WO2022044559A1 - 表面処理ガラスクロス、プリプレグ及びプリント配線板 - Google Patents

表面処理ガラスクロス、プリプレグ及びプリント配線板 Download PDF

Info

Publication number
WO2022044559A1
WO2022044559A1 PCT/JP2021/025697 JP2021025697W WO2022044559A1 WO 2022044559 A1 WO2022044559 A1 WO 2022044559A1 JP 2021025697 W JP2021025697 W JP 2021025697W WO 2022044559 A1 WO2022044559 A1 WO 2022044559A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass cloth
coupling agent
silane coupling
treated glass
group
Prior art date
Application number
PCT/JP2021/025697
Other languages
English (en)
French (fr)
Inventor
淳史 大内
一孝 足達
亘平 松本
Original Assignee
日東紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東紡績株式会社 filed Critical 日東紡績株式会社
Priority to CN202180034321.1A priority Critical patent/CN115605644A/zh
Priority to JP2022545505A priority patent/JPWO2022044559A1/ja
Priority to KR1020227040382A priority patent/KR20230054796A/ko
Publication of WO2022044559A1 publication Critical patent/WO2022044559A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/51Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
    • D06M13/513Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated

Definitions

  • the present invention relates to a surface-treated glass cloth, a prepreg, and a printed wiring board.
  • a surface treatment containing a silane coupling agent having at least one metaacryloyl group such as 3-methacryloxypropyltrimethoxysilane ( ⁇ -methacryloxypropyltrimethoxysilane) on the surface is known (see, for example, Patent Document 1).
  • the whitening distance indicating the degree of interface peeling between the glass and the resin in the surface-treated layer when the printed wiring board is used is small and high in the printed wiring board. Insulation reliability can be obtained.
  • the surface-treated glass cloth described in Patent Document 1 has the disadvantage that the texture is soft and wrinkles are likely to occur during the production of the prepreg.
  • the glass cloth used for printed wiring boards is also required to be thin due to the miniaturization and thinning of electronic devices. Since the thin glass cloth is easily wrinkled during manufacturing, the surface treatment is particularly soft. The glass cloth is difficult to handle.
  • the present invention can obtain high insulation reliability in a printed wiring board, and a surface-treated glass cloth that is less likely to wrinkle during the production of a prepreg, a prepreg using the surface-treated glass cloth, and a prepreg. It is an object of the present invention to provide a printed wiring board using the surface-treated glass cloth.
  • the surface-treated glass cloth of the present invention is a surface-treated glass cloth having a surface-treated layer on the surface, and the surface-treated layer is a first silane having at least one metaacryloyl group. It is characterized by containing a coupling agent and a second silane coupling agent represented by the following general formula (1).
  • X is an alkyl group having 1 to 4 carbon atoms
  • R is one group independently selected from the group consisting of a methyl group, an ethyl group, and a phenyl group
  • Y is each. Independently, it is an alkoxy group having 1 to 6 carbon atoms
  • n is an integer of 1 or more and 3 or less.
  • the surface-treated glass cloth of the present invention is provided with a surface-treated layer containing the first silane coupling agent and the second silane coupling agent on the surface thereof, thereby obtaining high insulation reliability in a printed wiring board. Moreover, since the texture becomes hard, wrinkles are less likely to occur during the production of the prepreg.
  • the second silane coupling agent has a high hydrolysis rate and high reactivity with silanol, so that it has high adsorptivity with glass cloth and can harden the texture of glass cloth. Further, since the alkyl chain of the second silane coupling agent is short, the molecular weight is small and the reaction between the first silane coupling agent and the resin is not hindered, so that high insulation reliability can be obtained in the printed wiring board. be able to.
  • the second silane coupling agent preferably has a methyl group or an ethyl group, and more preferably a methyl group, in the general formula (1).
  • the total content of the first silane coupling agent and the second silane coupling agent is 0.03 to 1.50% by mass of the entire surface-treated glass cloth.
  • the ratio of the content of the second silane coupling agent to the content of the first silane coupling agent (content of the second silane coupling agent / of the first silane coupling agent).
  • the content is preferably in the range of 0.01 to 0.25, and the ratio of the content of the second silane coupling agent to the content of the first silane coupling agent is 0.03 to 0. It is more preferably in the range of .17.
  • the total content of the first silane coupling agent and the second silane coupling agent is in the range of 0.03 to 1.50% by mass of the entire surface-treated glass cloth.
  • the ratio of the content of the second silane coupling agent to the content of the first silane coupling agent (content of the second silane coupling agent / content of the first silane coupling agent). ) Is in the range of 0.01 to 0.25, so that high insulation reliability in the printed wiring board and the effect of hardening the texture of the glass cloth can be obtained in a well-balanced manner.
  • the surface-treated glass cloth of the present invention is silane when the total content of the first silane coupling agent and the second silane coupling agent is less than 0.03% by mass of the entire surface-treated glass cloth.
  • the amount of the coupling agent adhered is small, the interfacial adhesiveness with the resin deteriorates, and high insulation reliability cannot be obtained.
  • the silane cup of the glass treatment agent aqueous solution is used. Since it is necessary to increase the concentration of the ring agent and the stability of the aqueous solution of the glass treatment agent deteriorates, stable continuous production for a long period of time becomes difficult.
  • the ratio of the content of the second silane coupling agent to the content of the first silane coupling agent (content of the second silane coupling agent / first).
  • content of the silane coupling agent is less than 0.01, the effect of hardening the texture cannot be obtained, and when it is more than 0.25, dehydration condensation of the second silane coupling agent occurs. It is easy and it becomes difficult to perform stable continuous production for a long time.
  • the surface-treated layer does not contain a surfactant.
  • the surface-treated layer does not contain a surfactant, the impregnation property is improved and high insulation reliability can be obtained in a printed wiring board.
  • the surface-treated glass cloth of the present invention preferably has a thickness in the range of 5 to 25 ⁇ m.
  • the surface-treated glass cloth of the present invention can obtain the effect of the present invention even when the thickness is more than 25 ⁇ m, but the thickness is in the range of 5 to 25 ⁇ m, so that the insulation reliability of the printed wiring board is high. It is possible to obtain a good balance between the properties and the effect of hardening the texture of the glass cloth. Further, it is technically difficult to manufacture the surface-treated glass cloth of the present invention so that the thickness is less than 5 ⁇ m.
  • the prepreg of the present invention is characterized by containing the surface-treated glass cloth of the present invention
  • the printed wiring board of the present invention is characterized by containing the surface-treated glass cloth of the present invention.
  • the surface-treated glass cloth of the present embodiment has a surface-treated layer on the surface, and the surface-treated layer is represented by the following general formula (1) with a first silane coupling agent having at least one metaacryloyl group. Includes a second silane coupling agent.
  • the second silane coupling agent preferably has a methyl group or an ethyl group, and more preferably a methyl group, in the general formula (1).
  • the surface-treated glass cloth of the present embodiment can be manufactured, for example, as follows.
  • a predetermined glass batch (glass raw material) is melted and fiberized to obtain a glass filament.
  • the glass composition constituting the glass filament is not particularly limited, but the composition of E glass, T glass, NE glass, L glass and the like is preferable. NE glass and L glass are more preferable from the viewpoint of low dielectric constant and low dielectric positive contact, and specifically, SiO 2 in the range of 48.0 to 62.0% by mass and 17.0 to 26 with respect to the total amount.
  • B 2 O 3 in the range of 0.0 mass%, Al 2 O 3 in the range of 9.0 to 18.0 mass%, Mg O in the range of 0 to 6.0 mass%, and 0.1 to 9.
  • the content of each component of the glass composition described above is measured by using an ICP emission spectroscopic analyzer for Li, which is a light element, and by using a wavelength dispersive fluorescent X-ray analyzer for other elements. be able to.
  • the temperature is 300 to 600 ° C. (Use after removing organic substances by heating in a muffle furnace for about 2 to 24 hours), put it in a platinum crucible, and keep it at a temperature of 1550 ° C for 6 hours in an electric furnace. By melting the glass with stirring, a homogeneous molten glass is obtained. Next, the obtained molten glass is poured onto a carbon plate to produce a glass cullet, which is then pulverized and pulverized.
  • Li which is a light element, is decomposed by heating the glass powder with an acid and then quantitatively analyzed using an ICP emission spectrophotometer. Other elements are quantitatively analyzed using a wavelength dispersive fluorescent X-ray analyzer after the glass powder is formed into a disk shape by a press machine. The content and total amount of each component can be calculated by converting these quantitative analysis results into oxides, and the content (mass%) of each component described above can be obtained from these numerical values.
  • the filament diameter of the glass filament is not particularly limited, but is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, and particularly preferably 3 to 5 ⁇ m for printed wiring board applications.
  • the number of the glass filaments is, for example, 25 to 500, preferably 40 to 300, and is bundled by a method known per se to form a glass fiber yarn.
  • melting a glass batch and fiberizing it to obtain a glass filament, and then bundling a plurality of the glass filaments to obtain a glass fiber yarn is called spinning.
  • the filament diameter of the glass filament is a scanning electron microscope (manufactured by Hitachi High-Technologies Co., Ltd., trade name: S-3400N, magnification: 3000 times) for each of 50 cross sections of the warp or weft of the glass cloth. It is an average value of the measured values when measuring the diameter of the glass filament constituting.
  • the number of the glass filaments is 50 times for each of the warp and weft sections of the glass cloth with a scanning electron microscope (manufactured by Hitachi High-Technologies Co., Ltd., trade name: S-3400N, magnification: 500 times). It is an average value of the measured values when the number of glass filaments constituting the weft is measured.
  • the count of the glass fiber yarn is preferably 0.8 to 135 tex, more preferably 1 to 25 tex.
  • the count (tex) of the glass fiber yarn corresponds to the mass (unit: g) per 1000 m of the glass fiber.
  • a glass cloth is obtained by weaving the glass fiber yarn as a warp or a weft.
  • the weaving method is not particularly limited, and examples thereof include plain weave, satin weave, and twill weave, and plain weave is preferable.
  • the weaving density of the glass fiber yarn at the time of the weaving is not particularly limited, but is preferably in the range of, for example, 10 to 150 yarns / 25 mm, and more preferably in the range of 40 to 100 yarns / 25 mm.
  • the weaving density of the glass fiber yarn can be determined by counting the number of warp or weft in the range of 25 mm in the warp or weft direction using a woven fabric decomposition mirror in accordance with JIS R3420.
  • a sizing agent is used for bundling the glass filaments and warping the warps.
  • the sizing agent include a sizing agent in which the film-forming agent component is starch-based or PVA (polyvinyl alcohol) -based.
  • the sizing agent may contain an oil agent, a softener, or the like.
  • the amount of the sizing agent adhered to the glass cloth is preferably 0.1 to 3 parts by mass, and 0.5 to 1.5 parts by mass with respect to 100 parts by mass of the glass fiber yarn. It is more preferable that it is a part.
  • the range of the amount of the sizing agent attached and the amount of the sizing agent attached unless otherwise specified represent the average amount of the sizing agent attached to the warp or weft.
  • the glass cloth obtained by the weaving preferably has a mass of 110 g / m 2 or less per unit area from the viewpoint of being used as a base material for a printed wiring board. On the other hand, from the viewpoint of weavability, it is preferable that the mass of the glass cloth per unit area is 8 g / m 2 or more.
  • the mass of the glass cloth is the average value of the mass of the glass cloth cut into a size of 200 mm ⁇ 200 mm measured at three points with a scale compliant with JIS R 3420 and converted into the mass per 1 m 2 . be.
  • the glass cloth is subjected to a fiber opening treatment.
  • the fiber-spreading treatment include fiber-spreading by water flow pressure, fiber-spreading by high-frequency vibration using a liquid as a medium, fiber-spreading by the pressure of a fluid having surface pressure, and fiber-spreading by pressurization with a roll. Can be done.
  • the use of fiber-spreading by water flow pressure or high-frequency vibration using a liquid as a medium reduces the variation in yarn width after the fiber-spreading process in each of the warp and weft. It is preferable because it is done.
  • a plurality of treatment methods may be used in combination.
  • the glass cloth that has been subjected to the opening treatment is deoiled.
  • the glass cloth is placed in a heating furnace having an atmospheric temperature in the range of 350 ° C. to 450 ° C. for a time in the range of 40 to 80 hours, and the glass cloth is attached to the glass cloth for spinning. This can be done by heat-decomposing the sizing agent and the sizing agent for weaving.
  • the deoiled glass cloth is immersed in an aqueous solution of a surface treatment agent, excess water is squeezed out, and then the temperature is in the range of 80 to 180 ° C., and the time is in the range of 1 to 30 minutes.
  • the surface-treated glass cloth of the present embodiment can be obtained by heating and drying at 110 ° C. for 5 minutes.
  • the first silane coupling agent having at least one metaacryloyl group and the second silane coupling agent represented by the following general formula (1) are added to the total amount of the surface treatment agent aqueous solution.
  • the solid content is contained in the range of 0.1 to 2.0% by mass, and a weak acid (for example, acetic acid, citric acid, propionic acid, etc.) as a pH adjuster is contained in the range of 0.5 to 2.0% by mass. Those included in the range of can be used.
  • X is an alkyl group having 1 to 4 carbon atoms
  • R is one group independently selected from the group consisting of a methyl group, an ethyl group, and a phenyl group
  • Y is each. Independently, it is an alkoxy group having 1 to 6 carbon atoms
  • n is an integer of 1 or more and 3 or less.
  • the silane coupling agent having at least one metaacryloyl group include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxy. Examples thereof include propyltriethoxysilane.
  • examples of the second silane coupling agent represented by the general formula (1) include methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, and trimethylethoxysilane.
  • examples thereof include ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, and butyltrimethoxysilane.
  • X in the general formula (1) is a methyl group or an ethyl group, and as such the second silane coupling agent, methyltrimethoxysilane or methyltri. Examples thereof include ethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane.
  • the second silane coupling agent is more preferably X in the general formula (1) as a methyl group, and as such the second silane coupling agent, methyltrimethoxysilane or methyltriethoxysilane. Most preferably, methyltrimethoxysilane can be mentioned.
  • the total content of the first silane coupling agent and the second silane coupling agent is preferably 0.03 to 1 with respect to the total amount of the surface-treated glass cloth. It is in the range of .50% by mass, more preferably in the range of 0.05 to 1.20% by mass, further preferably in the range of 0.1 to 1.0% by mass, and particularly preferably in the range of 0.2 to 1.0% by mass. It is in the range of 0.8% by mass, particularly preferably in the range of 0.3 to 0.7% by mass, and most preferably in the range of 0.4 to 0.6% by mass.
  • the ratio of the content of the second silane coupling agent to the content of the first silane coupling agent is preferably in the range of 0.01 to 0.25, more preferably in the range of 0.03 to 0.20, and even more preferably in the range of 0.03 to 0.17. It is in the range of 0.10 to 0.17, most preferably in the range of 0.10 to 0.17.
  • this embodiment includes a surface-treated layer containing a first silane coupling agent having at least one metaacryloyl group and a second silane coupling agent represented by the general formula (1) on the surface.
  • a form of surface-treated glass cloth can be obtained.
  • the surface-treated layer preferably does not contain a surfactant, preferably has a thickness in the range of 5 to 60 ⁇ m, and preferably has a thickness in the range of 5 to 40 ⁇ m. More preferably, it is in the range of 5 to 25 ⁇ m.
  • the average value of the measured values when the thickness is measured with a micrometer at 15 points in the surface-treated glass cloth can be adopted. can.
  • IPC4412 standard cross style # 1017 glass composition: NE glass, yarn used: BC3000 (filament diameter 4.0 ⁇ m, yarn weight 1.5 tex), warp weaving density: 95/25 mm, weft weaving density: Weaving a glass cloth of 95 pieces / 25 mm, mass per unit area: 11.4 g / m 2 ), and opening the fibers by the water flow pressure of spraying a high-pressure water flow of 40 ° C.
  • the deoiled glass cloth is immersed in a glass treatment agent aqueous solution, excess water is squeezed, and then heated and dried at 110 ° C for 5 minutes. Then, the surface-treated glass cloth of this example was obtained.
  • the aqueous glass treatment agent contains 1.0% by mass of 3-methacryloxypropyltrimethoxysilane (manufactured by Dow Toray Co., Ltd.) as the first silane coupling agent and methyltrimethoxysilane as the second silane coupling agent. Prepared by using 0.15% by mass of (Momentive Performance Materials Japan GK), mixing acetic acid with water to 0.5% by mass, and stirring with a magnetic stirrer for 1 hour. did.
  • the obtained surface-treated glass cloth was cut into 350 mm ⁇ 400 mm, and the obtained surface-treated glass cloth piece was immersed in a polyphenylene ether resin varnish and pre-dried at a temperature of 150 ° C. for 10 minutes to obtain a prepreg.
  • the polyphenylene ether resin varnish has 450 parts by mass of oligophenylene ether (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: OPE-2St) and 100 parts by mass of triallyl isocyanurate (manufactured by Ebonic Japan Co., Ltd., trade name: TAICROS).
  • the laminated board obtained in this example was cut into a size of 7 cm ⁇ 4 cm, and slits having a length of 2 cm were inserted vertically and horizontally using a diamond cutter to prepare a test piece.
  • a 1 mol / L NaOH manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • aqueous solution prepared in a beaker is placed, heated to a temperature of 60 ° C., the test piece is immersed in the aqueous solution for 24 hours, and then a digital microscope is used.
  • the whitening distance due to the interfacial peeling between the resin and the glass in the warp and weft directions was measured at a magnification of 100 times. In the measurement, 24 points were measured in each of the warp and weft directions, and the average value was calculated to obtain the whitening distance.
  • the whitening distance due to this peeling has a correlation with the insulation reliability of the printed wiring board, and the shorter the whitening distance, the higher the insulation reliability.
  • the surface-treated glass cloth obtained in this example was cut into 90 mm ⁇ 30 mm to obtain a glass cloth piece for texture measurement.
  • the measurement was performed according to the rigidity test by the slide method of JIS L 1096.
  • One end of the short side of the glass cloth piece for texture measurement was fixed to a 30 mm horizontal table in the long side direction, and the other part was set as a free end and placed on a moving table having the same upper surface as the horizontal table.
  • the moving table was lowered with the upper surface of the horizontal table as a reference, and the moving distance until the central part of the tip of the free end separated from the moving table was measured.
  • the measurement was performed using five pieces of glass cloth for texture measurement, and the average value was calculated.
  • the moving distance of this moving table correlates with the texture of the glass cloth, and the shorter the moving distance, the harder the texture of the glass cloth.
  • the surface-treated glass cloth obtained in this example was cut into 60 mm ⁇ 40 mm to obtain an impregnation property evaluation test piece.
  • the impregnation property evaluation test piece was immersed in benzyl alcohol, and the time from immediately after the immersion until the benzyl alcohol completely penetrated into the impregnation property evaluation glass cloth piece was measured in the weft direction. The measurement was performed using five pieces of glass cloth for impregnation evaluation, and the average value was calculated.
  • Table 1 shows the measurement results of whitening distance, texture, and impregnation property.
  • 3-methacryloxypropyltrimethoxysilane is abbreviated as "methacryl”
  • methyltrimethoxysilane is abbreviated as "methylsilane”.
  • Example 2 In this example, except that the amount of methyltrimethoxysilane (manufactured by Momentive Performance Materials Japan GK) as the second silane coupling agent contained in the aqueous solution of the glass treatment agent is 0.05% by mass. , A surface-treated glass cloth, a prepreg, and a laminated board were obtained in exactly the same manner as in Example 1.
  • Example 3 the surface treatment is exactly the same as in Example 2 except that 0.001% by mass of polyoxyethylene alkyl ether (manufactured by Toho Chemical Industry Co., Ltd.) is added to the aqueous glass treatment agent as a surfactant. Glass cloth, prepreg, and laminated board were obtained.
  • polyoxyethylene alkyl ether manufactured by Toho Chemical Industry Co., Ltd.
  • Example 4 In this example, except that the amount of methyltrimethoxysilane (manufactured by Momentive Performance Materials Japan GK) as the second silane coupling agent contained in the aqueous solution of the glass treatment agent is 0.19% by mass. , A surface-treated glass cloth, a prepreg, and a laminated board were obtained in exactly the same manner as in Example 1.
  • Example 5 In this embodiment, propyltrimethoxysilane (Shinetsu Silicone Co., Ltd.) is used instead of methyltrimethoxysilane (manufactured by Momentive Performance Materials Japan GK) as the second silane coupling agent contained in the aqueous glass treatment agent.
  • a surface-treated glass cloth, a prepreg, and a laminated plate were obtained in exactly the same manner as in Example 1 except that 0.05% by mass was used.
  • propyltrimethoxysilane is abbreviated as "propylsilane”.
  • IPC4412 standard cross style # 1078 glass composition: NE glass, yarn used: D450 (filament diameter 5.0 ⁇ m, yarn weight 10.0tex), warp weaving density: 53 threads / 25 mm, weft weaving density: A surface-treated glass cloth, a prepreg, and a laminated board were obtained in exactly the same manner as in Example 1 except that a glass cloth of 53 pieces / 25 mm and a mass per unit area: 44.0 g / m 2 ) was used.
  • Example 2 the whitening distance, texture, and impregnation property were measured in the same manner as in Example 1 except that the surface-treated glass cloth obtained in this example and the laminated board were used. The measurement results are shown in Table 2.
  • hexyltrimethoxysilane is abbreviated as "hexylsilane”.
  • the silane coupling agent contained in the aqueous glass treatment agent is only 1.0% by mass of 3-methacryloxypropyltrimethoxysilane (manufactured by Dow Toray Co., Ltd.) as the first silane coupling agent.
  • a surface-treated glass cloth, a prepreg, and a laminated plate were obtained in exactly the same manner as in Example 1 except that the second silane coupling agent was not contained at all.
  • the silane coupling agent contained in the aqueous glass treatment agent is only 1.0% by mass of 3-methacryloxypropyltrimethoxysilane (manufactured by Dow Toray Co., Ltd.) as the first silane coupling agent.
  • a surface-treated glass cloth, a prepreg, and a laminated plate were obtained in exactly the same manner as in Example 6 except that the second silane coupling agent was not contained at all.
  • the "whitening distance deterioration rate” in Tables 1 and 2 indicates the rate of increase in the whitening distance with respect to the whitening distance of Reference Example 1 for Examples 1 to 5 and Comparative Example 1, and Reference Example 2 for Example 6. The rate of increase in the bleaching distance with respect to the bleaching distance is shown.
  • the "texture improvement rate” in Tables 1 and 2 indicates the reduction rate of the texture with respect to the texture of Reference Example 1 for Examples 1 to 5 and Comparative Example 1, and the texture with respect to the texture of Reference Example 2 with respect to Example 6. Shows the rate of decrease.
  • the "texture improvement rate / whitening distance deterioration rate" in Tables 1 and 2 is an index showing the high insulation reliability of the printed wiring board and the difficulty of wrinkling during the manufacture of the prepreg, and the numerical values are numerical values. The larger the value, the higher the insulation reliability of the printed wiring board, and the less likely it is to wrinkle during the manufacture of the prepreg.
  • a surface containing a first silane coupling agent having at least one metaacryloyl group and a second silane coupling agent represented by the general formula (1) on the surface According to the surface-treated glass cloths of Examples 1 to 6 provided with the treated layer, the surface contains a first silane coupling agent having at least one metaacryloyl group, and the second silane coupling agent represented by the general formula (1) is contained.
  • the numerical value of the texture improvement rate / whitening distance deterioration rate is larger, and high insulation reliability can be obtained in the printed wiring board. It is clear that wrinkles are less likely to occur during the manufacture of prepreg.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

プリント配線板において高い絶縁信頼性を得ることができ、プリプレグの製造時に皺が入りにくい表面処理ガラスクロス、プリプレグ、及び、プリント配線板を提供する。表面処理ガラスクロスは、表面に表面処理層を備え、表面処理層は少なくとも1つのメタアクリロイル基を有する第1のシランカップリング剤と、下記一般式(1)で示される第2のシランカップリング剤とを含む。 X(R)3-nSiY ・・・(1) (式中、Xは炭素数1~4のアルキル基であり、Rは各々独立して、メチル基、エチル基、及び、フェニル基からなる群から選択される1つの基であり、Yは各々独立して、炭素数1~6のアルコキシ基であり、nは1以上3以下の整数である。)

Description

表面処理ガラスクロス、プリプレグ及びプリント配線板
 本発明は、表面処理ガラスクロス、プリプレグ及びプリント配線板に関する。
 従来、プリント配線板に用いられるガラスクロスとして、表面に3-メタクリロキシプロピルトリメトキシシラン(γ-メタクリロキシプロピルトリメトキシシラン)等の少なくとも1つのメタアクリロイル基を有するシランカップリング剤を含む表面処理層を備えるガラスクロスが知られている(例えば、特許文献1参照)。
 特許文献1に記載された表面処理ガラスクロスによれば、プリント配線板としたときの前記表面処理層におけるガラスと樹脂との間の界面剥離の程度を示す白化距離が小さく、プリント配線板において高い絶縁信頼性を得ることができる。
特許第6734422号公報
 しかしながら、前記特許文献1に記載された表面処理ガラスクロスは、風合いが柔らかく、プリプレグの製造時に皺が入りやすいという不都合がある。また、近年、電子機器の小型化、薄型化によりプリント配線板に使用されるガラスクロスにも薄さが求められており、薄いガラスクロスは製造時に皺が入りやすいため、特に風合いが柔らかい表面処理ガラスクロスの扱いが難しくなっている。
 本発明は、かかる不都合を解決するために、プリント配線板において高い絶縁信頼性を得ることができ、プリプレグの製造時に皺が入りにくい表面処理ガラスクロス、該表面処理ガラスクロスを用いるプリプレグ、及び、該表面処理ガラスクロスを用いるプリント配線板を提供することを目的とする。
 かかる目的を達成するために、本発明の表面処理ガラスクロスは、表面に表面処理層を備える表面処理ガラスクロスであって、前記表面処理層は、少なくとも1つのメタアクリロイル基を有する第1のシランカップリング剤と、下記一般式(1)で示される第2のシランカップリング剤とを含むことを特徴とする。
  X(R)3-nSiY  ・・・(1)
(式中、Xは炭素数1~4のアルキル基であり、Rは各々独立して、メチル基、エチル基、及び、フェニル基からなる群から選択される1つの基であり、Yは各々独立して、炭素数1~6のアルコキシ基であり、nは1以上3以下の整数である。)
 本発明の表面処理ガラスクロスは、表面に、前記第1のシランカップリング剤と前記第2のシランカップリング剤とを含む表面処理層を備えることにより、プリント配線板において高い絶縁信頼性を得ることができ、しかも風合いが硬くなるので、プリプレグの製造時に皺が入りにくくなる。
 前記第2のシランカップリング剤は、加水分解速度が早く、シラノールの反応性が高いため、ガラスクロスとの吸着性が高くなり、ガラスクロスの風合いを硬くすることができる。また、前記第2のシランカップリング剤のアルキル鎖が短いことで、分子量が小さく、前記第1のシランカップリング剤と樹脂との反応を阻害しないため、プリント配線板において高い絶縁信頼性が得ることができる。
 本発明の表面処理ガラスクロスにおいて、前記第2のシランカップリング剤は、一般式(1)において、Xがメチル基又はエチル基であることが好ましく、メチル基であることがさらに好ましい。
 また、本発明の表面処理ガラスクロスは、前記第1のシランカップリング剤と前記第2のシランカップリング剤との合計含有量が前記表面処理ガラスクロス全体の0.03~1.50質量%の範囲であり、前記第1のシランカップリング剤の含有量に対する前記第2のシランカップリング剤の含有量の比(第2のシランカップリング剤の含有量/第1のシランカップリング剤の含有量)が0.01~0.25の範囲にあることが好ましく、前記第1のシランカップリング剤の含有量に対する前記第2のシランカップリング剤の含有量の比が0.03~0.17の範囲にあることがさらに好ましい。
 本発明の表面処理ガラスクロスは、前記第1のシランカップリング剤と前記第2のシランカップリング剤との合計含有量が前記表面処理ガラスクロス全体の0.03~1.50質量%の範囲にあり、前記第1のシランカップリング剤の含有量に対する前記第2のシランカップリング剤の含有量の比(第2のシランカップリング剤の含有量/第1のシランカップリング剤の含有量)が0.01~0.25の範囲にあることにより、プリント配線板における高い絶縁信頼性と、ガラスクロスの風合いを硬くする効果とをバランスよく得ることができる。
 本発明の表面処理ガラスクロスは、前記第1のシランカップリング剤と前記第2のシランカップリング剤との合計含有量が前記表面処理ガラスクロス全体の0.03質量%未満であるときには、シランカップリング剤の付着量が少なく、樹脂との界面接着性が悪化し、高い絶縁信頼性を得ることができない。また、前記第1のシランカップリング剤と前記第2のシランカップリング剤との合計含有量が前記表面処理ガラスクロス全体の1.05質量%超であるときは、ガラス処理剤水溶液のシランカップリング剤濃度を高くする必要があり、ガラス処理剤水溶液の安定性が悪化するため、長時間の安定した連続生産が困難になる。
 また、本発明の表面処理ガラスクロスは、前記第1のシランカップリング剤の含有量に対する前記第2のシランカップリング剤の含有量の比(第2のシランカップリング剤の含有量/第1のシランカップリング剤の含有量)が0.01未満であるときには、風合いを硬くするという効果が得られず、0.25超であるときは、第2のシランカップリング剤の脱水縮合が起こりやすく、長時間の安定した連続生産が困難になる。
 また、本発明の表面処理ガラスクロスにおいて、前記表面処理層は、界面活性剤を不含有であることが好ましい。本発明の表面処理ガラスクロスは、前記表面処理層が、界面活性剤を含まないことにより、含浸性が向上し、プリント配線板において高い絶縁信頼性を得ることができる。
 また、本発明の表面処理ガラスクロスは、厚さが5~25μmの範囲であることが好ましい。本発明の表面処理ガラスクロスは、厚さが25μm超であるときも、本発明の効果を得ることができるが、厚さが5~25μmの範囲であることにより、プリント配線板における高い絶縁信頼性と、ガラスクロスの風合いを硬くする効果とをバランスよく得ることができる。また、本発明の表面処理ガラスクロスの厚さが5μm未満となるように製造することは技術的に困難である。
 また、本発明のプリプレグは、本発明の表面処理ガラスクロスを含むことを特徴とし、本発明のプリント配線板は、本発明の表面処理ガラスクロスを含むことを特徴とする。
 次に、本発明の実施の形態についてさらに詳しく説明する。
 本実施形態の表面処理ガラスクロスは、表面に表面処理層を備え、前記表面処理層は、少なくとも1つのメタアクリロイル基を有する第1のシランカップリング剤と、下記一般式(1)で示される第2のシランカップリング剤とを含む。
  X(R)3-nSiY  ・・・(1)
(式中、Xは炭素数1~4のアルキル基であり、Rは各々独立して、メチル基、エチル基、及び、フェニル基からなる群から選択される1つの基であり、Yは各々独立して、炭素数1~6のアルコキシ基であり、nは1以上3以下の整数である。)
 本実施形態の表面処理ガラスクロスにおいて、前記第2のシランカップリング剤は、一般式(1)において、Xがメチル基又はエチル基であることが好ましく、メチル基であることがさらに好ましい。
 本実施形態の表面処理ガラスクロスは、例えば、次のようにして製造することができる。
 まず、所定のガラスバッチ(ガラス原材料)を溶融して繊維化することにより、ガラスフィラメントを得る。前記ガラスフィラメントを構成するガラス組成は、特に限定されないが、Eガラス、Tガラス、NEガラス、Lガラス等の組成が好ましい。低誘電率と低誘電正接という点から、NEガラス、Lガラスがより好ましく、具体的には、全量に対し、48.0~62.0質量%の範囲のSiOと、17.0~26.0質量%の範囲のBと、9.0~18.0質量%の範囲のAlと、0~6.0質量%の範囲のMgOと、0.1~9.0質量%の範囲のCaOと、合計で0~0.5質量%の範囲のNaO、KO及びLiOと、0~5.0質量%の範囲のTiOと、0~6.0質量%の範囲のSrOと、0~6.0質量%の範囲のPと、合計で0~3.0質量%の範囲のFおよびClとを含む組成がより好ましい。
 ここで、前述したガラスの組成の各成分の含有量の測定は、軽元素であるLiについてはICP発光分光分析装置を用いて、その他の元素は波長分散型蛍光X線分析装置を用いて行うことができる。
 測定方法としては、ガラスクロス(ガラスクロス表面に有機物が付着している場合、又は、ガラスクロスが有機物(樹脂)中に主に強化材として含まれている場合には、例えば、300~600℃のマッフル炉で2~24時間程度加熱する等して、有機物を除去してから用いる)を適宜の大きさに裁断した後、白金ルツボに入れ、電気炉中で1550℃の温度に6時間保持して撹拌を加えながら溶融させることにより、均質な溶融ガラスを得る。次に、得られた溶融ガラスをカーボン板上に流し出してガラスカレットを作製した後、粉砕し粉末化する。軽元素であるLiについてはガラス粉末を酸で加熱分解した後、ICP発光分光分析装置を用いて定量分析する。その他の元素はガラス粉末をプレス機で円盤状に成形した後、波長分散型蛍光X線分析装置を用いて定量分析する。これらの定量分析結果を酸化物換算して各成分の含有量及び全量を計算し、これらの数値から前述した各成分の含有量(質量%)を求めることができる。
 前記ガラスフィラメントのフィラメント径は、特に限定されないが、プリント配線板用途には、10μm以下であることが好ましく、8μm以下であることがより好ましく、3~5μmの範囲であることが特に好ましい。
 前記ガラスフィラメントは、例えば、25~500本、好ましくは40~300本の範囲の本数で、それ自体公知の方法により集束され、ガラス繊維糸とされる。なお、ガラスバッチを溶融し、繊維化してガラスフィラメントを得て、次いで、このガラスフィラメント複数本を集束してガラス繊維糸を得ることを紡糸という。
 前記ガラスフィラメントのフィラメント径は、ガラスクロスの経糸又は緯糸の断面それぞれ50点について、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製、商品名:S-3400N、倍率:3000倍)で、経糸又は緯糸を構成するガラスフィラメントの直径を測定したときの測定値の平均値である。また、前記ガラスフィラメントの本数は、ガラスクロスの経糸又は緯糸の断面それぞれ50点について、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製、商品名:S-3400N、倍率:500倍)で、経糸又は緯糸を構成するガラスフィラメントの本数を計測したときの計測値の平均値である。
 前記ガラス繊維糸の番手は、0.8~135texであることが好ましく、1~25texであることがより好ましい。なお、ガラス繊維糸の番手(tex)とは、ガラス繊維の1000mあたりの質量(単位:g)に相当する。
 次に、前記ガラス繊維糸を経糸又は緯糸として製織することによりガラスクロスを得る。前記製織の方法は、特に限定されないが、例えば、平織、朱子織、綾織等を挙げることができ、平織であることが好ましい。前記製織の際の前記ガラス繊維糸の織密度は、特に限定されないが、例えば、10~150本/25mmの範囲であることが好ましく、40~100本/25mmの範囲であることがより好ましい。
 前記ガラス繊維糸の織密度は、JIS R 3420に準拠して、織物分解鏡を用い、経方向又は緯方向の25mmの範囲にある経糸又は緯糸の本数を数えることにより求めることができる。
 前記製織の際には、前記ガラスフィラメントの集束や経糸の整経等にサイズ剤を用いる。前記サイズ剤としては、例えば、被膜形成剤成分がデンプン系又はPVA(ポリビニルアルコール)系であるサイズ剤を挙げることができる。前記サイズ剤は、油剤又は柔軟剤等を含んでもよい。
 前記ガラスクロスにおける前記サイズ剤の付着量は、前記ガラス繊維糸100質量部に対して該サイズ剤の付着量が0.1~3質量部であることが好ましく、0.5~1.5質量部であることがより好ましい。なお、前記サイズ剤の付着量の範囲や特に指定しない場合のサイズ剤の付着量は、経糸又は緯糸に対するサイズ剤の付着量の平均を表したものである。
 前記製織により得られる前記ガラスクロスは、プリント配線板の基材用途という観点から、その単位面積あたりの質量が110g/m以下であることが好ましい。一方、製織性の観点からは、ガラスクロスの単位面積あたりの質量が8g/m以上であることが好ましい。
 前記ガラスクロスの質量は、JIS R 3420に準拠した秤で、200mm×200mmの大きさにカットしたガラスクロスの質量を3点測定し、それぞれを1m当たりの質量に換算した値の平均値である。
 次に、前記ガラスクロスに対して開繊処理を施す。前記開繊処理としては、例えば、水流圧力による開繊、液体を媒体とした高周波の振動による開繊、面圧を有する流体の圧力による開繊、ロールによる加圧での開繊等を挙げることができる。前記開繊処理の中では、水流圧力による開繊、又は液体を媒体とした高周波の振動による開繊を使用することが、経糸及び緯糸のそれぞれにおいて、開繊処理後の糸幅のバラツキが低減されるので好ましい。また、前記開繊処理は、複数の処理方法を併用してもよい。
 次に、前記開繊処理が施されたガラスクロスに対し、脱油処理を施す。前記脱油処理は、例えば、前記ガラスクロスを雰囲気温度が350℃~450℃の範囲の温度の加熱炉内に40~80時間の範囲の時間配置し、該ガラスクロスに付着している紡糸用集束剤と製織用集束剤とを加熱分解することにより行うことができる。
 次に、前記脱油処理が施されたガラスクロスを、表面処理剤水溶液に浸漬し、余分な水分を絞液した後、80~180℃の範囲の温度で、1~30分間の範囲の時間、例えば110℃で5分間加熱乾燥することにより、本実施形態の表面処理ガラスクロスを得ることができる。
 前記表面処理剤水溶液としては、少なくとも1つのメタアクリロイル基を有する第1のシランカップリング剤と、下記一般式(1)で示される第2のシランカップリング剤とを、表面処理剤水溶液全量に対して、固形分として、0.1~2.0質量%の範囲で含み、pH調整剤としての弱酸(例えば、酢酸、クエン酸、プロピオン酸等)を、0.5~2.0質量%の範囲で含むものを用いることができる。
  X(R)3-nSiY  ・・・(1)
(式中、Xは炭素数1~4のアルキル基であり、Rは各々独立して、メチル基、エチル基、及び、フェニル基からなる群から選択される1つの基であり、Yは各々独立して、炭素数1~6のアルコキシ基であり、nは1以上3以下の整数である。)
 前記少なくとも1つのメタアクリロイル基を有するシランカップリング剤としては、例えば、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等を挙げることができる。
 また、前記一般式(1)で示される第2のシランカップリング剤としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシランを挙げることができる。前記第2のシランカップリング剤は、好ましくは、前記一般式(1)のXがメチル基又はエチル基であり、このような前記第2のシランカップリング剤として、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシランを挙げることができる。前記第2のシランカップリング剤は、より好ましくは、前記一般式(1)のXがメチル基であり、このような前記第2のシランカップリング剤として、メチルトリメトキシシラン、メチルトリエトキシシランを挙げることができるが、最も好ましくはメチルトリメトキシシランを挙げることができる。
 本実施形態の表面処理ガラスクロスにおいて、第1のシランカップリング剤と第2のシランカップリング剤との合計含有量は、該表面処理ガラスクロスの全量に対して、好ましくは0.03~1.50質量%の範囲であり、より好ましくは0.05~1.20質量%の範囲であり、さらに好ましくは0.1~1.0質量%の範囲であり、とりわけ好ましくは0.2~0.8質量%の範囲であり、特に好ましくは0.3~0.7質量%の範囲であり、最も好ましくは0.4~0.6質量%の範囲である。
 また、本実施形態の表面処理ガラスクロスにおいて、第1のシランカップリング剤の含有量に対する、第2のシランカップリング剤の含有量の比(第2のシランカップリング剤の含有量/第1のシランカップリング剤の含有量)は、好ましくは0.01~0.25の範囲にあり、より好ましくは0.03~0.20の範囲にあり、さらに好ましくは0.03~0.17の範囲にあり、最も好ましくは0.10~0.17の範囲にある。
 この結果、表面に、少なくとも1つのメタアクリロイル基を有する第1のシランカップリング剤と、前記一般式(1)で示される第2のシランカップリング剤とを含む、表面処理層を備える本実施形態の表面処理ガラスクロスを得ることができる。
 また、本実施形態の表面処理ガラスクロスは、前記表面処理層が界面活性剤を含まないことが好ましく、厚さが5~60μmの範囲にあることが好ましく、5~40μmの範囲にあることがより好ましく、5~25μmの範囲にあることがさらに好ましい。
 ここで、表面処理ガラスクロスの厚さとしては、JIS R 3420に準拠して、表面処理ガラスクロス中15点でその厚さをマイクロメーターで測定したときの測定値の平均値を採用することができる。
 次に、本発明の実施例、比較例、および、参考例を示す。
 〔実施例1〕
 本実施例では、IPC4412規格のクロススタイル#1017(ガラス組成:NEガラス、使用ヤーン:BC3000(フィラメント径4.0μm、ヤーン重量1.5tex)、経糸織密度:95本/25mm、緯糸織密度:95本/25mm、単位面積当たりの質量:11.4g/m)のガラスクロスを製織し、2MPaの圧力を有する40℃の高圧水流をガラスクロスに噴射する水流圧力による開繊を行い、400~450℃の温度で60時間の加熱を行って脱油処理した後、脱油処理したガラスクロスをガラス処理剤水溶液に浸漬し、余分な水分を絞液した後、110℃で5分間加熱乾燥し、本実施例の表面処理ガラスクロスを得た。
 前記ガラス処理剤水溶液は、第1のシランカップリング剤として3-メタクリロキシプロピルトリメトキシシラン(ダウ・東レ株式会社製)を1.0質量%、第2のシランカップリング剤としてメチルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)を0.15質量%用い、酢酸を0.5質量%となるように水に混合して、マグネチックスターラーにて1時間撹拌することにより調製した。
 得られた表面処理ガラスクロスを350mm×400mmにカットし、得られた表面処理ガラスクロス片を、ポリフェニレンエーテル樹脂ワニスに浸漬し、150℃の温度で10分間予備乾燥して、プリプレグを得た。前記ポリフェニレンエーテル樹脂ワニスは、オリゴフェニレンエーテル(三菱ガス化学株式会社製、商品名:OPE-2St)450質量部、トリアリルイソシアヌレート(エボニック・ジャパン株式会社製、商品名:TAICROS)100質量部、α,α´-ジ(ターシャリーブチルパーオキシ)ジイソプロピルベンゼン(日油株式会社製、商品名:パーブチルP)4質量部、トルエン(富士フィルム和光純薬株式会社製)250質量部からなる。
 次に、前記プリプレグを4枚積層し、上下にセロハンフィルムを重ね、真空ホットプレス(北川精機株式会社製)を用いて所定時間加熱加圧して板厚が約0.2mmの積層板を得た。
 次に、本実施例で得られた積層板を7cm×4cmに切り出し、ダイヤモンドカッターを用いて縦と横にそれぞれ長さ2cmのスリットを入れて試験片とした。ビーカーに調液した1モル/LのNaOH(富士フィルム和光純薬株式会社製)水溶液を入れて、60℃の温度に加熱し、前記試験片を該水溶液中に24時間浸漬した後、デジタルマイクロスコープ(株式会社キーエンス製)を用いて100倍の倍率で経糸方向と緯糸方向への樹脂とガラスとの間の界面剥離による白化距離を測定した。測定では経糸方向、緯糸方向をそれぞれ24点測定し、平均値を算出して白化距離とした。この剥離による白化距離はプリント配線板の絶縁信頼性と相関性があり、白化距離が短いほど絶縁信頼性が高くなる。
 次に、本実施例で得られた表面処理ガラスクロスを90mm×30mmにカットし、風合い測定用ガラスクロス片とした。測定はJIS L 1096のスライド法による剛軟性試験に準拠して行った。風合い測定用ガラスクロス片の短辺の一端を長辺方向に30mm水平台に固定し、その他の部分を自由端として、水平台と上面が一致した移動台に乗せた。水平台上面を基準として、移動台を降下させ、自由端の先端中央部が移動台から離れるまでの移動距離を測定した。5枚の風合い測定用ガラスクロス片を用いて測定を行い、平均値を算出した。この移動台の移動距離はガラスクロスの風合いと相関性があり、移動距離が短いほどガラスクロスの風合いが硬い。
 次に、本実施例で得られた表面処理ガラスクロスを60mm×40mmにカットし、含浸性評価試験片とした。含浸性評価試験片をベンジルアルコールに浸漬し、浸漬直後からベンジルアルコールが含浸性評価用ガラスクロス片に完全に浸透するまでの時間を緯糸方向で測定した。5枚の含浸性評価用ガラスクロス片を用いて測定を行い、平均値を算出した。白化距離、風合い、含浸性の測定結果を表1に示す。なお、表1中、3-メタクリロキシプロピルトリメトキシシランを「メタクリル」と略記し、メチルトリメトキシシランを「メチルシラン」と略記する。
 〔実施例2〕
 本実施例では、ガラス処理剤水溶液に含まれる第2のシランカップリング剤としてのメチルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)の量を0.05質量%とした以外は、実施例1と全く同一にして、表面処理ガラスクロス、プリプレグ、積層板を得た。
 次に、本実施例で得られた表面処理ガラスクロスと積層板とを用いた以外は、実施例1と全く同一にして、白化距離、風合い、含浸性を測定した。測定結果を表1に示す。
 〔実施例3〕
 本実施例では、ガラス処理剤水溶液に、界面活性剤としてポリオキシエチレンアルキルエーテル(東邦化学工業株式会社製)を0.001質量%加えた以外は、実施例2と全く同一にして、表面処理ガラスクロス、プリプレグ、積層板を得た。
 次に、本実施例で得られた表面処理ガラスクロスと積層板とを用いた以外は、実施例1と全く同一にして、白化距離、風合い、含浸性を測定した。測定結果を表1に示す。
 〔実施例4〕
 本実施例では、ガラス処理剤水溶液に含まれる第2のシランカップリング剤としてのメチルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)の量を0.19質量%とした以外は、実施例1と全く同一にして、表面処理ガラスクロス、プリプレグ、積層板を得た。
 次に、本実施例で得られた表面処理ガラスクロスと積層板とを用いた以外は、実施例1と全く同一にして、白化距離、風合い、含浸性を測定した。測定結果を表1に示す。
 〔実施例5〕
 本実施例では、ガラス処理剤水溶液に含まれる第2のシランカップリング剤としてのメチルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)に代えて、プロピルトリメトキシシラン(信越シリコーン株式会社製)を0.05質量%用いた以外は、実施例1と全く同一にして、表面処理ガラスクロス、プリプレグ、積層板を得た。
 次に、本実施例で得られた表面処理ガラスクロスと積層板とを用いた以外は、実施例1と全く同一にして、白化距離、風合い、含浸性を測定した。測定結果を表1に示す。
 なお、表1中、プロピルトリメトキシシランを「プロピルシラン」と略記する。
 〔実施例6〕
 本実施例では、IPC4412規格のクロススタイル#1078(ガラス組成:NEガラス、使用ヤーン:D450(フィラメント径5.0μm、ヤーン重量10.0tex)、経糸織密度:53本/25mm、緯糸織密度:53本/25mm、単位面積当たりの質量:44.0g/m)のガラスクロスを用いた以外は、実施例1と全く同一にして、表面処理ガラスクロス、プリプレグ、積層板を得た。
 次に、本実施例で得られた表面処理ガラスクロスと積層板とを用いた以外は、実施例1と全く同一にして、白化距離、風合い、含浸性を測定した。測定結果を表2に示す。
 〔比較例1〕
 本比較例では、ガラス処理剤水溶液に含まれる第2のシランカップリング剤としてのメチルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)に代えて、ヘキシルトリメトキシシラン(ダウ・東レ株式会社製)を0.05質量%用いた以外は、実施例1と全く同一にして、表面処理ガラスクロス、プリプレグ、積層板を得た。
 次に、本比較例で得られた表面処理ガラスクロスと積層板とを用いた以外は、実施例1と全く同一にして、白化距離、風合い、含浸性を測定した。測定結果を表2に示す。
 なお、表2中、ヘキシルトリメトキシシランを「ヘキシルシラン」と略記する。
 〔参考例1〕
 本参考例では、ガラス処理剤水溶液に含まれるシランカップリング剤を、第1のシランカップリング剤としての3-メタクリロキシプロピルトリメトキシシラン(ダウ・東レ株式会社製)1.0質量%のみとし、第2のシランカップリング剤を全く含まないものとした以外は、実施例1と全く同一にして、表面処理ガラスクロス、プリプレグ、積層板を得た。
 次に、本参考例で得られた表面処理ガラスクロスと積層板とを用いた以外は、実施例1と全く同一にして、白化距離、風合い、含浸性を測定した。測定結果を表2に示す。
 〔参考例2〕
 本参考例では、ガラス処理剤水溶液に含まれるシランカップリング剤を、第1のシランカップリング剤としての3-メタクリロキシプロピルトリメトキシシラン(ダウ・東レ株式会社製)1.0質量%のみとし、第2のシランカップリング剤を全く含まないものとした以外は、実施例6と全く同一にして、表面処理ガラスクロス、プリプレグ、積層板を得た。
 次に、本参考例で得られた表面処理ガラスクロスと積層板とを用いた以外は、実施例1と全く同一にして、白化距離、風合い、含浸性を測定した。測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 なお、表1および表2における「白化距離悪化率」は、実施例1~5および比較例1については参考例1の白化距離に対する白化距離の増加率を示し、実施例6については参考例2の白化距離に対する白化距離の増加率を示す。表1および表2における「風合い改善率」は、実施例1~5および比較例1については参考例1の風合いに対する風合いの減少率を示し、実施例6については参考例2の風合いに対する風合いの減少率を示す。
 また、表1および表2における「風合い改善率/白化距離悪化率」は、プリント配線板における絶縁信頼性の高さと、プリプレグの製造時における皺の入りにくさとを示す指標であり、数値が大きいほど、プリント配線板において絶縁信頼性が高く、プリプレグの製造時において皺が入りにくいことを示す。
 表1および表2から明らかなように、表面に、少なくとも1つのメタアクリロイル基を有する第1のシランカップリング剤と、一般式(1)で示される第2のシランカップリング剤とを含む表面処理層を備える実施例1~6の表面処理ガラスクロスによれば、表面に、少なくとも1つのメタアクリロイル基を有する第1のシランカップリング剤を含み、一般式(1)で示される第2のシランカップリング剤を含まない表面処理層を備える比較例1の表面処理ガラスクロスよりも、風合い改善率/白化距離悪化率の数値が大きく、プリント配線板において高い絶縁信頼性を得ることができ、プリプレグの製造時に皺が入りにくいことが明らかである。

Claims (9)

  1.  表面に表面処理層を備える表面処理ガラスクロスであって、
     前記表面処理層は、少なくとも1つのメタアクリロイル基を有する第1のシランカップリング剤と、下記一般式(1)で示される第2のシランカップリング剤とを含むことを特徴とする、表面処理ガラスクロス。
      X(R)3-nSiY  ・・・(1)
    (式中、Xは炭素数1~4のアルキル基であり、Rは各々独立して、メチル基、エチル基、及び、フェニル基からなる群から選択される1つの基であり、Yは各々独立して、炭素数1~6のアルコキシ基であり、nは1以上3以下の整数である。)
  2.  請求項1記載の表面処理ガラスクロスにおいて、前記第2のシランカップリング剤は、一般式(1)において、Xがメチル基又はエチル基であることを特徴とする、表面処理ガラスクロス。
  3.  請求項1又は請求項2記載の表面処理ガラスクロスにおいて、前記第2のシランカップリング剤は、一般式(1)において、Xがメチル基であることを特徴とする、表面処理ガラスクロス。
  4.  請求項1~請求項3のいずれか1項記載の表面処理ガラスクロスにおいて、前記第1のシランカップリング剤と前記第2のシランカップリング剤との合計含有量が前記表面処理ガラスクロス全体の0.03~1.50質量%の範囲であり、前記第1のシランカップリング剤の含有量に対する前記第2のシランカップリング剤の含有量の比(第2のシランカップリング剤の含有量/第1のシランカップリング剤の含有量)が0.01~0.25の範囲にあることを特徴とする、表面処理ガラスクロス。
  5.  請求項4記載の表面処理ガラスクロスにおいて、前記第1のシランカップリング剤の含有量に対する前記第2のシランカップリング剤の含有量の比(第2のシランカップリング剤の含有量/第1のシランカップリング剤の含有量)が0.03~0.17の範囲にあることを特徴とする、表面処理ガラスクロス。
  6.  請求項1~請求項5のいずれか1項記載の表面処理ガラスクロスにおいて、前記表面処理層は、界面活性剤を不含有であることを特徴とする、表面処理ガラスクロス。
  7.  請求項1~請求項6のいずれか1項記載の表面処理ガラスクロスにおいて、厚さが5~25μmの範囲であることを特徴とする、表面処理ガラスクロス。
  8.  請求項1~請求項7のいずれか1項記載の表面処理ガラスクロスを含むことを特徴とする、プリプレグ。
  9.  請求項1~請求項7のいずれか1項記載の表面処理ガラスクロスを含むことを特徴とする、プリント配線板。
PCT/JP2021/025697 2020-08-25 2021-07-07 表面処理ガラスクロス、プリプレグ及びプリント配線板 WO2022044559A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180034321.1A CN115605644A (zh) 2020-08-25 2021-07-07 表面处理玻璃布、预浸料及印刷布线板
JP2022545505A JPWO2022044559A1 (ja) 2020-08-25 2021-07-07
KR1020227040382A KR20230054796A (ko) 2020-08-25 2021-07-07 표면처리 유리 크로스, 프리프레그 및 프린트 배선판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-141729 2020-08-25
JP2020141729 2020-08-25

Publications (1)

Publication Number Publication Date
WO2022044559A1 true WO2022044559A1 (ja) 2022-03-03

Family

ID=80353220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025697 WO2022044559A1 (ja) 2020-08-25 2021-07-07 表面処理ガラスクロス、プリプレグ及びプリント配線板

Country Status (5)

Country Link
JP (1) JPWO2022044559A1 (ja)
KR (1) KR20230054796A (ja)
CN (1) CN115605644A (ja)
TW (1) TW202219011A (ja)
WO (1) WO2022044559A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179537A (en) * 1978-01-04 1979-12-18 Rykowski John J Silane coupling agents
JPH04370275A (ja) * 1991-06-12 1992-12-22 Unitika Ltd 樹脂補強用ガラスクロスの製造方法
JPH05183246A (ja) * 1991-12-26 1993-07-23 Nitto Boseki Co Ltd プリント配線基板
JP2006512467A (ja) * 2002-12-26 2006-04-13 ロディア・シミ 防汚用シリコンワニス、前記ワニスの基材への塗布方法及びこうして処理された基材
JP2018127749A (ja) * 2017-02-10 2018-08-16 旭化成株式会社 ガラスクロス、プリプレグ、及びプリント配線板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180305846A1 (en) * 2017-02-10 2018-10-25 Asahi Kasei Kabushiki Kaisha Glass cloth, prepreg, and printed wiring board
JP6734422B1 (ja) 2019-03-27 2020-08-05 日東紡績株式会社 プリント配線板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179537A (en) * 1978-01-04 1979-12-18 Rykowski John J Silane coupling agents
JPH04370275A (ja) * 1991-06-12 1992-12-22 Unitika Ltd 樹脂補強用ガラスクロスの製造方法
JPH05183246A (ja) * 1991-12-26 1993-07-23 Nitto Boseki Co Ltd プリント配線基板
JP2006512467A (ja) * 2002-12-26 2006-04-13 ロディア・シミ 防汚用シリコンワニス、前記ワニスの基材への塗布方法及びこうして処理された基材
JP2018127749A (ja) * 2017-02-10 2018-08-16 旭化成株式会社 ガラスクロス、プリプレグ、及びプリント配線板

Also Published As

Publication number Publication date
JPWO2022044559A1 (ja) 2022-03-03
KR20230054796A (ko) 2023-04-25
TW202219011A (zh) 2022-05-16
CN115605644A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
JP6957563B2 (ja) ガラスクロス
JP7145586B2 (ja) ガラスクロス、プリプレグ、及びプリント配線板
KR102615334B1 (ko) 표면 처리 글래스 클로스, 프리프레그 및 프린트 배선판
JP7478044B2 (ja) 低誘電樹脂基板
JP2023121789A (ja) アニールド石英ガラスクロスの製造方法
JP7320697B2 (ja) 表面処理ガラスクロス及びプリプレグ
WO2022044559A1 (ja) 表面処理ガラスクロス、プリプレグ及びプリント配線板
WO2022024733A1 (ja) 表面処理ガラスクロス、プリプレグ及びプリント配線板
JP6915999B2 (ja) ガラスクロス、プリプレグ、及びプリント配線板
JP2023006294A (ja) ガラスクロス、プリプレグ、及びプリント配線板
JP6917724B2 (ja) ガラスクロス、プリプレグ、及びプリント配線板
JP2007262632A (ja) ガラス繊維織物のヒートクリーニング方法
JP7319776B2 (ja) ガラスクロス、プリプレグ、及びプリント配線板
US9902649B2 (en) Method for producing surface-treated glass fiber film and flexible fiber substrate
JP7480802B2 (ja) ガラス繊維及びその製造方法、ならびにガラスクロス、基板用プリプレグ及びプリント配線基板
TWI812348B (zh) 玻璃紗、玻璃布之製造方法及玻璃布
TW202407182A (zh) 玻璃布處理液及經表面處理之玻璃布
JP7011396B2 (ja) ガラスクロス、プリプレグ、及びプリント配線板
CN116732678A (zh) 玻璃布
JP2023014121A (ja) プリプレグ用シリカガラスクロス
TW202335989A (zh) 玻璃纖維用玻璃組成物、玻璃纖維、玻璃纖維織物及經玻璃纖維強化之樹脂組成物
JP2023172651A (ja) ガラス繊維強化熱可塑性樹脂基板、及びプリント配線板
JP2024073103A (ja) ガラスクロス、ガラスクロスの製造方法、プリプレグ、プリント配線板
JP2024098659A (ja) シランカップリング剤処理石英ガラスクロス及び製造方法、ならびにシランカップリング剤処理液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545505

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860989

Country of ref document: EP

Kind code of ref document: A1