WO2022047993A1 - 摄像光学镜头 - Google Patents
摄像光学镜头 Download PDFInfo
- Publication number
- WO2022047993A1 WO2022047993A1 PCT/CN2020/125850 CN2020125850W WO2022047993A1 WO 2022047993 A1 WO2022047993 A1 WO 2022047993A1 CN 2020125850 W CN2020125850 W CN 2020125850W WO 2022047993 A1 WO2022047993 A1 WO 2022047993A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- imaging optical
- optical lens
- focal length
- curvature
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0035—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/12—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
Definitions
- the invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
- the lenses traditionally mounted on mobile phone cameras mostly use a three-piece lens structure.
- the common three-piece lens already has good optical performance, its optical power, lens spacing and lens shape setting are still unreasonable to a certain extent, resulting in the lens structure having good optical performance and unable to meet the large aperture. , Ultra-thin, wide-angle design requirements.
- the purpose of the present invention is to provide an imaging optical lens, which can meet the design requirements of large aperture, wide angle, and ultra-thinness while obtaining high imaging performance.
- an imaging optical lens sequentially includes from the object side to the image side: a first lens having a positive refractive power, a second lens having a positive refractive power a lens and a third lens having a negative refractive power;
- the overall focal length of the imaging optical lens is f
- the focal length of the first lens is f1
- the focal length of the second lens is f2
- the focal length of the third lens is f3
- the focal length of the object side of the third lens is f3.
- the radius of curvature is R5
- the radius of curvature of the image side of the third lens is R6
- the on-axis thickness of the second lens is d3
- the axis from the image side of the second lens to the object side of the third lens is d4 and satisfies the following relation:
- the on-axis thickness of the first lens is d1
- the on-axis distance from the image side of the first lens to the object side of the second lens is d2
- the radius of curvature of the object side of the first lens is R1
- the radius of curvature of the image side of the first lens is R2
- the on-axis thickness of the first lens is d1
- the optical The total length is TTL and satisfies the following relation:
- the radius of curvature of the object side of the second lens is R3
- the radius of curvature of the image side of the second lens is R4
- the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
- the on-axis thickness of the third lens is d5
- the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
- the image height of the imaging optical lens is IH
- the total optical length of the imaging optical lens is TTL
- the following relational expression is satisfied: TTL/IH ⁇ 1.69.
- the overall focal length of the imaging optical lens is f
- the combined focal length of the first lens and the second lens is f12, which satisfies the following relationship: 0.33 ⁇ f12/f ⁇ 1.20.
- the FOV of the imaging optical lens is greater than or equal to 83.00°.
- the imaging optical lens according to the present invention has good optical performance, wide-angle and ultra-thin characteristics, and is especially suitable for mobile phone camera lens assemblies composed of high-pixel CCD, CMOS and other imaging elements and WEB camera mirror.
- FIG. 1 is a schematic structural diagram of an imaging optical lens according to a first embodiment of the present invention
- Fig. 2 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 1;
- FIG. 3 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 1;
- FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
- FIG. 5 is a schematic structural diagram of an imaging optical lens according to a second embodiment of the present invention.
- Fig. 6 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 5;
- FIG. 7 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 5;
- FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
- FIG. 9 is a schematic structural diagram of an imaging optical lens according to a third embodiment of the present invention.
- Fig. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in Fig. 9;
- FIG. 11 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 9;
- FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9;
- FIG. 13 is a schematic structural diagram of an imaging optical lens according to a fourth embodiment of the present invention.
- Fig. 14 is a schematic diagram of axial aberration of the imaging optical lens shown in Fig. 13;
- FIG. 15 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 13;
- Fig. 16 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in Fig. 13;
- FIG. 17 is a schematic structural diagram of an imaging optical lens according to a fifth embodiment of the present invention.
- Fig. 18 is a schematic diagram of axial aberration of the imaging optical lens shown in Fig. 17;
- Fig. 19 is a schematic diagram of magnification chromatic aberration of the imaging optical lens shown in Fig. 17;
- FIG. 20 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 17 .
- FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention, and the imaging optical lens 10 includes three lenses. Specifically, the imaging optical lens 10 sequentially includes: a first lens L1 , an aperture S1 , a second lens L2 , and a third lens L3 from the object side to the image side.
- a glass flat plate GF is provided between the third lens L3 and the image plane Si, and the glass flat plate GF may be a glass cover plate or an optical filter.
- the first lens L1 has a positive refractive power
- the second lens L2 has a positive refractive power
- the third lens L3 has a negative refractive power
- the first lens L1 is made of plastic material
- the second lens L2 is made of plastic material
- the third lens L3 is made of plastic material.
- the focal length of the entire imaging optical lens 10 as f
- the focal length of the first lens L1 as f1
- the focal length of the second lens L2 as f2
- the focal length of the third lens L3 as f3
- the curvature of the object side surface of the third lens L3 The radius is R5
- the radius of curvature of the image side of the third lens L3 is R6
- the on-axis thickness of the second lens L2 is d3
- the on-axis distance from the image side of the second lens L2 to the object side of the third lens L3 is d4, and satisfy the following relation:
- the relational expression (1) specifies the ratio of the focal length f1 of the first lens L1 to the overall focal length f of the imaging optical lens 10 . Within the range of the relational expression, the spherical aberration and field curvature of the system can be effectively balanced.
- the relational formula (2) specifies the ratio of the focal length f2 of the second lens L2 to the focal length f of the imaging optical lens 10 as a whole. Through the reasonable distribution of the focal length, the system has better imaging quality and lower sensitivity.
- the relational formula (3) specifies the ratio of the focal length f3 of the third lens L3 to the focal length f of the imaging optical lens 10 as a whole. Through the reasonable distribution of the focal length, the system has better imaging quality and lower sensitivity.
- the relational formula (4) specifies the ratio of the on-axis thickness d3 of the second lens L2 to the air space d4 between the second and third lenses. Within the range of the relational formula, it helps to compress the total length of the optical system and achieve ultra-thinning Effect.
- the relational expression (5) specifies the shape of the third lens L3, and when the shape of the third lens L3 is within the range of this relational expression, it is advantageous to correct the aberration of the off-axis picture angle.
- the on-axis thickness of the first lens L1 is defined as d1
- the on-axis distance from the image side of the first lens L1 to the object side of the second lens L2 is d2
- the following relationship is satisfied: 0.50 ⁇ d1/d2 ⁇ 1.00.
- This relational expression specifies the ratio of the on-axis thickness d1 of the first lens L1 to the air space d2 between the first and second lenses. Within the range of the relational expression, it is helpful to compress the total length of the optical system and achieve the effect of ultra-thinning.
- the object side surface of the first lens L1 is a convex surface at the paraxial position, and the image side surface thereof is a convex surface at the paraxial position.
- R1 the radius of curvature of the object side of the first lens L1 as R1
- R2 the radius of curvature of the image side of the first lens L1
- -0.55 ⁇ (R1+R2)/(R1-R2) ⁇ 0.47 is satisfied.
- the on-axis thickness of the first lens L1 is defined as d1, and the optical total length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.06 ⁇ d1/TTL ⁇ 0.27. Within the range of the relational expression, it is advantageous to achieve ultra-thinning. Preferably, 0.09 ⁇ d1/TTL ⁇ 0.22 is satisfied.
- the object side surface of the second lens L2 is concave at the paraxial position, and the image side surface of the second lens L2 is convex at the paraxial position.
- the curvature radius of the object side surface of the second lens L2 is defined as R3, and the curvature radius of the image side surface of the second lens L2 is R4, which satisfy the following relationship: 1.04 ⁇ (R3+R4)/(R3-R4) ⁇ 4.64. Preferably, 1.67 ⁇ (R3+R4)/(R3-R4) ⁇ 3.71 is satisfied.
- the optical total length of the imaging optical lens 10 is TTL, and the axial thickness of the second lens L2 is d3, which satisfies the following relationship: 0.09 ⁇ d3/TTL ⁇ 0.31.
- 0.14 ⁇ d3/TTL ⁇ 0.25 is satisfied.
- the object side surface of the third lens L3 is a convex surface at the paraxial position
- the image side surface of the third lens L3 is a concave surface at the paraxial position
- the total optical length of the imaging optical lens 10 is TTL, and the axial thickness of the third lens L3 is d5, which satisfies the following relationship: 0.04 ⁇ d5/TTL ⁇ 0.14. Within the range of the relational expression, it is advantageous to achieve ultra-thinning. Preferably, 0.06 ⁇ d5/TTL ⁇ 0.11 is satisfied.
- the image height of the imaging optical lens 10 is IH
- the total optical length of the imaging optical lens 10 is TTL
- the following relational expression is satisfied: TTL/IH ⁇ 1.69, which is conducive to realizing ultra-thinning.
- the field of view FOV of the imaging optical lens 10 is greater than or equal to 83.00°. To achieve wide-angle.
- the overall focal length of the imaging optical lens 10 is f
- the combined focal length of the first lens L1 and the second lens L2 is defined as f12, which satisfies the following relationship: 0.33 ⁇ f12/f ⁇ 1.20.
- the aberration and distortion of the imaging optical lens 10 can be eliminated, the back focal length of the imaging optical lens 10 can be suppressed, and the miniaturization of the imaging lens system group can be maintained.
- 0.53 ⁇ f12/f ⁇ 0.96 is satisfied.
- the surface of each lens can be set as an aspherical surface, and the aspherical surface can be easily made into a shape other than a spherical surface, so as to obtain more control variables to reduce aberrations, thereby reducing the use of the lens. Therefore, the total length of the imaging optical lens 10 can be effectively reduced.
- the object side surface and the image side surface of each lens are both aspherical surfaces.
- the imaging optical lens 10 can have good optical performance, and can satisfy the requirements of large aperture, wide-angle, and ultra-thinning. Design requirements: According to the characteristics of the imaging optical lens 10, the imaging optical lens 10 is especially suitable for mobile phone camera lens assemblies and WEB camera lenses composed of high-pixel CCD, CMOS and other imaging elements.
- the imaging optical lens 10 of the present invention will be described below by way of examples.
- the symbols described in each example are as follows.
- the unit of focal length, on-axis distance, curvature radius, on-axis thickness, position of inflection point and position of stagnation point is mm.
- TTL total optical length (the on-axis distance from the object side of the first lens L1 to the image plane Si), in mm;
- Aperture value FNO refers to the ratio of the effective focal length of the imaging optical lens to the entrance pupil diameter ENPD.
- an inflection point and/or a stagnation point may also be set on the object side and/or the image side of each lens to meet the requirements of high-quality imaging. For specific implementations, see below.
- the design data of the imaging optical lens 10 shown in FIG. 1 is shown below.
- Table 1 lists the curvature radius of the object side surface and the curvature radius R of the image side surface of the first lens L1 to the third lens L3 constituting the imaging optical lens 10 in the first embodiment of the present invention, the on-axis thickness of each lens, and the two adjacent lenses.
- distance d distance between the units of R and d are both millimeters (mm).
- R the radius of curvature at the center of the optical surface
- R1 the radius of curvature of the object side surface of the first lens L1;
- R2 the radius of curvature of the image side surface of the first lens L1;
- R3 the radius of curvature of the object side surface of the second lens L2;
- R4 the radius of curvature of the image side surface of the second lens L2;
- R5 the radius of curvature of the object side surface of the third lens L3;
- R6 the curvature radius of the image side surface of the third lens L3;
- R7 the radius of curvature of the object side of the optical filter GF
- R8 the radius of curvature of the image side of the optical filter GF
- d the on-axis thickness of the lens, the on-axis distance between the lenses
- d0 the on-axis distance from the aperture S1 to the object side surface of the first lens L1;
- d2 the on-axis distance from the image side of the first lens L1 to the object side of the second lens L2;
- d4 the on-axis distance from the image side of the second lens L2 to the object side of the third lens L3;
- nd the refractive index of the d-line
- nd1 the refractive index of the d-line of the first lens L1;
- nd2 the refractive index of the d-line of the second lens L2;
- nd3 the refractive index of the d-line of the third lens L3;
- ndg the refractive index of the d-line of the optical filter GF
- vg Abbe number of optical filter GF.
- Table 2 shows aspherical surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
- k is the conic coefficient
- A4, A6, A8, A10, A12, A14, A16, A18, and A20 are aspheric coefficients.
- x is the vertical distance between the point on the aspheric curve and the optical axis
- y is the depth of the aspheric surface (the vertical distance between the point on the aspheric surface whose distance is x from the optical axis and the tangent plane tangent to the vertex on the optical axis of the aspheric surface. ).
- the aspherical surfaces shown in the above formula (6) are used as the aspherical surfaces of the respective lens surfaces.
- the present invention is not limited to the aspheric polynomial form represented by the formula (6).
- Table 3 and Table 4 show the design data of the inflection point and the stagnation point of each lens in the imaging optical lens 10 of the present embodiment.
- P1R1 and P1R2 represent the object side and image side of the first lens L1 respectively
- P2R1 and P2R2 respectively represent the object side and the image side of the second lens L2
- P3R1 and P3R2 respectively represent the object side and the image side of the third lens L3.
- the corresponding data in the column of "invagination point position" is the vertical distance from the inflexion point set on the surface of each lens to the optical axis of the imaging optical lens 10 .
- the corresponding data in the column of "stagnation point position” is the vertical distance from the stagnation point set on the surface of each lens to the optical axis of the imaging optical lens 10 .
- the first embodiment satisfies each relational expression.
- FIG. 4 shows a schematic diagram of the field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 10 of the first embodiment.
- the field curvature S in FIG. 4 is the field curvature in the sagittal direction, and T is the field in the meridional direction. song.
- the entrance pupil diameter ENPD of the imaging optical lens 10 is 0.791 mm
- the full field of view image height IH is 1.750 mm
- the FOV in the diagonal direction is 83.40°.
- the imaging optical lens 10 satisfies the requirements of large aperture, Wide-angle and ultra-thin design requirements, the on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
- FIG. 5 is a schematic structural diagram of the imaging optical lens 20 in the second embodiment.
- the second embodiment is basically the same as the first embodiment.
- the symbols in the following list have the same meanings as the first embodiment, so the same parts will not be repeated here. .
- Table 5 shows design data of the imaging optical lens 20 according to the second embodiment of the present invention.
- Table 6 shows aspherical surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
- Tables 7 and 8 show the inflection point and stagnation point design data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
- the second embodiment satisfies each relational expression.
- FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 436 nm, 470 nm, 510 nm, 555 nm, 610 nm and 650 nm passes through the imaging optical lens 20 of the second embodiment.
- FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 20 of the second embodiment.
- the entrance pupil diameter ENPD of the imaging optical lens 20 is 0.730 mm, the full field of view image height IH is 1.750 mm, and the FOV in the diagonal direction is 88.00°.
- the imaging optical lens 20 satisfies the requirements of large aperture, Wide-angle and ultra-thin design requirements, the on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
- FIG. 9 is a schematic structural diagram of the imaging optical lens 30 in the third embodiment.
- the third embodiment is basically the same as the first embodiment, and the symbols in the following list have the same meanings as the first embodiment, so the same parts will not be repeated here. .
- Table 9 shows design data of the imaging optical lens 30 according to the third embodiment of the present invention.
- Table 10 shows aspherical surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
- Table 11 and Table 12 show the inflection point and stagnation point design data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
- the third embodiment satisfies each relational expression.
- FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 436 nm, 470 nm, 510 nm, 555 nm, 610 nm and 650 nm passes through the imaging optical lens 30 of the third embodiment.
- FIG. 12 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 30 of the third embodiment.
- the entrance pupil diameter ENPD of the imaging optical lens 30 is 0.774 mm
- the full field of view image height IH is 1.750 mm
- the FOV in the diagonal direction is 84.40°.
- the imaging optical lens 30 satisfies the requirements of large aperture, Wide-angle and ultra-thin design requirements, the on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
- FIG. 13 is a schematic structural diagram of the imaging optical lens 40 in the fourth embodiment.
- the fourth embodiment is basically the same as the first embodiment, and the symbols in the following list have the same meanings as the first embodiment, so the same parts will not be repeated here. .
- Table 13 shows design data of the imaging optical lens 40 according to the fourth embodiment of the present invention.
- Table 14 shows aspherical surface data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
- Table 15 and Table 16 show the inflection point and stagnation point design data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
- the fourth embodiment satisfies each relational expression.
- FIG. 14 and 15 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 436 nm, 470 nm, 510 nm, 555 nm, 610 nm and 650 nm passes through the imaging optical lens 40 of the fourth embodiment.
- FIG. 16 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 30 of the fourth embodiment.
- the entrance pupil diameter ENPD of the imaging optical lens 40 is 0.783 mm
- the full field of view image height IH is 1.750 mm
- the FOV in the diagonal direction is 84.00°.
- the imaging optical lens 40 satisfies the requirements of large aperture, Wide-angle and ultra-thin design requirements, the on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
- FIG. 17 is a schematic structural diagram of the imaging optical lens 50 in the fifth embodiment.
- the fifth embodiment is basically the same as the first embodiment, and the symbols in the following list have the same meaning as the first embodiment, so the same parts will not be repeated here. .
- Table 17 shows design data of the imaging optical lens 50 according to the fifth embodiment of the present invention.
- Table 18 shows aspherical surface data of each lens in the imaging optical lens 50 according to the fifth embodiment of the present invention.
- Table 19 and Table 20 show the inflection point and stagnation point design data of each lens in the imaging optical lens 50 according to the fifth embodiment of the present invention.
- the fifth embodiment satisfies each relational expression.
- FIG. 18 and 19 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 436 nm, 470 nm, 510 nm, 555 nm, 610 nm and 650 nm passes through the imaging optical lens 50 of the fifth embodiment.
- FIG. 20 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 50 of the fifth embodiment.
- the entrance pupil diameter ENPD of the imaging optical lens 50 is 0.727 mm
- the image height IH of the full field of view is 1.750 mm
- the FOV in the diagonal direction is 88.20°.
- the imaging optical lens 50 satisfies the requirements of large aperture, Wide-angle and ultra-thin design requirements, the on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
- Table 21 lists the numerical values of the corresponding relational expressions in the first embodiment, the second embodiment, the third embodiment, the fourth embodiment and the fifth embodiment, and the values of other related parameters according to the above-mentioned relational expressions.
- Example 1 Example 2
- Example 3 Example 4
- Example 5 f 1.939 1.788 1.897 1.919 1.782 f1 2.867 3.561 2.659 3.275 3.182 f2 1.492 1.449 1.597 1.250 1.593 f3 -1.906 -2.321 -1.622 -1.686 -2.664 f12 1.394 1.370 1.426 1.270 1.428
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明涉及光学镜头领域,公开了一种摄像光学镜头,该摄像光学镜头自物侧至像侧依序包含:具有正屈折力的第一透镜、具有正屈折力的第二透镜及具有负屈折力的第三透镜;所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第三透镜的焦距为f3,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第二透镜的轴上厚度为d3,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,且满足下列关系式:1.40≤f1/f≤2.00;0.65≤f2/f≤0.90;-1.50≤f3/f≤-0.85;2.50≤d3/d4≤10.00;2.00≤(R5+R6)/(R5-R6)≤4.50。本发明的摄像光学镜头具有大光圈、广角化、超薄化等良好的光学性能。
Description
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式透镜结构。常见的三片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、超薄化、广角化的设计要求。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,能在获得高成像性能的同时,满足大光圈、广角化、超薄化的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头自物侧至像侧依序包含:具有正屈折力的第一透镜、具有正屈折力的第二透镜及具有负屈折力的第三透镜;
所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第三透镜的焦距为f3,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第二透镜的轴上厚度为d3,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,且满足下列关系式:
1.40≤f1/f≤2.00;
0.65≤f2/f≤0.90;
-1.50≤f3/f≤-0.85;
2.50≤d3/d4≤10.00;
2.00≤(R5+R6)/(R5-R6)≤4.50。
优选地,所述第一透镜的轴上厚度为d1,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,且满足下列关系式:
0.50≤d1/d2≤1.00。
优选地,所述第一透镜的物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-0.88≤(R1+R2)/(R1-R2)≤0.59;
0.06≤d1/TTL≤0.27。
优选地,所述第二透镜的物侧面的曲率半径为R3,所述第二透镜的像侧面的曲率半径为R4,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
1.04≤(R3+R4)/(R3-R4)≤4.64;
0.09≤d3/TTL≤0.31。
优选地,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.04≤d5/TTL≤0.14。
优选地,所述摄像光学镜头的像高为IH,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:TTL/IH≤1.69。
优选地,所述摄像光学镜头整体的焦距为f,所述第一透镜与所述第二透镜的组合焦距为f12,满足下列关系式:0.33≤f12/f≤1.20。
优选地,所述摄像光学镜头的视场角FOV大于或等于83.00°。
本发明的有益效果在于:根据本发明的摄像光学镜头具有良好光学性能,且具有广角化、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图;
图13是本发明第四实施方式的摄像光学镜头的结构示意图;
图14是图13所示摄像光学镜头的轴向像差示意图;
图15是图13所示摄像光学镜头的倍率色差示意图;
图16是图13所示摄像光学镜头的场曲及畸变示意图;
图17是本发明第五实施方式的摄像光学镜头的结构示意图;
图18是图17所示摄像光学镜头的轴向像差示意图;
图19是图17所示摄像光学镜头的倍率色差示意图;
图20是图17所示摄像光学镜头的场曲及畸变示意图。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括三个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:第一透镜L1、光圈S1、第二透镜L2、第三透镜L3。第三透镜L3与像面Si之间设有玻璃平板GF,玻璃平板GF可以是玻璃盖板,也可以是光学过滤片。
在本实施方式中,第一透镜L1具有正屈折力,第二透镜L2具有正屈折 力,第三透镜L3具有负屈折力。
在本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质。
在此,定义摄像光学镜头10整体的焦距为f,第一透镜L1的焦距为f1,第二透镜L2的焦距为f2,第三透镜L3的焦距为f3,第三透镜L3的物侧面的曲率半径为R5,第三透镜L3的像侧面的曲率半径为R6,第二透镜L2的轴上厚度为d3,第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离为d4,且满足下列关系式:
1.40≤f1/f≤2.00 (1)
0.65≤f2/f≤0.90 (2)
-1.50≤f3/f≤-0.85 (3)
2.50≤d3/d4≤10.00 (4)
2.00≤(R5+R6)/(R5-R6)≤4.50 (5)
其中,关系式(1)规定了第一透镜L1的焦距f1与摄像光学镜头10整体的焦距f的比值,在关系式范围内,可以有效地平衡系统的球差以及场曲量。
关系式(2)规定了第二透镜L2的焦距f2与摄像光学镜头10整体的焦距f的比值,通过焦距的合理分配,使得系统具有较佳的成像品质和较低的敏感性。
关系式(3)规定了第三透镜L3的焦距f3与摄像光学镜头10整体的焦距f的比值,通过焦距的合理分配,使得系统具有较佳的成像品质和较低的敏感性。
关系式(4)规定了第二透镜L2的轴上厚度d3与第二、第三透镜之间的空气间隔d4的比值,在关系式范围内,有助于压缩光学系统总长,实现超薄化效果。
关系式(5)规定了第三透镜L3的形状,在此关系式范围内时,有利于补正轴外画角的像差。
定义第一透镜L1的轴上厚度为d1,第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离为d2,且满足下列关系式:0.50≤d1/d2≤1.00。该关系式规定了第一透镜L1的轴上厚度d1与第一、第二透镜之间的空气间隔d2的比值,在关系式范围内有助于压缩光学系统总长,实现超薄化效果。
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,其像侧面于近轴处为凸面。
定义第一透镜L1的物侧面的曲率半径为R1,第一透镜L1的像侧面的曲 率半径为R2,满足下列关系式:-0.88≤(R1+R2)/(R1-R2)≤0.59。优选地,满足-0.55≤(R1+R2)/(R1-R2)≤0.47。
定义第一透镜L1的轴上厚度为d1,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.06≤d1/TTL≤0.27。在关系式范围内,有利于实现超薄化。优选地,满足0.09≤d1/TTL≤0.22。
本实施方式中,第二透镜L2的物侧面于近轴处为凹面,其像侧面于近轴处为凸面。
定义第二透镜L2的物侧面的曲率半径为R3,第二透镜L2的像侧面的曲率半径为R4,满足下列关系式:1.04≤(R3+R4)/(R3-R4)≤4.64。优选地,满足1.67≤(R3+R4)/(R3-R4)≤3.71。
摄像光学镜头10的光学总长为TTL,第二透镜L2的轴上厚度为d3,满足下列关系式:0.09≤d3/TTL≤0.31。在关系式范围内,有利于实现超薄化。优选地,满足0.14≤d3/TTL≤0.25。
本实施方式中,第三透镜L3的物侧面于近轴处为凸面,第三透镜L3的像侧面于近轴处为凹面。
摄像光学镜头10的光学总长为TTL,第三透镜L3的轴上厚度为d5,满足下列关系式:0.04≤d5/TTL≤0.14。在关系式范围内,有利于实现超薄化。优选地,满足0.06≤d5/TTL≤0.11。
本实施方式中,摄像光学镜头10的像高为IH,摄像光学镜头10的光学总长为TTL,且满足下列关系式:TTL/IH≤1.69,从而有利于实现超薄化。
本实施方式中,所述摄像光学镜头10的视场角FOV大于或等于83.00°。从而实现广角化。
本实施方式中,摄像光学镜头10整体的焦距为f,定义第一透镜L1与第二透镜L2的组合焦距为f12,满足下列关系式:0.33≤f12/f≤1.20。在关系式范围内,可消除所述摄像光学镜头10的像差与歪曲,且可压制摄像光学镜头10后焦距,维持影像镜片系统组小型化。优选的,满足0.53≤f12/f≤0.96。
此外,本实施方式提供的摄像光学镜头10中,各透镜的表面可以设置为非球面,非球面容易制作成球面以外的形状,获得较多的控制变数,用以消减像差,进而缩减透镜使用的数目,因此可以有效降低摄像光学镜头10的总长度。在本实施方式中,各个透镜的物侧面和像侧面均为非球面。
当本发明所述摄像光学镜头10的焦距、各透镜的焦距和曲率半径满足上述关系式时,可以使摄像光学镜头10具有良好光学性能,同时能够满足了大光圈、广角化、超薄化的设计要求;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到像面Si的轴上距离),单位为mm;
光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径ENPD的比值。
另外,各透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
以下示出了图1所示的摄像光学镜头10的设计数据。
表1列出了本发明第一实施方式中构成摄像光学镜头10的第一透镜L1~第三透镜L3的物侧面曲率半径和像侧面曲率半径R、各透镜的轴上厚度以及相邻两透镜间的距离d、折射率nd及阿贝数vd。需要说明的是,本实施方式中,R与d的单位均为毫米(mm)。
【表1】
其中,各符号的含义如下。
S1:光圈;
R:光学面中心处的曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:光学过滤片GF的物侧面的曲率半径;
R8:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度、透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到光学过滤片GF的物侧面的轴上距离;
d7:光学过滤片GF的轴上厚度;
d8:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
y=(x
2/R)/{1+[1-(k+1)(x
2/R
2)]
1/2}+A4x
4+A6x
6+A8x
8+A10x
10+A12x
12+A14x
14+A16x
16+A18x
18+A20x
20 (6)
其中,x是非球面曲线上的点与光轴的垂直距离,y是非球面深度(非球面上距离光轴为x的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
为方便起见,各个透镜面的非球面使用上述公式(6)中所示的非球面。但是,本发明不限于该公式(6)表示的非球面多项式形式。
表3、表4示出本实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | |
P1R1 | 1 | 0.395 | / | / |
P1R2 | 0 | / | / | / |
P2R1 | 2 | 0.525 | 0.625 | / |
P2R2 | 1 | 0.635 | / | / |
P3R1 | 3 | 0.315 | 1.005 | 1.355 |
P3R2 | 2 | 0.355 | 1.505 | / |
【表4】
驻点个数 | 驻点位置1 | |
P1R1 | 1 | 0.585 |
P1R2 | 0 | / |
P2R1 | 0 | / |
P2R2 | 0 | / |
P3R1 | 1 | 0.685 |
P3R2 | 1 | 1.005 |
另外,在后续的表21中,还列出了第一实施方式中各种数值与关系式中已规定的参数所对应的值。
如表21所示,第一实施方式满足各关系式。
图2、图3分别示出了波长为436nm、470nm、510nm、555nm、610nm和650nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,摄像光学镜头10的入瞳直径ENPD为0.791mm,全视场像高IH为1.750mm,对角线方向的视场角FOV为83.40°,摄像光学镜头10满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第二实施方式)
图5是第二实施方式中摄像光学镜头20的结构示意图,第二实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式相同,故对于相同的部分此处不再赘述。
表5示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | |
P1R1 | 1 | 0.425 | / | / |
P1R2 | 0 | / | / | / |
P2R1 | 1 | 0.535 | / | / |
P2R2 | 1 | 0.655 | / | / |
P3R1 | 3 | 0.345 | 1.015 | 1.365 |
P3R2 | 3 | 0.375 | 1.345 | 1.475 |
【表8】
驻点个数 | 驻点位置1 | 驻点位置2 | |
P1R1 | 0 | / | / |
P1R2 | 0 | / | / |
P2R1 | 0 | / | / |
P2R2 | 0 | / | / |
P3R1 | 2 | 0.835 | 1.185 |
P3R2 | 1 | 1.095 | / |
另外,在后续的表21中,还列出了第二实施方式中各种数值与关系式中已规定的参数所对应的值。
如表21所示,第二实施方式满足各关系式。
图6、图7分别示出了波长为436nm、470nm、510nm、555nm、610nm和650nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
在本实施方式中,摄像光学镜头20的入瞳直径ENPD为0.730mm,全视场像高IH为1.750mm,对角线方向的视场角FOV为88.00°,摄像光学镜头20满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第三实施方式)
图9是第三实施方式中摄像光学镜头30的结构示意图,第三实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式相同,故对于相同的部分此处不再赘述。
表9示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | |
P1R1 | 1 | 0.445 | / |
P1R2 | 0 | / | / |
P2R1 | 1 | 0.525 | / |
P2R2 | 1 | 0.665 | / |
P3R1 | 2 | 0.175 | 0.865 |
P3R2 | 1 | 0.325 | / |
【表12】
驻点个数 | 驻点位置1 |
P1R1 | 0 | / |
P1R2 | 0 | / |
P2R1 | 0 | / |
P2R2 | 0 | / |
P3R1 | 1 | 0.315 |
P3R2 | 1 | 0.775 |
另外,在后续的表21中,还列出了第三实施方式中各种数值与关系式中已规定的参数所对应的值。
如表21所示,第三实施方式满足各关系式。
图10、图11分别示出了波长为436nm、470nm、510nm、555nm、610nm和650nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为555nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
在本实施方式中,摄像光学镜头30的入瞳直径ENPD为0.774mm,全视场像高IH为1.750mm,对角线方向的视场角FOV为84.40°,摄像光学镜头30满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第四实施方式)
图13是第四实施方式中摄像光学镜头40的结构示意图,第四实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式相同,故对于相同的部分此处不再赘述。
表13示出本发明第四实施方式的摄像光学镜头40的设计数据。
【表13】
表14示出本发明第四实施方式的摄像光学镜头40中各透镜的非球面数据。
【表14】
表15、表16示出本发明第四实施方式的摄像光学镜头40中各透镜的反曲点以及驻点设计数据。
【表15】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | |
P1R1 | 1 | 0.435 | / | / |
P1R2 | 0 | / | / | / |
P2R1 | 1 | 0.545 | / | / |
P2R2 | 1 | 0.655 | / | / |
P3R1 | 3 | 0.335 | 0.965 | 1.335 |
P3R2 | 1 | 0.355 | / | / |
【表16】
驻点个数 | 驻点位置1 | 驻点位置2 | 驻点位置3 | |
P1R1 | 0 | / | / | / |
P1R2 | 0 | / | / | / |
P2R1 | 0 | / | / | / |
P2R2 | 0 | / | / | / |
P3R1 | 3 | 0.815 | 1.105 | 1.385 |
P3R2 | 1 | 1.075 | / | / |
另外,在后续的表21中,还列出了第四实施方式中各种数值与关系式中已规定的参数所对应的值。
如表21所示,第四实施方式满足各关系式。
图14、图15分别示出了波长为436nm、470nm、510nm、555nm、610nm和650nm的光经过第四实施方式的摄像光学镜头40后的轴向像差以及倍率色差示意图。图16则示出了,波长为555nm的光经过第四实施方式的摄像光学镜头30后的场曲及畸变示意图。
在本实施方式中,摄像光学镜头40的入瞳直径ENPD为0.783mm,全视 场像高IH为1.750mm,对角线方向的视场角FOV为84.00°,摄像光学镜头40满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第五实施方式)
图17是第五实施方式中摄像光学镜头50的结构示意图,第五实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式相同,故对于相同的部分此处不再赘述。
表17示出本发明第五实施方式的摄像光学镜头50的设计数据。
【表17】
表18示出本发明第五实施方式的摄像光学镜头50中各透镜的非球面数据。
【表18】
表19、表20示出本发明第五实施方式的摄像光学镜头50中各透镜的反曲点以及驻点设计数据。
【表19】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | |
P1R1 | 1 | 0.225 | / | / |
P1R2 | 0 | / | / | / |
P2R1 | 1 | 0.525 | / | / |
P2R2 | 1 | 0.645 | / | / |
P3R1 | 3 | 0.375 | 1.115 | 1.355 |
P3R2 | 1 | 0.385 | / | / |
【表20】
驻点个数 | 驻点位置1 | 驻点位置2 | 驻点位置3 | |
P1R1 | 1 | 0.365 | / | / |
P1R2 | 0 | / | / | / |
P2R1 | 0 | / | / | / |
P2R2 | 0 | / | / | / |
P3R1 | 3 | 0.935 | 1.295 | 1.375 |
P3R2 | 1 | 1.115 | / | / |
另外,在后续的表21中,还列出了第五实施方式中各种数值与关系式中已规定的参数所对应的值。
如表21所示,第五实施方式满足各关系式。
图18、图19分别示出了波长为436nm、470nm、510nm、555nm、610nm和650nm的光经过第五实施方式的摄像光学镜头50后的轴向像差以及倍率色差示意图。图20则示出了,波长为555nm的光经过第五实施方式的摄像光学镜头50后的场曲及畸变示意图。
在本实施方式中,摄像光学镜头50的入瞳直径ENPD为0.727mm,全视场像高IH为1.750mm,对角线方向的视场角FOV为88.20°,摄像光学镜头50满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
以下表21根据上述关系式列出了第一实施方式、第二实施方式、第三实施方式、第四实施方式及第五实施方式中对应关系式的数值,以及其他相关参数的取值。
【表21】
参数及关系式 | 实施例1 | 实施例2 | 实施例3 | 实施例4 | 实施例5 |
f | 1.939 | 1.788 | 1.897 | 1.919 | 1.782 |
f1 | 2.867 | 3.561 | 2.659 | 3.275 | 3.182 |
f2 | 1.492 | 1.449 | 1.597 | 1.250 | 1.593 |
f3 | -1.906 | -2.321 | -1.622 | -1.686 | -2.664 |
f12 | 1.394 | 1.370 | 1.426 | 1.270 | 1.428 |
FNO | 2.45 | 2.45 | 2.45 | 2.45 | 2.45 |
TTL | 2.883 | 2.828 | 2.887 | 2.942 | 2.841 |
IH | 1.750 | 1.750 | 1.750 | 1.750 | 1.750 |
FOV | 83.40° | 88.00° | 84.40° | 84.00° | 88.20° |
f1/f | 1.48 | 1.99 | 1.40 | 1.71 | 1.79 |
f2/f | 0.77 | 0.81 | 0.84 | 0.65 | 0.89 |
f3/f | -0.98 | -1.30 | -0.86 | -0.88 | -1.50 |
d3/d4 | 5.03 | 9.89 | 2.50 | 9.93 | 9.86 |
(R5+R6)/(R5-R6) | 3.14 | 3.74 | 2.02 | 2.98 | 4.49 |
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。
Claims (8)
- 一种摄像光学镜头,其特征在于,所述摄像光学镜头自物侧至像侧依序包含:具有正屈折力的第一透镜、具有正屈折力的第二透镜及具有负屈折力的第三透镜;所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第三透镜的焦距为f3,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第二透镜的轴上厚度为d3,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,且满足下列关系式:1.40≤f1/f≤2.00;0.65≤f2/f≤0.90;-1.50≤f3/f≤-0.85;2.50≤d3/d4≤10.00;2.00≤(R5+R6)/(R5-R6)≤4.50。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的轴上厚度为d1,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,且满足下列关系式:0.50≤d1/d2≤1.00。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-0.88≤(R1+R2)/(R1-R2)≤0.59;0.06≤d1/TTL≤0.27。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的物侧面的曲率半径为R3,所述第二透镜的像侧面的曲率半径为R4,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:1.04≤(R3+R4)/(R3-R4)≤4.64;0.09≤d3/TTL≤0.31。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.04≤d5/TTL≤0.14。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的像高为IH,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:TTL/IH≤1.69。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头整体的焦距为f,所述第一透镜与所述第二透镜的组合焦距为f12,满足下列关系式:0.33≤f12/f≤1.20。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的视场角FOV大于或等于83.00°。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010910944.8A CN111929817B (zh) | 2020-09-02 | 2020-09-02 | 摄像光学镜头 |
CN202010910944.8 | 2020-09-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022047993A1 true WO2022047993A1 (zh) | 2022-03-10 |
Family
ID=73308696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/125850 WO2022047993A1 (zh) | 2020-09-02 | 2020-11-02 | 摄像光学镜头 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11644644B2 (zh) |
JP (1) | JP7084466B2 (zh) |
CN (1) | CN111929817B (zh) |
WO (1) | WO2022047993A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9274310B1 (en) * | 2014-12-23 | 2016-03-01 | Glory Science Co., Ltd. | Optical imaging lens |
CN110568582A (zh) * | 2018-06-06 | 2019-12-13 | 南昌欧菲精密光学制品有限公司 | 光学成像系统、取像装置和电子装置 |
CN110850552A (zh) * | 2019-10-29 | 2020-02-28 | 江西联创电子有限公司 | 光学成像镜头及成像设备 |
CN111077642A (zh) * | 2019-12-23 | 2020-04-28 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004226487A (ja) * | 2003-01-20 | 2004-08-12 | Seiko Epson Corp | 撮像レンズ |
SG140461A1 (en) * | 2003-07-11 | 2008-03-28 | Konica Minolta Opto Inc | Image pick-up lens, image pick-up unit, and mobile terminal provided with this image pick-up unit |
JP2005338234A (ja) * | 2004-05-25 | 2005-12-08 | Konica Minolta Opto Inc | 撮像レンズ |
JP2006084720A (ja) * | 2004-09-15 | 2006-03-30 | Seiko Precision Inc | 撮像レンズ |
JP4720214B2 (ja) * | 2005-03-01 | 2011-07-13 | コニカミノルタオプト株式会社 | 撮像レンズ |
JP2007086485A (ja) * | 2005-09-22 | 2007-04-05 | Fujinon Corp | 撮像レンズ |
JP2007127960A (ja) * | 2005-11-07 | 2007-05-24 | Konica Minolta Opto Inc | 撮像光学系、撮像レンズ装置及びデジタル機器 |
JP2008275831A (ja) * | 2007-04-27 | 2008-11-13 | Seiko Precision Inc | 撮像レンズ |
JP5097058B2 (ja) * | 2008-09-03 | 2012-12-12 | パナソニック株式会社 | 撮像レンズ及びそれを用いた撮像装置 |
CN102004300A (zh) * | 2009-08-28 | 2011-04-06 | 鸿富锦精密工业(深圳)有限公司 | 广角镜头系统 |
US8493671B2 (en) * | 2011-12-26 | 2013-07-23 | Newmax Technology Co., Ltd. | Three-piece optical lens system |
TWI446059B (zh) * | 2012-10-15 | 2014-07-21 | Largan Precision Co Ltd | 攝影系統鏡頭組 |
TWI475248B (zh) * | 2013-10-18 | 2015-03-01 | Largan Precision Co Ltd | 影像系統透鏡組、取像裝置及可攜裝置 |
JP6635111B2 (ja) * | 2015-03-30 | 2020-01-22 | コニカミノルタ株式会社 | 照明用光学ユニット及び照明装置 |
CN104977699B (zh) * | 2015-06-30 | 2017-08-01 | 瑞声声学科技(苏州)有限公司 | 摄像镜头 |
CN205958829U (zh) * | 2016-05-25 | 2017-02-15 | 歌崧光学精密工业有限公司 | 三透镜摄像镜头及摄像装置 |
JP6718147B2 (ja) * | 2016-11-24 | 2020-07-08 | コニカミノルタ株式会社 | 撮像レンズ、撮像レンズユニット及び撮像装置 |
CN209327663U (zh) * | 2018-12-26 | 2019-08-30 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN110531505B (zh) * | 2019-10-29 | 2020-02-28 | 江西联创电子有限公司 | 红外光学成像镜头及成像设备 |
-
2020
- 2020-09-02 CN CN202010910944.8A patent/CN111929817B/zh active Active
- 2020-11-02 WO PCT/CN2020/125850 patent/WO2022047993A1/zh active Application Filing
- 2020-12-28 US US17/134,508 patent/US11644644B2/en active Active
- 2020-12-28 JP JP2020219690A patent/JP7084466B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9274310B1 (en) * | 2014-12-23 | 2016-03-01 | Glory Science Co., Ltd. | Optical imaging lens |
CN110568582A (zh) * | 2018-06-06 | 2019-12-13 | 南昌欧菲精密光学制品有限公司 | 光学成像系统、取像装置和电子装置 |
CN110850552A (zh) * | 2019-10-29 | 2020-02-28 | 江西联创电子有限公司 | 光学成像镜头及成像设备 |
CN111077642A (zh) * | 2019-12-23 | 2020-04-28 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
Also Published As
Publication number | Publication date |
---|---|
CN111929817B (zh) | 2021-03-26 |
JP2022042465A (ja) | 2022-03-14 |
US11644644B2 (en) | 2023-05-09 |
JP7084466B2 (ja) | 2022-06-14 |
US20220066142A1 (en) | 2022-03-03 |
CN111929817A (zh) | 2020-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020134373A1 (zh) | 摄像光学镜头 | |
WO2022048000A1 (zh) | 摄像光学镜头 | |
WO2022052258A1 (zh) | 摄像光学镜头 | |
WO2022011738A1 (zh) | 摄像光学镜头 | |
WO2022021512A1 (zh) | 摄像光学镜头 | |
WO2022021513A1 (zh) | 摄像光学镜头 | |
WO2022011740A1 (zh) | 摄像光学镜头 | |
WO2022077597A1 (zh) | 摄像光学镜头 | |
WO2022062072A1 (zh) | 摄像光学镜头 | |
WO2022057046A1 (zh) | 摄像光学镜头 | |
WO2022052269A1 (zh) | 摄像光学镜头 | |
WO2022088347A1 (zh) | 摄像光学镜头 | |
WO2022126699A1 (zh) | 摄像光学镜头 | |
WO2022047985A1 (zh) | 摄像光学镜头 | |
WO2022016625A1 (zh) | 摄像光学镜头 | |
WO2022057049A1 (zh) | 摄像光学镜头 | |
WO2022041382A1 (zh) | 摄像光学镜头 | |
WO2022016605A1 (zh) | 摄像光学镜头 | |
WO2022062079A1 (zh) | 摄像光学镜头 | |
WO2022057048A1 (zh) | 摄像光学镜头 | |
WO2022088346A1 (zh) | 摄像光学镜头 | |
WO2022057047A1 (zh) | 摄像光学镜头 | |
WO2022088348A1 (zh) | 摄像光学镜头 | |
WO2022047988A1 (zh) | 摄像光学镜头 | |
WO2022057045A1 (zh) | 摄像光学镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20952235 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20952235 Country of ref document: EP Kind code of ref document: A1 |