理である。なお、第1の成形処理において、天板部1Aの幅方向の一方の縦壁部1C側に着目すれば、凸状稜線部1B位置で曲げて断面L字形状に成形する処理と同義である。また、プレス方法として、本実施形態(後述する製造方法)では、単純に上型と下型で挟むフォーム工法を例示している。パッドを用いたパッドフォームやブランクホルダーを用いたドロー成形であっても良い。
 第1の成形処理は、外向きフランジ部1Eとなる領域を解放した状態で、天板部1Aとなる領域及び縦壁部1Cとなる領域にプレス成形を施して、金属板を断面コ字形状(断面L字形状)に成形する。すなわち、外向きフランジ部1Eとなる領域がフリーな状態で第1の成形処理の成形を実行することで、第1の成形処理と一緒に、第2の成形処理を実行しやすくなる。
 この第1の成形処理は、第1の実施形態における第1の工程に相当する。
 <第2の成形処理>
 第2の成形処理は、第1の成形処理で断面コ字形状に成形する金属板について、凹状稜線部1Dの位置で曲げて外向きフランジ部1Eを形成する処理である。
 本実施形態の第2の成形処理は、第1の成形処理と同期をとって実行される。第2の成形処理は、第1の成形処理でプレスしない、つまりフリーとなっている、外向きフランジ部1Eとなる領域を外向きフランジ部1Eに形成する処理を実行する。なお、上述のように、第1の成形処理の開始前に第2の成形処理が開始されてもよいが、第2の成形処理の方が後に終了する。
 第2の成形処理は、第1の成形処理を行いつつ実行される点を除き、第1の実施形態における第2の工程と同様である。
 本実施形態の第2の成形処理では、第1の実施形態の第2の工程と同様に、外向きフランジ部1Eとなる領域のうち、天板部側構成部1Ea及び縦壁部側構成部1Ebに対し曲げ力の入力を開始する。その後に、凹状稜線部1Dを介して凸状稜線部1Bの長手方向端部に連続するコーナー構成部1Ecに対し、曲げ力の入力を開始する。この結果、第2の成形処理で、外向きフランジ部1Eが形成される。
 例えば、縦壁部側構成部1Ebについて、コーナー構成部1Ecから離れた下側位置からコーナー構成部1Ecに向けて順番に(連続して)曲げ力の入力が開始するように設定する。例えば、縦壁部側構成部1Ebに曲げ力の入力が開始された後に、天板部側構成部1Eaに対し、曲げ力の入力が開始されるように設定する。
 天板部側構成部1Eaへの曲げ力の入力は、例えば、天板部側構成部1Eaのおける天板部1Aの幅方向中央部側からコーナー構成部1Ec側に向けて、順次、曲げ力の入力が開始するように設定する。天板部側構成部1Eaへの曲げ力の入力の開始位置は、天板部側構成部1Eaのおける天板部1A幅方向の途中位置であれば問題はない。天板部側構成部1Eaへの曲げ力の入力の開始位置は、コーナー構成部1Ecと天板部側構成部1Eaとの境界から0mm以上、好ましくは3mm以上離れていることが好ましい。ここで、実験により、天板部側構成部1Ea及びコーナー構成部1Ecに対し同時に曲げ力を入力する場合に比べ、第2の下型12の頂部12Aによる曲げ力の入力開始位置をコーナー構成部1Ecと天板部側構成部1Eaとの境界から0mm以上、好ましくは3mm以上離してプレス成形することで、コーナー構成部1Ecでの板厚減少率が改善することを確認した。特に、コーナー構成部1Ecから3mm以上離すことで、より確実に、第2の下型12の頂部12Aによる曲げ力の入力開始位置を、コーナー構成部1Ecよりも内側に設定することができる。
 本実施形態では、金属部分のうち、断面コ字形状(断面L字形状)となる領域のうちの少なくとも一部(例えば天板部となる領域)を拘束した状態で、外向きフランジ部1Eを形成する処理が完了することが好ましい。この場合、1回のプレス加工で、第1の成形処理と第2の成形処理を実行することが可能となる。
 ここで、第1の成形処理による成形と共に外向きフランジ部1Eを形成することで、天板部1Aに対する縦壁部1Cのスプリングバックを抑制されて、離型時の形状変化を小さく抑えることが可能となる。
 第1の成形処理と第2の成形処理は、別々の金型を用いて実行するようにしても良い。
 また、第2の成形処理後に、形状寸法の精度を上げるためのリストライク処理の工程を有していてもよい。
 (プレス成形装置)
 本実施形態における、プレス部品形状の製造方法を実行するための、プレス成形装置の一例を次に説明する。
 本実施形態は、プレス成形する金型として、第1の成形処理を行う第1の上型及び第2の下型と、第2の成形処理を行う第2の上型及び第2の下型とを備える。
 本実施形態では、第1の実施形態の装置と同様に、第1の上型と第2の上型とは1つの上型10(ダイ)から構成される場合を例示する(図3参照)。また、第1の下型11と第2の下型12とは、天板部1Aの長手方向にオフセットされた状態で並んで配置されている構成とする。これによって、第1の成形処理のためのプレス成形と、第2の成形処理のためのプレス成形とを、1回のプレス加工で実行可能となる。
 第1の実施形態の装置と同様に、第1の上型10及び第1の下型11と、第2の上型及び第2の下型12とを独立した金型構成として、第1の上型10及び下型11と、第2の上型及び第2の下型12とを、個々にプレス機に設定してプレス加工を実行する装置構成であっても良い。
 <第1の上型10及び第1の下型11>
 第1の上型10及び第1の下型11は、第1の成形処理を実行するための金型である。
 第1の上型10及び第1の下型11の装置構成は、第1の実施形態の装置と同様な構成であるため、説明を省略する(図3参照)。
 <第2の上型及び第2の下型>
 第2の上型及び第2の下型12は、第2の成形処理を実行するための金型である。
 第2の上型及び第2の下型12の装置構成は、第1の実施形態の装置と同様な構成であるため、説明を省略する(図3参照)。
 <プレス成形装置を用いた成形方法>
 以上のプレス成形装置を用いて第1の成形処理及び第2の成形処理を行い、プレス成形品1を製造する製造方法の例について説明する。
 ここで、図3は、成形開始前の状態である。ただし、下型だけに着目した場合、図3に示される、第1の下型11と第2の下型12との上下方向(ストローク方法)の位置関係は、第1の成形処理及び第2の成形処理の成形終了時及び初期状態での位置関係である。
 すなわち、図3では、第1の下型11と第2の下型12の並び方向からみて、第1の下型11のパンチ肩部11Cよりも、第2の下型12の斜面12Bがプレス方向(上方)に変位した状態となっている。具体的には、パンチ肩部11Cの向こう側に、第2の下型12の面12Cの一部が露出して、斜面12Bでコーナー構成部1Ecへ曲げ力を入力できる状態となっている。この状態では、コーナー構成部1Ecへの曲げ力も行われた状態となる。
 これに対し、本実施形態では、まず最初に、図3の状態から、第1の下型11を、相対的に、第2の下型12に対し、上方にストローク量Sだけストロークして、図7の状態とする。
 図7の状態では、第2の下型12の頂部12Aを、第1の下型11の第1の天板面11Aよりも、プレス方向(図7では上方)に突出している。ただし、第1の下型11のパンチ肩部11Cよりも、第2の下型12の斜面12Bがプレス方向下方に変位した状態となっている。具体的には、第1の下型11と第2の下型12の並び方向において、パンチ肩部11Cの向こう側(奥側)に、第2の下型12の面12Cが露出していない。このため、斜面12Bでコーナー構成部1Ecへの曲げ力の入力が開始されない状態となっている。すなわち、第1の下型11のパンチ肩部11Cの上方に、第2の下型12の面12Cが見えていない状態、つまり、パンチ肩部11Cの位置では斜面12Bの方が下方若しくは同じ高さにある状態となっている。
 なお、図7において、下型11,12にとっては、上方がプレス方向であり、上型10にとっては、下方がプレス方向となる。
 <第2の実施形態での第1の工程>
 第2の実施形態での第1の工程を説明する。
 まず、第1の下型11を上にストロークさせて、第1の下型11及び第2の下型12を、図7の状態に設定する。
 次に、相対的に、上型10を下型11,12に向けてプレスして、第1の成形処理と、第2の成形処理のうちの一部の処理とを行う。
 この第1の工程が完了した状態では、ブランクは、図8に示すような形状に成形される。図8に示す形状では、ブランクは、凸状稜線部1Bの位置で曲げて断面コ字形状(断面L字形状)に成形されると同時に、凹状稜線部1Dの位置でも曲げられて外向きフランジ部1Eの一部についても成形される。
 ただし、この第1の工程では、縦壁部側構成部1Eb及び天板部側構成部1Eaの少なくとも一部に対し曲げ力の入力が開始されているが、コーナー構成部1Ecへの曲げ力の入力が開始されていない。又は、コーナー構成部1Ecへの曲げ力の入力が一部開始した状態となる。
 この第1の工程では、第2の成形処理の一部として、縦壁部側構成部1Eb及び天板部側構成部1Eaへの曲げ力の入力を、コーナー構成部1Ec側に向けて順番に実行する。
 なお。第1の工程が完了しても、縦壁部側構成部1Eb及び天板部側構成部1Eaへの曲げ力の入力が完了していなくてもよい。
 <第2の実施形態での第2の工程>
 次に、第2の実施形態での第2の工程について説明する。
 第2の工程では、第1の下型11と上型10とで金属板を拘束した状態で、第1の下型11と第2の下型12の相対位置(上下方向位置)が、図7の状態から図3の状態のように下方に移動させる。具体的には、上方にストロークしていた第1の下型11を、上型10と共に下方にストロークする。これによって、第1の工程での処理に続き、第2の工程が実行される。
 第2の工程では、第1の工程で、縦壁部側構成部1Eb及び天板部側構成部1Eaへの曲げ力の入力が完了していない場合には、残りの縦壁部側構成部1Eb及び天板部側構成部1Eaへの曲げ力の入力を、コーナー構成部1Ec側に向けて順番に実行する。第2の工程では、続いて、コーナー構成部1Ecへの曲げ力の入力開始も実行して、外向きフランジ部1Eの成形を行う。
 このように、本実施形態では、第1の工程で、金属板を、凸状稜線部の位置で曲げて断面コ字形状(断面L字形状)に成形しながら、凹状稜線部の位置で曲げて外向きフランジ部の一部を形成する。更に、第2の工程で、外向きフランジ部の形成を継続して、外向きフランジ部を形成する。ただし、凸状稜線部の位置で曲げて断面コ字形状(断面L字形状)に成形する際には、コーナー構成部1Ecへの曲げ力の入力開始を実行しないことが好ましい。
 この処理を採用した場合、第1の下型11のプレストローク量を少なくすることができる。すなわち、第1の下型11を少し上方にプレストロークさせて、上型10を下降してプレスしたら、第1の下型11を初期位置に復帰させるだけストロークさせればよい。
 (動作その他)
 本実施形態では、第1の成形処理として、第1の上型10と下型11で金属板2における天板部1A及び縦壁部1Cとなる領域を挟み込む。これによって、金属板2を、断面コ字形状(断面L字形状)に成形する。この第1の成形処理だけでは、第1の実施形態で説明したように(図6参照)、第1の上型10及び下型11から外向きフランジ部1Eとなる領域が横方向(図4中、左側方向)に、片持ち梁状に張り出した状態となっている。
 これに対し、本実施形態では、第1の工程で、第1の成形処理と共に、第2の成形処理の一部を実行する。その後に、第2の工程として、第2の成形処理を継続して、外向きフランジ部の形成を行う。
 なお、第2の工程では、金属板2は第1の上型10と第1の下型11で挟まれている。このため、金属板2は、天板部1Aの幅方向にも縦壁部1Cの高さ方向にも材料が動き難い状態となっている。本実施形態では、この状態で第2の成形処理の処理を継続して、外向きフランジ部1Eの形成を完了する。
 ここで、第2の成形処理を開始して、相対的に、上型10に対し、凸の山形形状の第2の下型12を上昇(第2の上型に接近)することで、縦壁部側構成部1Ebに対し、下端部側から上方に向けて、第2の下型12の斜面12Bが順番に当接する。このため、縦壁部1Cに連続する外向きフランジ部1Eとなる領域に対し、下側から上側に向けて曲げ力の入力が開始されつつ、第2の下型12の面12Cと上型10の面10Eとに挟まれる。これによって、外向きフランジ部1Eの縦壁部側領域1Ebが、凹状稜線部1Dの位置で下側から上方に向けて順番に曲げ成形されて形成される(図5を参照)。
 このとき、縦壁部側領域1Ebが、下側(下端部)から上側に向けて順番に成形されていくが、その成形量は少ない。また、その位置の凹状稜線部1Dは、第2の下型12の移動方向に沿って直線若しくは直線に近い状態で延びている。このため、この成形で縦壁部側領域1Ebに入力されるひずみも、少ない状態とすることができる。
 この縦壁部側領域1Ebを成形している途中において、図5に示すように、第2の下型12の山形形状の頂部12Aが、天板部側構成部1Eaにおける天板部1A幅方向中央部に連続する部分に当たる。その結果、天板部側構成部1Eaに対し曲げ力の入力が開始される。なお、縦壁部側領域1Eb側よりも先に、天板部側構成部1Ea側に曲げ力が入力されるように構成してもよい。
 このとき、その天板部側構成部1Eaにおける天板部1A幅方向中央部に連続する部分を中心として、当該天板部側構成部1Eaが上側に持ち上げられる。この結果、天板部側構成部1Eaにおける天板部1A幅方向中央部に連続する部分にゆがみが入る。
 また、下側からの縦壁部側領域1Ebの成形がコーナー構成部1Ecに近づくと、相対的に剛性があるものを強引に曲げ起こす状態になる。このため、下型12の肩稜線部(山形形状に沿って延在する角部)でしごかれてひずみが入る。
 更に、下型12が上昇するに伴い、コーナー構成部1Ecに向けて成形が進みながら縦壁部側領域1Ebと天板部側領域1Eaが成形される。このとき、縦壁部側領域1Ebと天板部側領域1Eaにバランス良くひずみが入っていく。
 続いて、下型12が上昇し、コーナー構成部1Ecを完全に曲げ起こす直前には、凹状稜線部1D位置の曲げ稜線は直線に近くなる。このため、コーナー構成部1Ecを曲げ起こしても、コーナー構成部1Ecでの板厚減少率を小さく抑えられる。
 本実施形態では、以上のような機序によって、金属板2を、断面コ字形状(断面L字形状)に成形すると共に、外向きフランジ部1Eの一部が形成される。また、断面コ字形状の成形完了後も外向きフランジ部1Eの形成を継続することで、外向きフランジ部1Eを形成する。また、外向きフランジ部1Eについてコーナー部を最後に形成する。
 この結果、本実施形態では、外向きフランジ部1Eに入力されるひずみが分散される。特に稜線部側領域1Ecのひずみを縦壁部側領域1Eb及び天板部側領域1Eaに分散できる。このため、稜線部側領域1Ecへのひずみの集中が抑制されて稜線部側領域1Ecでの板厚減少率が改善される。この結果、外向きフランジ部1Eにおける稜線部側領域1Ec(コーナー部)のフランジ幅を広くした図1や図2に示すようなプレス成形品1を製造可能となる。
 以上のように、本実施形態によれば、天板部と縦壁部と該天板部及び縦壁部の長手方向端部に跨がって形成された外向きフランジ部とを有する鞍型のプレス成形品を、より簡易な金型の構成で成形することが可能となる。
 ここで、本実施形態では、上述の通り、第1の成形処理よりも、第2の成形処理を先に開始しても良いし、同時に開始しても良い。第1の成形処理を先に開始することが好ましい。
 「変形例」
 ここで、第1及び第2の実施形態の変形例について説明する。
 (変形例1)
 第2の下型12の斜面12Bの、頂部12Aから離れる方向に向かう傾斜方向における、当該斜面12Bの輪郭形状は、直線形状(図9(a)参照)でなくても良い。頂部12Aから離れるほど、プレス方向とは反対方向に向かう斜面形状となっていればよい。
 斜面12Bの輪郭形状の他の例を、図9(b)(c)に示す。図9(b)は、斜面12Bの輪郭形状がプレス方向(図9では上側)に凸の曲線形状となっている例である。図9(c)は、斜面12Bの輪郭形状がプレス方向とは反対方向に凸の曲線形状となっている例である。
 図9(a)~(c)のうち、図9(c)の曲線形状が好ましい。図9(b)(c)では、変曲点Qで折れ曲がった曲線形状、つまり2つの直線を変曲点Q位置で接続した曲線形状を例示している。この場合、直線形状に対し一番上下に変位している変曲点Qの位置が、パンチ肩部11Cに対応するように設定することが好ましい。すなわち、変曲点Qの位置及びその近傍を、コーナー構成部1Ecへの曲げ力の入力部に設定することが好ましい。
 上記曲線形状は、円弧状などでもよい。
 (変形例2)
 以上の説明では、天板部の長手方向からみた、頂部12Aの断面形状がプレス方向に凸の円弧状の場合を例示している。しかし、図10に例示するように、頂部12Aの断面形状が、平坦になっていてもよい(図10(a)参照)。また、頂部12Aの断面形状が、凹凸を有していてもよい(図10(b)参照)も良い。
 頂部12Aの幅が、天板部の幅よりも小さい構成となっていれば、頂部12Aを天板部側構成部1Eaにだけ当接するように設定可能となる。このため、頂部12Aの断面形状に限定はない。
 「第1の実施例」
 第1の実施形態に基づく実施例について説明する。
 ここで、図1及び図2に示す形状の鞍型のプレス成形品1を想定してプレス成形品1の製造を評価した。
 金属板2として、鋼種がSPFC980Yで、板厚1.4mmの鋼板を採用した。またプレス成形品1の寸法として、天板部1Aの幅を84mm、縦壁部1Cの高さを100mmに設定した。そして、本実施形態に基づくプレス成形(発明例)と、比較のプレス成形(比較例)とを実行した。
 なお、比較例では、目的とプレス成形品1と同様な成形面を有する上型と下型とを用いて、パッドフォーム成形(パッド圧:15ton)にて実行したものである。
 なお、実施例では、第2の下型12のパンチ角αを90度とした。また、斜面12Bの輪郭形状を直線形状とした。
 解析結果を図11に示す。図11中、稜線部(1Ec)が稜線部側領域に対応する。また、図11中、横軸は、天板部1A幅方向中央部に連続する位置を起点として天板部1A幅方向への距離を示す。後述の図12でも同様である。
 図11から分かるように、比較例に比べて、発明例では、ひずみが天板部1A幅方向に広範囲に分布している。そして、発明例の方が、コーナー部である稜線部側領域1Ecでの板厚減少率が低減していることが分かった。
 更に、発明例において、第2の下型12のパンチ角αを変更して、その効果を評価した。
 その解析結果を図12に示す。
 図12から分かるように、パンチ角αを、90度から、鋭角側に変更しても鈍角側に変更しても、稜線部側領域1Ecでの板厚減少率の改善効果が、パンチ角αが90度である場合と同様であることも確認した。図12では、パンチ角αが60度~180度の場合を示している。図12のように、パンチ角αを60度及び180度に設定した場合も、コーナー部である稜線部側領域1Ecでの板厚減少率の改善の傾向は90度の場合と同様であることも確認している。
 また、図13は、パンチ角αの変更による、稜線部側領域1Ec及びその稜線部側領域1Ec近傍の領域(縦壁部側構成部1Eb側及び天板部側構成部1Ea側)での板厚減少率の変化について求めた図である。この図13から分かるように、パンチ角αが110度前後で最大板厚減少率が最小となる。それよりもパンチ角αが鋭角になるほど、天板部側構成部1Ea側での板厚減少率が大きくなる。逆に、それよりもパンチ角αが鈍角になるほど、縦壁部側構成部1Eb側での板厚減少率が大きくなる。このことから、パンチ角αは、80度~140度が好ましいことが分かった。より好ましくは90度~120度、更により好ましくは100度~110度であった。
 「第2の実施例」
 次に、第2の実施形態に基づく実施例について説明する。
 ここで、図1及び図2に示す形状の鞍型のプレス成形品1を想定してプレス成形品1の製造を評価した。
 金属板2として、鋼種がSPFC980Yで、板厚1.4mmの鋼板を採用した。またプレス成形品1の寸法として、天板部1Aの幅を84mm、縦壁部1Cの高さを100mmに設定した。そして、本実施形態に基づくプレス成形(発明例)と、比較のプレス成形(比較例)とを実行した。
 比較例では、目的とプレス成形品1と同様な成形面を有する上型と下型とを用いて、パッドフォーム成形(パッド圧:15ton)にて実行したものである。
 なお、実施例では、第2の下型12のパンチ角αを90度とした。
 解析結果を図14に示す。図14では、横軸は、第1の工程のために、第1の下型11を、初期位置(図3参照)から上方へストロークさせるストローク量S(図7参照)を示している。
 図14においては、ストローク量S=79mmとした場合、第1の工程で金属板を断面コ字形状に成形したときに、第2の下型12の頂部12Aが金属板2に接触するが、曲げ成形が開始しない状態とした。
 このストローク量Sを小さくすることで、第2の下型12の頂部12Aが第1の下型11に対して突出した状態で配置される。このため、金属板2を断面コ字形状に成形される際に外向きフランジ部1Eの成形量も増加する。
 一方、ストローク量Sが44mmより小さい領域では、第2の下型12の頂部12Aの突出量が多くなり、断面コ字形状に成形すると同時に天板部側構成部1Eaの一部も成形されていた。
 図14から分かるように、通常工法(比較例)と比較して、第2の実施形態では、稜線部側領域である稜線部側領域1Ecは、第1の下型11のストロークによらず板厚減少量が低減していることが分かった。更に、ストローク量Sを29mmまで小さくしても、縦壁部側構成部1Eb側及び天板部側構成部1Ea側の板厚減少量は悪化せず、ひずみが効率よく分散することが確認できた。
 また、図15は、パンチ角αの変更による、稜線部側領域1Ec及びその稜線部側領域1Ec近傍の領域(縦壁部側構成部1Eb側及び天板部側構成部1Ea側)での板厚減少率の変化について求めた図である。この図15から分かるように、パンチ角αが110度前後で最大板厚減少率が最小となる。それよりもパンチ角αが鋭角になるほど天板部側構成部1Ea側での板厚減少率が大きくなる。逆に、それよりもパンチ角αが鈍角になるほど縦壁部側構成部1Eb側での板厚減少率が大きくなる。このことから、パンチ角αは、80度~140度が好ましい。より好ましくは90度~120度、更により好ましくは100度~110度である。
 また、第2の成形処理だけを実行して、第2の下型12の斜面12Bの形状がフランジ部1Eの板厚減少に及ぼす影響を調査するため、斜面12Bが上凸に折れている曲線形状(図9(b))と、下凸に折れている曲線形状(図9(c))でも解析を実施した。
 解析結果を図16に示す。通常工法(比較例)と比較して、稜線部側領域1Ecは斜面12Bの形状によらず板厚減少量が低減していることが分かった。また、斜面12Bが下凸に折れている形状では、直線形状(図9(a))よりも稜線部側領域である稜線部側領域1Ecの板厚減少量が低減することが分かった。これより、ひずみの分布が不均一な場合は斜面12Bの形状を変更することで分散具合を調整できる。
 (その他)
 本開示は、以下のような構成も取ることができる。
 (1) 天板部と、上記天板部の幅方向に凸状稜線部を介して連続する縦壁部と、上記天板部の長手方向端部、上記凸状稜線部の長手方向端部、及び上記縦壁部の長手方向端部に凹状稜線部を介して連続する外向きフランジ部と、を備えたプレス成形品を、金属板から製造する際に、
 上記金属板を、上記凸状稜線部の位置で曲げて断面L字形状に成形し、その断面L字形状の成形後又は上記断面L字形状の成形途中から、上記凹状稜線部の位置で曲げて上記外向きフランジ部を形成する。
 (2) 上記断面L字形状の成形後に上記外向きフランジ部を形成し、
 上記凸状稜線部の位置で曲げて断面L字形状に成形する処理は、上記外向きフランジ部となる領域を解放した状態で実行する。
 この構成によれば、断面L字形状に成形する際における、外向きフランジ部となる領域へのひずみの入力を小さく抑えられる。
 (3) 上記天板部及び上記縦壁部を断面L字形状に拘束した状態で、上記外向きフランジ部を形成する処理を実行する。
 この構成によれば、1回のプレス成形で第1の工程と第2の工程を実行可能となる。
 (4) 上記凹状稜線部の位置で曲げて上記外向きフランジ部を形成する際に、上記外向きフランジ部となる領域のうち、上記凹状稜線部を介して上記天板部の長手方向端部に連続する領域及び上記縦壁部の長手方向端部に連続する領域に対し曲げ力の入力を開始した後に、上記凹状稜線部を介して上記凸状稜線部の長手方向端部に連続する領域に曲げ力を入力する。
 このとき、上記凹状稜線部を介して上記天板部の長手方向端部に連続する領域に入力する上記曲げ力は、上記凸状稜線部の端から0mm以上離れた位置に最初の曲げ力を入力することが好ましい。「凸状稜線部から」とは、断面円弧状などからなる凸状稜線部のアールの終わり位置(他の部との境界)からを表す。
 この構成によれば、外向きフランジ部における凹状稜線部1D(コーナー部分)に分散されるひずみ(板厚減少率)を、より確実に小さく抑えることができる(図11参照)。
 本実施形態では、実施形態で説明してきたように、外向きフランジ部における凹状稜線部1Dから離れた位置から成形が開始された後に、凹状稜線部1Dの成形が実行される。
 (5) 天板部と、上記天板部の幅方向に凸状稜線部を介して連続する縦壁部と、上記天板部の長手方向端部、上記凸状稜線部の長手方向端部、及び上記縦壁部の長手方向端部に凹状稜線部を介して連続する外向きフランジ部と、を備えたプレス成形品を、金属板から製造する際に、
 上記金属板を、上記凸状稜線部の位置で曲げて断面L字形状に成形すると共に、上記凹状稜線部の位置で曲げて上記外向きフランジ部を形成し、
 上記凹状稜線部の位置で曲げて上記外向きフランジ部を形成する際に、上記外向きフランジ部となる領域のうち、上記凹状稜線部を介して上記天板部の長手方向端部に連続する領域及び上記縦壁部の長手方向端部に連続する領域に対し曲げ力の入力を開始した後に、上記凹状稜線部を介して上記凸状稜線部の長手方向端部に連続する領域に曲げ力を入力し、
 上記断面L字形状の成形が終了した後に、上記外向きフランジ部における、上記凹状稜線部を介して上記凸状稜線部の長手方向端部に連続する領域の成形が終了する。
 上記凹状稜線部を介して上記天板部の長手方向端部に連続する領域に入力する上記曲げ力は、上記凸状稜線部の端から0mm以上、好ましくは3mm以上離れた位置に最初の曲げ力を入力することが好ましい。「凸状稜線部から」とは、断面円弧状の凸状稜線部のアールの終わり位置からを表す。
 この構成によれば、外向きフランジ部における凹状稜線部1D(コーナー部分)に分散されるひずみ(板厚減少率)を、より確実に小さく抑えることができる(図8参照)。
 本実施形態では、実施形態で説明してきたように、外向きフランジ部における凹状稜線部1Dから離れた位置から成形が開始された後に、凹状稜線部1Dの成形が実行される。
 (6) 上記凹状稜線部を介して上記天板部の長手方向端部に連続する領域に入力する上記曲げ力は、上記凸状稜線部より内側となる位置に最初の曲げ力を入力する。
 この構成によれば、外向きフランジ部における凹状稜線部1D(コーナー部分)に分散されるひずみ(板厚減少率)を、より確実に小さく抑えることができる。
 (7) 上記プレス成形品の形状は、天板部と、上記天板部の幅方向両側に左右の凸状稜線部を介して連続する左右の縦壁部と、上記天板部の長手方向端部、上記左右の凸状稜線部の長手方向端部、及び上記左右の縦壁部の長手方向端部に凹状稜線部を介して連続する外向きフランジ部と、を備える。
 この構成によれば、鞍型のプレス成形品が製造される。
 (8) 天板部と、上記天板部の幅方向に凸状稜線部を介して連続する縦壁部と、上記天板部の長手方向端部、上記凸状稜線部の長手方向端部、及び上記縦壁部の長手方向端部に凹状稜線部を介して連続する外向きフランジ部と、を備えたプレス成形品を、金属板から製造するためのプレス成形装置であって、
 上記天板部及び上記縦壁部となる領域を、上記凸状稜線部となる位置で成形可能な成形面を有して、上記天板部とそれに連続する上記縦壁部を成形する第1の上型及び第1の下型と、
 上記金属板を、上記凹状稜線部で曲げて上記外向きフランジ部を成形する第2の下型と、を備え、
 上記第2の下型における、上記外向きフランジ部となる領域に曲げ力を入力して上記外向きフランジ部を成形する部分の成形面は、上記天板部の長手方向からみて、頂部と、その頂部の左右両側に連続する一対の斜面とを備えて、全体として上記外向きフランジ部の曲げ方向に凸の山形形状となっていて、
 上記山形形状の頂部が、上記外向きフランジ部となる領域のうち、上記凹状稜線部を介して上記天板部の長手方向端部に連続する領域に当接可能に設定される。
 この構成によれば、長手方向端部に位置するフランジ部である外向きフランジ部のコーナー部分の幅を広く設定できる。
 また、例えば、図17のように外向きフランジ部のコーナー構成部1Ecの幅が狭くなるように切り欠く必要がなく、図1に示すように、他の部分と同じ幅に設定しても割れなどの発生を抑制可能となる。
 (9) 上記第2の下型にプレス方向で対向する第2の上型を備え、
 上記第2の下型で成形される上記金属板は、上記第1の上型及び第1の下型で成形された金属板である。
 (10) 上記第1の上型と上記第2の上型とは1つの上型で構成され、
 上記第1の下型と上記第2の下型とは、上記天板部の長手方向にオフセットされた状態で配置される。
 この構成によれば、1回のプレス加工で外向きフランジ部の成形まで可能となる。
 (11) 上記第1の下型と上記第2の下型とは、上記天板部の長手方向にオフセットされた状態で配置され、上記第1の下型は、上記第2の下型に対し、プレス方向に沿った方向にストローク可能となっている。
 この構成によれば、1回のプレス加工で外向きフランジ部の成形まで可能となる。
 また、第1の下型のストローク量を小さく抑えることも可能となる。
 (12) 上記山形形状は、当該山形形状を形成する左右の斜面を結ぶ交差角からなるパンチ角が、上記第1の上型及び第1の下型で成形された金属板における、天板部と縦壁部の成す角度から90度を引いた角度の2倍よりも広い。
 この構成によれば、第2の下型によって、外向きフランジ部における、縦壁部側構成部の下端部から成形が開始され、次に、天板部側構成部の中央部から成形が開始されて、コーナー構成部に向けて成形位置が移動するように設定される。
 これによって、外向きフランジ部における凹状稜線部1D(コーナー部分)に分散されるひずみ(板厚減少率)を、より確実に小さく抑えることができる(図11参照)。
 (13) 上記パンチ角が、60度以上180度以下の範囲である。
 (14) 上記山形形状における上記斜面の輪郭形状は、斜面の傾斜方向に沿って、プレス方向とは反対方向に凸の曲線形状となっている。
 この構成によっては、ひずみの度合いによっては、更にコーナー部の板厚減少量を小さく設定可能となる。
 (15) 本開示のプレス成形装置を用いて上記プレス成形品を、金属板から製造する製造方法であって、
 上記第1の上型及び第1の下型を用いて、上記金属板における上記天板部及び上記縦壁部となる領域を断面L字形状にプレス成形し、
 上記第2の上型及び下型を用いて、上記断面L字形状にプレス成形した金属板に対し、上記外向きフランジ部を形成する。
 この構成によれば、外向きフランジ部における凹状稜線部1D(コーナー部分)に分散されるひずみ(板厚減少率)を、より確実に小さく抑えることができる。
 (16) 上記第1の上型及び第1の下型で金属板を断面L字形状に拘束した状態で、上記第2の上型及び下型で上記外向きフランジ部を形成する。
 この構成によれば、より確実に、外向きフランジ部における凹状稜線部1D(コーナー部分)に分散されるひずみ(板厚減少率)を、より確実に小さく抑えることができる。
 (17) 本開示のプレス成形装置を用いて上記プレス成形品を、金属板から製造する製造方法であって、
 上記第1の上型及び第1の下型を用いて、上記金属板における上記天板部及び上記縦壁部となる領域を断面L字形状にプレス成形しながら、上記第2の下型を用いて、上記外向きフランジ部の一部を形成する。
 この構成によれば、外向きフランジ部における凹状稜線部1D(コーナー部分)に分散されるひずみ(板厚減少率)を、より確実に小さく抑えることができる。
 ここで、本願が優先権を主張する、日本国特許出願2020-148121(2020年 9月 3日出願)、及び日本国特許出願2021-047187(2021年 3月22日出願)の全内容は、参照により本開示の一部をなす。ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
1 プレス成形品
1A 天板部
1B 凸状稜線部
1C 縦壁部
1D 凹状稜線部
1E 外向きフランジ部
1Ea 天板部側領域(天板部側構成部)
1Eb 縦壁部側領域(縦壁部側構成部)
1Ec 稜線部側領域(コーナー構成部)
2 金属板
10  上型(第1の上型、第2の上型)
11 第1の下型
12 第2の下型
12A 頂部
12B 斜面
α 第2の下型のパンチ角

Claims (17)

  1.  天板部と、上記天板部の幅方向に凸状稜線部を介して連続する縦壁部と、上記天板部の長手方向端部、上記凸状稜線部の長手方向端部、及び上記縦壁部の長手方向端部に凹状稜線部を介して連続する外向きフランジ部と、を備えたプレス成形品を、金属板から製造する際に、
     上記金属板を、上記凸状稜線部の位置で曲げて断面L字形状に成形し、その断面L字形状の成形後又は上記断面L字形状の成形途中から、上記凹状稜線部の位置で曲げて上記外向きフランジ部を形成する、
     ことを特徴とするプレス成形品の製造方法。
  2.  上記断面L字形状の成形後に上記外向きフランジ部を形成し、
     上記凸状稜線部の位置で曲げて断面L字形状に成形する処理は、上記外向きフランジ部となる領域を解放した状態で実行することを特徴とする請求項1に記載したプレス成形品の製造方法。
  3.  上記断面L字形状の成形後に上記外向きフランジ部を形成し、
     上記天板部及び上記縦壁部を上記断面L字形状に拘束した状態で、上記外向きフランジ部を形成する処理を実行する請求項1又は請求項2に記載したプレス成形品の製造方法。
  4.  上記凹状稜線部の位置で曲げて上記外向きフランジ部を形成する際に、上記外向きフランジ部となる領域のうち、上記凹状稜線部を介して上記天板部の長手方向端部に連続する領域及び上記縦壁部の長手方向端部に連続する領域に対し曲げ力の入力を開始した後に、上記凹状稜線部を介して上記凸状稜線部の長手方向端部に連続する領域に曲げ力を入力する、
     ことを特徴とする請求項1~請求項3のいずれか1項に記載したプレス成形品の製造方法。
  5.  天板部と、上記天板部の幅方向に凸状稜線部を介して連続する縦壁部と、上記天板部の長手方向端部、上記凸状稜線部の長手方向端部、及び上記縦壁部の長手方向端部に凹状稜線部を介して連続する外向きフランジ部と、を備えたプレス成形品を、金属板から製造する際に、
     上記金属板を、上記凸状稜線部の位置で曲げて断面L字形状に成形すると共に、上記凹状稜線部の位置で曲げて上記外向きフランジ部を形成し、
     上記凹状稜線部の位置で曲げて上記外向きフランジ部を形成する際に、上記外向きフランジ部となる領域のうち、上記凹状稜線部を介して上記天板部の長手方向端部に連続する領域及び上記縦壁部の長手方向端部に連続する領域に対し曲げ力の入力を開始した後に、上記凹状稜線部を介して上記凸状稜線部の長手方向端部に連続する領域に曲げ力を入力し、
     上記断面L字形状の成形が終了した後に、上記外向きフランジ部における、上記凹状稜線部を介して上記凸状稜線部の長手方向端部に連続する領域の成形が終了する、
     ことを特徴とするプレス成形品の製造方法。
  6.  上記凹状稜線部を介して上記天板部の長手方向端部に連続する領域に入力する上記曲げ力は、上記凸状稜線部より内側となる位置に最初の曲げ力を入力する、
     ことを特徴とする請求項4又は請求項5に記載したプレス成形品の製造方法。
  7.  上記プレス成形品の形状は、天板部と、上記天板部の幅方向両側に左右の凸状稜線部を介して連続する左右の縦壁部と、上記天板部の長手方向端部、上記左右の凸状稜線部の長手方向端部、及び上記左右の縦壁部の長手方向端部に凹状稜線部を介して連続する外向きフランジ部と、を備える、
     ことを特徴とする請求項1~請求項6のいずれか1項に記載したプレス成形品の製造方法。
  8.  天板部と、上記天板部の幅方向に凸状稜線部を介して連続する縦壁部と、上記天板部の長手方向端部、上記凸状稜線部の長手方向端部、及び上記縦壁部の長手方向端部に凹状稜線部を介して連続する外向きフランジ部と、を備えたプレス成形品を、金属板から製造するためのプレス成形装置であって、
     上記天板部及び上記縦壁部となる領域を、上記凸状稜線部となる位置で成形可能な成形面を有して、上記天板部とそれに連続する上記縦壁部を成形する第1の上型及び第1の下型と、
     上記金属板を、上記凹状稜線部で曲げて上記外向きフランジ部を成形する第2の下型と、を備え、
     上記第2の下型における、上記外向きフランジ部となる領域に曲げ力を入力して上記外向きフランジ部を成形する部分の成形面は、上記天板部の長手方向からみて、頂部と、その頂部の左右両側に連続する一対の斜面とを備えて、全体として上記外向きフランジ部の曲げ方向に凸の山形形状となっていて、
     上記山形形状の頂部が、上記外向きフランジ部となる領域のうち、上記凹状稜線部を介して上記天板部の長手方向端部に連続する領域に当接可能に設定される、
     ことを特徴とするプレス成形装置。
  9.  上記第2の下型にプレス方向で対向する第2の上型を備え、
     上記第2の下型で成形される上記金属板は、上記第1の上型及び第1の下型で成形された金属板である、
     ことを特徴とする請求項8に記載したプレス成形装置。
  10.  上記第1の上型と上記第2の上型とは1つの上型で構成され、
     上記第1の下型と上記第2の下型とは、上記天板部の長手方向にオフセットされた状態で配置される、
     請求項9に記載したプレス成形装置。
  11.  上記第1の下型と上記第2の下型とは、上記天板部の長手方向にオフセットされた状態で配置され、上記第1の下型は、上記第2の下型に対し、プレス方向に沿った方向にストローク可能となっている、
     請求項8に記載したプレス成形装置。
  12.  上記山形形状は、当該山形形状を形成する左右の斜面を結ぶ交差角からなるパンチ角が、上記第1の上型及び第1の下型で成形された金属板における、天板部と縦壁部の成す角度から90度を引いた角度の2倍よりも広い、
     ことを特徴とする請求項8~請求項11のいずれか1項に記載したプレス成形装置。
  13.  上記パンチ角が、60度以上180度以下の範囲である請求項12に記載したプレス成形装置。
  14.  上記山形形状における上記斜面の輪郭形状は、斜面の傾斜方向に沿って、プレス方向とは反対方向に凸の曲線形状となっている、ことを特徴とする請求項8~請求項13のいずれか1項に記載したプレス成形装置。
  15.  請求項9又は請求項10に記載のプレス成形装置を用いて上記プレス成形品を、金属板から製造する製造方法であって、
     上記第1の上型及び第1の下型を用いて、上記金属板における上記天板部及び上記縦壁部となる領域を断面L字形状にプレス成形し、
     上記第2の上型及び下型を用いて、上記断面L字形状にプレス成形した金属板に対し、上記外向きフランジ部を形成する、
     ことを特徴とするプレス成形品の製造方法。
  16.  上記第1の上型及び第1の下型で金属板を断面L字形状に拘束した状態で、上記第2の上型及び下型で上記外向きフランジ部を形成する、
     ことを特徴とする請求項15に記載したプレス成形品の製造方法。
  17.  請求項8又は請求項11に記載のプレス成形装置を用いて上記プレス成形品を、金属板から製造する製造方法であって、
     上記第1の上型及び第1の下型を用いて、上記金属板における上記天板部及び上記縦壁部となる領域を断面L字形状にプレス成形しながら、上記第2の下型を用いて、上記外向きフランジ部の一部を形成する、
     ことを特徴とするプレス成形品の製造方法。
PCT/JP2021/027336 2020-09-03 2021-07-21 プレス成形品の製造方法及びプレス成形装置 WO2022049916A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2023002215A MX2023002215A (es) 2020-09-03 2021-07-21 Metodo para fabricar un articulo conformado por prensado y dispositivo de conformacion por prensado.
JP2022546150A JP7302747B2 (ja) 2020-09-03 2021-07-21 プレス成形品の製造方法及びプレス成形装置
US18/022,913 US20230364664A1 (en) 2020-09-03 2021-07-21 Method for manufacturing press formed article and press forming device
KR1020237006860A KR20230042747A (ko) 2020-09-03 2021-07-21 프레스 성형품의 제조 방법 및 프레스 성형 장치
CN202180054311.4A CN116323028A (zh) 2020-09-03 2021-07-21 冲压成形品的制造方法以及冲压成形装置
EP21863974.8A EP4209286A4 (en) 2020-09-03 2021-07-21 METHOD FOR PRODUCING A PRESS-MOLDED ARTICLE AND PRESSING DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020148121 2020-09-03
JP2020-148121 2020-09-03
JP2021047187 2021-03-22
JP2021-047187 2021-03-22

Publications (1)

Publication Number Publication Date
WO2022049916A1 true WO2022049916A1 (ja) 2022-03-10

Family

ID=80491913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027336 WO2022049916A1 (ja) 2020-09-03 2021-07-21 プレス成形品の製造方法及びプレス成形装置

Country Status (7)

Country Link
US (1) US20230364664A1 (ja)
EP (1) EP4209286A4 (ja)
JP (1) JP7302747B2 (ja)
KR (1) KR20230042747A (ja)
CN (1) CN116323028A (ja)
MX (1) MX2023002215A (ja)
WO (1) WO2022049916A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047968A1 (ja) * 2022-08-29 2024-03-07 Jfeスチール株式会社 プレス成形品の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523761A (ja) * 1991-07-22 1993-02-02 Nissan Motor Co Ltd フランジ成形用金型
JP2007029966A (ja) * 2005-07-25 2007-02-08 Topre Corp 部分オーバーラップ成形法
WO2014148618A1 (ja) * 2013-03-21 2014-09-25 新日鐵住金株式会社 プレス成形部材の製造方法及びプレス成形装置
WO2016194963A1 (ja) * 2015-06-01 2016-12-08 新日鐵住金株式会社 プレス成形品、プレス成形方法、およびプレス成形装置
JP2020148121A (ja) 2019-03-12 2020-09-17 いすゞ自動車株式会社 エンジンのピストン潤滑装置
JP2021047187A (ja) 2015-09-14 2021-03-25 エッセンリックス コーポレーション 蒸気凝縮液、特に呼気凝縮液を採取し分析する装置及びシステム、並びにそれらの使用方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1752270C3 (de) * 1968-04-27 1977-10-06 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zum Bolden einer Ecke mit sehr kleinem Eckenradius an einem vorgeformten Blechteil
ES2683149T3 (es) * 2013-01-18 2018-09-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Método de fabricación para un miembro de acero conformado por prensado en caliente
WO2019216317A1 (ja) * 2018-05-11 2019-11-14 日本製鉄株式会社 鞍型プレス成形品の製造方法、プレス成形装置、及び鞍型プレス成形品を製造する製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523761A (ja) * 1991-07-22 1993-02-02 Nissan Motor Co Ltd フランジ成形用金型
JP2007029966A (ja) * 2005-07-25 2007-02-08 Topre Corp 部分オーバーラップ成形法
WO2014148618A1 (ja) * 2013-03-21 2014-09-25 新日鐵住金株式会社 プレス成形部材の製造方法及びプレス成形装置
WO2016194963A1 (ja) * 2015-06-01 2016-12-08 新日鐵住金株式会社 プレス成形品、プレス成形方法、およびプレス成形装置
JP2021047187A (ja) 2015-09-14 2021-03-25 エッセンリックス コーポレーション 蒸気凝縮液、特に呼気凝縮液を採取し分析する装置及びシステム、並びにそれらの使用方法
JP2020148121A (ja) 2019-03-12 2020-09-17 いすゞ自動車株式会社 エンジンのピストン潤滑装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4209286A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047968A1 (ja) * 2022-08-29 2024-03-07 Jfeスチール株式会社 プレス成形品の製造方法

Also Published As

Publication number Publication date
JP7302747B2 (ja) 2023-07-04
EP4209286A4 (en) 2024-06-12
KR20230042747A (ko) 2023-03-29
EP4209286A1 (en) 2023-07-12
JPWO2022049916A1 (ja) 2022-03-10
US20230364664A1 (en) 2023-11-16
CN116323028A (zh) 2023-06-23
MX2023002215A (es) 2023-05-17

Similar Documents

Publication Publication Date Title
KR102463643B1 (ko) 프레스 부품의 제조 방법
CN109562427B (zh) 冲压成型品的制造方法
JP2010023078A (ja) ワークの曲げ加工方法および装置
CA3011213C (en) A pressing machine and a method for manufacturing a press-formed product
CN111727089B (zh) 冲压部件的制造方法、冲压成型装置和冲压成型用的金属板
CN111867747A (zh) 冲压成型用的金属板、冲压成型装置和冲压部件的制造方法
WO2022049916A1 (ja) プレス成形品の製造方法及びプレス成形装置
JP2022080353A (ja) プレス成形方法及びプレス成形金型
KR101834850B1 (ko) 프레스 성형 방법, 및 프레스 성형 부품의 제조 방법
JP7184202B2 (ja) プレス成形品の製造方法、プレス成形品、およびプレス成形装置
JP7448464B2 (ja) 鋼部品の製造方法
JP6583221B2 (ja) プレス成形方法
JP7283439B2 (ja) プレス部品の製造方法、及び金属板
KR102450454B1 (ko) 프레스 성형 방법
KR102545155B1 (ko) 프레스 성형 방법
JP7243670B2 (ja) プレス部品の製造方法、及び金属板
JP7310712B2 (ja) プレス成形方法
JP2018079492A (ja) プレス成形用金型およびプレス成形方法
KR20220134017A (ko) 프레스 부품의 제조 방법, 프레스 성형용의 금속판, 및 고장력 강판
CN115666812A (zh) 冲压成形模具及冲压成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546150

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237006860

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021863974

Country of ref document: EP

Effective date: 20230403