WO2022049869A1 - 可変バルブタイミング装置の制御装置 - Google Patents

可変バルブタイミング装置の制御装置 Download PDF

Info

Publication number
WO2022049869A1
WO2022049869A1 PCT/JP2021/023772 JP2021023772W WO2022049869A1 WO 2022049869 A1 WO2022049869 A1 WO 2022049869A1 JP 2021023772 W JP2021023772 W JP 2021023772W WO 2022049869 A1 WO2022049869 A1 WO 2022049869A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
control
valve timing
motor
variable valve
Prior art date
Application number
PCT/JP2021/023772
Other languages
English (en)
French (fr)
Inventor
悠太 小池
匡行 猿渡
裕介 木原
章広 小森
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to US18/011,977 priority Critical patent/US12018622B2/en
Priority to JP2022546902A priority patent/JP7361221B2/ja
Priority to CN202180043653.6A priority patent/CN115917129A/zh
Publication of WO2022049869A1 publication Critical patent/WO2022049869A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • F02D13/0238Variable control of the intake valves only changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • F02D13/0265Negative valve overlap for temporarily storing residual gas in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/08Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing for rendering engine inoperative or idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/01Starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/03Stopping; Stalling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/032Electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a control device for a variable valve timing device that changes the valve timing (opening / closing timing) of an intake valve or an exhaust valve using a motor as a drive source.
  • timing pulleys, sprocket, gears, etc. exist as a driving force transmission mechanism for synchronously rotating an intake valve camshaft and an exhaust valve camshaft with respect to a crankshaft which is an output shaft of an internal combustion engine.
  • a variable valve timing device that is incorporated in the engine and adjusts the valve timing of the intake valve according to the operating state of the internal combustion engine is known.
  • the replacement of hydraulic variable valve timing devices with electric variable valve timing devices has progressed, and the controllable temperature and controllable engine rotation speed have tended to increase.
  • it is difficult to control the existing electric variable valve timing device especially at a low engine speed, and it is difficult to control the valve timing of the intake valve at an arbitrary timing when the automobile engine is stopped.
  • a method has been adopted in which the so-called variable valve timing device is controlled to a position that mechanically reaches the default position and waits for the next engine start.
  • the electric variable valve timing device is equipped with a mechanism for changing the phase of the camshaft that drives the intake valve or the exhaust valve.
  • the output from the motor is amplified by the reducer and transmitted to the camshaft. If you want to start from an arbitrary valve timing at the next start of the internal combustion engine, it is difficult to change the phase of the camshaft even if the motor is energized while the engine is stopped. It is desirable to convert.
  • the phase of the camshaft during internal combustion engine operation is calculated from the relative values of the cam angle sensor and crank angle sensor, but immediately before the internal combustion engine is stopped, the detection cycle becomes rough due to the decrease in rotation speed, and the cam angle sensor Since the signal acquired by the internal combustion engine or the crank angle sensor becomes extremely coarse, there is a problem that it becomes difficult to control the valve timing to an accurate phase.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2009-197591 as a control method of the variable valve timing device in the currently known example approaches the target advance position in small steps. In this way, the power supply work to the motor is set to duty control to prevent overshoot at the target phase.
  • Patent Document 2 retards the valve timing of the intake valve in the cranking state in which the engine is driven by the main engine motor in the hydraulic variable valve timing device. As a result, the actual compression ratio is reduced and the energy required for cranking is reduced.
  • Patent Document 1 describes control in the vicinity of the target phase aimed at preventing overshoot in the variable valve timing device, but does not describe the operation when the engine is stopped, and restarts the engine from an arbitrary phase. It is difficult to do.
  • Patent Document 2 described above a state in which the intake valve at the time of restarting the engine is controlled to an arbitrary position is realized by a hydraulic variable valve timing device, but it cannot be applied to an electric variable valve timing device. Furthermore, there is a problem that the application to the early closing type Miller cycle engine is not considered.
  • the present invention has taken into consideration such a problem at low rotation of the internal combustion engine, and an object of the present invention is to arbitrarily fix an electric variable valve timing device from immediately before the internal combustion engine is stopped to after the internal combustion engine is stopped. It is an object of the present invention to provide a control device of a variable valve timing device capable of controlling the phase with respect to the valve timing of the above.
  • the control device of the variable valve timing device of the present invention changes the relative rotation phase of the cam shaft with respect to the crankshaft of the internal combustion engine by adjusting the motor rotation speed of the motor connected to the cam shaft. It is a control device applied to an internal combustion engine provided with a variable valve timing device and having a control unit for controlling the variable valve timing device.
  • the control unit is a control device of the crankshaft during engine stop processing of the internal combustion engine.
  • the camshaft is fixed to a constant current or voltage supplied to the motor from the normal control of changing to the crankshaft and from the time when the rotation speed of the crankshaft becomes lower than the first threshold value to the time when the rotation speed becomes zero. It is characterized by performing low rotation control for holding the relative rotation phase of the above at the most advanced position or the latest retard position.
  • the valve timing phase of the intake valve is controlled to the maximum advance position or the latest retard position until the rotation speed of the crankshaft drops to an arbitrary rotation speed and the internal combustion engine is completely stopped. Can be done. Further features relating to the present invention will be apparent from the description herein and the accompanying drawings. In addition, problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
  • the control block diagram of the control device of the variable valve timing device which concerns on this embodiment. The figure which shows the profile of the intake / exhaust cam at the time of the maximum advance angle of the intake camshaft when the early closing Miller cycle engine is mounted (Example 1).
  • FIG. 1 The schematic diagram in the engine cylinder when the engine cycle is rotated by the intake profile shown in FIG.
  • FIG. The figure which shows the change of the engine speed in the engine stop processing.
  • the figure explaining the relationship between the engine speed from the engine stop to the restart, the phase of the intake valve, and the instruction duty.
  • the figure which shows the relationship between the engine speed and a PWM signal at the time of low rotation control at the time of engine stop.
  • the figure which shows the flowchart for demonstrating the phase control of an intake valve at the time of starting an engine The figure which shows the relationship between the engine speed and a PWM signal at the time of normal control at the time of starting an engine. The figure which shows the relationship between the engine speed and a PWM signal at the time of low rotation control at the time of engine start.
  • the figure which shows the profile of the intake / exhaust cam at the time of the maximum advance angle of the intake camshaft when the late closing Miller cycle engine is mounted (Example 2).
  • the figure which shows the profile of the intake / exhaust cam at the most retarded angle of the intake camshaft when the late closing Miller cycle engine is mounted Example 2.
  • variable valve timing device of the present invention will be described with reference to the drawings.
  • the parts with the same reference numerals indicate the same or corresponding parts.
  • FIG. 1 is a configuration diagram of an engine system according to the present embodiment to which the variable valve timing device of the present invention is applied.
  • the engine system of the present embodiment is that of a series hybrid vehicle equipped with a traction motor for traveling and an engine dedicated to power generation.
  • the engine is operated to generate electricity, and when the battery charge capacity becomes higher than a certain threshold value, the engine is stopped.
  • the engine is an internal combustion engine composed of a 4-cycle engine, and a combustion chamber is formed by a cylinder head 1, a cylinder block 2, and a piston 3 inserted in the cylinder block 2.
  • the piston 3 is connected to the crankshaft 5 via a connecting rod 4, and the crankshaft angle sensor 6 can detect the number of revolutions of the crankshaft, that is, the number of revolutions of the engine.
  • the intake pipe 7 and the exhaust pipe 8 are connected toward the combustion chamber.
  • the intake pipe 7 and the exhaust pipe 8 are branched and connected to each cylinder in two, and two intake valves 9 and two exhaust valves 10 are provided so as to open and close the opening opening to the combustion chamber.
  • the intake valve 9 and the exhaust valve 10 are provided with an intake cam 11 and an exhaust cam 12 at the upper portions thereof, respectively, and the intake valve 9 and the exhaust valve 10 are opened and closed by the rotation of these cams 11 and 12, respectively.
  • an intake cam pulley connected to the intake cam, an exhaust cam pulley connected to the exhaust cam, and a crank pulley connected to the crankshaft 5 are provided on the engine side, and a timing belt is interposed between them. Is connected.
  • the camshaft of the intake cam 11 is provided with a variable valve timing device 27 capable of changing the phase (relative rotation phase) with respect to the crankshaft 5.
  • the variable valve timing device 27 has a configuration in which the phase of the camshaft of the intake cam 11 with respect to the crankshaft 5 is changed by adjusting the motor rotation speed of the motor (VTC motor) connected to the camshaft.
  • VTC motor motor rotation speed of the motor
  • a motor generator that works as a generator when generating electricity and as a motor when the engine is started or stopped is connected to the crankshaft 5.
  • An intake cam angle sensor 13 is installed on the intake cam 11 to detect the rotation speed of the cam angle.
  • An injector 14 is provided on the intake side of the combustion chamber, and a spark plug 15 and an ignition coil 16 are provided on the upper part of the combustion chamber.
  • the fuel is stored in the fuel tank 17 and sent to the high-pressure fuel pump 19 by the feed pump 18 through the fuel pipe.
  • the high-pressure fuel pump 19 is driven by the exhaust cam 12, and the boosted fuel is sent to the common rail 20.
  • a fuel pressure sensor 21 is installed on the common rail 20 so that the fuel pressure can be detected.
  • the common rail 20 and the injector 14 provided in each cylinder are connected by a fuel pipe.
  • a three-way catalyst 22 is provided at the tip of the exhaust pipe 8, and an oxygen sensor 23 is provided downstream of the three-way catalyst 22.
  • a temperature sensor 24 is provided on the three-way catalyst 22 to detect the temperature of the three-way catalyst 22.
  • the cylinder block 2 is provided with a water temperature sensor 25 that measures the water temperature flowing through the cylinder block 2.
  • ECU 26 constitutes a control device for the variable valve timing device 27.
  • the ECU 26 has a CPU and a memory, and the CPU constitutes a control unit of the control device of the variable valve timing device 27.
  • the electric variable valve timing device 27 includes a speed reducer 27a equipped with a sprocket 27d, a motor 27b for driving the intake cam, and a control unit 27c from the intake cam 11 side.
  • FIG. 3 shows a cross-sectional view of the speed reducer 27a.
  • the configuration shown in Patent Document 3 can be applied.
  • a general-purpose IC 27c-a and a motor driver 27c-b are provided as a calculation unit for driving the motor.
  • a control block diagram in this embodiment based on these is shown in FIG.
  • the acquisition path until the ECU 26 of the valve timing device in the present embodiment acquires the information on the actual rotation speed and the rotation direction of the intake cam drive motor 27b will be described.
  • the rotation of the intake cam drive motor 27b is detected by the Hall IC provided in the control unit 27c, and the generated voltage is acquired by the general-purpose IC 27c-a provided in the circuit in the control unit.
  • the input voltage is converted into the rotation speed and rotation direction of the intake cam drive motor 27b and output to the ECU 26, so that the ECU 26 acquires information on the motor rotation speed and rotation direction.
  • the ECU 26 calculates an appropriate valve timing from the required engine speed and the required engine torque based on the calculation result of the actual phase.
  • the calculated appropriate valve timing is converted into the target rotation direction and target rotation speed of the intake cam drive motor 27b of the variable valve timing device 27 in the ECU 26, and the control unit 27c of the valve timing device is used as a PWM signal by Duty control. Send to.
  • the general-purpose IC 27c-a receives the instruction of the motor target rotation speed and the motor target rotation direction via the target motor speed receiving unit.
  • the general-purpose IC 27c-a the actual rotation speed and the actual rotation direction of the intake cam drive motor 27b of the variable valve timing device 27 are acquired, and feedback control is applied from the signals of the motor target rotation direction and the motor target rotation speed. Then, a signal is transmitted to the motor driver 27c-b so that the motor rotation speed becomes appropriate.
  • the motor driver 27c-b drives the intake cam drive motor 27b by converting them into UVW three-phase AC signals and outputting them as UVW drive signals to the intake cam drive motor 27b.
  • the intake cam drive motor 27b is driven by a current and a voltage supplied as a UVW drive signal from the motor driver 27c-b.
  • the signal for receiving the rotation direction / rotation speed command of the intake cam drive motor 27b from the ECU 26 has the following specifications.
  • Rotation in the same direction as the rotation direction of the camshaft is defined as forward rotation
  • rotation in the opposite direction is defined as reverse rotation
  • forward rotation / reverse rotation is distinguished by the frequency of the input PWM.
  • the forward rotation is 100 Hz
  • the reverse rotation is 200 Hz.
  • the rotation speed of the crankshaft 5 the rotation speed of the intake cam 11 is 2: 1.
  • the intake cam 11 It is necessary to control the rotation speed of the crankshaft 5 to be higher or lower than 1/2 times the rotation speed of the crankshaft 5.
  • Phase control in the direction of opening and closing the intake valve or exhaust valve 10 quickly in the engine cycle by momentarily increasing the rotation speed of the camshaft is called advance angle control, while controlling the rotation speed momentarily low.
  • phase control of the intake valve or the exhaust valve 10 in the direction of opening slowly and closing slowly in the engine cycle is called retard angle control.
  • variable valve timing device 27 there are two types of engines that carry out the Miller cycle by installing the variable valve timing device 27: the late closing Miller cycle and the early closing Miller cycle.
  • a variable valve timing device 27 is mounted on the intake cam 11 to assume a type of engine that enables an early closing Miller cycle.
  • the early closing Miller cycle refers to an engine stroke in which the intake valve 9 is closed before the piston 3 reaches bottom dead center in the intake stroke of a 4-cycle engine.
  • the engine taken up in this embodiment has a configuration that enables the early closing Miller cycle to be established by phase-converting the intake cam 11 to the advance side by the mounted electric variable valve timing device 27.
  • FIG. 3 (1) is a diagram showing a state in which the speed reducer 27a is in the most advanced angle
  • FIG. 3 (2) is a diagram showing a state in which the speed reducer 27a is in the most retarded angle.
  • the speed reducer 27a of the electric variable valve timing device 27 is composed of a drive rotating body 27e having a concave portion 27j and a driven rotating body 27h having a convex portion 27i in the internal structure.
  • the speed reducer 27a has a shape in which the concave portion 27j of the driving rotating body 27e is fitted to the convex portion 27i of the driven rotating body 27h.
  • the convex portion 27i reciprocates in the concave portion 27j along the rotation direction of the camshaft of the intake cam 11 and comes into contact with the maximum advance angle stopper 27f on one side of the concave portion 27j or the latest retard angle stopper 27g on the other side.
  • the mechanism is such that the maximum advance angle position and the latest retard angle position are physically determined with respect to the phase of the intake cam 11 described above, and the phase within the range of the physical maximum advance angle position and the latest retard angle position. Allows conversion.
  • variable valve timing device 27 based on the phase conversion drive principle by the variable valve timing device 27, an operation sequence at the time of engine stop processing is shown.
  • the phase of the intake cam 11 is controlled by the control device of the variable valve timing device 27 so as to be at the maximum advance position before the engine is stopped, and the phase is adjusted. It is to stop the engine completely (zero rotation) while holding it.
  • phase of the intake cam 11 can be maintained at the maximum advance position even while the engine is completely stopped by the phase control during the engine stop process, the phase of the intake cam 11 will be maintained even when the engine is restarted next time. Can be restarted from the most advanced position.
  • the intake flow rate into the engine cylinder during the motoring period in which the rotation is increased by the generator before the first explosion It can be mentioned that it leads to the decrease of.
  • the intake flow rate into the engine cylinder is reduced, so that the air flow rate in the compression stroke of the engine is reduced, so that the pumping loss is reduced.
  • FIG. 5 shows the profile of the intake valve 9 at the maximum advance angle
  • FIG. 6 shows the profile of the intake valve 9 at the latest angle.
  • the profiles of the intake valve 9 in FIGS. 5 and 6 are indicated by reference numerals 9a (maximum advance angle profile) and reference numeral 9b (latest angle profile), and the profile of the exhaust valve 10 is indicated by reference numeral 10a.
  • the engine cycle operation at the physical maximum advance angle position in the speed reducer 27a is defined as the maximum advance angle profile 9a of the intake valve 9. That is, in this embodiment, it is an object to restart the engine in a state where the profile of the intake valve 9 of FIG. 5, that is, the valve timing of the intake valve 9 is super-advanced to the maximum advance position.
  • the working angles of the intake cam 11 and the exhaust cam 12 in this embodiment are 180 deg.
  • the phase of the intake cam 11 is IVC140deg. It advances to CA_ABDC (valve timing at which the intake valve closes after the crankshaft 5 has rotated by an angle of 140 deg after the intake bottom dead center). Therefore, FIG. 7 shows the state inside the engine cylinder in each scene during the engine cycle when the intake cam 11 is controlled to the most advanced angle position.
  • the phase of the intake cam 11 in this configuration is set to IVC140deg.
  • the phase of the intake cam 11 with respect to the rotation of the crankshaft 5 of the engine equipped with the variable valve timing device 27 is variable with respect to the rotation speeds of the crank angle sensor 6 and the intake cam angle sensor 13 acquired by the ECU 26.
  • the ECU 26 calculates by feedback-controlling the rotation speed of the intake cam drive motor 27b in the valve timing device 27.
  • the phase of the intake cam 11 can be calculated without any problem by the above method.
  • the low engine speed region where the engine speed is lower than a certain value such as immediately before the engine is stopped or immediately after the engine is restarted, it is difficult to calculate by the above method.
  • the phase guarantee of the intake cam 11 is realized by the method of switching from the normal control to the special control in the low engine speed region.
  • FIG. 8 shows the definition of the operation name for each time series from the time when the engine speed is low to the time after the engine is stopped in the engine stop sequence.
  • FIG. 9 shows a series of sequences of the engine speed, the phase of the intake cam 11, and the indicated duty from the engine operation to the engine stop process, after the engine is stopped, and when the engine is restarted next time.
  • FIG. 10 shows the history of the current value flowing into the power supply line from the battery in a series of sequences.
  • the instruction duty here refers to the motor rotation speed and the rotation direction instruction of the motor by the PWM signal from the ECU 26 shown in FIG. 4 to the control unit 27c of the variable valve timing device 27.
  • the engine speed of 200 rpm in the state where the fuel cut signal in the ECU 26 is turned on is defined as the control switching condition (first threshold value), and the region of the engine speed of 200 rpm or more is the normal control region and the engine.
  • a rotation speed of less than 200 rpm is defined as a low rotation control region.
  • FIG. 11 shows a flowchart showing a method of determining normal control and low rotation control in engine speed. Further, images of duty control when the engine is stopped are shown in FIGS. 12 and 13. FIG. 12 shows how the duty ratio is switched in proportion to the engine speed as normal control, and FIG. 13 shows that a command is issued at a constant duty ratio not proportional to the engine speed as low speed control. Is shown.
  • the flowchart shown in FIG. 11 will be described separately for each step. In this flowchart, the start condition is during engine operation, and the end condition is after the engine is stopped.
  • control of the variable valve timing device 27 during engine operation is a control unit that controls a PWM signal having a duty ratio proportional to the engine rotation speed calculated by the ECU 26 based on the signal from the crank angle sensor 6 as normal control. Output for 27c.
  • Step S02 The ECU 26 determines whether the engine stop flag is satisfied. For example, check the battery charge capacity. At this time, the state in which the battery charge capacity reaches the upper limit value is regarded as the engine stop preparation is completed. If the battery charge capacity has not reached the upper limit, the engine will not stop even if the vehicle stops due to a traffic light, traffic jam, etc., unless the key is turned off.
  • Step S03 ⁇ The engine goes through a process of shifting to a fuel cut operation in which the fuel injection is stopped before the engine is stopped. At this time, since the engine torque is not required, the engine enters the fuel cut operation mode, turns off the fuel injection signal from the ECU 26 to the injector 14, and stops the fuel supply to the combustion chamber. During the fuel cut operation period after the fuel cut, the engine is rotated by inertia, and finally the engine speed becomes zero. Therefore, confirming that fuel injection has been stopped is one of the flags for shifting to engine low speed control.
  • Steps S04, S05 At the same time as the fuel cut starts, the ECU 26 controls the variable valve timing device 27 so as to advance the phase of the intake cam 11.
  • the target phase of the intake cam 11 after the fuel cut is set to the most advanced angle position (the most advanced angle profile 9a of the intake cam in FIG. 5), and the completion of the phase conversion to the most advanced angle position is shifted to the engine low rotation control. It is one of the flags of.
  • the first threshold value in this embodiment will be described as an engine speed of 200 rpm. That is, as described above, the condition for entering the low rotation speed control is that the engine rotation speed is less than 200 rpm, the fuel is cut, and the intake cam 11 is phase-controlled to the maximum advance position.
  • the normal control shown in FIG. 12 is switched to the low speed control shown in FIG. 13, and the ECU 26 shifts to the control unit 27c of the variable valve timing device 27.
  • the duty ratio of the output PWM signal is fixed at 10%, which is a predetermined value.
  • the intake cam drive motor 27b since the intake cam 11 is already phase-controlled to the physical maximum position by the variable valve timing device 27, the intake cam drive motor 27b has only the motor rotation speed corresponding to the actual engine rotation speed at that timing. It cannot occur.
  • the rotation speed of the intake cam drive motor 27b at 100 rpm of the engine is 50 rpm. That is, in the period until the engine is completely stopped, it is excessive in the advance direction at the maximum advance position, that is, in the direction in which the convex portion 27i of the driven rotating body 27h is pressed against the maximum advance angle stopper 27f of the driving rotating body 27e. Motor torque will continue to be generated. Therefore, the intake cam 11 can maintain the phase-controlled state at the most advanced angle position until the engine is completely stopped.
  • the set current and the set voltage supplied from the motor driver 27c-b to the intake cam drive motor 27b are set to 3% or more and 20% or less of the rated current of the intake cam drive motor 27b and the circuit.
  • Steps S09, S10 When the signal from the crank angle sensor 6 to the ECU 26 is not input for a certain period of time, it is determined that the engine has stopped completely, and the output of the PWM signal from the ECU 26 to the control unit 27c is fixed at 10%. Stop and put it in standby mode.
  • the valve timing profile of the intake valve 9 is changed to the maximum advance angle profile by controlling the phase of the intake cam 11 to the maximum advance angle position in the period called motoring, which is the pre-ignition period when the engine is restarted.
  • motoring which is the pre-ignition period when the engine is restarted.
  • NVH Noise, Vibration, Harshness
  • FIG. 14 shows a flowchart based on the low rotation control at the time of restarting the engine. Further, images of duty control at the time of starting the engine are shown in FIGS. 15 and 16.
  • FIG. 15 shows how the duty ratio is switched in proportion to the engine speed as normal control
  • FIG. 16 shows that a command is issued at a constant duty ratio regardless of the engine speed as low speed control. show.
  • the flowchart shown in FIG. 14 will be described separately for each step.
  • the start condition is that the engine is stopped
  • the end condition is that the control is switched to normal control after the engine is restarted.
  • Steps S11, S12 Prepare each device in the standby state from the previous engine stop to the next engine restart.
  • Step S13 After all the start condition flags of each device are turned on, when the engine start determination flag from the ECU 26 is turned on, a rotation command is given to the control unit 27c of the variable valve timing device 27, and the intake cam drive motor 27b. Start energizing.
  • Steps S14, S15 A rotation command is given to the variable valve timing device 27 to press it in the direction of the maximum advance angle stopper 27f.
  • the rotation command at this time gives a fixed value of 10% duty ratio as a rotation command in the same direction as the rotation direction of the camshaft as low rotation control, as in the case of engine stop processing.
  • the ECU 26 receives a signal from the crank angle sensor 6 and calculates the rotation speed of the crankshaft 5. When the rotation speed of the crankshaft 5 exceeds the second threshold value of 200 rpm, the low rotation control is terminated and the process proceeds to step S16.
  • step S16 switching from low rotation control to normal control is performed.
  • the phase of the intake cam 11 is held and controlled at the maximum advance angle by normal control in which the duty ratio in the PWM output from the ECU 26 to the control unit 27c is proportional to the engine speed.
  • Step S17 In order to reduce NVH when the engine is restarted, in this embodiment, the engine speed of 1000 rpm is set as the third threshold value, and the phase of the intake cam 11 is held and controlled at the maximum advance position until the engine speed reaches 1000 rpm. do. That is, in step S17, the engine rotation speed after switching from the low rotation control to the normal control is monitored, and has a role of a trigger for switching the phase for NVH reduction and the phase of the first explosion.
  • Step S17 when the engine speed exceeds 1000 rpm, which is the third threshold value, the holding control of the intake cam 11 to the most advanced angle position is finished, and the phase conversion of the intake cam 11 is started.
  • the reason why the phase conversion is necessary is that the phase of the intake cam 11 exists at the position where the phase of the intake cam 11 abuts on the maximum advance angle stopper 27f (valve profile 9a), so that the intake compression amount is insufficient and ignition cannot be performed as it is. be. Therefore, it is necessary to convert the valve timing of the intake valve to an arbitrary initial explosion valve timing position set in advance from the stage where the third threshold value of 1000 rpm is exceeded (step S19).
  • the ECU 26 confirms that the valve timing of the first explosion has been reached, turns on the fuel injection signal from the ECU 26 to the injector 14 toward the first explosion, and starts supplying fuel to the combustion chamber.
  • FIG. 1 The basic configuration of the engine and its peripheral devices in this embodiment is as shown in FIG. 1 as in the first embodiment.
  • the engine of this embodiment is an engine that adopts a late closing Miller cycle as a type.
  • the profiles of the intake valve 9 and the exhaust valve 10 of the late closing Miller cycle are shown in FIGS. 17 and 18.
  • FIG. 17 shows a profile when the phase of the intake cam 11 is set to the most advanced angle position in the late closing Miller cycle engine
  • FIG. 18 shows a profile when the phase of the intake cam 11 is set to the most retarded angle in the late closing Miller cycle engine. Shows the profile when set to position.
  • An engine having a late-closed Miller cycle function tends to have a larger cam width and a larger cam lift amount as a cam profile than an engine cam having an early-closed Miller cycle function.
  • the control according to the engine speed by switching the control according to the engine speed, it is possible to restart the engine with the phase of the intake cam 11 controlled to the latest retard position when the engine is restarted.
  • the rotation speed of the intake cam drive motor 27b is set in the rotation direction of the cam shaft.
  • it is required to control to reverse rotation or zero rotation.
  • the PWM output from the ECU 26 to the controller 27c of the variable valve timing device 27 is output from the ECU 26 to the controller 27c of the variable valve timing device 27 as a rotation speed command in the direction opposite to the rotation of the camshaft, at a frequency of 200 Hz and a duty ratio of 10%.
  • the current or voltage supplied to the motor is fixed to the current or voltage that changes the relative rotation phase of the camshaft in the retard direction at the most retarded position.
  • the engine speed of 200 rpm in the state where the fuel cut signal in the ECU 26 is turned on is defined as the control switching condition (first threshold value), and the region of the engine speed of 200 rpm or more is the normal control region and the engine.
  • a rotation speed of less than 200 rpm is defined as a low rotation control region.
  • the signal of the crank angle sensor 6 is calculated by the ECU 26 as the rotation speed of the crankshaft 5, and when the rotation speed becomes less than 200 rpm as described above, the control of the valve timing device is changed from the normal control to the low rotation speed control (200 Hz, duty ratio fixed at 10%). ). By controlling by this method, it is possible to control the phase of the intake cam 11 to the latest retard angle position until the engine is stopped.
  • the phase of the intake cam 11 can be held and controlled at the latest retard angle position when the engine is stopped by the above method, and then the phase of the intake cam 11 can be controlled at the latest retard angle position even when the engine is stopped, the engine is restarted next time. It is possible to start from the most retarded angle position even at times.
  • the threshold value for control switching when the engine is restarted is 200 rpm.
  • the ECU 26 acquires the signal from the crank angle sensor 6, calculates the engine speed, and when the speed of 200 rpm or more is detected, it is normal from low speed control. After switching to control, the duty ratio to follow the engine speed is output from the ECU 26 to the control unit 27c of the variable valve timing device 27 as a PWM signal.
  • the control device of the variable valve timing device in the above-described embodiment controls the valve timing phase to the maximum advance angle stopper position or the latest retard angle stopper position during the engine stop process and the fuel cut at the time of engine restart, and the engine.
  • the command to the stopper direction fixed to the low duty ratio is continuously given to the intake cam drive motor, and in the region where the accurate engine rotation speed can be obtained, it is proportional to the engine rotation speed.
  • the intake cam 11 can be started from an arbitrary phase at the next engine restart, and the engine cylinder can be started. It is possible to reduce the amount of intake air inward and reduce engine rotation speed fluctuations and vehicle body NVH when the engine is restarted.
  • the present invention 1 is applied to an internal combustion engine provided with a variable valve timing device that changes the relative rotation phase of the cam shaft with respect to the crankshaft of the internal combustion engine by adjusting the motor rotation speed of a motor connected to the cam shaft.
  • a control device having a control unit that controls a valve timing device, wherein the control unit of the crankshaft when the rotation speed of the crankshaft is equal to or higher than the first threshold value during engine stop processing of the internal combustion engine.
  • Normal control that adjusts the current or voltage supplied to the motor according to the rotation speed to change the relative rotation phase of the camshaft to the most advanced angle position or the latest retard angle position, and the rotation speed of the crankshaft is the second.
  • the relative rotation phase of the camshaft is held at the most advanced position or the latest retard position by fixing the current or voltage supplied to the motor to a constant value from lower than one threshold to zero rotation. It is characterized by performing low rotation control and performing.
  • the relative rotation phase of the camshaft is maintained at the maximum advance position or the latest retard position until the rotation speed of the crankshaft drops to an arbitrary rotation speed and the internal combustion engine is completely stopped. Can be done. Therefore, it can be applied to the early closing Miller cycle engine.
  • the relative rotation phase of the camshaft is returned from the most advanced position to the retard side due to the friction of the cam ridge and the reaction force of the valve spring, or it is the slowest. It is possible to prevent it from being returned to the advance side from the corner position.
  • the present invention 2 is the control device according to the present invention 1, wherein the control unit transfers a current or voltage supplied to the motor in the low rotation control of the cam shaft at the maximum advance position. It is characterized by controlling the current or voltage that changes the relative rotation phase in the advance direction, or the current or voltage that changes the relative rotation phase of the cam shaft in the retard direction at the latest retard angle position. do.
  • the camshaft can be urged in the advance direction at the most advanced angle position, and the camshaft can be urged in the retard direction at the most retarded angle position. Therefore, the relative rotation phase of the camshaft can be held at the most advanced position or the latest retarded angle position until the rotation of the crankshaft is completely stopped.
  • the present invention 3 is the control device according to the present invention 2, wherein the control unit sets the current or voltage of the motor fixed in the low rotation control according to the first threshold value in the normal control. It is characterized in that it is set to the same value as the current or voltage of the motor.
  • the camshaft since the rotation speed of the crankshaft gradually decreases due to the engine stop processing, the camshaft is rotated in conjunction with the crankshaft, and the rotation speed gradually decreases.
  • the motor in the low rotation control, the motor is supplied with a current or a voltage set according to the first threshold value. Therefore, the camshaft is urged in the advance direction at the most advanced angle position, and is urged in the retard direction at the most retarded angle position. Therefore, the relative rotation phase of the camshaft can be maintained at the most advanced position or the latest retarded position.
  • the present invention 4 is the control device according to the present invention 1, wherein the control unit is such that the fuel supply to the internal combustion engine is stopped and the rotation speed of the crankshaft is smaller than the first threshold value. Further, the normal control is switched to the low rotation control on condition that the relative rotation phase of the camshaft is controlled to the maximum advance angle position or the latest retard angle position.
  • the detection cycle becomes rough as the rotation speed decreases, and the signal acquired by the cam angle sensor or the crank angle sensor becomes extremely coarse, but at an appropriate timing. It is possible to switch to low rotation control and control the valve timing to an accurate phase.
  • the variable valve timing device is a motor driver that supplies the current or voltage to the motor based on a PWM signal having an instruction pulse to drive the motor.
  • the control unit In the normal control, the control unit outputs a PWM signal having a duty ratio proportional to the rotation speed of the crank shaft to the motor driver, and in the low rotation control, the fixed duty ratio is fixed to a constant value. It is characterized in that a PWM signal is output to the motor driver.
  • the motor driver drives the motor based on the PWM signal having a duty ratio proportional to the rotation speed of the crankshaft, and is higher than the first threshold value.
  • the motor is driven using a fixed duty ratio fixed to a constant value. Therefore, by controlling the motor using the PWM signal, the relative rotation phase of the camshaft can be changed to the most advanced angle position and held at the most advanced angle position or the latest retarded angle position.
  • the motor driver sets a current value to the motor when the PWM signal having a fixed duty ratio fixed to a constant value is input from the control unit. It is characterized by supplying the following current or a voltage equal to or less than a set voltage value.
  • the motor can be controlled at the time of low rotation control and held at the most advanced angle position or the latest retarded angle position.
  • the control unit raises the rotation speed of the crankshaft from zero rotation to a second threshold value during the motoring period when the engine of the internal combustion engine is restarted.
  • Low rotation control that keeps the relative rotation phase of the camshaft at the most advanced position or the latest retard position by fixing the current or voltage supplied to the motor to a constant value, and the number of rotations of the crankshaft.
  • the relative rotation phase of the camshaft is set to the most advanced position or the slowest until the rotation speed of the crankshaft rises from zero rotation to the second threshold value. Can be held in a corner position.
  • the control unit rotates the camshaft relative to each other on condition that the rotation speed of the crankshaft exceeds a third threshold value larger than the second threshold value. It is characterized by controlling the phase to be converted to the initial explosion valve timing position.
  • the relative rotation phase of the camshaft can be converted to the initial explosion valve timing position to secure the intake compression amount, and the air-fuel mixture in the engine cylinder can be ignited.
  • the present invention is not limited to the above-described embodiments, and various designs are designed without departing from the spirit of the present invention described in the claims. You can make changes.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • ECU control device
  • 27 Variable valve timing device, 27a ... Reducer, 27b ... Intake cam Drive motor, 27c ... Control unit, 27d ... Cam shaft sprocket, 27e ... Drive rotating body, 27j ... Drive rotating body recess, 27f ... Drive rotating body recess maximum advance angle stopper, 27g ... Drive rotating body recess minimum angle stopper, 27h ... driven rotating body, 27i ... driven rotating body convex part, 27ca ... general-purpose IC, 27c-b ... motor driver, 9a ... early closing mirror cycle maximum advance angle intake valve profile, 9b ... early closing mirror cycle fastest angle Intake valve profile, 10a ... Early closing mirror cycle exhaust valve profile, 9c ... Slow closing mirror cycle maximum advance angle intake valve profile, 9d ... Late closing mirror cycle latest retard angle intake valve profile, 10c ... Late closing mirror cycle exhaust valve profile

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

本発明の課題は、内燃機関の停止直前から内燃機関の停止後にかけて、任意の固定のバルブタイミングに位相を制御可能な可変バルブタイミング装置の制御装置を得ることである。本発明の可変バルブタイミング装置の制御装置は、内燃機関のエンジン停止処理中において、クランクシャフトの回転数が第1閾値以上のときは、カムシャフトの相対回転位相を最進角位置又は最遅角位置へ変化させる通常制御と、クランクシャフトの回転数が第1閾値よりも低くなってからゼロ回転になるまでの間、モータに供給される電流又は電圧を一定に固定して、カムシャフトの相対回転位相を最進角位置又は最遅角位置に保持する低回転制御と、を行うことを特徴とする。

Description

可変バルブタイミング装置の制御装置
 本発明は、モータを駆動源とする吸気バルブまたは排気バルブのバルブタイミング(開閉タイミング)を変化させる可変バルブタイミング装置の制御装置に関する。
 従来、内燃機関の出力軸であるクランクシャフトに対して、吸気バルブ用カムシャフトや排気バルブ用カムシャフトを同期回転させるための駆動力伝達機構としてタイミングプーリ、スプロケットあるいはギヤ等が存在するが、これらに組み込まれ、内燃機関の運転状態に応じて吸気バルブのバルブタイミングを調整する可変バルブタイミング装置が知られている。近年は油圧式の可変バルブタイミング装置から電動式の可変バルブタイミング装置への置換が進んでおり、その制御可能温度や制御可能なエンジン回転数が拡大しているという傾向にある。しかし、既存の電動式の可変バルブタイミング装置において特にエンジン低回転数における制御は難しく、自動車のエンジンが停止する際に、吸気バルブのバルブタイミングを任意のタイミングに制御することは困難であった。実際には所謂可変バルブタイミング装置のデフォルト位置と機械的に行きつく位置に制御し、次回のエンジン始動を待つという方式がとられてきた。
特開2009-197591号公報 特開2019-157750号公報 特開2018-131985号公報
 電動式の可変バルブタイミング装置は、吸気バルブ又は排気バルブを駆動するカムシャフトの位相を変化させる機構を備える。本機構は、モータからの出力が減速機によって増幅されてカムシャフトに伝達される。内燃機関の次回始動時に任意のバルブタイミングから始動させたい場合、停止中にモータに通電してもカムシャフトの位相を変換させることは困難であるため、内燃機関の停止直前にカムシャフトの位相を変換させることが望ましい。内燃機関運転中のカムシャフトの位相はカム角センサとクランク角センサの相対値によって算出されるが、内燃機関の停止直前は回転数の低下に伴い、検出周期に粗さが生じ、カム角センサやクランク角センサによって取得する信号が極端に粗くなるため、バルブタイミングを正確な位相に制御することが困難になるという課題がある。
 このような課題に対して、現状の公知例における可変バルブタイミング装置の制御方式として、例えば、特開2009-197591号公報(特許文献1)のものは、目標進角位置に対して小刻みに近づけるようにモータへの給電作業をデューティ制御とし、目標位相でのオーバーシュートを防止している。
 さらに、特開2019-157750号公報(特許文献2)のものは、油圧式の可変バルブタイミング装置において、主機モータによりエンジンが駆動されているクランキング状態での吸気バルブのバルブタイミングを遅角させることで、実圧縮比を低減し、クランキング時の必要エネルギーを低減している。
 前記の特許文献1では可変バルブタイミング装置におけるオーバーシュート防止を狙った目標位相付近での制御が記載されているが、エンジン停止時の動作には記載されておらず、任意の位相からエンジン再始動することは困難である。さらに前記の特許文献2では油圧式の可変バルブタイミング装置によりエンジン再始動時の吸気バルブを任意の位置に制御した状態を実現していたが、電動式の可変バルブタイミング装置には展開できず、更に早閉じ型のミラーサイクルエンジンへの適用は考慮していないという課題がある。
 本発明は、このような内燃機関の低回転時の課題を考慮したものであり、その目的は、電動の可変バルブタイミング装置において、内燃機関の停止直前から内燃機関の停止後にかけて、任意の固定のバルブタイミングに位相を制御可能な可変バルブタイミング装置の制御装置を提供することにある。
 上記目的を達成するために、本発明の可変バルブタイミング装置の制御装置は、内燃機関のクランクシャフトに対するカムシャフトの相対回転位相を前記カムシャフトに連結されたモータのモータ回転数の調整によって変化させる可変バルブタイミング装置を備えた内燃機関に適用され、前記可変バルブタイミング装置を制御する制御部を有する制御装置であって、前記制御部は、前記内燃機関のエンジン停止処理中において、前記クランクシャフトの回転数が第1閾値以上のときは、前記クランクシャフトの回転数に応じて前記モータに供給される電流又は電圧を調整して前記カムシャフトの相対回転位相を最進角位置又は最遅角位置へ変化させる通常制御と、前記クランクシャフトの回転数が第1閾値よりも低くなってからゼロ回転になるまでの間、前記モータに供給される電流又は電圧を一定に固定して、前記カムシャフトの相対回転位相を最進角位置又は最遅角位置に保持する低回転制御と、を行うことを特徴とする。
 本発明によれば、クランクシャフトの回転数が任意の回転数まで低下して内燃機関が完全に停止するまで、吸気バルブのバルブタイミングの位相を最進角位置または最遅角位置に制御することができる。本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の可変バルブタイミング装置の制御装置が適用される本実施形態に係わるエンジンシステムの構成図。 本実施形態に係わる可変バルブタイミング装置の全体構成を示す図。 本実施形態に係わる可変バルブタイミング装置内の減速機の断面図。 本実施形態に係わる可変バルブタイミング装置の制御装置の制御ブロック図。 早閉じミラーサイクルエンジン搭載時(実施例1)における吸気カムシャフト最進角時の吸気・排気カムのプロファイルを示す図。 早閉じミラーサイクルエンジン搭載時(実施例1)における吸気カムシャフト最遅角時の吸気・排気カムのプロファイルを示す図。 図5に示す吸気プロファイルでエンジンサイクルを回した際のエンジン筒内の模式図。 エンジン停止処理におけるエンジン回転数の変化を示す図。 エンジン停止から再始動時にかけてのエンジン回転数と、吸気バルブの位相と、指示Dutyとの関係を説明する図。 エンジン停止から再始動時にかけてのエンジン回転数と、吸気バルブの位相と、回路への負荷電流との関係を説明する図。 エンジン停止時における吸気バルブの位相制御を説明するためのフローチャート。 エンジン停止時の通常制御時におけるエンジン回転数とPWM信号の関係を示す図。 エンジン停止時の低回転制御時におけるエンジン回転数とPWM信号の関係を示す図。 エンジン始動時における吸気バルブの位相制御を説明するためのフローチャートを示す図。 エンジン始動時の通常制御時におけるエンジン回転数とPWM信号の関係を示す図。 エンジン始動時の低回転制御時におけるエンジン回転数とPWM信号の関係を示す図。 遅閉じミラーサイクルエンジン搭載時(実施例2)における吸気カムシャフト最進角時の吸気・排気カムのプロファイルを示す図。 遅閉じミラーサイクルエンジン搭載時(実施例2)における吸気カムシャフト最遅角時の吸気・排気カムのプロファイルを示す図。
 以下、本発明の可変バルブタイミング装置の具体的な実施例について、図面を用いて説明する。なお、各図において、同一符号を付した部分は同一或いは相当する部分を示している。
[実施例1]
<エンジン構成>
 図1は、本発明の可変バルブタイミング装置が適用される本実施形態に係わるエンジンシステムの構成図である。
 本実施形態のエンジンシステムは、走行用のトラクションモータと、発電専用のエンジンを搭載するシリーズハイブリッド自動車のものである。シリーズハイブリッド自動車では、バッテリー充電容量が、ある閾値より低くなると、エンジンを動作させて発電し、バッテリー充電容量が、ある閾値より高くなるとエンジンを停止させる制御が行われる。
 エンジンは、4サイクルエンジンからなる内燃機関であり、シリンダヘッド1とシリンダブロック2、そしてシリンダブロック2に挿入されたピストン3により燃焼室が形成される。ピストン3は、コンロッド4を介してクランクシャフト5と連結されており、クランク角センサ6によりクランクシャフトの回転数、つまり、エンジン回転数を検知できる。
 燃焼室に向けて吸気管7と排気管8が接続されている。吸気管7と排気管8は、1気筒に対しそれぞれ2つに分岐して接続されており、燃焼室に開口する開口部を開閉するように、吸気バルブ9と排気バルブ10がそれぞれ2つ設けられている。吸気バルブ9と排気バルブ10は、それぞれ上部に吸気カム11と排気カム12が設けられており、これらのカム11、12が回転することで吸気バルブ9と排気バルブ10が開閉される。図示しないがエンジン側部には、吸気カムと連結した吸気カムプーリと、排気カムと連結した排気カムプーリと、クランクシャフト5と連結したクランクプーリとが設けられており、これらの間がタイミングベルトを介して接続されている。これにより、エンジン動作時にクランクシャフト5が回転することで、吸気カム11と排気カム12が回転される。クランクシャフト5が2回転したときに吸気カム11と排気カム12が1回転するように、クランクプーリとカムプーリの大きさが設定されている。吸気カム11のカムシャフトには、クランクシャフト5に対する位相(相対回転位相)を変更可能な可変バルブタイミング装置27が設けられている。可変バルブタイミング装置27は、クランクシャフト5に対する吸気カム11のカムシャフトの位相をカムシャフトに連結されたモータ(VTCモータ)のモータ回転数の調整によって変化させる構成を有する。そして、クランクシャフト5には、発電時はジェネレータとして働き、エンジン始動や停止時にはモータとして働くモータジェネレータが連結されている。吸気カム11には、吸気カム角センサ13を設置し、カム角の回転数を検出している。
 燃焼室の吸気側にインジェクタ14が設けられ、燃焼室の上部に点火プラグ15と点火コイル16が設けられている。燃料は、燃料タンク17に貯蔵され、フィードポンプ18によって燃料配管を通じて高圧燃料ポンプ19に送られる。高圧燃料ポンプ19は、排気カム12によって駆動され、昇圧された燃料がコモンレール20に送られる。コモンレール20には燃圧センサ21が設置され、燃料圧力を検知できるようになっている。コモンレール20と各気筒に設けられたインジェクタ14は燃料配管によって接続されている。
 排気管8の先には三元触媒22が設けられ、その下流に酸素センサ23が設けられる。三元触媒22には温度センサ24が設けられ、三元触媒22の温度を検出する。シリンダブロック2にはシリンダブロック2を流れる水温を測定する水温センサ25が設けられる。
 水温やエンジン回転数の信号はエンジンコントロールユニット(ECU)26に入力され、これらの情報をもとに燃料噴射のオン/オフや可変バルブタイミング装置27の位相が制御される。つまり、ECU26は、可変バルブタイミング装置27の制御装置を構成する。ECU26は、CPUやメモリを有しており、CPUが可変バルブタイミング装置27の制御装置の制御部を構成する。
<電動式の可変バルブタイミング装置の全体構成と駆動原理>
 前記クランク角センサ6とカム角センサ13により検知したクランクシャフト5と吸気カム11・排気カム12の回転数信号をECU26に入力することによって、クランクシャフト5とカムシャフトの相対的な位相差が算出される。本エンジン構成では、クランク角は6deg.CA毎、カム角180deg.CA毎に角度を取得する。前記吸気カム11に設けた可変バルブタイミング装置27は電動式とし、その構成を図2と図3に示す。
 電動式の可変バルブタイミング装置27は、吸気カム11側から、スプロケット27dを備えた減速機27a、吸気カム駆動用モータ27b、およびコントロールユニット27cを備えている。図3には、減速機27aの断面図を示している。なお、電動式の可変バルブタイミング装置27の機械的な構造部分の構成については、例えば特許文献3に示されている構成を適用することができる。前記コントロールユニット27c内部にはモータ駆動のための演算部として汎用IC27c-aとモータドライバ27c-bを有する。これらを踏まえた本実施例における制御ブロック図を図4に示す。
 続いて本実施例における、バルブタイミング装置のECU26が、吸気カム駆動用モータ27bの実回転数と回転方向の情報を取得するまでの取得経路について説明する。まず、コントロールユニット27c内に設けたホールICによって吸気カム駆動用モータ27bの回転を検知し、発生した電圧をコントロールユニット内の回路に設けた汎用IC27c-aで取得する。汎用IC27c-a内部で、入力された電圧を吸気カム駆動用モータ27bの回転数と回転方向に変換し、ECU26に対し出力することで、ECU26ではモータ回転数と回転方向の情報を取得する。
 更に、逐次の最適な可変バルブタイミング装置27の位相を算出し、適切な位相に制御することが求められる。そこで前記実位相の算出結果をもとに要求エンジン回転数と要求エンジントルクから適切なバルブタイミングをECU26が算出する。算出した適切なバルブタイミングをECU26内で前記可変バルブタイミング装置27の吸気カム駆動用モータ27bの目標回転方向と目標回転数へと変換して、Duty制御によるPWM信号としてバルブタイミング装置のコントロールユニット27cに送る。
 コントロールユニット27cでは、目標モータ速度受信部を介して、汎用IC27c-aでモータ目標回転数とモータ目標回転方向の指示を受信する。汎用IC27c-aでは、前記可変バルブタイミング装置27の吸気カム駆動用モータ27bの実回転数と実回転方向を取得しており、モータ目標回転方向とモータ目標回転数の信号から、フィードバック制御をかけた上で、適切なモータ回転数となるように、モータドライバ27c-bに信号を送信する。モータドライバ27c-bではそれらをUVWの三相交流信号に変換し、UVW駆動信号として吸気カム駆動用モータ27bに出力することで、吸気カム駆動用モータ27bを駆動する。吸気カム駆動用モータ27bは、モータドライバ27c-bからUVW駆動信号として供給される電流および電圧によって駆動される。
 本実施例における汎用IC27c-aでは、ECU26からの吸気カム駆動用モータ27bの回転方向・回転数指令を受け取る信号は以下のような仕様とする。カムシャフトの回転方向と同方向の回転を正回転、反対方向の回転を逆回転とし、正回転/逆回転は入力PWMの周波数によって区別する。正回転は100Hz、逆回転は200Hzとする。
 通常、クランクシャフト5の回転数:吸気カム11の回転数は2:1となっているが、可変バルブタイミング装置27によりクランクシャフト5と吸気カム11の位相を変換するためには、吸気カム11の回転数をクランクシャフト5の回転数の1/2倍よりも回転数を高く若しくは低く制御する必要がある。カムシャフトの回転数を瞬間的に高くし、吸気バルブまたは排気バルブ10をエンジンサイクル内で早く開き早く閉じる方向に位相制御することを進角制御と呼び、一方で回転数を瞬間的に低く制御し、吸気バルブまたは排気バルブ10をエンジンサイクル内で遅く開き遅く閉じる方向に位相制御することを遅角制御と呼ぶ。
 ここで可変バルブタイミング装置27を搭載することでミラーサイクルを実施するエンジンのタイプには遅閉じミラーサイクルと、早閉じミラーサイクルとが存在する。本実施例では可変バルブタイミング装置27を吸気カム11に搭載し、早閉じミラーサイクルを可能とするタイプのエンジンを想定している。早閉じのミラーサイクルとは、4サイクルエンジンの吸気行程においてピストン3が下死点に到達する前に吸気バルブ9を閉じるエンジン行程の事を指す。本実施例で取り上げるエンジンは搭載する電動式の可変バルブタイミング装置27によって吸気カム11を進角側に位相変換することで、前記早閉じミラーサイクルを成立することを可能とする構成を有する。
 ここで電動式の可変バルブタイミング装置27による吸気カム11とクランクシャフト5の位相変換方法について説明する。図3(1)は、減速機27aが最進角の状態を示す図、図3(2)は、減速機27aが最遅角の状態を示す図である。図3に示すように、前記電動式の可変バルブタイミング装置27の減速機27aは、内部構造において凹部27jを有する駆動回転体27eと、凸部27iを有する従動回転体27hによって構成されている。減速機27aは、駆動回転体27eの凹部27jが従動回転体27hの凸部27iに嵌合された形状を有している。そして、凸部27iが吸気カム11のカムシャフトの回転方向に沿って凹部27j内を往復移動し、凹部27jの一方側の最進角ストッパ27fまたは他方側の最遅角ストッパ27gに当接することで、前記した吸気カム11の位相について最進角位置および最遅角位置を物理的に決定するという機構となっており、物理的な最進角位置と最遅角位置の範囲内での位相変換を可能とする。吸気カム11の駆動回転体27eと従動回転体27hの位相がずれることで、駆動回転体27eに接続された吸気カム11と従動回転体27hにタイミングベルトを介して接続されたクランクシャフト5との位相が変換されるという構造となっている。
<エンジン低回転時の可変バルブタイミング搭載目的と動作原理>
 次に、前記可変バルブタイミング装置27による位相変換駆動原理を踏まえて、エンジン停止処理時の動作シーケンスを示す。エンジン停止処理時の可変バルブタイミング装置27への要求動作は、可変バルブタイミング装置27の制御装置によって吸気カム11の位相を、エンジン停止前に最進角位置となるように制御し、前記位相を保持したままエンジンを完全に停止(ゼロ回転)させることである。
 前記エンジン停止処理時の位相制御によって、エンジンが完全に停止している間も吸気カム11の位相を最進角位置に保持することが出来れば、次回エンジン再始動時においても吸気カム11の位相を最進角位置から再始動することが可能となる。吸気バルブ9のバルブタイミングを最進角位置に制御した状態でエンジンの再始動を行うことの効果として、初爆前のジェネレータにより回転を上げていくモータリング期間において、エンジン筒内への吸気流量の低下へと繋がることが挙げられる。エンジン始動時に、エンジン筒内への吸気流量が低下することで、エンジンの圧縮行程における空気流量が低減されるため、ポンピングロスが低減される。モータリング期間におけるポンピングロスの抑制は、ピストン3の上下運動に与える負荷の低減となり、エンジン回転数が上昇する際の回転数変動が抑制される。最終的にこのエンジン回転数変動の抑制により、エンジンを再始動する際の振動を低減することが可能となる。そのため、エンジン再始動時の吸気カム11の位相を最進角位置とすることを本実施例における要求とする。
 本実施例における吸気バルブ9の最進角の時のプロファイルを図5に、最遅角の時のプロファイルを図6に示す。また、図5および図6における吸気バルブ9のプロファイルを符号9a(最進角プロファイル)および符号9b(最遅角プロファイル)で示し、排気バルブ10のプロファイルを符号10aで示す。減速機27aにおける物理的な最進角位置でのエンジンサイクル動作を、吸気バルブ9の最進角プロファイル9aとする。つまり、本実施例では、図5の吸気バルブ9のプロファイル、即ち吸気バルブ9のバルブタイミングを最進角位置まで超進角させた状態でエンジン再始動を行うことを目的とする。
 本実施例における吸気カム11及び排気カム12の作用角は、180deg.CAであり、吸気カム11を最進角の位相とした際には、吸気カム11の位相はIVC140deg.CA_ABDC(吸気下死点後にクランクシャフト5が140degの角度だけ回転した後ろで吸気バルブが閉じるバルブタイミング)まで進角する。そこで、図7に吸気カム11を最進角位置に制御したときのエンジンサイクル中の各シーンにおける、エンジン筒内の状態を示す。本構成における吸気カム11の位相を、IVC140deg.CA_ABDCに制御してエンジンを始動させることで、従来のエンジン始動(IVC60deg.CA_ABDC)に比べておおよそ1/3程度に圧縮行程時のピストン3に加わる圧縮負荷を低減させることが可能となる。
 ところで、前記のように可変バルブタイミング装置27を搭載したエンジンのクランクシャフト5の回転に対する吸気カム11の位相は、ECU26が取得したクランク角センサ6と吸気カム角センサ13の回転数に対し、可変バルブタイミング装置27内の吸気カム駆動用モータ27bの回転数をフィードバック制御することでECU26が算出する。エンジン回転数が一定値以上の場合は、前記方法によって吸気カム11の位相を問題なく算出できる。しかしながら、エンジン停止直前やエンジン再始動直後などのエンジン回転数が一定値よりも低いエンジン低回転領域では、前記方法での算出が困難となる。その理由としては、クランクシャフト5の回転数を6deg毎に検出するクランク角センサ6において、エンジン低回転領域では時間に対してクランク角センサ6に入力される信号の間隔が粗くなり、検出周期に粗さが生じるためである。
 そこで、本実施例では、エンジン低回転領域では、通常の制御から特殊な制御に切り替えるという方法により、吸気カム11の位相担保を実現する。エンジン停止シーケンスにおけるエンジン低回転時からエンジン停止後にかけての、時系列ごとの動作名の定義を図8に示す。
 ECU26からのエンジン停止要求を受け、燃料噴射装置による燃料噴射を停止してからエンジン回転数が完全にゼロ回転となるまでのコースティングと呼ばれる期間を“エンジン停止処理中”期間と定義する。エンジン停止処理中の期間を経て、完全にエンジン回転数がゼロ回転となった後の期間を“エンジン停止後”と定義する。図9には、エンジン動作中からエンジン停止処理中、エンジン停止後、次回エンジン再始動時にかけてのエンジン回転数と、吸気カム11の位相と、指示Dutyの一連のシーケンスを示す。また、一連のシーケンスにおけるバッテリーからの電源供給ラインに流入する電流値の履歴を図10に示す。ここでの指示Dutyとは、図4に示すECU26から可変バルブタイミング装置27のコントロールユニット27cへのPWM信号によるモータ回転数とモータの回転方向指示を指す。
<本実施例の適用タイミングの定義>
 次に、本実施例における制御フローについて説明する。本実施例では、ECU26における燃料カット信号がONになった状態での、エンジン回転数200rpmを制御の切換え条件(第1閾値)と定義し、エンジン回転数200rpm以上の領域を通常制御領域、エンジン回転数200rpm未満を低回転制御領域と定義する。
 エンジン回転数における通常制御と低回転制御の判断方法を示すフローチャートを図11に示す。さらにエンジン停止時のDuty制御のイメージ図を図12と図13に示す。図12には通常制御として、エンジン回転数に比例してDuty比が切り替わる様子を示し、図13には低回転制御として、エンジン回転数に比例せず一定のDuty比で指令を出していることを示す。以下、図11に示すフローチャートをステップごとに分け説明を行う。本フローチャートではエンジン動作中を開始条件として、エンジン停止後を終了条件とする。
≪ステップS01≫
 エンジン動作中の可変バルブタイミング装置27の制御は前記の通り、通常制御として、クランク角センサ6からの信号をもとにECU26にて算出するエンジン回転数に比例したDuty比のPWM信号をコントロールユニット27cに対して出力する。
≪ステップS02≫
 ECU26によって、エンジン停止フラグを満たしているか判断する。例えば、バッテリー充電容量を確認する。この時、バッテリー充電容量が上限値に到達した状態をエンジン停止準備完了とする。バッテリー充電容量が上限値に到達していない状態では、キーオフされない限り、仮に車両が信号や渋滞等によって停止してもエンジンは停止させないものとする。
≪ステップS03≫
 エンジンは、停止する前に、燃料噴射を停止させる燃料カット運転に移行するというプロセスを経る。この際、エンジントルクが不要なため、エンジンは燃料カット運転モードに入り、ECU26からインジェクタ14への燃料噴射信号をオフとし、燃焼室への燃料供給が停止される。燃料カット後の燃料カット運転期間中は、エンジンが惰性で回転され、最終的にエンジン回転数はゼロとなる。そのため、燃料噴射が停止されたことを確認したことをエンジン低回転制御に移行するためのフラグの一つとする。
≪ステップS04、S05≫
 燃料カット開始と同時に、可変バルブタイミング装置27に対して吸気カム11の位相を進角させるように、ECU26が制御を行う。燃料カット後の吸気カム11の目標位相は、最進角位置(図5における吸気カムの最進角プロファイル9a)とし、最進角位置への位相変換の完了をエンジン低回転制御に移行するためのフラグの一つとする。
≪ステップS06、S07≫
 通常制御と低回転制御を切り替える条件として、前記のようにエンジン回転数(=クランクシャフトの回転数)を閾値として切り替える。本実施例における第1閾値は、エンジン回転数200rpmとして説明を行う。つまり、前記の通り、低回転制御に入る条件はエンジン回転数が200rpm未満かつ燃料カットかつ吸気カム11が最進角位置に位相制御されていること、のアンド条件とする。
≪ステップS08≫
 前記の通り、燃料カット状態のまま、エンジン回転数が200rpmを下回った瞬間に、図12に示す通常制御から図13に示す低回転制御に切り替わり、ECU26から可変バルブタイミング装置27のコントロールユニット27cへ出力されるPWM信号のDuty比が所定値である10%に固定される。ECU26からコントロールユニット27cに対し、Duty比10%で指令を与えると、本来では、モータ回転数100rpm相当の回転数分の指令となる(エンジン回転数換算で200rpm)。
 しかし、既に可変バルブタイミング装置27により吸気カム11は物理的な最進角位置に位相制御されているため、吸気カム駆動用モータ27bでは、そのタイミングにおける実エンジン回転数に対応するモータ回転数しか発生し得ない。例えば、エンジン100rpmにおける吸気カム駆動用モータ27bの回転数は50rpmとなる。つまり、エンジンの完全停止に至るまでの期間で、最進角位置にて更に進角方向、すなわち、従動回転体27hの凸部27iを駆動回転体27eの最進角ストッパ27fに押し付ける方向に過剰なモータトルクが発生し続けることになる。そのため、エンジンが完全に停止するときまで、吸気カム11は、最進角位置に位相制御された状態を保持することが可能となる。
 また、低回転制御時のDuty比を10%に固定することで、可変バルブタイミング装置27のコントロールユニット27c内の回路及び各回路部品に加わる電流又は電圧を低減することが可能となる。ここで、ECU26からのPWM出力のDuty比を10%に固定せず、コントロールユニット27cに対して回転数指令を与えた場合、可変バルブタイミング装置27の吸気カム駆動用モータ27bに過大なモータトルクが発生し、吸気カム駆動用モータ27bの加熱による故障や、回路部品の発熱による故障を引き起こす懸念がある。
 一方で、ECU26からコントロールユニット27cに与えるDuty比の指令が小さすぎると、吸気カム駆動用モータ27bのモータトルクが過少となり、クランクシャフト5の回転に連動した吸気カム11の回転におけるカム反力等の影響を受け、従動回転体27hの凸部27iが駆動回転体27eの凹部27jの最進角ストッパ27fから離れて、吸気カム11の位相が最進角位置から遅角側にずれてしまう懸念がある。そのため、エンジン低回転時に切り替える固定のDuty比による回転数指示は、搭載するエンジンの種類やカムの幅やカムのリフト量に応じて、最適な数値に切り替える必要がある。本実施例では、モータドライバ27c-bから吸気カム駆動用モータ27bに供給される設定電流および設定電圧を、吸気カム駆動用モータ27bおよび回路の定格電流の3%以上20%以下とする。
≪ステップS09、S10≫
 クランク角センサ6からECU26への信号が、ある一定期間入力されなくなったタイミングで、エンジン回転が完全に停止したエンジン停止と判定し、ECU26からコントロールユニット27cへのPWM信号によるDuty10%固定の出力を停止し、スタンバイ状態とする。
<本実施例の適用効果>
 前記ECU26からのPWM出力のDuty比を切り替える仕様としたことで、エンジン停止時の吸気カム11の位相を可変バルブタイミング装置27によって最進角位置に制御でき、次回エンジン再始動時に吸気カム11の位相を最進角位置から起動することを可能とする。
 前記の通り、エンジン再始動時の点火前時期であるモータリングと呼ばれる期間において、吸気カム11の位相を最進角位置に制御することで、吸気バルブ9のバルブタイミングのプロファイルを最進角プロファイル9aとし、エンジン再始動時におけるエンジン回転数変動の低減及びNVH(Noise、Vibration、Harshness)の低減を図りたい。そのためには、図9に示したように、エンジン停止処理中と同様に、エンジン再始動時においても吸気カム11の位相を最進角位置に制御した状態でエンジン回転数を上昇させる必要がある。そこでエンジン再始動時においても同様にエンジン低回転時の制御とエンジン回転が上昇した後の通常制御とを切り替える。
 図14にエンジン再始動時の低回転制御を踏まえたフローチャートを示す。さらにエンジン始動時のDuty制御のイメージ図を図15と図16に示す。図15には通常制御として、エンジン回転数に比例してDuty比が切り替わる様子を示し、図16には低回転制御として、エンジン回転数に寄らず一定のDuty比で指令を出していることを示す。以下、図14に示すフローチャートをステップごとに分け説明を行う。本フローチャートではエンジン停止中を開始条件として、エンジン再始動後、通常制御に切り替わったことを終了条件とする。
≪ステップS11、S12≫
 前回のエンジン停止以降、次回エンジン再始動までの間をスタンバイ状態として、各装置の準備を行う。
≪ステップS13≫
 各機器の起動条件フラグが全てONになった以降、ECU26からのエンジン始動判定フラグがONとなった時点で、可変バルブタイミング装置27のコントロールユニット27cに回転指令を与え、吸気カム駆動用モータ27bへの通電を開始する。
≪ステップS14、S15≫
 可変バルブタイミング装置27に対して、最進角ストッパ27fの方向に押し付ける、回転指令を与える。この時の回転指令は、エンジン停止処理中と同様に、低回転制御としてカムシャフトの回転方向と同方向への回転指令としてDuty比10%の固定値を与える。ECU26ではクランク角センサ6からの信号を受け、クランクシャフト5の回転数を算出する。クランクシャフト5の回転数が、第2閾値である200rpmを超えた段階で、低回転制御を終了し、ステップS16へ移行する。
≪ステップS16≫
 ステップS16では、低回転制御から通常制御に切り替えを行う。ここでは、ECU26からコントロールユニット27cへのPWM出力におけるDuty比とエンジン回転数が比例する通常制御によって、吸気カム11の位相を最進角に保持制御する。
≪ステップS17≫
 前記のエンジン再始動時のNVH低減に向けて、本実施例ではエンジン回転数1000rpmを第3閾値とし、エンジン回転数が1000rpmとなるまでは、吸気カム11の位相を最進角位置に保持制御する。つまり、ステップS17では、低回転制御から通常制御に切り替わった後のエンジン回転数をモニタし、NVH低減のための位相と初爆の位相を切り替えるトリガの役割を持つ。
≪ステップS18、S19、S20≫
 ステップS17に示す通り、エンジン回転数が第3閾値である1000rpmを超えた段階で、吸気カム11の最進角位置への保持制御を終えて、吸気カム11の位相変換を開始する。位相変換が必要な理由は、吸気カム11の位相が最進角ストッパ27fに当接する位置(バルブププロファイル9a)に存在することで、吸気圧縮量が足りず、そのままでは点火を行えないためである。そのため、第3閾値の1000rpmを超えた段階から、吸気バルブのバルブタイミングを予め設定した任意の初爆バルブタイミング位置に変換する必要がある(ステップS19)。初爆のバルブタイミングに到達したことをECU26が確認し、初爆に向けてECU26からインジェクタ14へ燃料噴射信号をオンとし、燃焼室への燃料供給を開始する。
≪ステップS21≫
 以降次回エンジン停止時まで、エンジン回転数とDuty比を比例させて、可変バルブタイミング装置27を駆動する通常制御へと切り替える。
 以上の制御により、エンジン停止から再始動に伴うエンジン回転数変動の低減及び車体振動(NVH)の低減することが可能となる。 
[実施例2]
<適用エンジン構成>
 本実施例における、エンジン及びその周辺機器の基本構成は実施例1と同様に図1の通りである。本実施例のエンジンはタイプとして、遅閉じミラーサイクルを採用したエンジンとする。遅閉じミラーサイクルの吸気バルブ9及び排気バルブ10のプロファイルを図17と図18に示す。図17には遅閉じミラーサイクルエンジンにおいて、吸気カム11の位相を最進角位置に設定した場合のプロファイルを示し、図18には遅閉じミラーサイクルエンジンにおいて、吸気カム11の位相を最遅角位置に設定した場合のプロファイルを示している。遅閉じミラーサイクルの機能を有するエンジンではカムプロファイルとして、早閉じミラーサイクルの機能を有するエンジンのカムと比較し、カム幅・カムのリフト量共に大きいという傾向がある。
<可変バルブタイミング装置27の制御方法>
 遅閉じミラーサイクルではエンジン再始動時に吸気カム11の位相を最遅角位置に制御した状態で再始動することが望ましい。遅閉じミラーサイクルを搭載するエンジンでは早閉じミラーサイクルとは反対に、4サイクルエンジンの行程において、吸気行程の途中で吸気バルブ9を開弁し、圧縮行程に入ってから吸気バルブ9を閉じる位相を可能とする機構を有している。そのため、エンジン再始動時の吸気カム11の位相を最遅角位置に制御することで、圧縮行程におけるエンジン筒内の空気流量を低減でき、エンジン再始動時のクランクシャフト5の回転上昇時の回転数変動の低減及びエンジン再始動時の車体振動(NVH)の抑制を図ることが可能となる。本実施例ではこの動作を吸気カムシャフトに搭載したバルブタイミング装置による位相変換によって成立させる。
 本実施例ではエンジン回転数に応じて、制御を切り替えることで、エンジン再始動時に吸気カム11の位相を最遅角位置に制御した状態で再始動させることが可能とする。遅閉じミラーサイクルエンジンにおいて、エンジン低回転制御時に、従動回転体27hの凸部27iを最遅角ストッパ27gに押し当てるためには、吸気カム駆動用モータ27bの回転数をカムシャフトの回転方向に対して逆回転またはゼロ回転に制御することが求められる。
 本実施例におけるエンジン低回転時の制御では、カムシャフトの回転と逆の方向に対する回転数指令として、ECU26から可変バルブタイミング装置27のコントローラ27cへのPWM出力を、周波数200Hz、Duty比10%の指令を与える。これにより、モータに供給される電流又は電圧を、最遅角位置にてカムシャフトの相対回転位相を遅角方向に変化させる電流又は電圧に固定する。そして、従動回転体27hの凸部27iを凹部27j内の最遅角ストッパ27gに当接させて最遅角ストッパ方向に押し付けたまま、エンジン停止時におけるエンジン低回転領域からエンジン停止時までの吸気カム11の位相を最遅角位置に制御することを可能とする。
 本実施例では、ECU26における燃料カット信号がONになった状態での、エンジン回転数200rpmを制御の切換え条件(第1閾値)と定義し、エンジン回転数200rpm以上の領域を通常制御領域、エンジン回転数200rpm未満を低回転制御領域と定義する。ECU26においてエンジン停止を判断し、インジェクタ14による筒内への燃料供給を停止した後、エンジン回転数は惰性による回転に切り替わるため徐々にエンジン回転数、即ちクランクシャフト5の回転数は低下していく。ECU26によってクランク角センサ6の信号をクランクシャフト5の回転数として算出し、前記の通り200rpm未満になった段階で、バルブタイミング装置の制御を通常制御から低回転制御(200Hz、Duty比10%固定)へと切り替える。本方式で制御することで、エンジン停止時まで吸気カム11の位相を最遅角位置に制御することを可能とする。
<本実施例の適用効果>
 一方、前記方式によりエンジン停止時の吸気カム11の位相を最遅角位置に保持制御でき、以降、エンジン停止時も吸気カム11の位相を最遅角位置に制御できた場合、次回エンジン再始動時においても最遅角位置から始動することを可能とする。エンジン再始動時における制御切り替えについても、エンジン回転数200rpmを閾値とする。エンジン再始動時の初爆を迎えるまでの期間において、クランク角センサ6からの信号をECU26が取得し、エンジン回転数を算出し、200rpm以上の回転数を検出した段階で、低回転制御から通常制御へと切り替え、以降エンジン回転数に追従させるDuty比をECU26から可変バルブタイミング装置27のコントロールユニット27cにPWM信号として出力する。
 上記した本実施例における可変バルブタイミング装置の制御装置は、エンジン停止処理中およびエンジン再始動時の燃料カット中における、バルブタイミング位相を最進角ストッパ位置又は最遅角ストッパ位置に制御し、エンジン回転数の取得が困難な低回転領域においては低Duty比に固定したストッパ方向への指令を吸気カム駆動用モータに与え続け、正確なエンジン回転数が取得可能な領域ではエンジン回転数に比例した可変Duty指令をモータに送り、エンジン回転数に応じて制御を切り替えることを可能とすることで、エンジン低回転時に任意のバルブタイミングに制御することを可能とする。
 本発明によれば、エンジン低回転時に吸気カム11の位相を任意の位置に制御した状態でエンジンを停止することで、次回エンジン再始動時において吸気カム11を任意の位相から始動でき、エンジン筒内への吸気量を低減させエンジン回転数変動およびエンジン再始動時の車体NVHを低減することができる。
 本発明1は、内燃機関のクランクシャフトに対するカムシャフトの相対回転位相を前記カムシャフトに連結されたモータのモータ回転数の調整によって変化させる可変バルブタイミング装置を備えた内燃機関に適用され、前記可変バルブタイミング装置を制御する制御部を有する制御装置であって、前記制御部は、前記内燃機関のエンジン停止処理中において、前記クランクシャフトの回転数が第1閾値以上のときは、前記クランクシャフトの回転数に応じて前記モータに供給される電流又は電圧を調整して前記カムシャフトの相対回転位相を最進角位置又は最遅角位置へ変化させる通常制御と、前記クランクシャフトの回転数が第1閾値よりも低くなってからゼロ回転になるまでの間、前記モータに供給される電流又は電圧を一定に固定して前記カムシャフトの相対回転位相を最進角位置又は最遅角位置に保持する低回転制御と、を行うことを特徴とする。
 本発明1によれば、クランクシャフトの回転数が任意の回転数まで低下して内燃機関が完全に停止するまで、カムシャフトの相対回転位相を最進角位置または最遅角位置に保持することができる。したがって、早閉じ型のミラーサイクルエンジンに適用することができる。特に、エンジン停止直前におけるエンジン回転が不安定な状態において、カム山のフリクションやバルブスプリングの反力によって、カムシャフトの相対回転位相が最進角位置から遅角側に戻される、あるいは、最遅角位置から進角側に戻されるのを防ぐことができる。
 本発明2は、本発明1に記載の制御装置であって、前記制御部は、前記低回転制御において、前記モータに供給される電流又は電圧を、前記最進角位置にて前記カムシャフトの相対回転位相を進角方向に変化させる電流又は電圧、または、前記最遅角位置にて前記カムシャフトの相対回転位相を遅角方向に変化させる電流又は電圧に固定する制御を行うことを特徴とする。
 本発明2によれば、最進角位置にて進角方向にカムシャフトを付勢し、また、最遅角位置にて遅角方向にカムシャフトを付勢することができる。したがって、クランクシャフトの回転が完全に停止するまで、カムシャフトの相対回転位相を最進角位置または最遅角位置に保持することができる。
 本発明3は、本発明2に記載の制御装置であって、前記制御部は、前記低回転制御において固定される前記モータの電流又は電圧を、前記通常制御において前記第1閾値に応じて設定される前記モータの電流又は電圧と同じ値に設定していることを特徴とする。
 本発明3によれば、エンジン停止処理によりクランクシャフトの回転数が漸次低下するので、カムシャフトはクランクシャフトに連動して回転され、その回転数は漸次低くなる。一方、低回転制御において、モータには第1閾値に応じて設定される電流又は電圧が供給されている。したがって、カムシャフトは最進角位置において進角方向に付勢され、また、最遅角位置において遅角方向に付勢される。したがって、カムシャフトの相対回転位相を最進角位置または最遅角位置に保持することができる。
 本発明4は、本発明1に記載の制御装置であって、前記制御部は、前記内燃機関への燃料供給が停止され、かつ、前記クランクシャフトの回転数が前記第1閾値よりも小さく、かつ、前記カムシャフトの相対回転位相が前記最進角位置又は最遅角位置に制御されていることを条件に、前記通常制御を前記低回転制御に切り替えることを特徴とする。
 本発明4によれば、内燃機関の停止直前は回転数の低下に伴い、検出周期に粗さが生じ、カム角センサやクランク角センサによって取得する信号が極端に粗くなるが、適切なタイミングで低回転制御に切り替えることができ、バルブタイミングを正確な位相に制御することができる。
 本発明5は、本発明1に記載の制御装置において、前記可変バルブタイミング装置は、指示パルスを有するPWM信号に基づいて前記モータに前記電流又は電圧を供給して前記モータを駆動するモータドライバを備え、前記制御部は、前記通常制御では、前記クランクシャフトの回転数に比例したDuty比のPWM信号を前記モータドライバに出力し、前記低回転制御では、一定値に固定された固定Duty比のPWM信号を前記モータドライバに出力することを特徴とする。
 本発明5によれば、クランクシャフトの回転数が第1閾値以上のとき、モータドライバは、クランクシャフトの回転数に比例したDuty比のPWM信号に基づいてモータを駆動し、第1閾値よりも低いときは、一定値に固定された固定Duty比を用いてモータを駆動する。したがって、PWM信号を用いたモータの制御により、カムシャフトの相対回転位相を最進角位置まで変化させ、最進角位置又は最遅角位置に保持することができる。
 本発明6は、本発明5に記載の制御装置において、前記モータドライバは、一定値に固定された固定Duty比の前記PWM信号が前記制御部から入力された場合に、前記モータに設定電流値以下の電流又は設定電圧値以下の電圧を供給することを特徴とする。
 本発明6によれば、低回転制御時においてモータを制御して、最進角位置又は最遅角位置に保持することができる。
 本発明7は、本発明1に記載の制御装置において、前記制御部は、前記内燃機関のエンジン再始動時のモータリング期間において、前記クランクシャフトの回転数がゼロ回転から第2閾値に上昇するまでの間、前記モータに供給される電流又は電圧を一定に固定して前記カムシャフトの相対回転位相を最進角位置又は最遅角位置に保持する低回転制御と、前記クランクシャフトの回転数が第2閾値を超えたことを条件として、前記クランクシャフトの回転数に応じて前記モータに供給される電流又は電圧を調整して前記カムシャフトの相対回転位相を最進角位置又は最遅角位置へ変化させる通常制御と、を行うことを特徴とする。
 本発明7によれば、エンジン再始動時のモータリング期間において、クランクシャフトの回転数がゼロ回転から第2閾値に上昇するまでの間、カムシャフトの相対回転位相を最進角位置又は最遅角位置に保持することができる。
 本発明8は、本発明7に記載の制御装置において、前記制御部は、前記クランクシャフトの回転数が第2閾値よりも大きい第3閾値を超えたことを条件として、前記カムシャフトの相対回転位相を初爆バルブタイミング位置に変換させる制御を行うことを特徴とする。
 本発明8によれば、前記カムシャフトの相対回転位相を初爆バルブタイミング位置に変換して吸気圧縮量を確保し、エンジン筒内の混合気に点火を行うことができる。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1…シリンダヘッド、2…シリンダブロック、3…ピストン、4…コンロッド、5…クランクシャフト、6…クランク角センサ、7…吸気管、8…排気管、9…吸気バルブ、10…排気バルブ、11…吸気カム、12…排気カム、13…吸気カム角センサ、14…インジェクタ、15…点火プラグ、16…点火コイル、17…燃料タンク、18…フィードポンプ、19…高圧燃料ポンプ、20…コモンレール、21…燃圧センサ、22…三元触媒、23…酸素センサ、24…温度センサ、25…水温センサ、26…ECU(制御装置)、27…可変バルブタイミング装置、27a…減速機、27b…吸気カム駆動用モータ、27c…コントロールユニット、27d…カムシャフトスプロケット、27e…駆動回転体、27j…駆動回転体凹部、27f…駆動回転体凹部最進角ストッパ、27g…駆動回転体凹部最遅角ストッパ、27h…従動回転体、27i…従動回転体凸部、27c-a…汎用IC、27c-b…モータドライバ、9a…早閉じミラーサイクル最進角吸気バルブプロファイル、9b…早閉じミラーサイクル最遅角吸気バルブプロファイル、10a…早閉じミラーサイクル排気バルブプロファイル、9c…遅閉じミラーサイクル最進角吸気バルブプロファイル、9d…遅閉じミラーサイクル最遅角吸気バルブプロファイル、10c…遅閉じミラーサイクル排気バルブプロファイル

Claims (8)

  1.  内燃機関のクランクシャフトに対するカムシャフトの相対回転位相を前記カムシャフトに連結されたモータのモータ回転数の調整によって変化させる可変バルブタイミング装置を備えた内燃機関に適用され、前記可変バルブタイミング装置を制御する制御部を有する制御装置であって、
     前記制御部は、前記内燃機関のエンジン停止処理中において、前記クランクシャフトの回転数が第1閾値以上のときは、前記クランクシャフトの回転数に応じて前記モータに供給される電流又は電圧を調整して前記カムシャフトの相対回転位相を最進角位置又は最遅角位置へ変化させる通常制御と、前記クランクシャフトの回転数が第1閾値よりも低くなってからゼロ回転になるまでの間、前記モータに供給される電流又は電圧を一定に固定して前記カムシャフトの相対回転位相を最進角位置又は最遅角位置に保持する低回転制御と、を行うことを特徴とする可変バルブタイミング装置の制御装置。
  2.  前記制御部は、前記低回転制御において、前記モータに供給される電流又は電圧を、前記最進角位置にて前記カムシャフトの相対回転位相を進角方向に変化させる電流又は電圧、または、前記最遅角位置にて前記カムシャフトの相対回転位相を遅角方向に変化させる電流又は電圧に固定する制御を行うことを特徴とする請求項1に記載の可変バルブタイミング装置の制御装置。
  3.  前記制御部は、前記低回転制御において固定される前記モータの電流又は電圧を、前記通常制御において前記第1閾値に応じて設定される前記モータの電流又は電圧と同じ値に設定していることを特徴とする請求項2に記載の可変バルブタイミング装置の制御装置。
  4.  前記制御部は、前記内燃機関への燃料供給が停止され、かつ、前記クランクシャフトの回転数が前記第1閾値よりも小さく、かつ、前記カムシャフトの相対回転位相が前記最進角位置又は最遅角位置に制御されていることを条件に、前記通常制御を前記低回転制御に切り替えることを特徴とする請求項1に記載の可変バルブタイミング装置の制御装置。
  5.  前記可変バルブタイミング装置は、指示パルスを有するPWM信号に基づいて前記モータに前記電流又は電圧を供給して前記モータを駆動するモータドライバを備え、
     前記制御部は、前記通常制御では、前記クランクシャフトの回転数に比例したDuty比のPWM信号を前記モータドライバに出力し、前記低回転制御では、一定値に固定された固定Duty比のPWM信号を前記モータドライバに出力することを特徴とする請求項1に記載の可変バルブタイミング装置の制御装置。
  6.  前記モータドライバは、一定値に固定された固定Duty比の前記PWM信号が前記制御部から入力された場合に、前記モータに設定電流値以下の電流又は設定電圧値以下の電圧を供給することを特徴とする請求項5に記載の可変バルブタイミング装置の制御装置。
  7.  前記制御部は、前記内燃機関のエンジン再始動時のモータリング期間において、前記クランクシャフトの回転数がゼロ回転から第2閾値に上昇するまでの間、前記モータに供給される電流又は電圧を一定に固定して前記カムシャフトの相対回転位相を最進角位置又は最遅角位置に保持する低回転制御と、前記クランクシャフトの回転数が第2閾値を超えたことを条件として、前記クランクシャフトの回転数に応じて前記モータに供給される電流又は電圧を調整して前記カムシャフトの相対回転位相を最進角位置又は最遅角位置へ変化させる通常制御と、を行うことを特徴とする請求項1に記載の可変バルブタイミング装置の制御装置。
  8.  前記制御部は、前記クランクシャフトの回転数が第2閾値よりも大きい第3閾値を超えたことを条件として、前記カムシャフトの相対回転位相を初爆バルブタイミング位置に変換させる制御を行うことを特徴とする請求項7に記載の可変バルブタイミング装置の制御装置。
PCT/JP2021/023772 2020-09-02 2021-06-23 可変バルブタイミング装置の制御装置 WO2022049869A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/011,977 US12018622B2 (en) 2020-09-02 2021-06-23 Controller device for variable valve timing apparatus
JP2022546902A JP7361221B2 (ja) 2020-09-02 2021-06-23 可変バルブタイミング装置の制御装置
CN202180043653.6A CN115917129A (zh) 2020-09-02 2021-06-23 可变阀正时装置的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020147837 2020-09-02
JP2020-147837 2020-09-02

Publications (1)

Publication Number Publication Date
WO2022049869A1 true WO2022049869A1 (ja) 2022-03-10

Family

ID=80491031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023772 WO2022049869A1 (ja) 2020-09-02 2021-06-23 可変バルブタイミング装置の制御装置

Country Status (3)

Country Link
JP (1) JP7361221B2 (ja)
CN (1) CN115917129A (ja)
WO (1) WO2022049869A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220364485A1 (en) * 2021-05-13 2022-11-17 Borgwarner Inc. Method for controlling camshaft orientation for improved engine re-starting of an engine having start-stop capability

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291792A (ja) * 2005-04-08 2006-10-26 Toyota Motor Corp 内燃機関の制御装置
JP2009197591A (ja) * 2008-02-19 2009-09-03 Hitachi Ltd 内燃機関のバルブタイミング制御装置
JP2012246860A (ja) * 2011-05-30 2012-12-13 Toyota Motor Corp 車両の制御装置
JP2016199202A (ja) * 2015-04-14 2016-12-01 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP2018131985A (ja) * 2017-02-16 2018-08-23 日立オートモティブシステムズ株式会社 可変バルブタイミング装置の制御装置及び制御方法
JP2019157750A (ja) * 2018-03-12 2019-09-19 ダイハツ工業株式会社 内燃機関

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291792A (ja) * 2005-04-08 2006-10-26 Toyota Motor Corp 内燃機関の制御装置
JP2009197591A (ja) * 2008-02-19 2009-09-03 Hitachi Ltd 内燃機関のバルブタイミング制御装置
JP2012246860A (ja) * 2011-05-30 2012-12-13 Toyota Motor Corp 車両の制御装置
JP2016199202A (ja) * 2015-04-14 2016-12-01 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP2018131985A (ja) * 2017-02-16 2018-08-23 日立オートモティブシステムズ株式会社 可変バルブタイミング装置の制御装置及び制御方法
JP2019157750A (ja) * 2018-03-12 2019-09-19 ダイハツ工業株式会社 内燃機関

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220364485A1 (en) * 2021-05-13 2022-11-17 Borgwarner Inc. Method for controlling camshaft orientation for improved engine re-starting of an engine having start-stop capability
US11643950B2 (en) * 2021-05-13 2023-05-09 Borgwarner Inc. Method for controlling camshaft orientation for improved engine re-starting of an engine having start-stop capability

Also Published As

Publication number Publication date
US20230250767A1 (en) 2023-08-10
CN115917129A (zh) 2023-04-04
JPWO2022049869A1 (ja) 2022-03-10
JP7361221B2 (ja) 2023-10-13

Similar Documents

Publication Publication Date Title
US7509932B2 (en) Control apparatus for controlling internal combustion engines
US7458353B2 (en) Automatic internal combustion engine stop device, internal combustion engine provided with the same and automatic internal combustion engine stop method
US7726270B2 (en) Engine start control apparatus and engine start control method
US8843294B2 (en) Apparatus for and method of controlling variable valve timing mechanism
US8955494B2 (en) Control apparatus for and control method of controlling variable valve mechanism in hybrid vehicle
US7762226B2 (en) Method for adjusting a camshaft of an internal combustion engine and internal combustion engine with an adjustable camshaft
US20060272608A1 (en) Compression ignition engine
US10060403B2 (en) System for controlling starting of engine
US7191747B2 (en) Method for starting an internal combustion engine
JP4857685B2 (ja) エンジンの始動方法及びエンジンの始動装置
WO2022049869A1 (ja) 可変バルブタイミング装置の制御装置
JP2010168966A (ja) 車両用内燃機関の制御装置
US10024293B2 (en) System for controlling torque applied to rotating shaft of engine
JP2007239461A (ja) 内燃機関の制御装置
US12018622B2 (en) Controller device for variable valve timing apparatus
JP2020169581A (ja) 内燃機関の制御装置
JP2004036428A (ja) 内燃機関の制御装置
JP4826543B2 (ja) 車両用エンジンの制御装置
WO2020170634A1 (ja) ハイブリッド車両の制御装置
JP7299122B2 (ja) ハイブリッド車両の制御方法及びハイブリッド車両の制御装置
JP2019173586A (ja) 内燃機関の制御装置
WO2022176254A1 (ja) 電動バルブタイミング制御装置及び電動バルブタイミング制御方法
US11002163B2 (en) Valve timing controller and valve timing control method
JP4775315B2 (ja) 車両用エンジンの制御装置
JP2009036115A (ja) 車両用エンジンの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546902

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863927

Country of ref document: EP

Kind code of ref document: A1