WO2022045037A1 - 非水電解液二次電池 - Google Patents

非水電解液二次電池 Download PDF

Info

Publication number
WO2022045037A1
WO2022045037A1 PCT/JP2021/030718 JP2021030718W WO2022045037A1 WO 2022045037 A1 WO2022045037 A1 WO 2022045037A1 JP 2021030718 W JP2021030718 W JP 2021030718W WO 2022045037 A1 WO2022045037 A1 WO 2022045037A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic solution
secondary battery
positive electrode
battery according
vfec
Prior art date
Application number
PCT/JP2021/030718
Other languages
English (en)
French (fr)
Inventor
千咲希 藤友
祐 石黒
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180052621.2A priority Critical patent/CN115989595A/zh
Priority to EP21861463.4A priority patent/EP4207356A1/en
Priority to US18/023,650 priority patent/US20230344005A1/en
Priority to JP2022544568A priority patent/JPWO2022045037A1/ja
Publication of WO2022045037A1 publication Critical patent/WO2022045037A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries especially lithium ion secondary batteries, are expected as power sources for small consumer applications, power storage devices and electric vehicles because of their high output and high energy density.
  • the importance of quick charging performance is increasing.
  • Patent Document 1 can occlude and discharge a charge carrier as a positive electrode active material particularly suitable for use in a lithium ion secondary battery for driving a vehicle, in which the internal resistance of the battery is reduced and high-rate charge / discharge and high output are required.
  • a positive electrode active material comprising a substrate portion made of a compound, a dielectric disposed on at least a part of the surface of the substrate portion, and a carbon dioxide compound arranged on at least a part of the surface of the substrate portion. ing.
  • the positive electrode resistance When the positive electrode resistance is reduced, the positive electrode active material is charged deeper during charging, so that the positive electrode potential tends to rise. Therefore, oxidative decomposition of the electrolytic solution may be promoted in the process of the charge / discharge cycle, the positive electrode resistance may increase, and the durability (capacity retention rate) may decrease.
  • one aspect of the present disclosure includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolytic solution.
  • the electrolytic solution is of the formula (1): (RO-SO 3 ) n X1. Contains the organic sulfates indicated by However, R is an organic group having 1 or more carbon atoms, X1 is a cation, n is an integer of 1 to 3, and the electrolytic solution further contains ethylene carbonate and fluoroethylene carbonate, and is described above.
  • the volume Vec of ethylene carbonate and the volume Vfec of the fluoroethylene carbonate are The present invention relates to a non-aqueous electrolyte secondary battery satisfying 0.1 ⁇ Vec / Vfec ⁇ 15.
  • FIG. 1 is a schematic perspective view in which a part of the secondary battery according to the embodiment of the present disclosure is cut out.
  • the non-aqueous electrolytic solution secondary battery includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolytic solution.
  • the positive electrode contains a positive electrode active material.
  • the positive electrode active material is, for example, a lithium-containing composite oxide and contains a transition metal.
  • the electrolytic solution is the formula (1): (RO-SO 3 ) n X1. Contains the organic sulfates indicated by. However, R is an organic group having 1 or more carbon atoms, X1 is a cation, and n is an integer of 1 or more and 3 or less.
  • Organic sulfate plays a role in preventing the formation of a high resistance film on the surface of the positive electrode active material.
  • the high resistance film is composed of an oxidative decomposition component of an electrolytic solution, a deterioration component of a positive electrode active material, and the like.
  • the mechanism is expressed by the delocalization of the negative charge of the organic sulfate anion generated by ionizing the organic sulfate in the electrolytic solution.
  • the surface of the positive electrode active material is protected by the organic sulfate anion (RO - SO 4- ), and the side reaction between the positive electrode active material and the electrolytic solution is suppressed. That is, the surface protection suppresses the increase in the positive electrode resistance, and the battery reaction proceeds more preferentially. Therefore, even in the case of quick charging of the non-aqueous electrolyte secondary battery, the charge acceptability of the positive electrode is improved (that is, the quick charging performance is improved).
  • the electrolytic solution contains ethylene carbonate (EC) and fluoroethylene carbonate (FEC).
  • EC is a component that forms a low resistance solid electrolyte interface (SEI) on the negative electrode, and is considered to play an important role in reducing the internal resistance of the battery.
  • SEI solid electrolyte interface
  • EC has a slightly low oxidation resistance to a high-potential positive electrode, and when the positive electrode is repeatedly charged and discharged to a high potential, it is gradually oxidatively decomposed and can form a high-resistance film on the positive electrode.
  • FEC has a structure in which one hydrogen of EC is replaced with fluorine, and is expected to have better oxidation resistance than EC and to form a low resistance inorganic film containing a fluorine salt (for example, LiF) on the negative electrode.
  • Fluorine for example, LiF
  • FEC fluorine salt
  • the volume Vec of EC and the volume Vfec of FEC contained in the electrolytic solution satisfy 0.1 ⁇ Vec / Vfec ⁇ 15. Further, when the durability of the battery is to be improved more remarkably, it is desirable to satisfy 0.1 ⁇ Vec / Vfec ⁇ 12 or 0.1 ⁇ Vec / Vfec ⁇ 5, and satisfy 0.1 ⁇ Vec / Vfec ⁇ 4. Alternatively, 0.1 ⁇ Vec / Vfec ⁇ 2 may be satisfied.
  • the cation X1 is not particularly limited as long as it forms a salt that can be ionized in the electrolytic solution.
  • alkali metal ions or NH 4+ can be used as the cation X1.
  • sodium ions, lithium ions and the like are preferable because they are easily ionized, easily obtained, and have a small effect on increasing the viscosity of the electrolytic solution.
  • R may be, for example, an alkyl group having 1 or more carbon atoms and 6 or less carbon atoms, but if R is too large, it protects the positive electrode active material in a highly oxidized state. Not only the action of suppressing side reactions but also the battery reaction itself may be inhibited. From the viewpoint of efficiently suppressing side reactions and promoting battery reactions, the carbon number of R is preferably 1 to 3, and particularly preferably 1 or 2. Specific examples of the organic sulfate satisfying such conditions include lithium methyl sulfate, sodium methyl sulfate, lithium ethyl sulfate, sodium ethyl sulfate and the like. Of these, lithium ethyl sulfate and sodium ethyl sulfate are preferable. One type of organic sulfate may be used alone, or two or more types may be used in combination.
  • the content C1 of the organic sulfate contained in the electrolytic solution may be, for example, 0.1% by mass or more and 5% by mass or less, 0.5% by mass or more and 5% by mass or less, and may be 0. It may be 0.5% by mass or more and 3% by mass or less.
  • the electrolytic solution is further expressed by the formula (2): (F-SO 3 ) m X2. It may contain a fluorosulphonate represented by. However, X2 is a cation and m is an integer of 1 to 3. Since the fluorosulfonate ionizes in the electrolytic solution to generate F-SO 3 - ion in which the negative charge is delocalized, the surface of the positive electrode active material in a highly oxidized state is formed like the organic sulfate. It is considered to protect and suppress the side reaction between the high potential positive electrode and the electrolytic solution. However, the fluorosulfonate alone cannot sufficiently protect the surface of the positive electrode active material, and the effect of suppressing the increase in the positive electrode resistance does not become apparent.
  • the cation X2 is not particularly limited as long as it forms a salt that can be ionized in the electrolytic solution.
  • alkali metal ions or NH 4+ can be used as the cation X2. Of these, lithium ions are preferable because they are easily ionized and have a small effect on the increase in viscosity of the electrolytic solution.
  • One type of fluorosulfonate may be used alone, or two or more types may be used in combination.
  • the content C2 of the fluorosulfonate contained in the electrolytic solution may be, for example, 0.5% by mass or more and 5% by mass or less, or 0.5% by mass or more and 3% by mass or less.
  • the mass ratio of the fluorosulfonate content C2 contained in the electrolytic solution to the organic sulfate content C1: C2 / C1 may satisfy, for example, 0 ⁇ C2 / C1 ⁇ 3, and 0 ⁇ C2 / C1. ⁇ 2 may be satisfied, 0.05 ⁇ C2 / C1 ⁇ 1.5 may be satisfied, and 0.5 ⁇ C2 / C1 ⁇ 1.5 may be satisfied.
  • the positive electrode active material may contain, for example, a lithium-containing composite oxide having a layered rock salt type crystal structure in which 80 atomic% or more of a metal other than lithium is nickel.
  • a positive electrode active material containing a high nickel content has a high capacity, but as the nickel content increases, the composite oxide tends to deteriorate and the durability of the battery tends to decrease.
  • Nickel exists in a trivalent or tetravalent component in a composite oxide and contributes to charging and discharging, but its stable state as an element is divalent. The reaction that becomes divalent is an irreversible reaction. Tetravalent nickel contained in a highly oxidized composite oxide is likely to be strongly reduced to a divalent by a side reaction.
  • the lithium-containing composite oxide has, for example, the chemical formula Lia Ni x M 1-x O 2- ⁇ (where 0 ⁇ a ⁇ 1.2, 0.8 ⁇ x ⁇ 1, 0 ⁇ ⁇ ⁇ 0.05.
  • M comprises at least one selected from the group consisting of Mn, Fe, Ti, Si, Nb, Zr, Mo, Co, Al, Zn, W, Sr and Ca). It may be a composite oxide.
  • the Ni ratio x in the above chemical formula may be 0.85 or more (0.85 ⁇ x) or 0.90 or more (0.90 ⁇ x).
  • M is composed of at least one element selected from the group consisting of Mn, Fe, Ti, Si, Nb, Zr, Mo, Co, Al and Zn, and W, Sr and Ca. It may contain at least one element selected from the group.
  • W, Sr and Ca is contained in the composite oxide, the surface structure of the composite oxide is stabilized, and deterioration of the positive electrode active material can be suppressed more effectively.
  • W, Sr and Ca are unevenly distributed in the vicinity of the surface of the composite oxide which is the positive electrode active material.
  • the positive electrode includes a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector and containing a positive electrode active material.
  • the positive electrode mixture layer is a positive electrode slurry in which a positive electrode mixture containing a positive electrode active material as an essential component and a binder, a thickener, a conductive agent, etc. as an optional component is dispersed in a dispersion medium. It can be formed by applying it to the surface and drying it. The dried coating film may be rolled if necessary.
  • Known materials can be used as the positive electrode active material, the binder, the thickener, the conductive agent and the like.
  • the lithium-containing composite oxide used as the positive electrode active material is, for example, secondary particles formed by aggregating a plurality of primary particles.
  • the particle size of the primary particles is generally 0.05 ⁇ m to 1 ⁇ m.
  • the average particle size of the composite oxide is, for example, 3 ⁇ m to 30 ⁇ m, preferably 5 ⁇ m to 25 ⁇ m.
  • the average particle size of the composite oxide means the median diameter (D50) at which the cumulative frequency is 50% in the volume-based particle size distribution, and is measured by a laser diffraction type particle size distribution measuring device.
  • the content of the elements constituting the composite oxide can be measured by an inductively coupled plasma emission spectrophotometer (ICP-AES), an electron probe microanalyzer (EPMA), an energy dispersive X-ray analyzer (EDX), or the like. can.
  • ICP-AES inductively coupled plasma emission spectrophotometer
  • EPMA electron probe microanalyzer
  • EDX energy dispersive X-ray analyzer
  • the positive electrode current collector As the positive electrode current collector, a non-perforated conductive substrate (metal foil, etc.) and a porous conductive substrate (mesh body, net body, punching sheet, etc.) are used. Examples of the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloy, and titanium.
  • the negative electrode includes, for example, a negative electrode current collector and a negative electrode active material layer formed on the surface of the negative electrode current collector.
  • the negative electrode active material layer is, for example, a positive electrode slurry in which a negative electrode mixture containing a negative electrode active material as an essential component and a binder, a thickener, a conductive agent and the like as an optional component is dispersed in a dispersion medium is used as a negative electrode current collector. It can be formed by applying it to the surface of the body and drying it. The dried coating film may be rolled if necessary. That is, the negative electrode active material may be a mixture layer. Further, a lithium metal foil or a lithium alloy foil may be attached to the negative electrode current collector.
  • Known materials can be used as the negative electrode active material, the binder, the conductive agent, and the thickener.
  • Negative electrode active material includes materials that electrochemically occlude and release lithium ions, lithium metals, lithium alloys, and the like.
  • a material that electrochemically occludes and releases lithium ions a carbon material, an alloy-based material, or the like is used.
  • the carbon material include graphite, easily graphitized carbon (soft carbon), and non-graphitized carbon (hard carbon).
  • alloy-based materials include silicon, tin, silicon alloys, tin alloys, and silicon compounds.
  • the negative electrode current collector As the negative electrode current collector, a non-perforated conductive substrate (metal foil, etc.) and a porous conductive substrate (mesh body, net body, punching sheet, etc.) are used. Examples of the material of the negative electrode current collector include stainless steel, nickel, nickel alloy, copper, and copper alloy.
  • the electrolytic solution contains a solvent and a solute dissolved in the solvent.
  • the solute is an electrolyte salt that ionically dissociates in the electrolytic solution.
  • Solutes include organic sulfates and fluorosulfonates, which are usually treated as additives.
  • the main component of the solute is a lithium salt.
  • a known material can be used as the solvent.
  • a cyclic carbonate ester, a chain carbonate ester, a cyclic carboxylic acid ester, a chain carboxylic acid ester, or the like is used.
  • the cyclic carbonic acid ester include propylene carbonate (PC), ethylene carbonate (EC), fluoroethylene carbonate (FEC), vinylene carbonate (VC) and the like.
  • the chain carbonate ester include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC) and the like.
  • Examples of the cyclic carboxylic acid ester include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • Examples of the chain carboxylic acid ester include non-aqueous solvents such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP) and ethyl propionate (EP).
  • the non-aqueous solvent one type may be used alone, or two or more types may be used in combination.
  • the solvent contains EC and FEC as essential components.
  • the total volume of EC and FEC in the entire solvent is preferably 10% by volume or more and 30% by volume or less, and more preferably 15% by volume or more and 25% by volume or less.
  • a chain carbonate ester is preferable because it is easy to optimize the viscosity of the electrolytic solution.
  • the total volume of EC, FEC, and the chain carbonate ester in the entire solvent is preferably 80% by volume or more, and may be 100% by volume.
  • lithium salts other than organic sulfates and fluorosulfonates include lithium salts of chlorine-containing acids (LiClO 4 , LiAlCl 4 , LiB 10 Cl 10 , etc.) and lithium salts of fluorine-containing acids (LiPF 6 , LiPF 2 O).
  • LiN (FSO 2 ) 2 LiN (CF 3 SO 2 ) 2 , LiN (CF) 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (C 2 F 5 SO 2 ) 2 , etc.
  • lithium halide LiCl, LiBr, LiI, etc.
  • One type of lithium salt may be used alone, or two or more types may be used in combination.
  • the concentration of the lithium salt (other than the organic sulfate and the fluorosulfonate) in the electrolytic solution may be 1 mol / liter or more and 2 mol / liter or less, or 1 mol / liter or more and 1.5 mol / liter or less.
  • the lithium salt concentration is not limited to the above.
  • the electrolytic solution may contain other known additives.
  • the additive include vinylene carbonate, 1,3-propanesarton, methylbenzenesulfonate, cyclohexylbenzene, biphenyl, diphenyl ether, fluorobenzene and the like.
  • the content of each component in the electrolytic solution can be determined by, for example, high-speed liquid chromatography, gas chromatography-mass spectrometry (GC-MS), NMR, inductively coupled plasma mass spectrometry (ICP-MS), elemental analysis and the like. Obtained using.
  • a separator is interposed between the positive electrode and the negative electrode.
  • the separator has high ion permeability and has moderate mechanical strength and insulation.
  • a microporous thin film, a woven fabric, a non-woven fabric, or the like can be used.
  • polyolefins such as polypropylene and polyethylene are preferable.
  • the structure of the non-aqueous electrolyte secondary battery there is a structure in which an electrode group in which a positive electrode and a negative electrode are wound via a separator is housed in an exterior body together with a non-aqueous electrolyte.
  • the present invention is not limited to this, and other forms of electrodes may be applied.
  • a laminated electrode group in which a positive electrode and a negative electrode are laminated via a separator may be used.
  • the form of the non-aqueous electrolyte secondary battery is not limited, and may be, for example, a cylindrical type, a square type, a coin type, a button type, a laminated type, or the like.
  • FIG. 1 is a schematic perspective view in which a part of a square non-aqueous electrolyte secondary battery according to an embodiment of the present disclosure is cut out.
  • the battery includes a bottomed square battery case 4, an electrode group 1 housed in the battery case 4, and a non-aqueous electrolyte.
  • the electrode group 1 has a long strip-shaped negative electrode, a long strip-shaped positive electrode, and a separator interposed between them.
  • the negative electrode current collector of the negative electrode is electrically connected to the negative electrode terminal 6 provided on the sealing plate 5 via the negative electrode lead 3.
  • the negative electrode terminal 6 is insulated from the sealing plate 5 by a resin gasket 7.
  • the positive electrode current collector of the positive electrode is electrically connected to the back surface of the sealing plate 5 via the positive electrode lead 2.
  • the positive electrode is electrically connected to the battery case 4 that also serves as the positive electrode terminal.
  • the peripheral edge of the sealing plate 5 is fitted to the open end portion of the battery case 4, and the fitting portion is laser welded.
  • the sealing plate 5 has an injection hole for a non-aqueous electrolyte, and is closed by the sealing 8 after injection.
  • Examples 1 to 3> [Manufacturing of negative electrode] SiO and graphite were mixed at a mass ratio of 5:95 and used as a negative electrode active material. A negative electrode active material, sodium carboxymethyl cellulose (CMC-Na), styrene-butadiene rubber (SBR), and water were mixed at a predetermined mass ratio to prepare a negative electrode slurry. Next, the negative electrode slurry was applied to the surface of the copper foil, which is the negative electrode current collector, the coating film was dried, and then rolled to form negative electrode mixture layers on both sides of the copper foil.
  • CMC-Na sodium carboxymethyl cellulose
  • SBR styrene-butadiene rubber
  • NCA lithium-containing composite oxide
  • AB rock salt type lithium-containing transition metal oxide having a layered structure
  • AB conductive material
  • PVdF vinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • Lithium in a mixed solvent containing ethylene carbonate (EC), fluoroethylene carbonate (FEC), ethylmethyl carbonate (EMC) and dimethyl carbonate (DMC) in a volume ratio of (EC + FEC): EMC: DMC 20: 10: 70.
  • LiPF 6 was added as a salt, and sodium ethyl sulfate (NaES) was further added as an additive to prepare an electrolytic solution.
  • the concentration of LiPF 6 in the non-aqueous electrolytic solution was 1.0 mol / liter, and the concentration of NaES was 1% by mass.
  • the ratio of EC volume Vec to FEC volume Vfec: Vec / Vfec was changed as shown in Table 1 while the total volume of EC and FEC in the mixed solvent remained constant.
  • a lead tab was attached to each electrode, and the positive electrode and the negative electrode were spirally wound via a separator so that the lead was located at the outermost peripheral portion to prepare an electrode group.
  • the electrode group is inserted into the outer body made of a laminated film having an aluminum foil as a barrier layer, vacuum dried at 105 ° C. for 2 hours, then a non-aqueous electrolytic solution is injected, and the opening of the outer body is sealed.
  • the next batteries A1 to A3 were manufactured.
  • Examples 4 to 7 Lithium fluorosulfonate (FSO 3 Li) was further added to the electrolytic solution as an additive, the concentration of FSO 3 Li in the non-aqueous electrolytic solution was set to 1% by mass, and the Vec / Vfec ratio was changed as shown in Table 1. Except for the above, secondary batteries A4 to A7 were produced in the same manner as in Examples 1 to 3.
  • FSO 3 Li Lithium fluorosulfonate
  • a secondary battery B6 was produced in the same manner as in Example 3 except that NaES was not added to the electrolytic solution and the concentration of FSO 3 Li in the electrolytic solution was 1% by mass.
  • a secondary battery B7 was produced in the same manner as in Examples 1 to 3 except that the Vec / Vfec ratio was set to 20 as shown in Table 1.
  • the rest period between charging and discharging was set to 10 minutes, and charging and discharging were repeated for 200 cycles under the above charging and discharging conditions in an environment of 25 ° C., and the discharge capacity C1 at the 200th cycle was obtained.
  • the percentage value of the ratio R 1 C 1 / C 0 of the discharge capacity C 1 to the initial capacity C 0 was obtained as the capacity retention rate. The results are shown in Table 1.
  • reaction resistance component The reaction resistance of the battery in a 100% charged state (SOC 100%) under a 25 ° C. environment was determined by AC impedance measurement.
  • the R1 value (79.8 to 81 (swing width 1.2)) hardly changes even if the Vec / Vfec ratio is changed.
  • the Vec / Vfec ratio becomes smaller (that is, when the ratio of FEC increases), a slight improvement is seen.
  • the R 1 value improves from 79.9 to 84.1 (fluctuation width 4.2).
  • the batteries A4 to A7 in which lithium fluorosulfonate is used in combination the R 1 value is further greatly improved to 85.0.
  • the quick charge index of the battery B7 containing NaES is 1.00, which is a great improvement as compared with the batteries B1 to B6 not containing NaES. Further, it can be understood that in the batteries B1 to B6 containing no NaES, there is almost no change in the quick charge index even if the Vec / Vfec ratio is changed.
  • the quick charge index maintains the same level as that of the battery B7. That is, in the batteries A1 to A3, the durability of the battery is improved while reducing the positive electrode resistance as in the battery B7. Further, in the batteries A4 to A7, the durability of the battery is further improved even though the positive electrode resistance is further reduced.
  • the non-aqueous electrolyte secondary battery according to the present disclosure is useful for applications that require high-speed charging performance and durability, for example, as a main power source for mobile communication devices, portable electronic devices, electric vehicles, hybrid vehicles, and the like.
  • Electrode group 2 Positive electrode lead 3 Negative electrode lead 4 Battery case 5 Sealing plate 6 Negative electrode terminal 7 Gasket 8 Sealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

非水電解液二次電池は、正極と、負極と、前記正極と前記負極との間に介在するセパレータと、電解液と、を備え、前記電解液は、式(1):(R-O-SO3)nX1で示される有機硫酸塩を含み、ただし、Rは炭素数1以上の有機基であり、X1はカチオンであり、nは1~3の整数であり、前記電解液は、更に、エチレンカーボネートと、フルオロエチレンカーボネートと、を含み、前記エチレンカーボネートの体積Vecと前記フルオロエチレンカーボネートの体積Vfecとが、0.1≦Vec/Vfec≦15を満たす。

Description

非水電解液二次電池
 本開示は、非水電解液二次電池に関する。
 非水電解液二次電池、特にリチウムイオン二次電池は、高出力かつ高エネルギー密度を有するため、小型民生用途、電力貯蔵装置および電気自動車の電源として期待されている。一方、非水電解液二次電池の急速な普及に伴い、急速充電性能の重要性が高まってきている。
 特許文献1は、電池の内部抵抗が低減され、ハイレートな充放電や高出力がもとめられる車両駆動用のリチウムイオン二次電池用途に特に適する正極活物質として、電荷担体の吸蔵および放出が可能な化合物からなる基体部と、前記基体部の表面の少なくとも一部に配置された誘電体と、前記基体部の表面の少なくとも一部に配置された炭酸化合物と、を備える、正極活物質を提案している。
特開2020-123500号公報
 正極抵抗が低減すると、充電時に正極活物質がより深くまで充電されるため、正極電位が上昇しやすい。そのため、充放電サイクルの過程で電解液の酸化分解が促進され、正極抵抗が増大し、耐久性(容量維持率)が低下することがある。
 以上に鑑み、本開示の一側面は、正極と、負極と、前記正極と前記負極との間に介在するセパレータと、電解液と、を備え、
 前記電解液は、式(1):(R-O-SO3nX1
で示される有機硫酸塩を含み、
 ただし、Rは炭素数1以上の有機基であり、X1はカチオンであり、nは1~3の整数であり、前記電解液は、更に、エチレンカーボネートと、フルオロエチレンカーボネートと、を含み、前記エチレンカーボネートの体積Vecと前記フルオロエチレンカーボネートの体積Vfecとが、
 0.1≦Vec/Vfec≦15を満たす、非水電解液二次電池に関する。
 本開示によれば、正極抵抗を低減しつつ、非水電解液二次電池の耐久性を向上させることがきる。
図1は、本開示の一実施形態に係る二次電池の一部を切欠いた概略斜視図である。
 本開示の実施形態に係る非水電解液二次電池は、正極と、負極と、正極と負極との間に介在するセパレータと、電解液とを備える。正極は正極活物質を含む。正極活物質は、例えばリチウム含有複合酸化物であり、遷移金属を含む。
 電解液は、式(1):(R-O-SO3nX1
で示される有機硫酸塩を含む。ただし、Rは炭素数1以上の有機基であり、X1はカチオンであり、nは1以上、3以下の整数である。
 有機硫酸塩は、正極活物質の表面に高抵抗の被膜が形成されることを防止する役割を果たす。高抵抗の被膜は、電解液の酸化分解成分、正極活物質の劣化成分などで構成される。そのメカニズムは、有機硫酸塩が電解液中で電離して生成する有機硫酸アニオンの負電荷が非局在化することで発現する。
 まず、負電荷が非局在化した有機硫酸アニオン(R-O-SO4 )は、高酸化状態の正極活物質(特に高酸化状態の遷移金属イオン)に配位する。その結果、正極活物質の表面が有機硫酸アニオン(R-O-SO4 )で保護され、正極活物質と電解液との副反応が抑制される。すなわち、表面保護により正極抵抗の増大が抑制され、電池反応がより優先的に進行する。よって、非水電解液二次電池の急速充電する場合でも、正極の充電受け入れ性が向上する(すなわち、急速充電性能が向上する)。
 また、R-O-SO4 イオンは、高酸化状態の正極活物質に有効に作用するため、正極抵抗が低減された結果として正極活物質がより深くまで充電される場合でも、高電位の正極(高酸化状態の正極活物質)と電解液との副反応は抑制されている。そのため、充放電サイクルの過程においても正極での高抵抗の被膜生成が抑制され、電池の耐久性が向上する。
 ただし、R-O-SO4 イオンが有効に作用する場合でも、正極活物質がより深くまで充電されると、電解液と正極活物質との副反応を抑制することが困難になる場合がある。例えば、正極の平均的な電位が高くなると、正極活物質の一部では酸化状態が平均値よりも相当に高くなる場合がある。よって、高電位の正極で酸化されにくい(耐酸化性の高い)電解液成分を選択することの重要性が大きくなる。換言すれば、有機硫酸塩が電解液中に存在する場合と、存在しない場合とでは、耐酸化性の高い電解液成分による電池の耐久性の向上の程度に大きな差が生じるようになる。
 電解液は、エチレンカーボネート(EC)と、フルオロエチレンカーボネート(FEC)とを含む。ECは、負極に低抵抗の固体電解質界面(SEI)を形成する成分であり、電池の内部抵抗を低減する上で重要な役割を果たすと考えられている。一方、ECは、高電位の正極に対する耐酸化性がやや低く、正極が高電位まで充電される充放電サイクルを繰り返すと、次第に酸化分解され、正極に高抵抗の被膜を生成させ得る。FECは、ECの水素1個をフッ素に置換した構造を有し、ECよりも耐酸化性に優れるとともに、負極にフッ素塩(例えばLiF)を含む低抵抗な無機被膜を形成することが期待される。FECを所定割合で電解液に含ませることで、正極が高電位になる場合でも、ECの酸化分解が顕著に抑制されるようになる。そして、ECの分解を抑制し、電池の耐久性を向上させる効果は、有機硫酸塩が電解液中に存在する場合に顕在化する。
 電池の耐久性を顕著に向上させるには、電解液に含まれるECの体積VecとFECの体積Vfecとが、0.1≦Vec/Vfec≦15を満たすことが必要である。また、電池の耐久性をより顕著に向上させる場合、0.1≦Vec/Vfec≦12もしくは0.1≦Vec/Vfec≦5を満たすことが望ましく、0.1≦Vec/Vfec≦4を満たしてもよく、0.1≦Vec/Vfec≦2を満たしてもよい。
 式(1)で示される有機硫酸塩において、カチオンX1は、電解液中で電離し得る塩を形成するものであれば特に限定されない。カチオンX1の価数は1~3であればよいが、2価以下のカチオン(n=2)が好ましく、1価のカチオン(n=1)がより好ましい。例えば、カチオンX1として、アルカリ金属イオンまたはNH4 を用い得る。中でも電離しやすく、入手が容易であり、電解液の粘度増大への影響が小さいことから、ナトリウムイオン、リチウムイオンなどが好ましい。
 式(1)で示される有機硫酸塩において、Rは、例えば、炭素数1以上、6以下のアルキル基であればよいが、Rが大きすぎると、高酸化状態の正極活物質を保護して副反応を抑制する作用だけでなく、電池反応自体が阻害される可能性がある。効率よく副反応を抑制し、かつ電池反応を促進する観点から、Rの炭素数は1~3が好ましく、特に1または2が好ましい。このような条件を満たす有機硫酸塩の具体例として、例えば、メチル硫酸リチウム、メチル硫酸ナトリウム、エチル硫酸リチウム、エチル硫酸ナトリウムなどが挙げられる。中でも、エチル硫酸リチウムやエチル硫酸ナトリウムが好ましい。有機硫酸塩は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 電解液に含まれる有機硫酸塩の含有量C1は、例えば0.1質量%以上、5質量%以下であってもよく、0.5質量%以上、5質量%以下であってもよく、0.5質量%以上、3質量%以下であってもよい。
 電解液は、更に、式(2):(F-SO3X2
で示されるフルオロスルホン酸塩を含んでもよい。ただし、X2はカチオンであり、mは1~3の整数である。フルオロスルホン酸塩は、電解液中で電離して、負電荷が非局在化したF-SO3 イオンを生成するため、有機硫酸塩と同様に、高酸化状態の正極活物質の表面を保護し、高電位の正極と電解液との副反応を抑制するものと考えられる。ただし、フルオロスルホン酸塩単独では、正極活物質の表面を十分に保護することができず、正極抵抗の増大を抑制する効果は顕在化しない。一方、有機硫酸塩とフルオロスルホン酸塩とを併用すると、有機硫酸アニオンでは保護できない部分がフルオロスルホン酸アニオンで保護されるようになり、正極抵抗の増大がより顕著に抑制されるようになる。
 式(2)で示されるフルオロスルホン酸塩において、カチオンX2は、電解液中で電離し得る塩を形成するものであれば特に限定されない。カチオンX2の価数は1~3であればよいが、2価以下のカチオン(m=2)が好ましく、1価のカチオン(m=1)がより好ましい。例えば、カチオンX2として、アルカリ金属イオンまたはNH4 を用い得る。中でも電離しやすく、電解液の粘度増大への影響が小さいことから、リチウムイオンが好ましい。フルオロスルホン酸塩は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 電解液に含まれるフルオロスルホン酸塩の含有量C2は、例えば0.5質量%以上、5質量%以下であってもよく、0.5質量%以上、3質量%以下であってもよい。
 電解液に含まれるフルオロスルホン酸塩の含有量C2と有機硫酸塩の含有量C1との質量比:C2/C1は、例えば0≦C2/C1≦3を満たしてもよく、0<C2/C1≦2を満たしてもよく、0.05≦C2/C1≦1.5を満たしてもよく、0.5≦C2/C1≦1.5を満たしてもよい。
 正極活物質は、例えば、層状岩塩型結晶構造を有し、リチウム以外の金属の80原子%以上がニッケルであるリチウム含有複合酸化物を含んでもよい。一般に、ニッケルを高含有量で含む正極活物質は高容量であるが、ニッケル含有量が大きくなるほど複合酸化物が劣化しやすく、電池の耐久性が低下しやすい。複合酸化物においてニッケルは3価または4価で存在して充放電に寄与するが、元素としての安定状態は2価である。2価になる反応は不可逆反応である。高酸化状態の複合酸化物に含まれる4価のニッケルは副反応により強く還元されて2価になりやすい。正極活物質の表面に酸化ニッケル(NiO)層が形成されると、正極の抵抗が上昇し、電池の耐久性が低下する。これに対し、電解液に有機硫酸塩が含まれる場合、4価のニッケルにR-O-SO4 イオン(有機硫酸アニオン)が配位し、4価のニッケルを保護する。よって、有機硫酸塩による正極抵抗を低減する効果や、電池の耐久性を向上させる効果は、ニッケルを高含有量で含む正極活物質を用いる場合に最も顕著になる。
 リチウム含有複合酸化物は、例えば、化学式LiNi1-x2-δ(ただし、0<a≦1.2、0.8≦x<1、0≦δ≦0.05であり、Mは、Mn、Fe、Ti、Si、Nb、Zr、Mo、Co、Al、Zn、W、SrおよびCaからなる群より選択された少なくとも1種を含む。)で表されるリチウム-ニッケル複合酸化物であってもよい。上記化学式におけるNi比率xは、0.85以上(0.85≦x)であってもよく、0.90以上(0.90≦x)であってもよい。
 リチウム-ニッケル複合酸化物において、Mは、Mn、Fe、Ti、Si、Nb、Zr、Mo、Co、AlおよびZnからなる群より選択された少なくとも1種の元素と、W、SrおよびCaからなる群より選択された少なくとも1種の元素とを含んでもよい。W、SrおよびCaの少なくとも1つが複合酸化物に含まれていることで、複合酸化物の表面構造が安定化し、正極活物質の劣化をより効果的に抑制できるようになる。複合酸化物内において、W、SrおよびCaは、正極活物質である複合酸化物の表面近傍に偏在していると効果的である。
 次に、本開示の実施形態に係る非水電解液二次電池について詳述する。
 [正極]
 正極は、正極集電体と、正極集電体の表面に形成され、かつ正極活物質を含む正極合剤層とを具備する。正極合剤層は、正極活物質を必須成分として含み、結着剤、増粘剤、導電剤等を任意成分として含む正極合剤を分散媒に分散させた正極スラリーを、正極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。正極活物質、結着剤、増粘剤、導電剤等としては、公知の材料を利用できる。
 正極活物質として用いられるリチウム含有複合酸化物は、例えば、複数の一次粒子が凝集してなる二次粒子である。一次粒子の粒径は、一般的に0.05μm~1μmである。複合酸化物の平均粒径は、例えば3μm~30μm、好ましくは5μm~25μmである。ここで、複合酸化物の平均粒径は、体積基準の粒度分布において頻度の累積が50%となるメジアン径(D50)を意味し、レーザー回折式の粒度分布測定装置により測定される。
 複合酸化物を構成する元素の含有量は、誘導結合プラズマ発光分光分析装置(ICP-AES)、電子線マイクロアナライザー(EPMA)、あるいはエネルギー分散型X線分析装置(EDX)等により測定することができる。
 正極集電体としては、無孔の導電性基板(金属箔など)、多孔性の導電性基板(メッシュ体、ネット体、パンチングシートなど)が使用される。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどが例示できる。
 [負極]
 負極は、例えば、負極集電体と、負極集電体の表面に形成された負極活物質層とを具備する。負極活物質層は、例えば、負極活物質を必須成分として含み、結着剤、増粘剤、導電剤等を任意成分として含む負極合剤を分散媒に分散させた正極スラリーを、負極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。つまり、負極活物質は、合剤層であってもよい。また、リチウム金属箔あるいはリチウム合金箔を負極集電体に貼り付けてもよい。負極活物質、結着剤、導電剤、増粘剤としては、公知の材料を利用できる。
 負極活物質は、電気化学的にリチウムイオンを吸蔵および放出する材料、リチウム金属、リチウム合金などを含む。電気化学的にリチウムイオンを吸蔵および放出する材料としては、炭素材料、合金系材料などが用いられる。炭素材料としては、例えば、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)などが例示できる。合金系材料としては、ケイ素、スズ、ケイ素合金、スズ合金、ケイ素化合物などが挙げられる。
 負極集電体としては、無孔の導電性基板(金属箔など)、多孔性の導電性基板(メッシュ体、ネット体、パンチングシートなど)が使用される。負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金などが例示できる。
 [電解液]
 電解液は、溶媒と、溶媒に溶解した溶質とを含む。溶質は、電解液中でイオン解離する電解質塩である。溶質には、有機硫酸塩およびフルオロスルホン酸塩が含まれるが、有機硫酸塩およびフルオロスルホン酸塩は、通常、添加剤として扱われる。溶質の主成分はリチウム塩である。
 溶媒としては、公知の材料を利用できる。溶媒として、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル、鎖状カルボン酸エステルなどが用いられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、フルオロエチレンカーボネート(FEC)、ビニレンカーボネート(VC)などが挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)などが挙げられる。鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル(EP)等の非水溶媒が挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 溶媒は、ECとFECを必須成分として含む。溶媒全体に占めるECとFECとの合計体積は、10体積%以上、30体積%以下が好ましく、15体積%以上、25体積%以下がより好ましい。また、ECおよびFECと併用する溶媒としては、電解液の粘度を適正化しやすい点で、鎖状炭酸エステルが好ましい。溶媒全体に占めるECとFECと鎖状炭酸エステルとの合計体積は、80体積%以上が好ましく、100体積%でもよい。
 有機硫酸塩およびフルオロスルホン酸塩以外のリチウム塩としては、例えば、塩素含有酸のリチウム塩(LiClO4、LiAlCl4、LiB10Cl10など)、フッ素含有酸のリチウム塩(LiPF6、LiPF、LiBF4、LiSbF6、LiAsF6、LiCF3SO3、LiCF3CO2など)、フッ素含有酸イミドのリチウム塩(LiN(FSO22、LiN(CF3SO22、LiN(CF3SO2)(C49SO2)、LiN(C25SO22など)、リチウムハライド(LiCl、LiBr、LiIなど)などが使用できる。リチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 電解液におけるリチウム塩(有機硫酸塩およびフルオロスルホン酸塩以外)の濃度は、1mol/リットル以上2mol/リットル以下であってもよく、1mol/リットル以上1.5mol/リットル以下であってもよい。リチウム塩濃度を上記範囲に制御することで、イオン伝導性に優れ、適度の粘性を有する電解液を得ることができる。ただし、リチウム塩濃度は上記に限定されない。
 電解液は、他の公知の添加剤を含有してもよい。添加剤としては、ビニレンカーボネート、1,3-プロパンサルトン、メチルベンゼンスルホネート、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテル、フルオロベンゼンなどが挙げられる。
 電解液中の各成分の含有量は、例えば、高速液体クロマトグラフィー、ガスクロマトグラフィー‐質量分析法(GC-MS)、NMR、誘導結合プラズマ質量分析法(ICP-MS)、および元素分析などを用いて求められる。
 [セパレータ]
 正極と負極との間には、セパレータが介在している。セパレータは、イオン透過度が高く、適度な機械的強度および絶縁性を備えている。セパレータとしては、微多孔薄膜、織布、不織布などを用いることができる。セパレータの材質としては、ポリプロピレン、ポリエチレンなどのポリオレフィンが好ましい。
 非水電解液二次電池の構造の一例としては、正極および負極がセパレータを介して巻回されてなる電極群が非水電解質と共に外装体に収容された構造が挙げられる。ただし、これに限られず、他の形態の電極群が適用されてもよい。例えば、正極と負極とがセパレータを介して積層された積層型の電極群でもよい。非水電解液二次電池の形態も限定されず、例えば、円筒型、角型、コイン型、ボタン型、ラミネート型などであればよい。
 図1は、本開示の一実施形態に係る角形の非水電解液二次電池の一部を切欠いた概略斜視図である。電池は、有底角形の電池ケース4と、電池ケース4内に収容された電極群1および非水電解質とを備えている。電極群1は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在するセパレータとを有する。負極の負極集電体は、負極リード3を介して、封口板5に設けられた負極端子6に電気的に接続されている。負極端子6は、樹脂製ガスケット7により封口板5から絶縁されている。正極の正極集電体は、正極リード2を介して、封口板5の裏面に電気的に接続されている。すなわち、正極は、正極端子を兼ねる電池ケース4に電気的に接続されている。封口板5の周縁は、電池ケース4の開口端部に嵌合し、嵌合部はレーザー溶接されている。封口板5には非水電解質の注入孔があり、注液後に封栓8により塞がれる。
 以下、本開示を実施例および比較例に基づいて具体的に説明するが、本開示は以下の実施例に限定されるものではない。
 <実施例1~3>
 [負極の作製]
 SiOと、黒鉛と、を5:95の質量比で混合し、負極活物質として用いた。負極活物質と、カルボキシメチルセルロースナトリウム(CMC-Na)と、スチレン-ブタジエンゴム(SBR)と、水とを所定の質量比で混合し、負極スラリーを調製した。次に、負極集電体である銅箔の表面に負極スラリーを塗布し、塗膜を乾燥させた後、圧延して、銅箔の両面に負極合剤層を形成した。
 [正極の作製]
 リチウム含有複合酸化物として、層状構造を有する岩塩型のリチウム含有遷移金属酸化物であるLiNi0.8Co0.18Al0.02(NCA:正極活物質)と、アセチレンブラック(AB:導電材)と、ポリフッ化ビニリデン(PVdF:結着材)とを、NCA:AB:PVdF=95:2.5:2.5の質量比で混合し、さらにN-メチル-2-ピロリドン(NMP)を適量加えて撹拌して、正極スラリーを調製した。正極集電体であるAl箔の両面に正極スラリーを塗布し、塗膜を乾燥させた後、圧延して、Al箔の両面に正極合剤層を形成した。
 [電解液の調製]
 エチレンカーボネート(EC)、フルオロエチレンカーボネート(FEC)、エチルメチルカーボネート(EMC)およびジメチルカーボネート(DMC)を、(EC+FEC):EMC:DMC=20:10:70の体積比で含む混合溶媒に、リチウム塩としてLiPF6を加え、更に、エチル硫酸ナトリウム(NaES)を添加剤として加え、電解液を調製した。非水電解液におけるLiPF6の濃度は1.0mol/リットル、NaESの濃度は1質量%とした。
 混合溶媒に占めるECとFECとの合計体積を一定のままとして、ECの体積VecとFECの体積Vfecとの比:Vec/Vfecを表1に示すように変化させた。
 [二次電池の作製]
 各電極にリードタブをそれぞれ取り付け、リードが最外周部に位置するように、セパレータを介して正極および負極を渦巻き状に巻回することにより電極群を作製した。アルミニウム箔をバリア層とするラミネートフィルム製の外装体内に電極群を挿入し、105℃で2時間真空乾燥した後、非水電解液を注入し、外装体の開口部を封止して、二次電池A1~A3を作製した。
 <実施例4~7>
 電解液に、更に、フルオロスルホン酸リチウム(FSO3Li)を添加剤として加え、非水電解液におけるFSO3Liの濃度を1質量%とし、Vec/Vfec比を表1に示すように変化させたこと以外、実施例1~3と同様に二次電池A4~A7を作製した。
 <比較例1~5>
 電解液に、NaESを添加せず、Vec/Vfec比を表1に示すように変化させたこと以外、実施例1~3と同様に二次電池B1~B5を作製した。
 <比較例6>
 電解液に、NaESを添加せず、電解液におけるFSO3Liの濃度を1質量%としたこと以外、実施例3と同様に二次電池B6を作製した。
 <比較例7>
 Vec/Vfec比を表1に示すように20としたこと以外、実施例1~3と同様に二次電池B7を作製した。
 [評価]
 (容量維持率)
 完成後の各電池について、25℃の環境に置き、0.3Itの電流で電圧が4.2Vになるまで定電流充電を行い、その後、4.2Vの定電圧で電流が0.02Itになるまで定電圧充電した。その後、0.5Itの電流で電圧が2.5Vになるまで定電流放電を行い、初期容量Cを求めた。充放電は25℃の環境で行った。
 充電と放電との間の休止期間は10分とし、25℃の環境で、上記充放電条件で充放電を200サイクル繰り返し、200サイクル目の放電容量Cを求めた。放電容量Cの初期容量Cに対する割合R=C/Cの百分率値を容量維持率として求めた。結果を表1に示す。
 (急速充電指標(反応抵抗成分))
 25℃環境下で、100%の充電状態(SOC100%)における電池の反応抵抗を交流インピーダンス測定により求めた。
Figure JPOXMLDOC01-appb-T000001
 表1において、NaESを含まない電池B1~B6では、Vec/Vfec比を変化させても、R値(79.8~81(振れ幅1.2))がほとんど変化していない。Vec/Vfec比が小さくなると(つまりFECの割合が増加すると)、僅かに改善が見られる程度である。一方、NaESを含む電池B7、A1~A3では、Vec/Vfec比が小さくなると、R1値は79.9から84.1まで改善している(振れ幅4.2)。また、フルオロスルホン酸リチウムを併用した電池A4~A7では、R1値は85.0まで更に大きく改善している。
 表1において、電池B1~B7を対比すると、NaESを含む電池B7では、急速充電指標が1.00であり、NaESを含まない電池B1~B6に比べて大きく改善している。また、NaESを含まない電池B1~B6では、Vec/Vfec比を変化させても、急速充電指標にほとんど変化がないことが理解できる。一方、NaESを含む電池A1~A3を見ると、急速充電指標は、電池B7と同程度を維持している。つまり、電池A1~A3では、電池B7と同様に正極抵抗を低減しつつ、電池の耐久性が向上している。また、電池A4~A7では、正極抵抗が更に低減しているにもかかわらず、電池の耐久性は更に向上している。
 なお、電池B5、B6を対比すると、フルオロスルホン酸リチウム(FSO3Li)を単独で添加剤として加えてもR値および急速充電指標にほとんど影響がないことがわかる。一方、電池A3、A7を対比すると、NaESとフルオロスルホン酸リチウムを併用することで、R値が顕著に増加し、急速充電指標が顕著に改善している。
 本開示に係る非水電解液二次電池は、高速充電性能と耐久性が要求される用途、例えば、移動体通信機器、携帯電子機器、電気自動車、ハイブリッド自動車などの主電源に有用である。
1  電極群
2  正極リード
3  負極リード
4  電池ケース
5  封口板
6  負極端子
7  ガスケット
8  封栓

Claims (12)

  1.  正極と、負極と、前記正極と前記負極との間に介在するセパレータと、電解液と、を備え、
     前記電解液は、式(1):(R-O-SO3nX1
    で示される有機硫酸塩を含み、
     ただし、Rは炭素数1以上の有機基であり、X1はカチオンであり、nは1~3の整数であり、
     前記電解液は、更に、エチレンカーボネートと、フルオロエチレンカーボネートと、を含み、
     前記エチレンカーボネートの体積Vecと前記フルオロエチレンカーボネートの体積Vfecとが、
     0.1≦Vec/Vfec≦15を満たす、非水電解液二次電池。
  2.  0.1≦Vec/Vfec≦12を満たす、請求項1に記載の非水電解液二次電池。
  3.  0.1≦Vec/Vfec≦5を満たす、請求項2に記載の非水電解液二次電池。
  4.  0.1≦Vec/Vfec≦4を満たす、請求項3に記載の非水電解液二次電池。
  5.  0.1≦Vec/Vfec≦2を満たす、請求項4に記載の非水電解液二次電池。
  6.  前記X1が、アルカリ金属イオンまたはNH4 である、請求項1~5のいずれか1項に記載の非水電解液二次電池。
  7.  前記Rが、炭素数1以上、6以下のアルキル基である、請求項1~6のいずれか1項に記載の非水電解液二次電池。
  8.  前記Rが、メチル基またはエチル基である、請求項7に記載の非水電解液二次電池。
  9.  電解液に含まれる有機硫酸塩の含有量が、0.1質量%以上、5質量%以下である、請求項1~8のいずれか1項に記載の非水電解液二次電池。
  10.  前記電解液が、更に、式(2):(F-SO3X2
    で示されるフルオロスルホン酸塩を含み、
     ただし、X2はカチオンであり、mは1~3の整数であり、
     前記電解液に含まれる前記フルオロスルホン酸塩の含有量が、0.5質量%以上、5質量%以下である、請求項1~9のいずれか1項に記載の非水電解液二次電池。
  11.  前記X2が、アルカリ金属イオンまたはNH4 である、請求項10に記載の非水電解液二次電池。
  12.  前記正極が、層状岩塩型結晶構造を有し、リチウム以外の金属の80原子%以上がニッケルであるリチウム含有複合酸化物を含む、請求項1~11のいずれか1項に記載の非水電解液二次電池。
PCT/JP2021/030718 2020-08-31 2021-08-23 非水電解液二次電池 WO2022045037A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180052621.2A CN115989595A (zh) 2020-08-31 2021-08-23 非水电解液二次电池
EP21861463.4A EP4207356A1 (en) 2020-08-31 2021-08-23 Nonaqueous electrolyte secondary battery
US18/023,650 US20230344005A1 (en) 2020-08-31 2021-08-23 Nonaqueous electrolyte secondary battery
JP2022544568A JPWO2022045037A1 (ja) 2020-08-31 2021-08-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-146067 2020-08-31
JP2020146067 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022045037A1 true WO2022045037A1 (ja) 2022-03-03

Family

ID=80353243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030718 WO2022045037A1 (ja) 2020-08-31 2021-08-23 非水電解液二次電池

Country Status (5)

Country Link
US (1) US20230344005A1 (ja)
EP (1) EP4207356A1 (ja)
JP (1) JPWO2022045037A1 (ja)
CN (1) CN115989595A (ja)
WO (1) WO2022045037A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169184A1 (ja) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2018151234A1 (ja) * 2017-02-16 2018-08-23 三菱ケミカル株式会社 非水系電解液及び蓄電デバイス
WO2018154913A1 (ja) * 2017-02-27 2018-08-30 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2019082543A1 (ja) * 2017-10-25 2019-05-02 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP2019164999A (ja) * 2018-03-16 2019-09-26 三菱ケミカル株式会社 非水系電解液及びそれを用いたエネルギーデバイス
JP2020123500A (ja) 2019-01-30 2020-08-13 トヨタ自動車株式会社 正極活物質および該正極活物質を備える非水電解液二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169184A1 (ja) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2018151234A1 (ja) * 2017-02-16 2018-08-23 三菱ケミカル株式会社 非水系電解液及び蓄電デバイス
WO2018154913A1 (ja) * 2017-02-27 2018-08-30 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2019082543A1 (ja) * 2017-10-25 2019-05-02 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP2019164999A (ja) * 2018-03-16 2019-09-26 三菱ケミカル株式会社 非水系電解液及びそれを用いたエネルギーデバイス
JP2020123500A (ja) 2019-01-30 2020-08-13 トヨタ自動車株式会社 正極活物質および該正極活物質を備える非水電解液二次電池

Also Published As

Publication number Publication date
US20230344005A1 (en) 2023-10-26
CN115989595A (zh) 2023-04-18
JPWO2022045037A1 (ja) 2022-03-03
EP4207356A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
KR20160072220A (ko) 비수 전해액 이차 전지
WO2011162169A1 (ja) リチウムイオン二次電池
JP5569645B2 (ja) リチウムイオン二次電池
US20140302405A1 (en) Lithium ion secondary battery
JP7499455B2 (ja) 非水電解質二次電池
WO2014155992A1 (ja) 非水電解質二次電池
JP2015170542A (ja) 非水電解質二次電池
JP4304570B2 (ja) 非水電解液およびそれを用いた二次電池
US10892472B2 (en) Nonaqueous electrolyte secondary battery
KR20220009894A (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
US20210288311A1 (en) Positive electrode for non-aqueous electrolyte secondary batteries
WO2020158223A1 (ja) 非水電解質二次電池およびこれに用いる電解液
CN111052486B (zh) 非水电解质二次电池
WO2013018607A1 (ja) 非水電解質二次電池
WO2022045037A1 (ja) 非水電解液二次電池
JP7182198B2 (ja) 非水電解質二次電池、電解液及び非水電解質二次電池の製造方法
JP6258180B2 (ja) リチウム二次電池用電解液の添加剤及びそれを用いたリチウム二次電池用電解液、リチウム二次電池
JP6222389B1 (ja) 非水電解液およびそれを用いた非水電解液電池
WO2021039178A1 (ja) 非水電解質二次電池
US20220344699A1 (en) Nonaqueous electrolyte secondary battery
WO2020158299A1 (ja) 非水電解質二次電池およびこれに用いる電解液
JP2018092704A (ja) リチウム二次電池
JP2023533050A (ja) リチウム二次電池用非水系電解液及びこれを含むリチウム二次電池
JP2024022073A (ja) 非水系電解液を用いた非水系電解液電池
JP2003142153A (ja) 非水電解質二次電池およびこの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544568

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021861463

Country of ref document: EP

Effective date: 20230331