WO2022048004A1 - 智能干法熔铅炉 - Google Patents

智能干法熔铅炉 Download PDF

Info

Publication number
WO2022048004A1
WO2022048004A1 PCT/CN2020/126410 CN2020126410W WO2022048004A1 WO 2022048004 A1 WO2022048004 A1 WO 2022048004A1 CN 2020126410 W CN2020126410 W CN 2020126410W WO 2022048004 A1 WO2022048004 A1 WO 2022048004A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace core
lead
fixedly installed
core
furnace
Prior art date
Application number
PCT/CN2020/126410
Other languages
English (en)
French (fr)
Inventor
徐志强
朱管义
Original Assignee
安徽骏马新材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽骏马新材料科技股份有限公司 filed Critical 安徽骏马新材料科技股份有限公司
Publication of WO2022048004A1 publication Critical patent/WO2022048004A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/14Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/20Arrangement of controlling, monitoring, alarm or like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27MINDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
    • F27M2001/00Composition, conformation or state of the charge
    • F27M2001/01Charges containing mainly non-ferrous metals
    • F27M2001/017Lead
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27MINDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
    • F27M2003/00Type of treatment of the charge
    • F27M2003/13Smelting

Definitions

  • the invention relates to the field of metal smelting equipment, in particular to an intelligent dry-process lead melting furnace.
  • the first production process is to put the lead ingot into the lead melting furnace and melt it into lead water (liquid), and then enter the next production process.
  • a Hongdan production line is equipped with three sets of lead melting furnaces. , the production capacity can be matched to make the production efficiency optimal.
  • most of the traditional lead melting furnaces use electric heating, and the melting point of lead ingots is also high.
  • the temperature in the general lead melting furnace is as high as about 450 °C, which is a high energy consumption equipment.
  • the traditional lead melting furnace needs to pre-melt a certain amount of lead liquid in the furnace cavity, and then the lead ingot can be put into the lead liquid for melting; the traditional lead melting furnace needs to heat and melt the lead block preset in the furnace before working. After that, it can work normally, and continuous production cannot be carried out; a certain amount of lead ingots are preset in the furnace and melted, which increases the occupation of raw materials on the one hand, and increases the possibility of waste products on the other hand.
  • the lead ingots fall into the furnace, If the safety protection is not properly implemented or cannot be fully implemented, it is very easy to cause scalding accidents; currently, the cranial cavity of the lead melting furnace can only melt 2-3 ingots at a time. The melting speed is increased, the energy consumption is increased, and the production efficiency is reduced.
  • the purpose of the present invention is to provide an intelligent dry-process lead melting furnace.
  • an intelligent dry-process lead melting furnace comprising a lead melting furnace seat pool, and the lead melting furnace seat pool is a square made of thermal insulation bricks, and the The bottom right side of the lead melting furnace seat pool is provided with a first discharge port, the left side of the lead melting furnace seat pool is fixedly installed with a control module, the interior of the lead melting furnace seat pool is a cylindrical hollow structure, and the An outer furnace core is fixedly installed in the middle of the lead furnace base, the top of the outer furnace core is provided with an outer furnace core cover, the left side of the outer furnace core cover is provided with a lead filling port, and the inner side of the outer furnace core is provided Several groups of electric push rods are fixedly installed in the middle of the wall, and several groups of the electric push rods are distributed annularly along the outer furnace core, and support rods are fixedly installed at the elongated ends of the electric push rods, and the upper and lower ends of the support rods are fixed Two sets of
  • An inner layer furnace core is fixedly installed in the middle of the outer layer furnace core, an inner layer furnace core cover is arranged on the top of the inner layer furnace core, and several sets of supporting feet are fixedly installed at the bottom of the inner layer furnace core.
  • a motor is fixedly installed at the bottom of the core, an annular cavity is formed between the inner furnace core and the outer furnace core, a solar heating device is fixedly installed in the annular cavity, and a heating device is fixedly installed in the inner furnace core
  • a rotating shaft is installed vertically inside the inner furnace core, the lower end of the rotating shaft penetrates the bottom of the inner furnace core and is fixedly connected with the output shaft of the motor, and several groups of connecting plates are fixedly installed outside the rotating shaft, so A lead ingot groove is fixedly installed on the side of the connecting plate away from the rotating shaft, and the lead ingot groove is rotatably connected with the left side of the groove.
  • the top of the lead ingot groove is connected as a whole and can rotate clockwise along the inner furnace core. ;
  • One side of the inner furnace core is equipped with a moving door that automatically closes and opens, the height of the moving door is greater than the length of the lead slot, and the upper and lower ends of the moving door are fixedly installed with control clamps for opening, closing and rotating.
  • the direction of the jaws of the control tongs is inward, the inner distance of the two sets of the control tongs is greater than that of the lead ingot groove, and the bottom end of the inner furnace core is provided with a second discharge port, and the second discharge port is connected with the lead ingot slot.
  • the first discharge ports are connected by pipes running through the outer furnace core;
  • the multiple output ends of the control module are respectively connected with a moving door, an electric push rod, a fixed clamp, a control clamp and a lead slot.
  • the heating device includes a heating casing, the heating casing is made of stainless steel, and several sets of guide rollers are fixedly installed inside the heating casing, the guide rollers are made of high-insulation refractory ceramic materials, and the guide rollers are made of high-insulation refractory ceramic materials.
  • a resistance wire is evenly wound on the roller, a power source is fixedly installed at the bottom end of the heating shell, and the power source and the resistance wire are electrically connected.
  • a base plate is fixedly installed at the bottom of the rotating shaft, the rotating shaft runs through the middle of the base plate, the diameter of the base plate is smaller than the diameter of the inner furnace core, and several groups of bases are fixedly installed on the upper surface of the base plate, and the bases are connected to the lead ingots.
  • the grooves are facing up and down, the size and shape of the base is consistent with the lower diameter of the lead ingot groove, the base and the rotating shaft are fixedly connected, and the base and the lead ingot groove run synchronously.
  • a sensing device is installed on the substrate beside the base, the output end of the sensing device is connected with the input end of the control module, and one output end of the control module is connected with a signal modulation module, the signal
  • the modulation module is connected with a signal demodulation module
  • the signal demodulation module is connected with a motor module
  • the sensing device receives information and transmits it to the control module, and after analysis by the signal modulation module and the signal demodulation module, the motor is controlled to rotate.
  • a temperature sensing device is installed in the inner furnace core, an output end of the temperature sensing device is connected with an input end of a control module, and one output end of the control module is connected with a signal modulation module, so
  • the signal modulation module is connected with a signal demodulation module, the signal demodulation module is connected with an alarm module, the temperature sensing device receives information and transmits it to the control module, after analysis by the signal modulation module and the signal demodulation module, the control alarm device sends out alarm.
  • the support seat is set in an arc shape of 12mm*6mm, the arc-shaped side of the support seat faces the inner wall of the outer furnace core, and the horizontal height of the support seat is slightly higher than the base in the inner furnace core.
  • the three groups of the support feet are evenly distributed at the bottom of the inner furnace core.
  • the lead ingot slot on the motor-driven connecting plate is heated and melted around the ceramic heating device in the inner furnace core, which solves the problem of the need for prefabricated lead liquid when melting in the traditional lead melting furnace, and achieves that the lead melting furnace can be used at any time during use.
  • the effect of stopping reduces the process of preheating and melting of lead ingots, and improves production efficiency.
  • the solar heating device arranged in the annular cavity and the heating device arranged in the inner furnace core are used together, which effectively solves the problem of a large amount of energy consumption in the traditional lead melting furnace, thereby reducing the production cost.
  • the lead ingot slot fixedly installed on the connecting plate cooperates with the base fixedly installed on the base plate, so that the lead ingot can be stably dropped into the inner furnace core, so that the lead ingot can be melted evenly and the occurrence of work-related accidents can be reduced.
  • multiple lead ingots can be heated while satisfying uniform melting, and the rotation of the motor is controlled by the control module, thereby driving the lead ingot groove to rotate, improving the melting performance.
  • the automation level of the lead furnace thereby improving the production efficiency.
  • Fig. 1 is the structural representation in the present invention
  • Fig. 2 is the inner layer furnace core structure schematic diagram in the present invention
  • FIG. 3 is a schematic structural diagram of a fixed clamp in the present invention.
  • FIG. 4 is a schematic structural diagram of a control clamp in the present invention.
  • Fig. 5 is the schematic diagram of the lead ingot groove structure in the present invention.
  • FIG. 6 is a schematic diagram of a control module system in the present invention.
  • FIG. 7 is a schematic structural diagram of a heating device in the present invention.
  • FIG. 9 is a schematic diagram of a sensing device control system in the present invention.
  • FIG. 10 is a schematic structural diagram of a temperature sensing device in the present invention.
  • FIG. 11 is a schematic diagram of a temperature control system in the present invention.
  • an intelligent dry lead melting furnace includes a lead melting furnace base pool 1, and the lead melting furnace base pool 1 is a square made of thermal insulation bricks.
  • a first discharge port 101 is opened at the bottom of the right side of the lead furnace base pool 1, and a control module 16 is fixedly installed on the left side of the lead melting furnace base pool 1, and the entire lead melting furnace is controlled by the control module.
  • the inside of the furnace base pool 1 is a cylindrical hollow structure, the middle part of the lead melting furnace base pool 1 is fixedly installed with an outer layer furnace core 2, and the top of the outer layer furnace core 2 is provided with an outer layer furnace core cover 201.
  • the left side of the layer furnace core cover 201 is provided with a lead filling port 22, and several groups of electric push rods 3 are fixedly installed in the middle of the inner side wall of the outer layer furnace core 2, and several groups of the electric push rods 3 are annular along the outer layer furnace core 2.
  • Distribution, the extension end of the electric push rod 3 is fixedly installed with a support rod 4, and the upper and lower ends of the support rod 4 are fixedly installed with two sets of fixed clamps 6, and the two sets of fixed clamps 6 can stably fall from the lead opening 22
  • the lead block is fixed on the support rod 4, and is pushed by the electric push rod 3, thereby driving the lead block into the inner furnace core, the jaw direction of the fixed pliers 6 is away from the support rod 4, and the support plate moves to the inner furnace core.
  • support seats 5 are fixedly installed at the bottom of the outer furnace core 2.
  • the upper surface of the support seats 5 is in sliding contact with the bottom end of the support rod 4.
  • the block is firmly fixed on the support rod by the fixing clamp, the support seat 5 is set in an arc shape of 12mm*6mm, the arcuate side of the support seat 5 faces the inner wall of the outer furnace core 2, and the support seat 5 is horizontal
  • the directional height is slightly higher than the base 12 in the inner furnace core 7.
  • the support seat can carry the lead ingots that enter the outer furnace core from the lead-filling port. With the fixing clamps on the support rods, the stable feeding of the inner furnace core can be achieved. Effect;
  • An inner layer furnace core 7 is fixedly installed in the middle of the outer layer furnace core 2, an inner layer furnace core cover 71 is arranged on the top of the inner layer furnace core 7, and several sets of support feet 19 are fixedly installed at the bottom of the inner layer furnace core 7.
  • the legs 19 are provided with three groups, the three groups of the legs 19 are evenly distributed at the bottom of the inner layer furnace core 7, and the three groups of legs help the inner layer furnace core to be stably fixed in the outer layer furnace core, which improves the stability inside the lead melting furnace
  • a motor 18 is fixedly installed at the bottom of the inner furnace core 7, an annular cavity is formed between the inner furnace core 7 and the outer furnace core 2, and a solar heating device 8 is fixedly installed in the annular cavity.
  • a heating device 17 is fixedly installed in the inner furnace core 7, and the heating device of the inner furnace core and the solar heating device in the annular cavity are used together to achieve a good heat preservation effect and reduce heat loss. ;
  • the heating device 17 includes a heating casing 171, which is made of stainless steel, and several sets of guide rollers 172 are fixedly installed inside the heating casing 171, and the guide rollers 172 are made of high-insulation refractory ceramic materials.
  • a resistance wire 173 is evenly wound on the guide roller 172, and a power supply 174 is fixedly installed at the bottom end of the heating shell 171.
  • the power supply 174 and the resistance wire 173 are electrically connected, and ceramic heating equipment can be used to maximize the utilization energy, and it is suitable for working in high temperature and harsh environments. With the solar heating device, it can keep the internal temperature of the lead melting furnace in a dynamic balance, reduce heat loss, save energy consumption, and reduce production costs;
  • One side of the inner furnace core 7 is equipped with a moving door 13 that is automatically closed and opened. Both the upper and lower ends are fixedly installed with control tongs 14 that open and close and rotate. The lead ingots on the support rod are removed by the control tongs.
  • a rotating shaft 9 is rotatably installed, the lower end of the rotating shaft 9 is fixedly connected between the bottom of the inner furnace core 7 and the output shaft of the motor 18, and several groups of connecting plates 10 are fixedly installed on the outside of the rotating shaft 9, and the connecting plates 10 are away from the rotating shaft. 9.
  • a lead ingot slot 11 is fixedly installed on one side, and the lead ingot slot 11 is rotatably connected with the left slot edge, and the lead ingot is wrapped by opening and closing the left slot edge, so that the lead ingot can enter the lead ingot slot stably, so
  • the top of the lead ingot groove 11 is connected as a whole and can rotate clockwise along the inner furnace core 7, and the direction of the jaws of the control pliers is inwardly matched with the lead ingot groove to rotate clockwise, which can make the lead ingot groove wrapped around the lead ingot smoothly. Move to the next position to realize continuous feeding.
  • the bottom end of the inner furnace core 7 is provided with a second discharge port 72, and the second discharge port 72 and the first discharge port 101 pass through Pipe connection of outer furnace core 2;
  • a temperature sensing device 21 is installed in the inner furnace core 7, the output end of the temperature sensing device 21 is connected with the input end of the control module 16, and one output end of the control module is connected with a signal modulation module,
  • the signal modulation module is connected with a signal demodulation module, and the signal demodulation module is connected with an alarm module.
  • the control alarm device sends out an alarm to remind the operator to adjust the temperature of the lead melting furnace in time.
  • an intelligent dry lead melting furnace includes a lead melting furnace base pool 1, and the lead melting furnace base pool 1 is a square made of thermal insulation bricks.
  • a first discharge port 101 is opened at the bottom of the right side of the lead furnace base pool 1, and a control module 16 is fixedly installed on the left side of the lead melting furnace base pool 1, and the entire lead melting furnace is controlled by the control module.
  • the inside of the furnace base pool 1 is a cylindrical hollow structure, the middle part of the lead melting furnace base pool 1 is fixedly installed with an outer layer furnace core 2, and the top of the outer layer furnace core 2 is provided with an outer layer furnace core cover 201.
  • the left side of the layer furnace core cover 201 is provided with a lead filling port 22, and several groups of electric push rods 3 are fixedly installed in the middle of the inner side wall of the outer layer furnace core 2, and several groups of the electric push rods 3 are annular along the outer layer furnace core 2.
  • Distribution, the extension end of the electric push rod 3 is fixedly installed with a support rod 4, the upper and lower ends of the support rod 4 are fixedly installed with two sets of fixed clamps 6, and the two sets of fixed clamps can stabilize the lead falling from the lead filling port.
  • the block is fixed on the support rod and pushed by the electric push rod, so as to drive the lead block into the inner furnace core.
  • the jaw direction of the fixed pliers 6 is away from the support rod 4. When the support plate moves into the inner furnace core, it is convenient The lead block is removed, and the fixing pliers 6 are facing up and down with the lead opening 22, which is conducive to the stable blanking of the lead block;
  • support seats 5 are fixedly installed at the bottom of the outer furnace core 2.
  • the upper surface of the support seats 5 is in sliding contact with the bottom end of the support rod 4.
  • the block is firmly fixed on the support rod by the fixing clamp, the support seat 5 is set in an arc shape of 12mm*6mm, the arcuate side of the support seat 5 faces the inner wall of the outer furnace core 2, and the support seat 5 is horizontal
  • the directional height is slightly higher than the base 12 in the inner furnace core 7.
  • the support seat can carry the lead ingots that enter the outer furnace core from the lead-filling port. With the fixing clamps on the support rods, the stable feeding of the inner furnace core can be achieved. Effect;
  • An inner layer furnace core 7 is fixedly installed in the middle of the outer layer furnace core 2, an inner layer furnace core cover 71 is arranged on the top of the inner layer furnace core 7, and several sets of support feet 19 are fixedly installed at the bottom of the inner layer furnace core 7.
  • the legs 19 are provided with three groups, the three groups of the legs 19 are evenly distributed at the bottom of the inner layer furnace core 7, and the three groups of legs help the inner layer furnace core to be stably fixed in the outer layer furnace core, which improves the stability inside the lead melting furnace
  • a motor 18 is fixedly installed at the bottom of the inner furnace core 7, an annular cavity is formed between the inner furnace core 7 and the outer furnace core 2, and a solar heating device 8 is fixedly installed in the annular cavity.
  • a heating device 17 is fixedly installed in the inner furnace core 7, and the heating device of the inner furnace core and the solar heating device in the annular cavity are used together to achieve a good heat preservation effect and reduce heat loss. ;
  • the heating device 17 includes a heating casing 171, which is made of stainless steel, and several sets of guide rollers 172 are fixedly installed inside the heating casing 171, and the guide rollers 172 are made of high-insulation refractory ceramic materials.
  • a resistance wire 173 is evenly wound on the guide roller 172 , a power source 174 is fixedly installed at the bottom end of the heating casing 171 , and the power source 174 and the resistance wire 173 are electrically connected.
  • the use of ceramic heating equipment can maximize the use of energy, and it is suitable for working in high temperature and harsh environments. With the solar heating device, the internal temperature of the lead melting furnace can be dynamically balanced, reducing heat loss, saving energy consumption and reducing production costs;
  • One side of the inner furnace core 7 is equipped with a moving door 13 that is automatically closed and opened. Both the upper and lower ends are fixedly installed with control tongs 14 that open and close and rotate. The lead ingots on the support rod are removed by the control tongs.
  • a rotating shaft 9 is rotatably installed, the lower end of the rotating shaft 9 is fixedly connected between the bottom of the inner furnace core 7 and the output shaft of the motor 18, and several groups of connecting plates 10 are fixedly installed on the outside of the rotating shaft 9, and the connecting plates 10 are away from the rotating shaft. 9.
  • a lead ingot slot 11 is fixedly installed on one side, and the lead ingot slot 11 is rotatably connected with the left slot edge, and the lead ingot is wrapped by opening and closing the left slot edge, so that the lead ingot can enter the lead ingot slot stably, so
  • the top of the lead ingot groove 11 is connected as a whole and can rotate clockwise along the inner furnace core 7, and the direction of the jaws of the control pliers is inwardly matched with the lead ingot groove to rotate clockwise, which can make the lead ingot groove wrapped around the lead ingot smoothly. Move to the next position to realize continuous feeding.
  • the bottom end of the inner furnace core 7 is provided with a second discharge port 72, and the second discharge port 72 and the first discharge port 101 pass through Pipe connection of outer furnace core 2;
  • a temperature sensing device 21 is installed in the inner furnace core 7, the output end of the temperature sensing device 21 is connected with the input end of the control module 16, and one output end of the control module is connected with a signal modulation module,
  • the signal modulation module is connected with a signal demodulation module, and the signal demodulation module is connected with an alarm module.
  • the control alarm device sends out an alarm to remind the operator to adjust the temperature of the lead melting furnace in time.
  • a base plate 15 is fixedly installed at the bottom of the rotating shaft 9, the rotating shaft 9 runs through the middle of the base plate 15, the diameter of the base plate 15 is smaller than the diameter of the inner furnace core 7, and several groups of bases 12 are fixedly installed on the upper surface of the base plate 15, so The base 12 and the lead ingot groove 11 are facing up and down, the size and shape of the base 12 are consistent with the lower diameter of the lead ingot groove 11, the base 12 is fixedly connected with the rotating shaft 9, and the base 12 is connected with the lead ingot groove 11. run simultaneously.
  • the design of the base ensures that the lead ingot can be completely placed in the inner furnace core, and then smelted.
  • the base and the lead ingot slot rotate synchronously to facilitate the feeding of the lead ingot.
  • a sensing device 20 is installed on the substrate 15 beside the base 12 , the output end of the sensing device 20 is connected with the input end of the control module 16 , and one output end of the control module is connected with a signal modulation module, so
  • the signal modulation module is connected with a signal demodulation module
  • the signal demodulation module is connected with a motor module
  • the sensing device receives information and transmits it to the control module, and after analysis by the signal modulation module and the signal demodulation module, the motor is controlled to rotate.
  • the design of the sensing device eliminates the need to manually observe the lead ingot smelting step. After the lead ingot in the lead ingot tank is smelted, the inner furnace core is automatically fed through the control system to realize the automation of the lead melting process.
  • the control module is automatically activated to rotate the vacant lead ingot slot clockwise to the inner layer.
  • the electric push rod drives the support rod to move below the lead filling port, and starts the left slot of the lead ingot groove in the inner furnace core open and move the lead ingot slot to the back of the lead ingot as a whole, then close the left slot, release the control clamp on the moving door and reset it, close the moving door, and move the lead ingot to be processed. Put it into the lead filling port, so that the lead ingot falls on the support seat in the outer furnace core, and is clamped by the fixed clamp on the support rod, waiting for the next time it enters the inner furnace core.

Abstract

一种智能干法熔铅炉,包括熔铅炉座池(1),所述熔铅炉座池(1)左侧固定安装有控制模块,所述熔铅炉座池(1)中部固定安装有外层炉芯(2),所述外层炉芯(2)内侧壁中间固定安装有若干组电动推杆(3),所述电动推杆(3)伸长端固定安装有支撑杆(4),所述支撑杆(4)上下两端均固定安装有两组固定钳(6),所述外层炉芯(2)底部固定安装有若干组支撑座(5),所述外层炉芯内(2)部中间固定安装有内层炉芯(7),所述内层炉芯(7)的一侧装有自动关闭开启的移动门(13),所述移动门(13)的上下两端均固定安装有开合旋转的控制钳(14),所述控制模块(16)的多个输出端分别连接有移动门(13)、电动推杆(3)、固定钳(6)、控制钳(14),可以根据生产的需要随时启动加热使用,预热时间较短,节约能源消耗。

Description

智能干法熔铅炉 技术领域:
本发明涉及金属冶炼设备领域,具体涉及一种智能干法熔铅炉。
背景技术:
目前红丹生产工艺过程中,第一道生产工序就是将铅锭置入熔铅炉融化成铅水(液),然后进入下一道生产工序,一般情况下一条红丹生产线配置三套熔铅炉,产量产能才能配比,使生产效能最优。众所周知传统的熔铅炉大都是使用的是电加热,而且铅锭的熔点也高,为了实现铅锭的快速熔化,一般熔铅炉内的温度高达450℃左右,实属高耗能设备。
传统的熔铅炉需要在炉腔内预熔化一定量的铅液,然后才能将铅锭置入铅液中进行熔化;传统的熔铅炉在工作前需要对炉内预置的铅块加热熔化后才能正常工作,不能进行连续性生产;在炉内预置一定量的铅块并熔化,一方面增加原材料的占用,另一方面废品产生的可能性增大,铅锭落入炉内时,如果安全防护不当或者不能完全落实时,极易发生烫伤的工伤事故;目前熔铅炉的颅腔设置一次只能同时熔化2-3锭,多投会迅速降低炉内铅液温度,反而延缓铅锭的熔化速度,增加能耗,降低生产效率。
发明内容:
针对现有技术中的问题,本发明的目的在于提供一种智能干法熔铅炉。
本发明所要解决的技术问题采用以下的技术方案来实现:一种智能干法熔铅炉,包括熔铅炉座池,所述熔铅炉座池是由保温砖砌成的四方形,所述熔铅炉座池的右侧底部开设有第一出料口,所述熔铅炉座池左侧固定安装有控制模块,所述熔铅炉座池的内部为圆柱形中空结构,所述熔铅炉座池中部固定安装有外层炉芯,所述外层炉芯顶部设有外层炉芯罩,所述外层炉芯罩左侧开设有加铅口,所述外层炉芯内侧壁中间固定安装有若干组电动推杆,若干组所述电动推杆沿着外层炉芯环形分布,所述电动推杆伸长端固定安装 有支撑杆,所述支撑杆上下两端均固定安装有两组固定钳,所述固定钳的钳口方向远离支撑杆,所述固定钳与加铅口上下正对,所述外层炉芯底部固定安装有若干组支撑座,所述支撑座上表面与支撑杆底端之间滑动接触;
所述外层炉芯内部中间固定安装有内层炉芯,所述内层炉芯顶部设有内层炉芯盖,所述内层炉芯底部固定安装有若干组支脚,所述内层炉芯底部固定安装有电机,所述内层炉芯与外层炉芯之间形成一环形空腔,所述环形空腔内固定安装有太阳能加热装置,所述内层炉芯内固定安装有加热设备,所述内层炉芯内部竖直方向转动安装有转轴,所述转轴下端贯穿内层炉芯底部与电机的输出轴之间固定连接,所述转轴外侧固定安装有若干组连接板,所述连接板远离转轴一侧固定安装有铅锭槽,所述铅锭槽与其左侧槽帮之间转动连接,所述铅锭槽的顶部连成一个整体且可沿内层炉芯顺时针旋转;
所述内层炉芯的一侧装有自动关闭开启的移动门,所述移动门的高度大于铅锭槽的长度,所述移动门的上下两端均固定安装有开合旋转的控制钳,所述控制钳的钳口方向向内,两组所述控制钳的内距大于铅锭槽,所述内层炉芯的底端开设有第二出料口,所述第二出料口与第一出料口之间通过贯穿外层炉芯的管道连接;
所述控制模块的多个输出端分别连接有移动门、电动推杆、固定钳、控制钳、铅锭槽。
优选的,所述加热设备包括加热外壳,所述加热外壳采用不锈钢材料制成,所述加热外壳内部固定安装有若干组导辊,所述导辊采用高绝缘耐火陶瓷材料制成,所述导辊上均匀缠绕有电阻丝,所述加热外壳内部底端固定安装有电源,所述电源与电阻丝之间电性连接。
优选的,所述转轴底部固定安装有基板,所述转轴贯穿基板中部,所述基板的直径小于内层炉芯的直径,所述基板上表面固定安装有若干组底座,所述底座与铅锭槽上下正对,所述底座的大小形状与铅锭槽的下口径一致,所述底座与转轴之间固定连接,所述底座与铅锭槽同步运转。
优选的,所述底座旁的基板上安装有传感装置,所述传感装置的输出端与控制模块的输入端之间连接,控制模块中的一个输出端连接有信号调制模 块,所述信号调制模块连接有信号解调模块,所述信号解调模块连接有电机模块,传感装置接收到信息传递到控制模块,经信号调制模块和信号解调模块分析后,控制电机转动。
优选的,所述内层炉芯内安装有温度传感设备,所述温度传感设备的输出端与控制模块的输入端之间连接,控制模块中的一个输出端连接有信号调制模块,所述信号调制模块连接有信号解调模块,所述信号解调模块连接有报警模块,温度传感设备接收到信息传递到控制模块,经信号调制模块和信号解调模块分析后,控制报警装置发出警报。
优选的,所述支撑座设置成12mm*6mm的弧形,所述支撑座弧形的一面朝向外层炉芯内壁,所述支撑座水平方向高度略高于内层炉芯内的底座。
优选的,所述支脚设置有三组,三组所述支脚均匀分布在内层炉芯底部。
本发明的有益效果是:
通过电机驱动连接板上的铅锭槽在内层炉芯内陶瓷加热设备周围加热熔化,解决了传统熔铅炉熔化时需要预制铅液的问题,达到了熔铅炉在使用过程中随用随停的效果,减少了铅锭预热熔化的过程,提高生产效率。
通过环形空腔内设置的太阳能加热装置和内层炉芯内设置的加热设备配合使用,有效解决了传统熔铅炉大量消耗能源的问题,进而降低了生产成本。
通过支撑杆上固定安装的固定钳和移动门上固定安装的控制钳配合,有效解决了传统熔铅炉不能连续性生产的问题,进而实现了熔铅过程连续稳定的进行。
通过连接板上固定安装的铅锭槽和基板上固定安装的底座配合,使得铅锭稳定的落入内层炉芯中,让铅锭均匀熔化的同时减少工伤事故的发生。
通过在连接板设置多组铅锭槽,并且铅锭槽顶部连成一个整体,满足均匀熔化的同时可以加热多条铅锭,通过控制模块控制电机旋转,进而带动铅锭槽旋转,提高了熔铅炉的自动化水平,进而提高了生产效率。
通过内层炉芯内安装的温度传感设备和控制模块配合使用,当内层炉芯的温度超过480℃或低于420℃时,发出报警声,方便操作人员及时对熔铅炉做出调整。
附图说明:
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图;
图1为本发明中的结构示意图;
图2为本发明中的内层炉芯结构示意图;
图3为本发明中的固定钳结构示意图;
图4为本发明中的控制钳结构示意图;
图5为本发明中的铅锭槽结构示意图;
图6为本发明中的控制模块系统示意图;
图7为本发明中的加热设备结构示意图;
图8为本发明中的底座结构示意图;
图9为本发明中的传感装置控制系统示意图;
图10为本发明中的温度传感设备结构示意图;
图11为本发明中的温度控制系统示意图;
其中:1、熔铅炉座池;101、第一出料口;2、外层炉芯;201、外层炉芯罩;22、加铅口;3、电动推杆;4、支撑杆;5、支撑座;6、固定钳;7、内层炉芯;71、内层炉芯盖;72、第二出料口;8、太阳能加热装置;9、转轴;10、连接板;11、铅锭槽;12、底座;13、移动门;14、控制钳;15、基板;16、控制模块;17、加热设备;171、加热外壳;172、导辊;173、电阻丝;174、电源;18、电机;19、支脚;20、传感装置;21、温度传感设备。
具体实施方式:
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示,进一步阐述本发明。
实施例1:如图1-6所示,一种智能干法熔铅炉,包括熔铅炉座池1,所述熔铅炉座池1是由保温砖砌成的四方形,所述熔铅炉座池1的右侧底部开 设有第一出料口101,所述熔铅炉座池1左侧固定安装有控制模块16,通过控制模块对整个熔铅炉进行控制,所述熔铅炉座池1的内部为圆柱形中空结构,所述熔铅炉座池1中部固定安装有外层炉芯2,所述外层炉芯2顶部设有外层炉芯罩201,所述外层炉芯罩201左侧开设有加铅口22,所述外层炉芯2内侧壁中间固定安装有若干组电动推杆3,若干组所述电动推杆3沿着外层炉芯2环形分布,所述电动推杆3伸长端固定安装有支撑杆4,所述支撑杆4上下两端均固定安装有两组固定钳6,两组固定钳6能够稳定将从加铅口22落下的铅块固定在支撑杆4上,通过电动推杆3推动,从而带动铅块进入内层炉芯,所述固定钳6的钳口方向远离支撑杆4,在支撑板移动到内层炉芯内部时,方便将铅块取下,所述固定钳6与加铅口22上下正对,有利于铅块的稳定落料;
所述外层炉芯2底部固定安装有若干组支撑座5,所述支撑座5上表面与支撑杆4底端之间滑动接触,通过支撑座阻挡从加铅口落下的铅块,保证铅块被固定钳牢牢的固定在支撑杆上,所述支撑座5设置成12mm*6mm的弧形,所述支撑座5弧形的一面朝向外层炉芯2内壁,所述支撑座5水平方向高度略高于内层炉芯7内的底座12,支撑座能够承载从加铅口进入外层炉芯的铅锭,配合支撑杆上的固定钳,能够达到对内层炉芯稳定送料的效果;
所述外层炉芯2内部中间固定安装有内层炉芯7,所述内层炉芯7顶部设有内层炉芯盖71,所述内层炉芯7底部固定安装有若干组支脚19,所述支脚19设置有三组,三组所述支脚19均匀分布在内层炉芯7底部,三组支脚帮助内层炉芯平稳的固定在外层炉芯中,提高了熔铅炉内部的稳定性,所述内层炉芯7底部固定安装有电机18,所述内层炉芯7与外层炉芯2之间形成一环形空腔,所述环形空腔内固定安装有太阳能加热装置8,所述内层炉芯7内固定安装有加热设备17,通过内层炉芯的加热设备和环形空腔内的太阳能加热装置共同配合使用,达到了很好的保温效果,减少了热量的损失;
所述加热设备17包括加热外壳171,所述加热外壳171采用不锈钢材料制成,所述加热外壳171内部固定安装有若干组导辊172,所述导辊172采用高绝缘耐火陶瓷材料制成,所述导辊172上均匀缠绕有电阻丝173,所述加热 外壳171内部底端固定安装有电源174,所述电源174与电阻丝173之间电性连接,采用陶瓷加热设备能够较大化利用能源,且其适合在高温恶劣的环境下工作,配合太阳能加热装置能够起到熔铅炉内部温度处于动态平衡,减少热量散失,节约能源消耗,降低生产成本;
所述内层炉芯7的一侧装有自动关闭开启的移动门13,所述移动门13的高度大于铅锭槽11的长度,便于铅锭进入内层炉芯,所述移动门13的上下两端均固定安装有开合旋转的控制钳14,通过控制钳取下支撑杆上的铅锭,所述控制钳14的钳口方向向内,所述内层炉芯7内部竖直方向转动安装有转轴9,所述转轴9下端贯穿内层炉芯7底部与电机18的输出轴之间固定连接,所述转轴9外侧固定安装有若干组连接板10,所述连接板10远离转轴9一侧固定安装有铅锭槽11,所述铅锭槽11与其左侧槽帮之间转动连接,通过左侧槽帮张开闭合包裹住铅锭,使得铅锭稳定进入铅锭槽,所述铅锭槽11的顶部连成一个整体且可沿内层炉芯7顺时针旋转,控制钳的钳口方向向内配合铅锭槽顺时针旋转,能够让包裹住铅锭的铅锭槽顺利移动到下个位置,实现了连续进料,所述内层炉芯7的底端开设有第二出料口72,所述第二出料口72与第一出料口101之间通过贯穿外层炉芯2的管道连接;
所述内层炉芯7内安装有温度传感设备21,所述温度传感设备21的输出端与控制模块16的输入端之间连接,控制模块中的一个输出端连接有信号调制模块,所述信号调制模块连接有信号解调模块,所述信号解调模块连接有报警模块,当内层炉芯的温度超过480℃或低于420℃时,此时温度传感设备会把信息传递到控制模块,经信号调制模块和信号解调模块分析后,控制报警装置发出警报,提醒操作人员及时对熔铅炉的温度进行调整。
将待加工的铅锭放入加铅口,使得铅锭落到外层炉芯内的支撑座上,内层炉芯内铅锭槽内的铅锭熔化完后,此时手动启动控制模块,将空缺的铅锭槽顺时针旋转至内层炉芯的移动门处,开启移动门,启动外层炉芯侧壁上的电动推杆,将支撑杆连同支撑杆上的铅锭移至内层炉芯移动门内侧,启动移动门上的控制钳,夹住支撑杆上的铅锭,然后松开支撑杆上的固定钳并复位,同时电动推杆带动支撑杆移至加铅口下方,启动内层炉芯内铅锭槽的左侧槽 帮,使其张开,并将铅锭槽整体移至铅锭的后面,然后合起左侧槽帮,并松开移动门上的控制钳并复位,关闭移动门防止热量散失,节约能源。
实施例2:如图1-10所示,一种智能干法熔铅炉,包括熔铅炉座池1,所述熔铅炉座池1是由保温砖砌成的四方形,所述熔铅炉座池1的右侧底部开设有第一出料口101,所述熔铅炉座池1左侧固定安装有控制模块16,通过控制模块对整个熔铅炉进行控制,所述熔铅炉座池1的内部为圆柱形中空结构,所述熔铅炉座池1中部固定安装有外层炉芯2,所述外层炉芯2顶部设有外层炉芯罩201,所述外层炉芯罩201左侧开设有加铅口22,所述外层炉芯2内侧壁中间固定安装有若干组电动推杆3,若干组所述电动推杆3沿着外层炉芯2环形分布,所述电动推杆3伸长端固定安装有支撑杆4,所述支撑杆4上下两端均固定安装有两组固定钳6,两组固定钳能够稳定将从加铅口落下的铅块固定在支撑杆上,通过电动推杆推动,从而带动铅块进入内层炉芯,所述固定钳6的钳口方向远离支撑杆4,在支撑板移动到内层炉芯内部时,方便将铅块取下,所述固定钳6与加铅口22上下正对,有利于铅块的稳定落料;
所述外层炉芯2底部固定安装有若干组支撑座5,所述支撑座5上表面与支撑杆4底端之间滑动接触,通过支撑座阻挡从加铅口落下的铅块,保证铅块被固定钳牢牢的固定在支撑杆上,所述支撑座5设置成12mm*6mm的弧形,所述支撑座5弧形的一面朝向外层炉芯2内壁,所述支撑座5水平方向高度略高于内层炉芯7内的底座12,支撑座能够承载从加铅口进入外层炉芯的铅锭,配合支撑杆上的固定钳,能够达到对内层炉芯稳定送料的效果;
所述外层炉芯2内部中间固定安装有内层炉芯7,所述内层炉芯7顶部设有内层炉芯盖71,所述内层炉芯7底部固定安装有若干组支脚19,所述支脚19设置有三组,三组所述支脚19均匀分布在内层炉芯7底部,三组支脚帮助内层炉芯平稳的固定在外层炉芯中,提高了熔铅炉内部的稳定性,所述内层炉芯7底部固定安装有电机18,所述内层炉芯7与外层炉芯2之间形成一环形空腔,所述环形空腔内固定安装有太阳能加热装置8,所述内层炉芯7内固定安装有加热设备17,通过内层炉芯的加热设备和环形空腔内的太阳能加热装置共同配合使用,达到了很好的保温效果,减少了热量的损失;
所述加热设备17包括加热外壳171,所述加热外壳171采用不锈钢材料制成,所述加热外壳171内部固定安装有若干组导辊172,所述导辊172采用高绝缘耐火陶瓷材料制成,所述导辊172上均匀缠绕有电阻丝173,所述加热外壳171内部底端固定安装有电源174,所述电源174与电阻丝173之间电性连接。采用陶瓷加热设备能够较大化利用能源,且其适合在高温恶劣的环境下工作,配合太阳能加热装置能够起到熔铅炉内部温度处于动态平衡,减少热量散失,节约能源消耗,降低生产成本;
所述内层炉芯7的一侧装有自动关闭开启的移动门13,所述移动门13的高度大于铅锭槽11的长度,便于铅锭进入内层炉芯,所述移动门13的上下两端均固定安装有开合旋转的控制钳14,通过控制钳取下支撑杆上的铅锭,所述控制钳14的钳口方向向内,所述内层炉芯7内部竖直方向转动安装有转轴9,所述转轴9下端贯穿内层炉芯7底部与电机18的输出轴之间固定连接,所述转轴9外侧固定安装有若干组连接板10,所述连接板10远离转轴9一侧固定安装有铅锭槽11,所述铅锭槽11与其左侧槽帮之间转动连接,通过左侧槽帮张开闭合包裹住铅锭,使得铅锭稳定进入铅锭槽,所述铅锭槽11的顶部连成一个整体且可沿内层炉芯7顺时针旋转,控制钳的钳口方向向内配合铅锭槽顺时针旋转,能够让包裹住铅锭的铅锭槽顺利移动到下个位置,实现了连续进料,所述内层炉芯7的底端开设有第二出料口72,所述第二出料口72与第一出料口101之间通过贯穿外层炉芯2的管道连接;
所述内层炉芯7内安装有温度传感设备21,所述温度传感设备21的输出端与控制模块16的输入端之间连接,控制模块中的一个输出端连接有信号调制模块,所述信号调制模块连接有信号解调模块,所述信号解调模块连接有报警模块,当内层炉芯的温度超过480℃或低于420℃时,此时温度传感设备会把信息传递到控制模块,经信号调制模块和信号解调模块分析后,控制报警装置发出警报,提醒操作人员及时对熔铅炉的温度进行调整。
所述转轴9底部固定安装有基板15,所述转轴9贯穿基板15中部,所述基板15的直径小于内层炉芯7的直径,所述基板15上表面固定安装有若干组底座12,所述底座12与铅锭槽11上下正对,所述底座12的大小形状与铅 锭槽11的下口径一致,所述底座12与转轴9之间固定连接,所述底座12与铅锭槽11同时运转。底座的设计保证了铅锭能够完全落实在内层炉芯中,进而进行熔炼,底座和铅锭槽同步转动,方便铅锭进料。
所述底座12旁的基板15上安装有传感装置20,所述传感装置20的输出端与控制模块16的输入端之间连接,控制模块中的一个输出端连接有信号调制模块,所述信号调制模块连接有信号解调模块,所述信号解调模块连接有电机模块,传感装置接收到信息传递到控制模块,经信号调制模块和信号解调模块分析后,控制电机转动。通过传感装置的设计省去了人工观察铅锭熔炼的步骤,当铅锭槽内的铅锭熔炼完后,通过控制系统自动对内层炉芯加料,实现了熔铅过程的自动化。
内层炉芯内铅锭槽内的铅锭熔化完后,铅锭槽下面的底座上通过传感装置发出空缺信号,此时自动启动控制模块,将空缺的铅锭槽顺时针旋转至内层炉芯的移动门处,开启移动门,启动外层炉芯侧壁上的电动推杆,将支撑杆连同支撑杆上的铅锭移至内层炉芯移动门内侧,启动移动门上的控制钳,夹住支撑杆上的铅锭,然后松开支撑杆上的固定钳并复位,同时电动推杆带动支撑杆移至加铅口下方,启动内层炉芯内铅锭槽的左侧槽帮,使其张开,并将铅锭槽整体移至铅锭的后面,然后合起左侧槽帮,并松开移动门上的控制钳并复位,关闭移动门,将待加工的铅锭放入加铅口,使得铅锭落到外层炉芯内的支撑座上,并由支撑杆上的固定钳夹住,等待下一次进入内层炉芯。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (4)

  1. 一种智能干法熔铅炉,包括熔铅炉座池,其特征在于:所述熔铅炉座池是由保温砖砌成的四方形,所述熔铅炉座池的右侧底部开设有第一出料口,所述熔铅炉座池左侧固定安装有控制模块,所述熔铅炉座池的内部为圆柱形中空结构,所述熔铅炉座池中部固定安装有外层炉芯,所述外层炉芯顶部设有外层炉芯罩,所述外层炉芯罩左侧开设有加铅口,所述外层炉芯内侧壁中间固定安装有若干组电动推杆,若干组所述电动推杆沿着外层炉芯环形分布,所述电动推杆伸长端固定安装有支撑杆,所述支撑杆上下两端均固定安装有两组固定钳,所述固定钳的钳口方向远离支撑杆,所述固定钳与加铅口上下正对,所述外层炉芯底部固定安装有若干组支撑座,所述支撑座上表面与支撑杆底端之间滑动接触;
    所述外层炉芯内部中间固定安装有内层炉芯,所述内层炉芯顶部设有内层炉芯盖,所述内层炉芯底部固定安装有若干组支脚,所述内层炉芯底部固定安装有电机,所述内层炉芯与外层炉芯之间形成一环形空腔,所述环形空腔内固定安装有太阳能加热装置,所述内层炉芯内固定安装有加热设备,所述内层炉芯内部竖直方向转动安装有转轴,所述转轴下端贯穿内层炉芯底部与电机的输出轴之间固定连接,所述转轴外侧固定安装有若干组连接板,所述连接板远离转轴一侧固定安装有铅锭槽,所述铅锭槽与其左侧槽帮之间转动连接,所述铅锭槽的顶部连成一个整体;
    所述内层炉芯的一侧装有自动关闭开启的移动门,所述移动门的高度大于铅锭槽的长度,所述移动门的上下两端均固定安装有开合旋转的控制钳,所述控制钳的钳口方向向内,两组所述控制钳的内距大于铅锭槽,所述内层炉芯的底端开设有第二出料口,所述第二出料口与第一出料口之间通过贯穿外层炉芯的管道连接;
    所述控制模块的多个输出端分别连接有移动门、电动推杆、固定钳、控制钳、铅锭槽。
  2. 根据权利要求1所述的一种智能干法熔铅炉,其特征在于:所述加热设备包括加热外壳,所述加热外壳采用不锈钢材料制成,所述加热外壳内部 固定安装有若干组导辊,所述导辊采用高绝缘耐火陶瓷材料制成,所述导辊上均匀缠绕有电阻丝,所述加热外壳内部底端固定安装有电源,所述电源与电阻丝之间电性连接。
  3. 根据权利要求1所述的一种智能干法熔铅炉,其特征在于:所述转轴底部固定安装有基板,所述转轴贯穿基板中部,所述基板的直径小于内层炉芯的直径,所述基板上表面固定安装有若干组底座,所述底座与铅锭槽上下正对,所述底座的大小形状与铅锭槽的下口径一致,所述底座与转轴之间固定连接,所述底座与铅锭槽同步运转。
  4. 根据权利要求3所述的一种智能干法熔铅炉,其特征在于:所述底座旁的基板上安装有传感装置,所述传感装置的输出端与控制模块的输入端之间连接,控制模块中的一个输出端连接有信号调制模块,所述信号调制模块连接有信号解调模块,所述信号解调模块连接有电机模块,传感装置接收到信息传递到控制模块,经信号调制模块和信号解调模块分析后,控制电机转动。
PCT/CN2020/126410 2020-09-04 2020-11-04 智能干法熔铅炉 WO2022048004A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010922247.4A CN112229214B (zh) 2020-09-04 2020-09-04 一种智能干法熔铅炉
CN202010922247.4 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022048004A1 true WO2022048004A1 (zh) 2022-03-10

Family

ID=74116454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126410 WO2022048004A1 (zh) 2020-09-04 2020-11-04 智能干法熔铅炉

Country Status (2)

Country Link
CN (1) CN112229214B (zh)
WO (1) WO2022048004A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114682166A (zh) * 2022-05-31 2022-07-01 南昌市博泽康医药科技有限公司 一种中医药用鲜竹沥智能干馏生产装置
CN117073369A (zh) * 2023-10-13 2023-11-17 四川沃耐稀新材料科技有限公司 一种氟化镨钕原液灼烧用烧结炉及其控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113604618A (zh) * 2021-08-04 2021-11-05 何达 一种促使高炉炉缸快速升温的智能设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790749A (en) * 1973-03-26 1974-02-05 R Lee Electric lead pot with increased efficiency
EP0467230A1 (de) * 1990-07-16 1992-01-22 Forschungszentrum Jülich Gmbh Kalt-Schmelz-Tiegel
CN102773708A (zh) * 2012-08-21 2012-11-14 武汉科技大学 一种蓄电池正负极用铅带生产线
CN104515396A (zh) * 2013-10-02 2015-04-15 江苏璞瑞电池有限公司 用于熔铅炉的铅锭上料装置
CN104634099A (zh) * 2015-02-10 2015-05-20 大英德创精工设备有限公司 一种高效节能的熔铅炉及其实现方法
CN204535415U (zh) * 2015-03-09 2015-08-05 江苏澳鑫科技发展有限公司 一种用于熔铅炉的自动铅锭上料系统
CN107144128A (zh) * 2017-07-18 2017-09-08 大英德创精工设备有限公司 新型熔铅炉
CN206705194U (zh) * 2017-04-24 2017-12-05 重庆远风机械有限公司 用于铅酸蓄电池板栅浇铸的铅锭自动输送设备
CN210533018U (zh) * 2019-09-09 2020-05-15 济源市万洋绿色能源有限公司 一种自配合金重力浇筑专用密封熔铅锅
CN112212690A (zh) * 2020-09-04 2021-01-12 安徽骏马新材料科技股份有限公司 一种智能干法熔铅方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10060729A1 (de) * 2000-12-07 2002-06-20 Messer Griesheim Gmbh Schmelzofen
JP4352026B2 (ja) * 2004-08-04 2009-10-28 株式会社メイチュー 金属溶解炉
CN201603851U (zh) * 2009-09-25 2010-10-13 江阴市东顺机械有限公司 连铸连轧制造板栅的熔铅炉
CN104949511B (zh) * 2015-06-17 2017-01-04 安徽理工大学 锥形双控自动真空熔铅炉
CN208817995U (zh) * 2018-08-14 2019-05-03 上海旦清防护科技有限公司 一种熔铅炉装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790749A (en) * 1973-03-26 1974-02-05 R Lee Electric lead pot with increased efficiency
EP0467230A1 (de) * 1990-07-16 1992-01-22 Forschungszentrum Jülich Gmbh Kalt-Schmelz-Tiegel
CN102773708A (zh) * 2012-08-21 2012-11-14 武汉科技大学 一种蓄电池正负极用铅带生产线
CN104515396A (zh) * 2013-10-02 2015-04-15 江苏璞瑞电池有限公司 用于熔铅炉的铅锭上料装置
CN104634099A (zh) * 2015-02-10 2015-05-20 大英德创精工设备有限公司 一种高效节能的熔铅炉及其实现方法
CN204535415U (zh) * 2015-03-09 2015-08-05 江苏澳鑫科技发展有限公司 一种用于熔铅炉的自动铅锭上料系统
CN206705194U (zh) * 2017-04-24 2017-12-05 重庆远风机械有限公司 用于铅酸蓄电池板栅浇铸的铅锭自动输送设备
CN107144128A (zh) * 2017-07-18 2017-09-08 大英德创精工设备有限公司 新型熔铅炉
CN210533018U (zh) * 2019-09-09 2020-05-15 济源市万洋绿色能源有限公司 一种自配合金重力浇筑专用密封熔铅锅
CN112212690A (zh) * 2020-09-04 2021-01-12 安徽骏马新材料科技股份有限公司 一种智能干法熔铅方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114682166A (zh) * 2022-05-31 2022-07-01 南昌市博泽康医药科技有限公司 一种中医药用鲜竹沥智能干馏生产装置
CN114682166B (zh) * 2022-05-31 2022-09-23 南昌市博泽康医药科技有限公司 一种中医药用鲜竹沥智能干馏生产装置
CN117073369A (zh) * 2023-10-13 2023-11-17 四川沃耐稀新材料科技有限公司 一种氟化镨钕原液灼烧用烧结炉及其控制方法
CN117073369B (zh) * 2023-10-13 2023-12-22 四川沃耐稀新材料科技有限公司 一种氟化镨钕原液灼烧用烧结炉及其控制方法

Also Published As

Publication number Publication date
CN112229214B (zh) 2022-06-17
CN112229214A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2022048004A1 (zh) 智能干法熔铅炉
CN104315845A (zh) 一种封闭式自进料熔铅炉
CN200968773Y (zh) 制备多晶硅用铸锭炉
CN112212690B (zh) 一种智能干法熔铅方法
CN203922985U (zh) 矿渣玻璃陶瓷管材与管件生产线
CN207472031U (zh) 一种可倾斜式电加热熔铝炉
CN212585500U (zh) 一种圆钢处理用中频炉
CN205999414U (zh) 一种均质炉炉体结构
CN213350791U (zh) 一种铅黄铜棒的高质量熔铸设备
CN217370446U (zh) 方便调节的铝合金熔液取料机构
CN210441645U (zh) 一种模壳焙烧炉
CN205999430U (zh) 一种均质炉
CN209139797U (zh) 铝、镁合金定量胚料连续快速熔化压铸成型装置
CN111941683A (zh) 一种聚酯薄膜生产加工用的原料熔融装置
CN218252127U (zh) 一种偏析热尾铝回收装置
CN220187437U (zh) 一种物料煅烧预热装置
CN210512621U (zh) 一种铝箔化成用高效节能焙烧炉
CN217265920U (zh) 一种方便进料的自动固溶炉
CN217715724U (zh) 一种导流筒盖板加工用均匀烘干设备
CN218443278U (zh) 一种磷酸铁锂灼烧坩埚托架
CN218545231U (zh) 一种石墨坩埚用烘干装置
CN219368340U (zh) 一种用于石英砂提纯的煅烧装置
CN219640670U (zh) 一种金属材料熔炼铸造装置
CN213901816U (zh) 一种无纺布烘干装置
CN215558519U (zh) 一种提高热处理效率的热处理炉的上料设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952246

Country of ref document: EP

Kind code of ref document: A1