WO2022044452A1 - 入力装置 - Google Patents

入力装置 Download PDF

Info

Publication number
WO2022044452A1
WO2022044452A1 PCT/JP2021/019352 JP2021019352W WO2022044452A1 WO 2022044452 A1 WO2022044452 A1 WO 2022044452A1 JP 2021019352 W JP2021019352 W JP 2021019352W WO 2022044452 A1 WO2022044452 A1 WO 2022044452A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive signal
section
input device
actuator
signal
Prior art date
Application number
PCT/JP2021/019352
Other languages
English (en)
French (fr)
Inventor
素 鈴木
邦生 佐藤
伸一 寒川井
イ 夏
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Priority to KR1020237006914A priority Critical patent/KR20230043975A/ko
Priority to CN202180046293.5A priority patent/CN115867877A/zh
Priority to DE112021004596.2T priority patent/DE112021004596T5/de
Priority to JP2022545315A priority patent/JP7474339B2/ja
Publication of WO2022044452A1 publication Critical patent/WO2022044452A1/ja
Priority to US18/152,402 priority patent/US20230161414A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0215Driving circuits for generating pulses, e.g. bursts of oscillations, envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • B06B1/0246Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal
    • B06B1/0253Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal taken directly from the generator circuit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/50Application to a particular transducer type
    • B06B2201/55Piezoelectric transducer

Definitions

  • the present invention relates to an input device.
  • Patent Document 1 discloses a technique of generating a tactile sensation at a user's fingertip in contact with a touch panel by vibrating a movable panel unit provided with a touch panel by an actuator. Further, Patent Document 1 below discloses a configuration in which a waveform having a gradual change in magnitude is exhibited so that a high frequency component is suppressed at both the start time and / or the end time of the drive signal of the actuator.
  • Patent Document 2 discloses a technique for presenting a tactile sensation by vibrating a panel using a magnetic force. Further, Patent Document 2 below discloses a technique for vibrating a panel so that the vibration of the panel has a waveform that rises gently squared with a sine wave.
  • the actuator responds to an input operation with zero travel or minute travel (hereinafter referred to as "zero travel, etc.") to the operation panel. It was not possible to properly adjust the characteristics of the pseudo-operation sound and operation feeling generated in the vehicle by the drive signal.
  • the actuator in response to an input operation such as zero travel on the touchpad, the actuator wants to generate a pseudo low-frequency click operation feeling and a low-frequency click operation sound of the mechanical switch, but the unintended high frequency There is a risk that output sound will be generated, giving the operator a sense of discomfort.
  • the actuator wants to generate a low frequency click operation feeling of the mechanical switch and a high frequency and high output level click operation sound in a pseudo manner.
  • the output level of the click operation sound is insufficient, which may give the operator a sense of discomfort.
  • the actuator wants to generate a pseudo stroke operation feeling of the mechanical switch for an input operation such as zero travel of the touch pad, the actual displacement amount of the touch pad is extremely small, which is sufficient for the operator. There is a risk that it will not be possible to present a feeling of stroke operation.
  • the input device includes an operation unit in which an input operation is performed by an operator, a detection unit that detects an input operation to the operation unit, an actuator that applies vibration to the operation unit, and a detection result by the detection unit.
  • a control unit that supplies a drive signal to the actuator is provided, and the control unit consists of a triangular wave or a sine wave as the drive signal, and the rising section and the falling section are asymmetrical with the peak position as a boundary.
  • a single pulse signal having a signal waveform is supplied to the actuator.
  • a block diagram showing a configuration of an input device The figure which shows an example of the drive signal of a conventional actuator
  • the figure which shows the signal waveform of the drive signal which concerns on one Embodiment The figure which shows an example of the vibration waveform of the operation part by the drive signal shown in FIG.
  • the figure which shows the signal waveform of the drive signal which concerns on one Embodiment The figure which shows the signal waveform of the drive signal which concerns on one Embodiment
  • the figure which shows the signal waveform of the drive signal which concerns on one Embodiment The figure which shows the vibration waveform of the operation part by the drive signal shown in FIG.
  • the figure which shows the signal waveform of the drive signal which concerns on one Embodiment
  • FIG. 1 is a block diagram showing a configuration of an input device 100 according to an embodiment.
  • the input device 100 shown in FIG. 1 is used as an input device (for example, a controller for a game machine, an input device for a vehicle, etc.) for performing an input operation on an operation target device.
  • the input device 100 can present a pseudo operation sound and an operation feeling to the operator by generating vibration in response to the input operation by the operator.
  • the input device 100 includes an operation unit 102, a detection unit 104, an actuator 106, and a control unit 108.
  • the operation unit 102 is operated by an operator.
  • the operation unit 102 for example, a touch pad or the like having a hard and flat operation surface is used.
  • the operation unit 102 can perform an input operation that hardly causes deformation of the operation surface in the operation direction, that is, an input operation by zero travel or the like.
  • the detection unit 104 detects an input operation to the operation unit 102.
  • the detection unit 104 inputs to the operation unit 102 by zero travel or the like based on the detection signals output from various sensors (for example, electrostatic sensor, pressure sensor, etc.) incorporated in the operation unit 102. Detects the operation position, pressing force, etc. of the operation.
  • the actuator 106 applies vibration to the operation unit 102. Specifically, the actuator 106 generates vibration by being supplied with a drive signal from the control unit 108. The vibration generated by the actuator 106 is transmitted to the operation unit 102, and by vibrating the operation unit 102, the operator who operates the operation unit 102 is presented with an operation feeling.
  • the actuator 106 for example, a piezo element, a piezoelectric element, a polymer actuator, or the like can be used.
  • the control unit 108 generates vibration by driving the actuator 106 by supplying a drive signal to the actuator 106 according to the detection result by the detection unit 104. For example, when the detection unit 104 detects an input operation to the operation unit 102, the control unit 108 supplies a drive signal to the actuator 106 to drive the actuator 106 to generate vibration. As a result, the actuator 106 generates a pseudo operation sound corresponding to the input operation and presents it to the user, and at the same time, presents the operator a pseudo operation feeling corresponding to the input operation via the operation unit 102. be able to.
  • control unit 108 can control the characteristics of the operation sound and the operation feeling presented to the user by controlling the signal waveform of the drive signal supplied to the actuator 106.
  • the control unit 108 can control the frequency of the operation sound presented to the user by controlling the signal waveform of the drive signal.
  • control unit 108 controls the signal waveform of the drive signal to control the operation feeling imitating the click feeling generated when the mechanical switch is pressed and the stroke amount of the mechanical switch presented to the user. Can be done.
  • control unit 108 sends a single pulse signal to the actuator 106, which is composed of a triangular wave or a sine wave as a drive signal and has a signal waveform in which the rising section and the falling section are asymmetrical with the peak position as a boundary. Supply.
  • the input device 100 can appropriately adjust the characteristics of the pseudo operation sound and the operation feeling generated in the actuator 106 in response to the input operation.
  • FIG. 2 is a diagram showing an example of a drive signal of a conventional actuator.
  • FIG. 3 is a diagram showing an example of the signal waveform of the drive signal shown in FIG. 2 and the vibration waveform of the operation unit due to the drive signal.
  • the conventional drive signal has a signal waveform in which the rising section and the falling section are symmetrical.
  • the actuator required to present the click feeling generated when the metal switch is pressed is driven by the input of the rising section and the falling section.
  • the vibration waveform of FIG. 3 when the actuator is driven by the drive signal shown in FIG. 2, it is relatively large depending on the natural vibration frequency of the operation unit even after the end of the falling section of the signal waveform of the drive signal. Residual vibration occurs. This residual vibration causes an unintended high frequency and high output level operation sound.
  • FIG. 4 is a diagram showing a signal waveform of the drive signal S1 according to the embodiment.
  • the drive signal S1 shown in FIG. 4 is a first example of a drive signal supplied from the control unit 108 to the actuator 106 in the input device 100 according to the embodiment.
  • the drive signal S1 is a single pulse signal composed of a triangular wave and having a signal waveform in which the rising section P1 and the falling section P2 are asymmetrical with the peak position as a boundary.
  • the falling section P2 is longer than the rising section P1. That is, in the signal waveform of the drive signal S1, the voltage rise in the rising section P1 is steep, while the voltage drop in the falling section P2 is gradual. In particular, in the signal waveform of the drive signal S1, the length of the falling section P2 is 20% or more longer than the length of the rising section P1. As shown in FIG. 4, the signal waveform of the drive signal S1 may have a linear voltage drop in the falling section P2 or a quadratic curve. At this time, the voltage rise in the rising section P1 may be linear or quadratic.
  • FIG. 5 is a diagram showing an example of the vibration waveform of the operation unit 102 due to the drive signal S1 shown in FIG.
  • FIG. 5 shows the vibration waveform of the operation unit 102 when the actuator 106 is driven by the drive signal S1 shown in FIG. 4, together with the signal waveform of the drive signal S1.
  • the generation of vibration by the actuator 106 is suppressed in the falling section P2 of the signal waveform of the drive signal S1.
  • the operation sound generated by the actuator 106 has a lower frequency component.
  • the input device 100 according to the embodiment by making the falling section P2 of the drive signal S1 gentle, the difference between the drive frequency and the natural frequency of the operation unit 102 can be increased, and high-frequency vibration can be achieved. Can be suppressed. As a result, the input device 100 according to the embodiment can make the operation sound generated by the actuator 106 have a lower frequency component. Further, the input device 100 according to the embodiment further improves the effect of suppressing high frequency vibration by making the length of the falling section P2 of the drive signal S1 longer than the length of the rising section P1 by 20% or more. It has been confirmed by simulation that it can be done.
  • FIG. 6 is a diagram showing a signal waveform of the drive signal S2 according to the embodiment.
  • the drive signal S2 shown in FIG. 6 is a second example of the drive signal supplied from the control unit 108 to the actuator 106 in the input device 100 according to the embodiment.
  • the drive signal S2 shown in FIG. 6 is a single pulse signal composed of a triangular wave and having a signal waveform in which the rising section P3 and the falling section P4 are asymmetrical with the peak position as a boundary.
  • the falling section P4 is longer than the rising section P3, similar to the signal waveform of the driving signal S1 shown in FIG.
  • the drive required to present the click feeling generated when the metal switch is pressed is the input between the rising section P3 and the falling section P4. After that, the vibration generated by the voltage input during the period until the unapplied level is returned is only noise with respect to the vibration of the desired click feeling presentation, and it is necessary to reduce it as much as possible.
  • the signal waveform of the drive signal S2 reaches the peak of the negative voltage in the falling section P4 in order to secure a sufficient drive voltage range.
  • the signal waveform of the drive signal S2 further has a return section P5 from the peak of the drive voltage to the return to the initial voltage value (0 V).
  • the voltage rise in the return section P5 is gradual.
  • the return section P5 has a lower voltage volatility than the fall section P4. That is, it is preferable that the return section P5 has a sufficient length.
  • the "sufficient length" is longer than or equal to the length until the residual vibration that can occur at the end of the falling section P4 (that is, when the drive voltage is the peak of the negative voltage) converges.
  • the length is such that the voltage returns to the initial voltage value (0V) until the next vibration is generated.
  • the length of the return section P5 longer than the length of the fall section P4, it is possible to set it as "the length until the residual vibration that may occur near the end of the fall section P4 converges". can. This is because the length of the vibration period of the residual vibration that can occur near the end of the falling section P4 is generally shorter than the length of the falling section P4.
  • the return section P5 sufficiently long in this way, for example, residual vibration that can occur when the drive voltage returns from the peak of the negative voltage to the initial voltage value (0 V) (that is, the end of the return section P5). Can be suppressed.
  • the actuator 106 is the piezo element and the drive circuit is sufficient. It is preferably used when it does not have a driving ability.
  • FIG. 7 is a diagram showing a signal waveform of the drive signal S3 according to the embodiment.
  • the drive signal S3 shown in FIG. 7 is a third example of the drive signal supplied from the control unit 108 to the actuator 106 in the input device 100 according to the embodiment.
  • the drive signal S3 is a single pulse signal composed of a triangular wave and having a signal waveform in which the rising section P6 and the falling section P7 are asymmetrical with the peak position as a boundary.
  • the falling section P7 is shorter than the rising section P6. That is, in the signal waveform of the drive signal S3, the voltage rise in the rising section P6 is steep, while the voltage drop in the falling section P7 is steeper.
  • FIG. 8 is a diagram showing a vibration waveform of the operation unit 102 by the drive signal S3 shown in FIG. 7.
  • FIG. 8 shows the vibration waveform of the operation unit 102 when the actuator 106 is driven by the drive signal S3 shown in FIG. 7, together with the signal waveform of the drive signal S3.
  • the vibration depending on the natural vibration frequency of the operation unit 102 is amplified in the falling section of the signal waveform of the drive signal S3. ..
  • the operation sound generated by the actuator 106 is amplified by the vibration of a high frequency component depending on the natural vibration frequency of the operation unit 102, so that a sound having a high output level is generated.
  • the natural vibration frequency of the operation unit 102 is preferably 1 kHz or less.
  • FIG. 9 is a diagram showing a signal waveform of the drive signal S4 according to the embodiment.
  • the drive signal S4 shown in FIG. 9 is a fourth example of the drive signal supplied from the control unit 108 to the actuator 106 in the input device 100 according to the embodiment.
  • the drive signal S4 is a single pulse signal composed of a triangular wave and having a signal waveform in which the rising section P8 and the falling section P9 are asymmetrical with the peak position as a boundary.
  • the falling section P9 is shorter than the rising section P8.
  • the voltage rise in the rising section P8 changes from steep to gradually gradual, whereas the voltage drop in the falling section P9 is generally steep. be.
  • the period of the signal waveform of the drive signal S4 (from the start of the rising section P8 to the end of the falling section P9) is set to 7 to 21 ms.
  • FIG. 10 is a diagram showing a vibration waveform of the operation unit 102 by the drive signal S4 shown in FIG.
  • FIG. 10 shows the vibration waveform of the operation unit 102 when the actuator 106 is driven by the drive signal S4 shown in FIG. 9, together with the signal waveform of the drive signal S4 and the displacement amount of the operation panel (operation unit 102).
  • the vibration waveform V4 of the operation unit 102 first becomes the first at the start of the rising section P8 (when the voltage rise is steep).
  • One vibration peak occurs, then a weak vibration peak occurs in the remaining section of the rising section P8 (when the voltage rise is gradual), and then at the end of the falling section P9 (when the voltage drop is steep).
  • the maximum vibration peak will occur. That is, by presenting a weak vibration peak between the first vibration peak and the maximum vibration peak by the same drive signal S4, a time lag in the feel is generated, a movable friction feeling is given to the user, and a stroke feeling is given. Is generated.
  • the input device 100 can present a stroke operation feeling to the operator.
  • FIG. 11 is a diagram showing a signal waveform of the drive signal S5 according to the embodiment.
  • the drive signal S5 shown in FIG. 11 is a fifth example of the drive signal supplied from the control unit 108 to the actuator 106 in the input device 100 according to the embodiment.
  • the signal waveform of the drive signal S5 is a modification of the signal waveform of the drive signal S4 shown in FIG. 9, and the voltage value peaks between the rising section P10 and the falling section P12. It has a constant section P11 that is constant.
  • the stroke operation feeling can be presented to the operator as in the case where the actuator 106 is driven by the drive signal S4 shown in FIG.
  • the rising section P10 is shorter and the voltage value is constant at the peak as compared with the case where the actuator 106 is driven by the drive signal S4 shown in FIG.
  • the exciting force generated by the actuator 106 becomes large, and the vibration and the displacement propagated to the vibrating portion 102 increase, so that the stroke operation feeling is more reliably presented to the operator. Can be done.
  • the signal waveform of each drive signal is based on a triangular wave, but the present invention is not limited to this, and the signal waveform of each drive signal may be based on a sine wave. Also in this case, by providing the signal waveform of each drive signal (sine wave) with the same characteristic points as the signal waveform of each drive signal (triangle wave) described in the embodiment, the signal waveform of each drive signal (triangle wave) can be obtained. A similar effect can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Position Input By Displaying (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

入力装置は、操作者によって入力操作が行われる操作部と、操作部に対する入力操作を検出する検出部と、操作部に対して振動を付与するアクチュエータと、検出部による検出結果に応じて、アクチュエータに対して駆動信号を供給する制御部とを備え、制御部は、駆動信号として、三角波または正弦波からなり、且つ、ピーク位置を境界として立ち上がり区間と立ち下がり区間とが非対称である信号波形を有する単一のパルス信号を、アクチュエータへ供給する。

Description

入力装置
 本発明は、入力装置に関する。
 下記特許文献1には、タッチパネルを備えた可動パネルユニットをアクチュエータによって振動させることで、タッチパネルに接触しているユーザの指先に触覚を発生させる技術が開示されている。また、下記特許文献1には、アクチュエータの駆動信号の開始時および終了時の双方または一方において、高周波成分が抑制されるように、大きさが緩やか
変化する波形を呈する構成が開示されている。
 下記特許文献2には、磁力を用いてパネルを振動させることで、触覚を提示する技術が開示されている。また、下記特許文献2には、パネルの振動が正弦波を2乗した緩やかに立ち上がる波形を持つようにパネルを振動させる技術が開示されている。
特開2008-123429号公報 特開2006-79136号公報
 しかしながら、従来技術では、アクチュエータ駆動時に発生する音の影響を低減するものではあるが、操作パネルに対するゼロトラベルもしくは微小トラベル(以下、「ゼロトラベル等」と示す)での入力操作に応じて、アクチュエータに発生させる擬似的な操作音および操作感の特性を駆動信号によって適切に調整することができなかった。
 例えば、タッチパッドのゼロトラベル等での入力操作に対し、アクチュエータによってメカスイッチの低周波数のクリック操作感と低周波数のクリック操作音とを疑似的に発生させたいにも関わらず、意図しない高周波の出力音が発生してしまい、操作者に違和感を与えてしまう虞がある。
 また、例えば、タッチパッドのゼロトラベル等入力操作に対し、アクチュエータによってメカスイッチの低周波数のクリック操作感と高周波数且つ高出力レベルのクリック操作音とを疑似的に発生させたいにも関わらず、クリック操作音の出力レベルが不十分であり、操作者に違和感を与えてしまう虞がある。
 また、例えば、タッチパッドのゼロトラベル等入力操作に対し、アクチュエータによってメカスイッチのストローク操作感を疑似的に発生させたいにも関わらず、実際のタッチパッドの変位量が極めて小さく、操作者に十分なストローク操作感を呈示できない虞がある。
 一実施形態に係る入力装置は、操作者によって入力操作が行われる操作部と、操作部に対する入力操作を検出する検出部と、操作部に対して振動を付与するアクチュエータと、検出部による検出結果に応じて、アクチュエータに対して駆動信号を供給する制御部とを備え、制御部は、駆動信号として、三角波または正弦波からなり、且つ、ピーク位置を境界として立ち上がり区間と立ち下がり区間とが非対称である信号波形を有する単一のパルス信号を、アクチュエータへ供給する。
 一実施形態によれば、入力操作に応じてアクチュエータに発生させるメカスイッチを模した擬似的な操作音およびクリック感からなる操作感の特性を駆動信号によって適切に調整することができる。
一実施形態に係る入力装置の構成を示すブロック図 従来のアクチュエータの駆動信号の一例を示す図 図2に示す駆動信号の信号波形と、当該駆動信号による操作部の振動波形の一例を示す図 一実施形態に係る駆動信号の信号波形を示す図 図4に示す駆動信号による操作部の振動波形の一例を示す図 一実施形態に係る駆動信号の信号波形を示す図 一実施形態に係る駆動信号の信号波形を示す図 図7に示す駆動信号による操作部の振動波形を示す図 一実施形態に係る駆動信号の信号波形を示す図 図9に示す駆動信号による操作部の振動波形を示す図 一実施形態に係る駆動信号の信号波形を示す図
 以下、図面を参照して、本発明の一実施形態について説明する。
 (入力装置100の構成)
 図1は、一実施形態に係る入力装置100の構成を示すブロック図である。図1に示す入力装置100は、操作対象機器に対する入力操作を行うための入力装置(例えば、ゲーム機のコントローラ、車両用の入力装置等)として用いられる。入力装置100は、操作者による入力操作に応じて振動を発生することにより、擬似的な操作音および操作感を、操作者に呈示することが可能である。
 図1に示すように、入力装置100は、操作部102、検出部104、アクチュエータ106、および制御部108を備える。
 操作部102は、操作者による入力操作が行われる。操作部102としては、例えば、硬質且つ平面状の操作面を有するタッチパッド等が用いられる。操作部102は、操作面の操作方向への変形を殆ど生じさせない入力操作、すなわち、ゼロトラベル等による入力操作が可能である。
 検出部104は、操作部102に対する入力操作を検出する。例えば、検出部104は、操作部102に組み込まれた各種センサ(例えば、静電センサ、圧力センサ等)から出力される検出信号に基づいて、操作部102に対してなされたゼロトラベル等による入力操作の操作位置、押圧力等を検出する。
 アクチュエータ106は、操作部102に対して振動を付与する。具体的には、アクチュエータ106は、制御部108から駆動信号が供給されることによって、振動を発生する。アクチュエータ106によって発生された振動は、操作部102に伝達されて、操作部102を振動させることで、操作部102を操作する操作者に対して操作感触を呈示することとなる。アクチュエータ106としては、例えば、ピエゾ素子、圧電素子、高分子アクチュエータ等を用いることができる。
 制御部108は、検出部104による検出結果に応じて、アクチュエータ106に駆動信号を供給することにより、アクチュエータ106を駆動させることで振動を発生させる。例えば、制御部108は、検出部104によって操作部102に対する入力操作が検出された場合、アクチュエータ106に駆動信号を供給することにより、アクチュエータ106を駆動させることで振動を発生させる。これにより、アクチュエータ106は、入力操作に応じた擬似的な操作音を発生してユーザに呈示するとともに、操作部102を介して、入力操作に応じた擬似的な操作感を操作者に呈示することができる。
 ここで、制御部108は、アクチュエータ106に供給される駆動信号の信号波形を制御することにより、ユーザに呈示される操作音および操作感の特性を制御することができる。例えば、制御部108は、駆動信号の信号波形を制御することにより、ユーザに呈示される操作音の周波数を制御することができる。また、例えば、制御部108は、駆動信号の信号波形を制御することにより、ユーザに呈示されるメカスイッチの押圧時に発生するクリック感を模した操作感、及びメカスイッチのストローク量を制御することができる。
 特に、制御部108は、駆動信号として、三角波または正弦波からなり、且つ、ピーク位置を境界として立ち上がり区間と立ち下がり区間とが非対称である信号波形を有する単一のパルス信号を、アクチュエータ106へ供給する。これにより、一実施形態に係る入力装置100は、入力操作に応じてアクチュエータ106に発生させる擬似的な操作音および操作感の特性を適切に調整することができる。
 (従来の駆動信号および振動波形の一例)
 図2は、従来のアクチュエータの駆動信号の一例を示す図である。図3は、図2に示す駆動信号の信号波形と、当該駆動信号による操作部の振動波形の一例を示す図である。図2に示すように、従来の駆動信号は、立ち上がり区間と立ち下がり区間とが対称である信号波形を有する。メタルスイッチを押圧した際に発生するクリック感触の呈示を行うために必要なアクチュエータの駆動は、この立ち上がり区間および立ち下がり区間の入力によってなされる。図3の振動波形に示すように、図2に示す駆動信号によってアクチュエータを駆動した場合、当該駆動信号の信号波形の立ち下がり区間の終了後も、操作部の固有振動周波数に依存する比較的大きな残留振動が発生する。この残留振動は、意図しない高周波数且つ高出力レベルの操作音を発生させてしまう。
 (一実施形態に係る駆動信号および振動波形の一例(第1例))
 図4は、一実施形態に係る駆動信号S1の信号波形を示す図である。図4に示す駆動信号S1は、一実施形態に係る入力装置100において、制御部108からアクチュエータ106へ供給される駆動信号の第1例である。図4に示すように、駆動信号S1は、三角波からなり、且つ、ピーク位置を境界として立ち上がり区間P1と立ち下がり区間P2とが非対称である信号波形を有する単一のパルス信号である。
 特に、駆動信号S1の信号波形は、立ち上がり区間P1よりも、立ち下がり区間P2が長くなっている。すなわち、駆動信号S1の信号波形は、立ち上がり区間P1における電圧上昇が急峻であるのに対し、立ち下がり区間P2における電圧降下が緩やかである。特に、駆動信号S1の信号波形は、立ち下がり区間P2の長さが、立ち上がり区間P1の長さよりも20%以上長くなっている。なお、駆動信号S1の信号波形は、図4に示すように、立ち下がり区間P2における電圧降下が直線的であってもよく、二次曲線的であってもよい。この時、立ち上がり区間P1における電圧上昇についても直線的であってもよく、二次曲線的であっても良い。
 図5は、図4に示す駆動信号S1による操作部102の振動波形の一例を示す図である。図5は、図4に示す駆動信号S1によってアクチュエータ106を駆動したときの、操作部102の振動波形を、駆動信号S1の信号波形とともに示す。図5に示すように、図4に示す駆動信号S1によってアクチュエータ106を駆動した場合、当該駆動信号S1の信号波形の立ち下がり区間P2において、アクチュエータ106による振動の発生が抑制される。その結果、アクチュエータ106が発生する操作音は、より低い周波数成分を有するものとなる。
 特に、一実施形態に係る入力装置100は、駆動信号S1の立ち下がり区間P2を緩やかにしたことで、駆動周波数と操作部102の固有振動数との差を大きくすることができ、高周波の振動を抑制することができる。その結果、一実施形態に係る入力装置100は、アクチュエータ106が発生する操作音を、より低い周波数成分を有するものとすることができる。さらに、一実施形態に係る入力装置100は、駆動信号S1の立ち下がり区間P2の長さを、立ち上がり区間P1の長さよりも20%以上長くしたことにより、高周波の振動を抑制する効果をより向上できることが、シミュレーションによって確認されている。
 (一実施形態に係る駆動信号の一例(第2例))
 図6は、一実施形態に係る駆動信号S2の信号波形を示す図である。図6に示す駆動信号S2は、一実施形態に係る入力装置100において、制御部108からアクチュエータ106へ供給される駆動信号の第2例である。図6に示す駆動信号S2は、三角波からなり、且つ、ピーク位置を境界として立ち上がり区間P3と立ち下がり区間P4とが非対称である信号波形を有する単一のパルス信号である。
 駆動信号S2の信号波形は、図4に示す駆動信号S1の信号波形と同様に、立ち上がり区間P3よりも、立ち下がり区間P4が長くなっている。メタルスイッチを押圧した際に発生するクリック感触の提示を行うために必要な駆動は、立ち上がり区間P3から立ち下がり区間P4間の入力である。その後、未印加レベルに戻すまでの期間に入力される電圧によって発生する振動は、所望のクリック感提示の振動に対してノイズにしかならず極力軽減させる必要がある。但し、駆動信号S2の信号波形は、十分な駆動電圧レンジを確保するために、立ち下がり区間P4において負電圧のピークまで到達する。このため、駆動信号S2の信号波形は、駆動電圧が負電圧のピークから初期電圧値(0V)に復帰するまでの復帰区間P5をさらに有する。ここで、駆動信号S2の信号波形は、復帰区間P5における電圧上昇が緩やかであることが好ましい。これを実現するために、復帰区間P5は、立ち下がり区間P4よりも電圧変動率が低いことが好ましい。すなわち、復帰区間P5は、十分な長さを有することが好ましい。ここで、「十分な長さ」とは、立ち下がり区間P4の終期(すなわち、駆動電圧が負電圧のピークであるとき)に発生し得る残留振動が収束するまでの長さ以上であり、且つ、次の振動発生までの間に初期電圧値(0V)に復帰する長さであることが好ましい。例えば、復帰区間P5の長さを、立ち下がり区間P4の長さよりも長くすることで、「立ち下がり区間P4の終期付近にて発生し得る残留振動が収束するまでの長さ」とすることができる。立ち下がり区間P4の終期付近にて発生し得る残留振動の振動期間の長さは、大概、立ち下がり区間P4の長さよりも短いからである。このように、復帰区間P5を十分な長さとすることにより、例えば、駆動電圧が負電圧のピークから初期電圧値(0V)に復帰したとき(すなわち、復帰区間P5の終期)に生じ得る残留振動の発生量を抑制することができる。なお、駆動信号S2は、ピエゾ素子を凸方向(正電圧時)および凹方向(負電圧時)に変位させることが可能なことから、アクチュエータ106がピエゾ素子であり、且つ、駆動回路が十分な駆動能力を有しない場合に用いられることが好ましい。
 (一実施形態に係る駆動信号および振動波形の一例(第3例))
 図7は、一実施形態に係る駆動信号S3の信号波形を示す図である。図7に示す駆動信号S3は、一実施形態に係る入力装置100において、制御部108からアクチュエータ106へ供給される駆動信号の第3例である。図7に示すように、駆動信号S3は、三角波からなり、且つ、ピーク位置を境界として立ち上がり区間P6と立ち下がり区間P7とが非対称である信号波形を有する単一のパルス信号である。
 特に、駆動信号S3の信号波形は、立ち上がり区間P6よりも、立ち下がり区間P7が短くなっている。すなわち、駆動信号S3の信号波形は、立ち上がり区間P6における電圧上昇が急峻であるのに対し、立ち下がり区間P7における電圧降下がより急峻である。
 図8は、図7に示す駆動信号S3による操作部102の振動波形を示す図である。図8は、図7に示す駆動信号S3によってアクチュエータ106を駆動したときの、操作部102の振動波形を、駆動信号S3の信号波形とともに示す。図8に示すように、図7に示す駆動信号S3によってアクチュエータ106を駆動した場合、当該駆動信号S3の信号波形の立ち下がり区間において、操作部102の固有振動周波数に依存する振動が増幅される。その結果、アクチュエータ106が発生する操作音は、操作部102の固有振動周波数に依存する高い周波数成分の振動が増幅されるため、高い出力レベルの音を発生するものとなる。なお、機構的実現性の観点から、操作部102の固有振動周波数は、1kHz以下であることが好ましい。
 (一実施形態に係る駆動信号および振動波形の一例(第4例))
 図9は、一実施形態に係る駆動信号S4の信号波形を示す図である。図9に示す駆動信号S4は、一実施形態に係る入力装置100において、制御部108からアクチュエータ106へ供給される駆動信号の第4例である。図9に示すように、駆動信号S4は、三角波からなり、且つ、ピーク位置を境界として立ち上がり区間P8と立ち下がり区間P9とが非対称である信号波形を有する単一のパルス信号である。
 特に、駆動信号S4の信号波形は、立ち上がり区間P8よりも、立ち下がり区間P9が短くなっている。具体的には、駆動信号S4の信号波形は、立ち上がり区間P8における電圧上昇が、急峻から徐々に緩やかになるように変化するのに対し、立ち下がり区間P9における電圧降下が、全体的に急峻である。なお、本実施例では、駆動信号S4の信号波形の周期(立ち上がり区間P8の開始から立ち下がり区間P9の終了まで)を、7~21msとしている。
 図10は、図9に示す駆動信号S4による操作部102の振動波形を示す図である。図10は、図9に示す駆動信号S4によってアクチュエータ106を駆動したときの、操作部102の振動波形を、駆動信号S4の信号波形および操作パネル(操作部102)の変位量とともに示す。図10に示すように、図9に示す駆動信号S4によってアクチュエータ106を駆動した場合、操作部102の振動波形V4は、最初に、立ち上がり区間P8の開始時(電圧上昇の急峻時)に、第1振動ピークが発生し、次に、立ち上がり区間P8の残りの区間(電圧上昇が緩やかな時)に、弱い振動ピークが発生し、次に、立ち下がり区間P9の終了時(電圧降下の急峻時)に、最大振動ピークが発生するものとなる。つまり、同駆動信号S4により、第1振動ピークから最大振動ピーク間に弱い振動ピークを提示させる事により、感触の時間的なズレを発生させ、ユーザに対して可動摩擦感を与えて、ストローク感を発生させるものである。これにより、一実施形態に係る入力装置100は、操作者に対してストローク操作感を呈示することができる。特に、本実施例では、駆動信号S4の信号波形の周期を、7~21msとすることにより、操作者に対してクリック感及びストローク操作感をより確実に呈示できることが、被験者による感応試験によって確認された。なお、本感応試験では、駆動信号S4の信号波形の周期が7ms未満の場合は、クリック操作感を操作者が知覚できる一方で、ストローク操作感を操作者が知覚できないことが確認された。また、本感応試験では、駆動信号S4の信号波形の周期が21ms以上の場合は、2段階のクリック操作感が操作者によって知覚されてしまうことが確認された。
 (一実施形態に係る駆動信号および振動波形の一例(第5例))
 図11は、一実施形態に係る駆動信号S5の信号波形を示す図である。図11に示す駆動信号S5は、一実施形態に係る入力装置100において、制御部108からアクチュエータ106へ供給される駆動信号の第5例である。図11に示すように、駆動信号S5の信号波形は、図9に示す駆動信号S4の信号波形を変形したものであり、立ち上がり区間P10と立ち下がり区間P12との間に、電圧値がピークで一定である一定区間P11を有する。
 図11に示す駆動信号S5によってアクチュエータ106を駆動した場合、図9に示す駆動信号S4によってアクチュエータ106を駆動した場合と同様に、操作者に対してストローク操作感を呈示できることができる。特に、図11に示す駆動信号S5によってアクチュエータ106を駆動した場合、図9に示す駆動信号S4によってアクチュエータ106を駆動した場合と比較して、立ち上がり区間P10が短く、且つ、電圧値がピークで一定である一定区間P11を有することで、アクチュエータ106が生成する加振力が大きくなり、振動部102に伝播する振動および変位が増えるため、操作者に対してストローク操作感をより確実に呈示することができる。
 以上、本発明の一実施形態について詳述したが、本発明はこれらの実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形又は変更が可能である。
 例えば、一実施形態では、各駆動信号の信号波形を三角波をベースとしているが、これに限らず、各駆動信号の信号波形を正弦波をベースとしてもよい。この場合も、各駆動信号(正弦波)の信号波形に、実施形態で説明した各駆動信号(三角波)の信号波形と同様の特徴点を設けることで、各駆動信号(三角波)の信号波形と同様の効果を奏することができる。
 本国際出願は、2020年8月31日に出願した日本国特許出願第2020-146037号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。
 100 入力装置
 102 操作部
 104 検出部
 106 アクチュエータ
 108 制御部

Claims (11)

  1.  操作者によって入力操作が行われる操作部と、
     前記操作部に対する前記入力操作を検出する検出部と、
     前記操作部に対して振動を付与するアクチュエータと、
     前記検出部による検出結果に応じて、前記アクチュエータに対して駆動信号を供給する制御部と
     を備え、
     前記制御部は、
     前記駆動信号として、三角波または正弦波からなり、且つ、ピーク位置を境界として立ち上がり区間と立ち下がり区間とが非対称である信号波形を有する単一のパルス信号を、前記アクチュエータへ供給する
     ことを特徴とする入力装置。
  2.  前記駆動信号の前記信号波形は、
     前記立ち上がり区間よりも、前記立ち下がり区間が長い
     ことを特徴とする請求項1に記載の入力装置。
  3.  前記アクチュエータは、
     ピエゾ素子であり、
     前記駆動信号の前記信号波形は、
     前記立ち下がり区間において負電圧まで到達する
     ことを特徴とする請求項2に記載の入力装置。
  4.  前記駆動信号の前記信号波形は、
     前記立ち下がり区間において負電圧のピークに到達後、初期電圧まで復帰するまでの復帰区間を有し、
     前記復帰区間は、
     前記立ち下がり区間よりも電圧変動率が低い
     ことを特徴とする請求項3に記載の入力装置。
  5.  前記復帰区間は、
     前記操作部の固有振動周波数に依存する残留振動が収束するまでの期間よりも長い
     ことを特徴とする請求項4に記載の入力装置。
  6.  前記制御部は、
     前記非対称である信号波形を有する前記駆動信号を前記アクチュエータへ供給することにより、前記操作部の固有振動周波数に依存する残留振動の発生量を制御する
     ことを特徴とする請求項1から5のいずれか一項に記載の入力装置。
  7.  前記駆動信号の前記信号波形は、
     前記立ち上がり区間よりも、前記立ち下がり区間が短い
     ことを特徴とする請求項1に記載の入力装置。
  8.  前記固有振動周波数が1kHz以下である
     ことを特徴とする請求項7に記載の入力装置。
  9.  前記駆動信号の前記信号波形は、
     前記立ち上がり区間の電圧上昇が、急峻から徐々に緩やかになるように変化する
     ことを特徴とする請求項7に記載の入力装置。
  10.  前記駆動信号の前記信号波形の周期が7~21msecである
     ことを特徴とする請求項9に記載の入力装置。
  11.  前記駆動信号の前記信号波形は、
     前記立ち上がり区間と前記立ち下がり区間との間に、電圧値がピークで一定である一定区間を有する
     ことを特徴とする請求項9に記載の入力装置。
PCT/JP2021/019352 2020-08-31 2021-05-21 入力装置 WO2022044452A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237006914A KR20230043975A (ko) 2020-08-31 2021-05-21 입력 장치
CN202180046293.5A CN115867877A (zh) 2020-08-31 2021-05-21 输入装置
DE112021004596.2T DE112021004596T5 (de) 2020-08-31 2021-05-21 Eingabevorrichtung
JP2022545315A JP7474339B2 (ja) 2020-08-31 2021-05-21 入力装置
US18/152,402 US20230161414A1 (en) 2020-08-31 2023-01-10 Input Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-146037 2020-08-31
JP2020146037 2020-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/152,402 Continuation US20230161414A1 (en) 2020-08-31 2023-01-10 Input Apparatus

Publications (1)

Publication Number Publication Date
WO2022044452A1 true WO2022044452A1 (ja) 2022-03-03

Family

ID=80353061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019352 WO2022044452A1 (ja) 2020-08-31 2021-05-21 入力装置

Country Status (6)

Country Link
US (1) US20230161414A1 (ja)
JP (1) JP7474339B2 (ja)
KR (1) KR20230043975A (ja)
CN (1) CN115867877A (ja)
DE (1) DE112021004596T5 (ja)
WO (1) WO2022044452A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004192412A (ja) * 2002-12-12 2004-07-08 Sony Corp 入力装置、携帯型情報処理装置、リモートコントロール装置、および入力装置における圧電アクチュエータ駆動制御方法
JP2013144273A (ja) * 2012-01-13 2013-07-25 Taiheiyo Cement Corp 圧電アクチュエータの駆動回路
JP2015011376A (ja) * 2013-06-26 2015-01-19 株式会社日本自動車部品総合研究所 操作入力装置
US9369127B1 (en) * 2011-01-07 2016-06-14 Maxim Integrated Products, Inc. Method and apparatus for generating piezoelectric transducer excitation waveforms using a boost converter
JP2020062647A (ja) * 2016-04-19 2020-04-23 日本電信電話株式会社 擬似力覚発生装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079136A (ja) 2004-09-06 2006-03-23 Fujitsu Component Ltd 触覚提示装置
JP2008123429A (ja) 2006-11-15 2008-05-29 Sony Corp タッチパネルディスプレイ装置および電子機器並びに遊技機器
US8633916B2 (en) 2009-12-10 2014-01-21 Apple, Inc. Touch pad with force sensors and actuator feedback
JP7448913B2 (ja) 2019-03-08 2024-03-13 沖電開発株式会社 サンゴの産卵誘導方法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004192412A (ja) * 2002-12-12 2004-07-08 Sony Corp 入力装置、携帯型情報処理装置、リモートコントロール装置、および入力装置における圧電アクチュエータ駆動制御方法
US9369127B1 (en) * 2011-01-07 2016-06-14 Maxim Integrated Products, Inc. Method and apparatus for generating piezoelectric transducer excitation waveforms using a boost converter
JP2013144273A (ja) * 2012-01-13 2013-07-25 Taiheiyo Cement Corp 圧電アクチュエータの駆動回路
JP2015011376A (ja) * 2013-06-26 2015-01-19 株式会社日本自動車部品総合研究所 操作入力装置
JP2020062647A (ja) * 2016-04-19 2020-04-23 日本電信電話株式会社 擬似力覚発生装置

Also Published As

Publication number Publication date
JP7474339B2 (ja) 2024-04-24
CN115867877A (zh) 2023-03-28
US20230161414A1 (en) 2023-05-25
KR20230043975A (ko) 2023-03-31
JPWO2022044452A1 (ja) 2022-03-03
DE112021004596T5 (de) 2023-07-20

Similar Documents

Publication Publication Date Title
US10180723B2 (en) Force sensor with haptic feedback
US9891708B2 (en) Method and apparatus for generating haptic effects using actuators
CN112204499B (zh) 按钮式致动器、包括其的按钮式致动器反馈系统及其控制方法
CN105074621B (zh) 用于触摸表面的压电致动虚拟按钮
EP2772832B1 (en) Haptic device, electronic device and method for producing a haptic effect
EP3028750B1 (en) Systems and methods for controlling haptic signals
EP2264572A2 (en) Method and apparatus for generating haptic feedback and an actuator
CN110959254B (zh) 超声电机的闭环运动控制的方法
JP2023547180A (ja) 触覚フィードバックを提供する3次元タッチインターフェース
CN110546594A (zh) 产生声学润滑的时间反转接口
WO2022044452A1 (ja) 入力装置
JP6888562B2 (ja) 触覚呈示システム、コンピュータプログラム及び記憶媒体
JP7032048B2 (ja) 制御装置、入力システムおよび制御方法
WO2021124673A1 (ja) 操作装置
JP2021068259A (ja) 触覚呈示装置
JP2022547747A (ja) ブレーキングを実行するために触覚アクチュエータを制御するためのシステム及び方法
WO2018051668A1 (ja) 触覚呈示装置
WO2021049085A1 (ja) 制御装置、制御方法、およびプログラム
WO2021049083A1 (ja) 制御装置、制御方法、およびプログラム
JP7344057B2 (ja) 制御装置、制御方法、及びプログラム
WO2021049078A1 (ja) 制御装置、制御方法、及びプログラム
CN116802591A (zh) 具有空间化纹理的触觉反馈触摸设备
WO2019038259A1 (en) EXCITATION OF A PIEZOELECTRIC ELEMENT
WO2021049084A1 (ja) 制御装置、制御方法、およびプログラム
JP6875970B2 (ja) 駆動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860883

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545315

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237006914

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21860883

Country of ref document: EP

Kind code of ref document: A1