WO2022044390A1 - Optical laminate inspection method - Google Patents

Optical laminate inspection method Download PDF

Info

Publication number
WO2022044390A1
WO2022044390A1 PCT/JP2021/008857 JP2021008857W WO2022044390A1 WO 2022044390 A1 WO2022044390 A1 WO 2022044390A1 JP 2021008857 W JP2021008857 W JP 2021008857W WO 2022044390 A1 WO2022044390 A1 WO 2022044390A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical laminate
inspection step
image
inspection
cross nicol
Prior art date
Application number
PCT/JP2021/008857
Other languages
French (fr)
Japanese (ja)
Inventor
智也 木樽
裕司 山下
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020237004920A priority Critical patent/KR20230058613A/en
Priority to JP2022545287A priority patent/JPWO2022044390A1/ja
Priority to CN202180053420.4A priority patent/CN115989407A/en
Publication of WO2022044390A1 publication Critical patent/WO2022044390A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8848Polarisation of light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8858Flaw counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8861Determining coordinates of flaws

Definitions

  • the present invention relates to an inspection method for an optical laminate in which a polarizing element and an optical film are laminated, and a release film is further laminated on at least one of the outermost surfaces in the thickness direction.
  • the present invention relates to a method for inspecting an optical laminate capable of suppressing over-detection of defects existing on the surface of a release film and accurately detecting defects existing between a polarizing element and an optical film.
  • an inspection method has been known in which a defect of an optical laminate containing a polarizing element is optically inspected to determine the quality of the optical laminate.
  • a drawback of the optical laminate is that foreign matter existing between the layers of the optical laminate (specifically, between the polarizing element constituting the optical laminate and the optical film) (in the present specification, appropriately referred to as "bonded foreign matter"). ) And defects (foreign matter, dirt, scratches, etc.) existing on the surface of the optical laminate.
  • Patent Documents 1 and 2 describe the optical film based on the transmitted image of the optical film generated by the light transmitted through the optical film and the reflected image of the optical film generated by the light reflected by the optical film.
  • An inspection method for detecting defects has been proposed (paragraphs 0023 to 0026 of Patent Document 1, claim 2 of Patent Document 2 and the like).
  • Patent Document 3 a reflected image of an optical laminate generated by light reflected by an optical laminate containing a polarizing element and an inspection object arranged so as to form a cross Nicol with respect to the polarization axis of the polarizing element.
  • An inspection method for detecting defects in the optical laminate based on a cross Nicol image of the optical laminate generated by light transmitted through the polarizing filter and the optical laminate has been proposed (claim 1 of Patent Document 3 and the like). ).
  • the inspection target is a laminate of a polarizing element and an optical film (for example, a retardation film), and a release film (for example, a separator or a surface protective film) is further formed on at least one outermost surface side in the thickness direction.
  • a release film for example, a separator or a surface protective film
  • Patent Document 3 in order to suppress the above-mentioned over-detection, the position of the defect candidate detected based on the reflection image of the optical laminate and the position of the defect candidate detected based on the cross Nicol image of the optical laminate are described.
  • this defect candidate is not treated as a defect (claim 1, paragraph 0083, etc. of Patent Document 3).
  • the investigation by the present inventors as described above, even with the inspection method combining the reflection image and the cross Nicol image, there are cases where the over-detection of harmless defects cannot be sufficiently suppressed. I understood.
  • the inspection method described in Patent Document 1 has an object of accurately counting the number of defects (paragraph 0007 of Patent Document 1), and is not a method of suppressing over-detection of harmless defects. Further, the inspection method described in Patent Document 2 has an object of accurately determining the type of defect (paragraph 0018 of Patent Document 2), and is not a method of suppressing over-detection of harmless defects.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and suppresses over-detection of defects existing on the surface of the release film and exists between the polarizing element and the optical film. It is an object of the present invention to provide an inspection method for an optical laminate capable of accurately detecting a defect.
  • the present inventors detected both the transmitted image and the cross Nicol image in each of the transmitted image, the cross Nicol image, and the reflected image, and did not detect them in the reflected image.
  • the present invention has been completed by finding that the defect candidate is likely to be a defect (bonded foreign matter) existing between the polarizing element and the optical film.
  • the present invention is an inspection method for an optical laminate in which a polarizing element and an optical film are laminated, and a release film is further laminated on at least one outermost surface side in the thickness direction.
  • a cross Nicol image of the optical laminate is generated by an inspection polarizing filter arranged so as to form a cross Nicol with respect to the axis and light transmitted through the optical laminate, and the optical laminate is based on the cross Nicol image.
  • a cross Nicol inspection step for detecting defect candidates existing in the optical laminate a reflected image of the optical laminate is generated by the light reflected by the optical laminate, and defect candidates existing in the optical laminate are generated based on the reflected image.
  • the polarizing element is based on the reflection inspection step to be detected, the defect candidate detected in the transmission inspection step, the defect candidate detected in the cross optics inspection step, and the defect candidate detected in the reflection inspection step.
  • a calculation step for determining defects existing between the optical film and the optical film is included, and is detected in both the transmission inspection step and the cross Nicol inspection step in the calculation step, but is not detected in the reflection inspection step.
  • Provided is a method for inspecting an optical laminate, which determines that a defect candidate is a defect existing between the polarizing element and the optical film.
  • defect candidates existing in the optical laminate are detected based on the transmission image of the optical laminate.
  • a transmitted image for example, a light source is arranged on one surface side of the optical laminate, an imaging means is arranged on the other surface side, the light emitted from the light source is emitted, and the light transmitted through the optical laminate is received by the imaging means. It is generated by forming an image (imaging).
  • Defect candidates in a transparent image are detected by applying a known image process such as binarization to extract a pixel region having a different luminance value (pixel value) from another pixel region, for example, to the transparent image. ..
  • the cross Nicol inspection step defect candidates existing in the optical laminated body are detected based on the cross Nicol image of the optical laminated body.
  • a cross Nicol image for example, a light source and a polarizing filter for inspection are arranged on one surface side of the optical laminate, and an imaging means is arranged on the other surface side to emit light from the light source, and the polarizing filter for inspection and the optical laminate are arranged. It is generated by capturing and receiving an image of light transmitted through the body with an imaging means and forming an image (imaging). In this case, the state of the cross Nicol is disrupted by the defect existing between the inspection polarizing filter and the polarizing element of the optical laminate.
  • the defect existing between the inspection polarizing filter and the polarizing element The corresponding pixel area becomes brighter (the brightness value becomes larger).
  • a light source is arranged on one surface side of the optical laminate, an inspection polarizing filter and an imaging means are arranged on the other surface side, and the light is emitted from the light source to emit the optical laminate and the inspection polarization. It is also generated by receiving light received by an imaging means and forming an image (imaging) of the light transmitted through the filter.
  • the defect existing between the polarizing element of the optical laminate and the polarizing filter for inspection disrupts the state of the cross Nicol, so that the defect existing between the polarizing element and the polarizing filter for inspection in the cross Nicol image is present.
  • the pixel area corresponding to is brighter (the brightness value becomes larger).
  • the defect candidate in the cross Nicol image is, for example, a pixel region having a different brightness value (pixel value) from the other pixel region (specifically, a pixel region having a larger brightness value than the other pixel region) with respect to the cross Nicol image. Is detected by applying known image processing such as binarization.
  • defect candidates existing in the optical laminate are detected based on the reflection image of the optical laminate.
  • a light source and an image pickup means are arranged on one surface side of the optical laminate, and the light emitted from the light source and reflected by the optical laminate is received by the image pickup means and imaged (imaging).
  • imaged imaging
  • Defect candidates in a reflected image are detected by applying known image processing such as binarization to extract a pixel region having a different luminance value (pixel value) from another pixel region, for example, to the reflected image. ..
  • the "optical film” means an optical film that cannot be peeled off from the polarizing element.
  • the "inspection polarizing filter arranged so as to form a cross Nicol with respect to the polarization axis of the polarizing element” means that the angle formed by the polarization axis of the polarizing element and the polarization axis of the inspection polarizing filter is the same. It is a concept that includes not only the case where the temperature is completely 90 ° but also the case where the temperature is within the range of 90 ° ⁇ 10 °. Further, in the present invention, the transmission inspection step, the cross Nicol inspection step, and the reflection inspection step do not necessarily have to be executed in this order, but are executed in any order (when a plurality of inspection steps are partially overlapped). (Including) is possible.
  • defect candidates that are detected in both the transmission inspection step and the cross Nicol inspection step and are not detected in the reflection inspection step in the calculation process are present between the polarizing element and the optical film.
  • Whether or not the defect candidate is detected in both the permeation inspection step and the cross Nicol inspection step is determined, for example, at a position equivalent to (same or near) the position of a certain defect candidate detected in the permeation inspection step. It is determined whether or not the defect candidate detected in is present. If there is a defect candidate detected in the cross Nicol inspection step at the same position, it is determined that the defect candidate is detected in both the permeation inspection step and the cross Nicol inspection step.
  • Whether or not the defect candidate detected in both the permeation inspection step and the cross Nicol inspection step is detected in the reflection inspection step is determined by, for example, the position of a certain defect candidate detected in both the permeation inspection step and the cross Nicol inspection step. It is determined whether or not there is a defect candidate detected in the reflection inspection step at the same (same or near) position. If there is a defect candidate detected in the reflection inspection step at the same position, it is determined that the defect candidate is detected in the reflection inspection step. On the other hand, if there is no defect candidate detected in the reflection inspection step at the same position, it is determined that this defect candidate was not detected in the reflection inspection step.
  • the defect candidates detected in both the transmission image and the cross Nicol image but not in the reflection image are the defects existing between the polarizing element and the optical film. There is a high possibility that it is (bonded foreign matter).
  • the present invention in the arithmetic step, it was detected in both the transmission inspection step and the cross Nicol inspection step (that is, it was detected in both the transmission image and the cross Nicol image), and it was not detected in the reflection inspection step (that is,).
  • the defect candidate (which was not detected in the reflected image) is a defect existing between the polarizing element and the optical film
  • the over-detection of the defect existing on the surface of the release film is suppressed, and the polarizing element is used. It is possible to accurately detect defects existing between the optical film and the optical film.
  • the inspection polarizing filter is arranged on the separator side in the cross Nicol inspection step. Is preferable.
  • the separator side is attached to the liquid crystal cell (the separator side is attached after the separator is peeled off).
  • drawbacks specifically, the splitter and the optics located closer to the liquid crystal cell side
  • defects existing between the film and the film are displayed as bright spots on the image display device when the liquid crystal cell is driven, which poses a quality problem.
  • the inspection polarizing filter is arranged on the same separator side as the liquid crystal cell, which causes a problem when driving the liquid crystal cell (between the liquid crystal cell and the optical film). (Defects existing in) can be detected as defect candidates.
  • the optical laminate in which the orientation direction of the release film and the direction of the polarization axis of the polarizing element are largely deviated from each other, or the orientation direction of the release film and the direction of the polarization axis of the inspection polarizing filter are present. If there is a part of the optical laminate that is significantly different from the above, even if there is no defect between the polarizing filter for inspection and the polarizing element of the optical laminate, the state of cross Nicol will collapse at the above part. , The detection accuracy of defect candidates in the cross Nicol inspection process is reduced.
  • the present invention is preferably used when the orientation direction of the release film is within ⁇ 6 ° (more preferably within ⁇ 3.5 °) with respect to a predetermined orientation direction.
  • the predetermined orientation direction of the release film and the direction of the polarization axis of the splitter should match.
  • the release film and the splitter are laminated, or the specified orientation direction of the release film and the direction of the polarization axis of the inspection polarizing filter match (in other words, the specified orientation direction of the release film).
  • the imaging means for generating the transmission image in the transmission inspection step and the imaging means for generating the cross Nicol image in the cross Nicol inspection step are the same, and the transmission inspection step is described.
  • the timing of executing the image pickup by the image pickup means and the timing of executing the image pickup by the image pickup means in the cross Nicol inspection step are switched.
  • the imaging means for generating the transparent image and the imaging means for generating the cross Nicol image are the same, the coordinates of the transparent image and the coordinates of the cross Nicol image can be accurately obtained. Can be matched. Therefore, in the calculation process, it is accurately determined whether or not the defect candidate is detected in both the permeation inspection process and the cross Nicol inspection process (for example, at a position equivalent to the position of a certain defect candidate detected in the permeation inspection process). , It is possible to accurately determine whether or not there is a defect candidate detected in the cross Nicol inspection process).
  • the permeation inspection step and / or the cross Nicol inspection step includes a noise reduction procedure for excluding defect candidates having dimensions larger than a predetermined threshold value from the detected defect candidates.
  • the defects (foreign matter bonded) existing between the polarizing element of the optical laminate and the optical film are often smaller in size than the defects existing on the surface of the release film.
  • the defect candidates having a size larger than a predetermined threshold value are excluded from the defect candidates, so that the defect candidates are excluded in the calculation process.
  • the number of defect candidates for determining whether or not they are detected in both the permeation inspection step and the cross Nicol inspection step can be reduced. Therefore, it has the advantage that the time required for the calculation process can be shortened.
  • the present invention it is possible to suppress over-detection of defects existing on the surface of the release film and accurately detect defects existing between the polarizing element and the optical film.
  • FIG. 1 It is a figure schematically explaining the schematic structure of the inspection apparatus for carrying out the inspection method of the optical laminated body which concerns on one Embodiment of this invention. It is a flow chart which shows the schematic process of the inspection method of the optical laminated body which concerns on this embodiment. It is a figure schematically explaining an example of defect candidates detected in the permeation inspection step S1 shown in FIG. 2. It is a figure schematically explaining an example of the defect candidate detected in the cross Nicol inspection step S2 shown in FIG. 2. It is a figure schematically explaining the content of the switching control executed by the control calculation means 9 shown in FIG. 1. It is a figure which schematically explains an example of the defect candidate detected in the reflection inspection step S3 shown in FIG. It is a figure which schematically explains the content of the calculation process S4 shown in FIG.
  • FIG. 1 is a diagram schematically illustrating a schematic configuration of an inspection device for executing an inspection method for an optical laminate according to the present embodiment.
  • FIG. 1A is a side view showing a schematic configuration of an inspection device.
  • FIG. 1B is a cross-sectional view showing a schematic configuration of an optical laminate.
  • X indicates a horizontal direction parallel to the transport direction of the optical laminate S
  • Y indicates a horizontal direction orthogonal to the X direction
  • Z indicates a vertical direction.
  • the configuration of the optical laminate S which is the inspection target of the inspection device 100 of the present embodiment, will be described.
  • the optical laminate S of the present embodiment is cut into a chip shape according to the intended use, and the polarizing element 10 and the optical films 20 and 30 are laminated and further thickened.
  • the release films 40 and 50 are laminated on the outermost surface side in the direction (Z direction).
  • one optical film 20 located below the splitter 10 is a retardation film
  • the other optical film 30 located above the splitter 10 is a protective film.
  • one release film 40 located below the polarizing element 10 is a separator
  • the other release film 50 located above the polarizing element 10 is a surface protective film.
  • the decoder 10 is typically composed of a resin film containing a dichroic substance.
  • the resin film any suitable resin film that can be used as a polarizing element can be adopted.
  • the resin film is typically a polyvinyl alcohol-based resin (hereinafter referred to as “PVA-based resin”) film.
  • any suitable resin can be used as the PVA-based resin that forms the PVA-based resin film.
  • polyvinyl alcohol and ethylene-vinyl alcohol copolymers can be mentioned.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • the ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer.
  • the average degree of polymerization of the PVA-based resin can be appropriately selected according to the purpose.
  • the average degree of polymerization is usually 1000 to 10000, preferably 1200 to 4500, and more preferably 1500 to 4300.
  • the average degree of polymerization can be determined according to JIS K 6726-1994.
  • dichroic substance contained in the resin film examples include iodine and organic dyes. These can be used alone or in combination of two or more. Preferably iodine is used.
  • the resin film may be a single-layer resin film or a laminated body having two or more layers.
  • the polarizing element composed of a single-layer resin film include those obtained by subjecting a PVA-based resin film to a dyeing treatment with iodine and a stretching treatment (typically, a uniaxial stretching treatment).
  • the dyeing treatment with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution.
  • the draw ratio of uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after dyeing or while dyeing. In addition, dyeing may be performed after stretching. If necessary, the PVA-based resin film is subjected to a swelling treatment, a crosslinking treatment, a cleaning treatment, a drying treatment and the like.
  • the polarizing element composed of the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and this resin base.
  • PVA-based resin film a PVA-based resin layer laminated on the resin base material
  • resin base material and this resin base examples thereof include a polarizing element composed of a laminate with a PVA-based resin layer coated and formed on a material.
  • a polarizing element composed of a laminate of a resin base material and a PVA-based resin layer coated and formed on the resin base material can be obtained, for example, by applying a PVA-based resin solution to the resin base material and drying it on the resin base material.
  • a PVA-based resin layer is formed on the surface of the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer, and then the laminate is stretched and dyed to use the PVA-based resin layer as a polarizing element. Can be done.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Further, stretching may optionally include stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in an aqueous boric acid solution.
  • the obtained resin base material / polarizing element laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizing element), or the resin base material may be obtained from the resin base material / polarizing element laminate. It may be peeled off, and an arbitrary appropriate protective layer according to the purpose may be laminated and used on the peeled surface. Details of the method for producing such a polarizing element are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The entire description of this publication is incorporated herein by reference.
  • the thickness of the splitter 10 is preferably 15 ⁇ m or less, more preferably 1 ⁇ m to 12 ⁇ m, further preferably 3 ⁇ m to 10 ⁇ m, and particularly preferably 3 ⁇ m to 8 ⁇ m.
  • the polarizing element 10 preferably exhibits absorption dichroism at any wavelength in the wavelength range of 380 nm to 780 nm.
  • the simple substance transmittance of the polarizing element 10 is preferably 40.0% to 45.0%, more preferably 41.5% to 43.5%.
  • the degree of polarization of the polarizing element 10 is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
  • the retardation film 20 may be, for example, a compensation plate that imparts a wide viewing angle, or may be a retardation plate (circular polarizing plate) that is used together with a polarizing film to generate circularly polarized light.
  • the thickness of the retardation film 20 is, for example, 1 to 200 ⁇ m.
  • a protective film as described later or another film such as a reflective polarizing element may be used.
  • the retardation film 20 is typically formed of any suitable resin capable of achieving the above characteristics.
  • the resin forming the retardation film 20 include polyarylate, polyamide, polyimide, polyester, polyaryl ether ketone, polyamide-imide, polyesterimide, polyvinyl alcohol, polyfumarate ester, polyether sulfone, polysulfone, and norbornene resin.
  • examples include polycarbonate resin, cellulose resin and polyurethane. These resins may be used alone or in combination. A cycloolefin-based norbornene resin is preferable.
  • any suitable resin film is used.
  • the resin film forming material include (meth) acrylic resin, cellulose resin such as diacetyl cellulose and triacetyl cellulose, cycloolefin resin such as norbornene resin, olefin resin such as polypropylene, and polyethylene terephthalate resin.
  • ester-based resins such as, polyamide-based resins, polycarbonate-based resins, and copolymer resins thereof.
  • the "(meth) acrylic resin” means an acrylic resin and / or a methacrylic resin.
  • the thickness of the protective film 30 is typically 10 ⁇ m to 100 ⁇ m, preferably 20 ⁇ m to 40 ⁇ m.
  • the surface of the protective film 30 on the opposite side of the polarizing element 10 may be subjected to surface treatment such as hard coat treatment, antireflection treatment, anti-sticking treatment, and anti-glare treatment, if necessary. Further / or, if necessary, the surface of the protective film 30 opposite to the polarizing element 10 is treated to improve visibility when visually recognizing through polarized sunglasses (typically, (elliptical) circular polarization. Processing for imparting a function, processing for imparting an ultra-high phase difference) may be performed. When the surface treatment is applied to form the surface treatment layer, the thickness of the protective film 30 is the thickness including the surface treatment layer. It was
  • the retardation film 20 and the protective film 30 are laminated and laminated to the polarizing element 10 via an arbitrary appropriate adhesive layer (not shown).
  • Typical examples of the adhesive constituting the adhesive layer include PVA-based adhesives and activated energy ray-curable adhesives.
  • any suitable separator can be adopted.
  • Specific examples include a plastic film, a non-woven fabric or paper surface-coated with a release agent.
  • Specific examples of the release agent include a silicone-based release agent, a fluorine-based release agent, and a long-chain alkyl acrylate-based release agent.
  • Specific examples of the plastic film include polyethylene terephthalate (PET) film, polyethylene film, and polypropylene film.
  • PET polyethylene terephthalate
  • the thickness of the separator can be, for example, 10 ⁇ m to 100 ⁇ m.
  • the separator 40 is bonded and laminated to the retardation film 20 via an arbitrary suitable pressure-sensitive adhesive layer (not shown).
  • suitable pressure-sensitive adhesive layer include acrylic adhesives, rubber adhesives, silicone adhesives, polyester adhesives, urethane adhesives, epoxy adhesives, and polyether adhesives.
  • the agent is mentioned.
  • the base resin of the pressure-sensitive adhesive may be used alone or in combination of two or more. Acrylic adhesives are preferable from the viewpoint of transparency, processability, durability and the like.
  • the thickness of the pressure-sensitive adhesive layer can be, for example, 10 ⁇ m to 100 ⁇ m.
  • the storage elastic modulus G'at 25 ° C. of the pressure-sensitive adhesive layer can be, for example, 1.0 ⁇ 10 4 [Pa] to 1.0 ⁇ 10 6 [Pa].
  • the storage elastic modulus can be obtained from, for example, dynamic viscoelasticity measurement.
  • the separator 40 whose orientation direction is within ⁇ 6 ° with respect to a predetermined orientation direction is used.
  • the direction of the polarization axis of the polarizing element 10 of the present embodiment is the X direction
  • the predetermined orientation direction of the separator 40 is the Y direction
  • the orientation direction of any portion of the separator 40 is with respect to the Y direction.
  • the separators 40 are laminated so as to form an angle within ⁇ 6 °.
  • the surface protective film 50 typically has a base material and an adhesive layer.
  • the thickness of the surface protective film 50 is, for example, 30 ⁇ m or more.
  • the upper limit of the thickness of the surface protective film 50 is, for example, 150 ⁇ m.
  • the "thickness of the surface protective film” means the total thickness of the base material and the pressure-sensitive adhesive layer.
  • the base material can be composed of any suitable resin film.
  • the resin film forming material include ester resins such as polyethylene terephthalate resins, cycloolefin resins such as norbornene resins, olefin resins such as polypropylene, polyamide resins, polycarbonate resins, and copolymer resins thereof. Can be mentioned.
  • An ester resin (particularly, a polyethylene terephthalate resin) is preferable.
  • any appropriate pressure-sensitive adhesive can be adopted.
  • the base resin of the pressure-sensitive adhesive include acrylic resin, styrene resin, silicone resin, urethane resin, and rubber resin.
  • the inspection device 100 of the present embodiment is an device for inspecting the optical laminate S having the configuration described above.
  • the inspection device 100 of the present embodiment includes a plurality of belt conveyors 1 that convey the optical laminate S in the X direction, and the outermost surface (top surface and bottom surface) of the optical laminate S. It is provided with a clean roller 2 for adsorbing and removing foreign matter adhering to the.
  • the inspection device 100 of the present embodiment includes a light source 3 and an image pickup means 4 for executing the transmission inspection step S1 described later.
  • the inspection device 100 of the present embodiment includes a pair of light sources 5a and 5b and a pair of inspection polarizing filters 6a and 6b for executing the cross Nicol inspection step S2 described later.
  • the image pickup means 4 is also used as an image pickup means for executing the cross Nicol inspection step S2.
  • the inspection device 100 of the present embodiment includes a light source 7 and an image pickup means 8 for executing the reflection inspection step S3 described later.
  • the inspection device 100 of the present embodiment is electrically connected to the light source 3, the image pickup means 4, the light sources 5a and 5b, the light source 7, and the image pickup means 8, and controls their operations while controlling the operation of the light source 3, the image pickup means 4, and the image pickup means 4.
  • a control calculation means 9 for processing an image pickup signal output from No. 8 to determine a defect is provided.
  • each component of the inspection device 100 will be described.
  • the belt conveyor 1 has a configuration in which an annular belt spanned by rollers at both ends moves with the rotation of the rollers to convey the optical laminate S mounted on the belt. After being cut into chips, the optical laminate S is placed on the belt conveyor 1 shown at the left end of FIG. 1 (a), and is placed in the X direction toward the right side of FIG. 1 (a) by each belt conveyor 1. Are sequentially transported to. In the present embodiment, as shown in FIG. 1 (b), the optical laminate S is placed and conveyed on a belt conveyor so that the separator 40 side is facing down.
  • the transport speed V of the optical laminate S by the belt conveyor 1 is set to, for example, 50 mm / sec to 750 mm / sec.
  • the clean roller 2 includes a pair of upper and lower rollers through which the optical laminate S passes through the gaps, and a roll-shaped adhesive tape (not shown) that rotates in contact with each roller.
  • a roll-shaped adhesive tape (not shown) that rotates in contact with each roller.
  • the light source 3 is a light source for executing the transmission inspection step S1 described later, and is arranged on the lower surface side (separator 40 side) of the optical laminate S in the present embodiment.
  • the optical axis of the light source 3 (shown by a broken line in FIG. 1A) is directed in the vertical direction (Z direction) parallel to the thickness direction of the optical laminate S, and the light source 3 is output from the control calculation means 9. According to the control signal, light is emitted upward in the vertical direction toward the optical laminate S.
  • the light source 3 is not limited as long as it can emit light having a wavelength that can be transmitted through the optical laminate S, and for example, an LED or a halogen lamp can be used.
  • the image pickup means 4 is an image pickup means for executing the transmission inspection step S1 and the cross Nicol inspection step S2 described later, and is arranged on the upper surface side (surface protection film 50 side) of the optical laminate S in the present embodiment. There is.
  • the optical axis of the image pickup means 4 (shown by a broken line in FIG. 1A) is directed in the vertical direction (Z direction) parallel to the thickness direction of the optical laminate S, and the image pickup means 4 is a control calculation means 9. According to the control signal output from the light source 3, the light emitted from the light source 3 is received and imaged, and the electric signal corresponding to the amount of the light is output to the control calculation means 9 as an image pickup signal.
  • the image pickup means 4 receives and forms an image by receiving light emitted from the light sources 5a and 5b and transmitted through the inspection polarizing filters 6a and 6b and the optical laminate S according to the control signal output from the control calculation means 9. , An electric signal corresponding to the amount of light is output to the control calculation means 9 as an image pickup signal.
  • the focal point of the image pickup means 4 is set on the upper surface of the optical laminate S (the upper surface of the surface protective film 50).
  • the image pickup means 4 a plurality of imaging elements (CCD or CMOS) are linearly arranged in a direction (Y direction) orthogonal to the transport direction (X direction) of the optical laminate S, and a constant scan is performed.
  • a line sensor that outputs an image pickup signal at a cycle (for example, 7 ⁇ sec to 14 ⁇ sec) is used.
  • the image pickup means 4 is not necessarily limited to the line sensor, and for example, a two-dimensional camera with a high-speed shutter can be used as the image pickup means 4.
  • the light sources 5a and 5b are light sources for executing the cross Nicol inspection step S2 described later, and are arranged on the lower surface side (separator 40 side) of the optical laminate S in the present embodiment.
  • the optical axes of the light sources 5a and 5b (shown by the broken line in FIG. 1A) are directed in a direction inclined with respect to the vertical direction (Z direction) parallel to the thickness direction of the optical laminate S.
  • the optical axis of the light source 5a is directed in a direction inclined toward the downstream side of the transport direction of the optical laminate S with respect to the vertical direction
  • the optical axis of the light source 5b is the optical laminate S with respect to the vertical direction.
  • the light sources 5a and 5b emit light upward toward the optical laminate S according to the control signal output from the control calculation means 9.
  • the light sources 5a and 5b are not limited as long as they can emit light having a wavelength that can be transmitted through the optical laminate S, and for example, an LED or a halogen lamp can be used.
  • the image pickup means 4 is used (shared) as an image pickup means for executing both the transmission inspection step S1 and the cross Nicol inspection step S2.
  • the direction of the optical axis of the light source 5a and 5b is different from the direction of the optical axis of the light source 3. ing. Further, a pair of light sources 5a and 5b are arranged so that a sufficient amount of light emitted from the inclined direction can be secured.
  • the direction of the optical axis of the light sources 5a and 5b can be directed in the vertical direction in the same manner as the direction of the optical axis of the light source 3. It is also possible to use a single light source instead of the pair of light sources 5a and 5b.
  • the inspection polarizing filters 6a and 6b are arranged so as to form a cross Nicol with respect to the polarization axis of the polarizing element 10 of the optical laminate S.
  • the direction of the polarization axis of the polarizing element 10 is the X direction
  • the direction of the polarization axes of the inspection polarizing filters 6a and 6b is arranged so as to be the Y direction orthogonal to the X direction.
  • the angle formed by the polarization axis of the polarizing element 10 and the polarization axes of the inspection polarizing filters 6a and 6b is not limited to 90 °, and may be within the range of 90 ° ⁇ 10 °. Since the configurations and manufacturing methods of the inspection polarizing filters 6a and 6b are the same as those of the polarizing element 10, detailed description thereof will be omitted here.
  • the inspection polarizing filters 6a and 6b of the present embodiment are arranged on the lower surface side (separator 40 side) of the optical laminate S. Specifically, the inspection polarizing filters 6a and 6b are arranged between the optical laminate S and the light sources 5a and 5b, respectively, and the light emitted from the light sources 5a and 5b is the inspection polarizing filters 6a and 6b, respectively. Will be transmitted and irradiated to the optical laminated body S. In the case of the present embodiment, the state of the cross Nicol is disrupted due to the defect existing between the inspection polarizing filters 6a and 6b and the polarizing element 10, so that the cloth of the optical laminate S produced in the cross Nicol inspection step S2 described later is used.
  • the present invention is not necessarily limited to this, and it is also possible to arrange the inspection polarizing filters 6a and 6b on the upper surface side (surface protection film 50 side) of the optical laminate S.
  • one inspection polarizing filter is arranged between the optical laminate S and the image pickup means, and the light emitted from the light sources 5a and 5b and transmitted through the optical laminate S is the inspection polarizing filter. It is also possible to adopt a configuration in which the image is transmitted through and received by the image pickup means 4.
  • the cross Nicol image of the optical laminate S generated in the cross Nicol inspection step S2 described later is used for inspection.
  • the pixel region corresponding to the defect existing between the polarizing filter and the polarizing element 10 becomes bright (the brightness value becomes large), and this defect can be detected as a defect candidate.
  • the light source 7 is a light source for executing the reflection inspection step S3 described later, and is arranged on the lower surface side (separator 40 side) of the optical laminate S in the present embodiment.
  • the optical axis of the light source 7 (shown by a broken line in FIG. 1A) is oriented in a direction inclined with respect to the vertical direction (Z direction) parallel to the thickness direction of the optical laminate S. In the example shown in FIG. 1A, the optical axis of the light source 7 is oriented in a direction inclined toward the upstream side in the transport direction of the optical laminate S with respect to the vertical direction.
  • the present invention is not limited to this, and it is also possible to direct the optical axis of the light source 7 in a direction inclined toward the downstream side in the transport direction of the optical laminate S with respect to the vertical direction. Further, for example, by adopting a coaxial epi-illumination optical system composed of a half mirror or the like, it is possible to direct the optical axis of the light source 7 in the vertical direction.
  • the light source 7 emits light upward toward the optical laminate S according to the control signal output from the control calculation means 9.
  • the light source 7 is not limited as long as it can emit light having a wavelength that can be reflected by the optical laminate S, and for example, an LED or a halogen lamp can be used.
  • the image pickup means 8 is an image pickup means for executing the reflection inspection step S3 described later, and is arranged on the lower surface side (separator 40 side) of the optical laminate S in the present embodiment.
  • the optical axis of the image pickup means 8 (shown by a broken line in FIG. 1A) is directed in the vertical direction (Z direction) parallel to the thickness direction of the optical laminate S, and the image pickup means 8 is a control calculation means 9.
  • the control signal output from the light source 7 the light emitted from the light source 7 is received and imaged, and the electric signal corresponding to the amount of the light is output to the control calculation means 9 as an image pickup signal.
  • the focal point of the image pickup means 8 is set on the lower surface of the optical laminate S (the lower surface of the separator 40).
  • the image pickup means 8 a plurality of image pickup elements (CCD or CMOS) are linearly formed in a direction (Y direction) orthogonal to the transport direction (X direction) of the optical laminate S, as in the image pickup means 4.
  • a line sensor is used, which is arranged in a fixed scanning cycle (for example, 7 ⁇ sec to 14 ⁇ sec) and outputs an image pickup signal.
  • the optical laminate S is conveyed in the X direction and the imaging element of the line sensor is scanned in the Y direction, so that a two-dimensional reflection image is generated in the reflection inspection step S3 described later.
  • the image pickup means 8 is not necessarily limited to the line sensor, and for example, a two-dimensional camera with a high-speed shutter can be used as the image pickup means 8.
  • Control calculation means 9 The control calculation means 9 is composed of, for example, a personal computer or a programmable logic controller (PLC) in which a program for executing control processing or calculation processing described later is installed.
  • PLC programmable logic controller
  • FIG. 2 is a flow chart showing a schematic process of an inspection method for the optical laminate S according to the present embodiment.
  • the inspection method according to the present embodiment includes a transmission inspection step S1, a cross Nicol inspection step S2, a reflection inspection step S3, and a calculation step 4.
  • each process S1 to S4 will be described.
  • a transmission image of the optical laminate S is generated by the light transmitted through the optical laminate S, and defect candidates existing in the optical laminate S are detected based on the transmission image (S11 in FIG. 2). ..
  • the light source 3 and the image pickup means 4 are driven by the control signal output from the control calculation means 9 at the timing immediately before the optical laminate S reaches directly under the image pickup means 4.
  • the image pickup means 4 emits light from the light source 3 and receives the light transmitted through the optical laminate S to form an image, and outputs an electric signal corresponding to the amount of the light to the control calculation means 9 as an image pickup signal.
  • the control calculation means 9 generates a two-dimensional transmission image based on the input imaging signal.
  • the control calculation means 9 applies known image processing such as binarization to extract a pixel region having a different luminance value (pixel value) from the other pixel region to the generated transparent image. Detect defect candidates.
  • FIG. 3 is a diagram schematically illustrating an example of defect candidates detected in the permeation inspection step S1.
  • FIG. 3A is a cross-sectional view schematically illustrating an example of defects existing in the optical laminate S.
  • FIG. 3B is a diagram schematically illustrating an example of defect candidates detected before executing the noise reduction procedure S12 in the transmission inspection step S1.
  • FIG. 3C is a diagram schematically illustrating an example of defect candidates remaining after the noise reduction procedure S12 of the transmission inspection step S1 is executed.
  • reference numeral F1 indicates a harmless foreign substance adhering to the surface of the separator 40 which is a release film.
  • Reference numeral F2 indicates a harmless scratch existing on the surface of the separator 40.
  • Reference numeral F3 indicates a harmful bonded foreign substance existing between the polarizing element 10 and the retardation film 20.
  • Reference numeral F4 indicates a harmless foreign substance adhering to the surface of the surface protective film 50 which is a release film.
  • 3 (b) and 3 (c) show transmissive images after binarization, and in FIG. 3 (b), three foreign substances F1 (F1a to F1c), two scratches F2 (F2a, F2b), and 1 One bonded foreign substance F3 and two foreign substances F4 (F4a, F4b) are detected as defect candidates, respectively.
  • FIG. 3C one foreign matter F1 (F1c), one scratch F2 (F2a), one bonded foreign matter F3, and two foreign matters F4 (F4a, F4b) are detected as defect candidates, respectively.
  • the transmission inspection step S1 of the present embodiment performs a noise reduction procedure (S12 in FIG. 2) for excluding defect candidates having a dimension (for example, an area) larger than a predetermined threshold value from the detected defect candidates. Includes. Therefore, among the detected defect candidates shown in FIG. 3 (b), foreign substances F1a, F1b, and scratches F2b, which are defect candidates having relatively large dimensions, are excluded, and the state shown in FIG. 3 (c) is obtained. ing.
  • Cross Nicol inspection process S2 a cross Nicol image of the optical laminate S is generated by light transmitted through the inspection polarizing filters 6a and 6b and the optical laminate S, and is present in the optical laminate S based on the cross Nicol image. Detects defect candidates (S2 in FIG. 2). Specifically, the light sources 5a and 5b and the image pickup means 4 are driven by the control signal output from the control calculation means 9 at the timing immediately before the optical laminate S reaches directly under the image pickup means 4.
  • the image pickup means 4 emits light from the light sources 5a and 5b, receives the light transmitted through the inspection polarizing filters 6a and 6b and the optical laminate S, respectively, and forms an image, and images an electric signal according to the amount of the light. It is output to the control calculation means 9 as a signal.
  • the control calculation means 9 generates a two-dimensional cross Nicol image based on the input imaging signal. Then, the control calculation means 9 is known for binarizing the generated cross Nicol image by extracting a pixel region having a different luminance value (pixel value) from another pixel region (the luminance value becomes larger). By applying image processing, defect candidates are detected.
  • FIG. 4 is a diagram schematically illustrating an example of defect candidates detected in the cross Nicol inspection step S2.
  • FIG. 4 shows a cross Nicol image after binarization, and three foreign substances F1 (F1a to F1c), three scratches F2 (F2b to F2d), and one bonded foreign substance F3 are detected as defect candidates, respectively. .. Since the foreign matter F4 adhering to the surface of the surface protective film 50 is not located between the polarizing element 10 and the inspection polarizing filters 6a and 6b, it is not detected in the cross Nicol image unlike the transmission image.
  • the control calculation means 9 is the image pickup means in the transmission inspection step S1. Control is performed to switch between the timing of executing the image pickup by the image pickup means 4 and the timing of executing the image pickup by the image pickup means 4 in the cross Nicol inspection step S2. Specifically, the control calculation means 9 has a timing of emitting light from the light source 3 used for generating a transmission image and a timing of emitting light from the light sources 5a and 5b used for generating a cross image. Is controlled to be switched for each scanning cycle of the image pickup means 4.
  • control calculation means 9 outputs a control signal for emitting light from the light source 3 in one scanning cycle to the light source 3, and then emits a control signal for emitting light from the light sources 5a and 5b in the next scanning cycle. Output for 5a and 5b.
  • the control calculation means 9 further outputs a control signal for emitting light from the light source 3 to the light source 3 in the next scanning cycle.
  • the control calculation means 9 repeats the above operation until one optical laminate S finishes passing directly under the image pickup means 4.
  • FIG. 5 is a diagram schematically illustrating the content of the switching control executed by the control calculation means 9.
  • FIG. 5A shows that the control calculation means 9 switches between the timing of emitting light from the light source 3 and the timing of emitting light from the light sources 5a and 5b for each scanning cycle of the image pickup means 4.
  • the image pickup means 4 emits light emitted from the light source 3 and transmitted through the optical laminate S (the region shown in white in FIG. 5A) and emitted from the light sources 5a and 5b, and is an inspection polarizing filter.
  • the light transmitted through 6a, 6b and the optical laminate S (the region subjected to the dot-shaped hatching in FIG.
  • the control calculation means 9 extracts only the region shown in white in FIG. 5 (a) and synthesizes it in the X direction according to the scanning cycle of the image pickup means 4, so that the transmitted image as shown in FIG. 5 (b) is synthesized. To generate. Further, the control calculation means 9 extracts only the region in which the dot-shaped hatching is applied in FIG. 5A according to the scanning cycle of the image pickup means 4, and synthesizes them in the X direction, so that FIG. 5C is shown. Generate a cross Nicol image as shown. As described above, the control calculation means 9 includes the transparent image and the cross Nicol image even if the image pickup means 4 for generating the transparent image and the image pickup means 4 for generating the cross Nicol image are the same. Can be generated separately.
  • Reflectid inspection step S3 In the reflection inspection step S3, a reflected image of the optical laminated body S is generated by the light reflected by the optical laminated body S, and defect candidates existing in the optical laminated body S are detected based on the reflected image (S3 in FIG. 2). .. Specifically, the light source 7 and the image pickup means 8 are driven by the control signal output from the control calculation means 9 at the timing immediately before the optical laminate S reaches directly under the image pickup means 8. Then, the image pickup means 8 emits light from the light source 7, receives the light reflected by the optical laminate S, forms an image, and outputs an electric signal corresponding to the amount of the light to the control calculation means 9 as an image pickup signal.
  • the control calculation means 9 generates a two-dimensional reflected image based on the input imaging signal. Then, the control calculation means 9 applies known image processing such as binarization to extract a pixel region having a different luminance value (pixel value) from the other pixel region to the generated reflected image. Detect defect candidates.
  • FIG. 6 is a diagram schematically illustrating an example of defect candidates detected in the reflection inspection step S3.
  • FIG. 6 shows a reflected image after binarization, and three foreign substances F1 (F1a to F1c) are detected as defect candidates. Since the reflected image is generated by the light reflected by the optical laminate S, only the foreign matter F1 adhering to the surface of the separator 40 on the side where the light source 7 is arranged is detected. In the example shown in FIG. 6, only the foreign matter F1 is detected, but the scratch F2 existing on the surface of the separator 40 may also be detected.
  • the polarizing element 10 and the optics are based on the defect candidates detected in the transmission inspection step S1, the defect candidates detected in the cross Nicol inspection step S2, and the defect candidates detected in the reflection inspection step S3. Defects existing with the film (in the present embodiment, the retardation film 20) are determined (S4 in FIG. 2). Specifically, in the calculation step S4, the calculation control means 9 first determines whether or not a defect candidate is detected in both the transmission inspection step S1 and the cross Nicol inspection step S2 (S41 in FIG. 2).
  • Whether or not the defect candidate is detected in both the permeation inspection step S1 and the cross Nicol inspection step S2 is checked at the same position (same or near) as the position of a certain defect candidate detected in the permeation inspection step S1. It is determined whether or not the defect candidate detected in the step S2 exists. Specifically, for example, at a position equivalent to the position of the center of gravity of the defect candidate detected in the permeation inspection step S1 (for example, the position of the center of gravity ⁇ 2 mm), the defect candidate detected in the cross Nicol inspection step S2. It is determined by whether or not the center of gravity exists.
  • the coordinates of the transmission image and the cross Nicol image are used.
  • the coordinates must match.
  • the coordinates of the transmission image and the cross Nicole image are used. It almost matches the coordinates, and there is little need to dare to match the coordinates of both images exactly.
  • the arithmetic control means 9 corrects this deviation and matches the coordinates of both images.
  • FIG. 7 is a diagram schematically explaining the contents of the calculation step S4.
  • FIG. 7A is a diagram schematically illustrating an example of defect candidates determined to be detected in both the permeation inspection step S1 and the cross Nicol inspection step S2 in the calculation step S4 (specifically, S41). Is.
  • FIG. 3C described above, in the permeation inspection step S1, foreign matter F1c, scratch F2a, bonded foreign matter F3, foreign matter F4a, and F4b are detected as defect candidates, and as shown in FIG.
  • foreign substances F1a to F1c, scratches F2b to F2d, and bonded foreign matter F3 are detected as defect candidates.
  • the arithmetic control means 9 determines that the foreign matter F1c is detected in both of them (“Yes” in S41 of FIG. 2). ").
  • the arithmetic control means 9 determines that the scratch F2a is not detected on both sides (FIG. 2). It becomes "No” in S41), and it is determined that this defect candidate (scratch F2a) is not the bonded foreign matter F3 existing between the polarizing element 10 and the retardation film 20 (S44 in FIG. 2).
  • the defect candidates foreign matter F1c and bonded foreign matter F3 shown in FIG. 7 (a) are subjected to the permeation inspection step S1. And, it is determined that it is a defect candidate detected in both the cross Nicol inspection step S2.
  • the calculation control means 9 determines whether or not the defect candidate detected in both the transmission inspection step S1 and the cross Nicol inspection step S2 is detected in the reflection inspection step S3 (FIG. 2). S42). Whether or not the defect candidate detected in both the permeation inspection step S1 and the cross Nicol inspection step S2 is detected in the reflection inspection step S3 is a defect candidate detected in both the permeation inspection step S1 and the cross Nicol inspection step S2. It is determined whether or not there is a defect candidate detected in the reflection inspection step S3 at a position equivalent to (same or near) the position of.
  • the reflection inspection step S3 It is determined whether or not the center of gravity of the defect candidate detected in is present. To determine whether or not the defect candidate detected in the reflection inspection step S3 exists at a position equivalent to the position of the defect candidate detected in both the transmission inspection step S1 and the cross Nicol inspection step S2, the transmission image is used. And the coordinates of the cross Nicole image and the coordinates of the reflection image must match. The coordinates of the transmitted image and the cross Nicol image and the coordinates of the reflected image are obtained by dividing the separation distance L (see FIG.
  • the arithmetic control means 9 Since the deviation is in the X direction by the amount of time, it is necessary for the arithmetic control means 9 to correct this deviation and match the coordinates of the transmission image and the cross Nicol image with the coordinates of the reflection image. Further, since the coordinates of the transparent image and the cross Nicol image and the coordinates of the reflected image may be deviated in the Y direction, the arithmetic control means 9 applies a known image processing to the transparent image and the cross.
  • the Y-direction edge (edge of the optical laminate S) in the Nicole image and the Y-direction edge (edge of the optical laminate S) in the reflection image are detected, and the transmission image is arranged so that the positions of these edges match. And it is preferable to match the coordinates of the cross Nicol image with the coordinates of the reflection image.
  • FIG. 7B is a diagram schematically illustrating an example of defect candidates determined not to be detected in the reflection inspection step S3 in the calculation step S4 (specifically, S42).
  • the foreign matter F1c is as shown in FIG. Since it is also detected in the reflection inspection step S3, the arithmetic control means 9 determines that the foreign matter F1c is detected in the reflection inspection step S3 (it becomes “Yes” in S42 of FIG. 2), and this defect candidate (foreign matter F1c).
  • the arithmetic control means 9 determines that the bonded foreign matter F3 is not detected in the reflection inspection step S3 (“No” in S42 of FIG. 2), and the defect candidate (bonded foreign matter F3) is polarized. It is determined that the foreign matter F3 is a bonded foreign substance existing between the child 10 and the retardation film 20 (S43 in FIG. 2).
  • the defect candidates detected in both the transmission image and the cross Nicol image but not in the reflection image are the defects existing between the polarizing element 10 and the retardation film 20 (paste). There is a high possibility that it is a foreign substance).
  • the inspection method according to the present embodiment as described above, in the calculation step S4, it is detected in both the transmission inspection step S1 and the cross Nicol inspection step S2 (that is, it is detected in both the transmission image and the cross Nicol image). ),
  • the defect candidate not detected in the reflection inspection step S3 (that is, not detected in the reflection image) is determined to be a defect existing between the polarizing element 10 and the retardation film 20. It is possible to suppress over-detection of defects existing on the surface of (separator 40, surface protective film 50) and accurately detect defects existing between the splitter 10 and the retardation film 20.
  • the inspection target is an optical film 20 and 30 (phase difference film 20, protective film 30) laminated on both sides of the polarizing element 10 in the thickness direction, and a release film is formed on both outermost surfaces in the thickness direction.
  • the case where the optical laminate S in which 40 and 50 (separator 40, surface protective film 50) are laminated has been described as an example has been described, but the present invention is not limited to this.
  • the inspection target is the optical laminate S cut into a chip shape
  • the present invention is not limited to this. Similar to the inspection methods described in Patent Documents 1 to 3, it is also possible to adopt a configuration in which an inspection is performed while transporting a long optical laminate by roll-to-roll.
  • the case where the light sources 3, 5a, 5b, and 7 are arranged on the lower surface side (separator 40 side) of the optical laminate S has been described as an example, but the present invention is limited to this. Instead, the light sources 3, 5a, 5b, and 7 are arranged on the upper surface side (surface protective film 50 side) of the optical laminate S (the inspection polarizing filters 6a, 6b are also arranged on the upper surface side of the optical laminate S). It is also possible to adopt.
  • the image pickup means 4 is arranged on the lower surface side of the optical laminate S, and the image pickup means 8 is arranged on the upper surface side of the optical laminate S. Then, in this case, in the cross Nicol inspection step S2, the bonded foreign matter existing between the polarizing element 10 and the protective film 30 is detected.
  • the case where the image pickup means 4 for generating a transmission image in the transmission inspection step S1 and the imaging means 4 for generating a cross Nicole image in the cross Nicol inspection step S2 are the same is taken as an example.
  • the present invention is not limited to this, and it is also possible to separately provide an imaging means for generating a transmission image and an imaging means for generating a cross Nicol image.
  • the transmission inspection step S1, the cross Nicol inspection step S2, and the reflection inspection step S3 are executed in this order (however, the timings of performing the imaging in the transmission inspection step S1 and the cross Nicol inspection step S2 overlap). )
  • the case has been described as an example, but the present invention is not limited to this, and can be executed in any order.
  • only the S41 of the calculation step S4 is executed first, and then the reflection inspection step S3 is executed, and then the S42 of the calculation step S4 is executed. It is also possible to adopt it.

Abstract

[Problem] Provided is an optical laminate inspection method that suppresses excess detection of defects on the surface of a release film and makes it possible to accurately detect defects between a polarizer and optical film. [Solution] This invention comprises a transmission inspection process S1 for detecting a defect candidate using a transmission image generated from light that has been transmitted by an optical laminate S, a crossed Nicols inspection process S2 for detecting a defect candidate using a crossed Nicols image generated from light that has passed through the optical laminate and polarizing filters 6a, 6b for inspection that are disposed so as to produce a crossed Nicols state along the polarization axis of a polarizer 10, a reflection inspection process S3 for detecting a defect candidate using a reflection image generated from light that has been reflected by the optical laminate, and a computation process S4 for determining that a defect candidate that has been detected in both the transmission inspection process and crossed Nicols inspection process but not in the reflection inspection process is a defect between the polarizer and an optical film 20.

Description

光学積層体の検査方法Inspection method of optical laminate
 本発明は、偏光子と、光学フィルムと、が積層され、更に厚み方向の少なくとも一方の最表面側に剥離フィルムが積層された光学積層体の検査方法に関する。特に、本発明は、剥離フィルムの表面に存在する欠点の過検出を抑制して、偏光子と光学フィルムとの間に存在する欠点を精度良く検出可能な光学積層体の検査方法に関する。 The present invention relates to an inspection method for an optical laminate in which a polarizing element and an optical film are laminated, and a release film is further laminated on at least one of the outermost surfaces in the thickness direction. In particular, the present invention relates to a method for inspecting an optical laminate capable of suppressing over-detection of defects existing on the surface of a release film and accurately detecting defects existing between a polarizing element and an optical film.
 従来、偏光子を含む光学積層体の欠点を光学的に検査して、光学積層体の良否を判定する検査方法が知られている。
 光学積層体の欠点としては、光学積層体の層間(具体的には、光学積層体を構成する偏光子と光学フィルムとの間)に存在する異物(本明細書において適宜「貼合異物」と称する)や、光学積層体の表面に存在する欠点(異物、汚れ、傷など)が挙げられる。
Conventionally, an inspection method has been known in which a defect of an optical laminate containing a polarizing element is optically inspected to determine the quality of the optical laminate.
A drawback of the optical laminate is that foreign matter existing between the layers of the optical laminate (specifically, between the polarizing element constituting the optical laminate and the optical film) (in the present specification, appropriately referred to as "bonded foreign matter"). ) And defects (foreign matter, dirt, scratches, etc.) existing on the surface of the optical laminate.
 欠点を検出し易い光学条件は、欠点の種類によって異なる。したがい、複数の光学条件を組み合わせた検査方法が種々提案されている。
 例えば、特許文献1、2には、光学フィルムを透過する光によって生成される光学フィルムの透過画像と、光学フィルムで反射する光によって生成される光学フィルムの反射画像と、に基づき、光学フィルムの欠点を検出する検査方法が提案されている(特許文献1の段落0023~0026等、特許文献2の請求項2等)。
 また、特許文献3には、偏光子を含む光学積層体で反射する光によって生成される光学積層体の反射画像と、偏光子の偏光軸に対してクロスニコルになるように配置された検査用偏光フィルタ及び光学積層体を透過する光によって生成される光学積層体のクロスニコル画像と、に基づき、光学積層体の欠点を検出する検査方法が提案されている(特許文献3の請求項1等)。
The optical conditions for easily detecting defects differ depending on the type of defects. Therefore, various inspection methods that combine a plurality of optical conditions have been proposed.
For example, Patent Documents 1 and 2 describe the optical film based on the transmitted image of the optical film generated by the light transmitted through the optical film and the reflected image of the optical film generated by the light reflected by the optical film. An inspection method for detecting defects has been proposed (paragraphs 0023 to 0026 of Patent Document 1, claim 2 of Patent Document 2 and the like).
Further, in Patent Document 3, a reflected image of an optical laminate generated by light reflected by an optical laminate containing a polarizing element and an inspection object arranged so as to form a cross Nicol with respect to the polarization axis of the polarizing element. An inspection method for detecting defects in the optical laminate based on a cross Nicol image of the optical laminate generated by light transmitted through the polarizing filter and the optical laminate has been proposed (claim 1 of Patent Document 3 and the like). ).
 ここで、検査対象が、偏光子と、光学フィルム(例えば、位相差フィルム)と、が積層され、更に厚み方向の少なくとも一方の最表面側に剥離フィルム(例えば、セパレータや、表面保護フィルム)が積層された光学積層体である場合、剥離フィルムの表面に存在する欠点(異物、汚れ、傷など)は、無害であり、問題とならない。光学積層体を使用する(例えば、液晶セルに光学積層体を貼り合わせる)際、剥離フィルムは剥離されて残存しないからである。 Here, the inspection target is a laminate of a polarizing element and an optical film (for example, a retardation film), and a release film (for example, a separator or a surface protective film) is further formed on at least one outermost surface side in the thickness direction. In the case of the laminated optical laminate, the defects (foreign matter, dirt, scratches, etc.) existing on the surface of the release film are harmless and do not pose a problem. This is because when the optical laminate is used (for example, the optical laminate is attached to the liquid crystal cell), the release film is peeled off and does not remain.
 本発明者らが、偏光子を含む光学積層体のクロスニコル画像に基づき欠点を検出する検査方法を検討したところ、光学積層体の層間に存在する貼合異物を検出できるものの、無害である剥離フィルムの表面に存在する欠点まで検出(過検出)してしまうことが分かった。このため、剥離フィルムの表面の欠点のみが存在する(層間に欠点が存在しないため問題とならない)光学積層体をも不良品として取り扱ってしまい、光学積層体の製品歩留まりが悪くなる場合がある。 When the present inventors investigated an inspection method for detecting defects based on a cross Nicol image of an optical laminate containing a polarizing element, it was possible to detect bonded foreign matter existing between the layers of the optical laminate, but it was harmless. It was found that even defects existing on the surface of the film were detected (overdetected). For this reason, an optical laminate having only defects on the surface of the release film (which does not cause a problem because there are no defects between layers) is treated as a defective product, and the product yield of the optical laminate may deteriorate.
 特許文献3には、上記のような過検出を抑制するため、光学積層体の反射画像に基づき検出された欠点候補の位置と、光学積層体のクロスニコル画像に基づき検出された欠点候補の位置とが同一である場合、この欠点候補を欠点として扱わないようにすることが記載されている(特許文献3の請求項1、段落0083等)。 
 しかしながら、本発明者らが検討したところによれば、上記のように、反射画像及びクロスニコル画像を組み合わせた検査方法であっても、無害の欠点の過検出を十分に抑制できない場合のあることが分かった。
In Patent Document 3, in order to suppress the above-mentioned over-detection, the position of the defect candidate detected based on the reflection image of the optical laminate and the position of the defect candidate detected based on the cross Nicol image of the optical laminate are described. When is the same as, it is described that this defect candidate is not treated as a defect (claim 1, paragraph 0083, etc. of Patent Document 3).
However, according to the investigation by the present inventors, as described above, even with the inspection method combining the reflection image and the cross Nicol image, there are cases where the over-detection of harmless defects cannot be sufficiently suppressed. I understood.
 なお、特許文献1に記載の検査方法は、欠点数を正確に計数することを課題としており(特許文献1の段落0007)、無害の欠点の過検出を抑制する方法ではない。
 また、特許文献2に記載の検査方法は、欠点の種類を正確に判別することを課題としており(特許文献2の段落0018)、無害の欠点の過検出を抑制する方法ではない。
The inspection method described in Patent Document 1 has an object of accurately counting the number of defects (paragraph 0007 of Patent Document 1), and is not a method of suppressing over-detection of harmless defects.
Further, the inspection method described in Patent Document 2 has an object of accurately determining the type of defect (paragraph 0018 of Patent Document 2), and is not a method of suppressing over-detection of harmless defects.
特開2003-329601号公報Japanese Patent Application Laid-Open No. 2003-329601 特開2012-167975号公報Japanese Unexamined Patent Publication No. 2012-167975 特許第4960161号公報Japanese Patent No. 4960161
 本発明は、上記のような従来技術の問題点を解決するためになされたものであり、剥離フィルムの表面に存在する欠点の過検出を抑制して、偏光子と光学フィルムとの間に存在する欠点を精度良く検出可能な光学積層体の検査方法を提供することを課題とする。 The present invention has been made to solve the above-mentioned problems of the prior art, and suppresses over-detection of defects existing on the surface of the release film and exists between the polarizing element and the optical film. It is an object of the present invention to provide an inspection method for an optical laminate capable of accurately detecting a defect.
 前記課題を解決するため、本発明者らは鋭意検討した結果、透過画像、クロスニコル画像及び反射画像の各画像において、透過画像及びクロスニコル画像の双方で検出され、反射画像で検出されなかった欠点候補は、偏光子と光学フィルムとの間に存在する欠点(貼合異物)である可能性が高いことを見出し、本発明を完成した。 As a result of diligent studies to solve the above problems, the present inventors detected both the transmitted image and the cross Nicol image in each of the transmitted image, the cross Nicol image, and the reflected image, and did not detect them in the reflected image. The present invention has been completed by finding that the defect candidate is likely to be a defect (bonded foreign matter) existing between the polarizing element and the optical film.
 すなわち、前記課題を解決するため、本発明は、偏光子と、光学フィルムと、が積層され、更に厚み方向の少なくとも一方の最表面側に剥離フィルムが積層された光学積層体の検査方法であって、前記光学積層体を透過する光によって前記光学積層体の透過画像を生成し、前記透過画像に基づき、前記光学積層体に存在する欠点候補を検出する透過検査工程と、前記偏光子の偏光軸に対してクロスニコルになるように配置された検査用偏光フィルタ及び前記光学積層体を透過する光によって前記光学積層体のクロスニコル画像を生成し、前記クロスニコル画像に基づき、前記光学積層体に存在する欠点候補を検出するクロスニコル検査工程と、前記光学積層体で反射する光によって前記光学積層体の反射画像を生成し、前記反射画像に基づき、前記光学積層体に存在する欠点候補を検出する反射検査工程と、前記透過検査工程で検出された欠点候補と、前記クロスニコル検査工程で検出された欠点候補と、前記反射検査工程で検出された欠点候補と、に基づき、前記偏光子と前記光学フィルムとの間に存在する欠点を判定する演算工程と、を含み、前記演算工程において、前記透過検査工程及び前記クロスニコル検査工程の双方で検出され、前記反射検査工程で検出されなかった欠点候補を、前記偏光子と前記光学フィルムとの間に存在する欠点であると判定する、光学積層体の検査方法を提供する。 That is, in order to solve the above-mentioned problems, the present invention is an inspection method for an optical laminate in which a polarizing element and an optical film are laminated, and a release film is further laminated on at least one outermost surface side in the thickness direction. A transmission inspection step of generating a transmitted image of the optical laminated body by light transmitted through the optical laminated body and detecting defect candidates existing in the optical laminated body based on the transmitted image, and a polarization of the polarizing element. A cross Nicol image of the optical laminate is generated by an inspection polarizing filter arranged so as to form a cross Nicol with respect to the axis and light transmitted through the optical laminate, and the optical laminate is based on the cross Nicol image. A cross Nicol inspection step for detecting defect candidates existing in the optical laminate, a reflected image of the optical laminate is generated by the light reflected by the optical laminate, and defect candidates existing in the optical laminate are generated based on the reflected image. The polarizing element is based on the reflection inspection step to be detected, the defect candidate detected in the transmission inspection step, the defect candidate detected in the cross optics inspection step, and the defect candidate detected in the reflection inspection step. A calculation step for determining defects existing between the optical film and the optical film is included, and is detected in both the transmission inspection step and the cross Nicol inspection step in the calculation step, but is not detected in the reflection inspection step. Provided is a method for inspecting an optical laminate, which determines that a defect candidate is a defect existing between the polarizing element and the optical film.
 本発明によれば、透過検査工程において、光学積層体の透過画像に基づき、光学積層体に存在する欠点候補を検出する。透過画像は、例えば、光学積層体の一方の面側に光源を配置し、他方の面側に撮像手段を配置して、光源から出射し、光学積層体を透過した光を、撮像手段で受光して結像(撮像)することで生成される。透過画像における欠点候補は、例えば、透過画像に対して、他の画素領域と輝度値(画素値)が異なる画素領域を抽出する2値化等の公知の画像処理を適用することで検出される。
 また、本発明によれば、クロスニコル検査工程において、光学積層体のクロスニコル画像に基づき、光学積層体に存在する欠点候補を検出する。クロスニコル画像は、例えば、光学積層体の一方の面側に光源及び検査用偏光フィルタを配置し、他方の面側に撮像手段を配置して、光源から出射し、検査用偏光フィルタ及び光学積層体を透過した光を、撮像手段で撮像受光して結像(撮像)することで生成される。この場合、検査用偏光フィルタと光学積層体の偏光子との間に存在する欠点によってクロスニコルの状態が崩れるため、クロスニコル画像において、検査用偏光フィルタと偏光子との間に存在する欠点に対応する画素領域が明るくなる(輝度値が大きくなる)。或いは、クロスニコル画像は、光学積層体の一方の面側に光源を配置し、他方の面側に検査用偏光フィルタ及び撮像手段を配置して、光源から出射し、光学積層体及び検査用偏光フィルタを透過した光を、撮像手段で受光して結像(撮像)することでも生成される。この場合も、光学積層体の偏光子と検査用偏光フィルタとの間に存在する欠点によってクロスニコルの状態が崩れるため、クロスニコル画像において、偏光子と検査用偏光フィルタとの間に存在する欠点に対応する画素領域が明るくなる(輝度値が大きくなる)。クロスニコル画像における欠点候補は、例えば、クロスニコル画像に対して、他の画素領域と輝度値(画素値)が異なる画素領域(具体的には他の画素領域よりも輝度値が大きな画素領域)を抽出する2値化等の公知の画像処理を適用することで検出される。
 さらに、本発明によれば、反射検査工程において、光学積層体の反射画像に基づき、光学積層体に存在する欠点候補を検出する。反射画像は、例えば、光学積層体の一方の面側に光源及び撮像手段を配置し、光源から出射し、光学積層体で反射した光を、撮像手段で受光して結像(撮像)することで生成される。反射画像における欠点候補は、例えば、反射画像に対して、他の画素領域と輝度値(画素値)が異なる画素領域を抽出する2値化等の公知の画像処理を適用することで検出される。
According to the present invention, in the transmission inspection step, defect candidates existing in the optical laminate are detected based on the transmission image of the optical laminate. For a transmitted image, for example, a light source is arranged on one surface side of the optical laminate, an imaging means is arranged on the other surface side, the light emitted from the light source is emitted, and the light transmitted through the optical laminate is received by the imaging means. It is generated by forming an image (imaging). Defect candidates in a transparent image are detected by applying a known image process such as binarization to extract a pixel region having a different luminance value (pixel value) from another pixel region, for example, to the transparent image. ..
Further, according to the present invention, in the cross Nicol inspection step, defect candidates existing in the optical laminated body are detected based on the cross Nicol image of the optical laminated body. For the cross Nicol image, for example, a light source and a polarizing filter for inspection are arranged on one surface side of the optical laminate, and an imaging means is arranged on the other surface side to emit light from the light source, and the polarizing filter for inspection and the optical laminate are arranged. It is generated by capturing and receiving an image of light transmitted through the body with an imaging means and forming an image (imaging). In this case, the state of the cross Nicol is disrupted by the defect existing between the inspection polarizing filter and the polarizing element of the optical laminate. Therefore, in the cross Nicol image, the defect existing between the inspection polarizing filter and the polarizing element The corresponding pixel area becomes brighter (the brightness value becomes larger). Alternatively, in the cross Nicol image, a light source is arranged on one surface side of the optical laminate, an inspection polarizing filter and an imaging means are arranged on the other surface side, and the light is emitted from the light source to emit the optical laminate and the inspection polarization. It is also generated by receiving light received by an imaging means and forming an image (imaging) of the light transmitted through the filter. In this case as well, the defect existing between the polarizing element of the optical laminate and the polarizing filter for inspection disrupts the state of the cross Nicol, so that the defect existing between the polarizing element and the polarizing filter for inspection in the cross Nicol image is present. The pixel area corresponding to is brighter (the brightness value becomes larger). The defect candidate in the cross Nicol image is, for example, a pixel region having a different brightness value (pixel value) from the other pixel region (specifically, a pixel region having a larger brightness value than the other pixel region) with respect to the cross Nicol image. Is detected by applying known image processing such as binarization.
Further, according to the present invention, in the reflection inspection step, defect candidates existing in the optical laminate are detected based on the reflection image of the optical laminate. For the reflected image, for example, a light source and an image pickup means are arranged on one surface side of the optical laminate, and the light emitted from the light source and reflected by the optical laminate is received by the image pickup means and imaged (imaging). Generated by. Defect candidates in a reflected image are detected by applying known image processing such as binarization to extract a pixel region having a different luminance value (pixel value) from another pixel region, for example, to the reflected image. ..
 なお、本発明において、「光学フィルム」は、偏光子から剥離不能な光学フィルムを意味する。
 また、本発明において、「偏光子の偏光軸に対してクロスニコルになるように配置された検査用偏光フィルタ」とは、偏光子の偏光軸と検査用偏光フィルタの偏光軸との成す角度が完全に90°である場合に限らず、90°±10°の範囲内である場合を含む概念である。
 さらに、本発明において、透過検査工程、クロスニコル検査工程及び反射検査工程は、必ずしもこの順番に実行する必要がなく、任意の順番に実行する(複数の検査工程を一部重複して実行する場合も含む)ことが可能である。
In the present invention, the "optical film" means an optical film that cannot be peeled off from the polarizing element.
Further, in the present invention, the "inspection polarizing filter arranged so as to form a cross Nicol with respect to the polarization axis of the polarizing element" means that the angle formed by the polarization axis of the polarizing element and the polarization axis of the inspection polarizing filter is the same. It is a concept that includes not only the case where the temperature is completely 90 ° but also the case where the temperature is within the range of 90 ° ± 10 °.
Further, in the present invention, the transmission inspection step, the cross Nicol inspection step, and the reflection inspection step do not necessarily have to be executed in this order, but are executed in any order (when a plurality of inspection steps are partially overlapped). (Including) is possible.
 そして、本発明によれば、演算工程において、透過検査工程及びクロスニコル検査工程の双方で検出され、反射検査工程で検出されなかった欠点候補を、偏光子と光学フィルムとの間に存在する欠点(貼合異物)であると判定する。
 欠点候補が透過検査工程及びクロスニコル検査工程の双方で検出されたか否かは、例えば、透過検査工程で検出されたある欠点候補の位置と同等(同一又は近傍)の位置において、クロスニコル検査工程で検出された欠点候補が存在するか否かで判定される。同等の位置においてクロスニコル検査工程で検出された欠点候補が存在する場合には、この欠点候補は透過検査工程及びクロスニコル検査工程の双方で検出されたと判定される。一方、同等の位置においてクロスニコル検査工程で検出された欠点候補が存在しない場合には、この欠点候補は透過検査工程及びクロスニコル検査工程の双方で検出されなかったと判定される。
 透過検査工程及びクロスニコル検査工程の双方で検出された欠点候補が反射検査工程で検出されたか否かは、例えば、透過検査工程及びクロスニコル検査工程の双方で検出されたある欠点候補の位置と同等(同一又は近傍)の位置において、反射検査工程で検出された欠点候補が存在するか否かで判定される。同等の位置において反射検査工程で検出された欠点候補が存在する場合には、この欠点候補は反射検査工程で検出されたと判定される。一方、同等の位置において反射検査工程で検出された欠点候補が存在しない場合には、この欠点候補は反射検査工程で検出されなかったと判定される。
According to the present invention, defect candidates that are detected in both the transmission inspection step and the cross Nicol inspection step and are not detected in the reflection inspection step in the calculation process are present between the polarizing element and the optical film. Judged as (bonded foreign matter).
Whether or not the defect candidate is detected in both the permeation inspection step and the cross Nicol inspection step is determined, for example, at a position equivalent to (same or near) the position of a certain defect candidate detected in the permeation inspection step. It is determined whether or not the defect candidate detected in is present. If there is a defect candidate detected in the cross Nicol inspection step at the same position, it is determined that the defect candidate is detected in both the permeation inspection step and the cross Nicol inspection step. On the other hand, if there is no defect candidate detected in the cross Nicol inspection step at the same position, it is determined that this defect candidate was not detected in both the permeation inspection step and the cross Nicol inspection step.
Whether or not the defect candidate detected in both the permeation inspection step and the cross Nicol inspection step is detected in the reflection inspection step is determined by, for example, the position of a certain defect candidate detected in both the permeation inspection step and the cross Nicol inspection step. It is determined whether or not there is a defect candidate detected in the reflection inspection step at the same (same or near) position. If there is a defect candidate detected in the reflection inspection step at the same position, it is determined that the defect candidate is detected in the reflection inspection step. On the other hand, if there is no defect candidate detected in the reflection inspection step at the same position, it is determined that this defect candidate was not detected in the reflection inspection step.
 前述のように、本発明者らの知見によれば、透過画像及びクロスニコル画像の双方で検出され、反射画像で検出されなかった欠点候補は、偏光子と光学フィルムとの間に存在する欠点(貼合異物)である可能性が高い。本発明によれば、演算工程において、透過検査工程及びクロスニコル検査工程の双方で検出され(すなわち、透過画像及びクロスニコル画像の双方で検出され)、反射検査工程で検出されなかった(すなわち、反射画像で検出されなかった)欠点候補を、偏光子と光学フィルムとの間に存在する欠点であると判定するため、剥離フィルムの表面に存在する欠点の過検出を抑制して、偏光子と光学フィルムとの間に存在する欠点を精度良く検出可能である。 As described above, according to the findings of the present inventors, the defect candidates detected in both the transmission image and the cross Nicol image but not in the reflection image are the defects existing between the polarizing element and the optical film. There is a high possibility that it is (bonded foreign matter). According to the present invention, in the arithmetic step, it was detected in both the transmission inspection step and the cross Nicol inspection step (that is, it was detected in both the transmission image and the cross Nicol image), and it was not detected in the reflection inspection step (that is,). In order to determine that the defect candidate (which was not detected in the reflected image) is a defect existing between the polarizing element and the optical film, the over-detection of the defect existing on the surface of the release film is suppressed, and the polarizing element is used. It is possible to accurately detect defects existing between the optical film and the optical film.
 本発明において、前記剥離フィルムがセパレータであり、前記光学フィルムが前記セパレータと前記偏光子との間に位置する場合、前記クロスニコル検査工程において、前記検査用偏光フィルタを前記セパレータ側に配置することが好ましい。 In the present invention, when the release film is a separator and the optical film is located between the separator and the polarizing element, the inspection polarizing filter is arranged on the separator side in the cross Nicol inspection step. Is preferable.
 上記の光学積層体を画像表示装置の液晶セルに貼り合わせる場合、セパレータ側を液晶セルに貼り合わせる(セパレータを剥離した後にセパレータ側を貼り合わせる)ことになる。光学積層体のセパレータ側を液晶セルに貼り合わせる場合、光学積層体の偏光子と液晶セルとの間に存在する欠点(具体的には、偏光子と、これよりも液晶セル側に位置する光学フィルムとの間に存在する欠点)が、液晶セルを駆動した場合に画像表示装置において輝点として表示され、品質上の問題となる。
 上記の好ましい方法によれば、クロスニコル検査工程において、検査用偏光フィルタを液晶セルと同じセパレータ側に配置するため、液晶セルを駆動する場合に問題となる欠点(液晶セルと光学フィルムとの間に存在する欠点)を欠点候補として検出可能である。
When the above optical laminate is attached to the liquid crystal cell of the image display device, the separator side is attached to the liquid crystal cell (the separator side is attached after the separator is peeled off). When the separator side of the optical laminate is bonded to the liquid crystal cell, there are drawbacks (specifically, the splitter and the optics located closer to the liquid crystal cell side) that exist between the polarizing element of the optical laminate and the liquid crystal cell. (Defects existing between the film and the film) are displayed as bright spots on the image display device when the liquid crystal cell is driven, which poses a quality problem.
According to the above preferred method, in the cross Nicol inspection step, the inspection polarizing filter is arranged on the same separator side as the liquid crystal cell, which causes a problem when driving the liquid crystal cell (between the liquid crystal cell and the optical film). (Defects existing in) can be detected as defect candidates.
 本発明において、剥離フィルムの配向方向と偏光子の偏光軸の方向とが大きくズレている光学積層体の部位が存在するか、或いは、剥離フィルムの配向方向と検査用偏光フィルタの偏光軸の方向とが大きくズレている光学積層体の部位が存在すれば、検査用偏光フィルタと光学積層体の偏光子との間に欠点が存在しなくても、上記の部位でクロスニコルの状態が崩れるため、クロスニコル検査工程における欠点候補の検出精度が低下する。
 したがい、本発明は、前記剥離フィルムの配向方向が、予め定められた規定の配向方向に対して、±6°以内(より好ましくは±3.5°以内)である場合に好適に用いられる。このように、配向方向の揃った(既定の配向方向に対して±6°以内である)剥離フィルムであれば、剥離フィルムの既定の配向方向と偏光子の偏光軸の方向とが一致するように剥離フィルムと偏光子とが積層されているか、或いは、剥離フィルムの規定の配向方向と検査用偏光フィルタの偏光軸の方向とが一致するように(換言すれば、剥離フィルムの規定の配向方向と偏光子の偏光軸の方向とが直交するように)剥離フィルムと偏光子とが積層されている光学積層体について、クロスニコル検査工程における欠点候補の検出精度の低下を防止可能である。
In the present invention, there is a portion of the optical laminate in which the orientation direction of the release film and the direction of the polarization axis of the polarizing element are largely deviated from each other, or the orientation direction of the release film and the direction of the polarization axis of the inspection polarizing filter are present. If there is a part of the optical laminate that is significantly different from the above, even if there is no defect between the polarizing filter for inspection and the polarizing element of the optical laminate, the state of cross Nicol will collapse at the above part. , The detection accuracy of defect candidates in the cross Nicol inspection process is reduced.
Therefore, the present invention is preferably used when the orientation direction of the release film is within ± 6 ° (more preferably within ± 3.5 °) with respect to a predetermined orientation direction. In this way, if the release film has the same orientation direction (within ± 6 ° with respect to the predetermined orientation direction), the predetermined orientation direction of the release film and the direction of the polarization axis of the splitter should match. The release film and the splitter are laminated, or the specified orientation direction of the release film and the direction of the polarization axis of the inspection polarizing filter match (in other words, the specified orientation direction of the release film). It is possible to prevent a decrease in the detection accuracy of defect candidates in the cross Nicol inspection process for an optical laminate in which a release film and a polarizing element are laminated (so that the direction of the polarization axis of the polarizing element is orthogonal to the direction of the polarization axis).
 好ましくは、前記透過検査工程において前記透過画像を生成するための撮像手段と、前記クロスニコル検査工程において前記クロスニコル画像を生成するための撮像手段と、が同一であり、前記透過検査工程で前記撮像手段による撮像を実行するタイミングと、前記クロスニコル検査工程で前記撮像手段による撮像を実行するタイミングと、を切り替える。 Preferably, the imaging means for generating the transmission image in the transmission inspection step and the imaging means for generating the cross Nicol image in the cross Nicol inspection step are the same, and the transmission inspection step is described. The timing of executing the image pickup by the image pickup means and the timing of executing the image pickup by the image pickup means in the cross Nicol inspection step are switched.
 上記の好ましい方法によれば、透過画像を生成するための撮像手段と、クロスニコル画像を生成するための撮像手段とが同一であるため、透過画像の座標とクロスニコル画像の座標とを精度良く合致させることができる。したがい、演算工程において、欠点候補が透過検査工程及びクロスニコル検査工程の双方で検出されたか否かを精度良く判定する(例えば、透過検査工程で検出されたある欠点候補の位置と同等の位置において、クロスニコル検査工程で検出された欠点候補が存在するか否かを精度良く判定する)ことが可能である。 According to the above preferred method, since the imaging means for generating the transparent image and the imaging means for generating the cross Nicol image are the same, the coordinates of the transparent image and the coordinates of the cross Nicol image can be accurately obtained. Can be matched. Therefore, in the calculation process, it is accurately determined whether or not the defect candidate is detected in both the permeation inspection process and the cross Nicol inspection process (for example, at a position equivalent to the position of a certain defect candidate detected in the permeation inspection process). , It is possible to accurately determine whether or not there is a defect candidate detected in the cross Nicol inspection process).
 好ましくは、前記透過検査工程及び/又は前記クロスニコル検査工程は、検出した欠点候補のうち、所定のしきい値よりも大きな寸法の欠点候補を欠点候補から除外するノイズ除去手順を含む。 Preferably, the permeation inspection step and / or the cross Nicol inspection step includes a noise reduction procedure for excluding defect candidates having dimensions larger than a predetermined threshold value from the detected defect candidates.
 光学積層体の偏光子と光学フィルムとの間に存在する欠点(貼合異物)は、剥離フィルムの表面に存在する欠点に比べて、寸法の小さい場合が多い。
 上記の好ましい方法によれば、透過検査工程及び/又はクロスニコル検査工程において、検出した欠点候補のうち、所定のしきい値よりも大きな寸法の欠点候補を欠点候補から除外するため、演算工程において、透過検査工程及びクロスニコル検査工程の双方で検出されたか否かを判定する欠点候補の数を減少させることができる。したがい、演算工程に要する時間を短縮可能であるという利点を有する。
The defects (foreign matter bonded) existing between the polarizing element of the optical laminate and the optical film are often smaller in size than the defects existing on the surface of the release film.
According to the above preferred method, in the permeation inspection step and / or the cross Nicol inspection step, among the defect candidates detected, the defect candidates having a size larger than a predetermined threshold value are excluded from the defect candidates, so that the defect candidates are excluded in the calculation process. , The number of defect candidates for determining whether or not they are detected in both the permeation inspection step and the cross Nicol inspection step can be reduced. Therefore, it has the advantage that the time required for the calculation process can be shortened.
 本発明によれば、剥離フィルムの表面に存在する欠点の過検出を抑制して、偏光子と光学フィルムとの間に存在する欠点を精度良く検出可能である。 According to the present invention, it is possible to suppress over-detection of defects existing on the surface of the release film and accurately detect defects existing between the polarizing element and the optical film.
本発明の一実施形態に係る光学積層体の検査方法を実行するための検査装置の概略構成を模式的に説明する図である。It is a figure schematically explaining the schematic structure of the inspection apparatus for carrying out the inspection method of the optical laminated body which concerns on one Embodiment of this invention. 本実施形態に係る光学積層体の検査方法の概略工程を示すフロー図である。It is a flow chart which shows the schematic process of the inspection method of the optical laminated body which concerns on this embodiment. 図2に示す透過検査工程S1で検出される欠点候補の一例を模式的に説明する図である。It is a figure schematically explaining an example of defect candidates detected in the permeation inspection step S1 shown in FIG. 2. 図2に示すクロスニコル検査工程S2で検出される欠点候補の一例を模式的に説明する図である。It is a figure schematically explaining an example of the defect candidate detected in the cross Nicol inspection step S2 shown in FIG. 2. 図1に示す制御演算手段9が実行する切り替え制御の内容を模式的に説明する図である。It is a figure schematically explaining the content of the switching control executed by the control calculation means 9 shown in FIG. 1. 図2に示す反射検査工程S3で検出される欠点候補の一例を模式的に説明する図である。It is a figure which schematically explains an example of the defect candidate detected in the reflection inspection step S3 shown in FIG. 図2に示す演算工程S4の内容を模式的に説明する図である。It is a figure which schematically explains the content of the calculation process S4 shown in FIG.
 以下、添付図面を適宜参照しつつ、本発明の一実施形態に係る光学積層体の検査方法について説明する。
 図1は、本実施形態に係る光学積層体の検査方法を実行するための検査装置の概略構成を模式的に説明する図である。図1(a)は、検査装置の概略構成を示す側面図である。図1(b)は、光学積層体の概略構成を示す断面図である。図1において、Xは光学積層体Sの搬送方向に平行な水平方向を、YはX方向に直交する水平方向を、Zは鉛直方向を示す。
Hereinafter, a method for inspecting an optical laminate according to an embodiment of the present invention will be described with reference to the accompanying drawings as appropriate.
FIG. 1 is a diagram schematically illustrating a schematic configuration of an inspection device for executing an inspection method for an optical laminate according to the present embodiment. FIG. 1A is a side view showing a schematic configuration of an inspection device. FIG. 1B is a cross-sectional view showing a schematic configuration of an optical laminate. In FIG. 1, X indicates a horizontal direction parallel to the transport direction of the optical laminate S, Y indicates a horizontal direction orthogonal to the X direction, and Z indicates a vertical direction.
 <光学積層体S>
 最初に、本実施形態の検査装置100の検査対象である光学積層体Sの構成について説明する。
 図1(b)に示すように、本実施形態の光学積層体Sは、用途に応じたチップ状に切断されており、偏光子10と、光学フィルム20、30と、が積層され、更に厚み方向(Z方向)の最表面側に剥離フィルム40、50が積層されている。本実施形態において、偏光子10よりも下側に位置する一方の光学フィルム20は、位相差フィルムであり、偏光子10よりも上側に位置する他方の光学フィルム30は、保護フィルムである。また、本実施形態において、偏光子10よりも下側に位置する一方の剥離フィルム40は、セパレータであり、偏光子10よりも上側に位置する他方の剥離フィルム50は、表面保護フィルムである。
 以下、光学積層体Sの各構成要素について説明する。
<Optical laminate S>
First, the configuration of the optical laminate S, which is the inspection target of the inspection device 100 of the present embodiment, will be described.
As shown in FIG. 1 (b), the optical laminate S of the present embodiment is cut into a chip shape according to the intended use, and the polarizing element 10 and the optical films 20 and 30 are laminated and further thickened. The release films 40 and 50 are laminated on the outermost surface side in the direction (Z direction). In the present embodiment, one optical film 20 located below the splitter 10 is a retardation film, and the other optical film 30 located above the splitter 10 is a protective film. Further, in the present embodiment, one release film 40 located below the polarizing element 10 is a separator, and the other release film 50 located above the polarizing element 10 is a surface protective film.
Hereinafter, each component of the optical laminate S will be described.
 [偏光子10]
 偏光子10は、代表的には、二色性物質を含む樹脂フィルムで構成される。
 樹脂フィルムとしては、偏光子として用いることができる任意の適切な樹脂フィルムを採用することができる。樹脂フィルムは、代表的には、ポリビニルアルコール系樹脂(以下、「PVA系樹脂」と称する)フィルムである。
[Polarizer 10]
The decoder 10 is typically composed of a resin film containing a dichroic substance.
As the resin film, any suitable resin film that can be used as a polarizing element can be adopted. The resin film is typically a polyvinyl alcohol-based resin (hereinafter referred to as “PVA-based resin”) film.
 上記PVA系樹脂フィルムを形成するPVA系樹脂としては、任意の適切な樹脂を用いることができる。例えば、ポリビニルアルコール、エチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。 Any suitable resin can be used as the PVA-based resin that forms the PVA-based resin film. For example, polyvinyl alcohol and ethylene-vinyl alcohol copolymers can be mentioned. Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. The ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer.
 PVA系樹脂の平均重合度は、目的に応じて適切に選択することができる。平均重合度は、通常1000~10000であり、好ましくは1200~4500、さらに好ましくは1500~4300である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。 The average degree of polymerization of the PVA-based resin can be appropriately selected according to the purpose. The average degree of polymerization is usually 1000 to 10000, preferably 1200 to 4500, and more preferably 1500 to 4300. The average degree of polymerization can be determined according to JIS K 6726-1994.
 樹脂フィルムに含まれる二色性物質としては、例えば、ヨウ素、有機染料等が挙げられる。これらは、単独で、又は、二種以上を組み合わせて用いることができる。好ましくは、ヨウ素が用いられる。 Examples of the dichroic substance contained in the resin film include iodine and organic dyes. These can be used alone or in combination of two or more. Preferably iodine is used.
 樹脂フィルムは、単層の樹脂フィルムであっても、二層以上の積層体であってもよい。 The resin film may be a single-layer resin film or a laminated body having two or more layers.
 単層の樹脂フィルムから構成される偏光子の具体例としては、PVA系樹脂フィルムにヨウ素による染色処理及び延伸処理(代表的には、一軸延伸処理)が施されたものが挙げられる。ヨウ素による染色処理は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することによって行われる。一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色後に行ってもよいし、染色しながら行ってもよい。また、延伸後に染色を行ってもよい。必要に応じて、PVA系樹脂フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。 Specific examples of the polarizing element composed of a single-layer resin film include those obtained by subjecting a PVA-based resin film to a dyeing treatment with iodine and a stretching treatment (typically, a uniaxial stretching treatment). The dyeing treatment with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution. The draw ratio of uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after dyeing or while dyeing. In addition, dyeing may be performed after stretching. If necessary, the PVA-based resin film is subjected to a swelling treatment, a crosslinking treatment, a cleaning treatment, a drying treatment and the like.
 積層体から構成される偏光子の具体例としては、樹脂基材とこの樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、又は、樹脂基材とこの樹脂基材に塗布形成されたPVA系樹脂層との積層体から構成される偏光子が挙げられる。樹脂基材とこの樹脂基材に塗布形成されたPVA系樹脂層との積層体から構成される偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得た後、この積層体を延伸及び染色してPVA系樹脂層を偏光子とすることにより作製することができる。本実施形態において、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することを含んでもよい。得られた樹脂基材/偏光子の積層体は、そのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、この剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば、特開2012-73580号公報に記載されている。この公報は、その全体の記載が本明細書に参考として援用される。 Specific examples of the polarizing element composed of the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and this resin base. Examples thereof include a polarizing element composed of a laminate with a PVA-based resin layer coated and formed on a material. A polarizing element composed of a laminate of a resin base material and a PVA-based resin layer coated and formed on the resin base material can be obtained, for example, by applying a PVA-based resin solution to the resin base material and drying it on the resin base material. A PVA-based resin layer is formed on the surface of the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer, and then the laminate is stretched and dyed to use the PVA-based resin layer as a polarizing element. Can be done. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Further, stretching may optionally include stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in an aqueous boric acid solution. The obtained resin base material / polarizing element laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizing element), or the resin base material may be obtained from the resin base material / polarizing element laminate. It may be peeled off, and an arbitrary appropriate protective layer according to the purpose may be laminated and used on the peeled surface. Details of the method for producing such a polarizing element are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The entire description of this publication is incorporated herein by reference.
 偏光子10の厚みは、好ましくは15μm以下であり、より好ましくは1μm~12μmであり、さらに好ましくは3μm~10μmであり、特に好ましくは3μm~8μmである。 The thickness of the splitter 10 is preferably 15 μm or less, more preferably 1 μm to 12 μm, further preferably 3 μm to 10 μm, and particularly preferably 3 μm to 8 μm.
 偏光子10は、好ましくは、波長380nm~780nmの範囲内の何れかの波長で吸収二色性を示す。偏光子10の単体透過率は、好ましくは40.0%~45.0%であり、より好ましくは41.5%~43.5%である。偏光子10の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizing element 10 preferably exhibits absorption dichroism at any wavelength in the wavelength range of 380 nm to 780 nm. The simple substance transmittance of the polarizing element 10 is preferably 40.0% to 45.0%, more preferably 41.5% to 43.5%. The degree of polarization of the polarizing element 10 is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
 [位相差フィルム20]
 位相差フィルム20は、例えば、広視野角を付与する補償板であってもよいし、偏光膜と共に用いられて円偏光を生成するための位相差板(円偏光板)であってもよい。位相差フィルム20の厚みは、例えば、1~200μmである。なお、位相差フィルム20の代わりに、後述のような保護フィルムや、反射偏光子などの他のフィルムを用いてもよい。
[The retardation film 20]
The retardation film 20 may be, for example, a compensation plate that imparts a wide viewing angle, or may be a retardation plate (circular polarizing plate) that is used together with a polarizing film to generate circularly polarized light. The thickness of the retardation film 20 is, for example, 1 to 200 μm. Instead of the retardation film 20, a protective film as described later or another film such as a reflective polarizing element may be used.
 位相差フィルム20は、代表的には、上記の特性を実現可能な任意の適切な樹脂で形成される。位相差フィルム20を形成する樹脂としては、例えば、ポリアリレート、ポリアミド、ポリイミド、ポリエステル、ポリアリールエーテルケトン、ポリアミドイミド、ポリエステルイミド、ポリビニルアルコール、ポリフマル酸エステル、ポリエーテルサルフォン、ポリサルフォン、ノルボルネン樹脂、ポリカーボネート樹脂、セルロース樹脂及びポリウレタンが挙げられる。これらの樹脂は、単独で用いてもよく、組み合わせて用いてもよい。好ましくは、シクロオレフィン系のノルボルネン樹脂である。 The retardation film 20 is typically formed of any suitable resin capable of achieving the above characteristics. Examples of the resin forming the retardation film 20 include polyarylate, polyamide, polyimide, polyester, polyaryl ether ketone, polyamide-imide, polyesterimide, polyvinyl alcohol, polyfumarate ester, polyether sulfone, polysulfone, and norbornene resin. Examples include polycarbonate resin, cellulose resin and polyurethane. These resins may be used alone or in combination. A cycloolefin-based norbornene resin is preferable.
 [保護フィルム30]
 保護フィルム30としては、任意の適切な樹脂フィルムが用いられる。樹脂フィルムの形成材料としては、例えば、(メタ)アクリル系樹脂、ジアセチルセルロース、トリアセチルセルロース等のセルロース系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂等が挙げられる。なお、「(メタ)アクリル系樹脂」とは、アクリル系樹脂及び/又はメタクリル系樹脂を意味する。
[Protective film 30]
As the protective film 30, any suitable resin film is used. Examples of the resin film forming material include (meth) acrylic resin, cellulose resin such as diacetyl cellulose and triacetyl cellulose, cycloolefin resin such as norbornene resin, olefin resin such as polypropylene, and polyethylene terephthalate resin. Examples thereof include ester-based resins such as, polyamide-based resins, polycarbonate-based resins, and copolymer resins thereof. The "(meth) acrylic resin" means an acrylic resin and / or a methacrylic resin.
 保護フィルム30の厚みは、代表的には10μm~100μmであり、好ましくは20μm~40μmである。 The thickness of the protective film 30 is typically 10 μm to 100 μm, preferably 20 μm to 40 μm.
 保護フィルム30の偏光子10と反対側の表面には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。さらに/又は、保護フィルム30の偏光子10と反対側の表面には、必要に応じて、偏光サングラスを介して視認する場合の視認性を改善する処理(代表的には、(楕)円偏光機能を付与する処理、超高位相差を付与する処理)が施されていてもよい。なお、表面処理が施されて表面処理層が形成される場合、保護フィルム30の厚みは、表面処理層を含めた厚みである。  The surface of the protective film 30 on the opposite side of the polarizing element 10 may be subjected to surface treatment such as hard coat treatment, antireflection treatment, anti-sticking treatment, and anti-glare treatment, if necessary. Further / or, if necessary, the surface of the protective film 30 opposite to the polarizing element 10 is treated to improve visibility when visually recognizing through polarized sunglasses (typically, (elliptical) circular polarization. Processing for imparting a function, processing for imparting an ultra-high phase difference) may be performed. When the surface treatment is applied to form the surface treatment layer, the thickness of the protective film 30 is the thickness including the surface treatment layer. It was
 なお、位相差フィルム20及び保護フィルム30は、任意の適切な接着剤層(図示せず)を介して、それぞれ偏光子10に貼り合わせられて、積層されている。接着剤層を構成する接着剤として、代表的にはPVA系接着剤又は活性化エネルギー線硬化型接着剤が挙げられる。 It should be noted that the retardation film 20 and the protective film 30 are laminated and laminated to the polarizing element 10 via an arbitrary appropriate adhesive layer (not shown). Typical examples of the adhesive constituting the adhesive layer include PVA-based adhesives and activated energy ray-curable adhesives.
 [セパレータ40]
 セパレータ40としては、任意の適切なセパレータを採用することができる。具体例としては、剥離剤により表面コートされたプラスチックフィルム、不織布又は紙が挙げられる。剥離剤の具体例としては、シリコーン系剥離剤、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤が挙げられる。プラスチックフィルムの具体例としては、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンフィルム、ポリプロピレンフィルムが挙げられる。セパレータの厚みは、例えば10μm~100μmとすることができる。
[Separator 40]
As the separator 40, any suitable separator can be adopted. Specific examples include a plastic film, a non-woven fabric or paper surface-coated with a release agent. Specific examples of the release agent include a silicone-based release agent, a fluorine-based release agent, and a long-chain alkyl acrylate-based release agent. Specific examples of the plastic film include polyethylene terephthalate (PET) film, polyethylene film, and polypropylene film. The thickness of the separator can be, for example, 10 μm to 100 μm.
 セパレータ40は、任意の適切な粘着剤層(図示せず)を介して、位相差フィルム20に貼り合わせられて、積層されている。粘着剤層を構成する粘着剤の具体例としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ウレタン系粘着剤、エポキシ系粘着剤、及び、ポリエーテル系粘着剤が挙げられる。粘着剤のベース樹脂を形成するモノマーの種類、数、組み合わせ及び配合比、並びに、架橋剤の配合量、反応温度、反応時間等を調整することにより、目的に応じた所望の特性を有する粘着剤を調製することができる。粘着剤のベース樹脂は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。透明性、加工性及び耐久性などの観点から、アクリル系粘着剤が好ましい。粘着剤層を構成する粘着剤の詳細は、例えば、特開2014-115468号公報に記載されており、当該公報の記載は本明細書に参考として援用されている。粘着剤層の厚みは、例えば10μm~100μmにすることができる。粘着剤層の25℃における貯蔵弾性率G’は、例えば1.0×10[Pa]~1.0×10[Pa]にすることができる。なお、貯蔵弾性率は、例えば、動的粘弾性測定から求めることができる。 The separator 40 is bonded and laminated to the retardation film 20 via an arbitrary suitable pressure-sensitive adhesive layer (not shown). Specific examples of the adhesives constituting the adhesive layer include acrylic adhesives, rubber adhesives, silicone adhesives, polyester adhesives, urethane adhesives, epoxy adhesives, and polyether adhesives. The agent is mentioned. By adjusting the type, number, combination and blending ratio of the monomers forming the base resin of the pressure-sensitive adhesive, the blending amount of the cross-linking agent, the reaction temperature, the reaction time, etc., the pressure-sensitive adhesive having desired characteristics according to the purpose. Can be prepared. The base resin of the pressure-sensitive adhesive may be used alone or in combination of two or more. Acrylic adhesives are preferable from the viewpoint of transparency, processability, durability and the like. Details of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer are described in, for example, Japanese Patent Application Laid-Open No. 2014-115468, and the description of the publication is incorporated herein by reference. The thickness of the pressure-sensitive adhesive layer can be, for example, 10 μm to 100 μm. The storage elastic modulus G'at 25 ° C. of the pressure-sensitive adhesive layer can be, for example, 1.0 × 10 4 [Pa] to 1.0 × 10 6 [Pa]. The storage elastic modulus can be obtained from, for example, dynamic viscoelasticity measurement.
 本実施形態では、セパレータ40として、その配向方向が、予め定められた規定の配向方向に対して、±6°以内であるものが用いられている。例えば、本実施形態の偏光子10の偏光軸の方向がX方向であるとすれば、セパレータ40の既定の配向方向がY方向とされ、セパレータ40の何れの部位の配向方向もY方向に対して±6°以内の角度を成すように、セパレータ40が積層されている。 In the present embodiment, the separator 40 whose orientation direction is within ± 6 ° with respect to a predetermined orientation direction is used. For example, if the direction of the polarization axis of the polarizing element 10 of the present embodiment is the X direction, the predetermined orientation direction of the separator 40 is the Y direction, and the orientation direction of any portion of the separator 40 is with respect to the Y direction. The separators 40 are laminated so as to form an angle within ± 6 °.
 [表面保護フィルム50]
 表面保護フィルム50は、代表的には、基材と粘着剤層とを有する。本実施形態において、表面保護フィルム50の厚みは、例えば30μm以上である。表面保護フィルム50の厚みの上限は、例えば150μmである。なお、本明細書において、「表面保護フィルムの厚み」とは、基材と粘着剤層との合計厚みをいう。
[Surface protection film 50]
The surface protective film 50 typically has a base material and an adhesive layer. In the present embodiment, the thickness of the surface protective film 50 is, for example, 30 μm or more. The upper limit of the thickness of the surface protective film 50 is, for example, 150 μm. In the present specification, the "thickness of the surface protective film" means the total thickness of the base material and the pressure-sensitive adhesive layer.
 基材は、任意の適切な樹脂フィルムで構成することができる。樹脂フィルムの形成材料としては、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂等が挙げられる。好ましくは、エステル系樹脂(特に、ポリエチレンテレフタレート系樹脂)である。 The base material can be composed of any suitable resin film. Examples of the resin film forming material include ester resins such as polyethylene terephthalate resins, cycloolefin resins such as norbornene resins, olefin resins such as polypropylene, polyamide resins, polycarbonate resins, and copolymer resins thereof. Can be mentioned. An ester resin (particularly, a polyethylene terephthalate resin) is preferable.
 粘着剤層を形成する粘着剤としては、任意の適切な粘着剤を採用することができる。粘着剤のベース樹脂としては、例えば、アクリル系樹脂、スチレン系樹脂、シリコーン系樹脂、ウレタン系樹脂、ゴム系樹脂が挙げられる。 As the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer, any appropriate pressure-sensitive adhesive can be adopted. Examples of the base resin of the pressure-sensitive adhesive include acrylic resin, styrene resin, silicone resin, urethane resin, and rubber resin.
 <検査装置100>
 次に、本実施形態の検査装置100の構成について説明する。
 本実施形態の検査装置100は、上記に説明した構成を有する光学積層体Sを検査する装置である。
 図1(a)に示すように、本実施形態の検査装置100は、光学積層体SをX方向に搬送する複数のベルトコンベア1と、光学積層体Sの最表面(最上面及び最下面)に付着した異物を吸着して取り除くためのクリーンローラ2と、を備えている。また、本実施形態の検査装置100は、後述の透過検査工程S1を実行するための光源3及び撮像手段4を備えている。また、本実施形態の検査装置100は、後述のクロスニコル検査工程S2を実行するための一対の光源5a、5b及び一対の検査用偏光フィルタ6a、6bを備えている。撮像手段4は、クロスニコル検査工程S2を実行するための撮像手段としても用いられる。また、本実施形態の検査装置100は、後述の反射検査工程S3を実行するための光源7及び撮像手段8を備えている。さらに、本実施形態の検査装置100は、光源3、撮像手段4、光源5a、5b、光源7及び撮像手段8に電気的に接続され、これらの動作を制御すると共に、撮像手段4及び撮像手段8から出力された撮像信号を処理して、欠点を判定する制御演算手段9を備えている。
 以下、検査装置100の各構成要素について説明する。
<Inspection device 100>
Next, the configuration of the inspection device 100 of the present embodiment will be described.
The inspection device 100 of the present embodiment is an device for inspecting the optical laminate S having the configuration described above.
As shown in FIG. 1A, the inspection device 100 of the present embodiment includes a plurality of belt conveyors 1 that convey the optical laminate S in the X direction, and the outermost surface (top surface and bottom surface) of the optical laminate S. It is provided with a clean roller 2 for adsorbing and removing foreign matter adhering to the. Further, the inspection device 100 of the present embodiment includes a light source 3 and an image pickup means 4 for executing the transmission inspection step S1 described later. Further, the inspection device 100 of the present embodiment includes a pair of light sources 5a and 5b and a pair of inspection polarizing filters 6a and 6b for executing the cross Nicol inspection step S2 described later. The image pickup means 4 is also used as an image pickup means for executing the cross Nicol inspection step S2. Further, the inspection device 100 of the present embodiment includes a light source 7 and an image pickup means 8 for executing the reflection inspection step S3 described later. Further, the inspection device 100 of the present embodiment is electrically connected to the light source 3, the image pickup means 4, the light sources 5a and 5b, the light source 7, and the image pickup means 8, and controls their operations while controlling the operation of the light source 3, the image pickup means 4, and the image pickup means 4. A control calculation means 9 for processing an image pickup signal output from No. 8 to determine a defect is provided.
Hereinafter, each component of the inspection device 100 will be described.
 [ベルトコンベア1]
 ベルトコンベア1は、両端のローラに掛け渡された環状のベルトがローラの回転に伴って移動することで、ベルト上に載置された光学積層体Sを搬送する構成である。光学積層体Sは、チップ状に切断された後、図1(a)の左端に示すベルトコンベア1上に載置され、各ベルトコンベア1によって、図1(a)の右側に向けてX方向に順次搬送される。本実施形態では、図1(b)に示すように、光学積層体Sは、セパレータ40側が下になるようにベルトコンベア上に載置されて搬送される。ベルトコンベア1による光学積層体Sの搬送速度Vは、例えば、50mm/sec~750mm/secに設定される。
[Belt conveyor 1]
The belt conveyor 1 has a configuration in which an annular belt spanned by rollers at both ends moves with the rotation of the rollers to convey the optical laminate S mounted on the belt. After being cut into chips, the optical laminate S is placed on the belt conveyor 1 shown at the left end of FIG. 1 (a), and is placed in the X direction toward the right side of FIG. 1 (a) by each belt conveyor 1. Are sequentially transported to. In the present embodiment, as shown in FIG. 1 (b), the optical laminate S is placed and conveyed on a belt conveyor so that the separator 40 side is facing down. The transport speed V of the optical laminate S by the belt conveyor 1 is set to, for example, 50 mm / sec to 750 mm / sec.
 [クリーンローラ2]
 クリーンローラ2は、それらの隙間を光学積層体Sが通過する上下一対のローラと、各ローラに接触して回転するロール状の粘着テープ(図示省略)と、を備える。上下一対のローラが光学積層体Sと接触することで、光学積層体Sの最表面(最上面及び最下面。すなわち、セパレータ40の下面及び表面保護フィルム50の上面)に付着した異物がローラに吸着し、このローラに吸着した異物が粘着テープに転写されて、取り除かれる。
 後述の透過検査工程S1を実行する前に、光学積層体Sの最表面に存在する異物をクリーンローラ2によってある程度取り除くことで、剥離フィルム(セパレータ40、表面保護フィルム50)の表面に存在する欠点の過検出をより一層抑制可能である。
[Clean Roller 2]
The clean roller 2 includes a pair of upper and lower rollers through which the optical laminate S passes through the gaps, and a roll-shaped adhesive tape (not shown) that rotates in contact with each roller. When the pair of upper and lower rollers come into contact with the optical laminate S, foreign matter adhering to the outermost surface (uppermost surface and lowermost surface, that is, the lower surface of the separator 40 and the upper surface of the surface protective film 50) is attached to the rollers. Foreign matter that is adsorbed and adsorbed on this roller is transferred to the adhesive tape and removed.
Disadvantages existing on the surface of the release film (separator 40, surface protective film 50) by removing the foreign matter existing on the outermost surface of the optical laminate S to some extent by the clean roller 2 before executing the transmission inspection step S1 described later. It is possible to further suppress the over-detection of.
 [光源3]
 光源3は、後述の透過検査工程S1を実行するための光源であり、本実施形態では、光学積層体Sの下面側(セパレータ40側)に配置されている。光源3の光軸(図1(a)において破線で図示)は、光学積層体Sの厚み方向に平行な鉛直方向(Z方向)に向けられており、光源3は、制御演算手段9から出力される制御信号に従い、光学積層体Sに向けて鉛直方向上向きに光を出射する。
 光源3としては、光学積層体Sを透過可能な波長の光を出射できる限りにおいて、限定されるものではないが、例えば、LEDやハロゲンランプを用いることができる。
[Light source 3]
The light source 3 is a light source for executing the transmission inspection step S1 described later, and is arranged on the lower surface side (separator 40 side) of the optical laminate S in the present embodiment. The optical axis of the light source 3 (shown by a broken line in FIG. 1A) is directed in the vertical direction (Z direction) parallel to the thickness direction of the optical laminate S, and the light source 3 is output from the control calculation means 9. According to the control signal, light is emitted upward in the vertical direction toward the optical laminate S.
The light source 3 is not limited as long as it can emit light having a wavelength that can be transmitted through the optical laminate S, and for example, an LED or a halogen lamp can be used.
 [撮像手段4]
 撮像手段4は、後述の透過検査工程S1及びクロスニコル検査工程S2を実行するための撮像手段であり、本実施形態では、光学積層体Sの上面側(表面保護フィルム50側)に配置されている。撮像手段4の光軸(図1(a)において破線で図示)は、光学積層体Sの厚み方向に平行な鉛直方向(Z方向)に向けられており、撮像手段4は、制御演算手段9から出力される制御信号に従い、光源3から出射し、光学積層体Sを透過した光を受光して結像し、その光量に応じた電気信号を撮像信号として制御演算手段9に出力する。また、撮像手段4は、制御演算手段9から出力される制御信号に従い、光源5a、5bから出射し、検査用偏光フィルタ6a、6b及び光学積層体Sを透過した光を受光して結像し、その光量に応じた電気信号を撮像信号として制御演算手段9に出力する。撮像手段4の焦点は、光学積層体Sの上面(表面保護フィルム50の上面)に設定されている。
[Image pickup means 4]
The image pickup means 4 is an image pickup means for executing the transmission inspection step S1 and the cross Nicol inspection step S2 described later, and is arranged on the upper surface side (surface protection film 50 side) of the optical laminate S in the present embodiment. There is. The optical axis of the image pickup means 4 (shown by a broken line in FIG. 1A) is directed in the vertical direction (Z direction) parallel to the thickness direction of the optical laminate S, and the image pickup means 4 is a control calculation means 9. According to the control signal output from the light source 3, the light emitted from the light source 3 is received and imaged, and the electric signal corresponding to the amount of the light is output to the control calculation means 9 as an image pickup signal. Further, the image pickup means 4 receives and forms an image by receiving light emitted from the light sources 5a and 5b and transmitted through the inspection polarizing filters 6a and 6b and the optical laminate S according to the control signal output from the control calculation means 9. , An electric signal corresponding to the amount of light is output to the control calculation means 9 as an image pickup signal. The focal point of the image pickup means 4 is set on the upper surface of the optical laminate S (the upper surface of the surface protective film 50).
 本実施形態では、撮像手段4として、光学積層体Sの搬送方向(X方向)に直交する方向(Y方向)に複数の結像素子(CCDやCMOS)が一直線状に配列され、一定の走査周期(例えば、7μsec~14μsec)で撮像信号を出力するラインセンサが用いられている。撮像手段4としてラインセンサを用いることで、撮像手段4のX方向の視野が小さくなるため、光源3、5a、5bから出射する光のX方向の必要な照射範囲も狭くて済み、光源3、5a、5bの配置等に関する制約条件が緩和されるという利点が得られる。光学積層体SがX方向に搬送されると共に、ラインセンサの結像素子がY方向に走査されることで、後述の透過検査工程S1では2次元の透過画像が生成され、後述のクロスニコル検査工程S2では2次元のクロスニコル画像が生成されることになる。
 ただし、撮像手段4は、必ずしもラインセンサに限定されるものではなく、例えば、高速シャッター付きの2次元カメラを撮像手段4として用いることも可能である。
In the present embodiment, as the image pickup means 4, a plurality of imaging elements (CCD or CMOS) are linearly arranged in a direction (Y direction) orthogonal to the transport direction (X direction) of the optical laminate S, and a constant scan is performed. A line sensor that outputs an image pickup signal at a cycle (for example, 7 μsec to 14 μsec) is used. By using the line sensor as the image pickup means 4, the field of view in the X direction of the image pickup means 4 becomes smaller, so that the required irradiation range of the light emitted from the light sources 3, 5a and 5b in the X direction can be narrowed. There is an advantage that the constraint conditions regarding the arrangement of 5a and 5b are relaxed. When the optical laminate S is conveyed in the X direction and the imaging element of the line sensor is scanned in the Y direction, a two-dimensional transmission image is generated in the transmission inspection step S1 described later, and a cross Nicol inspection described later is performed. In step S2, a two-dimensional cross Nicol image will be generated.
However, the image pickup means 4 is not necessarily limited to the line sensor, and for example, a two-dimensional camera with a high-speed shutter can be used as the image pickup means 4.
 [光源5a、5b]
 光源5a、5bは、後述のクロスニコル検査工程S2を実行するための光源であり、本実施形態では、光学積層体Sの下面側(セパレータ40側)に配置されている。光源5a、5bの光軸(図1(a)において破線で図示)は、光学積層体Sの厚み方向に平行な鉛直方向(Z方向)に対して傾斜した方向に向けられている。具体的には、光源5aの光軸は、鉛直方向に対して光学積層体Sの搬送方向下流側に傾斜した方向に向けられ、光源5bの光軸は、鉛直方向に対して光学積層体Sの搬送方向上流側に傾斜した方向に向けられている。光源5a、5bは、制御演算手段9から出力される制御信号に従い、光学積層体Sに向けて上向きに光を出射する。
 光源5a、5bとしては、光学積層体Sを透過可能な波長の光を出射できる限りにおいて、限定されるものではないが、例えば、LEDやハロゲンランプを用いることができる。
 なお、本実施形態では、撮像手段4を透過検査工程S1及びクロスニコル検査工程S2の双方を実行するための撮像手段として用いている(共用している)。すなわち、光源3及び光源5a、5bから出射した光を同じ撮像手段4で受光する構成を採用しているため、光源5a、5bの光軸の方向を光源3の光軸の方向と異なるものにしている。また、傾斜した方向から出射される光の光量を十分に確保できるように、一対の光源5a、5bを配置している。しかしながら、例えば、ハーフミラー等で構成された同軸落射光学系を採用することで、光源5a、5bの光軸の方向を光源3の光軸の方向と同様に鉛直方向に向けることもできるし、一対の光源5a、5bではなく単一の光源を用いる構成にすることも可能である。
[ Light source 5a, 5b]
The light sources 5a and 5b are light sources for executing the cross Nicol inspection step S2 described later, and are arranged on the lower surface side (separator 40 side) of the optical laminate S in the present embodiment. The optical axes of the light sources 5a and 5b (shown by the broken line in FIG. 1A) are directed in a direction inclined with respect to the vertical direction (Z direction) parallel to the thickness direction of the optical laminate S. Specifically, the optical axis of the light source 5a is directed in a direction inclined toward the downstream side of the transport direction of the optical laminate S with respect to the vertical direction, and the optical axis of the light source 5b is the optical laminate S with respect to the vertical direction. It is oriented in an inclined direction toward the upstream side in the transport direction. The light sources 5a and 5b emit light upward toward the optical laminate S according to the control signal output from the control calculation means 9.
The light sources 5a and 5b are not limited as long as they can emit light having a wavelength that can be transmitted through the optical laminate S, and for example, an LED or a halogen lamp can be used.
In this embodiment, the image pickup means 4 is used (shared) as an image pickup means for executing both the transmission inspection step S1 and the cross Nicol inspection step S2. That is, since the same imaging means 4 receives the light emitted from the light source 3 and the light sources 5a and 5b, the direction of the optical axis of the light source 5a and 5b is different from the direction of the optical axis of the light source 3. ing. Further, a pair of light sources 5a and 5b are arranged so that a sufficient amount of light emitted from the inclined direction can be secured. However, for example, by adopting a coaxial epi-illumination optical system composed of a half mirror or the like, the direction of the optical axis of the light sources 5a and 5b can be directed in the vertical direction in the same manner as the direction of the optical axis of the light source 3. It is also possible to use a single light source instead of the pair of light sources 5a and 5b.
 [検査用偏光フィルタ6a、6b]
 検査用偏光フィルタ6a、6bは、光学積層体Sの偏光子10の偏光軸に対してクロスニコルになるように配置されている。例えば、偏光子10の偏光軸の方向がX方向であるとすれば、検査用偏光フィルタ6a、6bの偏光軸の方向がX方向に直交するY方向となるように配置されている。ただし、偏光子10の偏光軸と検査用偏光フィルタ6a、6bの偏光軸との成す角度が完全に90°である場合に限らず、90°±10°の範囲内であればよい。
 検査用偏光フィルタ6a、6bの構成や製造方法については、偏光子10と同様であるため、ここでは詳細な説明は省略する。
[Inspection polarizing filters 6a, 6b]
The inspection polarizing filters 6a and 6b are arranged so as to form a cross Nicol with respect to the polarization axis of the polarizing element 10 of the optical laminate S. For example, if the direction of the polarization axis of the polarizing element 10 is the X direction, the direction of the polarization axes of the inspection polarizing filters 6a and 6b is arranged so as to be the Y direction orthogonal to the X direction. However, the angle formed by the polarization axis of the polarizing element 10 and the polarization axes of the inspection polarizing filters 6a and 6b is not limited to 90 °, and may be within the range of 90 ° ± 10 °.
Since the configurations and manufacturing methods of the inspection polarizing filters 6a and 6b are the same as those of the polarizing element 10, detailed description thereof will be omitted here.
 本実施形態の検査用偏光フィルタ6a、6bは、光学積層体Sの下面側(セパレータ40側)に配置されている。具体的には、検査用偏光フィルタ6a、6bは、それぞれ光学積層体Sと光源5a、5bとの間に配置されており、光源5a、5bから出射した光がそれぞれ検査用偏光フィルタ6a、6bを透過して、光学積層体Sに照射されることになる。本実施形態の場合、検査用偏光フィルタ6a、6bと偏光子10との間に存在する欠点によってクロスニコルの状態が崩れるため、後述のクロスニコル検査工程S2で生成される光学積層体Sのクロスニコル画像において、検査用偏光フィルタ6a、6bと偏光子10との間に存在する欠点に対応する画素領域が明るくなり(輝度値が大きくなり)、この欠点を欠点候補として検出可能である。
 ただし、本発明は、必ずしもこれに限るものではなく、検査用偏光フィルタ6a、6bを、光学積層体Sの上面側(表面保護フィルム50側)に配置することも可能である。具体的には、一枚の検査用偏光フィルタを、光学積層体Sと撮像手段との間に配置し、光源5a、5bから出射し光学積層体Sを透過した光が、この検査用偏光フィルタを透過して撮像手段4で受光される構成を採用することも可能である。この場合、検査用偏光フィルタと偏光子10との間に存在する欠点によってクロスニコルの状態が崩れるため、後述のクロスニコル検査工程S2で生成される光学積層体Sのクロスニコル画像において、検査用偏光フィルタと偏光子10との間に存在する欠点に対応する画素領域が明るくなり(輝度値が大きくなり)、この欠点を欠点候補として検出可能である。 
The inspection polarizing filters 6a and 6b of the present embodiment are arranged on the lower surface side (separator 40 side) of the optical laminate S. Specifically, the inspection polarizing filters 6a and 6b are arranged between the optical laminate S and the light sources 5a and 5b, respectively, and the light emitted from the light sources 5a and 5b is the inspection polarizing filters 6a and 6b, respectively. Will be transmitted and irradiated to the optical laminated body S. In the case of the present embodiment, the state of the cross Nicol is disrupted due to the defect existing between the inspection polarizing filters 6a and 6b and the polarizing element 10, so that the cloth of the optical laminate S produced in the cross Nicol inspection step S2 described later is used. In the Nicol image, the pixel region corresponding to the defect existing between the inspection polarizing filters 6a and 6b and the polarizing element 10 becomes bright (the brightness value becomes large), and this defect can be detected as a defect candidate.
However, the present invention is not necessarily limited to this, and it is also possible to arrange the inspection polarizing filters 6a and 6b on the upper surface side (surface protection film 50 side) of the optical laminate S. Specifically, one inspection polarizing filter is arranged between the optical laminate S and the image pickup means, and the light emitted from the light sources 5a and 5b and transmitted through the optical laminate S is the inspection polarizing filter. It is also possible to adopt a configuration in which the image is transmitted through and received by the image pickup means 4. In this case, since the state of the cross Nicol is disturbed due to the defect existing between the inspection polarizing filter and the polarizing element 10, the cross Nicol image of the optical laminate S generated in the cross Nicol inspection step S2 described later is used for inspection. The pixel region corresponding to the defect existing between the polarizing filter and the polarizing element 10 becomes bright (the brightness value becomes large), and this defect can be detected as a defect candidate.
 [光源7]
 光源7は、後述の反射検査工程S3を実行するための光源であり、本実施形態では、光学積層体Sの下面側(セパレータ40側)に配置されている。光源7の光軸(図1(a)において破線で図示)は、光学積層体Sの厚み方向に平行な鉛直方向(Z方向)に対して傾斜した方向に向けられている。図1(a)に示す例では、光源7の光軸は、鉛直方向に対して光学積層体Sの搬送方向上流側に傾斜した方向に向けられている。ただし、これに限るものではなく、光源7の光軸を、鉛直方向に対して光学積層体Sの搬送方向下流側に傾斜した方向に向けることも可能である。また、例えば、ハーフミラー等で構成された同軸落射光学系を採用することで、光源7の光軸を鉛直方向に向けることも可能である。光源7は、制御演算手段9から出力される制御信号に従い、光学積層体Sに向けて上向きに光を出射する。
 光源7としては、光学積層体Sで反射可能な波長の光を出射できる限りにおいて、限定されるものではないが、例えば、LEDやハロゲンランプを用いることができる。
[Light source 7]
The light source 7 is a light source for executing the reflection inspection step S3 described later, and is arranged on the lower surface side (separator 40 side) of the optical laminate S in the present embodiment. The optical axis of the light source 7 (shown by a broken line in FIG. 1A) is oriented in a direction inclined with respect to the vertical direction (Z direction) parallel to the thickness direction of the optical laminate S. In the example shown in FIG. 1A, the optical axis of the light source 7 is oriented in a direction inclined toward the upstream side in the transport direction of the optical laminate S with respect to the vertical direction. However, the present invention is not limited to this, and it is also possible to direct the optical axis of the light source 7 in a direction inclined toward the downstream side in the transport direction of the optical laminate S with respect to the vertical direction. Further, for example, by adopting a coaxial epi-illumination optical system composed of a half mirror or the like, it is possible to direct the optical axis of the light source 7 in the vertical direction. The light source 7 emits light upward toward the optical laminate S according to the control signal output from the control calculation means 9.
The light source 7 is not limited as long as it can emit light having a wavelength that can be reflected by the optical laminate S, and for example, an LED or a halogen lamp can be used.
 [撮像手段8]
 撮像手段8は、後述の反射検査工程S3を実行するための撮像手段であり、本実施形態では、光学積層体Sの下面側(セパレータ40側)に配置されている。撮像手段8の光軸(図1(a)において破線で図示)は、光学積層体Sの厚み方向に平行な鉛直方向(Z方向)に向けられており、撮像手段8は、制御演算手段9から出力される制御信号に従い、光源7から出射し、光学積層体Sで反射した光を受光して結像し、その光量に応じた電気信号を撮像信号として制御演算手段9に出力する。撮像手段8の焦点は、光学積層体Sの下面(セパレータ40の下面)に設定されている。
[Imaging means 8]
The image pickup means 8 is an image pickup means for executing the reflection inspection step S3 described later, and is arranged on the lower surface side (separator 40 side) of the optical laminate S in the present embodiment. The optical axis of the image pickup means 8 (shown by a broken line in FIG. 1A) is directed in the vertical direction (Z direction) parallel to the thickness direction of the optical laminate S, and the image pickup means 8 is a control calculation means 9. According to the control signal output from the light source 7, the light emitted from the light source 7 is received and imaged, and the electric signal corresponding to the amount of the light is output to the control calculation means 9 as an image pickup signal. The focal point of the image pickup means 8 is set on the lower surface of the optical laminate S (the lower surface of the separator 40).
 本実施形態では、撮像手段8として、撮像手段4と同様に、光学積層体Sの搬送方向(X方向)に直交する方向(Y方向)に複数の結像素子(CCDやCMOS)が一直線状に配列され、一定の走査周期(例えば、7μsec~14μsec)で撮像信号を出力するラインセンサが用いられている。撮像手段8としてラインセンサを用いることで、撮像手段8のX方向の視野が小さくなるため、光源7から出射する光のX方向の必要な照射範囲も狭くて済み、光源7の配置等に関する制約条件が緩和されるという利点が得られる。光学積層体SがX方向に搬送されると共に、ラインセンサの結像素子がY方向に走査されることで、後述の反射検査工程S3では2次元の反射画像が生成されることになる。
 ただし、撮像手段8は、必ずしもラインセンサに限定されるものではなく、例えば、高速シャッター付きの2次元カメラを撮像手段8として用いることも可能である。
In the present embodiment, as the image pickup means 8, a plurality of image pickup elements (CCD or CMOS) are linearly formed in a direction (Y direction) orthogonal to the transport direction (X direction) of the optical laminate S, as in the image pickup means 4. A line sensor is used, which is arranged in a fixed scanning cycle (for example, 7 μsec to 14 μsec) and outputs an image pickup signal. By using the line sensor as the image pickup means 8, the field of view in the X direction of the image pickup means 8 becomes smaller, so that the required irradiation range of the light emitted from the light source 7 in the X direction can be narrowed, and there are restrictions on the arrangement of the light source 7. The advantage is that the conditions are relaxed. The optical laminate S is conveyed in the X direction and the imaging element of the line sensor is scanned in the Y direction, so that a two-dimensional reflection image is generated in the reflection inspection step S3 described later.
However, the image pickup means 8 is not necessarily limited to the line sensor, and for example, a two-dimensional camera with a high-speed shutter can be used as the image pickup means 8.
 [制御演算手段9]
 制御演算手段9は、例えば、後述の制御処理や演算処理を実行するためのプログラムがインストールされたパーソナルコンピュータやプログラマブルロジックコントローラ(PLC)等によって構成される。
[Control calculation means 9]
The control calculation means 9 is composed of, for example, a personal computer or a programmable logic controller (PLC) in which a program for executing control processing or calculation processing described later is installed.
 <本実施形態に係る検査方法>
 以下、以上に説明した検査装置100を用いた本実施形態に係る光学積層体Sの検査方法について説明する。
 図2は、本実施形態に係る光学積層体Sの検査方法の概略工程を示すフロー図である。
 図2に示すように、本実施形態に係る検査方法は、透過検査工程S1と、クロスニコル検査工程S2と、反射検査工程S3と、演算工程4と、含む。
 以下、各工程S1~S4について説明する。
<Inspection method according to this embodiment>
Hereinafter, an inspection method for the optical laminate S according to the present embodiment using the inspection apparatus 100 described above will be described.
FIG. 2 is a flow chart showing a schematic process of an inspection method for the optical laminate S according to the present embodiment.
As shown in FIG. 2, the inspection method according to the present embodiment includes a transmission inspection step S1, a cross Nicol inspection step S2, a reflection inspection step S3, and a calculation step 4.
Hereinafter, each process S1 to S4 will be described.
 [透過検査工程S1]
 透過検査工程S1では、光学積層体Sを透過する光によって光学積層体Sの透過画像を生成し、この透過画像に基づき、光学積層体Sに存在する欠点候補を検出する(図2のS11)。
 具体的には、光学積層体Sが撮像手段4の直下に到達する直前のタイミングで、制御演算手段9から出力される制御信号によって、光源3及び撮像手段4が駆動される。そして、撮像手段4が、光源3から出射し、光学積層体Sを透過した光を受光して結像し、その光量に応じた電気信号を撮像信号として制御演算手段9に出力する。制御演算手段9は、この入力された撮像信号に基づき、2次元の透過画像を生成する。そして、制御演算手段9は、生成された透過画像に対して、他の画素領域と輝度値(画素値)が異なる画素領域を抽出する2値化等の公知の画像処理を適用することで、欠点候補を検出する。
[Penetration inspection step S1]
In the transmission inspection step S1, a transmission image of the optical laminate S is generated by the light transmitted through the optical laminate S, and defect candidates existing in the optical laminate S are detected based on the transmission image (S11 in FIG. 2). ..
Specifically, the light source 3 and the image pickup means 4 are driven by the control signal output from the control calculation means 9 at the timing immediately before the optical laminate S reaches directly under the image pickup means 4. Then, the image pickup means 4 emits light from the light source 3 and receives the light transmitted through the optical laminate S to form an image, and outputs an electric signal corresponding to the amount of the light to the control calculation means 9 as an image pickup signal. The control calculation means 9 generates a two-dimensional transmission image based on the input imaging signal. Then, the control calculation means 9 applies known image processing such as binarization to extract a pixel region having a different luminance value (pixel value) from the other pixel region to the generated transparent image. Detect defect candidates.
 図3は、透過検査工程S1で検出される欠点候補の一例を模式的に説明する図である。図3(a)は、光学積層体Sに存在する欠点の一例を模式的に説明する断面図である。図3(b)は、透過検査工程S1のノイズ除去手順S12を実行する前に検出される欠点候補の一例を模式的に説明する図である。図3(c)は、透過検査工程S1のノイズ除去手順S12を実行した後に残存する欠点候補の一例を模式的に説明する図である。
 図3(a)において、符号F1は、剥離フィルムであるセパレータ40の表面に付着した無害の異物を示す。符号F2は、セパレータ40の表面に存在する無害の傷を示す。符号F3は、偏光子10と位相差フィルム20との間に存在する有害の貼合異物を示す。符号F4は、剥離フィルムである表面保護フィルム50の表面に付着した無害の異物を示す。図3(b)、(c)は、2値化後の透過画像を示し、図3(b)においては、3つの異物F1(F1a~F1c)、2つの傷F2(F2a、F2b)、1つの貼合異物F3、2つの異物F4(F4a、F4b)が、それぞれ欠点候補として検出されている。図3(c)においては、1つの異物F1(F1c)、1つの傷F2(F2a)、1つの貼合異物F3、2つの異物F4(F4a、F4b)がそれぞれ欠点候補として検出されている。
FIG. 3 is a diagram schematically illustrating an example of defect candidates detected in the permeation inspection step S1. FIG. 3A is a cross-sectional view schematically illustrating an example of defects existing in the optical laminate S. FIG. 3B is a diagram schematically illustrating an example of defect candidates detected before executing the noise reduction procedure S12 in the transmission inspection step S1. FIG. 3C is a diagram schematically illustrating an example of defect candidates remaining after the noise reduction procedure S12 of the transmission inspection step S1 is executed.
In FIG. 3A, reference numeral F1 indicates a harmless foreign substance adhering to the surface of the separator 40 which is a release film. Reference numeral F2 indicates a harmless scratch existing on the surface of the separator 40. Reference numeral F3 indicates a harmful bonded foreign substance existing between the polarizing element 10 and the retardation film 20. Reference numeral F4 indicates a harmless foreign substance adhering to the surface of the surface protective film 50 which is a release film. 3 (b) and 3 (c) show transmissive images after binarization, and in FIG. 3 (b), three foreign substances F1 (F1a to F1c), two scratches F2 (F2a, F2b), and 1 One bonded foreign substance F3 and two foreign substances F4 (F4a, F4b) are detected as defect candidates, respectively. In FIG. 3C, one foreign matter F1 (F1c), one scratch F2 (F2a), one bonded foreign matter F3, and two foreign matters F4 (F4a, F4b) are detected as defect candidates, respectively.
 本実施形態の透過検査工程S1は、検出した欠点候補のうち、所定のしきい値よりも大きな寸法(例えば、面積)の欠点候補を欠点候補から除外するノイズ除去手順(図2のS12)を含んでいる。このため、検出された図3(b)に示す欠点候補のうち、比較的大きな寸法を有する欠点候補である異物F1a、F1b、傷F2bが除外されて、図3(c)に示す状態になっている。 The transmission inspection step S1 of the present embodiment performs a noise reduction procedure (S12 in FIG. 2) for excluding defect candidates having a dimension (for example, an area) larger than a predetermined threshold value from the detected defect candidates. Includes. Therefore, among the detected defect candidates shown in FIG. 3 (b), foreign substances F1a, F1b, and scratches F2b, which are defect candidates having relatively large dimensions, are excluded, and the state shown in FIG. 3 (c) is obtained. ing.
 [クロスニコル検査工程S2]
 クロスニコル検査工程S2では、検査用偏光フィルタ6a、6b及び光学積層体Sを透過する光によって光学積層体Sのクロスニコル画像を生成し、このクロスニコル画像に基づき、光学積層体Sに存在する欠点候補を検出する(図2のS2)。
 具体的には、光学積層体Sが撮像手段4の直下に到達する直前のタイミングで、制御演算手段9から出力される制御信号によって、光源5a、5b及び撮像手段4が駆動される。そして、撮像手段4が、光源5a、5bからそれぞれ出射し、それぞれ検査用偏光フィルタ6a、6b及び光学積層体Sを透過した光を受光して結像し、その光量に応じた電気信号を撮像信号として制御演算手段9に出力する。制御演算手段9は、この入力された撮像信号に基づき、2次元のクロスニコル画像を生成する。そして、制御演算手段9は、生成されたクロスニコル画像に対して、他の画素領域と輝度値(画素値)が異なる(輝度値が大きくなる)画素領域を抽出する2値化等の公知の画像処理を適用することで、欠点候補を検出する。
[Cross Nicol inspection process S2]
In the cross Nicol inspection step S2, a cross Nicol image of the optical laminate S is generated by light transmitted through the inspection polarizing filters 6a and 6b and the optical laminate S, and is present in the optical laminate S based on the cross Nicol image. Detects defect candidates (S2 in FIG. 2).
Specifically, the light sources 5a and 5b and the image pickup means 4 are driven by the control signal output from the control calculation means 9 at the timing immediately before the optical laminate S reaches directly under the image pickup means 4. Then, the image pickup means 4 emits light from the light sources 5a and 5b, receives the light transmitted through the inspection polarizing filters 6a and 6b and the optical laminate S, respectively, and forms an image, and images an electric signal according to the amount of the light. It is output to the control calculation means 9 as a signal. The control calculation means 9 generates a two-dimensional cross Nicol image based on the input imaging signal. Then, the control calculation means 9 is known for binarizing the generated cross Nicol image by extracting a pixel region having a different luminance value (pixel value) from another pixel region (the luminance value becomes larger). By applying image processing, defect candidates are detected.
 図4は、クロスニコル検査工程S2で検出される欠点候補の一例を模式的に説明する図である。図4は、2値化後のクロスニコル画像を示し、3つの異物F1(F1a~F1c)、3つの傷F2(F2b~F2d)、1つの貼合異物F3がそれぞれ欠点候補として検出されている。表面保護フィルム50の表面に付着した異物F4は、偏光子10と検査用偏光フィルタ6a、6bとの間に位置しないため、透過画像と異なり、クロスニコル画像では検出されない。 FIG. 4 is a diagram schematically illustrating an example of defect candidates detected in the cross Nicol inspection step S2. FIG. 4 shows a cross Nicol image after binarization, and three foreign substances F1 (F1a to F1c), three scratches F2 (F2b to F2d), and one bonded foreign substance F3 are detected as defect candidates, respectively. .. Since the foreign matter F4 adhering to the surface of the surface protective film 50 is not located between the polarizing element 10 and the inspection polarizing filters 6a and 6b, it is not detected in the cross Nicol image unlike the transmission image.
 なお、本実施形態では、透過画像を生成するための撮像手段4と、クロスニコル画像を生成するための撮像手段4とが同一であるため、制御演算手段9が、透過検査工程S1で撮像手段4による撮像を実行するタイミングと、クロスニコル検査工程S2で撮像手段4による撮像を実行するタイミングと、を切り替える制御を行っている。
 具体的には、制御演算手段9は、透過画像を生成するために用いられる光源3から光を出射するタイミングと、クロス画像を生成するために用いられる光源5a、5bから光を出射するタイミングとを、撮像手段4の走査周期毎に切り替える制御を行っている。すなわち、制御演算手段9は、一の走査周期において光源3から光を出射させる制御信号を光源3に対して出力した後、次の走査周期において光源5a、5bから光を出射させる制御信号を光源5a、5bに対して出力する。制御演算手段9は、さらに次の走査周期において光源3から光を出射させる制御信号を光源3に対して出力する。制御演算手段9は、一の光学積層体Sが撮像手段4の直下を通過し終えるまで、以上の動作を繰り返す。
In this embodiment, since the image pickup means 4 for generating the transmission image and the image pickup means 4 for generating the cross Nicol image are the same, the control calculation means 9 is the image pickup means in the transmission inspection step S1. Control is performed to switch between the timing of executing the image pickup by the image pickup means 4 and the timing of executing the image pickup by the image pickup means 4 in the cross Nicol inspection step S2.
Specifically, the control calculation means 9 has a timing of emitting light from the light source 3 used for generating a transmission image and a timing of emitting light from the light sources 5a and 5b used for generating a cross image. Is controlled to be switched for each scanning cycle of the image pickup means 4. That is, the control calculation means 9 outputs a control signal for emitting light from the light source 3 in one scanning cycle to the light source 3, and then emits a control signal for emitting light from the light sources 5a and 5b in the next scanning cycle. Output for 5a and 5b. The control calculation means 9 further outputs a control signal for emitting light from the light source 3 to the light source 3 in the next scanning cycle. The control calculation means 9 repeats the above operation until one optical laminate S finishes passing directly under the image pickup means 4.
 図5は、制御演算手段9が実行する切り替え制御の内容を模式的に説明する図である。前述のように、制御演算手段9が、光源3から光を出射するタイミングと光源5a、5bから光を出射するタイミングとを撮像手段4の走査周期毎に切り替えることにより、図5(a)に示すように、撮像手段4は、光源3から出射し、光学積層体Sを透過した光(図5(a)において白抜きで示す領域)と、光源5a、5bから出射し、検査用偏光フィルタ6a、6b及び光学積層体Sを透過した光(図5(a)においてドット状のハッチングを施した領域)とを、走査周期に応じたピッチでX方向に交互に結像することになる。
 制御演算手段9は、撮像手段4の走査周期に応じて、図5(a)に白抜きで示す領域のみを抜き出してX方向に合成することで、図5(b)に示すような透過画像を生成する。また、制御演算手段9は、撮像手段4の走査周期に応じて、図5(a)にドット状のハッチングを施した領域のみを抜き出してX方向に合成することで、図5(c)に示すようなクロスニコル画像を生成する。
 以上のようにして、制御演算手段9は、透過画像を生成するための撮像手段4と、クロスニコル画像を生成するための撮像手段4とが同一であっても、透過画像とクロスニコル画像とを別個に生成することが可能である。
FIG. 5 is a diagram schematically illustrating the content of the switching control executed by the control calculation means 9. As described above, FIG. 5A shows that the control calculation means 9 switches between the timing of emitting light from the light source 3 and the timing of emitting light from the light sources 5a and 5b for each scanning cycle of the image pickup means 4. As shown, the image pickup means 4 emits light emitted from the light source 3 and transmitted through the optical laminate S (the region shown in white in FIG. 5A) and emitted from the light sources 5a and 5b, and is an inspection polarizing filter. The light transmitted through 6a, 6b and the optical laminate S (the region subjected to the dot-shaped hatching in FIG. 5A) is alternately imaged in the X direction at a pitch corresponding to the scanning period.
The control calculation means 9 extracts only the region shown in white in FIG. 5 (a) and synthesizes it in the X direction according to the scanning cycle of the image pickup means 4, so that the transmitted image as shown in FIG. 5 (b) is synthesized. To generate. Further, the control calculation means 9 extracts only the region in which the dot-shaped hatching is applied in FIG. 5A according to the scanning cycle of the image pickup means 4, and synthesizes them in the X direction, so that FIG. 5C is shown. Generate a cross Nicol image as shown.
As described above, the control calculation means 9 includes the transparent image and the cross Nicol image even if the image pickup means 4 for generating the transparent image and the image pickup means 4 for generating the cross Nicol image are the same. Can be generated separately.
 [反射検査工程S3]
 反射検査工程S3では、光学積層体Sで反射する光によって光学積層体Sの反射画像を生成し、この反射画像に基づき、光学積層体Sに存在する欠点候補を検出する(図2のS3)。
 具体的には、光学積層体Sが撮像手段8の直下に到達する直前のタイミングで、制御演算手段9から出力される制御信号によって、光源7及び撮像手段8が駆動される。そして、撮像手段8が、光源7から出射し、光学積層体Sで反射した光を受光して結像し、その光量に応じた電気信号を撮像信号として制御演算手段9に出力する。制御演算手段9は、この入力された撮像信号に基づき、2次元の反射画像を生成する。そして、制御演算手段9は、生成された反射画像に対して、他の画素領域と輝度値(画素値)が異なる画素領域を抽出する2値化等の公知の画像処理を適用することで、欠点候補を検出する。
[Reflection inspection step S3]
In the reflection inspection step S3, a reflected image of the optical laminated body S is generated by the light reflected by the optical laminated body S, and defect candidates existing in the optical laminated body S are detected based on the reflected image (S3 in FIG. 2). ..
Specifically, the light source 7 and the image pickup means 8 are driven by the control signal output from the control calculation means 9 at the timing immediately before the optical laminate S reaches directly under the image pickup means 8. Then, the image pickup means 8 emits light from the light source 7, receives the light reflected by the optical laminate S, forms an image, and outputs an electric signal corresponding to the amount of the light to the control calculation means 9 as an image pickup signal. The control calculation means 9 generates a two-dimensional reflected image based on the input imaging signal. Then, the control calculation means 9 applies known image processing such as binarization to extract a pixel region having a different luminance value (pixel value) from the other pixel region to the generated reflected image. Detect defect candidates.
 図6は、反射検査工程S3で検出される欠点候補の一例を模式的に説明する図である。図6は、2値化後の反射画像を示し、3つの異物F1(F1a~F1c)が欠点候補として検出されている。反射画像は、光学積層体Sで反射した光によって生成されるため、光源7が配置された側のセパレータ40の表面に付着した異物F1しか検出されない。図6に示す例では、異物F1のみが検出されているが、同じくセパレータ40の表面に存在する傷F2が検出される場合もある。 FIG. 6 is a diagram schematically illustrating an example of defect candidates detected in the reflection inspection step S3. FIG. 6 shows a reflected image after binarization, and three foreign substances F1 (F1a to F1c) are detected as defect candidates. Since the reflected image is generated by the light reflected by the optical laminate S, only the foreign matter F1 adhering to the surface of the separator 40 on the side where the light source 7 is arranged is detected. In the example shown in FIG. 6, only the foreign matter F1 is detected, but the scratch F2 existing on the surface of the separator 40 may also be detected.
 [演算工程S4]
 演算工程S4では、透過検査工程S1で検出された欠点候補と、クロスニコル検査工程S2で検出された欠点候補と、反射検査工程S3で検出された欠点候補と、に基づき、偏光子10と光学フィルム(本実施形態では、位相差フィルム20)との間に存在する欠点を判定する(図2のS4)。
 具体的には、演算工程S4では、演算制御手段9が、ある欠点候補が透過検査工程S1及びクロスニコル検査工程S2の双方で検出されたか否かをまず判定する(図2のS41)。欠点候補が透過検査工程S1及びクロスニコル検査工程S2の双方で検出されたか否かは、透過検査工程S1で検出されたある欠点候補の位置と同等(同一又は近傍)の位置において、クロスニコル検査工程S2で検出された欠点候補が存在するか否かで判定される。具体的には、例えば、透過検査工程S1で検出された欠点候補の重心の位置と同等の位置(例えば、重心の位置±2mmの位置)において、クロスニコル検査工程S2で検出された欠点候補の重心が存在するか否かで判定される。透過検査工程S1で検出された欠点候補の位置と同等の位置において、クロスニコル検査工程S2で検出された欠点候補が存在するか否かを判定するには、透過画像の座標とクロスニコル画像の座標とが合致している必要がある。本実施形態では、前述のように、透過画像を生成するための撮像手段4と、クロスニコル画像を生成するための撮像手段4と、が同一であるため、透過画像の座標とクロスニコル画像の座標とはほぼ合致しており、敢えて両画像の座標を厳密に合致させる必要性に乏しい。ただし、厳密には、図5を参照して説明した内容から分かるように、透過画像の座標とクロスニコル画像の座標とは、撮像手段4の走査周期に応じたピッチだけX方向にズレているため、演算制御手段9が、このズレ分を補正して両画像の座標を合致させることが好ましい。
[Calculation process S4]
In the calculation step S4, the polarizing element 10 and the optics are based on the defect candidates detected in the transmission inspection step S1, the defect candidates detected in the cross Nicol inspection step S2, and the defect candidates detected in the reflection inspection step S3. Defects existing with the film (in the present embodiment, the retardation film 20) are determined (S4 in FIG. 2).
Specifically, in the calculation step S4, the calculation control means 9 first determines whether or not a defect candidate is detected in both the transmission inspection step S1 and the cross Nicol inspection step S2 (S41 in FIG. 2). Whether or not the defect candidate is detected in both the permeation inspection step S1 and the cross Nicol inspection step S2 is checked at the same position (same or near) as the position of a certain defect candidate detected in the permeation inspection step S1. It is determined whether or not the defect candidate detected in the step S2 exists. Specifically, for example, at a position equivalent to the position of the center of gravity of the defect candidate detected in the permeation inspection step S1 (for example, the position of the center of gravity ± 2 mm), the defect candidate detected in the cross Nicol inspection step S2. It is determined by whether or not the center of gravity exists. In order to determine whether or not the defect candidate detected in the cross Nicol inspection step S2 exists at a position equivalent to the position of the defect candidate detected in the transmission inspection step S1, the coordinates of the transmission image and the cross Nicol image are used. The coordinates must match. In the present embodiment, as described above, since the image pickup means 4 for generating the transmission image and the image pickup means 4 for generating the cross Nicol image are the same, the coordinates of the transmission image and the cross Nicole image are used. It almost matches the coordinates, and there is little need to dare to match the coordinates of both images exactly. However, strictly speaking, as can be seen from the contents described with reference to FIG. 5, the coordinates of the transmitted image and the coordinates of the cross Nicol image are deviated in the X direction by the pitch corresponding to the scanning cycle of the imaging means 4. Therefore, it is preferable that the arithmetic control means 9 corrects this deviation and matches the coordinates of both images.
 図7は、演算工程S4の内容を模式的に説明する図である。
 図7(a)は、演算工程S4(具体的には、S41)において、透過検査工程S1及びクロスニコル検査工程S2の双方で検出されたと判定された欠点候補の一例を模式的に説明する図である。前述の図3(c)に示すように、透過検査工程S1では、異物F1c、傷F2a、貼合異物F3、異物F4a、F4bが欠点候補として検出され、前述の図4に示すように、クロスニコル検査工程S2では、異物F1a~F1c、傷F2b~F2d、貼合異物F3が欠点候補として検出されている。例えば、透過検査工程S1で検出された異物F1cは、クロスニコル検査工程S2でも検出されているため、演算制御手段9は、異物F1cが双方で検出されたと判定する(図2のS41で「Yes」となる)。一方、例えば、透過検査工程S1で検出された傷F2aは、クロスニコル検査工程S2では検出されていないため、演算制御手段9は、傷F2aが双方で検出されていないと判定し(図2のS41で「No」となり)、この欠点候補(傷F2a)が偏光子10と位相差フィルム20との間に存在する貼合異物F3ではないと判定する(図2のS44)。本実施形態では、透過検査工程S1で検出された全ての欠点候補について同様の演算を実行することで、図7(a)に示す欠点候補(異物F1c、貼合異物F3)が透過検査工程S1及びクロスニコル検査工程S2の双方で検出された欠点候補であると判定することになる。
FIG. 7 is a diagram schematically explaining the contents of the calculation step S4.
FIG. 7A is a diagram schematically illustrating an example of defect candidates determined to be detected in both the permeation inspection step S1 and the cross Nicol inspection step S2 in the calculation step S4 (specifically, S41). Is. As shown in FIG. 3C described above, in the permeation inspection step S1, foreign matter F1c, scratch F2a, bonded foreign matter F3, foreign matter F4a, and F4b are detected as defect candidates, and as shown in FIG. In the Nicol inspection step S2, foreign substances F1a to F1c, scratches F2b to F2d, and bonded foreign matter F3 are detected as defect candidates. For example, since the foreign matter F1c detected in the permeation inspection step S1 is also detected in the cross Nicol inspection step S2, the arithmetic control means 9 determines that the foreign matter F1c is detected in both of them (“Yes” in S41 of FIG. 2). "). On the other hand, for example, since the scratch F2a detected in the permeation inspection step S1 is not detected in the cross Nicol inspection step S2, the arithmetic control means 9 determines that the scratch F2a is not detected on both sides (FIG. 2). It becomes "No" in S41), and it is determined that this defect candidate (scratch F2a) is not the bonded foreign matter F3 existing between the polarizing element 10 and the retardation film 20 (S44 in FIG. 2). In the present embodiment, by executing the same calculation for all the defect candidates detected in the permeation inspection step S1, the defect candidates (foreign matter F1c and bonded foreign matter F3) shown in FIG. 7 (a) are subjected to the permeation inspection step S1. And, it is determined that it is a defect candidate detected in both the cross Nicol inspection step S2.
 次に、演算工程S4では、演算制御手段9が、透過検査工程S1及びクロスニコル検査工程S2の双方で検出された欠点候補が反射検査工程S3で検出された否かを判定する(図2のS42)。透過検査工程S1及びクロスニコル検査工程S2の双方で検出された欠点候補が反射検査工程S3で検出された否かは、透過検査工程S1及びクロスニコル検査工程S2の双方で検出されたある欠点候補の位置と同等(同一又は近傍)の位置において、反射検査工程S3で検出された欠点候補が存在するか否かで判定される。具体的には、例えば、透過検査工程S1及びクロスニコル検査工程S2の双方で検出された欠点候補の重心の位置と同等の位置(例えば、重心の位置±2mmの位置)において、反射検査工程S3で検出された欠点候補の重心が存在するか否かで判定される。透過検査工程S1及びクロスニコル検査工程S2の双方で検出された欠点候補の位置と同等の位置において、反射検査工程S3で検出された欠点候補が存在するか否かを判定するには、透過画像及びクロスニコル画像の座標と反射画像の座標とが合致している必要がある。透過画像及びクロスニコル画像の座標と反射画像の座標とは、撮像手段4と撮像手段8とのX方向の離間距離L(図1(a)参照)を光学積層体Sの搬送速度Vで除した時間分だけX方向にズレているため、演算制御手段9が、このズレ分を補正して透過画像及びクロスニコル画像の座標と反射画像の座標とを合致させることが必要である。また、透過画像及びクロスニコル画像の座標と反射画像の座標とは、Y方向にもズレている可能性があるため、演算制御手段9が、公知の画像処理を適用して、透過画像及びクロスニコル画像におけるY方向のエッジ(光学積層体Sのエッジ)と、反射画像におけるY方向のエッジ(光学積層体Sのエッジ)とを検出し、これらのエッジの位置が合致するように、透過画像及びクロスニコル画像の座標と反射画像の座標とを合致させることが好ましい。 Next, in the calculation step S4, the calculation control means 9 determines whether or not the defect candidate detected in both the transmission inspection step S1 and the cross Nicol inspection step S2 is detected in the reflection inspection step S3 (FIG. 2). S42). Whether or not the defect candidate detected in both the permeation inspection step S1 and the cross Nicol inspection step S2 is detected in the reflection inspection step S3 is a defect candidate detected in both the permeation inspection step S1 and the cross Nicol inspection step S2. It is determined whether or not there is a defect candidate detected in the reflection inspection step S3 at a position equivalent to (same or near) the position of. Specifically, for example, at a position equivalent to the position of the center of gravity of the defect candidate detected in both the transmission inspection step S1 and the cross Nicol inspection step S2 (for example, the position of the center of gravity ± 2 mm), the reflection inspection step S3 It is determined whether or not the center of gravity of the defect candidate detected in is present. To determine whether or not the defect candidate detected in the reflection inspection step S3 exists at a position equivalent to the position of the defect candidate detected in both the transmission inspection step S1 and the cross Nicol inspection step S2, the transmission image is used. And the coordinates of the cross Nicole image and the coordinates of the reflection image must match. The coordinates of the transmitted image and the cross Nicol image and the coordinates of the reflected image are obtained by dividing the separation distance L (see FIG. 1A) between the image pickup means 4 and the image pickup means 8 in the X direction by the transport speed V of the optical laminate S. Since the deviation is in the X direction by the amount of time, it is necessary for the arithmetic control means 9 to correct this deviation and match the coordinates of the transmission image and the cross Nicol image with the coordinates of the reflection image. Further, since the coordinates of the transparent image and the cross Nicol image and the coordinates of the reflected image may be deviated in the Y direction, the arithmetic control means 9 applies a known image processing to the transparent image and the cross. The Y-direction edge (edge of the optical laminate S) in the Nicole image and the Y-direction edge (edge of the optical laminate S) in the reflection image are detected, and the transmission image is arranged so that the positions of these edges match. And it is preferable to match the coordinates of the cross Nicol image with the coordinates of the reflection image.
 図7(b)は、演算工程S4(具体的には、S42)において、反射検査工程S3で検出されなかったと判定された欠点候補の一例を模式的に説明する図である。前述の図7(a)に示すように、透過検査工程S1及びクロスニコル検査工程S2の双方で検出された異物F1c及び貼合異物F3のうち、前述の図6に示すように、異物F1cは、反射検査工程S3でも検出されているため、演算制御手段9は、異物F1cが反射検査工程S3で検出されたと判定し(図2のS42で「Yes」となり)、この欠点候補(異物F1c)が偏光子10と位相差フィルム20との間に存在する貼合異物F3ではないと判定する(図2のS44)。一方、透過検査工程S1及びクロスニコル検査工程S2の双方で検出された異物F1c及び貼合異物F3のうち、前述の図6に示すように、貼合異物F3は、反射検査工程S3で検出されていないため、演算制御手段9は、貼合異物F3が反射検査工程S3で検出されていないと判定し(図2のS42で「No」となり)、この欠点候補(貼合異物F3)が偏光子10と位相差フィルム20との間に存在する貼合異物F3であると判定する(図2のS43)。 FIG. 7B is a diagram schematically illustrating an example of defect candidates determined not to be detected in the reflection inspection step S3 in the calculation step S4 (specifically, S42). As shown in FIG. 7A, among the foreign matter F1c and the bonded foreign matter F3 detected in both the permeation inspection step S1 and the cross Nicol inspection step S2, the foreign matter F1c is as shown in FIG. Since it is also detected in the reflection inspection step S3, the arithmetic control means 9 determines that the foreign matter F1c is detected in the reflection inspection step S3 (it becomes “Yes” in S42 of FIG. 2), and this defect candidate (foreign matter F1c). Is not the bonded foreign matter F3 existing between the polarizing element 10 and the retardation film 20 (S44 in FIG. 2). On the other hand, among the foreign matter F1c and the bonded foreign matter F3 detected in both the permeation inspection step S1 and the cross Nicol inspection step S2, the bonded foreign matter F3 is detected in the reflection inspection step S3 as shown in FIG. Therefore, the arithmetic control means 9 determines that the bonded foreign matter F3 is not detected in the reflection inspection step S3 (“No” in S42 of FIG. 2), and the defect candidate (bonded foreign matter F3) is polarized. It is determined that the foreign matter F3 is a bonded foreign substance existing between the child 10 and the retardation film 20 (S43 in FIG. 2).
 本発明者らの知見によれば、透過画像及びクロスニコル画像の双方で検出され、反射画像で検出されなかった欠点候補は、偏光子10と位相差フィルム20との間に存在する欠点(貼合異物)である可能性が高い。本実施形態に係る検査方法によれば、上記のように、演算工程S4において、透過検査工程S1及びクロスニコル検査工程S2の双方で検出され(すなわち、透過画像及びクロスニコル画像の双方で検出され)、反射検査工程S3で検出されなかった(すなわち、反射画像で検出されなかった)欠点候補を、偏光子10と位相差フィルム20との間に存在する欠点であると判定するため、剥離フィルム(セパレータ40、表面保護フィルム50)の表面に存在する欠点の過検出を抑制して、偏光子10と位相差フィルム20との間に存在する欠点を精度良く検出可能である。 According to the findings of the present inventors, the defect candidates detected in both the transmission image and the cross Nicol image but not in the reflection image are the defects existing between the polarizing element 10 and the retardation film 20 (paste). There is a high possibility that it is a foreign substance). According to the inspection method according to the present embodiment, as described above, in the calculation step S4, it is detected in both the transmission inspection step S1 and the cross Nicol inspection step S2 (that is, it is detected in both the transmission image and the cross Nicol image). ), The defect candidate not detected in the reflection inspection step S3 (that is, not detected in the reflection image) is determined to be a defect existing between the polarizing element 10 and the retardation film 20. It is possible to suppress over-detection of defects existing on the surface of (separator 40, surface protective film 50) and accurately detect defects existing between the splitter 10 and the retardation film 20.
 なお、本実施形態では、検査対象が、偏光子10の厚み方向の両側に光学フィルム20、30(位相差フィルム20、保護フィルム30)が積層され、厚み方向の双方の最表面側に剥離フィルム40、50(セパレータ40、表面保護フィルム50)が積層された光学積層体Sである場合を例に挙げて説明したが、本発明はこれに限るものではない。偏光子10に少なくとも1つの光学フィルム(例えば、位相差フィルム20のみ)が積層され、少なくとも一方の最表面側に剥離フィルム(例えば、セパレータ40のみ)が積層された光学積層体である限りにおいて、種々の光学積層体に適用可能である。 In the present embodiment, the inspection target is an optical film 20 and 30 (phase difference film 20, protective film 30) laminated on both sides of the polarizing element 10 in the thickness direction, and a release film is formed on both outermost surfaces in the thickness direction. The case where the optical laminate S in which 40 and 50 (separator 40, surface protective film 50) are laminated has been described as an example has been described, but the present invention is not limited to this. As long as it is an optical laminate in which at least one optical film (for example, only the retardation film 20) is laminated on the polarizing element 10, and a release film (for example, only the separator 40) is laminated on at least one outermost surface side. It can be applied to various optical laminates.
 また、本実施形態では、検査対象が、チップ状に切断された光学積層体Sである場合を例に挙げて説明したが、本発明はこれに限るものではない。特許文献1~3に記載の検査方法と同様に、長尺の光学積層体をロールツーロールで搬送しながら検査を実行する構成を採用することも可能である。 Further, in the present embodiment, the case where the inspection target is the optical laminate S cut into a chip shape has been described as an example, but the present invention is not limited to this. Similar to the inspection methods described in Patent Documents 1 to 3, it is also possible to adopt a configuration in which an inspection is performed while transporting a long optical laminate by roll-to-roll.
 また、本実施形態では、光源3、5a、5b、7が光学積層体Sの下面側(セパレータ40側)に配置されている場合を例に挙げて説明したが、本発明はこれに限るものではなく、光源3、5a、5b、7を光学積層体Sの上面側(表面保護フィルム50側)に配置する(検査用偏光フィルタ6a、6bも光学積層体Sの上面側に配置する)構成を採用することも可能である。この場合、撮像手段4は、光学積層体Sの下面側に配置し、撮像手段8は、光学積層体Sの上面側に配置することになる。そして、この場合、クロスニコル検査工程S2では、偏光子10と保護フィルム30との間に存在する貼合異物が検出されることになる。 Further, in the present embodiment, the case where the light sources 3, 5a, 5b, and 7 are arranged on the lower surface side (separator 40 side) of the optical laminate S has been described as an example, but the present invention is limited to this. Instead, the light sources 3, 5a, 5b, and 7 are arranged on the upper surface side (surface protective film 50 side) of the optical laminate S (the inspection polarizing filters 6a, 6b are also arranged on the upper surface side of the optical laminate S). It is also possible to adopt. In this case, the image pickup means 4 is arranged on the lower surface side of the optical laminate S, and the image pickup means 8 is arranged on the upper surface side of the optical laminate S. Then, in this case, in the cross Nicol inspection step S2, the bonded foreign matter existing between the polarizing element 10 and the protective film 30 is detected.
 また、本実施形態では、透過検査工程S1において透過画像を生成するための撮像手段4と、クロスニコル検査工程S2においてクロスニコル画像を生成するための撮像手段4とが同一である場合を例に挙げて説明したが、本発明はこれに限るものではなく、透過画像を生成するための撮像手段と、クロスニコル画像を生成するための撮像手段とを別個に設けることも可能である。 Further, in the present embodiment, the case where the image pickup means 4 for generating a transmission image in the transmission inspection step S1 and the imaging means 4 for generating a cross Nicole image in the cross Nicol inspection step S2 are the same is taken as an example. As described above, the present invention is not limited to this, and it is also possible to separately provide an imaging means for generating a transmission image and an imaging means for generating a cross Nicol image.
 さらに、本実施形態では、透過検査工程S1、クロスニコル検査工程S2及び反射検査工程S3をこの順番に実行する(ただし、透過検査工程S1及びクロスニコル検査工程S2において撮像を実行するタイミングは重複する)場合を例に挙げて説明したが、本発明はこれに限るものではなく、任意の順番に実行することが可能である。また、透過検査工程S1及びクロスニコル検査工程S2を実行した後、演算工程S4のS41のみを先に実行し、その後、反射検査工程S3を実行した後、演算工程S4のS42を実行する手順を採用することも可能である。 Further, in the present embodiment, the transmission inspection step S1, the cross Nicol inspection step S2, and the reflection inspection step S3 are executed in this order (however, the timings of performing the imaging in the transmission inspection step S1 and the cross Nicol inspection step S2 overlap). ) The case has been described as an example, but the present invention is not limited to this, and can be executed in any order. Further, after executing the transmission inspection step S1 and the cross Nicol inspection step S2, only the S41 of the calculation step S4 is executed first, and then the reflection inspection step S3 is executed, and then the S42 of the calculation step S4 is executed. It is also possible to adopt it.
 1・・・ベルトコンベア
 2・・・クリーンローラ
 3、5a、5b、7・・・光源
 4、8・・・撮像手段
 6a、6b・・・検査用偏光フィルタ
 10・・・偏光子
 20・・・位相差フィルム(光学フィルム)
 30・・・保護フィルム(光学フィルム)
 40・・・セパレータ(剥離フィルム)
 50・・・表面保護フィルム(剥離フィルム)
 100・・・検査装置
 S・・・光学積層体
 S1・・・透過検査工程
 S2・・・クロスニコル検査工程
 S3・・・反射検査工程
 S4・・・演算工程
1 ... Belt conveyor 2 ... Clean rollers 3, 5a, 5b, 7 ... Light source 4, 8 ... Imaging means 6a, 6b ... Inspection polarizing filter 10 ... Polarizer 20 ...・ Phase difference film (optical film)
30 ... Protective film (optical film)
40 ... Separator (release film)
50 ... Surface protection film (release film)
100 ... Inspection device S ... Optical laminate S1 ... Transmission inspection process S2 ... Cross Nicol inspection process S3 ... Reflection inspection process S4 ... Calculation process

Claims (5)

  1.  偏光子と、光学フィルムと、が積層され、更に厚み方向の少なくとも一方の最表面側に剥離フィルムが積層された光学積層体の検査方法であって、
     前記光学積層体を透過する光によって前記光学積層体の透過画像を生成し、前記透過画像に基づき、前記光学積層体に存在する欠点候補を検出する透過検査工程と、
     前記偏光子の偏光軸に対してクロスニコルになるように配置された検査用偏光フィルタ及び前記光学積層体を透過する光によって前記光学積層体のクロスニコル画像を生成し、前記クロスニコル画像に基づき、前記光学積層体に存在する欠点候補を検出するクロスニコル検査工程と、
     前記光学積層体で反射する光によって前記光学積層体の反射画像を生成し、前記反射画像に基づき、前記光学積層体に存在する欠点候補を検出する反射検査工程と、
     前記透過検査工程で検出された欠点候補と、前記クロスニコル検査工程で検出された欠点候補と、前記反射検査工程で検出された欠点候補と、に基づき、前記偏光子と前記光学フィルムとの間に存在する欠点を判定する演算工程と、を含み、
     前記演算工程において、前記透過検査工程及び前記クロスニコル検査工程の双方で検出され、前記反射検査工程で検出されなかった欠点候補を、前記偏光子と前記光学フィルムとの間に存在する欠点であると判定する、
    光学積層体の検査方法。
    A method for inspecting an optical laminate in which a polarizing element and an optical film are laminated, and a release film is further laminated on at least one outermost surface side in the thickness direction.
    A transmission inspection step of generating a transmission image of the optical laminate by light transmitted through the optical laminate and detecting defect candidates existing in the optical laminate based on the transmission image.
    A cross Nicol image of the optical laminate is generated by light transmitted through the inspection polarizing filter and the optical laminate arranged so as to form a cross Nicol with respect to the polarization axis of the polarizing element, and based on the cross Nicol image. , A cross Nicol inspection step for detecting defect candidates existing in the optical laminate, and
    A reflection inspection step of generating a reflected image of the optical laminate by the light reflected by the optical laminate and detecting defect candidates existing in the optical laminate based on the reflected image.
    Between the decoder and the optical film based on the defect candidates detected in the transmission inspection step, the defect candidates detected in the cross Nicol inspection step, and the defect candidates detected in the reflection inspection step. Including an arithmetic process for determining the defects present in
    In the calculation step, defect candidates detected in both the transmission inspection step and the cross Nicol inspection step and not detected in the reflection inspection step are defects existing between the polarizing element and the optical film. Judging,
    Inspection method for optical laminates.
  2.  前記剥離フィルムがセパレータであり、
     前記光学フィルムが前記セパレータと前記偏光子との間に位置し、
     前記クロスニコル検査工程において、前記検査用偏光フィルタを前記セパレータ側に配置する、
    請求項1に記載の光学積層体の検査方法。
    The release film is a separator,
    The optical film is located between the separator and the polarizing element.
    In the cross Nicol inspection step, the inspection polarizing filter is arranged on the separator side.
    The method for inspecting an optical laminate according to claim 1.
  3.  前記剥離フィルムの配向方向が、予め定められた規定の配向方向に対して、±6°以内である、
    請求項1又は2に記載の光学積層体の検査方法。
    The orientation direction of the release film is within ± 6 ° with respect to a predetermined orientation direction.
    The method for inspecting an optical laminate according to claim 1 or 2.
  4.  前記透過検査工程において前記透過画像を生成するための撮像手段と、前記クロスニコル検査工程において前記クロスニコル画像を生成するための撮像手段と、が同一であり、
     前記透過検査工程で前記撮像手段による撮像を実行するタイミングと、前記クロスニコル検査工程で前記撮像手段による撮像を実行するタイミングと、を切り替える、
    請求項1から3の何れかに記載の光学積層体の検査方法。
    The imaging means for generating the transmission image in the transmission inspection step and the imaging means for generating the cross Nicol image in the cross Nicol inspection step are the same.
    Switching between the timing of executing the image pickup by the image pickup means in the transmission inspection step and the timing of executing the image pickup by the image pickup means in the cross Nicol inspection step.
    The method for inspecting an optical laminate according to any one of claims 1 to 3.
  5.  前記透過検査工程及び/又は前記クロスニコル検査工程は、検出した欠点候補のうち、所定のしきい値よりも大きな寸法の欠点候補を欠点候補から除外するノイズ除去手順を含む、
    請求項1から4の何れかに記載の光学積層体の検査方法。
    The permeation inspection step and / or the cross Nicol inspection step includes a noise reduction procedure for excluding defect candidates having a dimension larger than a predetermined threshold value from the detected defect candidates.
    The method for inspecting an optical laminate according to any one of claims 1 to 4.
PCT/JP2021/008857 2020-08-31 2021-03-08 Optical laminate inspection method WO2022044390A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237004920A KR20230058613A (en) 2020-08-31 2021-03-08 Optical laminate inspection method
JP2022545287A JPWO2022044390A1 (en) 2020-08-31 2021-03-08
CN202180053420.4A CN115989407A (en) 2020-08-31 2021-03-08 Method for inspecting optical laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-145766 2020-08-31
JP2020145766 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022044390A1 true WO2022044390A1 (en) 2022-03-03

Family

ID=80354891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008857 WO2022044390A1 (en) 2020-08-31 2021-03-08 Optical laminate inspection method

Country Status (5)

Country Link
JP (1) JPWO2022044390A1 (en)
KR (1) KR20230058613A (en)
CN (1) CN115989407A (en)
TW (1) TW202210879A (en)
WO (1) WO2022044390A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311160A (en) * 1994-05-19 1995-11-28 Nitto Denko Corp Method and device for preforming visual inspection
KR20060073985A (en) * 2004-12-27 2006-06-30 주식회사 넥스트아이 Method and apparatus for inspection of polarizer
JP2008116438A (en) * 2006-10-11 2008-05-22 Nitto Denko Corp Test data processing apparatus and method
WO2009128241A1 (en) * 2008-04-15 2009-10-22 日東電工株式会社 Optical film laminate with a continuous web of cutting lines and manufacturing method and manufacturing apparatus thereof
KR20100025082A (en) * 2008-08-27 2010-03-09 주식회사 에이스 디지텍 Device for inspecting defects of optical film
JP2014163694A (en) * 2013-02-21 2014-09-08 Omron Corp Defect inspection device, and defect inspection method
KR20150054495A (en) * 2013-11-12 2015-05-20 삼성디스플레이 주식회사 Defect detecting device and method for detecting defect using the same
JP2015118089A (en) * 2013-12-17 2015-06-25 東友ファインケム株式会社 Defect detection device and method for polarization film
JP2015225041A (en) * 2014-05-29 2015-12-14 住友化学株式会社 Defect inspection method for laminated polarizing film
JP2017111150A (en) * 2015-12-15 2017-06-22 住友化学株式会社 Defect inspection imaging device, defect inspection system, film manufacturing device, defect inspection imaging method, defect inspection method, and film manufacturing method
JP2018009800A (en) * 2016-07-11 2018-01-18 住友化学株式会社 Imaging device for defect inspection, defect inspecting system, film manufacturing device, imaging method for defect inspection, defect inspecting method, and film manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329601A (en) 2002-05-10 2003-11-19 Mitsubishi Rayon Co Ltd Apparatus and method for inspecting defect
JP2012167975A (en) 2011-02-14 2012-09-06 Toray Advanced Film Co Ltd Defect inspection method and defect inspection device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311160A (en) * 1994-05-19 1995-11-28 Nitto Denko Corp Method and device for preforming visual inspection
KR20060073985A (en) * 2004-12-27 2006-06-30 주식회사 넥스트아이 Method and apparatus for inspection of polarizer
JP2008116438A (en) * 2006-10-11 2008-05-22 Nitto Denko Corp Test data processing apparatus and method
WO2009128241A1 (en) * 2008-04-15 2009-10-22 日東電工株式会社 Optical film laminate with a continuous web of cutting lines and manufacturing method and manufacturing apparatus thereof
KR20100025082A (en) * 2008-08-27 2010-03-09 주식회사 에이스 디지텍 Device for inspecting defects of optical film
JP2014163694A (en) * 2013-02-21 2014-09-08 Omron Corp Defect inspection device, and defect inspection method
KR20150054495A (en) * 2013-11-12 2015-05-20 삼성디스플레이 주식회사 Defect detecting device and method for detecting defect using the same
JP2015118089A (en) * 2013-12-17 2015-06-25 東友ファインケム株式会社 Defect detection device and method for polarization film
JP2015225041A (en) * 2014-05-29 2015-12-14 住友化学株式会社 Defect inspection method for laminated polarizing film
JP2017111150A (en) * 2015-12-15 2017-06-22 住友化学株式会社 Defect inspection imaging device, defect inspection system, film manufacturing device, defect inspection imaging method, defect inspection method, and film manufacturing method
JP2018009800A (en) * 2016-07-11 2018-01-18 住友化学株式会社 Imaging device for defect inspection, defect inspecting system, film manufacturing device, imaging method for defect inspection, defect inspecting method, and film manufacturing method

Also Published As

Publication number Publication date
TW202210879A (en) 2022-03-16
CN115989407A (en) 2023-04-18
JPWO2022044390A1 (en) 2022-03-03
KR20230058613A (en) 2023-05-03

Similar Documents

Publication Publication Date Title
KR102222973B1 (en) Defect inspection device, optical member manufacturing system, and optical display device production system
US9835565B2 (en) Inspection device of display device and inspection method of display device
KR102513214B1 (en) Method for inspecting defects in a light-transmitting film, method for manufacturing a linear polarizer film, and method for manufacturing a polarizing plate
WO2015083715A1 (en) Device for manufacturing laminated optical member
WO2015083708A1 (en) Device for manufacturing laminated optical member
JP2019053057A (en) Defect inspection device, defect inspection method, circular polarizer or elliptical polarizer manufacturing method and retardation film manufacturing method
JP2020085854A (en) Visual inspection method and visual inspection device
US20200378899A1 (en) Glass processing apparatus and methods
TW201923337A (en) Defect inspection apparatus, defect inspection method, and manufacturing method for film
TW201333445A (en) Inspection device and manufacturing apparatus of optical display device
JP4921597B1 (en) Liquid crystal display panel continuous manufacturing system, liquid crystal display panel continuous manufacturing method, inspection apparatus and inspection method
JP2016081062A (en) System and method for inspection of sheet-shaped product, and polarizing plate for use in such inspection
WO2022044390A1 (en) Optical laminate inspection method
JP6807637B2 (en) Polarizer inspection method and polarizing plate manufacturing method
KR20200047266A (en) Method and device for inspecting defect of optical film
JP6604805B2 (en) Polarizer inspection method and polarizing plate manufacturing method
US9429525B2 (en) Optical module for surface inspection and surface inspection apparatus including the same
TW201610420A (en) Substrate inspection apparatus
JP2010127910A (en) Film inspecting device, translucent film manufacturing apparatus equipped therewith, film inspecting method, and translucent film manufacturing method using the same
TWI676797B (en) Optical film detecting device and optical film detecting method
JP7288989B1 (en) Inspection method for long optical film
JP2010127909A (en) Film inspecting device, translucent film manufacturing apparatus equipped therewith, film inspecting method, and translucent film manufacturing method using the same
KR20180016757A (en) Method and device for inspecting depect of optical film
TWI588470B (en) Defect detecting device
TW201915481A (en) Damage inspection method of optical display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545287

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860822

Country of ref document: EP

Kind code of ref document: A1