WO2022049650A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2022049650A1
WO2022049650A1 PCT/JP2020/033164 JP2020033164W WO2022049650A1 WO 2022049650 A1 WO2022049650 A1 WO 2022049650A1 JP 2020033164 W JP2020033164 W JP 2020033164W WO 2022049650 A1 WO2022049650 A1 WO 2022049650A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
electric machine
threshold
cooling gas
rotary electric
Prior art date
Application number
PCT/JP2020/033164
Other languages
English (en)
French (fr)
Inventor
和良 安達
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021510245A priority Critical patent/JPWO2022049650A1/ja
Priority to PCT/JP2020/033164 priority patent/WO2022049650A1/ja
Publication of WO2022049650A1 publication Critical patent/WO2022049650A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing

Definitions

  • This application relates to a rotary electric machine.
  • the end of the rotor winding of a conventional rotary electric machine holds the space between adjacent rotor windings in the axial and circumferential directions by a spacing piece that is an insulator, and this spacing is used to reduce the temperature of the rotor winding.
  • Cooling ventilation passages are provided on both side surfaces of the piece to perform a cooling function at the end of the rotor winding.
  • a wavy partition is provided along the cooling air passage to suppress the separation of the flow at the curved portion, thereby reducing the pressure loss and making the flow in the cooling air passage uniform. This makes it possible to suppress a local temperature rise at the end of the rotor winding (see, for example, Patent Document 1 below).
  • the spacing pieces arranged between adjacent rotor windings have a trapezoidal shape in which the radial outer width of the spacing pieces is long and the radial inner width is short due to the structure of a cylindrical rotor. have. Further, in the central portion of the trapezoidal spacing piece, a threshold portion is provided in which a chevron-shaped support portion for holding between adjacent rotor windings is connected. Since the entrance / exit of the cooling ventilation path is located inside the rotor and the central part has a threshold, the ventilation area is small and the ventilation resistance is large. Therefore, securing and increasing the cooling gas flowing into the cooling ventilation passage has been an issue.
  • the present application discloses a technique for solving the above-mentioned problems, increases the cooling gas flowing into the rotor winding end of the rotor of the rotary electric machine, improves the cooling performance, and makes the rotary electric machine.
  • the purpose is to obtain a rotary electric machine having a rotor that does not generate overheating of the insulator even if the output of the above is increased.
  • the rotary electric machine disclosed in the present application is A rotary electric machine having a rotor provided on a rotor shaft and a stator arranged around the rotor.
  • the rotor comprises a rotor core and a rotor winding wound around the rotor core at intervals.
  • the rotor winding includes a rotor winding end portion formed so as to project from the axial end surface of the rotor core. It is arranged between the adjacent rotor winding ends to hold the rotor winding ends, and has a threshold portion in the center between the adjacent rotor winding ends, and both sides of the threshold portion. It has a space piece with a ventilation path formed on the side to allow cooling gas to flow.
  • a rotary electric machine in which the tip of the threshold portion on the ventilation path inlet side of the interval piece is reduced in the direction of introduction of the cooling gas.
  • the insulator is provided. It is possible to obtain a rotary electric machine having a rotor that does not cause overheating.
  • FIG. 5 is an enlarged cross-sectional view of a main part of a rotor winding end portion of the rotary electric machine according to the first embodiment. It is a perspective view which shows the state which the interval piece is arranged at the rotor winding end part of FIG. It is a perspective view which shows the flow of the cooling gas in the ventilation path of the interval piece of FIG.
  • FIG. 5 is an enlarged cross-sectional view showing the vicinity of the ventilation passage entrance of the interval piece of the rotary electric machine according to the first embodiment.
  • FIG. 5 is an enlarged cross-sectional view showing the vicinity of the ventilation passage entrance of the interval piece of the rotary electric machine according to the first embodiment.
  • FIG. 5 is an enlarged cross-sectional view showing the vicinity of the ventilation passage entrance of the interval piece of the rotary electric machine according to the first embodiment.
  • FIG. 1 is a perspective view for demonstrating another structure of the threshold part of the interval piece of the rotary electric machine of Embodiment 1.
  • FIG. 10A It is a partial perspective view explaining the ventilation passage outlet part of the interval piece of the rotary electric machine by the comparative example. It is a partial perspective view which shows the flow of the cooling gas of FIG. 10A. It is a partial perspective view explaining the ventilation passage outlet part of the interval piece of the rotary electric machine according to Embodiment 2.
  • FIG. 11A It is a partial perspective view explaining the ventilation passage outlet part of the interval piece of the rotary electric machine according to Embodiment 2.
  • FIG. 12A shows the flow of the cooling gas of FIG. 12A.
  • the present application relates to a rotary electric machine used for, for example, a turbine generator, and particularly to a rotary electric machine having improved ventilation cooling performance of a rotor.
  • a rotary electric machine used for, for example, a turbine generator
  • a rotary electric machine having improved ventilation cooling performance of a rotor a rotary electric machine having improved ventilation cooling performance of a rotor.
  • the radial direction of the rotary electric machine is X
  • the radial direction outer side is X1
  • the radial direction inner side is X2
  • the axial direction of the rotary electric machine is Y
  • the axial direction outer side is Y1
  • the axial direction inner side is Y2.
  • the circumferential direction of the rotary electric machine will be described as Z.
  • FIG. 1 is a cross-sectional side view showing the entire rotary electric machine according to the first embodiment.
  • a hollow cylindrical stator 3 and a cylindrical rotor 4 having a diameter smaller than the diameter of the hollow portion of the stator 3 are concentrically arranged via a gap 190.
  • conductive coils such as copper are arranged in the axial direction of the iron core slot, respectively, and when the rotor 4 is rotated with the coil on the rotor side excited, the stator 4 is moved to the stator side. A current is induced.
  • the stator 3 and the rotor 4 require special cooling because a large amount of heat is generated due to the electrical loss. Therefore, fans 5 are installed on both sides of the rotor shaft 8 of the rotor 4, and forced cooling is performed by sending cooling gas into the rotary electric machine 100.
  • the cooling gas for cooling the inside of the rotary electric machine 100 for example, a gas such as air or hydrogen is used.
  • the rotary electric machine 100 is surrounded by a casing 2 and includes a stator 3, a rotor 4, and a fan 5 as described above.
  • the stator 3 includes a stator core 6 and a stator winding 7.
  • the rotor 4 includes a rotor shaft 8, a rotor core 9, a rotor winding 10, a coil end holding ring 12, and an end ring 13.
  • the rotor shaft 8 is rotatably supported by a bearing 50 installed in the casing 2, and fans 5 are attached to both sides of the rotor shaft 8.
  • the outer circumference of the rotor core 9 and the inner circumference of the stator core 6 are separated by a gap 190.
  • 7a is a stator winding end portion
  • 7b is a connection line electrically connected to the stator winding end portion 7a.
  • FIG. 2 is a perspective view showing a rotor portion of the rotary electric machine according to the first embodiment, and shows a state in which the coil end holding ring and the end ring are removed.
  • the rotor winding 10 is centrally wound around the rotor magnetic pole 30 in a plurality of slots (not shown) provided in the left and right rotor cores 9 of each rotor magnetic pole 30.
  • a plurality of saddle-shaped rectangular rotor coils formed by turning are arranged concentrically.
  • the rotor winding 10 has a coil piece (not shown) in the slot and a rotor winding end portion 20 protruding from the axial end surface 9a of the rotor core 9.
  • the rotor winding end portion 20 has a pair of projecting portions 21 projecting linearly from the axial end surface 9a of the rotor core 9 and a connecting portion 22 connecting the projecting portions 21 to each other.
  • a plurality of rotor winding end portions 20 are arranged so as to project from the axial end portions of the rotor magnetic poles 30 at intervals from each other.
  • FIG. 3 is a plan view showing a main part of the rotor winding end according to the first embodiment.
  • each of the plurality of rotor winding end portions 20 has a protruding portion 21 and a connecting portion 22.
  • a first interval piece 16 as an interval piece is arranged in the axial direction Y between the plurality of projecting portions 21.
  • the first interval piece 16 has a first threshold portion 160 (see FIG. 5) as a threshold portion in the center between adjacent projecting portions 21. Both side surface portions of the first spacing piece 16 are in contact with the protruding portion 21 of the rotor winding end portion 20, respectively.
  • the first spacing piece 16 has a first ventilation passage 17 meandering and extending along the longitudinal direction of the side wall surface of each protruding portion 21 that abuts on both side surfaces thereof.
  • a second spacing piece 18 as a spacing piece is arranged in the circumferential direction Z between the plurality of connecting portions 22.
  • the second interval piece 18 has a second threshold portion 180 (see FIG. 5) as a threshold portion in the center between the adjacent connecting portions 22. Both side surface portions of the second spacing piece 18 are in contact with the connecting portion 22 of the rotor winding end portion 20, respectively.
  • the second spacing piece 18 is formed with a second ventilation passage 19 that meanders and extends along the longitudinal direction of the side wall surface of each connecting portion 22 that abuts on both side surfaces thereof.
  • the first interval piece 16 and the second interval piece 18 may be collectively referred to as an interval piece
  • the first air passage 17 and the second air passage 19 may be collectively referred to as an air passage.
  • the partition plate 40 has a pair of side plates 40a in which the bottom portion of the radial inner side X2 is inserted into the groove of the rotor shaft 8 and the end portion of the axial inner side Y2 is in contact with the side wall of the rotor magnetic pole 30. It is provided with an end plate 40b joined to the end of the axially outer side Y1 of the side plate 40a and arranged in the opening 13a (see FIG. 4) of the end ring 13.
  • FIG. 4 is an enlarged cross-sectional view of a main part of the rotor winding end portion of the rotary electric machine according to the first embodiment, and is a partially enlarged cross-sectional view of a region surrounded by the alternate long and short dash line C in FIG.
  • the coil end holding ring 12 covers and holds the outer peripheral portions of the spacing pieces 16 and 18 arranged between the rotor winding end portion 20 and the adjacent rotor winding end portions 20.
  • the end of the axially inner Y2 of the coil end holding ring 12 is fitted to the end of the rotor core 9.
  • An end ring 13 is fitted to the end of the axially outer Y1 of the coil end holding ring 12.
  • the opening 13a of the end ring 13 forms a ventilation path between the rotor shaft 8 and the rotor shaft 8 through which the cooling gas flows as shown by the arrow A1.
  • the cooling of the rotary electric machine will be described with reference to FIGS. 1, 3, and 4.
  • the cooling gas pressure-fed by the rotation of the fan 5 flows as shown by the arrow A1.
  • the cooling gas of arrow A1 is introduced from the opening 13a of the end ring 13.
  • the cooling gas is introduced from the ventilation path inlet (see FIG. 6) of the first interval piece 16 and flows through the first ventilation path 17 of the first interval piece 16 in the direction of arrow A3. Further, it flows through the second ventilation passage 19 of the second spacing piece 18 in the direction of arrow A4, and is led out in the direction of arrow A5 from the ventilation passage outlet (see FIG.
  • the cooling gas led out in the direction of arrow A5 flows in the direction of arrow A6 from the notched exhaust passage 31 of the rotor magnetic pole 30, and flows into the gap 190 between the stator 3 and the rotor 4.
  • the partition plate 40 is provided to allow the cooling gas of the arrow A5 led out from the ventilation passage outlet of the second interval piece 18 to flow into the notched exhaust passage 31 of the rotor magnetic pole 30. Further, the other cooling gas pumped by the rotation of the fan 5 cools the stator winding end portion 7a and joins the cooling gas of the arrow A6.
  • the protruding portion 21 and the connecting portion 22 which are the rotor winding end portions 20 due to the cooling gas flowing through the first ventilation passage 17 of the first spacing piece 16 and the second ventilation passage 19 of the second spacing piece 18. Is cooled, and the temperature rise of the rotor winding end portion 20 is suppressed.
  • FIG. 5 is a perspective view showing a state in which spacing pieces are arranged at the end of the rotor winding of FIG. 1
  • FIG. 6 is a perspective view showing a flow of cooling gas in the ventilation passage of the spacing pieces of FIG.
  • the first spacing piece 16 is arranged between the protruding portions 21 of the rotor winding end portion 20 and serves to hold the protruding portion 21.
  • the first interval piece 16 includes a first threshold portion 160 arranged in the axial direction Y, a mountain-shaped winding support portion 16a and a wavy winding support portion 16b installed on both side surfaces of the first threshold portion 160. I have.
  • the mountain-shaped winding support portion 16a and the wavy winding support portion 16b come into contact with the adjacent protruding portion 21.
  • the first interval piece 16 forms the first ventilation passage 17 by the first threshold portion 160, the winding support portion 16a, and the winding support portion 16b.
  • the second spacing piece 18 is arranged between the connecting portions 22 of the rotor winding end portions 20 and serves to hold the connecting portions 22.
  • the second interval piece 18 includes a second threshold portion 180 arranged in the circumferential direction Z, a mountain-shaped winding support portion 18a and a wavy winding support portion 18b installed on both side surfaces of the second threshold portion 180. I have.
  • the mountain-shaped winding support portion 18a and the wavy winding support portion 18b come into contact with the adjacent connecting portion 22. Further, the second interval piece 18 forms a second ventilation passage 19 by the second threshold portion 180, the winding support portion 18a, and the winding support portion 18b. As shown in FIG. 6, the cooling gas flowing in the direction of arrow A2 from the ventilation passage inlet portion 16c of the first interval piece 16 flows through the first ventilation passage 17 formed in the first interval piece 16 in the direction of arrow A3. The second ventilation passage 19 formed in the second interval piece 18 flows in the direction of arrow A4, and flows out from the ventilation passage outlet portion 18c in the direction of arrow A5.
  • FIG. 7 is a partial cross-sectional view of the rotor winding end portion and the spacing piece according to the comparative example as viewed from the axial direction.
  • the first spacing piece 16 installed between the protruding portions 21 of the rotor winding end 20 has a width Z in the circumferential direction on the radial outer side X1. It is long and the width in the circumferential direction Z becomes short in the radial inner side X2.
  • the first threshold portion 160 located at the center of the circumferential direction Z of the first spacing piece 16 is provided with the winding support portion 16a and the winding support portion 16b on both side surfaces to provide the first ventilation passage 17.
  • the width of the first threshold portion 160 in the circumferential direction Z needs to have a predetermined thickness, and is formed to have a constant width throughout. Therefore, for such a structural reason, the area of the ventilation passage inlet is narrowed in the ventilation passage inlet portion 16c of the first interval piece 16, and the amount of the cooling gas A2 introduced is reduced.
  • FIG. 8A, 8B, and 8C are enlarged cross-sectional views showing the vicinity of the ventilation path entrance of the interval piece of the rotary electric machine according to the first embodiment.
  • the width of the first threshold portion 160 is tapered from the ventilation passage inlet side tip portion 160b toward the cooling gas introduction direction, that is, the radial outer side X1. It is diagonally processed so as to have an expanding inclined portion 160c.
  • the first threshold portion 160 is diagonally machined so as to have an inclined portion 160c whose width expands in a taper shape from the air passage inlet side tip portion 160b toward the cooling gas introduction direction, that is, the radial outer side X1.
  • the area of the ventilation passage inlet is expanded, the amount of the cooling gas A2 introduced is increased, and the cooling performance can be improved.
  • the inclined portion 160c the cooling gas can be smoothly introduced from the entrance of the ventilation passage.
  • the tip portion 160d on the ventilation passage entrance side of the first threshold portion 160 is rounded by rounding, and the inclined portion 160c whose width expands in a tapered shape is formed. It is diagonally processed to have. As shown in FIG. 8B, the tip 160d on the ventilation path entrance side of the first threshold portion 160 is rounded and diagonally processed so as to have an inclined portion 160c whose width expands in a taper shape. The area is expanded, the amount of cooling gas A2 introduced is increased, and the cooling performance can be improved. Further, by having the rounded tip portion 160d and the inclined portion 160c, the cooling gas is smoothly introduced from the ventilation passage inlet, and turbulence is not generated. It should be noted that the tip portion 160d on the ventilation path entrance side of the first threshold portion 160 may be simply rounded by rounding so as not to have an inclined portion whose width expands in a tapered shape.
  • FIG. 8C shows that in the ventilation passage inlet portion 16c of the first spacing piece 16, the tip portion 160e of the first threshold portion 160 on the ventilation passage entrance side is cooled in the cooling gas introduction direction, that is, in the radial outer direction X1 of the first spacing piece 16. It is retracted by a distance H1 from the gas introduction side end face, that is, the radial inner end face 16 m.
  • the tip portion 160e on the ventilation path inlet side of the first threshold portion 160 is located in the cooling gas introduction direction, that is, the radial outer side X1, from the cooling gas introduction side end surface, that is, the radial inner end surface 16m of the first interval piece 16.
  • the tip portion 160e on the ventilation path inlet side of the first threshold portion 160 is retracted, and as shown in FIG. 8A, the tip portion 160e on the ventilation path inlet side thereof is directed toward the cooling gas introduction direction, that is, the radial outer side X1. It may have an inclined portion whose width expands in a tapered shape. Further, as shown in FIG. 8B, the tip portion 160e on the ventilation path inlet side may be rounded by rounding.
  • FIG. 9 is a perspective view for explaining another structure of the threshold portion of the space piece of the rotary electric machine according to the first embodiment.
  • the tip portion 160f of the first threshold portion 160 on the ventilation passage entrance side is inclined in a tapered shape from the axial outer side Y1 to the axial inner side Y2. It is diagonally processed.
  • the first interval piece is formed by diagonally processing the tip portion 160f on the ventilation path inlet side of the first threshold portion 160 so as to be inclined in a tapered shape from the axial outer side Y1 to the axial inner side Y2.
  • the amount of cooling gas introduced into the axially inner Y2 of the ventilation passage inlet portion 16c of 16 is increased, and the cooling performance can be improved.
  • the tip portion 160f on the ventilation path inlet side may be rounded by rounding.
  • a rotary electric machine having a rotor provided on a rotor shaft and a stator arranged around the rotor.
  • the rotor comprises a rotor core and a rotor winding wound around the rotor core at intervals.
  • the rotor winding includes a rotor winding end portion formed so as to project from the axial end surface of the rotor core. It is arranged between the adjacent rotor winding ends to hold the rotor winding ends, and has a threshold portion in the center between the adjacent rotor winding ends, and both sides of the threshold portion. It has a space piece with a ventilation path formed on the side to allow cooling gas to flow.
  • the tip portion of the ventilation passage entrance side of the threshold portion is reduced in the direction of introduction of the cooling gas. Ventilation resistance and pressure loss can be reduced at the air passage inlet portion of the interval piece. Therefore, by increasing the amount of cooling gas flowing into the rotor winding end, it is possible to improve the cooling performance of the rotor winding end.
  • the rotor winding end portion includes a pair of projecting portions projecting from the axial end surface of the rotor core and a connecting portion connecting the pair of projecting portions.
  • the spacing piece at least, it is arranged between the adjacent protruding portions to hold the protruding portion, and has a first threshold portion in the center between the adjacent protruding portions, and both side surfaces of the first threshold portion.
  • the first ventilation path for flowing the cooling gas is provided with the first interval piece formed in the axial direction.
  • the tip portion of the ventilation passage inlet side of the first threshold portion is reduced in the direction of introduction of the cooling gas. Ventilation resistance and pressure loss can be reduced at the air passage inlet portion of the first interval piece. Therefore, by increasing the amount of cooling gas flowing into the rotor winding end, it is possible to improve the cooling performance of the rotor winding end.
  • Embodiment 2 in the ventilation path outlet portion of the interval piece, the tip portion of the threshold portion on the ventilation path outlet side is reduced in the direction of the cooling gas lead-out.
  • the connecting portion is arranged between the adjacent connecting portions to hold the connecting portion, and has a second threshold portion in the center between the adjacent connecting portions, and both sides of the second threshold portion.
  • a second air passage for flowing cooling gas is provided on the side surface with a second interval piece formed in the axial direction.
  • the tip portion of the ventilation passage outlet side of the second threshold portion is reduced in the direction in which the cooling gas is taken out.
  • FIG. 10A is a partial perspective view illustrating a ventilation passage outlet portion of the interval piece of the rotary electric machine according to a comparative example
  • FIG. 10B is a partial perspective view showing the flow of the cooling gas of FIG. 10A.
  • the second threshold portion 180 located at the center of the second spacing piece 18 is provided with the winding support portion 18a and the winding support portion 18b on both side surfaces as described above, and the second ventilation is provided. It serves to form the road 19 and hold the adjacent connecting portion 22. Therefore, the width of the second threshold portion 180 needs to have a predetermined thickness, and is formed to have a constant width throughout. Therefore, in the ventilation passage outlet portion 18c of the second interval piece 18, the ventilation passage outlet area cannot be made large, and the amount of the cooling gas A5 drawn out cannot be increased.
  • FIG. 11A is a partial perspective view illustrating a ventilation passage outlet portion of the interval piece of the rotary electric machine according to the second embodiment
  • FIG. 11B is a partial perspective view showing the flow of the cooling gas of FIG. 11A.
  • the width of the second threshold portion 180 is widened from the ventilation passage outlet side tip portion 180a toward the direction opposite to the cooling gas lead-out direction, that is, the radial outer side X1. It is diagonally processed so as to have an inclined portion 180b that expands in a tapered shape. As shown in FIG.
  • the second threshold portion 180 has an inclined portion 180b whose width is tapered in the direction opposite to the cooling gas lead-out direction, that is, the radial outer side X1 from the air passage outlet side tip portion 180a.
  • the area of the air passage outlet is expanded, the amount of the cooling gas A5 drawn out is increased, and the cooling performance can be improved.
  • the inclined portion 180c the cooling gas can be smoothly led out from the ventilation passage outlet portion.
  • FIG. 12A is a partial perspective view illustrating a ventilation passage outlet portion of the interval piece of the rotary electric machine according to the second embodiment
  • FIG. 12B is a partial perspective view showing the flow of the cooling gas of FIG. 12A.
  • the tip portion of the second threshold portion 180 on the ventilation passage outlet side is inclined by, for example, an inclination angle ⁇ with respect to the cooling gas lead-out direction, that is, the radial inner side X2. It is diagonally processed so as to have an inclined portion 180c.
  • an inclination angle ⁇ with respect to the cooling gas lead-out direction
  • the tip end portion of the second threshold portion 180 on the ventilation path outlet side is obliquely processed so as to have an inclined portion 180c inclined with respect to the cooling gas derivation direction, that is, the radial inner side X2.
  • the area is expanded, and as shown in FIG. 12B, the amount of the cooling gas A5 derived is increased, which makes it possible to improve the cooling performance.
  • the tip portion of the ventilation passage outlet side of the threshold portion is reduced in the direction in which the cooling gas is taken out. Ventilation resistance and pressure loss can be reduced at the vent passage outlet of the interval piece. Therefore, by increasing the amount of cooling gas flowing out from the rotor winding end, it is possible to improve the cooling performance of the rotor winding end.
  • the interval piece As the interval piece, it is arranged between the adjacent connecting portions to hold the connecting portion, and has a second threshold portion in the center between the adjacent connecting portions, and is cooled on both side surfaces of the second threshold portion.
  • a second air passage for flowing gas is provided with a second interval piece formed in the axial direction.
  • the tip portion of the ventilation path outlet side of the second threshold portion is reduced in the direction in which the cooling gas is taken out. Ventilation resistance and pressure loss can be reduced at the vent passage outlet of the second interval piece. Therefore, by increasing the amount of cooling gas flowing out from the rotor winding end, it is possible to improve the cooling performance of the rotor winding end.
  • the present invention is not limited to this and is generally applicable to the rotary electric machine.
  • a mountain-shaped winding support part and a wavy winding support part are installed on both side surfaces of the threshold part to form a meandering and extending ventilation path, but the present invention is not limited to this and other ventilations are shown. It can be applied even if it has a road structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

隣接する回転子巻線端部(20)間に配置されて回転子巻線端部(20)を保持するとともに、隣接した回転子巻線端部(20)間の中央に閾部(160、180)を有し、閾部(160、180)の両側側面に冷却ガスを流すための通風路(17、19)が形成された間隔片(16、18)を備え、間隔片(16、18)の通風路入口部において、閾部(160)の通風路入口側先端部が冷却ガスの導入方向に向けて縮減されている。

Description

回転電機
 本願は、回転電機に関するものである。
 従来の回転電機の回転子巻線端部は、絶縁物である間隔片によって隣接した回転子巻線間を軸方向と周方向に保持するとともに、回転子巻線の温度低減のため、この間隔片の両側側面には冷却通風路を有し、回転子巻線端部の冷却機能を果たしている。例えば、更なる冷却性能向上のため、当該冷却通風路に沿った波状の仕切りを設け、曲がり部における流れの剥離を抑制することで圧力損失を低減させ、冷却通風路内の流れを均一化することで回転子巻線端部の局所的な温度上昇を抑制可能としたものがある(例えば、下記の特許文献1参照)。
国際公開2016/013108公報
 従来の回転電機では、隣接した回転子巻線間に配置された間隔片は、円筒型回転子という構造上、間隔片の径方向外側の幅は長く、径方向内側の幅は短い台形の形状を有している。また台形状の間隔片の中央部には、隣接した回転子巻線間を保持する山型状の支持部を連結した閾部が設けてある。冷却通風路の出入口部は回転子の内側に位置し、かつ中央部は閾部があるため、通風面積は小さく通風抵抗も大きい。そのため、冷却通風路に流入する冷却ガスの確保および増加が課題であった。
 このような回転子を有する回転電機において、回転電機の出力を増加する場合、回転子の界磁電流増加に伴い、回転子温度が絶縁物の耐熱温度以上に上昇するという課題もあった。
 本願は、上記のような課題を解決するための技術を開示するものであり、回転電機の回転子の回転子巻線端部に流入する冷却ガスを増加させ、冷却性能を改善し、回転電機の出力を増加させても、絶縁物の過熱が発生しない回転子を有する回転電機を得ることを目的としている。
 本願に開示される回転電機は、
回転子軸に設けられた回転子と、前記回転子の周りに配置された固定子を備えた回転電機であって、
前記回転子は、回転子鉄心と、前記回転子鉄心の周りに間隔を空けて巻回された回転子巻線を備え、
前記回転子巻線は、前記回転子鉄心の軸方向端面に突出して形成された回転子巻線端部を備え、
隣接する前記回転子巻線端部間に配置されて前記回転子巻線端部を保持するとともに、隣接した前記回転子巻線端部間の中央に閾部を有し、前記閾部の両側側面に冷却ガスを流すための通風路が形成された間隔片を備え、
前記間隔片の通風路入口部において、前記閾部の通風路入口側先端部が前記冷却ガスの導入方向に向けて縮減されている回転電機。
 本願に開示される回転電機によれば、回転電機の回転子の回転子巻線端部に流入する冷却ガスを増加させ、冷却性能を改善し、回転電機の出力を増加させても、絶縁物の過熱が発生しない回転子を有する回転電機を得ることができる。
実施の形態1による回転電機の全体を示す断面側面図である。 実施の形態1による回転電機の回転子部分を示す斜視図である。 実施の形態1による回転子巻線端部の要部を示す平面図である。 実施の形態1の回転電機の回転子巻線端部の要部拡大断面図である。 図1の回転子巻線端部に間隔片を配置した状態を示す斜視図である。 図5の間隔片の通風路における冷却ガスの流れを示す斜視図である。 比較例による回転子巻線端部および間隔片を軸方向から見た部分断面図である。 実施の形態1の回転電機の間隔片の通風路入口付近を示す拡大断面図である。 実施の形態1の回転電機の間隔片の通風路入口付近を示す拡大断面図である。 実施の形態1の回転電機の間隔片の通風路入口付近を示す拡大断面図である。 実施の形態1の回転電機の間隔片の閾部の他の構造を説明するための斜視図である。 比較例による回転電機の間隔片の通風路出口部分を説明する部分斜視図である。 図10Aの冷却ガスの流れを示す部分斜視図である。 実施の形態2による回転電機の間隔片の通風路出口部分を説明する部分斜視図である。 図11Aの冷却ガスの流れを示す部分斜視図である。 実施の形態2による回転電機の間隔片の通風路出口部分を説明する部分斜視図である。 図12Aの冷却ガスの流れを示す部分斜視図である。
 本願は、例えばタービン発電機等に用いられる回転電機に関し、特に回転子の通風冷却性能を改善した回転電機に関するものである。
 以下、図面に基づいて本願の実施の形態について説明する。なお、以下の実施の形態の説明において、回転電機の径方向をX、径方向外側をX1、径方向内側をX2、回転電機の軸方向をY、軸方向外側をY1、軸方向内側をY2、回転電機の周方向をZと記して説明する。
実施の形態1.
 図1は、実施の形態1による回転電機の全体を示す断面側面図である。
 まず、図1に基づいて、実施の形態1の回転電機100の概要について説明する。
 回転電機100は、中空円筒形状の固定子3と、固定子3の中空部の直径より直径の小さい円筒形状の回転子4とが、空隙190を介して同心状に配置されている。固定子3と回転子4は、それぞれ銅等の導電性コイルを鉄心スロットの軸方向に配置しており、回転子側のコイルを励磁した状態で回転子4を回転させると、固定子側に電流が誘起される。このとき、固定子3および回転子4には、電気的な損失に起因する大きな熱が発生するため、特別な冷却が必要となる。そこで、回転子4の回転子軸8の両側にファン5を設置して、回転電機100内に冷却ガスを送ることで強制冷却を行っている。なお、回転電機100内を冷却する冷却ガスとしては、例えば空気、水素などのガスが用いられている。
 次に、回転電機100の構造について説明する。回転電機100は、ケーシング2により囲まれ、前述のように固定子3と、回転子4と、ファン5を備えている。固定子3は、固定子鉄心6と、固定子巻線7を備えている。また、回転子4は、回転子軸8と、回転子鉄心9と、回転子巻線10と、コイルエンド保持環12と、エンドリング13を備えている。回転子軸8は、ケーシング2に設置した軸受50に回転自在に支持され、ファン5が回転子軸8の両側に取り付けられている。回転子鉄心9の外周と固定子鉄心6の内周の間は空隙190によって隔てられている。なお、7aは固定子巻線端部、7bは固定子巻線端部7aに電気的に接続される接続線である。
 図2は、実施の形態1による回転電機の回転子部分を示す斜視図であり、コイルエンド保持環およびエンドリングを外した状態を示している。
 図2に示すように、回転子巻線10は、各回転子磁極30の左右の回転子鉄心9に複数設けられたスロット(図示せず)内に、それぞれ回転子磁極30を中心に集中巻回して成形した鞍形の矩形状の回転子コイルを複数個同心状に配置したものである。回転子巻線10は、上記スロット内のコイル片(図示せず)と、回転子鉄心9の軸方向端面9aから突出した回転子巻線端部20を有している。回転子巻線端部20は、回転子鉄心9の軸方向端面9aから直線状に突出した一対の突出部分21およびこの突出部分21同士を連結する連結部分22を有している。そして、複数の回転子巻線端部20が、相互に間隔をおいて回転子磁極30の軸方向端部に突出して配置されている。
 図3は、実施の形態1による回転子巻線端部の要部を示す平面図である。
 図3に示すように、複数の回転子巻線端部20は、それぞれ突出部分21と連結部分22とを有している。
 複数の突出部分21の相互間には、間隔片としての第1間隔片16が軸方向Yに配置されている。第1間隔片16は、隣接した突出部分21間の中央に閾部としての第1閾部160(図5参照)を有している。第1間隔片16の両側面部は、それぞれ回転子巻線端部20の突出部分21に当接している。そして、第1間隔片16は、その両側面部に当接した各突出部分21の側壁面の長手方向に沿って、蛇行して延びる第1通風路17が形成されている。
 また、複数の連結部分22の相互間には、間隔片としての第2間隔片18が周方向Zに配置されている。第2間隔片18は、隣接した連結部分22間の中央に閾部としての第2閾部180(図5参照)を有している。第2間隔片18の両側面部は、それぞれ回転子巻線端部20の連結部分22に当接している。そして、第2間隔片18は、その両側面部に当接した各連結部分22の側壁面の長手方向に沿って、蛇行して延びる第2通風路19が形成されている。
 なお、本願では、第1間隔片16および第2間隔片18を間隔片と総称し、第1通風路17および第2通風路19を通風路と総称する場合がある。
 仕切板40は、径方向内側X2の底部が回転子軸8の溝内に差し込まれ、軸方向内側Y2の端部が回転子磁極30の側壁に当接された一対の側板40aと、この一対の側板40aの軸方向外側Y1の端部に接合されてエンドリング13の開口部13a(図4参照)に配置された端板40bを備えている。
 図4は、実施の形態1の回転電機の回転子巻線端部の要部拡大断面図であり、図1の一点鎖線Cで囲んだ領域の一部拡大断面図である。
 図4に示すように、コイルエンド保持環12は、回転子巻線端部20および隣り合う回転子巻線端部20間に配置された間隔片16、18の各外周部を覆って保持している。コイルエンド保持環12の軸方向内側Y2の端部は、回転子鉄心9の端部に嵌合されている。コイルエンド保持環12の軸方向外側Y1の端部には、エンドリング13が嵌合されている。エンドリング13の開口部13aは回転子軸8との間で、冷却ガスが矢印A1のように流れる通風路を形成する。
 次に、回転電機の冷却について、図1、図3、図4に基づいて説明する。
 まず、図1において回転子軸8が回転すると、ファン5の回転により圧送された冷却ガスが、矢印A1に示すように流れる。図4に示すように、矢印A1の冷却ガスは、エンドリング13の開口部13aから導入される。次に、図3に示すように、冷却ガスは、第1間隔片16の通風路入口(図6参照)から導入されて第1間隔片16の第1通風路17を矢印A3方向に流れ、さらに第2間隔片18の第2通風路19を矢印A4方向に流れ、第2間隔片18の通風路出口(図6参照)から矢印A5方向に導出される。矢印A5方向に導出された冷却ガスは、回転子磁極30の切り欠き排気路31から矢印A6の方向に流れ、固定子3と回転子4の間の空隙190内へ流れる。なお、仕切板40は、第2間隔片18の通風路出口から導出される矢印A5の冷却ガスを回転子磁極30の切り欠き排気路31に流すために設けられたものである。また、ファン5の回転により圧送される他方の冷却ガスは、固定子巻線端部7aを冷却して、前記矢印A6の冷却ガスと合流する。
 以上のように、第1間隔片16の第1通風路17および第2間隔片18の第2通風路19を流れる冷却ガスにより、回転子巻線端部20である突出部分21および連結部分22が冷却され、回転子巻線端部20の温度上昇が抑制される。
 図5は図1の回転子巻線端部に間隔片を配置した状態を示す斜視図であり、図6は図5の間隔片の通風路における冷却ガスの流れを示す斜視図である。
 図5に示すように、第1間隔片16は、回転子巻線端部20の突出部分21間に配置され、当該突出部分21を保持する役割を果たす。第1間隔片16は、軸方向Yに配置される第1閾部160と、第1閾部160の両側面部に設置された山型の巻線支持部16aおよび波状の巻線支持部16bを備えている。山型の巻線支持部16aおよび波状の巻線支持部16bは、隣接する突出部分21と当接する。また、第1間隔片16は、第1閾部160、巻線支持部16aおよび巻線支持部16bにより、第1通風路17を形成している。
 また、第2間隔片18は、回転子巻線端部20の連結部分22間に配置され、当該連結部分22を保持する役割を果たす。第2間隔片18は、周方向Zに配置される第2閾部180と、第2閾部180の両側面部に設置された山型の巻線支持部18aおよび波状の巻線支持部18bを備えている。山型の巻線支持部18aおよび波状の巻線支持部18bは、隣接する連結部分22と当接する。また、第2間隔片18は、第2閾部180、巻線支持部18aおよび巻線支持部18bにより、第2通風路19を形成している。
 図6に示すように、第1間隔片16の通風路入口部16cから矢印A2方向に流入した冷却ガスは、第1間隔片16に形成された第1通風路17を矢印A3方向に流れ、第2間隔片18に形成された第2通風路19を矢印A4方向に流れ、通風路出口部18cから矢印A5方向に流出する。
 図7は、比較例による回転子巻線端部および間隔片を軸方向から見た部分断面図である。
 図7において、回転子4は円筒形状であるという構造上、回転子巻線端部20の突出部分21間に設置される第1間隔片16は、径方向外側X1において周方向Zの幅は長く、径方向内側X2において周方向Zの幅は短くなる。第1間隔片16の周方向Zの中央に位置する第1閾部160は、前述のように、両側面部に巻線支持部16aおよび巻線支持部16bを設置して第1通風路17を形成するとともに、隣接する突出部分21を保持する役割を果たす。そのため、第1閾部160の周方向Zの幅は、所定の厚さが必要であり、全体にわたって一定の幅に形成される。したがって、このような構造上の理由により、第1間隔片16の通風路入口部16cにおいて、通風路入口面積が絞られ、冷却ガスA2の導入量が少なくなる。
 図8A、図8B、図8Cは、実施の形態1の回転電機の間隔片の通風路入口付近を示す拡大断面図である。
 図8Aは、第1間隔片16の通風路入口部16cにおいて、第1閾部160を、通風路入口側先端部160bから冷却ガス導入方向つまり径方向外側X1に向けてその幅がテーパ状に拡大する傾斜部160cを有するように斜め加工したものである。
 図8Aのように、第1閾部160を通風路入口側先端部160bから冷却ガス導入方向つまり径方向外側X1に向けてその幅がテーパ状に拡大する傾斜部160cを有するように斜め加工することにより、通風路入口面積が拡大し、冷却ガスA2の導入量を増加させ、冷却性能の向上を可能とする。
 また、傾斜部160cを有することにより通風路入口から冷却ガスをスムーズに導入することができる。
 図8Bは、第1間隔片16の通風路入口部16cにおいて、第1閾部160の通風路入口側の先端部160dをラウンド加工により丸め、かつその幅がテーパ状に拡大する傾斜部160cを有するように斜め加工したものである。
 図8Bのように、第1閾部160の通風路入口側の先端部160dをラウンド加工により丸め、その幅がテーパ状に拡大する傾斜部160cを有するように斜め加工することにより、通風路入口面積が拡大し、冷却ガスA2の導入量を増加させ、冷却性能の向上を可能とする。
 また、丸まった先端部160dおよび傾斜部160cを有することにより通風路入口から冷却ガスがスムーズに導入され、乱流を発生させることがない。
 なお、第1閾部160の通風路入口側の先端部160dをラウンド加工により丸めるだけで、その幅がテーパ状に拡大する傾斜部を有しないようにしても良い。
 図8Cは、第1間隔片16の通風路入口部16cにおいて、第1閾部160の通風路入口側の先端部160eを冷却ガスの導入方向つまり径方向外側X1に第1間隔片16の冷却ガス導入側端面つまり径方向内側端面16mから距離H1だけ後退させるものである。
 図8Cのように、第1閾部160の通風路入口側の先端部160eを冷却ガスの導入方向つまり径方向外側X1に第1間隔片16の冷却ガス導入側端面つまり径方向内側端面16mから距離H1だけ後退させたので、通風路入口面積が拡大し、冷却ガスA2の導入量を増加させ、冷却性能の向上を可能とする。
 また、第1閾部160の通風路入口側の先端部160eを後退させるとともに、図8Aに示すように、通風路入口側の先端部160eから冷却ガス導入方向つまり径方向外側X1に向けてその幅がテーパ状に拡大する傾斜部を有するようにしても良い。さらに、図8Bに示すように、通風路入口側の先端部160eをラウンド加工により丸めても良い。
 図9は、実施の形態1の回転電機の間隔片の閾部の他の構造を説明するための斜視図である。
 図9において、第1間隔片16の通風路入口部16cにおいて、第1閾部160の通風路入口側の先端部160fを軸方向外側Y1から軸方向内側Y2に向けてテーパ状に傾斜するように斜め加工したものである。
 図9のように、第1閾部160の通風路入口側の先端部160fを軸方向外側Y1から軸方向内側Y2に向けてテーパ状に傾斜するように斜め加工することにより、第1間隔片16の通風路入口部16cの軸方向内側Y2の冷却ガスの導入量が増加し、冷却性能の向上を可能とする。
 また、図8Aに示すように、通風路入口側の先端部160fから冷却ガス導入方向つまり径方向外側X1に向けてその幅がテーパ状に拡大する傾斜部を有するようにしても良い。さらに、図8Bに示すように、通風路入口側の先端部160fをラウンド加工により丸めても良い。
 以上のように、実施の形態1によれば、
回転子軸に設けられた回転子と、前記回転子の周りに配置された固定子を備えた回転電機であって、
前記回転子は、回転子鉄心と、前記回転子鉄心の周りに間隔を空けて巻回された回転子巻線を備え、
前記回転子巻線は、前記回転子鉄心の軸方向端面から突出して形成された回転子巻線端部を備え、
隣接する前記回転子巻線端部間に配置されて前記回転子巻線端部を保持するとともに、隣接した前記回転子巻線端部間の中央に閾部を有し、前記閾部の両側側面に冷却ガスを流すための通風路が形成された間隔片を備え、
前記間隔片の通風路入口部において、前記閾部の通風路入口側先端部が前記冷却ガスの導入方向に向けて縮減されているので、
間隔片の通風路入口部において、通風抵抗および圧力損失を低減することができる。そのため、回転子巻線端部に流入する冷却ガス量が増加することにより、回転子巻線端部の冷却性能の向上を図ることができる。
 また、実施の形態1によれば、前記回転子巻線端部は、前記回転子鉄心の軸方向端面から突出する一対の突出部分と、一対の前記突出部分を連結する連結部分を備え、
前記間隔片として、少なくとも、隣接する前記突出部分間に配置されて前記突出部分を保持するとともに、隣接した前記突出部分間の中央に第1閾部を有し、前記第1閾部の両側側面に冷却ガスを流すための第1通風路が軸方向に形成された第1間隔片を備え、
前記第1間隔片の通風路入口部において、前記第1閾部の通風路入口側先端部が前記冷却ガスの導入方向に向けて縮減されているので、
第1間隔片の通風路入口部において、通風抵抗および圧力損失を低減することができる。そのため、回転子巻線端部に流入する冷却ガス量が増加することにより、回転子巻線端部の冷却性能の向上を図ることができる。
実施の形態2.
 実施の形態2は、間隔片の通風路出口部において、閾部の通風路出口側先端部が前記冷却ガスの導出方向に向けて縮減されているものである。
 より詳しくは、間隔片として、隣接する前記連結部分間に配置されて前記連結部分を保持するとともに、隣接した前記連結部分間の中央に第2閾部を有し、前記第2閾部の両側側面に冷却ガスを流すための第2通風路が軸方向に形成された第2間隔片を備え、
前記第2間隔片の通風路出口部において、前記第2閾部の通風路出口側先端部が前記冷却ガスの導出方向に向けて縮減されているものである。
 なお、以下の実施の形態2の説明において、実施の形態1と同様の部分はその説明を省略する。
 図10Aは、比較例による回転電機の間隔片の通風路出口部分を説明する部分斜視図であり、図10Bは図10Aの冷却ガスの流れを示す部分斜視図である。
 図10Aおよび図10Bにおいて、第2間隔片18の中央に位置する第2閾部180は、前述のように、両側面部に巻線支持部18aおよび巻線支持部18bを設置して第2通風路19を形成するとともに、隣接する連結部分22を保持する役割を果たす。そのため、第2閾部180の幅は、所定の厚さが必要であり、全体にわたって一定の幅に形成される。したがって、第2間隔片18の通風路出口部18cにおいて、通風路出口面積を大きくとることが出来なく、冷却ガスA5の導出量を増加させることができない。
 図11Aは、実施の形態2による回転電機の間隔片の通風路出口部分を説明する部分斜視図であり、図11Bは図11Aの冷却ガスの流れを示す部分斜視図である。
 図11Aは、第2間隔片18の通風路出口部18cにおいて、第2閾部180を、通風路出口側先端部180aから冷却ガス導出方向と反対方向つまり径方向外側X1に向けてその幅がテーパ状に拡大する傾斜部180bを有するように斜め加工したものである。
 図11Aのように、第2閾部180を、通風路出口側先端部180aから冷却ガス導出方向と反対方向つまり径方向外側X1に向けてその幅がテーパ状に拡大する傾斜部180bを有するように斜め加工したので、図11Bに示すように通風路出口面積が拡大し、冷却ガスA5の導出量を増加させ、冷却性能の向上を可能とする。
 また、傾斜部180cを有することにより通風路出口部分から冷却ガスをスムーズに導出することができる。
 図12Aは、実施の形態2による回転電機の間隔片の通風路出口部分を説明する部分斜視図であり、図12Bは図12Aの冷却ガスの流れを示す部分斜視図である。
 図12Aは、第2間隔片18の通風路出口部18cにおいて、第2閾部180の通風路出口側の先端部を冷却ガスの導出方向つまり径方向内側X2に対して例えば傾斜角θだけ傾斜する傾斜部180cを有するように斜め加工するものである。
 図12Aのように、第2閾部180の通風路出口側の先端部を冷却ガスの導出方向つまり径方向内側X2に対して傾斜する傾斜部180cを有するように斜め加工したので、通風路入口面積が拡大し、図12Bに示すように冷却ガスA5の導出量を増加させ、冷却性能の向上を可能とする。
 以上のように、実施の形態2によれば、
前記間隔片の通風路出口部において、前記閾部の通風路出口側先端部が前記冷却ガスの導出方向に向けて縮減されているので、
間隔片の通風路出口部において、通風抵抗および圧力損失を低減することができる。そのため、回転子巻線端部から流出する冷却ガス量が増加することにより、回転子巻線端部の冷却性能の向上を図ることができる。
 また、実施の形態2によれば、
前記間隔片として、隣接する前記連結部分間に配置されて前記連結部分を保持するとともに、隣接した前記連結部分間の中央に第2閾部を有し、前記第2閾部の両側側面に冷却ガスを流すための第2通風路が軸方向に形成された第2間隔片を備え、
前記第2間隔片の通風路出口部において、前記第2閾部の通風路出口側先端部が前記冷却ガスの導出方向に向けて縮減されているので、
第2間隔片の通風路出口部において、通風抵抗および圧力損失を低減することができる。そのため、回転子巻線端部から流出する冷却ガス量が増加することにより、回転子巻線端部の冷却性能の向上を図ることができる。
 なお、前記実施の形態1、2においては、タービン発電機に使用される回転電機について説明したが、これに限定されず回転電機一般に適用可能である。また、閾部の両側面部に山型の巻線支持部および波状の巻線支持部を設置して、蛇行して延びる通風路を形成したものを示したが、これに限定されず他の通風路構造を有するものであっても適用可能である。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
100 回転電機、2 ケーシング、3 固定子、4 回転子、5 ファン、6 固定子鉄心、7 固定子巻線、7a 固定子巻線端部、8 回転子軸、9 回転子鉄心、10 回転子巻線、12 コイルエンド保持環、13 エンドリング、16 第1間隔片、17 第1通風路、18 第2間隔片、19 第2通風路、20 回転子巻線端部、21 突出部分、22 連結部分、50 軸受、160 第1閾部、180 第2閾部。

Claims (10)

  1. 回転子軸に設けられた回転子と、前記回転子の周りに配置された固定子を備えた回転電機であって、
    前記回転子は、回転子鉄心と、前記回転子鉄心の周りに間隔を空けて巻回された回転子巻線を備え、
    前記回転子巻線は、前記回転子鉄心の軸方向端面から突出して形成された回転子巻線端部を備え、
    隣接する前記回転子巻線端部間に配置されて前記回転子巻線端部を保持するとともに、隣接した前記回転子巻線端部間の中央に閾部を有し、前記閾部の両側側面に冷却ガスを流すための通風路が形成された間隔片を備え、
    前記間隔片の通風路入口部において、前記閾部の通風路入口側先端部が前記冷却ガスの導入方向に向けて縮減されている回転電機。
  2. 前記回転子巻線端部は、前記回転子鉄心の軸方向端面から突出する一対の突出部分と、一対の前記突出部分を連結する連結部分を備え、
    前記間隔片として、少なくとも、隣接する前記突出部分間に配置されて前記突出部分を保持するとともに、隣接した前記突出部分間の中央に第1閾部を有し、前記第1閾部の両側側面に冷却ガスを流すための第1通風路が軸方向に形成された第1間隔片を備え、
    前記第1間隔片の通風路入口部において、前記第1閾部の通風路入口側先端部が前記冷却ガスの導入方向に向けて縮減されている請求項1に記載の回転電機。
  3. 前記第1間隔片の通風路入口部において、前記第1閾部は前記第1閾部の通風路入口側先端部から冷却ガスの導入方向に向けて同方向の幅が拡大する傾斜部を有する請求項2に記載の回転電機。
  4. 前記第1間隔片の通風路入口部において、前記第1閾部の通風路入口側先端部が丸まっている請求項2または請求項3に記載の回転電機。
  5. 前記第1間隔片の通風路入口部において、前記第1閾部の通風路入口側先端部が、前記第1間隔片の冷却ガス導入側端面から冷却ガスの導入方向に向けて後退している請求項2から請求項4のいずれか1項に記載の回転電機。
  6. 前記第1間隔片の通風路入口部において、前記第1閾部の通風路入口側先端部を軸方向外側から軸方向内側に向けて傾斜させている請求項2から請求項5のいずれか1項に記載の回転電機。
  7. 前記間隔片の通風路出口部において、前記閾部の通風路出口側先端部が前記冷却ガスの導出方向に向けて縮減されている請求項1に記載の回転電機。
  8. 前記間隔片として、隣接する前記連結部分間に配置されて前記連結部分を保持するとともに、隣接した前記連結部分間の中央に第2閾部を有し、前記第2閾部の両側側面に冷却ガスを流すための第2通風路が軸方向に形成された第2間隔片を備え、
    前記第2間隔片の通風路出口部において、前記第2閾部の通風路出口側先端部が前記冷却ガスの導出方向に向けて縮減されている請求項2から請求項6のいずれか1項に記載の回転電機。
  9. 前記第2間隔片の通風路出口部において、前記第2閾部は前記第2閾部の通風路出口側先端部から冷却ガス導出方向と反対方向に向けて同方向の幅が拡大する傾斜部を有する請求項8に記載の回転電機。
  10. 前記第2間隔片の通風路出口部において、前記第2閾部の通風路出口側の先端部を冷却ガスの導出方向に対して傾斜する傾斜部を有する請求項8に記載の回転電機。
PCT/JP2020/033164 2020-09-02 2020-09-02 回転電機 WO2022049650A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021510245A JPWO2022049650A1 (ja) 2020-09-02 2020-09-02
PCT/JP2020/033164 WO2022049650A1 (ja) 2020-09-02 2020-09-02 回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/033164 WO2022049650A1 (ja) 2020-09-02 2020-09-02 回転電機

Publications (1)

Publication Number Publication Date
WO2022049650A1 true WO2022049650A1 (ja) 2022-03-10

Family

ID=80490790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033164 WO2022049650A1 (ja) 2020-09-02 2020-09-02 回転電機

Country Status (2)

Country Link
JP (1) JPWO2022049650A1 (ja)
WO (1) WO2022049650A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153542A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Rotor for rotary electric machine
JPH09322454A (ja) * 1996-05-31 1997-12-12 Hitachi Ltd 回転電機の回転子
JP2007259674A (ja) * 2006-03-27 2007-10-04 Hitachi Ltd 回転電機の回転子
JP2007300718A (ja) * 2006-04-28 2007-11-15 Toshiba Corp 回転電機の回転子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153542A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Rotor for rotary electric machine
JPH09322454A (ja) * 1996-05-31 1997-12-12 Hitachi Ltd 回転電機の回転子
JP2007259674A (ja) * 2006-03-27 2007-10-04 Hitachi Ltd 回転電機の回転子
JP2007300718A (ja) * 2006-04-28 2007-11-15 Toshiba Corp 回転電機の回転子

Also Published As

Publication number Publication date
JPWO2022049650A1 (ja) 2022-03-10

Similar Documents

Publication Publication Date Title
JP4682893B2 (ja) 回転電機の回転子
JP6165340B2 (ja) 回転電機
JP2007300718A (ja) 回転電機の回転子
JP2007282488A (ja) 発電機回転子の冷却を改善するための流線形ボディウェッジブロックおよび方法
JP5924352B2 (ja) 回転電機
WO2022049650A1 (ja) 回転電機
CN110707888B (zh) 旋转电机以及转子
WO2022265009A1 (ja) 回転電機用ケース、及び回転電機
AU2021312565B2 (en) Motor assembly and hair dryer having same
JP2009142024A (ja) リラクタンスモータ
JP2008283737A (ja) 突極型回転電機
US11146145B2 (en) Rotor assembly for an electrodynamic machine that minimizes mechanical stresses in cooling ducts
CN116134703A (zh) 电机的冷却式转子
JP2022047637A (ja) 回転電機
JP6473128B2 (ja) 同期回転電機および界磁巻線端部保持構造
JP6681788B2 (ja) モータ一体型流体機械
CN112368919A (zh) 感应式电机
JP2019022257A (ja) 回転電機
WO2021117896A1 (ja) 回転装置
JP2019134573A (ja) 回転電機のステータ
JP2018026925A (ja) 回転電機
JP2022094848A (ja) ロータの磁石油冷構造
JPH08322176A (ja) 回転電機の回転子
CN118355589A (zh) 用于电机的具有流体循环冷却回路的定子和包括所述定子的电机
JP2023001560A (ja) 発電機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021510245

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952390

Country of ref document: EP

Kind code of ref document: A1