WO2022042648A1 - 天线装置和无线设备 - Google Patents

天线装置和无线设备 Download PDF

Info

Publication number
WO2022042648A1
WO2022042648A1 PCT/CN2021/114778 CN2021114778W WO2022042648A1 WO 2022042648 A1 WO2022042648 A1 WO 2022042648A1 CN 2021114778 W CN2021114778 W CN 2021114778W WO 2022042648 A1 WO2022042648 A1 WO 2022042648A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna device
electromagnetic waves
horizontally polarized
polarized radiation
annular structure
Prior art date
Application number
PCT/CN2021/114778
Other languages
English (en)
French (fr)
Inventor
余敏
陈一
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022042648A1 publication Critical patent/WO2022042648A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present application relates to the field of antenna technology, and in particular, to an antenna device and a wireless device.
  • the electromagnetic wave radiated by the internal antenna device is horizontally polarized, and its beam is an omnidirectional beam, which is evenly radiated to the surroundings, of which the omnidirectional beam has a larger apex angle.
  • the cone-shaped beam is opposite to the omnidirectional beam, which is a high-density beam, which is a cone-shaped beam with a smaller apex angle.
  • Fig. 1 is a schematic diagram of an omnidirectional beam
  • Fig. 2 is a schematic diagram of a high-density beam.
  • the cone angle of the conical beam in Fig. 1 is ⁇
  • the cone angle of the conical beam in Fig. 2 is ⁇ .
  • is greater than ⁇ .
  • the antenna device in the current AP device has certain advantages in coverage, because the omnidirectional beams of the antenna devices in two adjacent AP devices have overlapping areas, mutual interference occurs, resulting in poor communication quality.
  • the present application provides an antenna device and a wireless device, which can solve the problems in the related art, and the technical solutions are as follows:
  • an antenna device in one aspect, includes a plurality of horizontally polarized radiation units and a plurality of vertically polarized radiation units; the combination of the plurality of horizontally polarized radiation units includes a first annular structure, and for transmitting and receiving horizontally polarized electromagnetic waves; the combination of the plurality of vertically polarized radiation units includes a radial structure for transmitting and receiving vertically polarized electromagnetic waves; the center of the first annular structure and the center of the radial structure The overlap or the distance between the center of the first annular structure and the center of the spoke structure is less than a first threshold.
  • the antenna device includes a horizontally polarized radiation unit and a vertically polarized radiation unit, the horizontally polarized radiation unit is used to send and receive horizontally polarized electromagnetic waves, the vertically polarized radiation unit is used to receive and Polarized electromagnetic waves are also polarized electromagnetic waves whose electric field direction is parallel to the ground, and vertically polarized electromagnetic waves are also polarized electromagnetic waves whose electric field direction is perpendicular to the ground.
  • the antenna device can send and receive two electromagnetic waves whose electric field directions are perpendicular to each other, so that the The antenna device is a dual-polarized antenna, which can transmit and receive horizontally polarized electromagnetic waves and vertically polarized electromagnetic waves, thereby improving communication quality.
  • the antenna device can transmit and receive electromagnetic waves covered by high-density beams through a radial structure composed of a plurality of vertically polarized radiation units.
  • the communication quality of the device The center of the first annular structure for transmitting and receiving horizontally polarized electromagnetic waves and the center of the radial structure for transmitting and receiving vertically polarized electromagnetic waves of the antenna device overlap or nearly overlap, which can reduce the volume of the antenna device and reduce the occupation of the antenna device space, which is conducive to the miniaturization development of the antenna device and the wireless device on which the antenna device is installed.
  • the occupied volume of the antenna device is small, so more antenna devices can be installed in the wireless device, and the communication quality of the wireless device can be improved. .
  • the aperture of the first annular structure is within the first target range, so as to transmit and receive horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam, or the first annular structure
  • the aperture is within the second target range to transmit and receive horizontally polarized electromagnetic waves within the coverage of the high-density beam.
  • the first target range is smaller than the second target range.
  • the upper limit value of the first target range may be 0.4 ⁇ , or the absolute value of the difference between the upper limit value of the first target range and 0.4 ⁇ is smaller than the second threshold value.
  • the lower limit value of the second target range is 0.4 ⁇ , or the absolute value of the difference between the lower limit value of the second target range and 0.4 ⁇ is smaller than the second threshold value.
  • the aperture of the first annular structure is within the second target range, that is, the aperture of the first annular structure is relatively large and can transmit and receive electromagnetic waves of a high-density beam.
  • the aperture of the first annular structure is within the first target range, that is, the aperture of the first annular structure is relatively small and can transmit and receive omnidirectional beams.
  • the first annular structure included in the combination of a plurality of horizontally polarized radiation units The aperture is within the first target range, that is, the aperture of the first annular structure is relatively small.
  • the antenna device is made to transmit and receive horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam through the first annular structure, and to transmit and receive vertically polarized electromagnetic waves within the coverage of the high-density beam through the radial structure.
  • the antenna device can send and receive electromagnetic waves of omnidirectional beams, which can improve the coverage of electromagnetic waves.
  • the antenna device can send and receive high-density beams, which can reduce mutual interference between two adjacent wireless devices and improve communication quality.
  • the aperture of the first ring structure included in the combination of the multiple horizontally polarized radiation units is within the second target range, that is, the first ring
  • the diameter of the like structure is relatively large.
  • the antenna device transmits and receives horizontally polarized electromagnetic waves within the coverage area of the high-density beam through the first annular structure, and transmits and receives vertically polarized electromagnetic waves within the coverage area of the high-density beam through the radial structure.
  • the antenna device can transmit and receive electromagnetic waves of a horizontally polarized high-density beam, and can also receive and receive electromagnetic waves of a vertically polarized high-density beam, which can greatly reduce mutual interference between two adjacent wireless devices and improve communication quality.
  • the antenna device further includes a feeding component, each of the horizontally polarized radiation units includes two relatively symmetrical radiating arms, and the feeding component includes and the two radiating arms Corresponding two feed lines; each said feed line is connected to a corresponding radiating arm so that the differential mode mode is excited by the current input by the feed point connected between the two said feed lines.
  • the feeding components correspond to the horizontally polarized radiation units one-to-one, and each horizontally polarized radiation unit corresponds to one feeding component.
  • the working mode in which the currents on the two feeders of the power feeder are in opposite directions can be defined as the differential mode mode
  • the working mode in which the currents on the two feeders are in the same direction can be defined as the common mode mode.
  • the differential mode and common mode can exist at the same time.
  • each feeder is connected to the corresponding radiating arm, and currents are input to the two radiating arms of the horizontally polarized radiation unit through the feeding point, and the directions of the currents on the two feeders of the feeding component are opposite. , the differential mode mode can be excited. Since the currents in the opposite directions on the two feeders of the feeder are canceled, electromagnetic waves cannot be generated by oscillation.
  • the two feeders of the feeder only function as feeders, and undertake the energy transmission between the radio frequency circuit and the horizontally polarized radiation unit. effect.
  • the current on the radiating arm of the horizontally polarized radiation unit can form a loop to transmit and receive horizontally polarized electromagnetic waves.
  • the current is input to the two radiating arms of the horizontally polarized radiation unit through the feeding point, and the currents on the two feeding lines of the feeding component are in opposite directions because one end of the feeding point leads from the positive pole of the power supply to the two radiating arms.
  • One of the feeders, the other end of the feed point leads from the negative pole of the power supply to the other of the two feeders, and one end of the two feeders is connected, as shown in Figure 10, a closed loop can be formed, Then, the currents on the two feeders are in opposite directions.
  • the sum of the length of the feed line and the length of the radiation arm is equal to 0.5 ⁇ , where ⁇ is the wavelength of the electromagnetic wave transmitted and received by the antenna device in free space.
  • the interconnected feed lines and radiation arms can form a half-wave antenna capable of radiating electromagnetic waves.
  • the induced current of the vertically polarized radiating element can be coupled to the half-wave antenna formed by its adjacent interconnected feeders and radiating arms, so that the half-wave antenna can transmit and receive the same electromagnetic waves as the vertically polarized radiating element, that is, Vertically polarized high-density beam of electromagnetic waves. Since the half-wave antenna formed by the interconnected feed lines and radiating arms can be parasitic on the vertically polarized radiation element, the half-wave antenna formed by the interconnected feed lines and radiating arms can be called parasitic radiation elements.
  • the horizontally polarized radiating element is fed through the feeding point between the two feed lines, and the direction of the current passing through the feed lines is opposite, which can excite the differential mode mode.
  • the common mode mode the induced current generated by the electromagnetic wave radiated by the vertically polarized radiation unit is loaded on the parasitic radiation unit, and the currents passing through the two feeders have the same direction, which can excite the common mode mode.
  • the working mode of the antenna device includes a differential mode mode and a common mode mode, which enriches its working mode.
  • the induced current generated by the electromagnetic wave radiated by the vertically polarized radiation unit is loaded on the parasitic radiation unit, and the reason why the currents passing through the two feeders are in the same direction is that the currents on the vertically polarized radiation unit are in the same direction , where the same direction may be directed from the center to the surrounding as shown in FIG. 7 , or may be converged from the surrounding to the center.
  • the directions of the currents on the vertically polarized radiation units are in the same direction, so the directions of the induced currents of the vertically polarized radiation units are also in the same direction.
  • the induced current of each vertically polarized radiation element is loaded on the parasitic radiation element adjacent to it, so that the currents passing through the two feed lines have the same direction.
  • each of the feed lines is connected to any position of the corresponding radiating arm.
  • each feed line is connected to any position of the corresponding radiating arm.
  • the ends of the corresponding feed lines are connected to the ends of the radiating arms.
  • the end of the corresponding feed line may also be connected to the middle position of the radiation arm. This embodiment does not limit the connection position of the feed line and the corresponding radiating arm, and the technician can select it according to the actual situation, for example, can select a suitable position according to some performance indicators of the antenna device.
  • a first vertically polarized radiation unit among the plurality of vertically polarized radiation units is located in a mirror image of the first horizontally polarized radiation unit and the second horizontally polarized radiation unit, and the first vertically polarized radiation unit
  • a vertically polarized radiation unit is any vertically polarized radiation unit among the plurality of vertically polarized radiation units, and both the first horizontally polarized radiation unit and the second horizontally polarized radiation unit are the multiple vertically polarized radiation units.
  • the mirror plane may also be referred to as a rotational symmetry plane, or a symmetry plane, or an equivalent electro-mirror plane in a differential mode mode.
  • Each vertically polarized radiation unit is located in the mirror surface of two adjacent horizontally polarized radiation units, so that the vertically polarized electromagnetic waves radiated by the vertically polarized radiation unit and the horizontally polarized electromagnetic waves radiated by the horizontally polarized radiation units are mutually exclusive. Therefore, the antenna device can simultaneously transmit and receive vertically polarized electromagnetic waves and horizontally polarized electromagnetic waves.
  • the combination of the plurality of horizontally polarized radiation units further includes a second annular structure for transmitting and receiving horizontally polarized electromagnetic waves; the center of the first annular structure is connected to the The centers of the two ring structures overlap, or the distance between the center of the first ring structure and the center of the second ring structure is smaller than the first threshold.
  • the aperture in the first ring structure and the second ring structure, is within the first target range, and is used to send and receive horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam, and the aperture is within the second target range. Within the target range, it is used to send and receive horizontally polarized electromagnetic waves within the coverage of high-density beams.
  • the aperture of the first ring structure is within the first target range to transmit and receive horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam
  • the aperture of the second ring structure is within the second target range to transmit and receive high-density electromagnetic waves.
  • the aperture of the first annular structure is within the second target range, so as to transmit and receive horizontally polarized electromagnetic waves within the coverage of the high-density beam
  • the aperture of the second annular structure is within the first target range, so as to transmit and receive the electromagnetic waves in the full range.
  • Horizontally polarized electromagnetic waves within the coverage area of the beam is within the first target range to transmit and receive horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam
  • the aperture of the second ring structure is within the second target range to transmit and receive high-density electromagnetic waves.
  • the antenna device can transmit and receive omnidirectional beams and high-density beams through the number of ring structures, and realize a multi-beam antenna.
  • the center of the first ring structure and the center of the second ring structure overlap or nearly overlap, so that the occupied space of the antenna device can be reduced.
  • the antenna device further includes a switch component, configured to switch between transceiving horizontally polarized electromagnetic waves through the first annular structure and transceiving horizontally polarized electromagnetic waves through the second annular structure .
  • the first ring structure may be a ring structure with a relatively small aperture, and is used to transmit and receive horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam.
  • the second ring structure may be a ring structure with a relatively large aperture, and is used to send and receive horizontally polarized electromagnetic waves within the coverage area of the high-density beam.
  • the antenna device can periodically detect the number of wireless communication devices, and then realize switching between omnidirectional beams and high-density beams through switching components.
  • the antenna device can detect that there are many wireless communication devices (such as mobile phones), and can switch to the second ring structure through the switch component to work, which is used to send and receive horizontal beams within the coverage of high-density beams.
  • Polarized electromagnetic waves In a scenario where the density of people is relatively small, the antenna device can detect that there are relatively few wireless communication devices, and can be switched to work in the first ring structure through the switch component, which is used to send and receive horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam. . It can be seen that the antenna device can be switched between omnidirectional beams and high-density beams, thereby improving the use flexibility of the antenna device.
  • the shape of the radiation arm of each of the horizontally polarized radiation units is an arc
  • the shape of the first annular structure is a circle
  • This embodiment does not limit the specific shape of the horizontally polarized radiation unit and the specific shape of the first ring structure, which can satisfy the current on the first ring structure when the radiation arms of a plurality of horizontally polarized radiation units are supplied with current.
  • the direction can form a closed loop clockwise or counterclockwise.
  • the plurality of horizontally polarized radiation units and the plurality of vertically polarized radiation units are both on a circuit board.
  • multiple horizontally polarized radiating elements, multiple vertically polarized radiating elements and feeding components may all be located on the circuit board.
  • multiple horizontally polarized radiating units, multiple vertically polarized radiating units and feeding components can be printed on the circuit board, and the manufacturing process is simple, which is favorable for mass production.
  • the antenna device further includes a vertically vertically polarized radiation unit, where the vertically vertically polarized radiation unit is located at the location where the horizontally polarized radiation unit and the vertically polarized radiation unit are located.
  • the planes intersect and are used to transmit and receive vertically polarized electromagnetic waves within the coverage of the omnidirectional beam.
  • the angle between the vertically vertically polarized radiating element and the circuit board is between 0 and 180 degrees, excluding 0 degrees and 180 degrees.
  • the vertically vertically polarized radiating element and the circuit board The included angle between the boards is 90 degrees, and the vertically vertically polarized radiation unit is perpendicular to the circuit board.
  • the vertically vertically polarized radiating element can be a bracket of the antenna device, used to support the circuit board in the casing of the wireless device, the bracket is a conductor, and its length is equal to the amount of radiation radiated by the antenna device.
  • the wavelength of the electromagnetic wave is related, for example, the length of the vertically vertically polarized radiation unit can be half the wavelength, which can transmit and receive vertically polarized electromagnetic waves within the coverage of the omnidirectional beam.
  • the antenna device can send and receive horizontally polarized electromagnetic waves of omnidirectional beams through the first annular structure, and send and receive vertically polarized electromagnetic waves of high-density beams through the parasitic radiation unit formed by the feeder and the radiating arms of the first annular structure.
  • the horizontally polarized electromagnetic waves of the high-density beam are sent and received through the second ring structure, and the vertically polarized electromagnetic waves of the high-density beam are sent and received through the parasitic radiation unit formed by the feeder and the radiation arm of the second ring structure.
  • the vertically polarized electromagnetic wave of the omnidirectional beam is sent and received through the vertically vertically polarized radiation unit.
  • the antenna device is a multi-beam dual-polarized antenna, which can expand its usage scenarios and improve its usage flexibility.
  • a wireless device in another aspect, includes a radio frequency circuit and an antenna arrangement as described above coupled to the radio frequency circuit.
  • the wireless device may be an AP (access point) device located indoors, and the wireless device may include a radio frequency circuit and an antenna device coupled to the radio frequency circuit, and the antenna device is the above-mentioned antenna device.
  • a wireless device may include a plurality of the above-described antenna devices, and each antenna device may be supported in a housing of the wireless device by a vertically vertically polarized radiating element.
  • a plurality of the above-mentioned antenna devices may be installed in a wireless device, and a plurality of wireless devices may be arranged in a relatively large room.
  • the antenna device in each wireless device can be switched to a ring-shaped ring used to transmit and receive horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam. structure to improve the coverage of indoor electromagnetic waves and improve communication quality.
  • each wireless device When it is detected that the density of people is relatively small, fewer wireless devices can be turned on, and the antenna device in each wireless device can be switched to a ring structure for transmitting and receiving horizontally polarized electromagnetic waves within the coverage of the high-density beam, so as to Mutual interference between antenna devices in two adjacent wireless devices is reduced, thereby improving communication quality.
  • FIG. 1 is a schematic diagram of an omnidirectional beam provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a high-density beam provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a first annular structure of an antenna device provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a first annular structure of an antenna device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a first annular structure of an antenna device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a radial structure of an antenna device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the flow direction of current on the antenna device in a differential mode mode provided by an embodiment of the present application;
  • FIG. 11 is a schematic diagram of the flow direction of current on the antenna device in a common mode mode provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the length between a feed line and a radiating arm provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of an antenna device provided by an embodiment of the present application.
  • 1a a first horizontally polarized radiation unit
  • 1b a second horizontally polarized radiation unit
  • 2a a first vertically polarized radiation unit.
  • An embodiment of the present application provides an antenna device, and the antenna device may be an antenna device of a wireless access point, an antenna device of a base station, or an antenna device of a router, or the like.
  • the antenna device can be used to radiate electromagnetic waves, can also be used to receive electromagnetic waves, and can both radiate electromagnetic waves and receive electromagnetic waves.
  • the antenna device includes a plurality of horizontally polarized radiation units 1 and a plurality of vertically polarized radiation units 2; the combination of the plurality of horizontally polarized radiation units 1 includes a first annular structure for transmitting and receiving horizontal polarized radiation units.
  • the combination of a plurality of vertically polarized radiation units 2 includes a radial structure for transmitting and receiving vertically polarized electromagnetic waves; the center of the first annular structure overlaps with the center of the radial structure or the center of the first annular structure The distance from the center of the spoke structure is less than the first threshold.
  • the antenna device may be a half-wave antenna, the total length of the horizontally polarized radiation unit 1 is half of its working wavelength, and the total length of the vertically polarized radiation unit 2 is half of its working wavelength.
  • the operating frequencies of the horizontally polarized radiation unit 1 and the vertically polarized radiation unit 2 may be equal, for example, may be 5 GHz, and certainly may be 2.5 GHz.
  • the horizontally polarized radiation unit 1 is used to transmit and receive horizontally polarized waves
  • the vertically polarized radiation unit 2 is used to transmit and receive vertically polarized waves, wherein the horizontally polarized waves are beams whose electric field directions of electromagnetic waves are parallel to the ground.
  • a vertically polarized wave is an electromagnetic wave in which the direction of the electric field of the electromagnetic wave is perpendicular to the ground. It can be seen that the antenna device can be used to send and receive two electromagnetic waves whose directions of electric fields are perpendicular to each other, and is a dual-polarized antenna device.
  • the number of the horizontally polarized radiation units 1 is multiple, for example, it may be two, three, or four, etc., and the combination of the multiple horizontally polarized radiation units 1 is obtained.
  • the combination may include a first annular structure, and when a current is passed to the plurality of horizontally polarized radiation units 1, as shown in FIG.
  • the horizontally polarized radiation unit 1 may include two relatively symmetrical radiation arms 11 , and the radiation arms 11 of a plurality of horizontally polarized radiation units 1 can be combined to obtain a first annular structure.
  • the specific shape is related to the specific shape of the radiation arm 11 of the horizontally polarized radiation unit 1 and the number of the horizontally polarized radiation unit 1 .
  • the radiating arm 11 is linear, and the shape of the first annular structure may be a triangular ring; or, as shown in FIG.
  • the shape of the first annular structure may be a rectangular ring, and the The specific shape of a ring structure may also be other polygon rings, wherein the polygon ring may be a regular polygon ring or an irregular polygon ring.
  • the radiating arm 11 is arc-shaped, and the shape of the first annular structure can be arc-shaped such as ellipse and circle, wherein the arrows in FIG. 4 , FIG. 5 and FIG. 6 indicate a certain moment The flow direction of the current on the horizontally polarized radiation element 1.
  • This embodiment does not limit the specific shape of the horizontally polarized radiation unit 1 and the specific shape of the first annular structure, and it can satisfy the requirement that when the radiation arms 11 of multiple horizontally polarized radiation units 1 pass in the same phase current, as shown in FIG. 4 As shown, the current direction on the first annular structure can form a clockwise annular structure or a counterclockwise annular structure.
  • the technician can set it according to the uniformity of the radiation pattern of the antenna device. For example, the specific shape corresponding to the best uniformity of the pattern can be used as the first The specific shape of the ring structure.
  • an example may be in a circular shape.
  • the current direction on the first annular structure may be counterclockwise.
  • the ring structure, the direction of the current is a ring structure, which can send and receive horizontally polarized electromagnetic waves.
  • the length of the antenna is determined by the wavelength of the central operating frequency of the antenna, and the length of the antenna is determined by the length of the radiating arm. For example, for a half-wave antenna, its length is approximately half of the central operating wavelength.
  • the horizontal pole The arm length of the radiation arm 11 of the radiation unit 1 can be determined by the central working wavelength of the antenna device, and the central working wavelength is related to the central working frequency of the antenna device.
  • the technician can determine the center wavelength of the electromagnetic wave sent and received according to the center operating frequency of the antenna device, and then determine the length of the horizontally polarized radiation unit 1, and further determine the length of the radiation arm 11.
  • the horizontally polarized radiation unit 1 is a pair.
  • the length of the radiating arm 11 is half the length of the horizontally polarized radiating element 1 .
  • the length of the vertically polarized radiation unit 2 is also related to the wavelength, and the wavelength is related to the operating frequency of the antenna device.
  • the technician can determine the wavelength of the electromagnetic waves to be sent and received according to the operating frequency of the antenna device, and then determine the vertical polarized The length of the radiation unit 2.
  • the number of vertically polarized radiation units 2 is also multiple, for example, it may be two, three, or four, etc.
  • the combination of the multiple vertically polarized radiation units 2 will obtain The combination can include a radial structure.
  • a radial current can be formed on the radial structure to transmit and receive vertically polarized electromagnetic waves, as shown in FIG. 7
  • the arrows indicate the flow direction of the current on the vertically polarized radiation element 2 at a certain moment.
  • the spoke structure is a shape structure that radiates from the center point to the surrounding.
  • the direction of the current passing through the spoke structure can be radially from the center to the far side. To extend, it can also converge radially to the center from a distance.
  • the currents extend radially from the center on the radial structure. The current of this radial structure can transmit and receive vertical polarization. electromagnetic waves.
  • the radial structure formed by a plurality of vertically polarized radiation units 2 can transmit and receive electromagnetic waves covered by high-density beams.
  • the high-density beam is a cone-shaped beam with a small apex angle, so that the beam is concentrated in a small coverage area
  • the omnidirectional beam opposite to the high-density beam as shown in Figure 1, the omnidirectional beam It is a cone-shaped beam with a larger apex angle, and the beam is uniformly covered around, wherein the cone angle of the cone-shaped beam shown in Figure 1 is ⁇ , and the cone-shaped beam shown in Figure 2
  • the cone angle of the beam is ⁇ , ⁇ is greater than ⁇ .
  • a wireless device such as an AP (access point) device, has the antenna device installed inside it. Since the antenna devices in the two adjacent wireless devices transmit and receive electromagnetic waves covered by high-density beams, the overlapping areas of high-density beams are compared. Small, can reduce mutual interference and improve communication quality.
  • the center of the first annular structure overlaps with the center of the spoke structure or the distance between the center of the first annular structure and the center of the spoke structure is smaller than the first threshold, that is, the first annular structure
  • the center of the radial structure overlaps or nearly overlaps with the center of the radial structure.
  • the horizontally polarized radiation unit 1 transmits and receives horizontally polarized electromagnetic waves
  • the vertical polarized radiation unit 2 transmits and receives vertically polarized electromagnetic waves through the same caliber antenna device, which can be reduced
  • the volume of the antenna device saves space and is beneficial to the miniaturization development of the antenna device.
  • the antenna device is a dual-polarized antenna, which can transmit and receive horizontally polarized electromagnetic waves as well as vertically polarized electromagnetic waves, thereby improving communication quality.
  • the antenna device can transmit and receive electromagnetic waves covered by high-density beams through a radial structure composed of a plurality of vertically polarized radiation units. Communication quality of wireless devices.
  • the center of the first annular structure for transmitting and receiving horizontally polarized electromagnetic waves and the center of the radial structure for transmitting and receiving vertically polarized electromagnetic waves of the antenna device overlap or nearly overlap, which can reduce the volume of the antenna device and reduce the occupation of the antenna device
  • the space is conducive to the miniaturization development of the antenna device and the wireless device on which the antenna device is installed.
  • the occupied volume of the antenna device is small, so more antenna devices can be installed in the wireless device, thereby improving the communication quality of the wireless device. .
  • the electromagnetic wave radiated by the combination of the multiple horizontally polarized radiation units 1 may be an omnidirectional beam, a high-density beam, or an electromagnetic wave including an omnidirectional beam and a high-density beam.
  • the type of the radiated electromagnetic wave and the first ring The caliber size of the like structure and the number of ring structures included in the co-tenancy are related.
  • the aperture of the first annular structure included in the combination of the multiple horizontally polarized radiation units 1 is within the first target range, and can transmit and receive horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam.
  • the first annular structure The aperture is within the second target range to transmit and receive horizontally polarized electromagnetic waves within the coverage of the high-density beam.
  • the first target range is smaller than the second target range
  • the specific values of the first target range and the second target range are both related to the wavelength of the electromagnetic waves transmitted and received by the antenna device, and the wavelength is related to the wavelength of the antenna device.
  • the working frequency is related, and the technician can determine the size of the first target range and the second target range according to the working frequency of the antenna device.
  • the upper limit value of the first target range may be 0.4 ⁇ , or the absolute value of the difference between the upper limit value of the first target range and 0.4 ⁇ is smaller than the second threshold value, that is, the upper limit value of the first target range It can be 0.4 ⁇ or a certain value around 0.4 ⁇ .
  • the lower limit value of the second target range is 0.4 ⁇ , or the absolute value of the difference between the lower limit value of the second target range and 0.4 ⁇ is smaller than the second threshold value, that is, the lower limit value of the second target range can also be 0.4 ⁇ , or a value near 0.4 ⁇ .
  • is the wavelength of the electromagnetic wave transmitted and received by the antenna device in free space.
  • the aperture of the first annular structure is within the second target range, that is, the aperture of the first annular structure is relatively large and can transmit and receive electromagnetic waves of a high-density beam.
  • the aperture of the first annular structure is within the first target range, that is, the aperture of the first annular structure is relatively small and can transmit and receive omnidirectional beams.
  • the aperture is the radius of the circle, and if the first annular structure is a square ring, the aperture is the distance from the center to one side.
  • the antenna device when manufacturing the antenna device, if a technician intends to enable the antenna device to transmit and receive electromagnetic waves of high-density beams and electromagnetic waves of omnidirectional beams, the first annular structure included in the combination of the plurality of horizontally polarized radiation units 1
  • the caliber of is within the first target range, that is, the caliber of the first annular structure is relatively small.
  • the antenna device transmits and receives horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam through the first annular structure, and transmits and receives vertically polarized electromagnetic waves within the coverage of the high-density beam through the radial structure.
  • the antenna device can send and receive electromagnetic waves of omnidirectional beams, which can improve the coverage of electromagnetic waves.
  • the antenna device can send and receive high-density beams, which can reduce mutual interference between two adjacent wireless devices and improve communication quality.
  • the aperture of the first annular structure included in the combination of the plurality of horizontally polarized radiation units 1 is the second target.
  • the aperture of the first annular structure is relatively large. In this way, the antenna device transmits and receives horizontally polarized electromagnetic waves within the coverage area of the high-density beam through the first annular structure, and transmits and receives vertically polarized electromagnetic waves within the coverage area of the high-density beam through the radial structure.
  • the antenna device can transmit and receive horizontally polarized high-density beam electromagnetic waves, and can also transmit and receive vertically polarized high-density beam electromagnetic waves, which can greatly reduce the mutual interference between two adjacent wireless devices and improve communication quality.
  • the technician can flexibly select the size of the aperture of the first annular structure included in the combination of the multiple horizontally polarized radiation units 1 according to actual needs, and can set the aperture of the first annular structure within the first target range, or The aperture of the first annular structure may be set within the second target range.
  • both the horizontally polarized radiating element 1 and the vertically polarized radiating element 2 feed current to it through a feeding component, and accordingly, the antenna device includes a feeder for feeding the horizontally polarized radiating element 1 Electrical components and feeding components for feeding the vertically polarized radiating element 2 .
  • the antenna device further includes a feeding part 3 , each horizontally polarized radiating element 1 includes two relatively symmetrical radiating arms 11 , and the feeding part 3 includes two feeding arms 11 corresponding to the two radiating arms 11 .
  • the feeding component 3 in FIG. 9 is a component that feeds power to the horizontally polarized radiation unit 1, while the feeding component that feeds the vertically polarized radiation unit 2 is not shown in the figure.
  • the feeding part 3 refers to the feeding part of the horizontally polarized radiating element 1 .
  • the feeding elements 3 and the horizontally polarized radiation elements 1 correspond to each other in a one-to-one manner, and each horizontally polarized radiation element 1 corresponds to one feeding element 3 .
  • the horizontally polarized radiation unit 1 includes two symmetrical radiating arms 11, and the feeding component 3 also includes two feeding lines 31. As shown in FIG. 9, the corresponding horizontally polarized radiation unit 1 and the feeding component 3, one The radiating arm 11 is connected to one feed line 31 , and the other radiating arm 11 is connected to the other feed line 31 .
  • each feed line 31 is connected to any position of the corresponding radiating arm 11 .
  • the ends of the corresponding feed lines 31 are connected to the ends of the radiation arms 11 .
  • the end of the corresponding feed line 31 may also be connected to the middle position of the radiation arm 11 .
  • This embodiment does not limit the connection position of the feeder 31 and the corresponding radiating arm 11, and the technician can select it according to the actual situation, for example, can select a suitable position according to some performance indicators of the antenna device.
  • the area indicated by B is the feeding area where the feeding component 3 feeds the corresponding horizontally polarized radiation unit 1, which can also be called the feeding point
  • the area indicated by A is the vertically polarized radiation
  • the area where the feeding part of the unit 2 feeds the vertically polarized radiating unit 2 may also be referred to as a feeding point.
  • the technician can select the position of the feeding point according to the principle of the smallest energy transmission loss, and use the position corresponding to the smallest energy transmission loss as the feeding point.
  • each feed line 31 is connected to the corresponding radiation arm 11 , and current is input to the horizontally polarized radiation unit 1 through the feed point, as shown in FIG. 10 , the arrow in FIG. 10 Represents the flow direction of the current at a certain moment, the direction of the current on the two feeding lines 31 of the feeding component 3 is opposite, and the working mode in which the current directions on the two feeding lines 31 are opposite can be defined as the differential mode mode of the antenna device . Since the currents in the opposite directions on the two feed lines 31 of the feed unit 3 cancel out, electromagnetic waves cannot be generated by oscillation, and the two feed lines 31 of the feed unit 3 only function as feed lines. undertake the role of energy transmission. In this differential mode mode, only the current on the radiation arm 11 of the horizontally polarized radiation unit 1 can form a loop to transmit and receive horizontally polarized electromagnetic waves.
  • the current is input to the two radiating arms 11 of the horizontally polarized radiation unit 1 through the feeding point B, and the currents on the two feeding lines 31 of the feeding component 3 are in opposite directions because the feeding One end of the power point B leads from the positive pole of the power supply to one of the two feed lines, and the other end of the feed point leads from the negative pole of the power supply to the other of the two feed lines, and one end of the two feed lines is connected.
  • a closed loop can be formed, then the currents on the two feeders are in opposite directions.
  • the common mode mode is opposite to the differential mode mode.
  • the working mode in which the currents on the two feeders 31 are in opposite directions can be defined as the common mode mode of the antenna device, as shown in FIG. 11 .
  • the arrows in FIG. 11 indicate a certain moment.
  • the direction of the current is the same as the direction of the current on the two feeders 31 .
  • the common mode and differential mode of the antenna device can exist at the same time, for example, as shown in FIG.
  • the direction of the current on the wire 31 is opposite, and the differential mode mode is excited; the induced current of the vertically polarized radiation element 2 shown in FIG. 12, the currents on the two feeders 31 feeding the same horizontally polarized radiating element 1 can be made to have the same direction to excite the common mode, the horizontally polarized radiating element 1 and the vertically polarized radiation Unit 2 can work at the same time, so the common mode and differential mode of the antenna device can also work at the same time.
  • the interconnected feeder 31 and the radiating arm 11 may constitute a half-wave antenna, capable of radiating electromagnetic waves.
  • the induced current of the vertically polarized radiating element 2 shown in FIG. 7 can be coupled to the half-wave antenna formed by the adjacent interconnected feeder 31 and the radiating arm 11, so that the half-wave antenna can transmit and receive and communicate with the vertically polarized radiating element 2.
  • the half-wave antenna formed by the interconnected feed line 31 and the radiating arm 11 is parasitic to the vertically polarized radiation element 2 , the half-wave antenna formed by the interconnected feed line 31 and the radiating arm 11 can be called the parasitic radiation element 6 .
  • the induced current generated by the electromagnetic wave radiated by the vertically polarized radiation unit 2 is loaded on the parasitic radiation unit 6, and the reason why the currents passing through the two feed lines 31 are in the same direction is that the current on the vertically polarized radiation unit 2
  • the directions are the same, wherein the same direction can be from the center to the surrounding as shown in Figure 7, or it can be from the surrounding to the center.
  • the directions of the currents on the vertically polarized radiation unit 2 are in the same direction, then, the directions of the induced currents in the vertically polarized radiation unit 2 are also in the same direction.
  • the induced current of each vertically polarized radiating element 2 is loaded on the adjacent parasitic radiating element 6 , so that the currents passing through the two feed lines 31 have the same direction.
  • the lengths of the mutually connected radiating arms 11 and the feeding lines 31 may be equal. This is because the horizontally polarized radiating element 1 is a half-wave antenna in a dipole antenna.
  • the two radiating arms 11 are symmetrical and equal to Since the operating frequencies of the horizontally polarized radiating element 1 and the vertically polarized radiating element 2 are equal, the parasitic radiating element 6 also belongs to a half-wave antenna, and the sum of the lengths of the interconnected feed line 31 and the radiating arm 11 is The length of the radiation arm 11 is Then, the length of the feeder 31 can also be Therefore, the length of the feed line 31 and the length of the radiating arm 11 may be equal.
  • the length of the feeder 31 is D
  • the length of the horizontally polarized radiation element 1 is L
  • the length of the radiation arm 11 is Then, the length D of the feeder 31 is equal to or approximately equal to
  • the lengths of the feed line 31 and the radiation arm 11 may not be equal, as long as the sum of the lengths of the two radiation arms 11 of the same horizontally polarized radiation unit 1 is The sum of the lengths of the connected feeder 31 and the radiating arm 11 is That is, it is not limited as to whether the lengths of the two radiation arms 11 of the same horizontally polarized radiation unit 1 are equal, and whether the lengths of the connected feeder 31 and the radiation arms 11 are equal.
  • the working mode of the antenna device includes a differential mode mode and a common mode mode, which enriches its working mode.
  • the horizontally polarized radiation unit 1 of the antenna device can transmit and receive horizontally polarized electromagnetic waves.
  • the vertically polarized radiation unit 2 can transmit and receive electromagnetic waves of vertically polarized high-density beams.
  • the parasitic radiation unit 6 formed by the interconnected feeder 31 and the radiating arm 11 is parasitic under the vertically polarized radiation unit 2, and can also transmit and receive electromagnetic waves of vertically polarized high-density beams.
  • the vertical polarized radiation unit 2 is strengthened and can be extended Bandwidth of vertically polarized radiating element 2.
  • the two feeding lines 31 of the feeding component 3 are in the differential mode mode, and the first annular structure included in the combination of the plurality of horizontally polarized radiating elements 1 can transmit and receive horizontally polarized electromagnetic waves, while the plurality of vertically polarized
  • the radial structure included in the combination of the radiation units 2 can transmit and receive vertically polarized electromagnetic waves.
  • the first vertically polarized radiation unit 2a is any vertically polarized radiation unit among the plurality of vertically polarized radiation units 2, and the first horizontally polarized radiation unit 1a and the second horizontally polarized radiation unit 1a are a plurality of horizontally polarized radiation units 1a.
  • the polarized radiation unit 1 horizontally polarized radiation units located on both sides of the first vertically polarized radiation unit 2a and adjacent to the first vertically polarized radiation unit 2a.
  • the mirror plane may also be referred to as a rotational symmetry plane, or a symmetry plane, or an equivalent electronic mirror plane of a differential mode mode.
  • Each vertically polarized radiation unit 2 is located in the mirror surface of two adjacent horizontally polarized radiation units 1, so that the vertically polarized electromagnetic waves radiated by the vertically polarized radiation unit 2 and the horizontal polarized waves radiated by the horizontally polarized radiation unit 1 The polarized electromagnetic waves do not affect each other, so the antenna device can transmit and receive vertically polarized electromagnetic waves and horizontally polarized electromagnetic waves at the same time.
  • the aperture of the first annular structure included in the combination of the multiple horizontally polarized radiation units 1 is relatively large, it can transmit and receive the horizontally polarized electromagnetic waves covered by the high-density beam; Horizontally polarized electromagnetic waves covered by an omnidirectional beam.
  • the aperture of the first annular structure included in the combination of the multiple horizontally polarized radiation units 1 is relatively large, it can transmit and receive the horizontally polarized electromagnetic waves covered by the high-density beam; Horizontally polarized electromagnetic waves covered by an omnidirectional beam.
  • the combination of a plurality of horizontally polarized radiation units 1 may include a plurality of ring structures, some of which have a relatively small aperture and are used to send and receive horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam, and some ring
  • the aperture of the structure is relatively large, and is used to send and receive horizontally polarized electromagnetic waves within the coverage of high-density beams.
  • the centers of these ring structures overlap or nearly overlap.
  • this embodiment does not limit the number of ring structures included in the combination of multiple horizontally polarized radiation units 1, for example, it may include two ring structures, or may include more than two ring structures, Two ring structures can be exemplified, respectively referred to as a first ring structure and a second ring structure.
  • each ring structure in the plurality of ring structures may be the same or different, which is not limited in this embodiment. For example, if the shapes of the plurality of ring structures are the same as circles, then The plurality of annular structures are concentric circles.
  • the combination of a plurality of horizontally polarized radiation units 1 further includes a second annular structure for transmitting and receiving horizontally polarized electromagnetic waves through a toroidal current;
  • the centers of the ring structures overlap, or the distance between the center of the first ring structure and the center of the second ring structure is smaller than a threshold value.
  • first annular structure and the specific shape of the second annular structure may be the same or different.
  • first annular structure and the second annular structure are both circular, and the first annular structure and the second annular structure are concentric circles.
  • first annular structure is a circle, and the second annular structure is a polygonal ring.
  • the apertures within the range of the first target are used to transmit and receive horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam, and the apertures are within the range of the second target. It is used to send and receive horizontally polarized electromagnetic waves within the coverage area of high-density beams. It can be seen that the antenna device can transmit and receive omnidirectional beams and high-density beams through the number of ring structures, and realize a multi-beam antenna.
  • the first target range is smaller than the second target range, for example, the upper limit of the first target range is 0.4 ⁇ or approximately equal to 0.4 ⁇ , the lower limit value of the second target range is 0.4 ⁇ or approximately equal to 0.4 ⁇ , and ⁇ is The wavelength of electromagnetic waves transmitted and received by the antenna device in free space.
  • the aperture of the first ring structure is within the first target range to transmit and receive horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam
  • the aperture of the second ring structure is within the second target range to transmit and receive high-density electromagnetic waves.
  • the aperture of the first annular structure is within the second target range, so as to transmit and receive horizontally polarized electromagnetic waves within the coverage of the high-density beam
  • the aperture of the second annular structure is within the first target range, so as to transmit and receive the electromagnetic waves in the full range.
  • Horizontally polarized electromagnetic waves within the coverage area of the beam is within the first target range to transmit and receive horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam
  • the aperture of the second ring structure is within the second target range to transmit and receive high-density electromagnetic waves.
  • the center of the first ring structure and the center of the second ring structure overlap or nearly overlap, so that the occupied space of the antenna device can be reduced.
  • the inner ring structure may be referred to as the first ring structure
  • the outer ring structure may be referred to as the second ring structure.
  • the aperture of the first annular structure is smaller, and the aperture of the second annular structure is larger.
  • the first annular structure can be used to send and receive horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam
  • the second annular structure can The structure can be used to transmit and receive horizontally polarized electromagnetic waves within the coverage area of high-density beams.
  • the length of the horizontally polarized radiation element 1 constituting the first annular structure and the length of the horizontally polarized radiation element 1 constituting the second annular structure may be equal or unequal. Requirement selection, which is not limited in this embodiment.
  • the first annular structure of the antenna device can transmit and receive horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam, and the parasitic radiation unit formed by the feeder and the radiating arm of the first annular structure can transmit and receive high-density beams Vertically polarized electromagnetic waves in coverage.
  • the second annular structure of the antenna device can transmit and receive horizontally polarized electromagnetic waves within the coverage of the high-density beam, and the parasitic radiation unit formed by the feed line and the radiating arm of the second annular structure can transmit and receive vertical polarized waves within the coverage of the high-density beam. of electromagnetic waves.
  • the radial structure of the antenna device can transmit and receive vertically polarized electromagnetic waves within the coverage of high-density beams. It can be seen that the antenna device is a multi-beam dual-polarized antenna.
  • high-density beams are usually suitable for scenarios with relatively large population density, and omnidirectional beams are usually suitable for scenarios with relatively small population density.
  • omnidirectional beams are usually suitable for scenarios with relatively small population density.
  • the electromagnetic wave beam sent and received by the antenna device in each wireless device is switched to a high-density beam, then , which can reduce the overlapping area of electromagnetic waves of two adjacent wireless devices, reduce mutual interference, and improve communication quality.
  • the intensity of the electromagnetic wave in a unit area can be relatively large, thereby improving the communication quality.
  • the antenna device may further include a switch component for switching between sending and receiving horizontally polarized electromagnetic waves through the first annular structure and sending and receiving horizontally polarized electromagnetic waves through the second annular structure of electromagnetic waves.
  • the first ring structure may be a ring structure with a relatively small aperture, and is used to transmit and receive horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam.
  • the second ring structure may be a ring structure with a relatively large aperture, and is used to send and receive horizontally polarized electromagnetic waves within the coverage area of the high-density beam.
  • the antenna device in an application scenario, in a scenario where the density of people is relatively high, can detect that there are many wireless communication devices, and can be switched to work in a second ring structure through the switch component, which is used to transmit and receive within the coverage of the high-density beam. horizontally polarized electromagnetic waves.
  • the antenna device can detect that there are relatively few wireless communication devices, and can be switched to work in the first ring structure through the switch component, which is used to send and receive horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam. . It can be seen that the antenna device can be switched between omnidirectional beams and high-density beams, thereby improving the use flexibility of the antenna device.
  • a wireless device such as an AP device
  • multiple AP devices may be arranged in a relatively large room.
  • more or even all AP devices can be turned on, and the antenna device in each AP device can be switched to work in the second ring structure, which is used to send and receive horizontal poles within the coverage of the high-density beam. It can reduce the mutual interference between the antenna devices in two adjacent AP devices and improve the communication quality.
  • each AP device can be turned on, and the antenna device in each AP device can be switched to work in the first ring structure to transmit and receive horizontal polarization within the coverage of the omnidirectional beam. To improve the coverage of indoor electromagnetic waves and reduce power consumption.
  • a plurality of horizontally polarized radiating elements 1 , a plurality of vertically polarized radiating elements 2 and a feeding component 3 may all be located on the circuit board 4 .
  • multiple horizontally polarized radiation units 1 , multiple vertically polarized radiation units 2 and feed components 3 can be printed on the circuit board 4 , and the manufacturing process is simple, which is beneficial to mass production.
  • the radiating elements on the antenna device can also be fabricated by punching metal sheets.
  • This embodiment does not limit the manufacturing method of the radiating element of the antenna device, and technicians can choose flexibly according to actual needs.
  • the radiating element can be printed on the circuit board 4 for example.
  • the antenna device can transmit and receive vertically polarized electromagnetic waves within the coverage of high-density beams, horizontally polarized electromagnetic waves within the coverage of high-density beams, and can also transmit and receive horizontally polarized electromagnetic waves within the coverage of omnidirectional beams.
  • Electromagnetic waves in order to enable the antenna device to also send and receive vertically polarized electromagnetic waves within the coverage of the omnidirectional beam, correspondingly, as shown in FIG.
  • the polarized radiation unit 5 intersects the plane where the horizontally polarized radiation unit 1 and the vertically polarized radiation unit 2 are located, and is used to send and receive vertically polarized electromagnetic waves within the coverage of the omnidirectional beam.
  • the included angle between the vertically vertically polarized radiation unit 5 and the circuit board 4 is between 0 and 180 degrees, excluding 0 and 180 degrees.
  • the vertical The angle between the vertically polarized radiation unit 5 and the circuit board 4 is 90 degrees, and the vertically vertically polarized radiation unit 5 is perpendicular to the circuit board 4 .
  • the vertically vertically polarized radiating element 5 can be a bracket of the antenna device, used to support the circuit board 4 in the casing of the wireless device, the bracket is a conductor, and the length of the bracket is the same as the radiation intensity of the antenna device.
  • the wavelength of the electromagnetic wave is related, for example, the length of the vertically vertically polarized radiation unit 5 can be half of the wavelength, which can transmit and receive vertically polarized electromagnetic waves within the coverage of the omnidirectional beam.
  • the antenna device can send and receive horizontally polarized electromagnetic waves of omnidirectional beams through the first annular structure, and send and receive vertically polarized electromagnetic waves of high-density beams through the parasitic radiation unit formed by the feeder and the radiating arms of the first annular structure.
  • the horizontally polarized electromagnetic waves of the high-density beam are sent and received through the second ring structure, and the vertically polarized electromagnetic waves of the high-density beam are sent and received through the parasitic radiation unit formed by the feeder and the radiation arm of the second ring structure.
  • the vertically polarized electromagnetic wave of the omnidirectional beam is sent and received through the vertically vertically polarized radiation unit.
  • the antenna device is a multi-beam dual-polarized antenna, which can expand its usage scenarios and improve its usage flexibility.
  • the antenna device is a dual-polarized antenna, which can transmit and receive horizontally polarized electromagnetic waves as well as vertically polarized electromagnetic waves, which can improve communication quality.
  • the antenna device can transmit and receive electromagnetic waves covered by high-density beams, and the overlapping area of the high-density beams is relatively small, which can reduce mutual interference between adjacent wireless devices equipped with the antenna device and improve the communication quality of the wireless devices.
  • the center of the first annular structure for transmitting and receiving horizontally polarized electromagnetic waves and the center of the radial structure for transmitting and receiving vertically polarized electromagnetic waves of the antenna device overlap or nearly overlap, which can reduce the volume of the antenna device and reduce the occupation of the antenna device
  • the space is beneficial to the miniaturization development of the antenna device and the wireless equipment on which the antenna device is installed.
  • the occupied volume of the antenna device is small, so more antenna devices can be installed in the wireless device, thereby improving the communication quality of the wireless device.
  • the present application also provides a wireless device.
  • the wireless device may be an AP (access point) device located indoors.
  • the wireless device may include a radio frequency circuit and an antenna device coupled to the radio frequency circuit.
  • the antenna device is the above-mentioned antenna device. the described antenna device.
  • a plurality of the above-mentioned antenna devices may be included in the wireless device, and each antenna device may be supported in the housing of the wireless device by the vertically vertically polarized radiating element 5 .
  • a plurality of the above-mentioned antenna devices may be installed in a wireless device, and a plurality of wireless devices may be arranged in a relatively large room.
  • the antenna device in each wireless device can be switched to a ring-shaped ring used to transmit and receive horizontally polarized electromagnetic waves within the coverage of the omnidirectional beam. structure to improve the coverage of indoor electromagnetic waves and improve the quality of communication.
  • each wireless device When it is detected that the density of people is relatively small, fewer wireless devices can be turned on, and the antenna device in each wireless device can be switched to a ring structure for transmitting and receiving horizontally polarized electromagnetic waves within the coverage of the high-density beam, so as to Mutual interference between antenna devices in two adjacent wireless devices is reduced, thereby improving communication quality.
  • the antenna device in the wireless device is a dual-polarized antenna as described above, which can transmit and receive horizontally polarized electromagnetic waves and vertically polarized electromagnetic waves, which can improve communication quality.
  • the antenna device can transmit and receive electromagnetic waves covered by high-density beams, and the overlapping area of the high-density beams is relatively small, which can reduce mutual interference between adjacent wireless devices equipped with the antenna device and improve the communication quality of the wireless devices.
  • the center of the first annular structure for transmitting and receiving horizontally polarized electromagnetic waves and the center of the radial structure for transmitting and receiving vertically polarized electromagnetic waves of the antenna device overlap or nearly overlap, which can reduce the volume of the antenna device and reduce the occupation of the antenna device
  • the space is beneficial to the miniaturization development of the antenna device and the wireless equipment on which the antenna device is installed.
  • the occupied volume of the antenna device is small, so more antenna devices can be installed in the wireless device, thereby improving the communication quality of the wireless device.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

公开了一种天线装置和无线设备。该天线装置包括多个水平极化辐射单元和多个垂直极化辐射单元;多个水平极化辐射单元的组合包括第一环状结构,用于收发水平极化的电磁波;多个垂直极化辐射单元的组合包括辐状结构,用于收发垂直极化的电磁波;第一环状结构的中心与辐状结构的中心重叠或第一环状结构的中心与辐状结构的中心的间距小于阈值。该天线装置能够收发高密波束覆盖的电磁波,高密波束重叠区域比较小,可以减少包括该天线装置的邻近的无线设备之间的干扰,提升无线设备的通信质量。该天线装置的第一环状结构的中心和辐状结构的中心重叠或者接近重叠,可以缩小天线装置的体积,减少天线装置的占用空间。

Description

天线装置和无线设备
本申请要求于2020年08月30日提交的申请号为202010891493.8、发明名称为“天线装置和无线设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别涉及一种天线装置和无线设备。
背景技术
位于室内的AP(access point,接入点)设备,其内部的天线装置所辐射的电磁波为水平极化,其波束为全向波束,均匀地向四周辐射,其中全向波束为顶角较大的圆锥形的波束,与全向波束相对的是高密波束,为顶角较小的圆锥形的波束。例如,如图1所示为全向波束的示意图,如图2所示为高密波束的示意图,图1中圆锥形的波束的锥角为α,图2中圆锥形的波束的锥角为β,α大于β。
目前AP设备中的天线装置虽然在覆盖范围上具有一定的优势,但是由于邻近的两个AP设备中的天线装置的全向波束存在重叠区域,而发生相互干扰,导致通信质量较差。
发明内容
本申请提供了一种天线装置和无线设备,能够解决相关技术中的问题,所述技术方案如下:
一方面,提供了一种天线装置,所述天线装置包括多个水平极化辐射单元和多个垂直极化辐射单元;所述多个水平极化辐射单元的组合包括第一环状结构,用于收发水平极化的电磁波;所述多个垂直极化辐射单元的组合包括辐状结构,用于收发垂直极化的电磁波;所述第一环状结构的中心与所述辐状结构的中心重叠或所述第一环状结构的中心与所述辐状结构的中心的间距小于第一阈值。
本申请所示的方案,该天线装置包括水平极化辐射单元和垂直极化辐射单元,水平极化辐射单元用来收发水平极化电磁波,垂直极化辐射单元用来收发垂直极化电磁波,水平极化电磁波也即是电场方向与地面平行的极化电磁波,垂直极化电磁波也即是电场方向与地面垂直的极化电磁波,可见,该天线装置能够收发两种电场方向相互垂直的电磁波,使得该天线装置为双极化天线,既能收发水平极化电磁波,也能收发垂直极化电磁波,提升通信质量。该天线装置能够通过多个垂直极化辐射单元组合的辐状结构收发高密波束覆盖的电磁波,高密波束重叠区域比较小,可以减少具备该天线装置的邻近的无线设备相互之间的干扰,提升无线设备的通信质量。该天线装置的用于收发水平极化电磁波的第一环状结构的中心和用于收发垂直极化电磁波的辐状结构的中心重叠或者接近重叠,可以缩小天线装置的体积,减少天线装置的占用空间,有利于天线装置和安装该天线装置的无线设备的小型化发展,另外, 天线装置的占用体积较小,那么无线设备中可以安装较多的该天线装置,进而可以提升无线设备的通信质量。
在一种可能的实现方式中,所述第一环状结构的口径在第一目标范围内,以收发在全向波束覆盖范围内的水平极化的电磁波,或者所述第一环状结构的口径在第二目标范围内,以收发在高密波束覆盖范围内的水平极化的电磁波。
其中,第一目标范围小于第二目标范围。例如,第一目标范围的上限值可以是0.4λ,或者,第一目标范围的上限值与0.4λ之差的绝对值小于第二阈值。第二目标范围的下限值为0.4λ,或者,第二目标范围的下限值与0.4λ之差的绝对值小于第二阈值。
本申请所示的方案,第一环状结构的口径在第二目标范围内,也即是,第一环状结构的口径比较大,能够收发高密波束的电磁波。第一环状结构的口径在第一目标范围,也即是,第一环状结构的口径比较小,能够收发全向波束。
这样,在加工制造该天线装置时,如果技术人员打算让该天线装置能够收发高密波束的电磁波和全向波束的电磁波,则多个水平极化辐射单元的组合所包括的第一环状结构的口径在第一目标范围内,也即是,第一环状结构的口径比较小。使得该天线装置通过第一环状结构收发在全向波束覆盖范围内的水平极化的电磁波,通过辐状结构收发在高密波束覆盖范围内的垂直极化的电磁波。该天线装置能够收发全向波束的电磁波,可以提高电磁波的覆盖范围,该天线装置能够收发高密波束,可以减弱邻近两个无线设备之间的相互干扰,提升通信质量。
而如果技术人员打算让该天线装置能够收发高密波束的电磁波,则多个水平极化辐射单元的组合所包括的第一环状结构的口径在第二目标范围内,也即是,第一环状结构的口径比较大。这样,该天线装置通过第一环状结构收发在高密波束覆盖范围内的水平极化的电磁波,通过辐状结构收发在高密波束覆盖范围内的垂直极化的电磁波。该天线装置能够收发水平极化的高密波束的电磁波,还能够收发垂直极化的高密波束的电磁波,可以大大减弱邻近两个无线设备之间的相互干扰,提升通信质量。
在一种可能的实现方式中,所述天线装置还包括馈电部件,每个所述水平极化辐射单元包括两个相对称的辐射臂,所述馈电部件包括与两个所述辐射臂相对应的两个馈电线;每个所述馈电线与对应的辐射臂相连,以使由连接在两个所述馈电线之间的馈电点输入的电流激励差模模式。
其中,馈电部件和水平极化辐射单元一一对应,每个水平极化辐射单元对应一个馈电部件。
其中,可以将馈电部件的两个馈电线上的电流的方向相反的工作模式定义为差模模式,将两个馈电线上的电流的方向相同的工作模式定义为共模模式,该天线装置的差模模式和共模模式可以同时存在。
本申请所示的方案,每个馈电线与对应的辐射臂相连,通过馈电点向水平极化辐射单元的两个辐射臂输入电流,馈电部件的两个馈电线上的电流的方向相反,可以激励出差模模式。由于馈电部件的两个馈电线上方向相反的电流抵消,不能震荡产生电磁波,馈电部件的两个馈电线只作为馈线的作用,在射频电路和水平极化辐射单元之间承担能量传输的作用。水平极化辐射单元的辐射臂上的电流能够形成环状,来收发水平极化的电磁波。
其中,通过馈电点向水平极化辐射单元的两个辐射臂输入电流,馈电部件的两个馈电线 上的电流的方向相反的原因是,馈电点的一端从电源正极引向两个馈电线中的一个馈电线,馈电点的另一端从电源的负极引向两个馈电线中的另一个馈电线,两个馈电线的一端相连,如图10所示,可以构成闭合回路,那么,两个馈电线上的电流的方向相反。
在一种可能的实现方式中,所述馈电线的长度和所述辐射臂的长度之和等于0.5λ,其中,λ为所述天线装置收发的电磁波在自由空间的波长。
本申请所示的方案,相互连接的馈电线的长度和辐射臂的长度之和等于或者近似等于0.5λ的情况下,相互连接的馈电线和辐射臂可以构成半波天线,能够辐射电磁波。而垂直极化辐射单元的感应电流,能够耦合在与其邻近的相互连接的馈电线和辐射臂所构成的半波天线上,使该半波天线能够收发与垂直极化辐射单元相同的电磁波,即垂直极化的高密波束的电磁波。由于相互连接的馈电线和辐射臂所构成的半波天线可以寄生于垂直极化辐射单元,可以将相互连接的馈电线和辐射臂所构成的半波天线称为寄生辐射单元。
根据上述对差模模式的定义,通过两个馈电线之间的馈电点向水平极化辐射单元馈电,馈电线上通过的电流的方向相反,能够激励差模模式。根据上述对共模模式的定义,垂直极化辐射单元辐射的电磁波所产生的感应电流,加载在寄生辐射单元上,两个馈电线上通过的电流的方向相同,能够激励共模模式。与只有环状结构没有辐状结构的天线装置相比,该天线装置的工作模式包括差模模式和共模模式,丰富了其工作模式。
其中,垂直极化辐射单元辐射的电磁波所产生的感应电流,加载在寄生辐射单元上,两个馈电线上通过的电流的方向相同的原因是,垂直极化辐射单元上的电流的方向同向,其中,同向可以是如图7所示由中心指向四周,也可以是由四周汇聚至中心。垂直极化辐射单元上的电流的方向同向,那么,垂直极化辐射单元的感应电流的方向也是同向。那么,如图12所示,每个垂直极化辐射单元的感应电流加载在与之邻近的寄生辐射单元上,便可以使两个馈电线上通过的电流的方向相同。
在一种可能的实现方式中,每个所述馈电线和对应的辐射臂的任意位置处相连。
本申请所示的方案,每个馈电线和对应的辐射臂的任意位置处相连。例如,相对应的馈电线的端部与辐射臂的端部相连。又例如,相对应的馈电线的端部也可以与辐射臂的中间位置相连。本实施例对馈电线和对应的辐射臂的连接位置不做限定,技术人员可以根据实际情况来选择,例如,可以根据该天线装置的一些性能指标来选择合适的位置。
在一种可能的实现方式中,所述多个垂直极化辐射单元中第一垂直极化辐射单元位于第一水平极化辐射单元和第二水平极化辐射单元的镜像面中,所述第一垂直极化辐射单元为所述多个垂直极化辐射单元中的任一垂直极化辐射单元,所述第一水平极化辐射单元和所述第二水平极化辐射单元均为所述多个水平极化辐射单元中与所述第一垂直极化辐射单元相邻的水平极化辐射单元。
本申请所示的方案,镜像面也可以称为旋转对称面,或者对称面,或者差模模式的等效电镜像面。每个垂直极化辐射单元均位于邻近的两个水平极化辐射单元的镜像面中,这样,垂直极化辐射单元辐射的垂直极化电磁波和水平极化辐射单元辐射的水平极化电磁波互不影响,因此,该天线装置能够同时收发垂直极化电磁波和水平极化电磁波。
在一种可能的实现方式中,所述多个水平极化辐射单元的组合还包括第二环状结构,用于收发水平极化的电磁波;所述第一环状结构的中心与所述第二环状结构的中心重叠,或所述第一环状结构的中心与所述第二环状结构的中心的间距小于所述第一阈值。
本申请所示的方案,第一环状结构和第二环状结构中,口径在第一目标范围内的,用来收发在全向波束覆盖范围内的水平极化的电磁波,口径在第二目标范围内的,用来收发在高密波束覆盖范围内的水平极化的电磁波。
例如,第一环状结构的口径在第一目标范围内,以收发在全向波束覆盖范围内的水平极化的电磁波,第二环状结构的口径在第二目标范围内,以收发在高密波束覆盖范围内的水平极化的电磁波。又例如,第一环状结构的口径在第二目标范围内,以收发在高密波束覆盖范围内的水平极化的电磁波,第二环状结构的口径在第一目标范围内,以收发在全向波束覆盖范围内的水平极化的电磁波。
可见,该天线装置可以通过环状结构的数量,实现收发全向波束和高密波束,实现多波束天线。
而且,第一环状结构的中心和第二环状结构的中心重叠或者接近重叠,可以缩小天线装置的占用空间。
在一种可能的实现方式中,所述天线装置还包括开关部件,用于切换通过所述第一环状结构收发水平极化的电磁波和通过所述第二环状结构收发水平极化的电磁波。
其中,第一环状结构可以是口径比较小的环状结构,用来收发在全向波束覆盖范围内的水平极化的电磁波。第二环状结构可以是口径比较大的环状结构,用来收发高密波束覆盖范围内的水平极化的电磁波。
在本申请所示的方案中,无线通信设备(如手机等)比较多的场景下,需要打开较多的无线设备(如AP设备),如果每个无线设备中的天线装置收发的电磁波波束切换至高密波束,那么,可以减少邻近两个无线设备的电磁波的重叠区域,减弱相互干扰,提升通信质量。而且,切换至高密波束的电磁波,由于高密波束的电磁波其覆盖范围小比较集中,可以使得单位面积内的电磁波的强度比较大,进而可以提升通信质量。
而在无线设备比较少的场景下,由于全向波束的电磁波的覆盖范围均匀且广泛,打开较少的无线设备就能满足使用需求,那么为了减少功耗,可以打开较少的无线设备。
那么,该天线装置可以周期性检测无线通信设备的数量,然后通过开关部件实现在全向波束和高密波束之间切换。
例如,在人员密度比较大的场景下,天线装置能够检测到无线通信设备(如手机)比较多,可以通过开关部件切换为第二环状结构工作,用来收发在高密波束覆盖范围内的水平极化的电磁波。在人员密度比较小的场景下,天线装置能够检测到无线通信设备比较少,可以通过开关部件可以切换为第一环状结构工作,用来收发在全向波束覆盖范围内的水平极化的电磁波。可见,该天线装置可以在全向波束和高密波束之间切换,进而可以提升该天线装置的使用灵活性。
在一种可能的实现方式中,每个所述水平极化辐射单元的辐射臂的形状为弧形,所述第一环状结构的形状为圆形。
本实施例对水平极化辐射单元的具体形状以及第一环状结构的具体形状不做限定,能够满足多个水平极化辐射单元的辐射臂通入电流时,第一环状结构上的电流方向能够形成顺时针或者逆时针的闭合环即可。
在一种可能的实现方式中,所述多个水平极化辐射单元和所述多个垂直极化辐射单元均在线路板上。
本申请所示的方案,多个水平极化辐射单元、多个垂直极化辐射单元和馈电部件可以均位于线路板上。例如,多个水平极化辐射单元、多个垂直极化辐射单元和馈电部件可以印刷在线路板上,加工制造过程简单,有利于批量化生产。
在一种可能的实现方式中,所述天线装置还包括竖向垂直极化辐射单元,所述竖向垂直极化辐射单元与所述水平极化辐射单元和所述垂直极化辐射单元所在的平面相交,用于收发在全向波束覆盖范围内的垂直极化电磁波。
本申请所示的方案,竖向垂直极化辐射单元与线路板之间的夹角在0至180度之间,其中不包括0度和180度,例如,竖向垂直极化辐射单元与线路板之间的夹角为90度,竖向垂直极化辐射单元与线路板相垂直。
本申请所示的方案,竖向垂直极化辐射单元可以是该天线装置的支架,用来将线路板支在无线设备的壳体中,该支架为导体,其长度和天线装置所辐射饿的电磁波的波长相关,例如,竖向垂直极化辐射单元的长度可以为波长的一半,能够收发在全向波束覆盖范围内的垂直极化电磁波。
由此可见,该天线装置能够通过第一环状结构收发全向波束的水平极化电磁波,通过第一环状结构的馈电线和辐射臂构成的寄生辐射单元收发高密波束的垂直极化电磁波。通过第二环状结构收发高密波束的水平极化电磁波,通过第二环状结构的馈电线和辐射臂构成的寄生辐射单元收发高密波束的垂直极化电磁波。通过辐状结构收发高密波束的垂直极化电磁波。通过竖向垂直极化辐射单元收发全向波束的垂直极化电磁波。可见,该天线装置为多波束双极化天线,可以扩大其使用场景,提高其使用灵活性。
另一方面,提供了一种无线设备,所述无线设备包括射频电路和耦合到所述射频电路的如上述任一所述的天线装置。
本申请所示的方案,该无线设备可以是位于室内的AP(access point,接入点)设备,无线设备可以包括射频电路和耦合到射频电路的天线装置,该天线装置为上述所述的天线装置。例如,无线设备中可以包括多个上述天线装置,每个天线装置可以通过竖向垂直极化辐射单元支撑在无线设备的壳体中。
在一种应用场景中,无线设备中可以安装多个上述天线装置,体积比较大的室内可以布置多个无线设备。当检测到人员密度比较大时,可以打开较多甚至全部的无线设备,并且将每个无线设备中的天线装置切换为用来收发在全向波束覆盖范围内的水平极化的电磁波的环状结构,以提高室内电磁波的覆盖范围,提升通信质量。
而当检测到人员密度比较小时,可以打开较少的无线设备,并且将每个无线设备中的天线装置切换为用来收发在高密波束覆盖范围内的水平极化的电磁波的环状结构,以减少相邻两个无线设备中的天线装置发生相互干扰的情况,进而提升通信质量。
附图说明
图1是本申请实施例提供的一种全向波束的示意图;
图2是本申请实施例提供的一种高密波束的示意图;
图3是本申请实施例提供的一种天线装置的结构示意图;
图4是本申请实施例提供的一种天线装置的第一环状结构的示意图;
图5是本申请实施例提供的一种天线装置的第一环状结构的示意图;
图6是本申请实施例提供的一种天线装置的第一环状结构的示意图;
图7是本申请实施例提供的一种天线装置的辐状结构的示意图;
图8是本申请实施例提供的一种天线装置的结构示意图;
图9是本申请实施例提供的一种天线装置的结构示意图;
图10是本申请实施例提供的一种差模模式下电流在天线装置上的流动方向的示意图;
图11是本申请实施例提供的一种共模模式下电流在天线装置上的流动方向的示意图;
图12是本申请实施例提供的一种天线装置的结构示意图;
图13是本申请实施例提供的一种馈电线与辐射臂之间的长度示意图;
图14是本申请实施例提供的一种天线装置的结构示意图;
图15是本申请实施例提供的一种天线装置的结构示意图;
图16是本申请实施例提供的一种天线装置的结构示意图。
图例说明
1、水平极化辐射单元(radiating element);11、辐射臂;2、垂直极化辐射单元;3、馈电部件;31、馈电线;4、线路板;5、竖向垂直极化辐射单元;6、寄生辐射单元;
1a、第一水平极化辐射单元;1b、第二水平极化辐射单元;2a、第一垂直极化辐射单元。
具体实施方式
本申请实施例提供了一种天线装置,该天线装置可以是无线接入点的天线装置,可以是基站的天线装置,也可以是路由器的天线装置等。该天线装置可以用来辐射电磁波,也可以用来接收电磁波,还可以既辐射电磁波又接收电磁波。
如图3所示,该天线装置包括多个水平极化辐射单元1和多个垂直极化辐射单元2;多个水平极化辐射单元1的组合包括第一环状结构,用于收发水平极化的电磁波;多个垂直极化辐射单元2的组合包括辐状结构,用于收发垂直极化的电磁波;第一环状结构的中心与辐状结构的中心重叠或第一环状结构的中心与辐状结构的中心的间距小于第一阈值。
其中,该天线装置可以是半波天线,水平极化辐射单元1的总长度为其工作波长的一半,垂直极化辐射单元2的总长度为其工作波长的一半。水平极化辐射单元1和垂直极化辐射单元2的工作频率可以相等,例如,可以是5GHz,当然也可以是2.5GHz。
在一种示例中,水平极化辐射单元1用来收发水平极化波,垂直极化辐射单元2用来收发垂直极化波,其中,水平极化波是电磁波的电场方向与地面平行的波束,垂直极化波是电磁波的电场方向垂直于地面的电磁波。由此可见,该天线装置能够用来收发两种电场方向相垂直的电磁波,为双极化天线装置。
在一种示例中,水平极化辐射单元1的数量为多个,例如,可以是两个,可以是三个,也可以是四个等,这多个水平极化辐射单元1组合后得到的组合可以包括第一环状结构,当向这多个水平极化辐射单元1通入电流时,如图4所示,第一环状结构上可以形成环状电流以收发水平极化的电磁波。
如图3所示,水平极化辐射单元1可以包括两个相对称的辐射臂11,多个水平极化辐射单元1的辐射臂11组合后可以得到第一环状结构,第一环状结构的具体形状与水平极化辐射单元1的辐射臂11的具体形状,以及水平极化辐射单元1的数量相关。例如,如图5所示,辐射臂11为直线型,第一环状结构的形状可以为三角形环状,或者,如图6所示,第一环状 结构的形状可以为矩形环状,第一环状结构的具体形状还可以是其它多边形环状,其中,多边形环状可以是正多边形环状,也可以是不规则多边形环状。又例如,如图4所示,辐射臂11为弧形,第一环状结构的形状可以为椭圆形和圆形等弧形,其中图4、图5和图6中的箭头表示某一时刻电流在水平极化辐射单元1上的流动方向。
本实施例对水平极化辐射单元1的具体形状以及第一环状结构的具体形状不做限定,能够满足多个水平极化辐射单元1的辐射臂11通入同相位电流时,如图4所示,第一环状结构上的电流方向能够形成顺时针的环状结构或者逆时针的环状结构即可。技术人员在设定第一环状结构的具体形状时,可以根据天线装置辐射的方向图的均匀性来设定,例如,可以将方向图的均匀性最好所对应的具体形状,作为第一环状结构的具体形状。
为便于理解附图中可以以圆环状进行示例,如图4所示,三个水平极化辐射单元1上通入同相位的电流时,第一环状结构上的电流方向可以形成逆时针的环状结构,电流的方向呈环状结构可以收发水平极化电磁波。
其中,天线的长度由天线的中心工作频率的波长决定,而天线的长度又由辐射臂的臂长决定,例如,对于半波天线,其长度近似为中心工作波长的一半,相应的,水平极化辐射单元1的辐射臂11的臂长可以由该天线装置的中心工作波长决定,而中心工作波长又与该天线装置的中心工作频率相关。技术人员可以根据该天线装置的中心工作频率,确定所收发的电磁波的中心波长,进而确定水平极化辐射单元1的长度,进一步确定辐射臂11的长度,例如,水平极化辐射单元1为偶极子天线,辐射臂11的长度为水平极化辐射单元1的长度的一半。
同样,垂直极化辐射单元2的长度也与波长相关,而波长又与该天线装置的工作频率相关,技术人员可以根据该天线装置的工作频率,确定所收发的电磁波的波长,进而确定垂直极化辐射单元2的长度。
在一种示例中,垂直极化辐射单元2的数量也为多个,例如,可以是两个,可以是三个,也可以是四个等,这多个垂直极化辐射单元2组合后得到的组合可以包括辐状结构,当向这多个垂直极化辐射单元2通入电流时,如图7所示,辐状结构上可以形成辐状电流以收发垂直极化的电磁波,图7中的箭头表示某一时刻电流在垂直极化辐射单元2上的流动方向。
其中,辐状结构是从中心点向四周辐射的形状结构,当这多个垂直极化辐射单元2上通入电流时,辐状结构上通过的电流的方向可以从中心沿着径向向远方延伸,也可以从远方沿着径向向中心聚拢。如图7所示,三个垂直极化辐射单元2上通入同相位电流之后,电流在辐状结构上由中心沿着径向向远方延伸,这种辐状结构的电流能够收发垂直极化电磁波。
其中,多个垂直极化辐射单元2组合时,其端部可以汇合,如图3所示,三个垂直极化辐射单元2的端部未在中心点处汇合。多个垂直极化辐射单元2组合时,其端部也可以在中心点处汇合,如图7和图8所示,三个垂直极化辐射单元2的端部在中心点处汇合。本实施例对多个垂直极化辐射单元2是否在中心点处相交汇合不做限定,技术人员可以根据天线装置在加工制造中的实际情况灵活选择,本实施例中的附图中可以以图8所示的多个垂直极化辐射单元2在中心点处相交汇合示例。
而且,多个垂直极化辐射单元2形成的辐状结构能够收发高密波束覆盖的电磁波。其中,如图2所示,高密波束为顶角较小的圆锥形的波束,使波束集中在较小的覆盖区域内,与高密波束相对的全向波束,如图1所示,全向波束为顶角较大的圆锥形的波束,波束均匀向四周覆盖,其中,如图1所示的圆锥形的波束的锥角为α,如图2所示的圆锥形的波束的锥角 为β,α大于β。可见,多个垂直极化辐射单元2组合后的辐状结构能够收发高密波束覆盖的垂直极化的电磁波。
无线设备,例如,AP(access point,接入点)设备,其内部安装该天线装置,由于临近的两个无线设备中的天线装置收发的是高密波束覆盖的电磁波,因此,高密波束重叠区域比较小,可以减少相互之间的干扰,提升通信质量。
如图3所示,第一环状结构的中心与辐状结构的中心重叠或第一环状结构的中心与辐状结构的中心的间距小于第一阈值,也即是,第一环状结构的中心和辐状结构的中心重叠或者接近重叠,这样,水平极化辐射单元1收发水平极化电磁波和垂直极化辐射单元2收发垂直极化电磁波是通过同一口径的天线装置来进行,可以缩小天线装置的体积,节约空间,有利于天线装置的小型化发展。
基于上述结构可知,该天线装置为双极化天线,既能收发水平极化电磁波,也能收发垂直极化电磁波,提升通信质量。该天线装置能够通过由多个垂直极化辐射单元组合的辐状结构收发高密波束覆盖的电磁波,高密波束重叠区域比较小,可以减少具备该天线装置的邻近的无线设备相互之间的干扰,提升无线设备的通信质量。该天线装置的用于收发水平极化电磁波的第一环状结构的中心和用于收发垂直极化电磁波的辐状结构的中心重叠或者接近重叠,可以缩小天线装置的体积,减少天线装置的占用空间,有利于天线装置和安装该天线装置的无线设备的小型化发展,另外,天线装置的占用体积较小,那么无线设备中可以安装较多的该天线装置,进而可以提升无线设备的通信质量。
其中,多个水平极化辐射单元1的组合辐射的电磁波可以是全向波束,也可以是高密波束,还可以是包括全向波束和高密波束的电磁波,所辐射的电磁波的类型和第一环状结构的口径尺寸,以及合租所包括的环状结构的个数等相关。
例如,多个水平极化辐射单元1的组合所包括的第一环状结构的口径在第一目标范围内,能够收发在全向波束覆盖范围内的水平极化的电磁波,第一环状结构的口径在第二目标范围内,以收发在高密波束覆盖范围内的水平极化的电磁波。
在一种示例中,第一目标范围小于第二目标范围,第一目标范围和第二目标范围的具体取值均与该天线装置所收发的电磁波的波长相关,而波长又与该天线装置的工作频率相关,技术人员可以根据该天线装置的工作频率,确定第一目标范围和第二目标范围的大小。
例如,第一目标范围的上限值可以是0.4λ,或者,第一目标范围的上限值与0.4λ之差的绝对值小于第二阈值,也即是,第一目标范围的上限值可以是0.4λ,也可以是0.4λ附近的某一个值。第二目标范围的下限值为0.4λ,或者,第二目标范围的下限值与0.4λ之差的绝对值小于第二阈值,也即是,第二目标范围的下限值也可以是0.4λ,也可以是0.4λ附近的某一个值。其中,λ为天线装置收发的电磁波在自由空间的波长。
在一种示例中,第一环状结构的口径在第二目标范围内,也即是,第一环状结构的口径比较大,能够收发高密波束的电磁波。第一环状结构的口径在第一目标范围,也即是,第一环状结构的口径比较小,能够收发全向波束。
其中,如果第一环状结构为圆形,则口径为圆形的半径,如果第一环状结构为正方形环,则口径为中心到一边之间的距离。
这样,在加工制造该天线装置时,如果技术人员打算让该天线装置能够收发高密波束的电磁波和全向波束的电磁波,则多个水平极化辐射单元1的组合所包括的第一环状结构的口 径在第一目标范围内,也即是,第一环状结构的口径比较小。这样,该天线装置通过第一环状结构收发在全向波束覆盖范围内的水平极化的电磁波,通过辐状结构收发在高密波束覆盖范围内的垂直极化的电磁波。
可见,该天线装置能够收发全向波束的电磁波,可以提高电磁波的覆盖范围,该天线装置能够收发高密波束,可以减弱邻近两个无线设备之间的相互干扰,提升通信质量。
在加工制造中该天线装置时,而如果技术人员打算让该天线装置能够收发高密波束的电磁波,则多个水平极化辐射单元1的组合所包括的第一环状结构的口径在第二目标范围内,也即是,第一环状结构的口径比较大。这样,该天线装置通过第一环状结构收发在高密波束覆盖范围内的水平极化的电磁波,通过辐状结构收发在高密波束覆盖范围内的垂直极化的电磁波。
可见,该天线装置能够收发水平极化的高密波束的电磁波,还能够收发垂直极化的高密波束的电磁波,可以大大减弱邻近两个无线设备之间的相互干扰,提升通信质量。
技术人员可以根据实际需求,灵活选择多个水平极化辐射单元1的组合所包括的第一环状结构的口径的大小,可以将第一环状结构的口径设置在第一目标范围内,也可以将第一环状结构的口径设置在第二目标范围内。
在一种示例中,水平极化辐射单元1和垂直极化辐射单元2均是通过馈电部件向其输送电流,相应的,该天线装置包括用于向水平极化辐射单元1馈电的馈电部件和用于向垂直极化辐射单元2馈电的馈电部件。
如图9所示,天线装置还包括馈电部件3,每个水平极化辐射单元1包括两个相对称的辐射臂11,馈电部件3包括与两个辐射臂11相对应的两个馈电线31;每个馈电线31与对应的辐射臂11相连,以使由连接在两个馈电线31之间的馈电点输入的电流激励差模模式。
其中,图9中的馈电部件3是向水平极化辐射单元1馈电的部件,而向垂直极化辐射单元2馈电的馈电部件在图中未示出,文中在无特殊说明的情况下,馈电部件3指的是水平极化辐射单元1的馈电部件。
在一种示例中,馈电部件3和水平极化辐射单元1一一对应,每个水平极化辐射单元1对应一个馈电部件3。水平极化辐射单元1包括相对称的两个辐射臂11,馈电部件3也包括两个馈电线31,如图9所示,相对应的水平极化辐射单元1和馈电部件3,一个辐射臂11与一个馈电线31相连,另一个辐射臂11与另一个馈电线31相连。
其中,每个馈电线31和对应的辐射臂11的任意位置处相连。例如,如图9所示,相对应的馈电线31的端部与辐射臂11的端部相连。又例如,相对应的馈电线31的端部也可以与辐射臂11的中间位置相连。本实施例对馈电线31和对应的辐射臂11的连接位置不做限定,技术人员可以根据实际情况来选择,例如,可以根据该天线装置的一些性能指标来选择合适的位置。
如图9所示,B所指示的区域为馈电部件3向对应的水平极化辐射单元1馈电的馈电区域,也可以称为馈电点,A所指示的区域为垂直极化辐射单元2的馈电部件向垂直极化辐射单元2馈电的区,也可以称为馈电点。其中,技术人员可以根据能量传输损耗最小的原则选择馈电点的位置,将能量传输损耗最小所对应的位置作为馈电点。
在一种示例中,如图9所示,每个馈电线31与对应的辐射臂11相连,通过馈电点向水平极化辐射单元1输入电流,如图10所示,图10中的箭头表示某一时刻电流的流动方向, 馈电部件3的两个馈电线31上的电流的方向相反,可以将两个馈电线31上的电流方向相反的工作模式定义为该天线装置的差模模式。由于馈电部件3的两个馈电线31上方向相反的电流抵消,不能震荡产生电磁波,馈电部件3的两个馈电线31只作为馈线的作用,在射频电路和水平极化辐射单元1之间承担能量传输的作用。该差模模式下,只有水平极化辐射单元1的辐射臂11上的电流能够形成环状,来收发水平极化的电磁波。
其中,如图10所示,通过馈电点B向水平极化辐射单元1的两个辐射臂11输入电流,馈电部件3的两个馈电线31上的电流的方向相反的原因是,馈电点B的一端从电源正极引向两个馈电线中的一个馈电线,馈电点的另一端从电源的负极引向两个馈电线中的另一个馈电线,两个馈电线的一端相连,如图10所示,可以构成闭合回路,那么,两个馈电线上的电流的方向相反。
与差模模式相反的为共模模式,可以将两个馈电线31上的电流方向相反的工作模式定义为该天线装置的共模模式,如图11所示,图11中箭头表示某一时刻电流的方向,为两个馈电线31上的电流方向相同。
其中,该天线装置的共模模式和差模模式可以同时存在,例如,如图10所示,通过馈电点B馈电,可以使向同一个水平极化辐射单元1馈电的两个馈电线31上的电流的方向相反,激励差模模式;图7所示的垂直极化辐射单元2的感应电流加载在与之邻近的由相连的馈电线31和辐射臂11构成的寄生辐射单元6上,如图12所示,可以使向同一个水平极化辐射单元1馈电的两个馈电线31上的电流的方向相同,激励共模模式,水平极化辐射单元1和垂直极化辐射单元2可以同时工作,所以该天线装置的共模模式和差模模式也可以同时工作。
在一种示例中,相互连接的馈电线31的长度和辐射臂11的长度之和等于或者近似等于0.5λ的情况下,相互连接的馈电线31和辐射臂11可以构成半波天线,能够辐射电磁波。而图7所示的垂直极化辐射单元2的感应电流,能够耦合在与其邻近的相互连接的馈电线31和辐射臂11所构成的半波天线上,使该半波天线能够收发与垂直极化辐射单元2相同的电磁波,即垂直极化的高密波束的电磁波。由于相互连接的馈电线31和辐射臂11所构成的半波天线寄生于垂直极化辐射单元2,可以将相互连接的馈电线31和辐射臂11所构成的半波天线称为寄生辐射单元6。
其中,垂直极化辐射单元2辐射的电磁波所产生的感应电流,加载在寄生辐射单元6上,两个馈电线31上通过的电流的方向相同的原因是,垂直极化辐射单元2上的电流的方向同向,其中,同向可以是如图7所示由中心指向四周,也可以是由四周汇聚至中心。垂直极化辐射单元2上的电流的方向同向,那么,垂直极化辐射单元2的感应电流的方向也是同向。那么,如图12所示,每个垂直极化辐射单元2的感应电流加载在与之邻近的寄生辐射单元6上,便可以使两个馈电线31上通过的电流的方向相同。
在一种示例中,在水平极化辐射单元1为偶极子天线中的半波天线的情况下,相互连接的辐射臂11和馈电线31的长度可以相等。这是因为,水平极化辐射单元1是偶极子天线中的半波天线,相应的,两个辐射臂11相对称,且等于
Figure PCTCN2021114778-appb-000001
由于水平极化辐射单元1和垂直极化辐射单元2的工作频率相等,寄生辐射单元6也属于半波天线,相互连接的馈电线31和辐射臂11的长度之和为
Figure PCTCN2021114778-appb-000002
辐射臂11的长度为
Figure PCTCN2021114778-appb-000003
那么,馈电线31的长度也可以是
Figure PCTCN2021114778-appb-000004
所以馈电线31的长度和辐射臂11的长度可以相等。例如,如图13所示,馈电线31的长度为 D,水平极化辐射单元1的长度为L,辐射臂11的长度为
Figure PCTCN2021114778-appb-000005
那么,馈电线31的长度D等于或者近似等于
Figure PCTCN2021114778-appb-000006
当然,馈电线31和辐射臂11的长度也可以不相等,只要满足同一个水平极化辐射单元1的两个辐射臂11的长度之和为
Figure PCTCN2021114778-appb-000007
相连的馈电线31和辐射臂11的长度之和为
Figure PCTCN2021114778-appb-000008
即可,至于同一个水平极化辐射单元1的两个辐射臂11的长度是否相等,以及相连的馈电线31和辐射臂11的长度是否相等不做限定。
可见,如图9所示,根据上述对差模模式的定义,通过馈电点B向水平极化辐射单元1馈电,馈电线31上通过的电流的方向相反,能够激励差模模式。如图12所示,根据上述对共模模式的定义,垂直极化辐射单元2辐射的电磁波所产生的感应电流,加载在寄生辐射单元6上,能够激励共模模式波。与只有环状结构没有辐状结构的天线装置相比,该天线装置的工作模式包括差模模式和共模模式,丰富了其工作模式。
由此可见,该天线装置的水平极化辐射单元1能够收发水平极化电磁波。垂直极化辐射单元2能够收发垂直极化高密波束的电磁波。相互连接的馈电线31和辐射臂11构成的寄生辐射单元6寄生在垂直极化辐射单元2下,也能够收发垂直极化高密波束的电磁波,对垂直极化辐射单元2进行了加强,能够扩展垂直极化辐射单元2的带宽。
由上述可知,馈电部件3的两个馈电线31在差模模式,多个水平极化辐射单元1的组合所包括的第一环状结构能够收发水平极化电磁波,而多个垂直极化辐射单元2的组合所包括的辐状结构能够收发垂直极化电磁波。为了避免水平极化电磁波和垂直极化电磁波相互干扰,相应的,如图14所示,多个垂直极化辐射单元2中第一垂直极化辐射单元2a位于第一水平极化辐射单元1a和第二水平极化辐射单元1b的镜像面中。
其中,第一垂直极化辐射单元2a为多个垂直极化辐射单元2中的任一垂直极化辐射单元,第一水平极化辐射单元1a和第二水平极化辐射单元1a为多个水平极化辐射单元1中位于第一垂直极化辐射单元2a两侧且与第一垂直极化辐射单元2a相邻的水平极化辐射单元。
在一种示例中,镜像面也可以称为旋转对称面,或者对称面,或者差模模式的等效电镜像面。每个垂直极化辐射单元2均位于邻近的两个水平极化辐射单元1的镜像面中,这样,垂直极化辐射单元2辐射的垂直极化电磁波和水平极化辐射单元1辐射的水平极化电磁波互不影响,因此,该天线装置能够同时收发垂直极化电磁波和水平极化电磁波。
由上述可知,多个水平极化辐射单元1的组合所包括的第一环状结构的口径如果比较大,则能够收发在高密波束覆盖的水平极化电磁波,如果口径比较小,则能够收发在全向波束覆盖的水平极化电磁波。为了使多个水平极化辐射单元1的组合既能够收发在高密波束覆盖的水平极化电磁波,又能够收发在全向波束覆盖的水平极化电磁波。
相应的,多个水平极化辐射单元1的组合可以包括多个环状结构,一些环状结构的口径比较小,用来收发在全向波束覆盖范围内的水平极化的电磁波,另一些环状结构的口径比较大,用来收发在高密波束覆盖范围内的水平极化的电磁波。这些环状结构的中心重叠或者接近重叠。
其中,本实施例对多个水平极化辐射单元1的组合所包括的环状结构的个数不做限定,例如,可以包括两个环状结构,也可以包括两个以上的环状结构,可以以两个环状结构进行 示例,分别称为第一环状结构和第二环状结构。
其中,这多个环状结构中各个环状结构的具体形状可以相同,也可以不相同,本实施例对此不做限定,例如,这多个环状结构的形状相同均为圆形,那么这多个环状结构为同心圆。
相应的,如图15所示,多个水平极化辐射单元1的组合还包括第二环状结构,用于通过环形电流以收发水平极化的电磁波;第一环状结构的中心与第二环状结构的中心重叠,或第一环状结构的中心与第二环状结构的中心的间距小于阈值。
其中,第一环状结构的具体形状和第二环状结构的具体形状可以相同,也可以不相同,例如,第一环状结构和第二环状结构均为圆形,第一环状结构和第二环状结构为同心圆。又例如,第一环状结构为圆形,第二环状结构为多边形环。
在一种示例中,第一环状结构和第二环状结构中,口径在第一目标范围内的,用来收发在全向波束覆盖范围内的水平极化的电磁波,口径在第二目标范围内的,用来收发在高密波束覆盖范围内的水平极化的电磁波。可见,该天线装置可以通过环状结构的数量,实现收发全向波束和高密波束,实现多波束天线。
其中,第一目标范围小于第二目标范围,例如,第一目标范围的上限值为0.4λ或者约等于0.4λ,第二目标范围的下限值为0.4λ或者约等于0.4λ,λ为该天线装置收发的电磁波在自由空间的波长。
例如,第一环状结构的口径在第一目标范围内,以收发在全向波束覆盖范围内的水平极化的电磁波,第二环状结构的口径在第二目标范围内,以收发在高密波束覆盖范围内的水平极化的电磁波。又例如,第一环状结构的口径在第二目标范围内,以收发在高密波束覆盖范围内的水平极化的电磁波,第二环状结构的口径在第一目标范围内,以收发在全向波束覆盖范围内的水平极化的电磁波。
而且,第一环状结构的中心和第二环状结构的中心重叠或者接近重叠,可以缩小天线装置的占用空间。
其中,为便于介绍,可以将位于内部的环状结构称为第一环状结构,将位于外部的环状结构称为第二环状结构。这样,第一环状结构的口径较小,第二环状结构的口径较大,那么,第一环状结构可以用来收发在全向波束覆盖范围内的水平极化的电磁波,第二环状结构可以用来收发在高密波束覆盖范围内的水平极化的电磁波。
在一种示例中,组成第一环状结构的水平极化辐射单元1的长度和组成第二环状结构的水平极化辐射单元1的长度可以相等,也可以不相等,技术人员可以根据实际需求选择,本实施例对此不做限定。
由此可见,该天线装置的第一环状结构能够收发在全向波束覆盖范围内的水平极化的电磁波,由第一环状结构的馈电线和辐射臂构成的寄生辐射单元能够收发高密波束覆盖范围内的垂直极化的电磁波。该天线装置的第二环状结构能够收发在高密波束覆盖范围内的水平极化的电磁波,第二环状结构的馈电线和辐射臂构成的寄生辐射单元能够收发高密波束覆盖范围内的垂直极化的电磁波。该天线装置的辐状结构能够收发高密波束覆盖范围内的垂直极化的电磁波。可见,该天线装置为多波束双极化天线。
在一种应用场景中,高密波束通常适用于人员密度比较大的场景,全向波束通常适用于人员密度比较小的场景中。这是因为,无线通信设备(如手机等)比较多的场景下,需要打开较多的无线设备(如AP设备),如果每个无线设备中的天线装置收发的电磁波波束切换至 高密波束,那么,可以减少邻近两个无线设备的电磁波的重叠区域,减弱相互干扰,提升通信质量。而且,切换至高密波束的电磁波,由于高密波束的电磁波其覆盖范围小比较集中,可以使得单位面积内的电磁波的强度比较大,进而可以提升通信质量。
而在无线设备比较少的场景下,由于全向波束的电磁波的覆盖范围均匀且广泛,打开较少的无线设备就能满足使用需求,那么为了减少功耗,可以打开较少的无线设备。
为了根据人员密度动态调整该天线装置的波束,相应的,该天线装置还可以包括开关部件,用于切换通过第一环状结构收发水平极化的电磁波和通过第二环状结构收发水平极化的电磁波。
其中,第一环状结构可以是口径比较小的环状结构,用来收发在全向波束覆盖范围内的水平极化的电磁波。第二环状结构可以是口径比较大的环状结构,用来收发高密波束覆盖范围内的水平极化的电磁波。
在一种应用场景中,在人员密度比较大的场景下,该天线装置能够检测到无线通信设备比较多,通过开关部件可以切换为第二环状结构工作,用来收发在高密波束覆盖范围内的水平极化的电磁波。在人员密度比较小的场景下,该天线装置能够检测到无线通信设备比较少,通过开关部件可以切换为第一环状结构工作,用来收发在全向波束覆盖范围内的水平极化的电磁波。可见,该天线装置可以在全向波束和高密波束之间切换,进而可以提升该天线装置的使用灵活性。
在一种应用场景中,无线设备,例如,AP设备中可以安装多个上述天线装置,体积比较大的室内可以布置多个AP设备。当检测到人员密度比较大时,可以打开较多甚至全部的AP设备,并且将每个AP设备中的天线装置切换为第二环状结构工作,用来收发在高密波束覆盖范围内的水平极化的电磁波,以减少相邻两个AP设备中的天线装置发生相互干扰的情况,提升通信质量。
而当检测到人员密度比较小时,可以打开较少的AP设备,并且将每个AP设备中的天线装置切换为第一环状结构工作,用来收发在全向波束覆盖范围内的水平极化的电磁波,以提高室内电磁波的覆盖范围,减少功耗。
在一种示例中,如图15所示,多个水平极化辐射单元1、多个垂直极化辐射单元2和馈电部件3可以均位于线路板4上。例如,多个水平极化辐射单元1、多个垂直极化辐射单元2和馈电部件3可以印刷在线路板4上,加工制造过程简单,有利于批量化生产。
当然,该天线装置上的辐射单元也可以通过冲压金属片的方式加工制造,例如,多个水平极化辐射单元1、多个垂直极化辐射单元2和馈电部件3可以通过冲压金属片的方式加工制造。本实施例对该天线装置的辐射单元的加工制造方式不做限定,技术人员可以根据实际需求灵活选择,本实施例的附图中可以以辐射单元印刷在线路板4上进行示例。
由上述可知,该天线装置能收发在高密波束覆盖范围内的垂直极化的电磁波,能收发高密波束覆盖范围内的水平极化的电磁波,还能收发全向波束覆盖范围内的水平极化的电磁波,为了使该天线装置也能收发在全向波束覆盖范围内的垂直极化的电磁波,相应的,如图16所示,该天线装置还包括竖向垂直极化辐射单元5,竖向垂直极化辐射单元5与水平极化辐射单元1和垂直极化辐射单元2所在的平面相交,用于收发在全向波束覆盖范围内的垂直极化电磁波。
在一种示例中,竖向垂直极化辐射单元5与线路板4之间的夹角在0至180度之间,其 中不包括0度和180度,例如,如图16所示,竖向垂直极化辐射单元5与线路板4之间的夹角为90度,竖向垂直极化辐射单元5与线路板4相垂直。
在一种示例中,竖向垂直极化辐射单元5可以是该天线装置的支架,用来将线路板4支在无线设备的壳体中,该支架为导体,其长度和天线装置所辐射饿的电磁波的波长相关,例如,竖向垂直极化辐射单元5的长度可以为波长的一半,能够收发在全向波束覆盖范围内的垂直极化电磁波。
由此可见,该天线装置能够通过第一环状结构收发全向波束的水平极化电磁波,通过第一环状结构的馈电线和辐射臂构成的寄生辐射单元收发高密波束的垂直极化电磁波。通过第二环状结构收发高密波束的水平极化电磁波,通过第二环状结构的馈电线和辐射臂构成的寄生辐射单元收发高密波束的垂直极化电磁波。通过辐状结构收发高密波束的垂直极化电磁波。通过竖向垂直极化辐射单元收发全向波束的垂直极化电磁波。可见,该天线装置为多波束双极化天线,可以扩大其使用场景,提高其使用灵活性。
在本申请实施例中,该天线装置为双极化天线,既能收发水平极化电磁波,也能收发垂直极化电磁波,可以提升通信质量。该天线装置能够收发高密波束覆盖的电磁波,高密波束重叠区域比较小,可以减少具备该天线装置的邻近的无线设备相互之间的干扰,提升无线设备的通信质量。该天线装置的用于收发水平极化电磁波的第一环状结构的中心和用于收发垂直极化电磁波的辐状结构的中心重叠或者接近重叠,可以缩小天线装置的体积,减少天线装置的占用空间,有利于天线装置和安装该天线装置的无线设备的小型化发展。另外,天线装置的占用体积较小,那么无线设备中可以安装较多的该天线装置,进而可以提升无线设备的通信质量。
本申请还提供了一种无线设备,该无线设备可以是位于室内的AP(access point,接入点)设备,无线设备可以包括射频电路和耦合到射频电路的天线装置,该天线装置为上述所述的天线装置。例如,无线设备中可以包括多个上述天线装置,每个天线装置可以通过竖向垂直极化辐射单元5支撑在无线设备的壳体中。
在一种应用场景中,无线设备中可以安装多个上述天线装置,体积比较大的室内可以布置多个无线设备。当检测到人员密度比较大时,可以打开较多甚至全部的无线设备,并且将每个无线设备中的天线装置切换为用来收发在全向波束覆盖范围内的水平极化的电磁波的环状结构,以提高室内电磁波的覆盖范围,提升通信质量。
而当检测到人员密度比较小时,可以打开较少的无线设备,并且将每个无线设备中的天线装置切换为用来收发在高密波束覆盖范围内的水平极化的电磁波的环状结构,以减少相邻两个无线设备中的天线装置发生相互干扰的情况,进而提升通信质量。
在本申请实施例中,该无线设备中的天线装置,如上述所述为双极化天线,既能收发水平极化电磁波,也能收发垂直极化电磁波,可以提升通信质量。该天线装置能够收发高密波束覆盖的电磁波,高密波束重叠区域比较小,可以减少具备该天线装置的邻近的无线设备相互之间的干扰,提升无线设备的通信质量。该天线装置的用于收发水平极化电磁波的第一环状结构的中心和用于收发垂直极化电磁波的辐状结构的中心重叠或者接近重叠,可以缩小天线装置的体积,减少天线装置的占用空间,有利于天线装置和安装该天线装置的无线设备的小型化发展。另外,天线装置的占用体积较小,那么无线设备中可以安装较多的该天线装置, 进而可以提升无线设备的通信质量。
以上所述仅为本申请一个实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种天线装置,其特征在于,所述天线装置包括多个水平极化辐射单元(1)和多个垂直极化辐射单元(2);
    所述多个水平极化辐射单元(1)的组合包括第一环状结构,用于收发水平极化的电磁波;
    所述多个垂直极化辐射单元(2)的组合包括辐状结构,用于收发垂直极化的电磁波;
    所述第一环状结构的中心与所述辐状结构的中心重叠或所述第一环状结构的中心与所述辐状结构的中心的间距小于第一阈值。
  2. 根据权利要求1所述的天线装置,其特征在于,所述第一环状结构的口径在第一目标范围内,以收发在全向波束覆盖范围内的水平极化的电磁波,或者所述第一环状结构的口径在第二目标范围内,以收发在高密波束覆盖范围内的水平极化的电磁波。
  3. 根据权利要求1所述的天线装置,其特征在于,所述天线装置还包括馈电部件(3),每个所述水平极化辐射单元(1)包括两个相对称的辐射臂(11),所述馈电部件(3)包括与两个所述辐射臂(11)相对应的两个馈电线(31);
    每个所述馈电线(31)与对应的辐射臂(11)相连,以使由连接在两个所述馈电线(31)之间的馈电点输入的电流激励差模模式。
  4. 根据权利要求3所述的天线装置,其特征在于,所述馈电线(31)的长度和所述辐射臂(11)的长度之和等于0.5λ,其中,λ为所述天线装置收发的电磁波在自由空间的波长。
  5. 根据权利要求3所述的天线装置,其特征在于,每个所述馈电线(31)和对应的辐射臂(11)的任意位置处相连。
  6. 根据权利要求2至5任一所述的天线装置,其特征在于,所述多个垂直极化辐射单元(2)中第一垂直极化辐射单元(2a)位于第一水平极化辐射单元(1a)和第二水平极化辐射单元(1b)的镜像面中,所述第一垂直极化辐射单元(2a)为所述多个垂直极化辐射单元(2)中的任一垂直极化辐射单元,所述第一水平极化辐射单元(1a)和所述第二水平极化辐射单元(2a)为所述多个水平极化辐射单元(1)中与所述第一垂直极化辐射单元(2a)相邻的水平极化辐射单元。
  7. 根据权利要求2至6任一所述的天线装置,其特征在于,所述第一目标范围小于所述第二目标范围;
    所述第一目标范围的上限值为0.4λ,或者,所述第一目标范围的上限值与0.4λ之差的绝对值小于第二阈值,其中,λ为所述天线装置收发的电磁波在自由空间的波长;
    所述第二目标范围的下限值为0.4λ,或者,所述第一目标范围的下限值与0.4λ之差的绝对值小于第二阈值。
  8. 根据权利要求1至5任一所述的天线装置,其特征在于,所述多个水平极化辐射单元(1)的组合还包括第二环状结构,用于收发水平极化的电磁波;
    所述第一环状结构的中心与所述第二环状结构的中心重叠,或所述第一环状结构的中心与所述第二环状结构的中心的间距小于所述第一阈值。
  9. 根据权利要求8所述的天线装置,其特征在于,所述第一环状结构的口径在第一目标范围内,以收发在全向波束覆盖范围内的水平极化的电磁波,所述第二环状结构的口径在第二目标范围内,以收发在高密波束覆盖范围内的水平极化的电磁波,或者,
    所述第一环状结构的口径在第二目标范围内,以收发在高密波束覆盖范围内的水平极化的电磁波,所述第二环状结构的口径在第一目标范围内,以收发在全向波束覆盖范围内的水平极化的电磁波。
  10. 根据权利要求8或9所述的天线装置,其特征在于,所述天线装置还包括开关部件,用于切换通过所述第一环状结构收发水平极化的电磁波和通过所述第二环状结构收发水平极化的电磁波。
  11. 根据权利要求1至10任一所述的天线装置,其特征在于,每个所述水平极化辐射单元(1)的辐射臂(11)的形状为弧形,所述第一环状结构的形状为圆形。
  12. 根据权利要求1至11任一所述的天线装置,其特征在于,所述多个水平极化辐射单元(1)和所述多个垂直极化辐射单元(2)均在线路板(4)上。
  13. 根据权利要求1至12任一所述的天线装置,其特征在于,所述天线装置还包括竖向垂直极化辐射单元(5),所述竖向垂直极化辐射单元(5)与所述水平极化辐射单元(1)和所述垂直极化辐射单元(2)所在的平面相交,用于收发在全向波束覆盖范围内的垂直极化电磁波。
  14. 一种无线设备,其特征在于,所述无线设备包括射频电路和耦合到所述射频电路的如权利要求1至13任一所述的天线装置。
PCT/CN2021/114778 2020-08-30 2021-08-26 天线装置和无线设备 WO2022042648A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010891493.8A CN114122684B (zh) 2020-08-30 2020-08-30 天线装置和无线设备
CN202010891493.8 2020-08-30

Publications (1)

Publication Number Publication Date
WO2022042648A1 true WO2022042648A1 (zh) 2022-03-03

Family

ID=80352672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114778 WO2022042648A1 (zh) 2020-08-30 2021-08-26 天线装置和无线设备

Country Status (2)

Country Link
CN (1) CN114122684B (zh)
WO (1) WO2022042648A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116031627A (zh) * 2023-03-28 2023-04-28 安徽大学 一种微型化超低频天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931479A (zh) * 2012-11-02 2013-02-13 大连海事大学 一种紧凑型平面双频全向圆极化天线
CN103811857A (zh) * 2014-01-21 2014-05-21 盛宇百祺(南京)通信技术有限公司 垂直极化全向天线和具有其的4g双极化全向吸顶天线
CN106602230A (zh) * 2016-11-14 2017-04-26 广东通宇通讯股份有限公司 小型化增强型双极化全向吸顶天线
EP3182512A1 (fr) * 2015-12-18 2017-06-21 Thales Antenne multi-acces
US10418723B1 (en) * 2017-12-05 2019-09-17 Rockwell Collins, Inc. Dual polarized circular or cylindrical antenna array

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284200A (ja) * 1996-04-10 1997-10-31 Mitsubishi Electric Corp 無線通信装置及び無線通信方法
DE102009011542A1 (de) * 2009-03-03 2010-09-09 Heinz Prof. Dr.-Ing. Lindenmeier Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter Satellitenfunksignale
CN101728645B (zh) * 2009-12-25 2014-04-02 山东科技大学 双极化全向天线
CN104604028A (zh) * 2012-08-27 2015-05-06 日本电业工作株式会社 天线
WO2014143320A2 (en) * 2012-12-21 2014-09-18 Drexel University Wide band reconfigurable planar antenna with omnidirectional and directional patterns
EP3096546B1 (en) * 2014-06-19 2020-11-04 Huawei Technologies Co. Ltd. Base station and beam covering method
JP5872001B1 (ja) * 2014-08-21 2016-03-01 電気興業株式会社 偏波共用八木アンテナ
TWI572093B (zh) * 2015-07-30 2017-02-21 啟碁科技股份有限公司 天線系統
CN106207456B (zh) * 2016-08-22 2021-10-22 广东通宇通讯股份有限公司 一种多频天线
CN106159464A (zh) * 2016-08-26 2016-11-23 深圳前海科蓝通信有限公司 一种定向窄波选择智能天线系统
CN107104278A (zh) * 2017-04-26 2017-08-29 山西大学 一种在俯仰面具有宽轴比波束的低剖面全向圆极化天线
WO2018232782A1 (zh) * 2017-06-19 2018-12-27 深圳市安拓浦科技有限公司 一种双极化全向天线
CN108631056B (zh) * 2018-04-18 2020-06-16 中国科学院国家空间科学中心 一种双焦点可重构传输阵列天线及其制备方法
CN109301488B (zh) * 2018-09-06 2021-03-02 深圳大学 一种应用于室内分布系统的全向双宽频双极化天线
CN111129749B (zh) * 2018-10-31 2021-10-26 华为技术有限公司 一种双极化天线、天线阵列及通讯设备
CN210040526U (zh) * 2019-04-24 2020-02-07 佛山市迪隆通信设备有限公司 一种光纤分布系统设备全向双极化天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931479A (zh) * 2012-11-02 2013-02-13 大连海事大学 一种紧凑型平面双频全向圆极化天线
CN103811857A (zh) * 2014-01-21 2014-05-21 盛宇百祺(南京)通信技术有限公司 垂直极化全向天线和具有其的4g双极化全向吸顶天线
EP3182512A1 (fr) * 2015-12-18 2017-06-21 Thales Antenne multi-acces
CN106602230A (zh) * 2016-11-14 2017-04-26 广东通宇通讯股份有限公司 小型化增强型双极化全向吸顶天线
US10418723B1 (en) * 2017-12-05 2019-09-17 Rockwell Collins, Inc. Dual polarized circular or cylindrical antenna array

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116031627A (zh) * 2023-03-28 2023-04-28 安徽大学 一种微型化超低频天线
CN116031627B (zh) * 2023-03-28 2023-06-16 安徽大学 一种微型化超低频天线
US11901617B1 (en) 2023-03-28 2024-02-13 Anhui University Miniaturized ultra-low frequency antenna

Also Published As

Publication number Publication date
CN114122684B (zh) 2023-04-18
CN114122684A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
JP6981475B2 (ja) アンテナ、アンテナの構成方法及び無線通信装置
EP3007275B1 (en) Antenna radiation unit and antenna
US8988298B1 (en) Collocated omnidirectional dual-polarized antenna
JP2018525909A (ja) BluetoothとWiFiの共存のための高いアイソレーションをもつ薄型アンテナ
JP2005509345A (ja) 空間第2高調波を利用するデュアル・バンド・フェーズド・アレイ
EP2631991B1 (en) Microstrip antenna
US7239288B2 (en) Access point antenna for a wireless local area network
CN111541019A (zh) 一种低剖面垂直极化高增益全向天线
US20170237174A1 (en) Broad Band Diversity Antenna System
US11757178B2 (en) Antenna of a terminal device
KR101541374B1 (ko) 다중대역 다이폴 안테나 및 시스템
WO2021077718A1 (zh) 天线组件和无线设备
JP2009188737A (ja) 平面アンテナ
WO2022042648A1 (zh) 天线装置和无线设备
CN110112561A (zh) 一种单极化天线
US20220328974A1 (en) Reconfigurable Antenna and Network Device
US10148002B2 (en) Horizontally-polarized antenna for microcell coverage having high isolation
US20210234262A1 (en) Antenna and Wireless Device
WO2019100376A1 (zh) 全向阵列天线及其波束赋形方法
US20210050654A1 (en) Omnidirectional antenna system for macro-macro cell deployment with concurrent band operation
WO2021233353A1 (zh) 天线装置和无线电通信设备
Huang et al. A switchable or MIMO antenna for V2X communication
JP4689503B2 (ja) アンテナ装置
JP2005191781A (ja) 2周波共用パッチアンテナ
CN114512798B (zh) 可重构天线及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860482

Country of ref document: EP

Kind code of ref document: A1