WO2022047910A1 - 玻璃、玻璃的成型方法、压制装置及压延机 - Google Patents

玻璃、玻璃的成型方法、压制装置及压延机 Download PDF

Info

Publication number
WO2022047910A1
WO2022047910A1 PCT/CN2020/122371 CN2020122371W WO2022047910A1 WO 2022047910 A1 WO2022047910 A1 WO 2022047910A1 CN 2020122371 W CN2020122371 W CN 2020122371W WO 2022047910 A1 WO2022047910 A1 WO 2022047910A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
parts
calendering
main roll
calender
Prior art date
Application number
PCT/CN2020/122371
Other languages
English (en)
French (fr)
Inventor
单晓义
Original Assignee
四平宏大液压机械制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四平宏大液压机械制造有限公司 filed Critical 四平宏大液压机械制造有限公司
Publication of WO2022047910A1 publication Critical patent/WO2022047910A1/zh
Priority to US18/154,835 priority Critical patent/US20230150861A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B13/00Rolling molten glass, i.e. where the molten glass is shaped by rolling
    • C03B13/04Rolling non-patterned sheets continuously
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B13/00Rolling molten glass, i.e. where the molten glass is shaped by rolling
    • C03B13/16Construction of the glass rollers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Definitions

  • the present application relates to the field of glass forming, in particular to a glass, a glass forming method, a pressing device and a calendering machine.
  • Appearance protective glass and window protective glass for electronic products generally need to have high strength, wear resistance, scratch resistance, drop resistance, high optical clarity, and sensitive and accurate touch response.
  • the production of the existing protective glass and window protective glass for electronic products can be divided into float forming method (referred to as float method), overflow down-draw method (referred to as overflow method), secondary drawing method according to different forming processes. method, slit method and secondary polishing method.
  • the float forming method and the overflow down-draw method are the two mainstream methods.
  • alumina oxides higher than those of conventional glass are added to the glass formulations of the float forming method and the overflow down-draw method.
  • the alumina content of the float forming method is above 3.5%
  • the alumina content of the overflow down-draw method is above 15%.
  • the performance indicators such as scratch resistance, drop resistance, and warpage of the high-alumina silica glass produced by the float forming method are inferior to the overflow down-draw method. Therefore, high-end touch products are mainly produced by the overflow down-draw method. occupied by glass.
  • the overflow down-draw process is one of the basic technologies for the production of flat glass, and it is also the most mature technology for the production of ultra-thin glass.
  • the process of the overflow down-draw method is as follows: the pool furnace melts the glass raw material into glass liquid, and then cools down through the clarification section and the homogenization section of the platinum channel, and the glass liquid flows horizontally into the overflow brick through an L tube made of platinum. There is a glass liquid collection tank (overflow tank) on the upper part of the flow brick. After the overflow tank is full, the glass liquid will overflow from both sides of the top of the tank. Under the action of gravity, two pieces of glass flow down along the outer surface of the overflow brick to form two pieces of glass, and finally combine into a single piece of glass under the overflow brick.
  • overflow tank glass liquid collection tank
  • the thickness of the base formed by the fusion of the molten glass at the tip of the bricks is much thicker than that of the slot pull-down method, which increases the difficulty of thinning.
  • the uniformity (overflow speed) of the weir glass liquid distribution on the overflow brick is difficult to be consistent, which affects the uniformity of the thickness of the glass plate.
  • the overflow down-draw method has the strictest requirements on the melting, clarification and homogenization of the molten glass.
  • each production line consumes 800-1000 kg of platinum to make a long glass channel, which is heated by electric heating.
  • the platinum channel adjusts the temperature of the molten glass, and these precious metals are also oxidized and continuously volatilized. Therefore, this method makes the manufacturing cost of the production line very high.
  • the raw material components required for the melting of the molten glass that match the above-mentioned overflow method production process are usually high-alumina silicate or high-alumina borosilicate, wherein the weight percentage of Al 2 O 3 in the glass is usually ⁇ 15% .
  • the specific forming process of the float forming method is that after the molten glass continuously flows out of the furnace, it floats on the metal tin liquid surface filled with protective gas to form a glass ribbon with uniform thickness and smooth surface, and then annealing. Since the quality of the glass surface in contact with the tin liquid is not as good as that of the overflow process, additional grinding and polishing equipment is required in the float forming process, which is costly.
  • the float process needs to draw the glass thickness from the free thickness of 6.0mm to the required thickness, and can only rely on the side-drawing machine to apply a horizontal thinning pulling force, and the external force required is very high.
  • the length of the thinning area is very long, and a large number of edger machines are required. Since the edger can only apply external force on one side, its effect is worse than that of the roller edger, and the thickness of the glass ribbon outside the indentation of the edger is the same as that of the edger. The difference in the thickness of the qualified plate further increases as the thickness of the glass decreases, and it is easy to form a local stress concentration at the edge.
  • the tin liquid surface must be drawn into the glass plate with the required width and thickness by the edge drawing machine in the forming tin bath. 830° ⁇ 920°, the corresponding viscosity is 10 6 Pa ⁇ S ⁇ 10 5 Pa ⁇ S, if the molding temperature is too high or the viscosity is not properly controlled, the molding will not be possible.
  • the above float forming method makes the thickness uniformity and waviness of the produced glass relatively poor.
  • the appearance protective glass and window protective glass of electronic products can be divided into soda lime silicate glass and high alumina silicate glass according to different production formulas.
  • the commonly used high-alumina silicate glass is high-alumina silicate glass, mainly SiO 2 -Al 2 O 3 -RO-R 2 O system.
  • SiO 2 is a glass network former oxide, which can improve the bending resistance of the glass.
  • Al 2 O 3 content needs to be more than 15%, Al 2 O 3 in glass can greatly improve the mechanical strength of glass, but in the melting process
  • the medium and high content of Al 2 O 3 has a greater effect on the viscosity of the glass than SiO 2 has on the viscosity of the glass, which slows down the melting speed of the glass and prolongs the clarification time
  • the content of RO in the glass composition is usually more than 12%, and the content of RO alkaline earth metal oxides
  • the increase will lead to the decrease of the elastic modulus and the flexural strength
  • the content of R 2 O in the glass composition is usually more than 13%, and the increase of the R 2 O alkaline earth metal oxide will also lead to the decrease of the elastic modulus and the flexural strength.
  • the products produced by the float forming method have poor thickness uniformity and waviness indicators, narrow forming temperature range, and glass raw materials.
  • the commonly used oxides of Al 2 O 3 , RO and R 2 O in the ratio bring about differences in product performance indicators. This application proposes a novel glass forming method.
  • the structure of the calendering unit that is widely used in the market generally includes a calender body, an upper calendering main roll, a lower calendering roll, a rocker arm, a screw reducer and a mechanical pressure device.
  • the calendering upper main roll and the calendering lower main roll are It is installed on the calender body, and the arrangement direction of the calendering upper main roll and the calendering lower main roll is consistent with the longitudinal direction of the calender body, the rocker arm is pivotally connected to the calender body, and one end of the rocker arm is connected to the calendering upper main roll.
  • the screw reducer is installed on the other end of the rocker arm, the mechanical pressure device is installed on the calender body, and the mechanical pressure device is located above the main roll of the calender.
  • the screw reducer drives the rocker arm to rotate at a certain angle, thereby realizing the up and down movement of the calendering upper main roll. This gap is smaller as the glass produced is thinner.
  • the mechanical pressure device includes a rotating force claw and a pressing rod.
  • this downward pressure is mainly to overcome the buoyancy of the glass liquid between the upper main roll and the lower main roll to the upper main roll of the calender.
  • the thinner the glass produced the greater the applied pressure.
  • a pressure of 5000N to 10000N is required; when producing a 2.5mm glass, a pressure of 16000N to 28000N is required; when producing a 2.0mm glass, a pressure of 42000N to 63000N is required.
  • the disadvantages of the above-mentioned calendering unit structure mainly include two points.
  • the first point is that the operators need to pay a lot of physical labor, and the operators are easily exposed to the radiation of the heat of the high-temperature molten glass in the open area in front of the calendering rolls, which makes it difficult for the employees to operate.
  • the second point is to manually adjust the pressure applied to the main roll on the calendering. Because the manually applied force is too small (generally less than 28000N), it can only satisfy some thicker conventional glass ( ⁇ 2.5mm) production, but cannot meet the production of thinner glass ( ⁇ 2.5mm).
  • the conventional thickness of the current glass is relatively thin, and its production method is mainly based on the float forming method and the overflow down-draw method.
  • the glass produced by the above two methods has poor performance and low mechanical strength; The inability of the calender to press the thinner glass will also result in the produced glass with poor properties and low mechanical strength.
  • the purpose of the present application is to provide a glass, a glass forming method, a pressing device and a calender, so that the manufactured glass has better performance and higher mechanical strength.
  • the present application provides a glass
  • the raw materials of the glass include, in parts by weight: SiO 2 : 61-76 parts, Li 2 O: 6-10 parts, Na 2 O: 2-12 parts, CaO: 5-12 parts 0 parts, MgO: 5-0 parts, Al 2 O 3 : 16-0 parts, and TiO 2 +ZrO 2 : 5-2 parts.
  • the raw materials of the glass include, in parts by weight: SiO 2 : 76 parts, Li 2 O: 10 parts, Na 2 O: 12 parts, and TiO 2 +ZrO 2 : 2 parts.
  • the raw materials of the glass include, in parts by weight: SiO 2 : 61 parts, Li 2 O: 6 parts, Na 2 O: 2 parts, CaO: 5 parts, MgO: 5 parts, Al2O 3 : 16 parts and TiO 2 +ZrO 2 : 5 parts.
  • the raw materials of the glass include, in parts by weight: SiO 2 : 70 parts, Li 2 O: 8 parts, Na 2 O: 10 parts, CaO: 1.5 parts, MgO: 1.5 parts, Al 2 O 3 : 5 parts and TiO 2 +ZrO 2 : 4 parts.
  • the present application provides a method for forming glass, the above-mentioned glass is made by the method for forming glass, and the method for forming glass includes:
  • the raw materials for making glass are obtained by batching the raw materials for making glass;
  • Amorphous glass is obtained by pressing molten glass by calendering method
  • the crystalline glass is polished to obtain shaped glass.
  • processing the amorphous glass to obtain the crystalline glass includes:
  • the glass in the transition state is obtained by processing the amorphous glass through an annealing process
  • the glass in the transition state is obtained by processing the amorphous glass through an annealing process
  • the glass in the transition state is the glass after the amorphous state and the glass before the crystalline state.
  • the crystallization includes on-line crystallization or off-line crystallization.
  • the present application provides a pressing device, in the above-mentioned molding method, for processing molten glass to obtain amorphous glass
  • the pressing device provided by the present application includes two pressing mechanisms arranged opposite to each other,
  • the pressing mechanism includes a base, a beam, a pressing rod, a column and a driving mechanism. Both the column and the driving mechanism are installed on the base.
  • the first end of the pressing rod, the end of the column away from the base and the end of the driving mechanism away from the base are all pivoted.
  • the column is located between the pressure rod and the drive mechanism.
  • the driving mechanism includes a motor reducer and a turbine elevator reducer, and the motor reducer is connected to the input shaft of the turbine elevator reducer through a coupling.
  • the driving mechanism includes a hand wheel and a turbine lift reducer, and the hand wheel is rotatably connected to the input shaft of the turbine lift reducer through a positioning pin.
  • the driving mechanism is a mechanical jack.
  • the pressing rod includes an upper pressing rod and a pressing rod head, the first end of the upper pressing rod is pivotally connected to the beam, and the second end of the upper pressing rod is threadedly connected with the pressing rod head.
  • the pressing device provided by the present application further includes a pressure sensor, the first end of the pressure sensor is connected to the driving mechanism, and the second end of the pressure sensor is pivotally connected to the beam.
  • the pressing device provided in the present application further includes a limit switch, the limit switch is arranged on the column, the limit switch has a first contact point and a second contact point, and the first contact point can interfere with the On the first end face of the pressure sensor, the second contact point can abut against the second end face of the pressure sensor.
  • the present application provides a calendering machine, comprising a calendering machine body, an upper calendering main roll, a lower calendering main roll and the above-mentioned pressing device, wherein the upper calendering main roll and the lower calendering main roll are relatively arranged on the calendering machine body, and The distribution direction of the calendering upper main roll and the calendering lower main roll is consistent with the longitudinal direction of the calender body, and the molten glass can be located between the calendering upper main roll and the calendering lower main roll; the pressing device is arranged on the calender body, and the pressing rod The second end of the calender can be pressed against the calendering upper main roll.
  • the body of the calendering machine includes a first body and a second body, the second body has a worktable, the worktable is located above the first body, and both the upper and lower calendering main rolls are arranged on the first calendering machine.
  • the pressing device is arranged on the worktable, and the pressing rod is passed through the worktable.
  • it also includes a calendering upper main roll motor, a calendering lower main roll motor, an electric control cabinet and a touch screen, the motor shaft of the calendering upper main roll motor is connected to the calendering upper main roll, and the calendering lower main roll motor
  • the motor shaft is connected to the lower calendering main roll, the electric control cabinet and the touch screen are all arranged on the calender body, and the upper calendering main roll motor, the lower calendering main roll motor and the touch screen are all electrically connected to the electric control cabinet.
  • the raw materials of the glass include, in parts by weight: SiO 2 : 61-76 parts, Li 2 O: 6-10 parts, Na 2 O: 2- 12 parts, CaO: 5-0 parts, MgO: 5-0 parts, Al 2 O 3 : 16-0 parts, and TiO 2 +ZrO 2 : 5-2 parts. Therefore, the glass provided by the present application has better performance and higher mechanical strength.
  • Fig. 1a is the schematic diagram of the preparation process of the existing overflow down-draw method
  • Figure 1b is a schematic diagram of the process of forming glass by the existing overflow down-draw method
  • Fig. 2 is the process schematic diagram that the existing float process prepares glass
  • Fig. 3a is a broken line statistical diagram of the elastic modulus and flexural strength of the existing glass as a function of RO content
  • Fig. 3b is a broken line statistical graph of the elastic modulus and flexural strength of the existing glass as a function of the R 2 O content;
  • Fig. 4a is the structural representation of the existing calendering unit structure
  • Figure 4b is a side view of Figure 4a
  • Figure 4c is an exploded view of the structure of the existing calendering unit
  • Fig. 5a is a schematic flow chart of steps of a glass forming method provided by an embodiment of the present application.
  • 5b is a schematic flow chart of a step of processing amorphous glass to obtain crystalline glass in the glass forming method provided in the embodiment of the application;
  • 5c is a schematic flow chart of another step of processing amorphous glass to obtain crystalline glass in the glass forming method provided in the embodiment of the application;
  • 6a is a schematic structural diagram of a pressing device provided by an embodiment of the application.
  • Figure 6b is a side view of Figure 6a
  • Fig. 7a is the first structural schematic diagram of the calender provided by the embodiment of the application.
  • Figure 7b is a cross-sectional view of Figure 7a along A-A;
  • Fig. 8a is a second structural schematic diagram of the calender provided by the embodiment of the application.
  • Figure 8b is a cross-sectional view taken along the line B-B of Figure 8a;
  • Fig. 9a is the third structural schematic diagram of the calender provided by the embodiment of the application.
  • Figure 9b is a cross-sectional view of Figure 9a along C-C;
  • Fig. 10a is the fourth kind of structural schematic diagram of the calender provided by the embodiment of the application.
  • Figure 10b is a cross-sectional view of Figure 10a along D-D;
  • 11a is a fifth structural schematic diagram of the calender provided by the embodiment of the application.
  • Figure 11b is a side view of Figure 11a
  • Fig. 12a is the sixth structural schematic diagram of the calender provided by the embodiment of the application.
  • Figure 12b is a side view of Figure 12a
  • Fig. 13a is the seventh structural schematic diagram of the calender provided by the embodiment of the application.
  • Figure 13b is a side view of Figure 13a.
  • Appearance protective glass and window protective glass for electronic products generally need to have high strength, wear resistance, scratch resistance, drop resistance, high optical clarity, and sensitive and accurate touch response.
  • the production of the existing protective glass and window protective glass for electronic products can be divided into float forming method (referred to as float method), overflow down-draw method (referred to as overflow method), secondary drawing method according to different forming processes. method, slit method and secondary polishing method.
  • the float forming method and the overflow down-draw method are the two mainstream methods.
  • alumina oxides higher than those of conventional glass are added to the glass formulations of the float forming method and the overflow down-draw method.
  • the alumina content of the float forming method is above 3.5%
  • the alumina content of the overflow down-draw method is above 15%.
  • the performance indicators such as scratch resistance, drop resistance, and warpage of the high-alumina silica glass produced by the float forming method are inferior to the overflow down-draw method. Therefore, high-end touch products are mainly produced by the overflow down-draw method. occupied by glass.
  • the overflow down-draw process is one of the basic technologies for the production of flat glass, and it is also the most mature technology for the production of ultra-thin glass.
  • FIG. 1a is a schematic diagram of the preparation process of the existing overflow down-draw method.
  • FIG. 1b is a schematic diagram of the process of forming glass by the existing overflow down-draw method.
  • the process of the overflow down-draw process is as follows: the pool furnace 1 melts the glass raw material into glass liquid, and then cools it through the clarification section 21 and the homogenization section 22 of the platinum channel 2, and the glass liquid passes through a
  • the L tube 3 made of platinum flows horizontally into the overflow brick 4, and the upper part of the overflow brick 4 is provided with a glass liquid collection tank (overflow tank 41). After the overflow tank 41 is full, the glass liquid will overflow from both sides of the top of the tank . Under the action of gravity, two pieces of glass flow downward along the outer surface of the overflow brick 4 to form two pieces of glass, which are finally combined into a single piece of glass under the overflow brick 4 .
  • the thickness of the base formed by the fusion of the molten glass at the tip of the bricks is much thicker than that of the slot pull-down method, which increases the difficulty of thinning.
  • the uniformity (overflow speed) of the weir glass liquid distribution on the overflow brick is difficult to be consistent, which affects the uniformity of the thickness of the glass plate.
  • the overflow down-draw method has the strictest requirements on the melting, clarification and homogenization of the molten glass.
  • each production line consumes 800-1000 kg of platinum to make a long glass channel, which is heated by electric heating.
  • the platinum channel adjusts the temperature of the molten glass, and these precious metals are also oxidized and continuously volatilized. Therefore, this method makes the manufacturing cost of the production line very high.
  • the raw material components required for the melting of molten glass that match the above-mentioned overflow method production process are usually high-alumina silicate or high-alumina borosilicate, wherein the weight percentage of Al 2 O 3 in the glass is usually ⁇ 15% .
  • the specific forming process of the float forming method is that after the molten glass liquid continuously flows out from the melting furnace 5, it floats on the metal tin liquid surface filled with protective gas to form glass with uniform thickness and smooth surface. tape, and then annealed. Since the quality of the glass surface in contact with the tin liquid is not as good as that of the overflow process, additional grinding and polishing equipment is required in the float forming process, which is costly.
  • the float process needs to draw the glass thickness from the free thickness of 6.0mm to the required thickness, and can only rely on the side-drawing machine to apply a horizontal thinning pulling force, and the external force required is very high.
  • the length of the thinning area is very long, and a large number of edger machines are required. Since the edger can only apply external force on one side, its effect is worse than that of the roller edger, and the thickness of the glass ribbon outside the indentation of the edger is the same as that of the edger. The difference in the thickness of the qualified plate further increases as the thickness of the glass decreases, and it is easy to form a local stress concentration at the edge.
  • the tin liquid surface must be drawn into the glass plate with the required width and thickness by the edge drawing machine in the forming tin bath. 830° ⁇ 920°, the corresponding viscosity is 10 6 Pa ⁇ S ⁇ 10 5 Pa ⁇ S, if the molding temperature is too high or the viscosity is not properly controlled, the molding will not be possible.
  • the above-mentioned float forming method results in poor performance indicators such as thickness uniformity and waviness of the glass.
  • Fig. 3a is a graph showing the change of the elastic modulus and the flexural strength of the conventional glass with the RO content.
  • Fig. 3b is a broken line statistical graph of the elastic modulus and flexural strength of the existing glass as a function of the R 2 O content.
  • the appearance protective glass and window protective glass of electronic products can be divided into soda lime silicate glass and high alumina silicate glass according to different production formulas.
  • the commonly used high-alumina silicate glass is high-alumina silicate glass, mainly SiO 2 -Al 2 O 3 -RO-R 2 O system.
  • SiO 2 is a glass network former oxide, which can improve the bending resistance of the glass.
  • Al 2 O 3 content needs to be more than 15%, Al 2 O 3 in glass can greatly improve the mechanical strength of glass, but in the melting process
  • the medium and high content of Al 2 O 3 has a greater effect on the viscosity of the glass than SiO 2 has on the viscosity of the glass, which slows down the melting speed of the glass and prolongs the clarification time
  • the content of RO in the glass composition is usually more than 12%, and the content of RO alkaline earth metal oxides
  • the increase will lead to the decrease of elastic modulus and flexural strength
  • the content of R 2 O in the glass composition is usually more than 13%, and the increase of R 2 O alkaline earth metal oxide will also lead to the decrease of elastic modulus and flexural strength
  • RO it is an oxide such as MgO or CaO
  • R 2 O is generally an oxide such as K 2 O or Na 2 O.
  • the mass components of Al 2 O 3 , RO and R 2 O should be minimized or not added on the basis of meeting the needs of melting and forming.
  • a new type of glass ingredients is sought, which can not only improve the elastic modulus and flexural strength of the cover glass, but also improve the mechanical strength of the glass.
  • the products produced by the float forming method have poor thickness uniformity and waviness indicators, narrow forming temperature range, and Al 2 O in the glass raw material ratio. 3.
  • the common oxides of RO and R 2 O cause differences in product performance indicators.
  • Fig. 4a is a schematic structural diagram of the structure of the existing calendering unit.
  • Figure 4b is a side view of Figure 4a.
  • Figure 4c is an exploded view of the structure of the existing calendering unit.
  • the structure of the calendering unit that is widely used in the market generally includes a calender body 6, an upper calendering main roll 7, a lower calendering main roll 8, a rocker arm 9, a screw reducer 10 and a mechanical pressure Apparatus 20, wherein, the upper calendering main roll 7 and the lower calendering main roll 8 are installed on the calender body 6, and the arrangement direction of the calendering upper main roll 7 and the lower calendering main roll 8 is the longitudinal direction of the calender body 6 (Fig.
  • the y direction in the middle is the same, the rocker arm 9 is pivotally connected to the calender body 6, and one end of the rocker arm 9 is connected to the calendering upper main roller 7, and the screw reducer 10 is installed on the other end of the rocker arm 9.
  • Mechanical pressure The device 20 is installed on the calender body 6, and the mechanical pressure device 20 is located above the calendering upper main roll 7. Specifically, when the glass needs to be pressed, firstly adjust the gap between the calendering upper main roll 7 and the calendering lower main roll 8 The gap allows the glass to be located in the gap.
  • the screw reducer 10 work the screw 101 drives the rocker arm 9 to rotate.
  • the front end of the rocker arm 9 supports the main roller
  • the bearing cover 71 is connected with the lower part of the front end of the rocker arm 9 by bolts.
  • the upper bearing cover 71 is opened, and the rocker arm 9 is fixed to the calender body 6 through the pin shaft, so that the rocker arm can be wound around the rocker arm 9 and the calender body 6.
  • the connection point between the calender body 6 is rotated to form a lever force, and the screw reducer 10 is fixed at the rear end of the rocker arm 9, so that the screw on the screw reducer 10 can withstand the calender body 6.
  • the front end of the rocker arm 9 can hold the upper calendering main roll 7, and when it is necessary to adjust the calendering upper main roll 7 and the calendering lower main roll 8
  • the front end of the rocker arm 9 can hold the upper calendering main roll 7, and when it is necessary to adjust the calendering upper main roll 7 and the calendering lower main roll 8
  • the gap will be smaller.
  • the upper calendering main roll 7 will receive a lot of buoyancy, and the thinner the glass produced, the greater the buoyancy.
  • the device 20 exerts a certain downward pressure on the main calendering roll 7 to overcome the upward buoyancy generated by the glass on the main calendering roll 7.
  • the mechanical pressure device 20 includes a rotating force claw 201 and a pressing rod 202.
  • the force claw 201 rotates and drives the pressing rod head 2021 of the pressing rod 202 to move downward, and exerts a certain force on the calendering upper main roller 7 .
  • this downward pressure is mainly to overcome the buoyancy of the glass liquid between the upper calendering main roll 7 and the lower calendering main roll 8 on the calendering upper main roll 7. The thinner the glass produced, the more pressure applied.
  • a pressure of 5000N to 10000N is required; when producing a 2.5mm glass, a pressure of 16000N to 28000N is required; when producing a 2.0mm glass, a pressure of 42000N to 63000N is required.
  • the disadvantages of the above-mentioned calendering unit structure mainly include two points.
  • the first point is that the operators need to pay a lot of physical labor, and the operators are easily exposed to the radiation of the heat of the high-temperature molten glass in the open area in front of the calendering rolls, which makes it difficult for the employees to operate.
  • the second point is to manually adjust the pressure applied to the main roll on the calendering. Because the artificial force is too small (generally less than 28000N), it can only meet the production of some conventional glass with larger thickness, but cannot Meet the production of glass with smaller thickness.
  • the conventional thickness of the current glass is relatively thin, and its production method is mainly based on the float forming method and the overflow down-draw method.
  • the glass produced by the above two methods has poor performance and low mechanical strength; The inability of the calender to press the thinner glass will also result in the produced glass with poor properties and low mechanical strength.
  • the present application provides a glass, a glass forming method, a pressing device and a calender, which can optimize the properties of the glass and improve the mechanical strength of the glass.
  • An embodiment of the present application provides a glass, and the raw materials of the glass include, in parts by weight: SiO 2 : 61-76 parts, Li 2 O: 6-10 parts, Na 2 O: 2-12 parts, CaO: 5-0 parts , MgO: 5-0 parts, Al 2 O 3 : 16-0 parts, and TiO 2 +ZrO 2 : 5-2 parts.
  • SiO 2 is a glass former oxide
  • Li 2 O is beneficial to flux and increase the strength of the glass, and can also reduce the thermal expansion coefficient of the glass
  • the purpose of adding Na 2 O and MgO is to reduce the melting temperature of the glass
  • CaO The introduction of Al 2 O 3 can enhance the chemical stability of the glass, reduce the high temperature viscosity of the glass liquid, and promote the melting and clarification of the glass
  • Al 2 O 3 can improve the strength and hardness of the glass
  • TiO 2 +ZrO 2 is a crystal nucleating agent.
  • the raw materials of the glass provided in this example include, in parts by weight: SiO 2 : 76 parts, Li 2 O: 10 parts, Na 2 O: 12 parts, and TiO 2 +ZrO 2 : 2 share.
  • the reflectance curve of the glass of the mixed components is measured by a transmittance detector, and it is found that when the wavelength of light is between 400nm and 1200nm, The average reflectance of the glass of the mixed component is greater than or equal to 92.1%, and the average reflectance of the original glass sheet without Li2O in the wavelength range of the light is 90.2%-91.8%. Therefore, under the same conditions, the average reflectance of the glass using the above-mentioned mixed components is significantly greater than that of the original glass sheet without Li 2 O.
  • the glass formed from the glass raw materials with the mixed components was tested by using a surface stress meter, and the surface of the glass formed from the glass raw materials with the mixed components was obtained.
  • the stress is 800CS/Mpa ⁇ 900CS/Mpa.
  • Table 1 is a comparison table of the surface stress value and other properties of the glass manufactured by several companies in the market and the surface stress value and other properties of the glass prepared in this example.
  • the raw materials of the glass provided in this example include, in parts by weight: SiO 2 : 61 parts, Li 2 O: 6 parts, Na 2 O: 2 parts, CaO: 5 parts, MgO : 5 parts, Al 2 O 3 : 16 parts, and TiO 2 +ZrO 2 : 5 parts.
  • the reflectance curve of the glass of the mixed components is measured by a transmittance detector, and it is found that when the wavelength of light is between 400nm and 1200nm, The average reflectance of the glass of the mixed components is greater than or equal to 92.2%, and the average reflectance of the original glass sheet without Li2O in the wavelength range of the light is 90.2%-91.8%. Therefore, under the same conditions, the average reflectance of the glass using the above-mentioned mixed components is significantly greater than that of the original glass sheet without Li2O.
  • Table 2 is a comparison table of the surface stress value and other properties of the glass produced by several companies on the market and the surface stress value and other properties of the glass prepared in this example.
  • the raw materials for the glass provided in this example include, in parts by weight: SiO 2 : 70 parts, Li 2 O: 8 parts, Na 2 O: 10 parts, CaO: 1.5 parts, MgO: 1.5 parts, Al 2 O 3 : 5 parts, and TiO 2 +ZrO 2 : 4 parts.
  • the reflectance curve of the glass of the mixed components is measured by a transmittance detector, and it is found that when the wavelength of light is between 400nm and 1200nm, The average reflectance of the glass of the mixed component is greater than or equal to 92.3%, and the average reflectance of the original glass sheet without Li2O in the wavelength range of the light is 90.2%-91.8%. Therefore, under the same conditions, the average reflectance of the glass using the above mixed components is significantly greater than that of the original glass sheet without Li2O.
  • the glass formed from the glass raw materials with the mixed components was tested by using a surface stress meter, and the surface of the glass formed from the glass raw materials with the mixed components was obtained.
  • the stress is 800CS/Mpa ⁇ 900CS/Mpa.
  • the surface stress value and other properties of the glass formed by using the glass raw materials with the above mixed components are described below with reference to Table 3.
  • Table 3 is a comparison table of the surface stress value and other properties of the glass manufactured by several companies in the market and the surface stress value and other properties of the glass prepared in this example.
  • the glass raw materials of the above mixed components are placed in a melting furnace, melted at a temperature of about 1610 ° C, and then pressed into shape, annealed, crystallized and polished to obtain the final Finished glass.
  • the raw materials of the glass provided in this embodiment include, in parts by weight: SiO 2 : 61-76 parts, Li 2 O: 6-10 parts, Na 2 O: 2-12 parts, CaO: 5-0 parts, MgO: 5 parts ⁇ 0 parts, Al 2 O 3 : 16 to 0 parts, and TiO 2 +ZrO 2 : 5 to 2 parts. Therefore, the glass provided in this embodiment has better performance and higher mechanical strength
  • the embodiment of the present application also provides a glass forming method, and the above-mentioned glass is produced by the glass forming method.
  • FIG. 5a is a schematic flow chart of steps of the glass forming method provided by the embodiment of the present application.
  • FIG. 5 b is a schematic flow chart of a step of processing an amorphous glass to obtain a crystalline glass in the glass forming method provided in the embodiment of the present application.
  • Fig. 5c is a schematic flow chart of another step of processing amorphous glass to obtain crystalline glass in the glass forming method provided in the embodiment of the present application.
  • the glass forming method provided in this embodiment includes:
  • the raw materials of the glass include, in parts by weight: SiO 2 : 61-76 parts, Li 2 O: 6-10 parts, Na 2 O: 2-12 parts, CaO: 5-0 parts, MgO: 5-0 parts parts, Al 2 O 3 : 16 to 0 parts, and TiO 2 +ZrO 2 : 5 to 2 parts.
  • the raw material of the glass can be placed in a melting furnace to melt the raw material of the glass to obtain molten glass.
  • the calendering method can be carried out by a calender.
  • the amorphous glass is turned into a crystalline glass, which facilitates the subsequent processing of the glass.
  • the crystalline glass can be polished by a polishing machine.
  • processing the amorphous glass to obtain the crystalline glass comprises:
  • the hardness of the glass can be reduced, and the crystal grains of the glass can be refined, so as to improve the performance of the obtained glass.
  • the crystal grains of the glass can be further refined, and the performance of the obtained glass can be improved.
  • processing the amorphous glass to obtain the crystalline glass comprises:
  • the crystal grains of the glass can be refined twice, and the performance of the produced glass can be improved.
  • the crystallization includes two ways of online crystallization or offline crystallization.
  • the formed glass after storing the formed glass, it also includes chemically tempering the glass after the storing. In order to make the formed glass have higher mechanical strength and better performance.
  • the glass forming method provided in this embodiment includes: batching raw materials for making glass to obtain raw materials for making glass; processing the raw materials for glass to obtain molten glass; The glass is processed to obtain amorphous glass; the amorphous glass is processed to obtain crystalline glass; the crystalline glass is polished to obtain shaped glass.
  • the glass prepared by the glass forming method provided in this embodiment has better performance and higher mechanical strength.
  • the embodiment of the present application further provides a pressing device, which is used for processing molten glass to obtain amorphous glass in the above-mentioned forming method.
  • a pressing device which is used for processing molten glass to obtain amorphous glass in the above-mentioned forming method.
  • FIG. 6a is a schematic structural diagram of a pressing device provided by an embodiment of the present application.
  • Figure 6b is a side view of Figure 6a.
  • the pressing device provided by the embodiment of the present application includes two pressing mechanisms 30 arranged opposite to each other.
  • the upright column 34 and the driving mechanism 35 are both mounted on the base 31 , the first end of the pressing rod 33 , the end of the upright post 34 away from the base 31 and the end of the driving mechanism 35 away from the base 31 are all pivotally connected to the beam 32 . It is located between the pressing rod 33 and the driving mechanism 35 .
  • connection between the upright column 34 and the base 31 and the connection between the driving mechanism 35 and the base 31 can be threaded or welded. It should be noted that the purpose of this embodiment can be achieved as long as the connection method can reliably connect between the upright column 34 and the base 31 and between the driving mechanism 35 and the base 31 .
  • the driving mechanism 35 includes a motor reducer 351 and a turbine elevator reducer 352, the motor reducer 351 is connected to the input shaft of the turbine elevator reducer 352 through a coupling, and the turbine elevator reducer 352
  • the lead screw conductor at the top is rotatably connected to the beam 32 through a pin shaft.
  • the lead screw conductor on the turbine lift reducer 352 drives one end of the beam 32 to rise or fall, thereby causing the pressure rod 33 at the other end of the beam 32 to drop or rise.
  • the driving mechanism 35 includes a hand wheel and a turbine elevator and reducer 352 , and the hand wheel is rotatably connected to the input shaft of the turbine elevator reducer 352 through a positioning pin.
  • the lead screw conductor on the turbine lift reducer 352 drives one end of the beam 32 to rise or fall, thereby causing the pressure rod 33 at the other end of the beam 32 to drop or rise.
  • the driving mechanism 35 is a mechanical jack, one end of the mechanical jack is connected to the base 31, and the other end of the mechanical jack is pivotally connected to the beam 32, and the mechanical jack is driven by operating the mechanical jack.
  • One end of the beam 32 is raised or lowered, thereby causing the pressing rod 33 located at the other end of the beam 32 to be lowered or raised.
  • the pressing rod 33 includes an upper pressing rod 331 and a pressing rod head 332, the first end of the upper pressing rod 331 is pivotally connected to the beam 32, and the second end of the upper pressing rod 331 is connected to the pressing rod 331.
  • the rod head 332 is threaded.
  • the pressing device provided in this embodiment further includes a pressure sensor 40 , the first end of the pressure sensor 40 is connected to the driving mechanism 35 , and the second end of the pressure sensor 40 is pivotally connected to the beam 32 .
  • the pressure sensor 40 is used to detect the force on the end of the pressing rod 33 .
  • the pressing device provided by the present application further includes a limit switch 50, the limit switch 50 is disposed on the upright column 34, the limit switch 50 has a first contact point and a second contact point, and the first contact point can interfere with On the first end face of the pressure sensor 40 , the second contact point can abut against the second end face of the pressure sensor 40 .
  • the motor reducer 351 stops and automatically protects.
  • the limit switch 50 is connected to the upright post 34 through threaded fasteners.
  • the pressing device provided by the embodiment of the present application includes two pressing mechanisms arranged opposite each other.
  • the pressing mechanism includes a base, a beam, a pressing rod, a column and a driving mechanism.
  • the end, the end of the column away from the base and the end of the drive mechanism away from the base are pivotally connected to the beam, and the column is located between the pressing rod and the drive mechanism.
  • the pressing device provided in this embodiment can press glass with different thicknesses, so that the pressed glass has better performance.
  • Fig. 7a is a schematic diagram of the first structure of the calender provided by the embodiment of the present application.
  • Fig. 7b is a cross-sectional view taken along the line A-A of Fig. 7a.
  • Fig. 8a is a schematic diagram of a second structure of the calender provided by the embodiment of the present application.
  • Fig. 8b is a cross-sectional view taken along the line B-B of Fig. 8a.
  • FIG. 9a is a schematic diagram of a third structure of the calender according to the embodiment of the present application.
  • FIG. 9b is a cross-sectional view taken along the line C-C of FIG. 9a.
  • FIG. 10a is a schematic diagram of a fourth structure of the calender according to the embodiment of the present application.
  • FIG. 10b is a cross-sectional view taken along the line D-D of Fig. 10a.
  • FIG. 11a is a schematic diagram of a fifth structure of the calender according to the embodiment of the present application.
  • Figure 11b is a side view of Figure 11a.
  • FIG. 12a is a schematic diagram of the sixth structure of the calender provided by the embodiment of the present application.
  • Figure 12b is a side view of Figure 12a.
  • Fig. 13a is a schematic diagram of the seventh structure of the calender provided by the embodiment of the present application.
  • Figure 13b is a side view of Figure 13a.
  • the embodiment of the present application provides a calendering machine, including a calendering machine body 60 , an upper calendering main roll 70 , a lower calendering main roll 80 and the aforementioned pressing device, the upper calendering main roll 70 and the lower calendering roll 70 .
  • the main rolls 80 are oppositely arranged on the calender body 60, and the distribution direction of the calendering upper main roll 70 and the lower calendering main roll 80 is consistent with the longitudinal direction of the calender body 60 (y direction in the figure), and the molten glass can be located in the calendering machine.
  • the pressing device is arranged on the calender body 60, specifically, the base 31 is connected to the calender body 60 by welding, and the second end of the pressing rod 33 can Press against the upper calendering main roll 70 , that is, the pressing rod head 332 can abut against the upper calendering main roll 70 .
  • the driving mechanism 35 includes a handwheel 353 and a turbine elevator reducer 352.
  • the handwheel 353 is rotatably connected to the input shaft of the turbine elevator reducer 352 through a positioning pin.
  • the lead screw conductor on the turbine lift reducer 352 drives one end of the beam 32 to rise or fall, thereby causing the pressing rod 33 located at the other end of the beam 32 to drop or rise to change the calendering upper main roller. 70 pressure on molten glass.
  • the driving mechanism 35 is a mechanical jack 150 , one end of the mechanical jack 150 is connected to the base 31 , and the other end of the mechanical jack 150 is pivotally connected to the beam 32 , by making the mechanical jack 150 work, the mechanical jack 150 drives one end of the beam 32 to rise or fall, so that the pressing rod 33 located at the other end of the beam 32 falls or rises, so as to change the pressure on the molten glass produced by the main roller 70 on the calendering .
  • the driving mechanism 35 includes a motor reducer 351 and a turbine elevator reducer 352 .
  • the motor reducer 351 is connected to the input of the turbine elevator reducer 352 through a coupling.
  • the shaft is connected, and the lead screw conductor at the top of the turbine lift reducer 352 is rotatably connected to the beam 32 through a pin shaft.
  • the lead screw conductor on the turbine lift reducer 352 drives one end of the beam 32 to rise or fall, thereby causing the pressing rod 33 located at the other end of the beam 32 to drop or rise, so as to change the rolling main The pressure exerted by the rolls 70 on the molten glass.
  • the calender body 60 includes a first body 61 and a second body 62, the second body 62 has a worktable, the worktable is located above the first body 61, the calendering upper main roll 70 and the calendering lower body
  • the main rollers 80 are all arranged on the first body 61 , the pressing device is arranged on the worktable, and the pressing rod 33 is passed through the worktable.
  • the second body 62 is welded by I-beam or channel steel.
  • the calendering machine further includes a calendering upper main roll motor 90, a calendering lower main roll motor 100, an electric control cabinet 110 and a touch screen 120, and the calendering upper main roll motor
  • the motor shaft of 90 is connected to the upper main roll 70
  • the motor shaft of the lower main roll motor 100 is connected to the lower main roll 80
  • the electric control cabinet 110 and the touch screen 120 are both arranged on the main body 60 of the calender
  • the motor of the upper main roll is connected to the main roll 80. 90.
  • Both the lower main roller motor 100 and the touch screen 120 are electrically connected to the electric control cabinet 110.
  • the calender provided in this embodiment also includes a plurality of additional rollers 130 and a plurality of movable rollers 140 disposed on the calender body 60. After the molten glass is extruded, it will be transported through the plurality of additional rollers 130. onto the movable roller 140, and then transferred to other processing equipment through the movable roller 140.
  • the equipment for performing the annealing process is not limited.
  • the calender When using the calender provided in this embodiment, set the speed parameters for the calendering upper main roll 70, the lower calendering roll 80, the auxiliary roll 130 and the movable roll 140, so that the corresponding parameters are displayed on the touch screen 120, and the corresponding parameters are displayed on the touch screen 120.
  • the pressure sensor 40 sets certain pressure parameters to be displayed on the touch screen 120, and the touch screen 120 sends a signal to the electric control cabinet 110, so that the electric control cabinet 110 controls the rotation of the motor reducer 351 on site, so that the wire on the turbine reducer 352 is lifted and lowered.
  • the rod moves up and down, and drives the pressing rod 33 to rise or fall, so that the molten liquid glass in the molten state is pressed into glass of a certain thickness after being rolled by the upper main roller 70 and the lower main roller 80 .
  • the electric control cabinet 110 will drive the motor reducer 351 to move the turbine lift reducer 352 to rise or fall, and the force passes through the rotating fulcrum on the column 34 to achieve The rise or fall of the pressing rod 33 controls the magnitude of the force exerted by the pressing rod 33 on the calendering upper main roll 70 .
  • the motor reducer 351 stops operating.
  • the housing of the pressure sensor 40 When there is an accident in the line and the motor reducer 351 malfunctions, the housing of the pressure sensor 40 will touch the first mechanical contact or the second mechanical contact of the limit switch 50. At this time, the electrical control cabinet 110 will receive a signal and will Control the motor reducer 351 to stop working for autonomous protection.
  • the thinner the thickness of the production glass the greater the pressure value set by the pressure sensor 40, and the greater the pressure applied to the upper calendering roll 70 through the beam 32.
  • the calender provided in this embodiment includes a calender body, an upper calendering roll, a lower calendering roll, and a pressing device.
  • the upper calendering roll and the lower calendering roll are oppositely arranged on the calender body, and the upper calendering roll and the calendering main roll are opposite to each other.
  • the distribution direction of the lower main roll is consistent with the longitudinal direction of the calender body, and the molten glass can be located between the calendering upper main roll and the calendering lower main roll; the pressing device is arranged on the calender body, and the second end of the pressing rod can touch Press on the main roll of the calender. Since the calender provided in this embodiment includes the above-mentioned pressing device, it can press glass with different thicknesses, so that the pressed glass has better performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

一种玻璃、玻璃的成型方法、压制装置及压延机。其中,玻璃通过压延成型方法制成;玻璃的原料包括SiO 2、Li 2O、Na 2O、CaO、MgO、Al 2O 3以及TiO 2+ZrO 2;压制装置包括两个相对设置的压制机构,压制机构包括基座、横梁、压杆、立柱和驱动机构,立柱和驱动机构安装在基座上,压杆的第一端、立柱远离基座的一端和驱动机构远离基座的一端均枢接在横梁上,立柱位于压杆和驱动机构之间;压延机包括压制机构。玻璃具有较好的性能以及较高的机械强度。

Description

玻璃、玻璃的成型方法、压制装置及压延机
本申请要求于2020年09月06日提交中国专利局、申请号为202010924998.X、申请名称为“玻璃、玻璃的成形方法、压制装置及压延机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及玻璃成型领域,具体地说是一种玻璃、玻璃的成型方法、压制装置及压延机。
背景技术
电子产品的外观防护玻璃和视窗防护玻璃一般均需要具有高强度、耐磨、抗划伤、抗摔、高光学清晰度和对触摸反应灵敏准确等性能。
现有的电子产品的外观防护玻璃和视窗防护玻璃的生产按成型工艺的不同,可分为浮法成型法(简称浮法法)、溢流下拉法(简称溢流法)、二次拉制法、狭缝法和二次抛光法。其中以浮法成型法与溢流下拉法为主流的两种。为了提高玻璃表面的强度和硬度等指标,浮法成型法和溢流下拉法玻璃配方中都添加了高于常规玻璃成分的氧化铝氧化物。浮法成型法氧化铝含量在3.5%以上,溢流下拉法氧化铝含量在15%以上。氧化铝含量的不同,造成浮法成型法生产出来的高铝硅玻璃的抗划伤、抗跌落、翘曲度等性能指标不如溢流下拉法,因此高端触控产品主要被溢流下拉法生产的玻璃所占据。
溢流下拉法工艺是平板玻璃制造生产的基本技术之一,也是目前制造超薄玻璃基本的最成熟技术。
溢流下拉法工艺的过程是:池炉将玻璃原料熔化成玻璃液,再通过铂金通道的澄清段、均化段予以降温,玻璃液经由一个铂金制成的L管水平流入溢流砖,溢流砖上部设有玻璃液收集槽(溢流槽),待溢流槽盛满后,玻璃液会从槽子顶部的两边溢出。在重力的作用下,沿溢流砖外表面向下流动形成两片玻璃,最后在该溢流砖下方结合成单片玻璃。由于玻璃液在溢流砖表面流动,玻璃液在砖尖汇合后形成的板根基础厚度比狭缝下拉法板根基础厚度 厚了不少,增加了展薄的难度,此外,由于玻璃液向溢流槽外溢流时没有模具的约束,溢流砖上堰玻璃液分布的均匀性(溢出速度)很难一致,影响了玻璃板厚度的均匀性。
与此同时,溢流下拉法对玻璃液熔化澄清和均化要求最为严格,为了达到玻璃液温度的精确控制,每条生产线要消耗800~1000kg的铂金做成很长的玻璃通道,通过电加热铂金通道调节玻璃液的温度,而且这些贵金属也会发生氧化而不断挥发,因此,该法使得生产线制造成本非常高。
此外,与上述溢流法生产工艺相匹配的玻璃液熔制所需的原料成分通常为高铝硅酸盐或高铝硼硅酸盐,其中Al 2O 3在玻璃中重量百分比通常≥15%。
浮法成型法的具体成形工艺为,当熔融玻璃液从熔窑内连续流出后,漂浮在充有保护气体的金属锡液面上,形成厚度均匀、表面平整的玻璃带,再进行退火。由于接触锡液一面的玻璃表面质量不及溢流工艺,因此浮法成型中需要增设研磨抛光设备,成本较高。浮法拉制厚度小于1.0mm厚度玻璃时,浮法工艺要将玻璃厚度从自由厚度6.0mm拉薄至所需的厚度,只能依靠拉边机施加横向展薄的拉力,并且其需要的外力很大,拉薄区长度很长需要设置拉边机数量很多,由于拉边机只能单面施加外力,其效果比对辊式拉边机差,且拉边机压痕外的玻璃带厚度与合格板厚度的差值随着玻璃厚度减薄进一步加大,容易形成边部局部的应力集中。同时,在浮法成型法成型阶段,必须在成型锡槽内,锡液表面使用拉边机拉制成所需板宽和厚度的玻璃板,由于拉边机成型原因,此区间成型温度一般在830°~920°,对应的粘度为10 6Pa·S~10 5Pa·S,如果成型温度过高或者粘度控制不当,则无法成型。
上述的浮法成型法使得生产出来玻璃的厚度均匀度和波纹度等性能指标均比较差。
电子产品的外观防护玻璃和视窗防护玻璃按生产配方的不同可分为钠钙硅酸盐玻璃和高铝硅酸盐玻璃。常用的性能较高的为高铝硅酸盐玻璃,主要为SiO 2-Al 2O 3-RO-R 2O系统,组成中,SiO 2是玻璃网络形成体氧化物,能提高玻璃的抗折强度、化学稳定性、热稳定性,但它是较难熔化的物质;Al 2O 3含量需要大于15%以上,Al 2O 3在玻璃中能大大提高玻璃的机械强度,但在熔制过程中高含量的Al 2O 3对于玻璃的粘度大于SiO 2对于玻璃粘度的影响,使得玻璃的熔化速度减慢和澄清时间延长;RO在玻璃成分中含量通常为12%以 上,RO碱土金属氧化物的增加会导致弹性模量、抗折强度降低;R 2O在玻璃成分中含量通常为13%以上,R 2O碱土金属氧化物的增加也会导致弹性模量、抗折强度降低。
因此,在工艺操作过程中,在能满足熔化和成型需要的基础上,Al 2O 3、RO和R 2O的质量组分应尽量减少。为此,寻找一种新型的玻璃配料成分既能提高盖板玻璃的弹性模量和抗折强度,又能提高玻璃的机械强度。
而为了解决上述的溢流下拉法在对玻璃进行制造时产生成本过高的问题,浮法成型法生产出来的产品厚度均匀度和波纹度指标差、成型温度区间范围窄的问题,以及玻璃原料配比中Al 2O 3、RO、R 2O常用氧化物给产品性能指标带来差异的问题,本申请提出了一种新型的玻璃成型方法。
目前市场上被广泛应用的压延机组结构一般包括压延机本体、压延上主辊、压延下主辊、摇臂、丝杆减速机和机械压力装置,其中,压延上主辊和压延下主辊均安装在压延机本体上,且压延上主辊与压延下主辊的排布方向与压延机本体的纵向一致,摇臂枢接在压延机本体上,且摇臂的一端连接于压延上主辊,丝杆减速机安装在摇臂的另一端上,机械压力装置安装在压延机本体上,且机械压力装置位于压延上主辊的上方,具体的,当需要对玻璃进行压制时,先调节压延上主辊与压延下主辊之间的间隙使玻璃能够位于间隙内,通过使丝杆减速机工作,丝杆带动摇臂发生一定角度的转动,进而实现压延上主辊的上、下移动,当生产的玻璃越薄时,此间隙越小。但正常生产时由于高温液态玻璃液在压延上主辊与压延下主辊之间被挤压时,压延上主辊会受到很大的浮力,生产的玻璃越薄,浮力越大,为此,必须通过机械压力装置给压延上主辊施加一定的下压力,来克服玻璃给压延上主辊产生的向上的浮力,具体的,机械压力装置包括转动力爪和压杆,当生产薄玻璃时,靠人工转动力爪,力爪旋转带动压杆的压杆头向下运动,给压延上主辊施加一定的力。需要说明的是,此向下的压力主要是来克服压延上主辊与压延下主辊之间的玻璃液对压延上主辊产生的浮力,生产的玻璃越薄,施加的压力就越大,例如是,生产3.2mm的玻璃时,需要5000N~10000N的压力;生产2.5mm的玻璃时,需要16000N~28000N的压力;生产2.0mm的玻璃时,需要42000N~63000N的压力。
因此,上述的压延机组结构的缺点主要包括两点,第一点是操作工人需 要付出很大的体力劳动,而且操作员工易受压延辊前面敞开区域的高温玻璃液热量的辐射,员工操作难度大;第二点是靠人工手动来调节对压延上主辊施加压力的大小,由于人工施加的力过小(一般小于28000N),因此,只能满足一些厚度较厚的常规玻璃(≥2.5mm)的生产,而无法满足厚度较薄的玻璃(<2.5mm)的生产。
目前的玻璃的常规厚度都较薄,其生产制造方法以浮法成型法和溢流下拉法为主,上述两种方法生产出的玻璃的性能差,机械强度低;同时现阶段压延法用的压延机无法压制厚度较薄的玻璃,也会导致生产出的玻璃的性能差,机械强度低。
发明内容
本申请的目的是要提供一种玻璃、玻璃的成型方法、压制装置及压延机,使得制造出来的玻璃具有较好的性能和较高的机械强度。
第一方面,本申请提供一种玻璃,玻璃的原料按照重量份数包括:SiO 2:61~76份、Li 2O:6~10份、Na 2O:2~12份、CaO:5~0份、MgO:5~0份、Al 2O 3:16~0份以及TiO 2+ZrO 2:5~2份。
作为一种可选的实施方式,玻璃的原料按照重量份数包括:SiO 2:76份、Li 2O:10份、Na 2O:12份以及TiO 2+ZrO 2:2份。
作为一种可选的实施方式,玻璃的原料按照重量份数包括:SiO 2:61份、Li 2O:6份、Na 2O:2份、CaO:5份、MgO:5份、Al2O 3:16份以及TiO 2+ZrO 2:5份。
作为一种可选的实施方式,玻璃的原料按照重量份数包括:SiO 2:70份、Li 2O:8份、Na 2O:10份、CaO:1.5份、MgO:1.5份、Al 2O 3:5份以及TiO 2+ZrO 2:4份。
第二方面,本申请提供一种玻璃的成型方法,上述的玻璃通过该玻璃的成型方法制成,玻璃的成型方法包括:
对制成玻璃的原料进行配料得到制成玻璃的原材料;
对玻璃的原材料进行加工得到熔融态的玻璃;
通过压延法对熔融态的玻璃压制得到非晶态的玻璃;
对非晶态的玻璃进行加工得到晶态的玻璃;
对晶态的玻璃进行抛光得到成型的玻璃。
作为一种可选的实施方式,对非晶态的玻璃进行加工得到晶态的玻璃包括:
通过退火工艺对非晶态的玻璃进行加工得到处于过渡态的玻璃;
对处于过渡态的玻璃进行晶化得到晶态的玻璃;
对晶态的玻璃进行切裁,以获得晶态玻璃的规则的形状;或,
通过退火工艺对非晶态的玻璃进行加工得到处于过渡态的玻璃;
对处于过渡态的玻璃进行切裁,以获得处于过渡态的玻璃的规则的形状;
对切裁后的过渡态的玻璃进行晶化得到晶态的玻璃;
其中,处于过渡态的玻璃为处于非晶态后且位于晶态前的玻璃。
作为一种可选的实施方式,晶化包括在线晶化或离线晶化。
作为一种可选的实施方式,在对晶态的玻璃进行抛光得到成型的玻璃之后还包括:
对成型的玻璃进行化学钢化。
第三方面,本申请提供一种压制装置,在上述的成型方法中,用于对熔融态的玻璃进行加工得到非晶态的玻璃,本申请提供的压制装置包括两个相对设置的压制机构,压制机构包括基座、横梁、压杆、立柱和驱动机构,立柱和驱动机构均安装在基座上,压杆的第一端、立柱远离基座的一端和驱动机构远离基座的一端均枢接在横梁上,立柱位于压杆和驱动机构之间。
作为一种可选的实施方式,驱动机构包括电机减速机和涡轮升降减速机,电机减速机通过连轴器与涡轮升降减速机的输入轴连接。
作为一种可选的实施方式,驱动机构包括手轮和涡轮升降减速机,手轮通过定位销与涡轮升降减速机的输入轴转动连接。
作为一种可选的实施方式,驱动机构为机械千斤顶。
作为一种可选的实施方式,压杆包括上压杆和压杆头,上压杆的第一端枢接在横梁上,上压杆的第二端与压杆头螺纹连接。
作为一种可选的实施方式,本申请提供的压制装置还包括压力传感器,压力传感器的第一端与驱动机构连接,压力传感器的第二端枢接在横梁上。
作为一种可选的实施方式,本申请提供的压制装置还包括限位开关,限位开关设置在立柱上,限位开关具有第一接触点和第二接触点,第一接触点 能够抵触在压力传感器的第一端面上,第二接触点能够抵触在压力传感器的第二端面上。
第四方面,本申请提供一种压延机,包括压延机本体、压延上主辊、压延下主辊和上述的压制装置,压延上主辊和压延下主辊相对设置在压延机本体上,且压延上主辊和压延下主辊的分布方向与压延机本体的纵向一致,熔融态的玻璃能够位于压延上主辊与压延下主辊之间;压制装置设置在压延机本体上,且压杆的第二端能够抵压在压延上主辊上。
作为一种可选的实施方式,压延机本体包括第一本体和第二本体,第二本体具有工作台,工作台位于第一本体的上方,压延上主辊和压延下主辊均设置在第一本体上,压制装置设置在工作台上,且压杆穿设于工作台。
作为一种可选的实施方式,还包括压延上主辊电机、压延下主辊电机、电控柜和触摸屏,压延上主辊电机的电机轴与压延上主辊相连,压延下主辊电机的电机轴与压延下主辊相连,电控柜和触摸屏均设置在压延机本体上,压延上主辊电机、压延下主辊电机和触摸屏均与电控柜电连接。
本申请提供的玻璃、玻璃的成型方法、压制装置及压延机中,玻璃的原料按照重量份数包括:SiO 2:61~76份、Li 2O:6~10份、Na 2O:2~12份、CaO:5~0份、MgO:5~0份、Al 2O 3:16~0份以及TiO 2+ZrO 2:5~2份。因此,本申请提供的玻璃具有较好的性能和较高的机械强度。
本申请的构造以及它的其他发明目的及有益效果将会通过结合附图而对优选实施例的描述而更加明显易懂。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1a为现有的溢流下拉法制备过程的示意图;
图1b为现有的溢流下拉法对玻璃进行成型的过程示意图;
图2为现有的浮法工艺对玻璃进行制备的过程示意图;
图3a为现有的玻璃的弹性模量、抗折强度随RO含量变化的折线统计图;
图3b为现有的玻璃的弹性模量、抗折强度随R 2O含量变化的折线统计图;
图4a为现有的压延机组结构的结构示意图;
图4b为图4a的侧视图;
图4c为现有的压延机组结构的爆炸图;
图5a为本申请实施例提供的玻璃的成型方法的步骤流程示意图;
图5b为本申请实施例提供的玻璃的成型方法中的对非晶态的玻璃进行加工得到晶态的玻璃的一种步骤流程示意图;
图5c为本申请实施例提供的玻璃的成型方法中的对非晶态的玻璃进行加工得到晶态的玻璃的另一种步骤流程示意图;
图6a为本申请实施例提供的压制装置的结构示意图;
图6b为图6a的侧视图;
图7a为本申请实施例提供的压延机的第一种结构示意图;
图7b为图7a沿A-A处的剖视图;
图8a为本申请实施例提供的压延机的第二种结构示意图;
图8b为图8a沿B-B处的剖视图;
图9a为本申请实施例提供的压延机的第三种结构示意图;
图9b为图9a沿C-C处的剖视图;
图10a为本申请实施例提供的压延机的第四种结构示意图;
图10b为图10a沿D-D处的剖视图;
图11a为本申请实施例提供的压延机的第五种结构示意图;
图11b为图11a的侧视图;
图12a为本申请实施例提供的压延机的第六种结构示意图;
图12b为图12a的侧视图;
图13a为本申请实施例提供的压延机的第七种结构示意图;
图13b为图13a的侧视图。
附图标记说明:
1-池炉;2-铂金通道;21-澄清段;22-均化段;3-L管;4-溢流砖;41-溢流槽;5-熔窑;6、60-压延机本体;7、70-压延上主辊;71-上轴瓦盖;8、80-压延下主辊;9-摇臂;10-丝杆减速机;20-机械压力装置;201-转动力爪;202、33-压杆;2021、332-压杆头;30-压制机构;31-基座;32-横梁;331- 上压杆;34-立柱;35-驱动机构;351-电机减速机;352-涡轮升降减速机;40-压力传感器;50-限位开关;61-第一本体;62-第二本体;90-压延上主辊电机;100-压延下主辊电机;110-电控柜;120-触摸屏;130-附辊;140-活动辊;150-机械千斤顶。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
电子产品的外观防护玻璃和视窗防护玻璃一般均需要具有高强度、耐磨、抗划伤、抗摔、高光学清晰度和对触摸反应灵敏准确等性能。
现有的电子产品的外观防护玻璃和视窗防护玻璃的生产按成型工艺的不同,可分为浮法成型法(简称浮法法)、溢流下拉法(简称溢流法)、二次拉制法、狭缝法和二次抛光法。其中以浮法成型法与溢流下拉法为主流的两种。为了提高玻璃表面的强度和硬度等指标,浮法成型法和溢流下拉法玻璃配方中都添加了高于常规玻璃成分的氧化铝氧化物。浮法成型法氧化铝含量在3.5%以上,溢流下拉法氧化铝含量在15%以上。氧化铝含量的不同,造成浮法成型法生产出来的高铝硅玻璃的抗划伤、抗跌落、翘曲度等性能指标不如溢流下拉法,因此高端触控产品主要被溢流下拉法生产的玻璃所占据。
溢流下拉法工艺是平板玻璃制造生产的基本技术之一,也是目前制造超薄玻璃基本的最成熟技术。
图1a为现有的溢流下拉法制备过程的示意图。图1b为现有的溢流下拉法对玻璃进行成型的过程示意图。
如图1a和图1b所示,溢流下拉法工艺的过程是:池炉1将玻璃原料熔化成玻璃液,再通过铂金通道2的澄清段21、均化段22予以降温,玻璃液经由一个铂金制成的L管3水平流入溢流砖4,溢流砖4上部设有玻璃液收集槽(溢流槽41),待溢流槽41盛满后,玻璃液会从槽子顶部的两边溢出。 在重力的作用下,沿溢流砖4外表面向下流动形成两片玻璃,最后在该溢流砖4下方结合成单片玻璃。
由于玻璃液在溢流砖表面流动,玻璃液在砖尖汇合后形成的板根基础厚度比狭缝下拉法板根基础厚度厚了不少,增加了展薄的难度,此外,由于玻璃液向溢流槽外溢流时没有模具的约束,溢流砖上堰玻璃液分布的均匀性(溢出速度)很难一致,影响了玻璃板厚度的均匀性。
与此同时,溢流下拉法对玻璃液熔化澄清和均化要求最为严格,为了达到玻璃液温度的精确控制,每条生产线要消耗800~1000kg的铂金做成很长的玻璃通道,通过电加热铂金通道调节玻璃液的温度,而且这些贵金属也会发生氧化而不断挥发,因此,该法使得生产线制造成本非常高。
此外,与上述溢流法生产工艺相匹配的玻璃液熔制所需的原料成分通常为高铝硅酸盐或高铝硼硅酸盐,其中Al 2O 3在玻璃中重量百分比通常≥15%。
如图2所示,浮法成型法的具体成形工艺为,当熔融玻璃液从熔窑5内连续流出后,漂浮在充有保护气体的金属锡液面上,形成厚度均匀、表面平整的玻璃带,再进行退火。由于接触锡液一面的玻璃表面质量不及溢流工艺,因此浮法成型中需要增设研磨抛光设备,成本较高。浮法拉制厚度小于1.0mm厚度玻璃时,浮法工艺要将玻璃厚度从自由厚度6.0mm拉薄至所需的厚度,只能依靠拉边机施加横向展薄的拉力,并且其需要的外力很大,拉薄区长度很长需要设置拉边机数量很多,由于拉边机只能单面施加外力,其效果比对辊式拉边机差,且拉边机压痕外的玻璃带厚度与合格板厚度的差值随着玻璃厚度减薄进一步加大,容易形成边部局部的应力集中。同时,在浮法成型法成型阶段,必须在成型锡槽内,锡液表面使用拉边机拉制成所需板宽和厚度的玻璃板,由于拉边机成型原因,此区间成型温度一般在830°~920°,对应的粘度为10 6Pa·S~10 5Pa·S,如果成型温度过高或者粘度控制不当,则无法成型。
上述的浮法成型法使得造成的玻璃的厚度均匀度和波纹度等性能指标均比较差。
图3a为现有的玻璃的弹性模量、抗折强度随RO含量变化的折线统计图。图3b为现有的玻璃的弹性模量、抗折强度随R 2O含量变化的折线统计图。
如图3a和图3b所示,电子产品的外观防护玻璃和视窗防护玻璃按生产 配方的不同可分为钠钙硅酸盐玻璃和高铝硅酸盐玻璃。常用的性能较高的为高铝硅酸盐玻璃,主要为SiO 2-Al 2O 3-RO-R 2O系统,组成中,SiO 2是玻璃网络形成体氧化物,能提高玻璃的抗折强度、化学稳定性、热稳定性,但它是较难熔化的物质;Al 2O 3含量需要大于15%以上,Al 2O 3在玻璃中能大大提高玻璃的机械强度,但在熔制过程中高含量的Al 2O 3对于玻璃的粘度大于SiO 2对于玻璃粘度的影响,使得玻璃的熔化速度减慢和澄清时间延长;RO在玻璃成分中含量通常为12%以上,RO碱土金属氧化物的增加会导致弹性模量、抗折强度降低;R 2O在玻璃成分中含量通常为13%以上,R 2O碱土金属氧化物的增加也会导致弹性模量、抗折强度降低;其中,RO一般为MgO或CaO等氧化物,R 2O一般为K 2O或Na 2O等氧化物。
因此,在工艺操作过程中,在能满足熔化和成型需要的基础上,Al 2O 3、RO和R 2O的质量组分应尽量减少或者不添加。为此,寻找一种新型的玻璃配料成分,既能提高盖板玻璃的弹性模量和抗折强度,又能提高玻璃的机械强度。
而为了解决玻璃上述的溢流下拉法成本过高的问题,浮法成型法生产出来的产品厚度均匀度和波纹度指标差、成型温度区间范围窄的问题,以及玻璃原料配比中Al 2O 3、RO、R 2O常用氧化物给产品性能指标带来差异的问题,本申请提出了一种新型的玻璃成型方法。
图4a为现有的压延机组结构的结构示意图。图4b为图4a的侧视图。图4c为现有的压延机组结构的爆炸图。
如图4a至图4c所示,目前市场上被广泛应用的压延机组结构一般包括压延机本体6、压延上主辊7、压延下主辊8、摇臂9、丝杆减速机10和机械压力装置20,其中,压延上主辊7和压延下主辊8均安装在压延机本体6上,且压延上主辊7与压延下主辊8的排布方向与压延机本体6的纵向(图中的y向)一致,摇臂9枢接在压延机本体6上,且摇臂9的一端连接于压延上主辊7,丝杆减速机10安装在摇臂9的另一端上,机械压力装置20安装在压延机本体6上,且机械压力装置20位于压延上主辊7的上方,具体的,当需要对玻璃进行压制时,先调节压延上主辊7与压延下主辊8之间的间隙使玻璃能够位于间隙内,通过使丝杆减速机10工作,丝杆101带动摇臂9发生转动,具体是,摇臂9前端托着压延上主辊7,压延上主辊7的上轴瓦盖71 靠螺栓与摇臂9前端的下部连接,当安装上主辊7时,打开上轴瓦盖71,摇臂9通过销轴与压延机本体6固定,这样摇臂可以绕摇臂9与压延机本体6之间的连接点旋转,形成一杠杆力,丝杆减速机10固定在位于摇臂9的后端,这样,丝杆减速机10上的丝杆可以顶住压延机本体6的至少部分,这样借助连接摇臂9与压延机本体6之间的销轴,使得摇臂9的前端能够托住压延上主辊7,而当需要调整压延上主辊7与压延下主辊8之间的间隙时,手动摇动丝杆减速机10上的手轮,以实现压延上主辊7的上、下移动,当生产的玻璃越薄时,此间隙越小,但正常生产时由于高温液态在压延上主辊7与压延下主辊8之间被挤压时,压延上主辊7会收到很大的浮力,生产的玻璃越薄,浮力越大,为此,必须通过机械压力装置20给压延上主辊7施加一定的下压力,来克服玻璃给压延上主辊7产生的向上的浮力,具体的,机械压力装置20包括转动力爪201和压杆202,当生产薄玻璃时,靠人工转动力爪201,力爪201旋转带动压杆202的压杆头2021向下运动,给压延上主辊7施加一定的力。需要说明的是,此向下的压力主要是来克服压延上主辊7与压延下主辊8之间的玻璃液对压延上主辊7产生的浮力,生产的玻璃越薄,施加的压力就越大,例如是,生产3.2mm的玻璃时,需要5000N~10000N的压力;生产2.5mm的玻璃时,需要16000N~28000N的压力;生产2.0mm的玻璃时,需要42000N~63000N的压力。
因此,上述的压延机组结构的缺点主要包括两点,第一点是操作工人需要付出很大的体力劳动,而且操作员工易受压延辊前面敞开区域的高温玻璃液热量的辐射,员工操作难度大;第二点是靠人工手动来调节对压延上主辊施加压力的大小,由于人工施加的力过小(一般小于28000N),因此,只能满足一些厚度较大的常规玻璃的生产,而无法满足厚度较小的玻璃的生产。
目前的玻璃的常规厚度都较薄,其生产制造方法以浮法成型法和溢流下拉法为主,上述两种方法生产出的玻璃的性能差,机械强度低;同时现阶段压延法用的压延机无法压制厚度较薄的玻璃,也会导致生产出的玻璃的性能差,机械强度低。
为了克服上述的缺陷,本申请提供一种玻璃、玻璃的成型方法、压制装置及压延机,能够优化玻璃的性能,提升玻璃的机械强度。
本申请实施例提供一种玻璃,玻璃的原料按照重量份数包括:SiO 2:61~ 76份、Li 2O:6~10份、Na 2O:2~12份、CaO:5~0份、MgO:5~0份、Al 2O 3:16~0份以及TiO 2+ZrO 2:5~2份。
其中,SiO 2为玻璃形成体氧化物;Li 2O有利于助熔和增加玻璃强度,同时也能降低玻璃的热膨胀系数;加入Na 2O、MgO的目的是为了降低玻璃的熔制温度;CaO的引入能增强玻璃的化学稳定性,并降低玻璃液的高温粘度,促使玻璃的熔融和澄清;Al 2O 3能够提高玻璃强度和玻璃硬度;TiO 2+ZrO 2为晶核剂。
作为一种可选的实施方式,本实施例提供的玻璃的原料按照重量份数包括:SiO 2:76份、Li 2O:10份、Na 2O:12份以及TiO 2+ZrO 2:2份。
为了验证上述混合组分的玻璃原料的性能,在本实施例中,利用透过率检测仪测量该混合组分的玻璃的反射率曲线,得出当光的波长在400nm~1200nm之间时,该混合组分的玻璃的平均反射率大于等于92.1%,而不加Li2O的玻璃原片在该光的波长范围内的平均反射率为90.2%~91.8%。因此,在相同条件下,采用上述混合组分的玻璃的平均反射率明显大于不加Li 2O的玻璃原片的平均反射率。
为了进一步验证采用上述混合组分的玻璃原料形成的玻璃的性能,采用表面应力仪对上述混合组分的玻璃原料形成的玻璃进行测试,得出采用上述混合组分的玻璃原料形成的玻璃的表面应力为800CS/Mpa~900CS/Mpa。
以下结合表1对采用上述混合组分的玻璃原料形成的玻璃的表面应力值及其它性能进行进一步说明。
如表1所示,表1为市场上的几家公司制造的玻璃的表面应力值及其它性能与本实施例制得的玻璃的表面应力值及其它性能的对比表。
作为另一种可选的实施方式,本实施例提供的玻璃的原料按照重量份数包括:SiO 2:61份、Li 2O:6份、Na 2O:2份、CaO:5份、MgO:5份、Al 2O 3:16份以及TiO 2+ZrO 2:5份。
为了验证上述混合组分的玻璃原料的性能,在本实施例中,利用透过率检测仪测量该混合组分的玻璃的反射率曲线,得出当光的波长在400nm~1200nm之间时,该混合组分的玻璃的平均反射率大于等于92.2%,而不加Li2O的玻璃原片在该光的波长范围内的平均反射率为90.2%~91.8%。因此,在相同条件下,采用上述混合组分的玻璃的平均反射率明显大于不加Li2O的 玻璃原片的平均反射率。
Figure PCTCN2020122371-appb-000001
表1
以下结合表2对采用上述混合组分的玻璃原料形成的玻璃的表面应力值及其它性能进行说明。
Figure PCTCN2020122371-appb-000002
表2
如表2所示,表2为市场上的几家公司制造的玻璃的表面应力值及其它 性能与本实施例制得的玻璃的表面应力值及其它性能的对比表。
作为又一种可选的实施方式,本实施例提供玻璃的原料按照重量份数包括:SiO 2:70份、Li 2O:8份、Na 2O:10份、CaO:1.5份、MgO:1.5份、Al 2O 3:5份以及TiO 2+ZrO 2:4份。
为了验证上述混合组分的玻璃原料的性能,在本实施例中,利用透过率检测仪测量该混合组分的玻璃的反射率曲线,得出当光的波长在400nm~1200nm之间时,该混合组分的玻璃的平均反射率大于等于92.3%,而不加Li2O的玻璃原片在该光的波长范围内的平均反射率为90.2%~91.8%。因此,在相同条件下,采用上述混合组分的玻璃的平均反射率明显大于不加Li2O的玻璃原片的平均反射率。
为了进一步验证采用上述混合组分的玻璃原料形成的玻璃的性能,采用表面应力仪对上述混合组分的玻璃原料形成的玻璃进行测试,得出采用上述混合组分的玻璃原料形成的玻璃的表面应力为800CS/Mpa~900CS/Mpa。以下结合表3对采用上述混合组分的玻璃原料形成的玻璃的表面应力值及其它性能进行说明。
Figure PCTCN2020122371-appb-000003
表3
如表3所示,表3为市场上的几家公司制造的玻璃的表面应力值及其它性能与本实施例制得的玻璃的表面应力值及其它性能的对比表。
需要说明的是,将以上各混合组分的玻璃原料放在熔窑里,在温度为1610℃左右的条件下对其进行熔化,再压制成型,经退火、晶化和抛光,制得最终的玻璃成品。
本实施例提供的玻璃的原料按照重量份数包括:SiO 2:61~76份、Li 2O:6~10份、Na 2O:2~12份、CaO:5~0份、MgO:5~0份、Al 2O 3:16~0份以及TiO 2+ZrO 2:5~2份。因此,本实施例提供的玻璃具有较好的性能和较高的机械强度
本申请实施例还提供一种玻璃的成型方法,上述的玻璃通过该玻璃的成型方法制成。
图5a为本申请实施例提供的玻璃的成型方法的步骤流程示意图。图5b为本申请实施例提供的玻璃的成型方法中的对非晶态的玻璃进行加工得到晶态的玻璃的一种步骤流程示意图。图5c为本申请实施例提供的玻璃的成型方法中的对非晶态的玻璃进行加工得到晶态的玻璃的另一种步骤流程示意图。
如图5a和图5b所示,本实施例提供的玻璃的成型方法包括:
S101、对制成玻璃的原料进行配料得到制成玻璃的原材料。
具体的,玻璃的原料按照重量份数包括:SiO 2:61~76份、Li 2O:6~10份、Na 2O:2~12份、CaO:5~0份、MgO:5~0份、Al 2O 3:16~0份以及TiO 2+ZrO 2:5~2份。
需要说明的是,在以上实施方式中已经对各混合组分的玻璃原料进行详细介绍过,在此不再赘述。
S102、对玻璃的原材料进行加工得到熔融态的玻璃。
具体的,可以将玻璃的原材料放置在熔窑里对玻璃的原材料进行熔化,得到熔融的玻璃。
S103、通过压延法对熔融态的玻璃进行加工得到非晶态的玻璃。
其中,压延法的实行可以通过压延机进行。
S104、对非晶态的玻璃进行加工得到晶态的玻璃。
这样,使得非晶态的玻璃成为晶态的玻璃,便于之后对玻璃进行加工。
S105、对晶态的玻璃进行抛光得到成型的玻璃。
其中,可以通过抛光机对晶态的玻璃进行抛光。
在一些实施例中,对非晶态的玻璃进行加工得到晶态的玻璃包括:
S201、通过退火工艺对非晶态的玻璃进行加工得到处于过渡态的玻璃。
这样,能够降低玻璃的硬度,并对玻璃的晶粒进行细化,以提升得到的玻璃的性能。
S202、对处于过渡态的玻璃进行晶化得到晶态的玻璃。
这样,能够对玻璃的晶粒进行进一步细化,提升得到的玻璃的性能。
S203、对晶态的玻璃进行切裁,以获得晶态玻璃的规则的形状。
这样,便于后期对玻璃的使用。
如图5c所示,在一些实施例中,对非晶态的玻璃进行加工得到晶态的玻璃包括:
S301、通过退火工艺对非晶态的玻璃进行加工得到处于过渡态的玻璃。
S302、对处于过渡态的玻璃进行切裁,以获得处于过渡态的玻璃的规则的形状。
这样,以便于对玻璃进行后续的加工,并且能够对玻璃的晶粒进行细化。
S303、对切裁后的过渡态的玻璃进行晶化得到晶态的玻璃。
这样,能够对玻璃的晶粒进行二次细化,提升产出的玻璃的性能。
在本实施例中,晶化包括在线晶化或离线晶化两种方式。
在本实施例中,在对成型的玻璃进行入库之后还包括对入库后的玻璃进行化学钢化。以使得成型的玻璃的机械强度更高,性能更好。
本实施例提供的玻璃的成型方法,玻璃的成型方法包括:对制成玻璃的原料进行配料得到制成玻璃的原材料;对玻璃的原材料进行加工得到熔融态的玻璃;通过压延法对熔融态的玻璃进行加工得到非晶态的玻璃;对非晶态的玻璃进行加工得到晶态的玻璃;对晶态的玻璃进行抛光得到成型的玻璃。通过本实施例提供的玻璃的成型方法制得的玻璃具有较好的性能和较高的机械强度。
本申请实施例还提供一种压制装置,在上述的成型方法中,用于对熔融态的玻璃进行加工得到非晶态的玻璃。下面结合附图和具体实施方式对本实施例进行详细说明。
需要说明的是,本实施例提供的压制装置的依据为杠杆原理的“杠杆平衡 条件”。具体是,要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为:F1·L1=F2·L2,式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。
图6a为本申请实施例提供的压制装置的结构示意图。图6b为图6a的侧视图。
如图6a和图6b所示,本申请实施例提供的压制装置,包括两个相对设置的压制机构30,压制机构30包括基座31、横梁32、压杆33、立柱34和驱动机构35,立柱34和驱动机构35均安装在基座31上,压杆33的第一端、立柱34远离基座31的一端和驱动机构35远离基座31的一端均枢接在横梁32上,立柱34位于压杆33和驱动机构35之间。
在本实施例中,立柱34与基座31之间以及驱动机构35与基座31之间均可以采用螺纹连接的连接方式或焊接的连接方式。需要说明的是,只要能够使立柱34与基座31之间以及驱动机构35与基座31之间进行可靠连接的连接方式均能够实现本实施例的目的。
在一种可选的实施方式中,驱动机构35包括电机减速机351和涡轮升降减速机352,电机减速机351通过连轴器与涡轮升降减速机352的输入轴连接,且涡轮升降减速机352顶端的丝杆导体通过销轴与横梁32转动连接。
具体的,通过启动电机减速机351,使涡轮升降减速机352上的丝杆导体驱动横梁32的一端上升或下降,进而使得位于横梁32另一端的压杆33下降或上升。
在另一种可选的实施方式中,驱动机构35包括手轮和涡轮升降减速机352,手轮通过定位销与涡轮升降减速机352的输入轴转动连接。
具体的,通过转动手轮,使涡轮升降减速机352上的丝杆导体驱动横梁32的一端上升或下降,进而使得位于横梁32另一端的压杆33下降或上升。
在又一种可选的实施方式中,驱动机构35为机械千斤顶,机械千斤顶的一端与基座31相连,机械千斤顶的另一端枢接在横梁32上,通过使机械千斤顶工作,使机械千斤顶驱动横梁32的一端上升或下降,进而使得位于横梁32另一端的压杆33下降或上升。
在本实施例的具体的实施方式中,压杆33包括上压杆331和压杆头332,上压杆331的第一端枢接在横梁32上,上压杆331的第二端与压杆头332螺纹连接。
这样,便于对上压杆331和压杆头332进行安装或拆卸,便于对压杆头332进行更换。
作为一种可选的实施方式,本实施例提供的压制装置还包括压力传感器40,压力传感器40的第一端与驱动机构35连接,压力传感器40的第二端枢接在横梁32上。
在本实施例中,压力传感器40用于对压杆33的端部受到的力进行检测。
在一些实施例中,本申请提供的压制装置还包括限位开关50,限位开关50设置在立柱34上,限位开关50具有第一接触点和第二接触点,第一接触点能够抵触在压力传感器40的第一端面上,第二接触点能够抵触在压力传感器40的第二端面上。
具体的,当压力传感器40的外壳碰触到限位开关50的第一接触点或第二机械触点时,电机减速机351停止动作,自动保护。
在本实施例的具体的实施方式中,限位开关50通过螺纹紧固件连接在立柱34上。
本申请实施例提供的压制装置,包括两个相对设置的压制机构,压制机构包括基座、横梁、压杆、立柱和驱动机构,立柱和驱动机构均安装在基座上,压杆的第一端、立柱远离基座的一端和驱动机构远离基座的一端均枢接在横梁上,立柱位于压杆和驱动机构之间。本实施例提供的压制装置能够对不同厚度的玻璃进行压制,使得被压制出的玻璃具有较好的性能。
本申请实施例还提供一种压延机。下面结合附图对本实施例进行详细说明。
图7a为本申请实施例提供的压延机的第一种结构示意图。图7b为图7a沿A-A处的剖视图。图8a为本申请实施例提供的压延机的第二种结构示意图。图8b为图8a沿B-B处的剖视图。图9a为本申请实施例提供的压延机的第三种结构示意图。图9b为图9a沿C-C处的剖视图。图10a为本申请实施例提供的压延机的第四种结构示意图。图10b为图10a沿D-D处的剖视图。 图11a为本申请实施例提供的压延机的第五种结构示意图。图11b为图11a的侧视图。图12a为本申请实施例提供的压延机的第六种结构示意图。图12b为图12a的侧视图。图13a为本申请实施例提供的压延机的第七种结构示意图。图13b为图13a的侧视图。
如图7a至图13b所示,本申请实施例提供一种压延机,包括压延机本体60、压延上主辊70、压延下主辊80和上述的压制装置,压延上主辊70和压延下主辊80相对设置在压延机本体60上,且压延上主辊70和压延下主辊80的分布方向与压延机本体60的纵向(图中的y向)一致,熔融态的玻璃能够位于压延上主辊70与压延下主辊80之间;压制装置设置在压延机本体60上,具体的,基座31通过焊接的连接方式与压延机本体60相连,且压杆33的第二端能够抵压在压延上主辊70上,即压杆头332能够抵压在压延上主辊70上。
需要说明的是,压制装置的具体结构已经在上述实施方式中具体阐述过,在此,对压制装置的具体结构不作赘述。
如图7a和图7b所示,作为一种可选的实施方式,驱动机构35包括手轮353和涡轮升降减速机352,手轮353通过定位销与涡轮升降减速机352的输入轴转动连接。
具体的,通过转动手轮353,使涡轮升降减速机352上的丝杆导体驱动横梁32的一端上升或下降,进而使得位于横梁32另一端的压杆33下降或上升,以改变压延上主辊70对熔融的玻璃产生的压力。
如图8a和图8b所示,作为另一种可选的实施方式,驱动机构35为机械千斤顶150,机械千斤顶150的一端与基座31相连,机械千斤顶150的另一端枢接在横梁32上,通过使机械千斤顶150工作,使机械千斤顶150驱动横梁32的一端上升或下降,进而使得位于横梁32另一端的压杆33下降或上升,以改变压延上主辊70对熔融的玻璃产生的压力。
如图9a至图10b所示,作为又一种可选的实施方式,驱动机构35包括电机减速机351和涡轮升降减速机352,电机减速机351通过连轴器与涡轮升降减速机352的输入轴连接,且涡轮升降减速机352顶端的丝杆导体通过销轴与横梁32转动连接。具体的,通过启动电机减速机351,使涡轮升降减速机352上的丝杆导体驱动横梁32的一端上升或下降,进而使得位于横梁 32另一端的压杆33下降或上升,以改变压延上主辊70对熔融的玻璃产生的压力。
如图11a至图13b所示,压延机本体60包括第一本体61和第二本体62,第二本体62具有工作台,工作台位于第一本体61的上方,压延上主辊70和压延下主辊80均设置在第一本体61上,压制装置设置在工作台上,且压杆33穿设于工作台。
在本实施例的具体的实施方式中,第二本体62由工字钢或槽钢焊接而成。
为了实现本实施例提供的压延机的自动化操作,在本实施例中,压延机还包括压延上主辊电机90、压延下主辊电机100、电控柜110和触摸屏120,压延上主辊电机90的电机轴与压延上主辊70相连,压延下主辊电机100的电机轴与压延下主辊80相连,电控柜110和触摸屏120均设置在压延机本体60上,压延上主辊电机90、压延下主辊电机100和触摸屏120均与电控柜110电连接。
这样,能够减小工作人员的劳动量,节省人力资源。
在本实施例提供的压延机中,还包括设置在压延机本体60上的多个附辊130和多个活动辊140,当熔融态的玻璃被挤压成型之后会通过多个附辊130传输至活动辊140上,通过活动辊140传输至其他的加工设备上。
需要说明的是,当被挤压成型后的玻璃通过活动辊140后可以传输到进行退火工艺的设备上。此处,对进行退火工艺的设备不作限制。
在对本实施例提供的压延机进行使用时,对压延上主辊70、压延下主辊80、附辊130和活动辊140进行速度参数的设置,使对应的参数显示在触摸屏120上,并对压力传感器40设置一定的压力参数,使其显示在触摸屏120上,触摸屏120向电控柜110发出信号,使电控柜110控制现场的电机减速机351旋转,使涡轮升降减速机352上的丝杆进行升降,并带动压杆33上升或下降,以使得熔融状态下的液态玻璃液经压延上主辊70和压延下主辊80后被压制成一定厚度的玻璃。
当压力传感器40检测出的实际压力值与设置的压力值不一致时,电控柜110会驱动电机减速机351动作带动涡轮升降减速机352上升或下降,作用力通过立柱34上的转动支点,实现压杆33的上升或下降,以此来控制压杆33施加到压延上主辊70上的力的大小。直到压力传感器40检测出的实际压 力值与设置的压力值相同时,电机减速机351停止动作。
当线路出现意外,电机减速机351发生误动作时,压力传感器40的外壳会触碰到限位开关50的第一机械触点或第二机械触点,这时电控柜110接收到信号会控制电机减速机351停止工作,进行自主保护。
需要说明的是,生产玻璃的厚度越薄,则压力传感器40设置压力值就越大,通过横梁32给到压延上主辊70的压力就越大。
本实施例提供的压延机,包括压延机本体、压延上主辊、压延下主辊和压制装置,压延上主辊和压延下主辊相对设置在压延机本体上,且压延上主辊和压延下主辊的分布方向与压延机本体的纵向一致,熔融态的玻璃能够位于压延上主辊与压延下主辊之间;压制装置设置在压延机本体上,且压杆的第二端能够抵压在压延上主辊上。本实施例提供的压延机由于包括上述的压制装置,因而能够对不同厚度的玻璃进行压制,使得被压制出的玻璃具有较好的性能。

Claims (18)

  1. 一种玻璃,其特征在于,所述玻璃的原料按照重量份数包括:SiO2:61~76份、Li2O:6~10份、Na 2O:2~12份、CaO:5~0份、MgO:5~0份、Al 2O 3:16~0份以及TiO 2+ZrO 2:5~2份。
  2. 根据权利要求1所述的一种玻璃,其特征在于,所述玻璃的原料按照重量份数包括:SiO 2:76份、Li 2O:10份、Na 2O:12份以及TiO 2+ZrO 2:2份。
  3. 根据权利要求1所述的一种玻璃,其特征在于,所述玻璃的原料按照重量份数包括:SiO 2:61份、Li 2O:6份、Na 2O:2份、CaO:5份、MgO:5份、Al2O 3:16份;TiO 2+ZrO 2:5份。
  4. 根据权利要求1所述的一种玻璃,其特征在于,所述玻璃的原料按照重量份数包括:SiO 2:70份、Li 2O:8份、Na 2O:10份、CaO:1.5份、MgO:1.5份、Al 2O 3:5份以及TiO 2+ZrO 2:4份。
  5. 一种玻璃的成型方法,其特征在于,权利要求1-4任一项所述的玻璃通过所述玻璃的成型方法制成,所述玻璃的成型方法包括:
    对制成所述玻璃的原料进行配料得到制成所述玻璃的原材料;
    对所述玻璃的原材料进行加工得到熔融态的玻璃;
    通过压延法对所述熔融态的玻璃进行加工得到非晶态的所述玻璃;
    对所述非晶态的所述玻璃进行加工得到晶态的所述玻璃;
    对所述晶态的所述玻璃进行抛光得到成型的玻璃。
  6. 根据权利要求5所述的玻璃的成型方法,其特征在于,所述对所述非晶态的所述玻璃进行加工得到晶态的所述玻璃包括:
    通过退火工艺对所述非晶态的所述玻璃进行加工得到处于过渡态的所述玻璃;
    对所述处于过渡态的所述玻璃进行晶化得到晶态的所述玻璃;
    对所述晶态的玻璃进行切裁,以获得所述晶态玻璃的规则的形状;或,
    通过退火工艺对所述非晶态的所述玻璃进行加工得到处于过渡态的所述玻璃;
    对所述处于过渡态的所述玻璃进行切裁,以获得所述处于过渡态的所述玻璃的规则的形状;
    对切裁后的所述过渡态的所述玻璃进行晶化得到所述晶态的玻璃;
    其中,所述处于过渡态的所述玻璃为处于非晶态后且位于晶态前的所述玻璃。
  7. 根据权利要求6所述的玻璃的成型方法,其特征在于,所述晶化包括在线晶化或离线晶化。
  8. 根据权利要求5-7任一项所述的玻璃的成型方法,其特征在于,在所述对所述晶态的所述玻璃进行抛光得到成型的玻璃之后还包括:
    对所述成型的玻璃进行化学钢化。
  9. 一种压制装置,在如权利要求5-8任一项所述的成型方法中,用于所述对所述熔融态的玻璃进行加工得到非晶态的所述玻璃,其特征在于,所述压制装置包括两个相对设置的压制机构,所述压制机构包括基座、横梁、压杆、立柱和驱动机构,所述立柱和所述驱动机构均安装在所述基座上,所述压杆的第一端、所述立柱远离所述基座的一端和所述驱动机构远离所述基座的一端均枢接在所述横梁上,所述立柱位于所述压杆和所述驱动机构之间。
  10. 根据权利要求9所述的压制装置,其特征在于,所述驱动机构包括电机减速机和涡轮升降减速机,所述电机减速机通过连轴器与所述涡轮升降减速机的输入轴连接。
  11. 根据权利要求9所述的压制装置,其特征在于,所述驱动机构包括手轮和涡轮升降减速机,所述手轮通过定位销与所述涡轮升降减速机的输入轴转动连接。
  12. 根据权利要求9所述的压制装置,其特征在于,所述驱动机构为机械千斤顶。
  13. 根据权利要求10-12任一项所述的压制装置,其特征在于,所述压杆包括上压杆和压杆头,所述上压杆的第一端枢接在所述横梁上,所述上压杆的第二端与所述压杆头螺纹连接。
  14. 根据权利要求10所述的压制装置,其特征在于,还包括压力传感器,所述压力传感器的第一端与所述驱动机构连接,所述压力传感器的第二端与枢接在所述横梁上。
  15. 根据权利要求14所述的压制装置,其特征在于,还包括限位开关,所述限位开关设置在所述立柱上,所述限位开关具有第一接触点和第二接触 点,所述第一接触点能够抵触在所述压力传感器的第一端面上,所述第二接触点能够抵触在所述压力传感器的第二端面上。
  16. 一种压延机,其特征在于,所述包括压延机本体、压延上主辊、压延下主辊和权利要求9-15任一项所述的压制装置,所述压延上主辊和所述压延下主辊相对设置在所述压延机本体上,且所述压延上主辊和所述压延下主辊的分布方向与所述压延机本体的纵向一致,所述熔融态的玻璃能够位于所述压延上主辊与所述压延下主辊之间;所述压制装置设置在所述压延机本体上,且所述压杆的第二端能够抵压在所述压延上主辊上。
  17. 根据权利要求16所述的压延机,其特征在于,所述压延机本体包括第一本体和第二本体,所述第二本体具有工作台,所述工作台位于所述第一本体的上方,所述压延上主辊和所述压延下主辊均设置在所述第一本体上,所述压制装置设置在所述工作台上,且所述压杆穿设于所述工作台。
  18. 根据权利要求16或17所述的压延机,其特征在于,还包括压延上主辊电机、压延下主辊电机、电控柜和触摸屏,所述压延上主辊电机的电机轴与所述压延上主辊相连,所述压延下主辊电机的电机轴与所述压延下主辊相连,所述电控柜和所述触摸屏均设置在所述压延机本体上,所述压延上主辊电机、所述压延下主辊电机和所述触摸屏均与所述电控柜电连接。
PCT/CN2020/122371 2020-09-06 2020-10-21 玻璃、玻璃的成型方法、压制装置及压延机 WO2022047910A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/154,835 US20230150861A1 (en) 2020-09-06 2023-01-15 Glass, glass forming method, pressing apparatus, and calender

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010924998.X 2020-09-06
CN202010924998.XA CN112777930A (zh) 2020-09-06 2020-09-06 玻璃、玻璃的成型方法、压制装置及压延机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/154,835 Continuation US20230150861A1 (en) 2020-09-06 2023-01-15 Glass, glass forming method, pressing apparatus, and calender

Publications (1)

Publication Number Publication Date
WO2022047910A1 true WO2022047910A1 (zh) 2022-03-10

Family

ID=75750276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122371 WO2022047910A1 (zh) 2020-09-06 2020-10-21 玻璃、玻璃的成型方法、压制装置及压延机

Country Status (3)

Country Link
US (1) US20230150861A1 (zh)
CN (1) CN112777930A (zh)
WO (1) WO2022047910A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286217A (zh) * 2022-07-28 2022-11-04 陕西彩虹工业智能科技有限公司 一种微晶盖板玻璃压延装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3684475A (en) * 1968-10-15 1972-08-15 Z Avtosteklo Float glass apparatus for producing sheet glass crystalline material from a glass band
US3847582A (en) * 1971-06-01 1974-11-12 M Kozmin Method of continuous fabrication of glass-crystalline materials with rib configuration
JPS63170230A (ja) * 1986-12-29 1988-07-14 Kubota Ltd 板状結晶化ガラスの製造方法
DE102005022981A1 (de) * 2005-05-19 2006-04-06 Schott Ag Verfahren zum Herstellen von marmorierten und farblich gemusterten Glas-/Glaskeramikprodukten sowie daraus hergestellte Glas-/Glaskeramikprodukte
CN108516681A (zh) * 2018-07-13 2018-09-11 河北省沙河玻璃技术研究院 一种应用于5g通信移动终端的微晶玻璃压延法制备工艺
CN110872175A (zh) * 2018-08-31 2020-03-10 深圳市东丽华科技有限公司 一种微晶玻璃及利用其制成的具有复合压应力的玻璃基板
CN210683579U (zh) * 2019-07-31 2020-06-05 信义光伏产业(安徽)控股有限公司 一种玻璃压延机

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212713231U (zh) * 2020-09-06 2021-03-16 四平宏大液压机械制造有限公司 玻璃压制装置及压延机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3684475A (en) * 1968-10-15 1972-08-15 Z Avtosteklo Float glass apparatus for producing sheet glass crystalline material from a glass band
US3847582A (en) * 1971-06-01 1974-11-12 M Kozmin Method of continuous fabrication of glass-crystalline materials with rib configuration
JPS63170230A (ja) * 1986-12-29 1988-07-14 Kubota Ltd 板状結晶化ガラスの製造方法
DE102005022981A1 (de) * 2005-05-19 2006-04-06 Schott Ag Verfahren zum Herstellen von marmorierten und farblich gemusterten Glas-/Glaskeramikprodukten sowie daraus hergestellte Glas-/Glaskeramikprodukte
CN108516681A (zh) * 2018-07-13 2018-09-11 河北省沙河玻璃技术研究院 一种应用于5g通信移动终端的微晶玻璃压延法制备工艺
CN110872175A (zh) * 2018-08-31 2020-03-10 深圳市东丽华科技有限公司 一种微晶玻璃及利用其制成的具有复合压应力的玻璃基板
CN210683579U (zh) * 2019-07-31 2020-06-05 信义光伏产业(安徽)控股有限公司 一种玻璃压延机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286217A (zh) * 2022-07-28 2022-11-04 陕西彩虹工业智能科技有限公司 一种微晶盖板玻璃压延装置
CN115286217B (zh) * 2022-07-28 2023-10-20 陕西彩虹工业智能科技有限公司 一种微晶盖板玻璃压延装置

Also Published As

Publication number Publication date
CN112777930A (zh) 2021-05-11
US20230150861A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
TWI401219B (zh) Glass plate manufacturing method and glass plate manufacturing apparatus
TWI564261B (zh) 鹼土鋁硼矽抗裂玻璃
JP5594351B2 (ja) ディスプレイ用ガラス基板
JP2019514827A (ja) 高強度の超薄ガラスおよびその製造方法
TWI417255B (zh) A manufacturing method of a glass plate and a manufacturing apparatus for a glass plate
TWI429602B (zh) Manufacture of glass plates
CN212713231U (zh) 玻璃压制装置及压延机
TWI659932B (zh) 玻璃基板之製造方法、及玻璃基板之製造裝置
WO2022047910A1 (zh) 玻璃、玻璃的成型方法、压制装置及压延机
CN113135649B (zh) 一种utg玻璃原片生产成型方法及成型装置
US20130233019A1 (en) Methods for reducing zirconia defects in glass sheets
JP5254159B2 (ja) 板ガラスの製造方法
WO2007080924A1 (ja) 無アルカリガラス基板
EP3868726A1 (en) Aluminosilicate glass composition, aluminosilicate glass, preparation method therefor and application thereof
CN108623147B (zh) 一种同时含有MgO和ZnO的高强碱铝硅酸盐玻璃
JPWO2014050825A1 (ja) ガラス基板の製造方法
JP5848329B2 (ja) ガラス板の製造方法及びガラス板製造装置
Kamihori Primary Fabrication of Flat Glass
US20180155236A1 (en) Light-scattering glass articles and methods for the production thereof
JP6577215B2 (ja) ガラス基板の製造方法
JP5508466B2 (ja) ガラス基板の製造方法
KR20170003405A (ko) 유리 기판의 제조 방법
JP5962675B2 (ja) 板ガラス製造装置、及び板ガラス製造方法
TW202319357A (zh) 用於將邊緣部分自玻璃帶分離的設備與方法
TW201708143A (zh) 化學強化鹼鋁矽酸鹽玻璃用玻璃組成物及其具短縮離子交換時間製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952152

Country of ref document: EP

Kind code of ref document: A1