WO2022045350A1 - 鋼板およびその製造方法 - Google Patents

鋼板およびその製造方法 Download PDF

Info

Publication number
WO2022045350A1
WO2022045350A1 PCT/JP2021/031919 JP2021031919W WO2022045350A1 WO 2022045350 A1 WO2022045350 A1 WO 2022045350A1 JP 2021031919 W JP2021031919 W JP 2021031919W WO 2022045350 A1 WO2022045350 A1 WO 2022045350A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
steel sheet
mass
rolling
Prior art date
Application number
PCT/JP2021/031919
Other languages
English (en)
French (fr)
Inventor
啓介 中井
大貴 今城
真吾 中村
祥晃 新宅
清孝 中島
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2022505646A priority Critical patent/JP7127751B2/ja
Priority to KR1020227034203A priority patent/KR20220146638A/ko
Priority to CN202180025262.1A priority patent/CN115362274B/zh
Publication of WO2022045350A1 publication Critical patent/WO2022045350A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Definitions

  • the present invention relates to a steel sheet and a method for manufacturing the same.
  • the welded structure is welded with a large heat input such as 35 kJ / mm or more.
  • HZ toughness In order to suppress brittle fracture, it is required to improve the toughness (hereinafter referred to as "HAZ toughness") in the heat-affected zone (HAZ) generated when high heat input welding is performed.
  • An object of the present invention is to solve the above-mentioned problems and to provide a steel sheet having high strength and excellent low temperature toughness, fracture toughness and HAZ toughness, and a method for producing the same.
  • the gist of the present invention is the following steel sheet and its manufacturing method.
  • the chemical composition of the steel sheet is mass%.
  • the average length of the former austenite grains at a position 1 / 4t from the surface of the steel sheet in the thickness direction is 20 ⁇ m or less, and the average aspect ratio is 2. .5 or more, It is a composite inclusion containing Zr and B, has a circle equivalent diameter of 0.5 ⁇ m or more, and the ratio of Al 2 O 3 to the total of ZrO 2 , Ti 2 O 3 , and Al 2 O 3 is The number density of the composite inclusions, which is 50% or less by mass, is 5 to 300 pieces / mm 2 . Steel plate. BF ⁇ 0.0030 ...
  • the chemical composition is, instead of a part of the Fe, by mass%.
  • Cu 1.50% or less
  • Ni 2.50% or less
  • Cr 1.00% or less
  • Mo 1.00% or less
  • V 0.150% or less
  • It contains at least one selected from the group consisting of The steel sheet according to (1) above.
  • the chemical composition is, instead of a part of the Fe, by mass%.
  • W 1.00% or less
  • Sn 0.50% or less, It contains at least one selected from the group consisting of The steel sheet according to any one of (1) to (3) above.
  • the chemical composition is, instead of a part of the Fe, by mass%.
  • the method for manufacturing a steel sheet according to any one of (1) to (5) above The said product obtained by comprising a refining step for producing molten steel and a continuous casting step for continuously casting the molten steel to produce a steel piece having the chemical composition according to any one of (1) to (5) above.
  • a steel plate manufacturing method in which a heating process, a hot rolling process, and an accelerated cooling process are sequentially performed on a steel piece.
  • the amount of deoxidized Al to be charged is 0.2 to 1.3 kg per 1 ton of the molten steel, and Zr is added after the dissolved O concentration in the molten steel becomes 0.0050% by mass or less.
  • the average cooling rate when the surface temperature of the steel pieces is between 1200 and 900 ° C. is set to 0.5 ° C./sec or less.
  • the steel pieces are heated to a heating temperature of 950 to 1080 ° C.
  • the hot rolling step includes rough rolling and finish rolling. The rough rolling was carried out in a range where the surface temperature of the steel pieces was Trex or higher. The cumulative rolling reduction in the rough rolling is 10 to 75%. The finish rolling was carried out in a range where the surface temperature of the steel piece was Ar 3 or more and less than Trex .
  • the cumulative rolling reduction in the finish rolling is 65 to 90%, and the time between passes is 15 seconds or less.
  • the time from the completion of the finish rolling to the start of cooling in the accelerated cooling step is set to 50 seconds or less.
  • the cooling stop temperature is 0 to 550 ° C. under the condition that the cooling start temperature is Trex -10 ° C or lower and the average cooling rate from the cooling start to the cooling end is 5 to 50 ° C / sec.
  • Water-cooled to Steel sheet manufacturing method Ar 3 is obtained by the following formula (i), and Trex is obtained by the following formula (ii).
  • the element symbol in the following formula represents the content (mass%) of each element contained in the steel sheet, and if it is not contained, 0 is substituted.
  • a tempering step of heating to a temperature range of 350 to 650 ° C. is further performed.
  • the present inventors first investigated a method for achieving both high strength and improvement of low temperature toughness and fracture toughness. As a result, the strength is increased by using bainite as the main component of the metal structure, and in addition to the miniaturization and flattening of the bainite structure, the bainite ferrite constituting the bainite is refined not only to have low temperature toughness. It was found that the decrease in fracture toughness can be suppressed.
  • B nitride is deposited in the steel with the Zr-containing oxide as the nucleus.
  • Such a composite inclusion containing Zr and B (hereinafter, also simply referred to as “composite inclusion”) functions effectively as an intragranular ferrite formation site and contributes to the miniaturization of the HAZ structure.
  • the HAZ toughness tends to deteriorate as the amount of Zr that dissolves in the steel increases. Therefore, Sol., which is the amount of Zr that dissolves in steel. It is preferable that Zr is 0.0010% by mass or less.
  • BF which is the amount of B that dissolves in the steel, 0.0030% by mass or less.
  • the composite inclusions function more effectively as intragranular ferrite formation sites.
  • the equivalent circle diameter is 0.5 ⁇ m or more, and the ratio of Al 2 O 3 to the total of ZrO 2 , Ti 2 O 3 , and Al 2 O 3 is 50% or less in mass%.
  • the number density of the composite inclusions is 5 to 300 / mm 2 , in-grain ferrite is generated finely and in a large amount in HAZ, and HAZ toughness is improved.
  • Excessive content of Al which acts as a strongly deoxidizing element, in steel inhibits the formation of composite inclusions.
  • the Al content is preferably 0.010% by mass or less.
  • Elements having a stronger deoxidizing power than Al, such as Ca, Mg and REM, may be contained as long as they are in the range of 0.0005% by mass or less in total.
  • C 0.040 to 0.160% C is contained in an amount of 0.040% or more in order to secure the strength of the steel sheet.
  • the C content is 0.040% or more, preferably 0.050% or more or more than 0.050%, more preferably 0.060% or more or more than 0.075%.
  • the C content is 0.160% or less, preferably 0.140% or less, and more preferably 0.120% or less.
  • Si 0.01-0.50% Since Si is effective as a deoxidizing element and a strengthening element, it is contained in an amount of 0.01% or more. On the other hand, if the Si content exceeds 0.50%, the low temperature toughness, fracture toughness and HAZ toughness are significantly deteriorated, so the Si content is set to 0.50% or less. Therefore, the Si content is 0.01% or more, preferably 0.03% or more, and more preferably 0.05% or more. The Si content is 0.50% or less, preferably 0.40% or less, more preferably 0.35% or less, still more preferably 0.30% or less.
  • Mn 0.70 to 2.50% Mn is contained in an amount of 0.70% or more in order to economically secure the strength of the steel sheet.
  • the Mn content exceeds 2.50%, the central segregation becomes remarkable and the low temperature toughness, fracture toughness and HAZ toughness of the portion where the central segregation occurs deteriorates, so that the Mn content is 2.50%.
  • the Mn content is 0.70% or more, preferably 0.90% or more, and more preferably 1.20% or more.
  • the Mn content is 2.50% or less, preferably 2.00% or less, more preferably 1.80% or less, still more preferably 1.60% or less.
  • P 0.030% or less
  • P is an element present in steel as an impurity.
  • the P content is 0.030% or less. It is preferably 0.020% or less, more preferably 0.015% or less.
  • the lower limit is 0%, but the P content may be 0.0001% or more in consideration of the cost for reducing the P content.
  • S 0.020% or less S is an element present in steel as an impurity.
  • the S content exceeds 0.020%, a large amount of MnS stretched in the central segregation portion is generated, and the low temperature toughness, fracture toughness, HAZ toughness and ductility deteriorate. Therefore, the S content is set to 0.020% or less. It is preferably 0.010% or less. The lower the S content is, the more preferable it is, so the lower limit is not particularly specified, but the S content may be 0.0001% or more from the viewpoint of manufacturing cost.
  • Al 0.010% or less
  • Al is generally an element positively contained as a deoxidizing element.
  • the Al content is excessive, the formation of the desired composite inclusions will be inadequate and the number of effective ferrite formation sites in HAZ will be reduced.
  • the formation of coarse cluster-like alumina (Al 2 O 3 ) -based inclusions is promoted, and not only the HAZ toughness is deteriorated, but also the low temperature toughness and the fracture toughness are deteriorated in some cases. Therefore, the Al content is 0.010% or less, preferably 0.005% or less.
  • N 0.0010 to 0.0080% Since N has the effect of forming a Ti nitride and suppressing an increase in the austenite particle size when the steel piece is heated, it is contained in an amount of 0.0010% or more. However, if the N content exceeds 0.0080%, the steel sheet becomes embrittlement, so the N content is set to 0.0080% or less. Therefore, the N content is 0.0010% or more, preferably 0.0015% or more, and more preferably 0.0020% or more. The N content is 0.0080% or less, preferably 0.0065% or less, and more preferably 0.0060% or less.
  • O 0.0005 to 0.0040%
  • O is an element contained in steel and is dissolved or exists as an oxide. Since it is difficult to clearly separate the two, the O content in the present invention is the total oxygen content (also referred to as TO) in which the two are combined. If the O content is less than 0.0005%, the number of oxide dispersions required for ensuring toughness cannot be obtained. On the other hand, if the O content exceeds 0.0040%, the cleanliness of the molten steel deteriorates, and it may cause a decrease in productivity such as nozzle blockage at the molten steel stage. In addition, coarse oxides are generated and stress concentration occurs in the oxides, so that low temperature toughness, fracture toughness and HAZ toughness deteriorate. Therefore, the O content is set to 0.0005 to 0.0040%.
  • Nb 0.003 to 0.050% Nb can improve the strength and toughness of the steel sheet. Further, in order to obtain a predetermined microstructure, rolling in the unrecrystallized austenite region is required, but Nb is an effective element for expanding the unrecrystallized temperature region, and raises the rolling temperature. It also contributes to productivity improvement. In order to obtain this effect, it is contained in an amount of 0.003% or more. However, if the Nb content exceeds 0.050%, the low temperature toughness, fracture toughness, HAZ toughness and weldability will decrease, so the Nb content should be 0.050% or less. Therefore, the Nb content is 0.003% or more, preferably 0.005% or more, and more preferably 0.008% or more. The Nb content is 0.050% or less, preferably 0.025% or less, and more preferably 0.018% or less.
  • Ti 0.003 to 0.024%
  • Ti is an element that forms a complex inclusion with Zr.
  • the composite inclusions function as intragranular ferrite formation sites in HAZ and contribute to the miniaturization of the HAZ structure. In order to obtain this effect, it is contained in an amount of 0.003% or more.
  • the Ti content exceeds 0.024%, a large amount of Ti nitride is produced, the amount of B nitride produced is suppressed, and the effect of improving HAZ toughness cannot be obtained.
  • Excess Ti also forms TiC, degrading low temperature toughness, fracture toughness and HAZ toughness. Therefore, the Ti content is 0.003% or more, preferably 0.005% or more.
  • the Ti content is 0.024% or less, preferably 0.020% or less.
  • Zr 0.0007 to 0.0050% Zr is described in Sol. Zr and Insol. It is the total with Zr.
  • the Zr content is 0.0007% or more, preferably 0.0010% or more.
  • the Zr content is determined by Insol. Upper limit of Zr and Sol. The total with the upper limit of Zr, that is, 0.0050% or less, preferably 0.0040% or less.
  • Zr is an acid-insoluble Zr, which is Zr contained in inclusions such as complex inclusions.
  • Zr is an important element that forms a Zr-containing oxide that is the core of intragranular transformation.
  • Insol. If the Zr content is less than 0.0007%, the oxide composition required for ensuring toughness is not obtained.
  • Insol. When the Zr content exceeds 0.0040%, most of them are ZrO 2 produced in the molten steel stage, and the frequency of nozzle blockage increases. In addition, Insol. When Zr increases, ZrO 2 is excessively generated and stress is concentrated, so that HAZ toughness is significantly deteriorated. Therefore, Insol.
  • the Zr content is 0.0007 to 0.0040%.
  • Sol. Zr 0.0010% or less
  • Zr represents acid-soluble Zr, that is, Zr that is solid-solved in steel.
  • Sol. As the Zr content increases, the HAZ toughness deteriorates significantly. Therefore, the content is set to 0.0010% or less.
  • Sol. Since the smaller the amount of Zr, the more preferable it is, the lower limit is not particularly specified, and 0% may be used.
  • Zr is measured by the following method. First, a test piece is cut out from a steel sheet and electrolyzed with 10% acetylacetone-1% tetramethylammonium chloride / methanol at a current density of 20 mA / cm 2 by about 0.4 g. The solution used for the electrolysis is filtered through a filter having a pore size of 0.2 ⁇ m, and the extraction residue collected on the filter is contained in the extraction residue by using a known chemical analysis method (for example, ICP emission spectroscopic analysis). The Zr content was measured and Insol. Let it be Zr. Further, from the Zr content (Total Zr) in the steel, Insol. The value obtained by subtracting Zr is calculated as Sol. Let it be Zr.
  • B 0.0003 to 0.0040%
  • B is an element that improves the hardenability of the steel material and precipitates as a B nitride around the Zr-containing oxide to form composite inclusions and improve the intragranular transformation ability.
  • the B content is 0.0003% or more.
  • the B content is 0.0003% or more, preferably 0.0005% or more, and more preferably 0.0010% or more.
  • the B content is 0.0040% or less, preferably 0.0035% or less, and more preferably 0.0030% or less.
  • At least one selected from the group consisting of Cu, Ni, Cr, Mo and V for the purpose of improving the strength is in the range shown below. May be contained in. The reason for limiting each element will be described.
  • Cu 1.50% or less Cu has the effect of improving the strength and toughness of the steel sheet, and may be contained as necessary. However, if Cu is contained in an excessive amount, the performance is not improved in proportion to the increase in alloy cost, but rather it may cause surface cracking. Therefore, the Cu content is 1.50% or less, preferably 1.20% or less, and more preferably 1.00% or less. When the above effect is to be obtained more reliably, the Cu content is preferably 0.005% or more, more preferably 0.010% or more, still more preferably 0.050% or more.
  • Ni 2.50% or less
  • Ni is an element having an effect of improving the strength of the steel sheet, and may be contained as necessary. Further, Ni is an element having an effect of increasing the toughness of the steel matrix (fabric) in the solid solution state. However, if Ni is excessively contained, low temperature toughness, fracture toughness, HAZ toughness and weldability are deteriorated. Therefore, the Ni content is 2.50% or less, preferably 1.00% or less, more preferably 0.50% or less, still more preferably 0.30% or less. When the above effect is to be obtained more reliably, the Ni content is preferably 0.005% or more, more preferably 0.010% or more, still more preferably 0.050% or more.
  • Cr 1.00% or less Cr is an element having an effect of improving the strength of the steel sheet, and may be contained as necessary. However, if Cr is excessively contained, the low temperature toughness, fracture toughness, HAZ toughness and weldability are deteriorated. Therefore, the Cr content is 1.00% or less, preferably 0.80% or less, more preferably 0.50% or less, still more preferably 0.30% or less. When the above effect is to be obtained more reliably, the Cr content is preferably 0.005% or more, more preferably 0.010% or more, still more preferably 0.050% or more.
  • Mo 1.00% or less Mo is an element having an effect of improving the strength of the steel sheet, and may be contained as necessary. However, if Mo is contained in an excessive amount, low temperature toughness, fracture toughness, HAZ toughness and weldability are deteriorated. Therefore, the Mo content is 1.00% or less, preferably 0.80% or less, more preferably 0.50% or less, still more preferably 0.30% or less. When the above effect is to be obtained more reliably, the Mo content is preferably 0.001% or more, more preferably 0.005% or more, still more preferably 0.010% or more.
  • V 0.150% or less Since V is an element having an effect of improving the strength of the steel sheet, it may be contained if necessary. However, if V is excessively contained, low temperature toughness, fracture toughness, HAZ toughness and weldability are deteriorated. Therefore, the V content is 0.150% or less, preferably 0.100% or less, more preferably 0.070% or less, still more preferably 0.050% or less. When the above effect is to be obtained more reliably, the V content is preferably 0.001% or more, more preferably 0.005% or more, still more preferably 0.010% or more.
  • Te In the chemical composition of the steel sheet of the present invention, in addition to the above elements, Te may be further contained in the range shown below for the purpose of miniaturizing the metal structure. The reason for the limitation will be explained.
  • Te 0.0100% or less Te is an element that contributes to the improvement of toughness by refining the structure of the steel sheet, and may be contained as necessary. However, even if Te is excessively contained, the above effect is saturated. Therefore, the Te content is 0.0100% or less, preferably 0.0070% or less, and more preferably 0.0050% or less. When the above effect is to be obtained more reliably, the Te content is preferably 0.0001% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more.
  • At least one selected from the group consisting of W and Sn may be contained in the range shown below for the purpose of improving corrosion resistance. .. The reason for limiting each element will be described.
  • W 1.00% or less W is an element that dissolves and adsorbs to rust in the form of oxygen acid ion WO 4- , suppresses the permeation of chloride ions in the rust layer, and improves corrosion resistance, so it is necessary. It may be contained according to the above. However, even if W is excessively contained, not only the above effect is saturated, but also low temperature toughness, fracture toughness and HAZ toughness may be lowered. Therefore, the W content is 1.00% or less, preferably 0.75% or less. When the above effect is to be obtained more reliably, the W content is preferably 0.001% or more, more preferably 0.005% or more, still more preferably 0.010% or more.
  • Sn 0.50% or less
  • Sn is an element that dissolves as Sn 2+ and has an action of suppressing corrosion by an inhibitory action in an acidic chloride solution.
  • Sn has an effect of suppressing the anode melting reaction of steel and improving corrosion resistance. Therefore, it may be contained as needed.
  • the Sn content is 0.50% or less, preferably 0.30% or less.
  • the Sn content is preferably 0.001% or more, more preferably 0.005% or more, still more preferably 0.010% or more.
  • Ca, Mg and REM may be further contained in the range shown below for the purpose of reducing the dissolved oxygen concentration in the molten steel. The reason for the limitation will be explained.
  • Total of Ca, Mg and REM 0.0005% or less
  • Ca, Mg and REM are elements that are more likely to react with oxygen more preferentially than Al. Therefore, it may be contained as needed. However, even if Ca, Mg and REM are excessively contained, the amount of dissolved oxygen in the molten steel cannot be secured and the desired composite inclusions cannot be formed.
  • the total content of Ca, Mg and REM should be 0.0005% or less. More preferably, the Ca content is less than 0.0003%, the Mg content is less than 0.0003%, the REM content is less than 0.0003%, and the total content is 0.0005% or less.
  • REM refers to a total of 17 elements of Sc, Y and lanthanoid, and the content of the REM means the total content of these elements.
  • BF is the B content present as a solid solution B in the steel. Since it is difficult to directly measure the amount of solid solution B, in the present invention, it is calculated by the above formula.
  • BF is 0.0030% or less, preferably 0.0020% or less, and more preferably 0.0010% or less.
  • the balance is Fe and impurities.
  • impurity is a component mixed with raw materials such as ore and scrap and various factors in the manufacturing process when the steel sheet is industrially manufactured, and is allowed as long as it does not adversely affect the present invention. Means something.
  • the metal structure is mainly bainite. Specifically, by setting the area ratio of bainite at the 1 / 4t position on the C cross section to 80% or more, it is possible to secure the strength of the steel sheet.
  • the area ratio of bainite is preferably 90% or more. It is not necessary to set an upper limit on the area ratio of bainite, that is, it may be bainite single phase.
  • Ferrite, pearlite, and martensite / austenite mixed phase may be mixed as the residual structure, but it is permissible if the total area ratio of these is 20% or less.
  • the total area ratio is preferably 10% or less. It is preferable that the total area ratio of these is small, and the lower limit is not particularly limited.
  • the total area ratio may be 0%. Further, it may be more than 0% or 1% or more.
  • bainite As described above, in addition to using bainite as the main component, by making the bainite structure finer and flatter, and further making the bainite ferrite finer, it is possible to achieve both the strength of the steel sheet and the low temperature toughness and fracture toughness. can. Specifically, the bainite organization must meet the following provisions.
  • Average length of bainitic ferrite 10 ⁇ m or less At the 1 / 4t position in the C cross section, the average length of bainite ferrite constituting bainite in the major axis direction shall be 10 ⁇ m or less.
  • the average length of bainitic ferrite is preferably 8 ⁇ m or less.
  • Average length in the thickness direction of the old austenite grains 20 ⁇ m or less
  • Average aspect ratio of the old austenite grains 2.5 or more
  • the miniaturization of the bainite structure controls the heating temperature before hot rolling to a low level and does not recrystallize. This can be achieved by performing finish rolling at a high-pressure reduction ratio in the region. That is, the old austenite grains of bainite have a shape elongated in the rolling direction. Therefore, at the 1 / 4t position in the L cross section, the average length of the old austenite grains in the thickness direction is 20 ⁇ m or less, and the average aspect ratio is 2.5 or more.
  • the average length of the old austenite grains in the thickness direction is preferably 15 ⁇ m or less. Further, the average aspect ratio of the old austenite grains is preferably more than 2.5, more preferably 4.0 or more.
  • the area ratio of the metal structure is calculated as follows. First, a sample is taken from the steel plate so that the 1 / 4t position on the C cross section is the observation surface. Then, the observation surface is night-game-etched, and after etching, eight fields of view are photographed at a magnification of 500 using an optical microscope. Then, image analysis is performed on the obtained tissue photograph, and the area ratio of each is obtained by using ferrite as the one that looks white and pearlite as the one that looks black.
  • the night-game-etched part is repeller-etched, the part that looks gray by night-game etching is image-analyzed, and the area ratio is obtained with the part that looks white as the MA phase.
  • the average length of bainite ferrite and the area ratio of bainite are calculated by KAM (Kernel Average Missionation) analysis using EBSD (Electron Back Scatter Diffraction).
  • KAM Kernel Average Missionation
  • EBSD Electro Back Scatter Diffraction
  • the region where the local orientation difference exceeds 1.0 ° is bainitic ferrite.
  • bainitic ferrite having a length in the major axis direction of 1 ⁇ m or more is targeted.
  • the area ratio of bainite is the sum of the area ratios of bainite ferrite.
  • the average length and aspect ratio of the old austenite grains in the thickness direction are measured according to JIS G 0551: 2013.
  • a sample is taken from the steel plate so that the 1 / 4t position on the L cross section is the observation surface.
  • the observation surface is mirror-polished, it is corroded by the Behcet-Beaujard method using a saturated aqueous solution of picric acid.
  • the grains that appear black due to corrosion are called old austenite grains.
  • the observation surface on which the old austenite grains are exposed is observed with an optical microscope, and a field of view having an area of 0.05 mm 2 or more is photographed with 8 fields or more (total 0.40 mm 2 or more). Then, the thickness of the old austenite grains is measured by a cutting method based on the tissue photograph taken by an optical microscope, and the average value thereof is taken as the average length in the thickness direction of the old austenite grains. In the measurement, the old austenite grains having a length of 1 ⁇ m or more in the thickness direction are targeted.
  • the maximum length in the major axis direction and the maximum length in the minor axis direction orthogonal to the major axis direction are measured for each old austenite grain, and the ratio (maximum length / short axis in the major axis direction) is measured. Axis maximum length) is calculated. Then, the average value is taken as the average aspect ratio of the old austenite grains.
  • finish rolling is performed in the unrecrystallized region at a high pressure reduction rate, the old austenite grains show a shape extended in the rolling direction, so the major axis direction is the rolling direction and the minor axis direction is the plate thickness direction ( So-called ND direction).
  • the steel sheet according to the present invention has a composite inclusion containing Zr and B in the metal structure. As a result, it becomes an intragranular ferrite formation site during cooling after welding, and HAZ toughness is improved. At this time, too fine composite inclusions contribute less to HAZ toughness. Further, the composite inclusions having a low ratio of Al 2 O 3 function more effectively as the intragranular ferrite formation site.
  • the equivalent circle diameter (diameter) is 0.5 ⁇ m or more, and the ratio of Al 2 O 3 to the total of ZrO 2 , Ti 2 O 3 , and Al 2 O 3 is mass%. Then, pay attention to the composite inclusions which are 50% or less, and control the number density thereof. If the number density of the composite inclusions is less than 5 pieces / mm 2 , the effect of improving HAZ toughness cannot be sufficiently obtained. It is preferable that the number density of the composite inclusions increases because the number of intragranular ferrite formation sites increases, but the effect is saturated even if the number density exceeds 300 pieces / mm 2 . Therefore, the number density of the composite inclusions is set to 5 to 300 pieces / mm 2 .
  • an inclusion containing 5% by mass or more of Zr, 0.1% by mass or more of B, and 1% by mass or more of O is defined as a composite inclusion containing Zr and B.
  • the circle-equivalent diameter and the number density of the composite inclusions can be measured by observing the mirror-polished steel surface by SEM.
  • the range of 10 mm ⁇ 10 mm (100 mm 2 ) was observed by SEM, and by quantitative analysis by the energy dispersive X-ray analyzer (EDX) attached to the SEM, Zr of 5% by mass or more and 0. It contains 1% by mass or more of B and 1% by mass or more of O, and the ratio of Al 2 O 3 to the total of ZrO 2 , Ti 2 O 3 and Al 2 O 3 is 50% by mass or less. Identify the particles. Then, among the particles, the number of particles having a circle equivalent diameter of 0.5 ⁇ m or more is measured, and the number density is measured by dividing by the area of the observed visual field. When measuring the number density, a photograph taken by SEM may be used.
  • EDX energy dispersive X-ray analyzer
  • the mechanical properties of the steel sheet according to the present invention are not particularly limited, but the steel sheet according to the present invention has high strength and is excellent in low temperature toughness and HAZ toughness. Specifically, it is preferable that the yield stress (YS) is 460 to 860 MPa and the tensile strength (TS) is 570 to 980 MPa. Further, it is preferable that the fracture surface transition temperature (vTrs), which is an index of low temperature toughness, is ⁇ 60 ° C. or lower. Further, it is preferable that the Crack Tip Opening Displacement (CTOD) value at ⁇ 10 ° C., which is an index of fracture toughness, is 0.50 mm or more.
  • YS yield stress
  • TS tensile strength
  • vTrs fracture surface transition temperature
  • CTOD Crack Tip Opening Displacement
  • the tensile strength (TS) and yield stress (YS) are measured using a No. 1B tensile test piece collected from the center of the plate thickness in the direction perpendicular to the rolling direction based on JIS Z 2241: 2011. Specifically, the yield stress (YS) is the proof stress of the permanent elongation method at 0.2% permanent elongation.
  • the evaluation of the fracture surface transition temperature (vTrs) is based on JIS Z 2242: 2005, and the test piece is a V-notch test piece and is collected so as to include the 1 / 4t position of the steel plate. Further, according to ISO 15653: 2018, a CTOD test piece having the total thickness in the plate thickness direction of the base metal as the notch position of 3-point bending is collected, and the CTOD value at ⁇ 10 ° C. is measured.
  • the Charpy absorption energy of HAZ at ⁇ 20 ° C. when welding is performed under the condition that the welding heat input amount is 35 kJ / mm is 100 J or more at the average value of three measurements and 50 J or more at the minimum value. Is preferable.
  • the Charpy absorption energy of HAZ is measured by the following method.
  • a heat cycle that reproduces welding with a heat input of 35 kJ / mm (large heat input welding) is applied to the steel sheet.
  • the temperature is held at 1400 ° C for 5 seconds, and then the temperature range from 800 ° C to 500 ° C, which is the temperature range related to intragranular transformation, is 1.0. Cool at a controlled rate of ° C / sec.
  • V-notch test pieces Three V-notch test pieces are collected from the steel sheet after the thermal cycle is applied, and a Charpy impact test is performed at ⁇ 20 ° C. to measure the absorption energy (vE- 20 ).
  • the V-notch test piece is manufactured according to the V-notch test piece described in JIS Z 2242: 2005, and the Charpy impact test is performed according to JIS Z 2242: 2005. Then, the average value and the minimum value of vE- 20 of the three test pieces are obtained.
  • the thickness of the steel plate according to the present invention is not particularly limited, but when used as a welded structure, the thickness is preferably 10 to 70 mm, preferably 20 to 60 mm. Is more preferable. Further, the effect of improving the low temperature toughness and the fracture toughness in the present invention is remarkably exhibited when the thickness is less than 50 mm.
  • (E) Method for manufacturing steel plate The manufacturing conditions for the steel plate according to the present invention are not particularly limited, but for example, the refining step, the continuous casting step, the heating step, the hot rolling step and the accelerated cooling step are sequentially performed under the conditions shown below. By doing so, it can be manufactured. Each process will be described.
  • the refining process is a process for producing molten steel.
  • the amount of deoxidized Al to be charged is 0.2 to 1.3 kg per 1 ton of molten steel.
  • the amount of deoxidized Al is 0.2 to 1.3 kg per 1 ton of molten steel.
  • the amount of deoxidized Al is 0.2 kg / t or more, the dissolved O concentration can be reduced and the Zr-containing oxide can be finely dispersed.
  • the amount of deoxidized Al can be added using, for example, a converter.
  • B is added after 1 minute or more has passed from the addition of Zr.
  • B segregates on the surface layer of the Zr-containing oxide, and B nitride can be deposited.
  • the time from the addition of Zr to the addition of B does not need to be set in particular, but is preferably 5 minutes or less.
  • the addition of Zr and B can be performed, for example, in a recirculation type degassing device.
  • the continuous casting step is a step of continuously casting molten steel to produce steel pieces having the above-mentioned chemical composition.
  • the average cooling rate when the surface temperature of the steel pieces is between 1200 and 900 ° C. is 0.5 ° C./sec or less.
  • the heating step is a step that contributes to the microstructure control of the austenite phase by heating the steel pieces.
  • the above steel pieces are heated to a heating temperature of 950 to 1080 ° C.
  • the heating step may be performed in a heating furnace.
  • heating the steel pieces to 950 to 1080 ° C. means heating the steel pieces so that the average temperature of the total thickness of the steel pieces when extracted from the heating furnace is in the range of 950 to 1080 ° C., and is described in the present specification.
  • the average temperature of the total thickness of the steel pieces is referred to as the heating temperature of the steel pieces.
  • the total thickness average temperature can be calculated from the temperature in the heating furnace, the heating time, and the surface temperature of the steel piece.
  • the heating temperature is less than 950 ° C., austeniticization becomes insufficient and hardenability is lowered due to the miniaturization of austenite grains, so that it is difficult to obtain a thick steel sheet and high strength steel sheet. Further, the miniaturization of the austenite grains promotes recrystallization during finish rolling, so that the aspect ratio of the old austenite grains is lowered. Further, when the heating temperature exceeds 1080 ° C., the austenite grains become coarse and it becomes difficult to make the bainite structure finer in the final structure.
  • the preferred heating temperature range is 1000-1050 ° C.
  • the hot rolling process includes rough rolling and finish rolling.
  • Rough rolling is carried out in the range where the surface temperature of the steel pieces is Trex or higher. That is, the rough rolling is started when the surface temperature of the steel pieces is Trex or higher, and the rough rolling is finished when the surface temperature of the steel pieces is Trex or higher.
  • the surface temperature at the end of rough rolling may be higher than the surface temperature at the start of rough rolling. It is considered that this is due to the effect of processing heat generation due to rough rolling and the effect of heat transfer in the plate thickness direction of the steel piece due to the internal temperature being higher than the surface temperature.
  • the cumulative rolling reduction in rough rolling shall be in the range of 10 to 75%.
  • the cumulative rolling reduction in rough rolling is a value obtained by subtracting the plate thickness after the end of rough rolling from the plate thickness at the start of rough rolling and dividing by the plate thickness at the start of rough rolling. If the cumulative rolling reduction during rough rolling is less than 10%, it is difficult to make the austenite finer by recrystallization, and porosity may remain to cause internal cracking, resulting in deterioration of ductility and toughness. In addition, when the cumulative rolling reduction rate exceeds 75%, the austenite grains become excessively fine, and recrystallization during finish rolling is promoted, so that the aspect ratio of the old austenite grains decreases and the number of passes increases. As a result, productivity decreases.
  • the preferred cumulative reduction rate is 30-60%.
  • the steel piece after rough rolling is referred to as a steel plate.
  • Subsequent finish rolling is carried out in the range where the surface temperature of the steel sheet is Ar 3 or more and less than Trex . That is, it is cooled after the rough rolling is completed, the finish rolling is started when the surface temperature of the steel sheet is Ar 3 or more and less than Trex , and the finish rolling is finished when the surface temperature of the steel sheet is Ar 3 or more and less than Trex . ..
  • By performing the finish rolling in the range of less than Trex it becomes possible to impart strain to the austenite grains without recrystallization. This makes it possible to miniaturize bainite in the final structure.
  • the finishing temperature is set in the range where the surface temperature is Trex or higher, recrystallization is promoted and the aspect ratio of the old austenite grains is lowered.
  • the finish rolling is performed in the range where the surface temperature is less than Ar 3 , processed ferrite may be generated and the final structure may not have a bainite-based structure.
  • the cumulative rolling reduction in finish rolling shall be in the range of 65 to 90%.
  • the cumulative rolling reduction in finish rolling is a value obtained by subtracting the plate thickness after the end of finish rolling from the plate thickness at the start of finish rolling (after the end of rough rolling) and dividing by the plate thickness at the start of finish rolling.
  • the time between passes in finish rolling shall be 15 seconds or less.
  • the inter-pass time exceeds 15 seconds, the strain applied by the processing is recovered, the bainite in the final structure cannot be sufficiently refined, recrystallization is promoted, and the aspect ratio of the old austenite grains is lowered.
  • the shorter the inter-pass time the more preferable it is. Therefore, it is not necessary to set a lower limit, but it is preferably 3 seconds or more from the viewpoint of operability.
  • finish rolling is performed by reverse rolling.
  • the time between passes in finish rolling means that the steel sheet is rolled by a rolling roll while moving forward, the rear end of the steel sheet comes out of the rolling roll, the traveling direction of the steel sheet is reversed backward, and the rear end of the steel sheet is again. Means the time it takes for the roll to be bitten into the rolling roll.
  • the time from the completion of finish rolling to the start of cooling in the accelerated cooling process described later is set to 50 seconds or less.
  • the time from the completion of finish rolling to the start of cooling exceeds 50 seconds, the strain applied by the processing is recovered, bainite in the final structure cannot be sufficiently refined, recrystallization is promoted, and the old austenite grains are promoted.
  • the aspect ratio of is reduced.
  • the time from the completion of finish rolling to the start of cooling means the time from when the tip of the steel sheet traveling forward passes through the rolling roll in the final pass to the start of water cooling.
  • Ar 3 means the transformation start temperature at which the transformation from the austenite grains to the ferrite grains starts in the temperature lowering process, and is obtained by the following formula (i).
  • Trex means the recrystallization temperature which is the lowest temperature at which equiaxial recrystallized grains can be generated and grown, and is obtained by the following equation (ii).
  • the element symbol in the following formula represents the content (mass%) of each element contained in the steel sheet, and if it is not contained, 0 is substituted.
  • (E) Accelerated cooling process In the accelerated cooling process, the steel sheet that has been finished rolled is water-cooled. At this time, water cooling is performed to a cooling stop temperature of 0 to 550 ° C. under the condition that the cooling start temperature is Trex -10 ° C. or lower and the average cooling rate from the cooling start to the cooling end is 5 to 50 ° C./sec. ..
  • the final structure can be made mainly bainite by water cooling to a cooling stop temperature of 0 to 550 ° C at an average cooling rate of 5 to 50 ° C / sec.
  • the average cooling rate and the cooling stop temperature are adjusted according to the value of Ceq in the chemical composition of the steel sheet, and are set to conditions under which martensitic transformation does not occur.
  • (F) Tempering step After the accelerated cooling step, a tempering step of heating to a temperature range of 350 to 650 ° C. may be further provided. By performing the tempering step, it is possible to reduce the dislocation density that has become excessively high due to cooling. When the cooling stop temperature in the accelerated cooling step is high, the self-tempering effect can be obtained, so that the tempering step does not have to be performed. On the other hand, in the accelerated cooling step, for example, when the cooling is performed to about room temperature, it is preferable to perform a tempering step.
  • the hot metal ejected from the blast furnace was desulfurized by hot metal pretreatment, de-P and de-C treatment was performed in a converter type refining vessel, and deoxidized Al was added, and then steel was received in a ladle. At the time of steel ejection, alloying elements were added and cover slag for heat insulation was added.
  • the molten steel in the ladle was depressurized with an RH vacuum degassing device.
  • RH vacuum degassing device During melting, molten steel samples were taken as appropriate and subjected to analysis to obtain molten steel components. The molten steel temperature changed from 1560 ° C to 1610 ° C.
  • alloys other than Zr and B were added to adjust the components, and vacuum degassing was performed to adjust the dissolved O concentration. The dissolved O concentration was measured using an oxygen concentration probe.
  • Zr and B were added, and a reflux treatment was performed to mix them uniformly.
  • Zr was added and B was added after a predetermined time had elapsed.
  • the time from the addition of Zr to the addition of B is indicated by a minus.
  • steel pieces having the chemical compositions shown in Tables 1 and 2 were produced by a continuous casting method.
  • the average cooling rate was appropriately adjusted when the surface temperature of the steel pieces was between 1200 and 900 ° C.
  • Tables 3 and 4 show the amount of deoxidized Al (kg / t) to be added per 1 ton of molten steel in the refining step, the concentration of dissolved O in the molten steel when Zr is added (mass%), and after adding Zr.
  • the time (minutes) until the addition of B and the average cooling rate (° C / sec) between 1200 and 900 ° C. in the continuous casting process are shown. Further, using the above steel pieces, a steel plate having a plate thickness of 10 to 70 mm was prototyped according to the production conditions shown in Tables 5 and 6.
  • the metallographic structure of the obtained steel sheet was observed, and the area ratio of each structure was measured. Specifically, first, a sample was taken from the steel plate so that the 1 / 4t position on the C cross section was the observation surface. Then, the observation surface is nital-etched, and after etching, eight fields of view are photographed at a magnification of 500 using an optical microscope, and image analysis is performed on the obtained microstructure photograph. Was taken as pearl light, and the area ratio of each was calculated.
  • the part that had been etched by night game was subjected to repera etching, and the image analysis was performed on the part that looked gray by night game etching, and the area ratio was calculated with the part that looked white as the MA phase.
  • the average length of bainitic ferrite and the area ratio of bainite were calculated by KAM analysis using EBSD.
  • the region where the local orientation difference exceeds 1.0 ° was defined as bainitic ferrite.
  • bainitic ferrite having a length in the major axis direction of 1 ⁇ m or more was targeted.
  • the area ratio of bainite is the sum of the area ratios of bainite ferrite.
  • the average length and the average aspect ratio of the old austenite grains in the thickness direction were measured according to JIS G 0551: 2013.
  • a sample was taken from the steel plate so that the 1 / 4t position on the L cross section was the observation surface.
  • the observation surface was mirror-polished, it was corroded by the Behcet-Beaujard method using a saturated aqueous solution of picric acid to reveal old austenite grains.
  • the observation surface on which the old austenite grains appeared was observed with an optical microscope, and a field of view with an area of 0.05 mm 2 or more was photographed for 8 fields or more (total 0.40 mm 2 or more). Then, the thickness of the old austenite grains was measured by a cutting method based on the tissue photograph taken by an optical microscope, and the average value was taken as the average length in the thickness direction of the old austenite grains. In the measurement, old austenite grains having a length of 1 ⁇ m or more in the thickness direction were targeted.
  • the maximum length in the major axis direction and the maximum length in the minor axis direction orthogonal to the major axis direction were measured for each old austenite grain, and the ratio (maximum length / short axis) was measured. The maximum axis length) was calculated, and the average value was taken as the average aspect ratio of the old austenite grains.
  • a test piece was cut out from the steel sheet and electrolyzed with 10% acetylacetone-1% tetramethylammonium chloride / methanol at a current density of 20 mA / cm 2 in an amount of about 0.4 g.
  • the solution used for the electrolysis was filtered through a filter having a pore size of 0.2 ⁇ m, and the Zr content in the extraction residue was measured by using ICP emission spectroscopy for the extraction residue collected on the filter. It was Zr. Further, from the Zr content contained in the steel, Insol. The value obtained by subtracting Zr is calculated as Sol. It was Zr.
  • the surface of the steel plate is mirror-polished, the range of 10 mm ⁇ 10 mm (100 mm 2 ) is observed by SEM, and quantitative analysis by EDX attached to SEM shows Zr of 5% by mass or more and 0.1% by mass.
  • the number of particles having a circle equivalent diameter of 0.5 ⁇ m or more was measured, and the number density was measured by dividing by the area of the observed visual field.
  • the measurement results are shown in Tables 7 and 8.
  • the ferrite area ratio is "F fraction”
  • the pearlite area ratio is “P fraction”
  • the bainite area ratio is “B fraction”
  • the MA phase area ratio is "MA fraction”.
  • the average length of bainitic ferrite in the major axis direction is referred to as "BF length”.
  • TS tensile strength
  • YS yield stress
  • the test piece was measured using a No. 1B tensile test piece collected with the direction perpendicular to the rolling direction (width direction) from the center of the plate thickness as the longitudinal direction.
  • the yield stress (YS) was the proof stress of the permanent elongation method when the permanent elongation was 0.2%.
  • those having a YS of 460 MPa or more and a TS of 570 MPa or more are considered to have high strength.
  • V-notch test pieces were collected so as to include the 1 / 4t position of the steel plate, and the fracture surface transition temperature (vTrs) was evaluated in accordance with JIS Z 2242: 2005. At this time, two V-notch test pieces were taken so that the longitudinal direction of the test pieces coincided with the rolling direction and the width direction of the steel sheet. In this example, the two test pieces having vTrs of ⁇ 60 ° C. or lower were considered to have excellent low temperature toughness.
  • CTOD test pieces having the total thickness in the plate thickness direction of the base metal as the notch position of 3-point bending were collected, and the CTOD value at ⁇ 10 ° C. was measured.
  • the test was performed 3 times and the minimum values are shown in the table. In this example, those having a minimum CTOD value of 0.50 mm or more at ⁇ 10 ° C. are considered to have excellent fracture toughness.
  • the Charpy absorption energy of HAZ at ⁇ 20 ° C. when welding was performed under the condition that the welding heat input amount was 35 kJ / mm was measured by the following method.
  • a heat cycle was applied to the steel sheet to reproduce welding with a heat input of 35 kJ / mm (large heat input welding).
  • the temperature is held at 1400 ° C for 5 seconds, and then the temperature range from 800 ° C to 500 ° C, which is the temperature range related to intragranular transformation, is 1.0. Cooling was controlled to a rate of ° C./sec.
  • V-notch test pieces were collected from each of the steel sheets after the thermal cycle was applied, and a Charpy impact test was performed at ⁇ 20 ° C. to measure the absorption energy (vE- 20 ).
  • the V-notch test piece was manufactured according to the V-notch test piece described in JIS Z 2242: 2005, and the Charpy impact test was performed according to JIS Z 2242: 2005. Then, the average value and the minimum value of vE- 20 of the three test pieces were obtained. In this example, those having an average value of vE- 20 of 100 J or more and a minimum value of 50 J or more are considered to have excellent HAZ toughness.
  • Test No. 27 the C content was excessive, so that the low temperature toughness, fracture toughness and HAZ toughness deteriorated.
  • Test No. 28 had a low C content, insufficient strength, and deteriorated low temperature toughness and fracture toughness.
  • Test No. 29 the low temperature toughness, fracture toughness and HAZ toughness deteriorated due to the excessive Si content.
  • Test No. 30 the low temperature toughness, fracture toughness and HAZ toughness deteriorated due to the excessive Mn content.
  • the Mn content was low and the bainite area ratio was low, resulting in insufficient strength and deterioration of low temperature toughness and fracture toughness.
  • Test number 32 deteriorated low temperature toughness, fracture toughness and HAZ toughness due to excessive contents of P and S.
  • the Al content was excessive and the formation of the desired composite inclusion was insufficient, so that the HAZ toughness deteriorated.
  • Test No. 34 the N content was excessive and the bainite area ratio was low, so that the strength was insufficient and the low temperature toughness and fracture toughness deteriorated.
  • Test No. 35 the N content was low and the old austenite grains became coarse, so that the low temperature toughness and the fracture toughness deteriorated.
  • Test number 36 had an excessive O content, so that the low temperature toughness, fracture toughness and HAZ toughness deteriorated.
  • Test No. 37 had a low O content and insufficient formation of the desired complex inclusions, resulting in deterioration of HAZ toughness.
  • Test number 38 had an excessive Nb content, resulting in deterioration of low temperature toughness, fracture toughness and HAZ toughness.
  • the Nb content was low, the BF length was excessive, and the aspect ratio of the old austenite grains was small, so that the low temperature toughness and the fracture toughness deteriorated.
  • Test No. 40 the low temperature toughness, fracture toughness and HAZ toughness deteriorated due to the excessive Ti content.
  • Test No. 41 the Ti content was low, and the BF length and the austenite granules were coarsened, so that the low temperature toughness and the fracture toughness deteriorated.
  • Test number 44 has an excessive Zr content, so Insol. The Zr content became excessive and the HAZ toughness deteriorated.
  • Test number 45 has a low Zr content and is described in Insol. The HAZ toughness deteriorated due to the low Zr content and insufficient formation of the desired complex inclusions. Since test number 46 did not contain B, no desired composite inclusions were formed and the HAZ toughness deteriorated. In addition, the low bainite area ratio resulted in insufficient strength and deterioration of low temperature toughness and fracture toughness.
  • Test number 47 had an excessive amount of deoxidized Al, while test number 48 had a low amount of deoxidized Al. In test numbers 48 and 49, the dissolved O concentration at the time of adding Zr was excessive. Further, in the test number 50, the time from the addition of Zr to the addition of B was short, and in the test number 51, B was added before the addition of Zr. Further, the test number 52 had a high average cooling rate in the continuous casting process. Therefore, in any of the examples, the formation of the desired composite inclusions was insufficient, and the HAZ toughness deteriorated.
  • test number 53 the heating temperature in the heating step was high, the BF length and the old austenite granules were coarsened, and the low temperature toughness and the fracture toughness were deteriorated.
  • Test No. 54 the heating temperature was low and the bainite area ratio was low, so that the strength was insufficient and the low temperature toughness and fracture toughness deteriorated.
  • Test No. 55 since the end temperature of rough rolling was less than Trex , the BF length and the old austenite grains were coarsened, and the low temperature toughness and fracture toughness deteriorated.
  • Test No. 56 has a high cumulative reduction rate of rough rolling, while Test No. 57 has a low cumulative reduction rate.
  • the BF length and the former austenite grains are coarsened, and the aspect ratio of the former austenite grains is reduced, resulting in a low temperature. Toughness and fracture toughness deteriorated.
  • Test No. 58 since the start temperature of the finish rolling was Trex or higher, the BF length and the austenite grain were coarsened, the aspect ratio of the austenite grain was lowered, and the low temperature toughness and the fracture toughness were deteriorated.
  • test number 59 since the end temperature of the finish rolling was less than Ar 3 , the processed ferrite was excessively generated and the strength was insufficient. In addition, the low bainite area ratio resulted in insufficient strength and deterioration of low temperature toughness and fracture toughness.
  • Test number 60 has a high cumulative rolling reduction and a low aspect ratio of the old austenite grains, while test number 61 has a low cumulative rolling rate, the BF length and the old austenite grains are coarsened, and the old austenite grains are coarse. Due to the decrease in the aspect ratio of, the low temperature toughness and the fracture toughness deteriorated.
  • test number 62 the time between passes is long, and in test number 63, the time from the completion of finish rolling to the start of cooling is long, so that the BF length becomes coarse and the aspect ratio of the old austenite grains decreases, and the low temperature toughness and fracture toughness Has deteriorated.
  • Test No. 64 the cooling rate in the accelerated cooling step was high, so that the MA phase was excessively generated, so that the low temperature toughness and the fracture toughness deteriorated.
  • Test No. 65 the cooling rate was low, and in Test No. 66, the cooling stop temperature was high. Therefore, neither of them had a bainite-based structure, the strength was insufficient, and the low temperature toughness and the fracture toughness deteriorated.
  • Test No. 67 the cooling start temperature exceeded Trex -10 ° C. and the BF length became coarse, so that the low temperature toughness was good, but the fracture toughness deteriorated.
  • the steel plate according to the present invention can be suitably used as a material for welded structures such as ships, high-rise buildings, other buildings, bridges, marine structures, LNG storage tanks and other large tanks, and line pipes. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

化学組成が、質量%で、C:0.040~0.160%、Si:0.01~0.50%、Mn:0.70~2.50%、P:0.030%以下、S:0.020%以下、Al:0.010%以下、N:0.0010~0.0080%、O:0.0005~0.0040%、Nb:0.003~0.050%、Ti:0.003~0.024%、Zr:0.0007~0.0050%、Insol.Zr:0.0007~0.0040%、Sol.Zr:0.0010%以下、B:0.0003~0.0040%、残部:Feおよび不純物、BF≦0.0030であり、C断面で1/4t位置の金属組織が、80面積%以上のベイナイトを含み、ベイナイトを構成するベイニティックフェライトの長軸方向の平均長さが10μm以下、L断面で1/4t位置の旧オーステナイト粒の、厚さ方向における平均長さが20μm以下、アスペクト比の平均が2.5以上であり、所定の径および成分を有する複合介在物の個数密度が5~300個/mm2である、鋼板。

Description

鋼板およびその製造方法
 本発明は、鋼板およびその製造方法に関する。
 鋼板の用途として、船舶、高層建築物、その他の建築物、橋梁、海洋構造物、LNG貯蔵タンクその他の大型タンク、ラインパイプ等の溶接構造物が挙げられる(例えば、特許文献1~5参照)。近年、コンテナ船の積載重量増大等のため、溶接構造物の大型化が進められている。これに伴い、鋼板には板厚の厚肉化および高強度化が求められている。加えて、上記のような溶接構造物では、一層の安全性および信頼性の観点から、低温靱性および破壊靱性のさらなる向上が課題になっている。
 さらに、溶接構造物には、例えば、35kJ/mm以上といった大入熱の溶接が行われることが一般的である。脆性破壊を抑制するためには、大入熱溶接を行った際に生じる溶接熱影響部(HAZ:Heat Affected Zone)における靱性(以下、「HAZ靱性」という。)の改善が求められている。
特開2019-023322号公報 特開2019-023323号公報 特開2019-023324号公報 特開2019-035107号公報 国際公開第2019/069771号
 しかしながら、一般的に、強度と低温靱性およびHAZ靱性との間には、いわゆるトレードオフの関係が存在するため、これらを両立することは容易ではなかった。さらに、破壊靱性の向上に関しては、これまでほとんど検討がなされていなかったのが現状である。
 本発明は、上記の課題を解決し、高い強度を有し、かつ低温靱性、破壊靱性およびHAZ靱性に優れる鋼板およびその製造方法を提供することを目的とする。
 本発明は、下記の鋼板およびその製造方法を要旨とする。
 (1)鋼板の化学組成が、質量%で、
 C :0.040~0.160%、
 Si:0.01~0.50%、
 Mn:0.70~2.50%、
 P :0.030%以下、
 S :0.020%以下、
 Al:0.010%以下、
 N :0.0010~0.0080%、
 O :0.0005~0.0040%、
 Nb:0.003~0.050%、
 Ti:0.003~0.024%、
 Zr:0.0007~0.0050%、
 Insol.Zr:0.0007~0.0040%、
 Sol.Zr:0.0010%以下、
 B :0.0003~0.0040%、
 残部:Feおよび不純物であり、
 下記(I)式を満足し、
 前記鋼板の圧延方向に垂直な断面において、前記鋼板の厚さをtとした時に、前記鋼板の表面から1/4tの位置における金属組織が、
 面積%で、80%以上のベイナイトを含み、かつ、
 前記ベイナイトを構成するベイニティックフェライトの長軸方向の平均長さが10μm以下であり、
 前記鋼板の圧延方向および厚さ方向に平行な断面において、前記鋼板の表面から1/4tの位置における旧オーステナイト粒の、厚さ方向における平均長さが20μm以下であり、アスペクト比の平均が2.5以上であり、
 ZrおよびBを含む複合介在物であって、円相当径が0.5μm以上であり、かつ、ZrO、Ti、およびAlの合計に占めるAlの割合が、質量%で、50%以下である前記複合介在物の個数密度が5~300個/mmである、
 鋼板。
 B≦0.0030  ・・・(I)
 但し、
 B´>Bの場合は、B=B
 0<B´≦Bの場合は、B=B´
 B´≦0の場合は、B=0
 とし、B´は下記(II)式で表される。
 B´=B-(N-(Ti-(O-Insol.Zr×(32/91.224))×(95.73/48))×(14/47.867))×(10.811/14)  ・・・(II)
 なお、上記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
 (2)前記化学組成が、前記Feの一部に代えて、質量%で、
 Cu:1.50%以下、
 Ni:2.50%以下、
 Cr:1.00%以下、
 Mo:1.00%以下、および
 V :0.150%以下、
 からなる群から選択される少なくとも1種以上を含有するものである、
 上記(1)に記載の鋼板。
 (3)前記化学組成が、前記Feの一部に代えて、質量%で、
 Te:0.0100%以下、
 を含有するものである、
 上記(1)または(2)に記載の鋼板。
 (4)前記化学組成が、前記Feの一部に代えて、質量%で、
 W :1.00%以下、および
 Sn:0.50%以下、
 からなる群から選択される少なくとも1種以上を含有するものである、
 上記(1)から(3)までのいずれかに記載の鋼板。
 (5)前記化学組成が、前記Feの一部に代えて、質量%で、
 Ca、MgおよびREMの合計:0.0005%以下、
 を含有するものである、
 上記(1)から(4)までのいずれかに記載の鋼板。
 (6)上記(1)から(5)までのいずれか1項に記載の鋼板の製造方法であって、
 溶鋼を製造する精錬工程と、前記溶鋼を連続鋳造して上記(1)から(5)までのいずれかに記載の化学組成を有する鋼片を製造する連続鋳造工程とを備え、得られた前記鋼片に対して、加熱工程、熱間圧延工程および加速冷却工程を順に施す、鋼板の製造方法において、
 前記精錬工程では、投入する脱酸Al量を、前記溶鋼1t当たり0.2~1.3kgとし、前記溶鋼中の溶存O濃度が0.0050質量%以下となってからZrを添加し、かつ前記Zrの添加から1分以上経過した後にBを添加し、
 前記連続鋳造工程では、前記鋼片の表面温度が1200~900℃の間における平均冷却速度を0.5℃/秒以下とし、
 前記加熱工程では、前記鋼片を950~1080℃の加熱温度まで加熱し、
 前記熱間圧延工程は、粗圧延と仕上圧延とを含み、
 前記粗圧延は、前記鋼片の表面温度がTrex以上の範囲で実施し、
 前記粗圧延における累積圧下率を10~75%とし、
 前記仕上圧延は、前記鋼片の表面温度がAr以上Trex未満の範囲で実施し、
 前記仕上圧延における累積圧下率を65~90%として、かつパス間時間を15秒以下とし、
 前記仕上圧延完了から、前記加速冷却工程における冷却開始までの時間を50秒以下とし、
 前記加速冷却工程では、冷却開始温度をTrex-10℃以下とし、かつ、冷却開始から冷却終了までの平均冷却速度が5~50℃/秒となる条件で、0~550℃の冷却停止温度まで水冷する、
 鋼板の製造方法。
 ここで、Arは下記(i)式で求められ、Trexは下記(ii)式で求められる。なお、下記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
 Ar=910-310×C+65×Si-80×Mn-20×Cu-55×Ni-15×Cr-80×Mo   ・・・(i)
 Trex=-91900[Nb*]+9400[Nb*]+770   ・・・(ii)
 但し、下記(iii)式で求められる固溶Nb量(質量%)を、sol.Nbとした時に、
 Nb≧sol.Nbの場合は、[Nb*]=sol.Nb
 Nb<sol.Nbの場合は、[Nb*]=Nb
 とする。
 sol.Nb=(10(-6770/(T+273)+2.26))/(C+12/14×N)   ・・・(iii)
 なお、上記式中のTは加熱工程における鋼片の加熱温度(℃)を表す。
 (7)前記加速冷却工程の後に、350~650℃の温度範囲まで加熱する焼戻し工程をさらに施す、
 上記(6)に記載の鋼板の製造方法。
 本発明によれば、高い強度を有し、かつ低温靱性、破壊靱性およびHAZ靱性に優れる鋼板を得ることが可能になる。
 本発明者らは上記課題に対して詳細な検討を行った結果、以下の知見を得るに至った。
 上述のように、強度と低温靱性およびHAZ靱性との間には、いわゆるトレードオフの関係が存在する。加えて、本発明者らの検討の結果、強度と破壊靱性との両立も容易でないことが分かった。そこで、まず、本発明者らは高強度化と低温靱性および破壊靱性の向上とを両立する方法について検討を行った。その結果、金属組織をベイナイト主体とすることで高強度化するとともに、ベイナイト組織の微細化および扁平化に加えて、ベイナイトを構成するベイニティックフェライトを微細化することで、低温靱性だけでなく破壊靱性の低下を抑制できることが分かった。
 また、熱間圧延前の加熱温度を低く制御し、かつ未再結晶域で高圧下率での仕上圧延を行うことで、ベイナイト組織の微細化および扁平化ならびにベイニティックフェライトの微細化を達成できることを見出した。
 次に、HAZ靱性を改善する方法について検討を行い、以下の知見を得た。
 ZrおよびBを含有させることにより、鋼中ではZr含有酸化物を核としてB窒化物が析出する。このようなZrおよびBを含む複合介在物(以下、単に「複合介在物」ともいう。)は、粒内フェライト生成サイトとして有効に機能し、HAZ組織の微細化に寄与する。
 一方、鋼中に固溶するZrが増加するとHAZ靱性は劣化する傾向にある。そのため、鋼に固溶するZr量であるSol.Zrを0.0010質量%以下にすることが好ましい。
 また、上記の複合介在物による効果を得るためには、鋼に固溶するB量であるBを0.0030質量%以下にする必要がある。
 さらに、複合介在物中に含まれるAlの割合が低いと、複合介在物が粒内フェライト生成サイトとしてより一層有効に機能する。具体的には、円相当径が0.5μm以上であり、かつ、ZrO、Ti、およびAlの合計に占めるAlの割合が、質量%で、50%以下である複合介在物の個数密度が、5~300個/mmである場合、HAZに粒内フェライトが微細かつ多量に生成し、HAZ靱性が向上する。
 強脱酸元素として作用するAlを鋼中に過剰に含有すると、複合介在物の生成が阻害される。溶鋼中の溶存酸素量を確保し、複合介在物を鋼中に生成させるため、Alの含有量は0.010質量%以下にすることが好ましい。なお、Ca、MgおよびREMのように、Alよりもさらに脱酸力の強い元素は合計で0.0005質量%以下の範囲であれば含有させてもよい。
 本発明は、上記知見に基づいてなされたものである。以下、本発明の各要件について詳しく説明する。
 (A)化学組成
 各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。また、本明細書において、数値範囲を示す「~」とは、特に断りがない場合、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
 C:0.040~0.160%
 Cは、鋼板の強度を確保するために0.040%以上含有させる。一方、C含有量が0.160%を超えると、良好な低温靱性、破壊靱性およびHAZ靱性を確保することが困難になるので、Cの含有量は、0.160%以下とする。したがって、C含有量は0.040%以上、好ましくは0.050%以上または0.050%超、より好ましくは0.060%以上または0.075%超である。また、C含有量は0.160%以下、好ましくは0.140%以下、より好ましくは0.120%以下である。
 Si:0.01~0.50%
 Siは、脱酸元素および強化元素として有効であるので、0.01%以上含有させる。一方、Si含有量が0.50%を超えると、低温靱性、破壊靱性およびHAZ靱性が大きく劣化するので、Si含有量は0.50%以下とする。したがって、Si含有量は0.01%以上、好ましくは0.03%以上、より好ましくは0.05%以上である。また、Si含有量は0.50%以下、好ましくは0.40%以下、より好ましくは0.35%以下、さらに好ましくは0.30%以下である。
 Mn:0.70~2.50%
 Mnは、鋼板の強度を経済的に確保するために0.70%以上含有させる。一方、Mn含有量が2.50%を超えると、中心偏析が顕著となり、中心偏析が生じた部分の低温靱性、破壊靱性およびHAZ靱性が劣化するので、Mnの含有量は、2.50%以下とする。したがって、Mn含有量は0.70%以上、好ましくは0.90%以上、より好ましくは1.20%以上である。また、Mn含有量は2.50%以下、好ましくは2.00%以下、より好ましくは1.80%以下、さらに好ましくは1.60%以下である。
 P:0.030%以下
 Pは、不純物として鋼中に存在する元素である。低温靱性、破壊靱性およびHAZ靱性を安定的に確保するために、Pの含有量を0.030%以下とする。好ましくは、0.020%以下、さらに好ましくは、0.015%以下である。下限は0%であるが、P含有量を低減させるためのコストを考慮し、P含有量は0.0001%以上としてもよい。
 S:0.020%以下
 Sは、不純物として鋼中に存在する元素である。S含有量が0.020%を超えると中心偏析部において延伸したMnSが多量に生成し、低温靱性、破壊靱性、HAZ靱性および延性が劣化する。このためS含有量を0.020%以下とする。好ましくは0.010%以下である。S含有量は少ないほど好ましいので下限は特に規定しないが、製造コストの観点から、S含有量は0.0001%以上であってもよい。
 Al:0.010%以下
 Alは、一般的には、脱酸元素として、積極的に含有させる元素である。しかし、Al含有量が過剰になると、所望する複合介在物の形成が不十分となり、HAZにおける有効なフェライト生成サイトが減少する。また、粗大なクラスター状のアルミナ(Al)系介在物の形成が助長され、HAZ靱性が劣化するだけでなく、場合によっては、低温靱性および破壊靱性も劣化する。よって、Al含有量は0.010%以下、好ましくは0.005%以下である。Al含有量は少ないほど好ましいので下限は特に規定しないが、製造コストの観点から、Al含有量は0.001%以上であってもよい。
 N:0.0010~0.0080%
 Nは、Ti窒化物を形成し、鋼片加熱時にオーステナイト粒径が大きくなることを抑制する効果を有するため、0.0010%以上含有させる。しかし、N含有量が0.0080%を超えると、鋼板が脆化するので、Nの含有量は、0.0080%以下とする。したがって、N含有量は0.0010%以上、好ましくは0.0015%以上、より好ましくは0.0020%以上である。また、N含有量は0.0080%以下、好ましくは0.0065%以下、より好ましくは0.0060%以下である。
 O :0.0005~0.0040%
 Oは鋼中に含有される元素であり、溶存して、または酸化物として存在する。両者を明確に分離することは困難であることから、本発明でのO含有量は両者を合わせた全酸素含有量(T.Oとも記載する。)とする。O含有量が0.0005%未満になると、靱性確保に必要な酸化物分散数が得られない。一方、O含有量が0.0040%を超えると、溶鋼の清浄性が悪化するとともに、溶鋼段階にてノズル閉塞といった生産性が低下する要因となり得る。また、粗大な酸化物が生成し、酸化物に応力集中が生じるため、低温靱性、破壊靱性およびHAZ靱性が劣化する。このため、O含有量は0.0005~0.0040%とする。
 Nb:0.003~0.050%
 Nbは、鋼板の強度および靱性を向上させることができる。また、所定のミクロ組織を得るためには、未再結晶オーステナイト域での圧延が必要となるところ、Nbは未再結晶温度域を拡大させるために有効な元素であり、圧延温度を上昇させ、生産性向上にも寄与する。この効果を得るためには、0.003%以上含有させる。ただし、Nbの含有量が0.050%を超えると低温靱性、破壊靱性、HAZ靱性および溶接性が低下するので、Nbの含有量は、0.050%以下とする。したがって、Nb含有量は0.003%以上、好ましくは0.005%以上、より好ましくは0.008%以上である。また、Nb含有量は0.050%以下、好ましくは0.025%以下、より好ましくは0.018%以下である。
 Ti:0.003~0.024%
 Tiは、Zrとともに複合介在物を形成する元素である。上述のように、複合介在物はHAZにおける粒内フェライト生成サイトとして機能し、HAZ組織の微細化に寄与する。この効果を得るためには、0.003%以上含有させる。ただし、Tiの含有量が0.024%を超えるとTi窒化物が多量に生成し、B窒化物の生成量が抑制され、HAZ靱性の向上効果が得られなくなる。また、過剰なTiはTiCを形成し、低温靱性、破壊靱性およびHAZ靱性を劣化させる。したがって、Ti含有量は0.003%以上、好ましくは0.005%以上である。また、Ti含有量は0.024%以下、好ましくは0.020%以下である。
 Zr:0.0007~0.0050%
 Zrは、後述するSol.ZrとInsol.Zrとの合計である。Zr含有量は、0.0007%以上であり、好ましくは0.0010%以上である。また、Zr含有量は、Insol.Zrの上限とSol.Zrの上限との合計、すなわち、0.0050%以下であり、好ましくは0.0040%以下である。
 Insol.Zr:0.0007~0.0040%
 Insol.Zrは、酸不溶性Zrであり、複合介在物等の介在物中に含まれるZrである。Zrは粒内変態の核となるZr含有酸化物を形成する重要な元素である。しかしながら、Insol.Zr含有量が0.0007%未満であると、靱性確保に必要な酸化物組成とならない。一方、Insol.Zr含有量が0.0040%を超えると、その多くが溶鋼段階で生成したZrOであり、ノズル閉塞が生じる頻度が高くなる。また、Insol.Zrが増えると、過剰にZrOが生成し、応力が集中するため、HAZ靱性が著しく劣化する。このため、Insol.Zr含有量は0.0007~0.0040%とする。
 Sol.Zr:0.0010%以下
 Sol.Zrは、酸可溶性Zr、すなわち、鋼中に固溶しているZrを表わす。Sol.Zrの含有量が増えると、HAZ靱性が著しく劣化する。そのため、その含有量を0.0010%以下とする。Sol.Zrは少ないほど好ましいので下限は特に規定せず、0%でもよい。
 なお、上記式中のInsol.Zrは、以下の方法により測定する。まず、鋼板から試験片を切り出し、10%アセチルアセトン-1%テトラメチルアンモニウムクロライド/メタノールにて、20mA/cmの電流密度で約0.4g電解する。その電解に用いた溶液を孔径0.2μmのフィルターでろ過し、フィルター上に捕集した抽出残渣について、公知の化学分析方法(例えば、ICP発光分光分析法)を用いることで、抽出残渣中のZr含有量を測定し、Insol.Zrとする。また、鋼中のZr含有量(Total Zr)からInsol.Zrを差し引いた値を、Sol.Zrとする。
 B :0.0003~0.0040%
 Bは、鋼材の焼入れ性を向上させるとともに、Zr含有酸化物の周囲にB窒化物として析出して複合介在物を形成し、粒内変態能を向上させる元素である。Zr含有酸化物の周囲にB窒化物として析出させるためには、B含有量は0.0003%以上とする。しかしながら、Bを過剰に含有させても効果が飽和するため、B含有量は0.0040%以下とする。したがって、B含有量は0.0003%以上、好ましくは0.0005%以上、より好ましくは0.0010%以上である。また、B含有量は0.0040%以下、好ましくは0.0035%以下、より好ましくは0.0030%以下である。
 本発明の鋼板の化学組成において、上記の元素に加えて、強度の向上を目的として、さらにCu、Ni、Cr、MoおよびVからなる群から選択される少なくとも1種以上を、以下に示す範囲において含有させてもよい。各元素の限定理由について説明する。
 Cu:1.50%以下
 Cuは、鋼板の強度および靱性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Cuを過剰に含有させると、合金コスト上昇に見合った性能の改善が見られず、むしろ表面割れの原因となる場合がある。そのため、Cu含有量は1.50%以下、好ましくは1.20%以下、より好ましくは1.00%以下である。上記の効果をより確実に得たい場合は、Cu含有量は、好ましくは0.005%以上、より好ましくは0.010%以上、さらに好ましくは0.050%以上である。
 Ni:2.50%以下
 Niは、鋼板の強度を向上させる効果を有する元素であるため、必要に応じて含有させてもよい。また、Niは固溶状態において鋼のマトリックス(生地)の靱性を高める効果を有する元素である。しかしながら、Niを過剰に含有させると、低温靱性、破壊靱性、HAZ靱性および溶接性が悪化する。そのため、Ni含有量は2.50%以下、好ましくは1.00%以下、より好ましくは0.50%以下、さらに好ましくは0.30%以下である。上記の効果をより確実に得たい場合は、Ni含有量は、好ましくは0.005%以上、より好ましくは0.010%以上、さらに好ましくは0.050%以上である。
 Cr:1.00%以下
 Crは、鋼板の強度を向上させる効果を有する元素であるため、必要に応じて含有させてもよい。しかしながら、Crを過剰に含有させると、低温靱性、破壊靱性、HAZ靱性および溶接性が悪化する。そのため、Cr含有量は1.00%以下、好ましくは0.80%以下、より好ましくは0.50%以下、さらに好ましくは0.30%以下である。上記の効果をより確実に得たい場合は、Cr含有量は、好ましくは0.005%以上、より好ましくは0.010%以上、さらに好ましくは0.050%以上である。
 Mo:1.00%以下
 Moは、鋼板の強度を向上させる効果を有する元素であるため、必要に応じて含有させてもよい。しかしながら、Moを過剰に含有させると、低温靱性、破壊靱性、HAZ靱性および溶接性が悪化する。そのため、Mo含有量は1.00%以下、好ましくは0.80%以下、より好ましくは0.50%以下、さらに好ましくは0.30%以下である。上記の効果をより確実に得たい場合は、Mo含有量は、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。
 V:0.150%以下
 Vは、鋼板の強度を向上させる効果を有する元素であるため、必要に応じて含有させてもよい。しかしながら、Vを過剰に含有させると、低温靱性、破壊靱性、HAZ靱性および溶接性が悪化する。そのため、V含有量は0.150%以下、好ましくは0.100%以下、より好ましくは0.070%以下、さらに好ましくは0.050%以下である。上記の効果をより確実に得たい場合は、V含有量は、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。
 本発明の鋼板の化学組成において、上記の元素に加えて、金属組織の微細化を目的として、さらにTeを、以下に示す範囲において含有させてもよい。限定理由について説明する。
 Te:0.0100%以下
 Teは、鋼板の組織微細化によって靱性向上に寄与する元素であるため、必要に応じて含有させてもよい。しかしながら、Teを過剰に含有させても、上記効果は飽和する。そのため、Te含有量は0.0100%以下、好ましくは0.0070%以下、より好ましくは0.0050%以下である。上記の効果をより確実に得たい場合は、Te含有量は、好ましくは0.0001%以上、より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。
 本発明の鋼板の化学組成において、上記の元素に加えて、耐食性の向上を目的として、さらにWおよびSnからなる群から選択される少なくとも1種以上を、以下に示す範囲において含有させてもよい。各元素の限定理由について説明する。
 W:1.00%以下
 Wは、溶解して酸素酸イオンWO の形でさびに吸着し、さび層中の塩化物イオンの透過を抑制し、耐食性を向上させる元素であるため、必要に応じて含有させてもよい。しかしながら、Wを過剰に含有させても、上記効果が飽和するだけでなく、低温靱性、破壊靱性およびHAZ靱性が低下する場合がある。そのため、W含有量は1.00%以下、好ましくは0.75%以下である。上記の効果をより確実に得たい場合は、W含有量は、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。
 Sn:0.50%以下
 Snは、Sn2+となって溶解し、酸性塩化物溶液中でのインヒビター作用により腐食を抑制する作用を有する元素である。また、Snには鋼のアノード溶解反応を抑制し耐食性を向上させる作用がある。そのため、必要に応じて含有させてもよい。しかしながら、Snを過剰に含有させても、上記効果が飽和するだけでなく、鋼板の圧延割れが発生しやすくなる。そのため、Sn含有量は0.50%以下、好ましくは0.30%以下である。上記の効果をより確実に得たい場合は、Sn含有量は、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。
 本発明の鋼板の化学組成において、上記の元素に加えて、溶鋼中の溶存酸素濃度の低減を目的として、さらにCa、MgおよびREMを、以下に示す範囲において含有させてもよい。限定理由について説明する。
 Ca、MgおよびREMの合計:0.0005%以下
 Ca、MgおよびREMは、Alよりもさらに優先的に酸素と反応しやすい元素である。そのため、必要に応じて含有させてもよい。しかしながら、Ca、MgおよびREMを過剰に含有させても、溶鋼中の溶存酸素量が確保できず、所望する複合介在物を形成させることができない。所望する複合介在物を形成させるために、Ca、MgおよびREMの含有量の合計を0.0005%以下とする。より好ましくはCa含有量が0.0003%未満、Mg含有量が0.0003%未満、かつREM含有量が0.0003%未満であり、その含有量の合計が0.0005%以下である。
 ここで、本発明において、REMはSc、Yおよびランタノイドの合計17元素を指し、前記REMの含有量はこれらの元素の合計含有量を意味する。
 また、本発明に係る鋼板の化学組成においては、下記(I)式を満足する。
 B≦0.0030  ・・・(I)
 但し、
 B´>Bの場合は、B=B
 0<B´≦Bの場合は、B=B´
 B´≦0の場合は、B=0
 とし、B´は下記(II)式で表される。
 B´=B-(N-(Ti-(O-Insol.Zr×(32/91.224))×(95.73/48))×(14/47.867))×(10.811/14)  ・・・(II)
 なお、上記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
 Bは、鋼中に固溶Bとして存在するB含有量である。固溶B量を直接測定することは困難であるため、本発明においては、上記式により算出することとする。
 前述のように、本発明に係る鋼板では、複合介在物の表層にB窒化物を析出させることで、溶接後の冷却中の粒内フェライトの生成を効果的に促進することができ、組織微細化してHAZ靱性を改善できる。この効果を得るためには、Bを0.0030%以下にする必要がある。また、Bが0.0030%を超えると、鋼材の焼入れ性が過剰となり、ベイナイトの粗大化および過度な硬さ増加が生じることでHAZ靱性が低下する。したがって、Bは0.0030%以下であり、好ましくは0.0020%以下であり、より好ましくは0.0010%以下である。
 本発明の鋼板の化学組成において、残部はFeおよび不純物である。ここで「不純物」とは、鋼板を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
 (B)鋼板の金属組織
 本発明の鋼板の金属組織について説明する。なお、以下の説明において「%」は、「面積%」を意味する。また、本発明では、鋼板の厚さをtとした時に、鋼板の圧延方向に垂直な断面における、該鋼板の表面から1/4tの位置を「C断面での1/4t位置」と呼び、鋼板の圧延方向および厚さ方向に平行な断面における、該鋼板の表面から1/4tの位置を「L断面での1/4t位置」と呼ぶこととする。さらに、上記の「圧延方向」は、仕上圧延における圧延方向を意味することとする。
 ベイナイト:80%以上
 本発明において、金属組織はベイナイトが主体である。具体的には、C断面での1/4t位置におけるベイナイトの面積率を80%以上とすることで、鋼板の強度を確保することが可能となる。ベイナイトの面積率は90%以上であることが好ましい。なお、ベイナイトの面積率に上限を設ける必要はなく、すなわち、ベイナイト単相であってもよい。
 なお、残部組織として、フェライト、パーライト、マルテンサイト・オーステナイト混合相(MA相)が混入する場合があるが、これらの合計面積率が20%以下であれば許容される。上記合計面積率は10%以下であるのが好ましい。これらの合計面積率は少ない方が好ましく、下限値は特に限定されるものではない。例えば、上記合計面積率は0%であってもよい。また、0%超であってもよく、1%以上であってもよい。
 上述のように、ベイナイトを主体とすることに加えて、ベイナイト組織を微細かつ扁平化し、さらにベイニティックフェライトを微細化することで、鋼板の強度と低温靱性および破壊靱性とを両立することができる。具体的には、ベイナイト組織が以下の規定を満足する必要がある。
 ベイニティックフェライトの平均長さ:10μm以下
 C断面での1/4t位置において、ベイナイトを構成するベイニティックフェライトの長軸方向の平均長さを10μm以下とする。ベイナイトを構成するベイニティックフェライトを微細化することで、破壊靱性を確保することが可能となる。ベイニティックフェライトの平均長さは8μm以下であるのが好ましい。
 旧オーステナイト粒の厚さ方向における平均長さ:20μm以下
 旧オーステナイト粒のアスペクト比の平均:2.5以上
 ベイナイト組織の微細化は、熱間圧延前の加熱温度を低く制御し、かつ未再結晶域で高圧下率での仕上圧延を行うことで達成できる。すなわち、ベイナイトの旧オーステナイト粒は圧延方向に伸長した形状となる。そのため、L断面での1/4t位置において、旧オーステナイト粒の厚さ方向における平均長さを20μm以下とし、かつアスペクト比の平均を2.5以上とする。旧オーステナイト粒の厚さ方向における平均長さは15μm以下であるのが好ましい。また、旧オーステナイト粒のアスペクト比の平均は2.5超であるのが好ましく、4.0以上であるのがより好ましい。
 ここで、本発明において、金属組織の面積率は以下のように求める。まず、鋼板からC断面での1/4t位置が観察面となるように、試料を採取する。そして、観察面をナイタールエッチングし、エッチング後に光学顕微鏡を用いて8視野を500倍で撮影する。そして得られた組織写真に対し、画像解析を行い、白色に見えるものをフェライト、黒色に見えるものをパーライトとして、それぞれの面積率を求める。
 次に、ナイタールエッチングした部分をレペラエッチングし、ナイタールエッチングで灰色に見えた部分について画像解析を行い、白色に見えるものをMA相として面積率を求める。
 ベイニティックフェライトの平均長さおよびベイナイトの面積率は、EBSD(Electron Back Scatter Diffraction)を用いたKAM(Kernel Average Misorientation)解析により算出する。KAM解析において、フェライトであると判断される組織において、局所方位差が1.0°を超える領域がベイニティックフェライトである。なお、測定に際しては、長軸方向の長さが1μm以上であるベイニティックフェライトを対象とする。また、ベイナイトの面積率はベイニティックフェライトの面積率を合計したものである。
 旧オーステナイト粒の厚さ方向における平均長さおよびアスペクト比の平均の測定は、JIS G 0551:2013に準じて行う。まず、鋼板からL断面での1/4t位置が観察面となるように、試料を採取する。次に、観察面を鏡面研磨した後、ピクリン酸飽和水溶液を用いて、Bechet-Beaujard法で腐食する。腐食によって黒色に現出した粒を旧オーステナイト粒とする。
 旧オーステナイト粒を現出させた観察面を、光学顕微鏡により観察し、面積0.05mm以上の視野を8視野以上(合計0.40mm以上)撮影する。そして、光学顕微鏡により撮影した組織写真に基づいて、旧オーステナイト粒の厚さを切断法により測定し、その平均値を旧オーステナイト粒の厚さ方向における平均長さとする。なお、測定に際しては、厚さ方向の長さが1μm以上である旧オーステナイト粒を対象とする。
 また、上記の組織写真から、各旧オーステナイト粒について、長軸方向の最大長さと、長軸方向と直交する短軸方向の最大長さとをそれぞれ測定し、その比(長軸最大長さ/短軸最大長さ)を求める。そして、その平均値を旧オーステナイト粒のアスペクト比の平均とする。なお、未再結晶域で高圧下率での仕上圧延を施した場合、旧オーステナイト粒は、圧延方向に伸びた形状を示すため、長軸方向は圧延方向となり、短軸方向は板厚方向(いわゆるND方向)となる。
 上記の方法で旧オーステナイト粒を十分に現出できない場合は、「鋼のオーステナイト組織の再構築法の高精度化に向けた検討」(畑顕吾、脇田昌幸、藤原知哉、河野佳織、新日鉄住金技報第404号(2016)、p.24~30)に記載される再構築法によって旧オーステナイト粒を特定し、旧オーステナイト粒の厚さ方向における平均長さおよびアスペクト比の平均を求めることとする。
 複合介在物の個数密度:5~300個/mm
 上述のように、本発明に係る鋼板は、金属組織中にZrおよびBを含む複合介在物を有する。これにより、溶接後の冷却時に粒内フェライト生成サイトとなり、HAZ靱性を向上させる。この時に、微細すぎる複合介在物はHAZ靱性に対する寄与が少ない。また、Alの割合が低い複合介在物が粒内フェライト生成サイトとしてより一層有効に機能する。
 すなわち、本発明においては、円相当径(直径)が0.5μm以上であり、かつ、ZrO、Ti、およびAlの合計に占めるAlの割合が、質量%で、50%以下である複合介在物に注目し、その個数密度を制御する。上記複合介在物の個数密度が5個/mm未満では、HAZ靱性の向上効果が十分に得られない。上記複合介在物の個数密度が多いほど粒内フェライト生成サイトが増加するため好ましいが、個数密度が300個/mmを超えてもその効果は飽和する。したがって、上記複合介在物の個数密度を5~300個/mmとする。
 なお、本発明においては、5質量%以上のZrと、0.1質量%以上のBと、1質量%以上のOとを含む介在物を、ZrおよびBを含む複合介在物と定義する。また、複合介在物の円相当径および個数密度は、鏡面研磨した鋼表面をSEMによって観察することで、測定することができる。
 具体的には、10mm×10mm(100mm)の範囲について、SEMによって観察し、SEMに付属するエネルギー分散型X線分析装置(EDX)による定量分析によって、5質量%以上のZrと、0.1質量%以上のBと、1質量%以上のOとを含み、かつ、ZrO、Ti、およびAlの合計に占めるAlの割合が50質量%以下である粒子を特定する。そして、当該粒子のうち、円相当径が0.5μm以上の粒子の個数を測定し、観察した視野の面積で除して個数密度を測定する。個数密度の測定に際しては、SEMによって撮影された写真を用いてもよい。
 (C)鋼板の機械的特性
 本発明に係る鋼板の機械的特性について、特に制限はないが、本発明に係る鋼板は、高い強度を有し、かつ低温靱性およびHAZ靱性に優れる。具体的には、降伏応力(YS)が460~860MPaで、引張強さ(TS)が570~980MPaであることが好ましい。また、低温靱性の指標となる破面遷移温度(vTrs)が-60℃以下であることが好ましい。さらに、破壊靱性の指標となる-10℃における亀裂先端開口変位(Crack Tip Opening Displacement:CTOD)値が0.50mm以上であることが好ましい。
 なお、引張強さ(TS)および降伏応力(YS)は、JIS Z 2241:2011に基づき、板厚中心部から圧延方向と直角の方向に採取した、1B号引張試験片を用いて測定する。詳細には、降伏応力(YS)は永久伸び0.2%時の永久伸び法の耐力である。また、破面遷移温度(vTrs)の評価は、JIS Z 2242:2005に準拠し、試験片はVノッチ試験片とし、鋼板の1/4t位置を含むように採取する。さらに、ISO 15653:2018に準じて、母材の板厚方向の全厚を3点曲げのノッチ位置とするCTOD試験片を採取し、-10℃におけるCTOD値を測定する。
 さらに、溶接入熱量が35kJ/mmの条件で溶接した場合のHAZの-20℃でのシャルピー吸収エネルギーが、3回の測定の平均値で100J以上であり、かつ最低値で50J以上であることが好ましい。
 HAZのシャルピー吸収エネルギーは、以下の方法により測定する。まず、鋼板に対して、入熱35kJ/mmの溶接(大入熱溶接)を再現した熱サイクルを付与する。具体的な熱サイクル条件としては、室温から1400℃まで加熱した後、1400℃で5秒間保持し、その後、粒内変態に関わる温度範囲である800℃から500℃までの温度範囲を1.0℃/秒の速度に制御して冷却する。
 熱サイクルを付与した後の鋼板から、3個ずつVノッチ試験片を採取し、-20℃でシャルピー衝撃試験を行い、吸収エネルギー(vE-20)を測定する。なお、Vノッチ試験片は、JIS Z 2242:2005に記載されたVノッチ試験片に準じて作製し、シャルピー衝撃試験は、JIS Z 2242:2005に準拠して行う。そして、3個の試験片のvE-20の平均値および最低値を求める。
 (D)鋼板の厚さ
 本発明に係る鋼板の厚さについて、特に制限はないが、溶接構造物として用いる場合には、板厚は10~70mmであるのが好ましく、20~60mmであるのがより好ましい。また、本発明における低温靱性および破壊靱性の向上効果は、厚さが50mm未満の場合に顕著に発揮される。
 (E)鋼板の製造方法
 本発明に係る鋼板の製造条件について特に制限はないが、例えば、以下に示す条件で精錬工程、連続鋳造工程、加熱工程、熱間圧延工程および加速冷却工程を順に行うことで、製造することができる。各工程について説明する。
 (a)精錬工程
 精錬工程は、溶鋼を製造する工程である。精錬工程では、投入する脱酸Al量を、溶鋼1t当たり0.2~1.3kgとする。脱酸Al量を0.2kg/t以上とすることで溶存O濃度を低減し、Zr含有酸化物を微細分散させることが可能となる。一方、脱酸Al量を1.3kg/t以下とすることで、複合介在物中のAlの割合を低減することができる。脱酸Alの投入は、例えば、転炉を用いて行うことができる。
 続いて、真空脱ガスを行い、溶鋼中の溶存O濃度が0.0050質量%以下となってからZrを添加する。溶存O濃度が0.0050質量%を超える状態でZrを添加すると、Zr含有酸化物を微細分散させることが困難になるだけでなく、複合介在物中のAlの割合を低減することができなくなるおそれがある。また、生成するZrO量が多くなり、溶鋼を連続鋳造する際のタンディッシュへの注入ノズルの閉塞のリスクが高くなる。
 次に、Zrの添加から1分以上経過した後にBを添加する。これにより、Zr含有酸化物の表層にBが偏析し、B窒化物を析出させることが可能となる。Zrの添加からBを添加するまでの時間について、上限は特に設ける必要はないが、5分以内とするのが好ましい。ZrおよびBの添加は、例えば、環流型脱ガス装置内において行うことができる。
 (b)連続鋳造工程
 連続鋳造工程は、溶鋼を連続鋳造して上述した化学組成を有する鋼片を製造する工程である。連続鋳造工程では、鋼片の表面温度が1200~900℃の間における平均冷却速度を0.5℃/秒以下とする。これにより、Zr含有酸化物においてZrOとAlとの分離が進み、複合介在物中のAlの割合を低減することができるようになる。
 (c)加熱工程
 加熱工程は、鋼片の加熱により、オーステナイト相の組織制御に寄与する工程である。加熱工程では、上記の鋼片を950~1080℃の加熱温度まで加熱する。加熱工程は加熱炉で行うとよい。なお、鋼片を950~1080℃に加熱するとは、加熱炉から抽出する際の鋼片の全厚平均温度が、950~1080℃の範囲になるように加熱することであり、本明細書では、この鋼片の全厚平均温度を鋼片の加熱温度と称する。また、全厚平均温度は、加熱炉内の温度、加熱時間、鋼片の表面温度から計算で求めることが可能である。
 加熱温度が950℃未満では、オーステナイト化が不十分になるとともに、オーステナイト粒が微細化することにより焼入れ性が低下するため、板厚が厚く、強度が高い鋼板にすることが困難である。さらに、オーステナイト粒の微細化により仕上圧延時の再結晶が促進されることで、旧オーステナイト粒のアスペクト比が低下する。また、加熱温度が1080℃を超えると、オーステナイト粒が粗大化し、最終組織においてベイナイト組織を微細化することが困難になる。好ましい加熱温度の範囲は、1000~1050℃である。
 (d)熱間圧延工程
 熱間圧延工程は、粗圧延と仕上圧延とを含む。粗圧延は、鋼片の表面温度がTrex以上の範囲で実施する。すなわち、鋼片の表面温度がTrex以上である状態で粗圧延を開始し、鋼片の表面温度がTrex以上である状態で粗圧延を終了する。粗圧延をTrex以上の範囲で実施することで、オーステナイト粒の再結晶により、微細化が可能となる。なお、粗圧延の終了時の表面温度が、粗圧延の開始時の表面温度よりも高い場合がある。これは、粗圧延によって加工発熱が発生した影響、および表面温度よりも内部温度の方が高温であることによる、鋼片の板厚方向の伝熱影響が考えられる。
 また、粗圧延における累積圧下率は10~75%の範囲とする。粗圧延における累積圧下率とは、粗圧延開始時の板厚から粗圧延終了後の板厚を引いたものを、粗圧延開始時の板厚で除した値である。粗圧延時の累積圧下率が10%未満では、オーステナイトの再結晶による微細化が困難であるとともに、ポロシティが残存して内部割れが生じ、延性および靱性の劣化が発生する可能性がある。また、累積圧下率が75%を超えると、オーステナイト粒が過度に微細化するため、仕上圧延時の再結晶が促進されることで、旧オーステナイト粒のアスペクト比が低下するとともに、パス数が増加して生産性が低下する。好ましい累積圧下率は、30~60%である。なお、以下の説明においては、粗圧延を施した後の鋼片を鋼板と呼ぶ。
 続く仕上圧延は、鋼板の表面温度がAr以上Trex未満の範囲で実施する。すなわち、粗圧延終了後に冷却し、鋼板の表面温度がAr以上Trex未満である状態で仕上圧延を開始し、鋼板の表面温度がAr以上Trex未満である状態で仕上圧延を終了する。仕上圧延をTrex未満の範囲で実施することで、再結晶させずにオーステナイト粒に歪みを付与することが可能となる。これにより、最終組織におけるベイナイトを微細化することができる。仕上温度を、表面温度がTrex以上の範囲で行うと、再結晶が促進され、旧オーステナイト粒のアスペクト比が低下してしまう。一方、仕上圧延を、表面温度がAr未満の範囲で行うと、加工フェライトが生成し、最終組織においてベイナイト主体の組織とすることができなくなるおそれがある。
 また、仕上圧延における累積圧下率は65~90%の範囲とする。仕上圧延における累積圧下率とは、仕上圧延開始時(粗圧延終了後)の板厚から仕上圧延終了後の板厚を引いたものを、仕上圧延開始時の板厚で除した値である。仕上圧延における累積圧下率を65%以上とすることで、オーステナイト粒に十分な歪みを付与することが可能となる。累積圧下率が65%未満であると、オーステナイト粒への歪の付与が不十分になるとともに、オーステナイト粒の扁平化が促進されず、アスペクト比が低下する。また、累積圧下率が90%を超えると、再結晶が促進され、旧オーステナイト粒のアスペクト比が低下するとともに、パス数が増加して生産性が低下する。好ましい累積圧下率は、70~80%である。
 さらに、仕上圧延におけるパス間時間は15秒以下とする。パス間時間が15秒を超えると加工によって付与した歪みが回復し、最終組織におけるベイナイトを十分に微細化することができなくなるとともに、再結晶が促進され、旧オーステナイト粒のアスペクト比が低下する。パス間時間は短ければ短いほど好ましいため、下限を設ける必要はないが、操業性の観点から3秒以上とすることが好ましい。なお、一般的に仕上圧延はリバース圧延により行われる。仕上圧延におけるパス間時間とは、鋼板が前方に進行しながら圧延ロールにより圧延され、鋼板の後端が圧延ロールから抜けてから、鋼板の進行方向が後方へとリバースし、再度鋼板の後端が圧延ロールに噛み込まれるまでの時間を意味する。
 そして、仕上圧延完了から、後述する加速冷却工程における冷却開始までの時間を50秒以下とする。仕上圧延完了から冷却開始までの時間が50秒を超えると、加工によって付与した歪みが回復し、最終組織におけるベイナイトを十分に微細化することができなくなるとともに、再結晶が促進され、旧オーステナイト粒のアスペクト比が低下する。仕上圧延完了から冷却開始までの時間は短ければ短いほど好ましいため、下限を設ける必要はないが、操業性の観点から5秒以上とすることが好ましい。なお、仕上圧延完了から冷却開始までの時間とは、前方へと進行する鋼板の先端が、最終パスにおける圧延ロールを抜けてから、水冷が開始されるまでの時間を意味する。
 上記説明において、Arは降温過程でオーステナイト粒からフェライト粒に変態が始まる変態開始温度を意味し、下記(i)式で求められる。また、Trexは等軸な再結晶粒が生成し成長し得る最低温度である再結晶温度を意味し、下記(ii)式で求められる。なお、下記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
 Ar=910-310×C+65×Si-80×Mn-20×Cu-55×Ni-15×Cr-80×Mo   ・・・(i)
 Trex=-91900[Nb*]+9400[Nb*]+770   ・・・(ii)
 但し、下記(iii)式で求められる固溶Nb量(質量%)を、sol.Nbとした時に、
 Nb≧sol.Nbの場合は、[Nb*]=sol.Nb
 Nb<sol.Nbの場合は、[Nb*]=Nb
 とする。
 sol.Nb=(10(-6770/(T+273)+2.26))/(C+12/14×N)   ・・・(iii)
 なお、上記式中のTは加熱工程における鋼片の加熱温度(℃)を表す。
 (e)加速冷却工程
 加速冷却工程では、仕上圧延が終了した鋼板を水冷する。この際、冷却開始温度をTrex-10℃以下とし、かつ、冷却開始から冷却終了までの平均冷却速度が5~50℃/秒となる条件で、0~550℃の冷却停止温度まで水冷する。
 仕上圧延をAr以上Trex未満の範囲で実施したとしても、その後の復熱によって冷却開始温度がTrex-10℃を超えると、加工によって付与した歪みの回復が促進され、最終組織におけるベイナイトを構成するベイニティックフェライトを十分に微細化することができなくなる。
 加えて、5~50℃/秒の平均冷却速度で0~550℃の冷却停止温度まで水冷することで、最終組織をベイナイト主体の組織とすることができる。なお、平均冷却速度および冷却停止温度は、鋼板の化学組成におけるCeqの値に応じて調整し、マルテンサイト変態しない条件とする。
 (f)焼戻し工程
 加速冷却工程の後に、350~650℃の温度範囲まで加熱する焼戻し工程をさらに備えてもよい。焼戻し工程を行うことで、冷却によって過剰に高くなった転位密度を低減させることができる。なお、加速冷却工程における冷却停止温度が高い場合には、自己焼戻し効果が得られるため、焼戻し工程を行わなくてもよい。一方、加速冷却工程において、例えば室温程度まで冷却した場合には、焼戻し工程を行うことが好ましい。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 高炉から出銑された溶銑を、溶銑予備処理で脱硫処理し、転炉型精錬容器にて脱Pおよび脱C処理し、さらに脱酸Alを投入した後、取鍋に受鋼した。出鋼の際、合金元素を添加し、保温用のカバースラグを添加した。
 続いて、取鍋内の溶鋼をRH真空脱ガス装置にて減圧処理を行った。溶製中は適宜溶鋼サンプルを採取し、分析に供して溶鋼成分を得た。溶鋼温度は1560℃から1610℃で推移した。RH処理前半でZrおよびBを除く合金を添加して成分調整を実施するとともに真空脱ガスを行い、溶存O濃度を調整した。溶存O濃度は、酸素濃度プローブを用いて測定した。
 その後、ZrおよびBを添加し、均一に混合するために環流処理を行った。一部の例を除いて、Zrを添加し、所定時間が経過した後に、Bを添加した。なお、Zrを添加する前にBを添加した例では、Zrを添加してからBを添加するまでの時間をマイナスで表記している。
 RH真空脱ガス装置で処理した後、連続鋳造法によって、表1および2の化学組成を有する鋼片を作製した。連続鋳造では、鋼片の表面温度が1200~900℃の間における平均冷却速度を適宜調節した。表3および4に、精錬工程における、溶鋼1t当たりに投入する脱酸Al量(kg/t)、Zrを添加する際の溶鋼中の溶存O濃度(質量%)、およびZrを添加してからBを添加するまでの時間(分)、ならびに連続鋳造工程における1200~900℃の間における平均冷却速度(℃/秒)を示す。さらに、上記の鋼片を用いて、表5および6の製造条件により板厚10~70mmの鋼板を試作した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 得られた鋼板の金属組織観察を行い、各組織の面積率の測定を行った。具体的には、まず鋼板からC断面での1/4t位置が観察面となるように、試料を採取した。そして、観察面をナイタールエッチングし、エッチング後に光学顕微鏡を用いて8視野を500倍で撮影し、得られた組織写真に対し、画像解析を行い、白色に見えるものをフェライト、黒色に見えるものをパーライトとして、それぞれの面積率を求めた。
 次に、ナイタールエッチングした部分をレペラエッチングし、ナイタールエッチングで灰色に見えた部分について画像解析を行い、白色に見えるものをMA相として面積率を求めた。
 ベイニティックフェライトの平均長さおよびベイナイトの面積率は、EBSDを用いたKAM解析により算出した。KAM解析において、フェライトであると判断される組織において、局所方位差が1.0°を超える領域をベイニティックフェライトとした。なお、測定に際しては、長軸方向の長さが1μm以上であるベイニティックフェライトを対象とした。また、ベイナイトの面積率はベイニティックフェライトの面積率を合計したものとした。
 さらに、旧オーステナイト粒の厚さ方向における平均長さおよびアスペクト比の平均の測定を、JIS G 0551:2013に準じて行った。まず、鋼板からL断面での1/4t位置が観察面となるように、試料を採取した。次に、観察面を鏡面研磨した後、ピクリン酸飽和水溶液を用いて、Bechet-Beaujard法で腐食し、旧オーステナイト粒を現出させた。
 旧オーステナイト粒を現出させた観察面を、光学顕微鏡により観察し、面積0.05mm以上の視野を8視野以上(合計0.40mm以上)撮影した。そして、光学顕微鏡により撮影した組織写真に基づいて、旧オーステナイト粒の厚さを切断法により測定し、その平均値を旧オーステナイト粒の厚さ方向における平均長さとした。測定に際しては、厚さ方向の長さが1μm以上である旧オーステナイト粒を対象とした。
 また、上記の組織写真から、各旧オーステナイト粒について、長軸方向の最大長さと、長軸方向と直交する短軸方向の最大長さとをそれぞれ測定し、その比(長軸最大長さ/短軸最大長さ)を求め、その平均値を旧オーステナイト粒のアスペクト比の平均とした。
 続いて、鋼板から試験片を切り出し、10%アセチルアセトン-1%テトラメチルアンモニウムクロライド/メタノールにて、20mA/cmの電流密度で約0.4g電解した。その電解に用いた溶液を孔径0.2μmのフィルターでろ過し、フィルター上に捕集した抽出残渣について、ICP発光分光分析法を用いることで、抽出残渣中のZr含有量を測定し、Insol.Zrとした。また、鋼中に含まれるZr含有量からInsol.Zrを差し引いた値を、Sol.Zrとした。
 また、鋼中に固溶Bとして存在するB含有量Bを下記式に基づき算出した。
 B´>Bの場合は、B=B
 0<B´≦Bの場合は、B=B´
 B´≦0の場合は、B=0
 とし、B´は下記(II)式で表される。
 B´=B-(N-(Ti-(O-Insol.Zr×(32/91.224))×(95.73/48))×(14/47.867))×(10.811/14)  ・・・(II)
 なお、上記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
 次に、鋼板の表面を鏡面研磨し、10mm×10mm(100mm)の範囲について、SEMによって観察し、SEMに付属するEDXによる定量分析によって、5質量%以上のZrと、0.1質量%以上のBと、1質量%以上のOとを含み、かつ、ZrO、Ti、およびAlの合計に占めるAlの割合が50質量%以下である粒子を特定した。そして、当該粒子のうち、円相当径が0.5μm以上の粒子の個数を測定し、観察した視野の面積で除して個数密度を測定した。
 これらの測定結果を表7および8に示す。なお、表中においては、フェライトの面積率を「F分率」、パーライトの面積率を「P分率」、ベイナイトの面積率を「B分率」、MA相の面積率を「MA分率」、ベイニティックフェライトの長軸方向の平均長さを「BF長さ」と表記する。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 さらに、引張強さ(TS)および降伏応力(YS)を、JIS Z 2241:2011に基づき測定した。試験片は、板厚中心部から圧延方向に直行する方向(幅方向)を長手方向として採取した、1B号引張試験片を用いて測定した。降伏応力(YS)は永久伸び0.2%時の永久伸び法の耐力とした。本実施例では、YSが460MPa以上、かつTSが570MPa以上であるものを、高い強度を有するとした。
 また、鋼板の1/4t位置を含むようにVノッチ試験片を採取し、JIS Z 2242:2005に準拠して破面遷移温度(vTrs)の評価を行った。この際、Vノッチ試験片は、ぞれぞれ、試験片の長手方向が鋼板の圧延方向および幅方向に一致するよう、2つずつ採取した。本実施例では、2つの試験片で、いずれもvTrsが-60℃以下であるものを、低温靱性に優れるとした。
 そして、ISO 15653:2018に準じて、母材の板厚方向の全厚を3点曲げのノッチ位置とするCTOD試験片を採取し、-10℃におけるCTOD値の測定を行った。試験は3回行い、表には、それらの最小値を記載した。本実施例では、-10℃におけるCTOD値の最小値が0.50mm以上のものを、破壊靱性に優れるとした。
 また、溶接入熱量が35kJ/mmの条件で溶接した場合のHAZの-20℃でのシャルピー吸収エネルギーを、以下の方法により測定した。まず、鋼板に対して、入熱35kJ/mmの溶接(大入熱溶接)を再現した熱サイクルを付与した。具体的な熱サイクル条件としては、室温から1400℃まで加熱した後、1400℃で5秒間保持し、その後、粒内変態に関わる温度範囲である800℃から500℃までの温度範囲を1.0℃/秒の速度に制御して冷却した。
 熱サイクルを付与した後の鋼板から、3個ずつVノッチ試験片を採取し、-20℃でシャルピー衝撃試験を行い、吸収エネルギー(vE-20)を測定した。なお、Vノッチ試験片は、JIS Z 2242:2005に記載されたVノッチ試験片に準じて作製し、シャルピー衝撃試験は、JIS Z 2242:2005に準拠して行った。そして、3個の試験片のvE-20の平均値および最低値を求めた。本実施例では、vE-20の平均値が100J以上で、かつ最低値が50J以上のものを、HAZ靱性に優れるとした。
 これらの測定結果を表9および10に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表7~10から分かるように、本発明の規定を満足する本発明例(試験番号1~26)では、高い強度を有し、かつ低温靱性、破壊靱性およびHAZ靱性に優れる結果となった。これに対して、比較例(試験番号27~67)では、強度、低温靱性、破壊靱性およびHAZ靱性の少なくともいずれかが劣化する結果となった。
 具体的には、試験番号27はC含有量が過剰であるため、低温靱性、破壊靱性およびHAZ靱性が劣化した。試験番号28はC含有量が低く、強度不足となるとともに、低温靱性および破壊靱性が劣化した。試験番号29はSi含有量が過剰であるため、低温靱性、破壊靱性およびHAZ靱性が劣化した。試験番号30はMn含有量が過剰であるため、低温靱性、破壊靱性およびHAZ靱性が劣化した。試験番号31はMn含有量が低く、ベイナイト面積率が低くなったため、強度不足になるとともに、低温靱性および破壊靱性が劣化する結果となった。
 試験番号32はPおよびSの含有量が過剰であるため、低温靱性、破壊靱性およびHAZ靱性が劣化した。試験番号33はAl含有量が過剰であり、所望する複合介在物の形成が不十分となったため、HAZ靱性が劣化した。試験番号34はN含有量が過剰であり、ベイナイト面積率が低くなったため、強度不足になるとともに、低温靱性および破壊靱性が劣化した。試験番号35はN含有量が低く、旧オーステナイト粒が粗大になったため、低温靱性および破壊靱性が劣化した。
 試験番号36はO含有量が過剰であるため、低温靱性、破壊靱性およびHAZ靱性が劣化した。試験番号37はO含有量が低く、所望する複合介在物の形成が不十分となったため、HAZ靱性が劣化した。試験番号38はNb含有量が過剰であるため、低温靱性、破壊靱性およびHAZ靱性が劣化した。試験番号39はNb含有量が低く、BF長さが過剰かつ、旧オーステナイト粒のアスペクト比が小さくなったため、低温靱性および破壊靱性が劣化した。試験番号40はTi含有量が過剰であるため、低温靱性、破壊靱性およびHAZ靱性が劣化した。試験番号41はTi含有量が低く、BF長さおよび旧オーステナイト粒が粗大化したため、低温靱性および破壊靱性が劣化した。
 試験番号42はCa含有量が過剰であり、試験番号43はMgおよびREMの含有量が過剰であるため、所望する複合介在物の形成が不十分となったため、HAZ靱性が劣化した。試験番号44はZr含有量が過剰であるため、Insol.Zr含有量が過剰となり、HAZ靱性が劣化した。試験番号45はZr含有量が低く、Insol.Zr含有量が低く、また所望する複合介在物の形成が不十分となったため、HAZ靱性が劣化した。試験番号46はBを含まないため、所望する複合介在物が全く形成されず、HAZ靱性が劣化した。加えて、ベイナイト面積率が低くなったため、強度不足となるとともに、低温靱性および破壊靱性が劣化した。
 試験番号47は脱酸Al量が過剰であり、一方、試験番号48は脱酸Al量が低くかった。試験番号48および49は、Zr添加時の溶存O濃度が過剰であった。また、試験番号50はZr添加からBを添加するまでの時間が短く、試験番号51はZr添加の前にBを添加した。さらに、試験番号52は連続鋳造工程での平均冷却速度が高かった。そのため、いずれの例でも所望する複合介在物の形成が不十分となり、HAZ靱性が劣化した。
 試験番号53は加熱工程での加熱温度が高く、BF長さおよび旧オーステナイト粒が粗大化し、低温靱性および破壊靱性が劣化した。試験番号54は加熱温度が低く、ベイナイト面積率が低くなったため、強度不足となるとともに、低温靱性および破壊靱性が劣化した。試験番号55は粗圧延の終了温度がTrex未満であったため、BF長さおよび旧オーステナイト粒が粗大化し、低温靱性および破壊靱性が劣化した。
 試験番号56は粗圧延の累積圧下率が高く、一方、試験番号57は累積圧下率が低く、いずれもBF長さおよび旧オーステナイト粒が粗大化し、また旧オーステナイト粒のアスペクト比が低下したため、低温靱性および破壊靱性が劣化した。試験番号58は仕上圧延の開始温度がTrex以上であったため、BF長さおよび旧オーステナイト粒が粗大化し、かつ旧オーステナイト粒のアスペクト比が低下し、低温靱性および破壊靱性が劣化した。試験番号59は仕上圧延の終了温度がAr未満であったため、加工フェライトが過剰に生成し、強度不足となった。加えて、ベイナイト面積率が低くなったため、強度不足となるとともに、低温靱性および破壊靱性が劣化した。
 試験番号60は仕上圧延の累積圧下率が高く、旧オーステナイト粒のアスペクト比が低下し、一方、試験番号61は累積圧下率が低く、BF長さおよび旧オーステナイト粒が粗大化し、かつ旧オーステナイト粒のアスペクト比が低下したため、いずれも低温靱性および破壊靱性が劣化した。試験番号62はパス間時間が長く、試験番号63は仕上圧延完了から冷却開始までの時間が長いため、BF長さが粗大化し、かつ旧オーステナイト粒のアスペクト比が低下し、低温靱性および破壊靱性が劣化した。
 試験番号64は加速冷却工程での冷却速度が高いため、MA相が過剰に生成したため、低温靱性および破壊靱性が劣化した。試験番号65は冷却速度が低く、試験番号66は冷却停止温度が高いため、いずれもベイナイト主体の組織とならず、強度不足となるとともに、低温靱性および破壊靱性が劣化した。試験番号67は冷却開始温度がTrex-10℃を超え、BF長さが粗大化したため、低温靱性は良好であったものの、破壊靱性が劣化する結果となった。
 本発明によれば、高い強度を有し、かつ低温靱性、破壊靱性およびHAZ靱性に優れる鋼板を得ることが可能になる。したがって、本発明に係る鋼板は、船舶、高層建築物、その他の建築物、橋梁、海洋構造物、LNG貯蔵タンクその他の大型タンク、ラインパイプ等の溶接構造物の素材として好適に用いることができる。

Claims (7)

  1.  鋼板の化学組成が、質量%で、
     C :0.040~0.160%、
     Si:0.01~0.50%、
     Mn:0.70~2.50%、
     P :0.030%以下、
     S :0.020%以下、
     Al:0.010%以下、
     N :0.0010~0.0080%、
     O :0.0005~0.0040%、
     Nb:0.003~0.050%、
     Ti:0.003~0.024%、
     Zr:0.0007~0.0050%、
     Insol.Zr:0.0007~0.0040%、
     Sol.Zr:0.0010%以下、
     B :0.0003~0.0040%、
     残部:Feおよび不純物であり、
     下記(I)式を満足し、
     前記鋼板の圧延方向に垂直な断面において、前記鋼板の厚さをtとした時に、前記鋼板の表面から1/4tの位置における金属組織が、
     面積%で、80%以上のベイナイトを含み、かつ、
     前記ベイナイトを構成するベイニティックフェライトの長軸方向の平均長さが10μm以下であり、
     前記鋼板の圧延方向および厚さ方向に平行な断面において、前記鋼板の表面から1/4tの位置における旧オーステナイト粒の、厚さ方向における平均長さが20μm以下であり、アスペクト比の平均が2.5以上であり、
     ZrおよびBを含む複合介在物であって、円相当径が0.5μm以上であり、かつ、ZrO、Ti、およびAlの合計に占めるAlの割合が、質量%で、50%以下である前記複合介在物の個数密度が5~300個/mmである、
     鋼板。
     B≦0.0030  ・・・(I)
     但し、
     B´>Bの場合は、B=B
     0<B´≦Bの場合は、B=B´
     B´≦0の場合は、B=0
     とし、B´は下記(II)式で表される。
     B´=B-(N-(Ti-(O-Insol.Zr×(32/91.224))×(95.73/48))×(14/47.867))×(10.811/14)  ・・・(II)
     なお、上記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
  2.  前記化学組成が、前記Feの一部に代えて、質量%で、
     Cu:1.50%以下、
     Ni:2.50%以下、
     Cr:1.00%以下、
     Mo:1.00%以下、および
     V :0.150%以下、
     からなる群から選択される少なくとも1種以上を含有するものである、
     請求項1に記載の鋼板。
  3.  前記化学組成が、前記Feの一部に代えて、質量%で、
     Te:0.0100%以下、
     を含有するものである、
     請求項1または請求項2に記載の鋼板。
  4.  前記化学組成が、前記Feの一部に代えて、質量%で、
     W :1.00%以下、および
     Sn:0.50%以下、
     からなる群から選択される少なくとも1種以上を含有するものである、
     請求項1から請求項3までのいずれかに記載の鋼板。
  5.  前記化学組成が、前記Feの一部に代えて、質量%で、
     Ca、MgおよびREMの合計:0.0005%以下、
     を含有するものである、
     請求項1から請求項4までのいずれかに記載の鋼板。
  6.  請求項1から請求項5までのいずれか1項に記載の鋼板の製造方法であって、
     溶鋼を製造する精錬工程と、前記溶鋼を連続鋳造して請求項1から請求項5までのいずれかに記載の化学組成を有する鋼片を製造する連続鋳造工程とを備え、得られた前記鋼片に対して、加熱工程、熱間圧延工程および加速冷却工程を順に施す、鋼板の製造方法において、
     前記精錬工程では、投入する脱酸Al量を、前記溶鋼1t当たり0.2~1.3kgとし、前記溶鋼中の溶存O濃度が0.0050質量%以下となってからZrを添加し、かつ前記Zrの添加から1分以上経過した後にBを添加し、
     前記連続鋳造工程では、前記鋼片の表面温度が1200~900℃の間における平均冷却速度を0.5℃/秒以下とし、
     前記加熱工程では、前記鋼片を950~1080℃の加熱温度まで加熱し、
     前記熱間圧延工程は、粗圧延と仕上圧延とを含み、
     前記粗圧延は、前記鋼片の表面温度がTrex以上の範囲で実施し、
     前記粗圧延における累積圧下率を10~75%とし、
     前記仕上圧延は、前記鋼片の表面温度がAr以上Trex未満の範囲で実施し、
     前記仕上圧延における累積圧下率を65~90%として、かつパス間時間を15秒以下とし、
     前記仕上圧延完了から、前記加速冷却工程における冷却開始までの時間を50秒以下とし、
     前記加速冷却工程では、冷却開始温度をTrex-10℃以下とし、かつ、冷却開始から冷却終了までの平均冷却速度が5~50℃/秒となる条件で、0~550℃の冷却停止温度まで水冷する、
     鋼板の製造方法。
     ここで、Arは下記(i)式で求められ、Trexは下記(ii)式で求められる。なお、下記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
     Ar=910-310×C+65×Si-80×Mn-20×Cu-55×Ni-15×Cr-80×Mo   ・・・(i)
     Trex=-91900[Nb*]+9400[Nb*]+770   ・・・(ii)
     但し、下記(iii)式で求められる固溶Nb量(質量%)を、sol.Nbとした時に、
     Nb≧sol.Nbの場合は、[Nb*]=sol.Nb
     Nb<sol.Nbの場合は、[Nb*]=Nb
     とする。
     sol.Nb=(10(-6770/(T+273)+2.26))/(C+12/14×N)   ・・・(iii)
     なお、上記式中のTは加熱工程における鋼片の加熱温度(℃)を表す。
  7.  前記加速冷却工程の後に、350~650℃の温度範囲まで加熱する焼戻し工程をさらに施す、
     請求項6に記載の鋼板の製造方法。
PCT/JP2021/031919 2020-08-31 2021-08-31 鋼板およびその製造方法 WO2022045350A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022505646A JP7127751B2 (ja) 2020-08-31 2021-08-31 鋼板およびその製造方法
KR1020227034203A KR20220146638A (ko) 2020-08-31 2021-08-31 강판 및 그 제조 방법
CN202180025262.1A CN115362274B (zh) 2020-08-31 2021-08-31 钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020145738 2020-08-31
JP2020-145738 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022045350A1 true WO2022045350A1 (ja) 2022-03-03

Family

ID=80353523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031919 WO2022045350A1 (ja) 2020-08-31 2021-08-31 鋼板およびその製造方法

Country Status (4)

Country Link
JP (1) JP7127751B2 (ja)
KR (1) KR20220146638A (ja)
CN (1) CN115362274B (ja)
WO (1) WO2022045350A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306316A (ja) * 1997-04-28 1998-11-17 Nippon Steel Corp 低温靭性に優れた低降伏比高張力鋼材の製造方法
WO2009072559A1 (ja) * 2007-12-06 2009-06-11 Nippon Steel Corporation 脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板
JP2018003062A (ja) * 2016-06-29 2018-01-11 Jfeスチール株式会社 高強度高加工性熱延鋼板およびその製造方法
JP2018090872A (ja) * 2016-12-06 2018-06-14 Jfeスチール株式会社 低降伏比高張力厚鋼板およびその製造方法
JP2020117779A (ja) * 2019-01-24 2020-08-06 日本製鉄株式会社 鋼板及び鋼板の製造方法
WO2020262638A1 (ja) * 2019-06-27 2020-12-30 日本製鉄株式会社 鋼材及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515430B2 (ja) * 2006-09-29 2010-07-28 株式会社神戸製鋼所 溶接熱影響部の靭性および母材靭性に優れた鋼材およびその製法
JP4515427B2 (ja) * 2006-09-29 2010-07-28 株式会社神戸製鋼所 溶接熱影響部の靭性および疲労亀裂進展抵抗性に優れた鋼材およびその製法
JP4681690B2 (ja) * 2009-06-11 2011-05-11 新日本製鐵株式会社 大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、大入熱溶接熱影響部靭性に優れた厚手高強度鋼板
JP5820341B2 (ja) * 2012-06-19 2015-11-24 株式会社神戸製鋼所 溶接熱影響部の靭性に優れた鋼材
WO2017183630A1 (ja) * 2016-04-19 2017-10-26 新日鐵住金株式会社 鋼材
JP2018034178A (ja) * 2016-08-31 2018-03-08 新日鐵住金株式会社 構造用Al−Zr添加鋼とその製造方法
JP6926773B2 (ja) * 2017-07-21 2021-08-25 日本製鉄株式会社 鋼板および鋼板の製造方法
JP6926772B2 (ja) 2017-07-21 2021-08-25 日本製鉄株式会社 鋼板
JP6926774B2 (ja) 2017-07-21 2021-08-25 日本製鉄株式会社 鋼板および鋼板の製造方法
JP6828638B2 (ja) 2017-08-14 2021-02-10 日本製鉄株式会社 鋼板および鋼板の製造方法
WO2019069771A1 (ja) 2017-10-03 2019-04-11 新日鐵住金株式会社 鋼板および鋼板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306316A (ja) * 1997-04-28 1998-11-17 Nippon Steel Corp 低温靭性に優れた低降伏比高張力鋼材の製造方法
WO2009072559A1 (ja) * 2007-12-06 2009-06-11 Nippon Steel Corporation 脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板
JP2018003062A (ja) * 2016-06-29 2018-01-11 Jfeスチール株式会社 高強度高加工性熱延鋼板およびその製造方法
JP2018090872A (ja) * 2016-12-06 2018-06-14 Jfeスチール株式会社 低降伏比高張力厚鋼板およびその製造方法
JP2020117779A (ja) * 2019-01-24 2020-08-06 日本製鉄株式会社 鋼板及び鋼板の製造方法
WO2020262638A1 (ja) * 2019-06-27 2020-12-30 日本製鉄株式会社 鋼材及びその製造方法

Also Published As

Publication number Publication date
CN115362274A (zh) 2022-11-18
JPWO2022045350A1 (ja) 2022-03-03
CN115362274B (zh) 2023-12-22
KR20220146638A (ko) 2022-11-01
JP7127751B2 (ja) 2022-08-30

Similar Documents

Publication Publication Date Title
JP4213833B2 (ja) 溶接部靱性に優れた高靱性高張力鋼とその製造方法
JP4072090B2 (ja) 伸びフランジ成形性に優れた高強度鋼板およびその製造方法
EP1254275B1 (en) STEEL PLATE TO BE PRECIPITATING TiN + ZrN FOR WELDED STRUCTURES, METHOD FOR MANUFACTURING THE SAME AND WELDING FABRIC USING THE SAME
WO2020262638A1 (ja) 鋼材及びその製造方法
JP6926773B2 (ja) 鋼板および鋼板の製造方法
JP7127753B2 (ja) 鋼板およびその製造方法
JP7099653B1 (ja) 鋼板およびその製造方法
JP2017193759A (ja) 厚鋼板およびその製造方法
CN115398019B (zh) 钢板及其制造方法
CN112513307A (zh) 高Mn钢及其制造方法
CN115362276B (zh) 钢板及其制造方法
WO2007020683A1 (ja) 大入熱溶接継手靭性に優れた厚鋼板
JP7207199B2 (ja) 鋼材及びその製造方法
WO2021100534A1 (ja) 電縫鋼管用熱延鋼板およびその製造方法、電縫鋼管およびその製造方法、ラインパイプ、建築構造物
JP7364906B2 (ja) 鋼材及びその製造方法
JP7127751B2 (ja) 鋼板およびその製造方法
JP7099656B1 (ja) 鋼板およびその製造方法
JP7243916B2 (ja) 鋼板および鋼板の製造方法
JP7207250B2 (ja) 鋼材及びその製造方法
JP2003342670A (ja) 靭性の優れた非調質高張力鋼
CN118679276A (zh) 大线能量焊接用钢板及其制造方法
JP2024088446A (ja) 鋼板およびその製造方法
JP2024072572A (ja) 熱延鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022505646

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227034203

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861771

Country of ref document: EP

Kind code of ref document: A1