WO2019100376A1 - 全向阵列天线及其波束赋形方法 - Google Patents
全向阵列天线及其波束赋形方法 Download PDFInfo
- Publication number
- WO2019100376A1 WO2019100376A1 PCT/CN2017/113091 CN2017113091W WO2019100376A1 WO 2019100376 A1 WO2019100376 A1 WO 2019100376A1 CN 2017113091 W CN2017113091 W CN 2017113091W WO 2019100376 A1 WO2019100376 A1 WO 2019100376A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- omnidirectional
- array
- array antenna
- sub
- directional
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0025—Modular arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/20—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q25/00—Antennas or antenna systems providing at least two radiating patterns
- H01Q25/04—Multimode antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0452—Multi-user MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
Definitions
- the present invention relates to the field of communications, and in particular, to a MIMO omnidirectional array antenna beamforming method and technique suitable for 5G applications.
- the omnidirectional antenna is the most primitive, simple, and most useful type of antenna family.
- horizontal omnidirectional radiation is the most significant feature of omnidirectional antennas, and it is exactly what wireless communication needs most.
- the omnidirectional antenna has the natural advantages of miniaturization and low cost, and is easy to install, easy to deploy, and visually concealed.
- multiple pairs of co-circumferential and sectorized methods are required.
- the construction cost of the site is high, and the user's visual sense is poor.
- the above advantages make the omnidirectional antenna a classic antenna type in the field of wireless communication, and have been widely used in the fields of short wave communication, cellular communication, traffic policing, national defense military, aerospace, marine exploration, amateur radio and the like. Stimulated by the continuous and strong demand of wireless services, omnidirectional antennas have received a lot of innovative research, and their performance has been continuously improved and enhanced, and the application field has been further expanded. It is foreseeable that omnidirectional antennas will renew their vitality and continue to shine in future wireless systems.
- Massive MIMO Massive MIMO
- the research and development of mMIMO antennas mainly focuses on large macro base station scenarios. Due to high capacity requirements, large coverage, and many coverage modes, the antenna array size of such base stations is usually large, such as 128 units or 256 units, and the operating frequency bands are low frequency 2.6G, 3.5G, and 4.5G. Obviously, like the traditional macro station antenna, the mMIMO array has large antenna size, heavy weight, difficult site selection, difficult installation, and higher cost.
- the antenna in the field has the technical problems of large size, heavy weight, difficult site selection, difficult installation, high cost, low gain, less shaped beam, and complicated algorithm.
- the object of the present invention is to provide an omnidirectional array antenna beamforming method and an omnidirectional array antenna with high gain, multiple shaped beams and simple algorithm.
- the symmetric oscillator of the coaxial array of the omnidirectional sub-array unit is a half-wave oscillator, and may also include a half-wave oscillator or a vibrator of other wavelengths.
- the symmetric oscillators of the omnidirectional sub-array unit are coaxially arrayed into a vertically polarized sub-array or a coplanar array into a horizontally polarized sub-array.
- the symmetric vibrator of the omnidirectional sub-array unit is printed on a PCB dielectric plate, and the dielectric plate is perpendicular to the diameter direction of the circular array.
- the symmetrical vibrator of the omnidirectional sub-array unit can also be constructed in the form of a metal tube.
- the different types of beams comprise: single omnidirectional beam, single directional beam, directional double narrow beam, directional double wide beam, non-collinear directional dual beam, unequal width double beam, directional three beam and directional four beam At least one of them.
- the shaping algorithm of the single directional beam is an equal amplitude excitation of each omnidirectional sub-array unit, and the phase satisfies:
- i is an integer
- n 1, 2,3,...,N
- the elevation angle ⁇ m and azimuth of the maximum beam pointing respectively
- the present invention has the following advantages:
- the omnidirectional array antenna beamforming method of the invention adopts N array elements and array elements consisting of p-ary symmetric oscillator sub-arrays, and uniquely uses the following beamforming algorithm to realize different types of service beams, and more
- the realization of MIMO beamforming capability has high gain, multiple shaped beams, simple algorithm and low coupling of array elements.
- the omnidirectional array antenna will be 5G applications show great potential.
- the method has the characteristics of novel idea, clear principle, universal method, simple and easy to perform, and beamforming design for H, V single-polarized omnidirectional array antenna or H/V dual-polarized omnidirectional antenna. The offer is also valid and applicable.
- the different types of beams are equally in-phase excited to form an omnidirectional beam covering the horizontal periphery; 2) equal amplitude different phase excitation to form a horizontal directional beam, pointing to an azimuth;
- the equal amplitude excitation is performed to form a horizontal bidirectional narrow beam, the two beams are collinear and equal in width;
- the equal amplitude different phases are excited to form a horizontal bidirectional wide beam, and the two beams are collinear and equal in width;
- the different phases are excited to form a horizontal two-way unequal beam, the two beams are collinear and unequal in width; 6) the equal amplitude is excited by different phases to form a horizontal bidirectional narrow beam, and the two beams are equal in width and not collinear;
- the equal amplitude is excited by different phases to form a horizontally oriented three-beam, three beams with unequal wave widths and unequal angles; 8) equal amplitude and different phase excitations to form a horizontally
- the omnidirectional array antenna beamforming method of the invention adopts N array elements and array elements consisting of p-ary symmetric oscillator sub-arrays, and uniquely uses the following beamforming algorithm to realize different types of service beams, and more
- the realization of MIMO beamforming capability has high gain, multiple shaped beams, simple algorithm and low coupling of array elements.
- the omnidirectional array antenna will show great potential in 5G applications.
- the method has the characteristics of novel idea, clear principle, universal method, simple and easy to perform, and beamforming design for H, V single-polarized omnidirectional array antenna or H/V dual-polarized omnidirectional antenna. The offer is also valid and applicable.
- the different types of beams are equally in-phase excited to form an omnidirectional beam covering the horizontal periphery; 2) equal amplitude different phase excitation to form a horizontal directional beam, pointing to an azimuth;
- the equal amplitude excitation is performed to form a horizontal bidirectional narrow beam, the two beams are collinear and equal in width;
- the equal amplitude different phases are excited to form a horizontal bidirectional wide beam, and the two beams are collinear and equal in width;
- the different phases are excited to form a horizontal two-way unequal beam, the two beams are collinear and unequal in width; 6) the equal amplitude is excited by different phases to form a horizontal bidirectional narrow beam, and the two beams are equal in width and not collinear;
- the equal amplitude is excited by different phases to form a horizontally oriented three-beam, three beams with unequal wave widths and unequal angles; 8) equal amplitude different phase excitations to form a horizontally
- the present invention designs an eight-element beam-shaped omnidirectional antenna for future 5G applications, and eight sub-array units are evenly arranged on a circumference having a center wavelength (1 ⁇ c ).
- the array realizes azimuth-plane single omnidirectional beam, single directional beam, equal-width or unequal-width dual beam, collinear or non-collinear dual beam, triple beam and four beam coverage, which basically meets Beam requirements for multiple business models.
- This makes the omnidirectional shaped array which will become an extremely potential antenna solution for future 5G applications.
- the method has the characteristics of novel idea, clear principle, universal method, simple and easy to use, and is also applicable to the beamforming design of H, V single-polarized omnidirectional antenna or H/V dual-polarized omnidirectional antenna. Effective.
- FIG. 1 is a schematic diagram showing the definition of a Cartesian coordinate system used in the antenna model of the present invention.
- FIG. 2 is a front elevational view of an omnidirectional sub-array unit of an omnidirectional array antenna of the present invention.
- FIG. 3 is a top plan view of an omnidirectional array antenna model of the present invention.
- FIG. 4 is a front elevational view of the omnidirectional array antenna model of the present invention.
- FIG. 5 is a standing wave VSWR curve of the omnidirectional sub-array unit of the present invention.
- the present invention aims to provide a beam formable omnidirectional array antenna design for future 5G applications, and to shape the beam of H, V single-polarized omnidirectional array antenna or H/V dual-polarized omnidirectional antenna.
- the design provides an effective reference method.
- the method for constructing the omnidirectional array antenna of the present invention is as follows:
- Step one establish a spatial Cartesian coordinate system, as shown in Figure 1.
- Step 2 Construct an omnidirectional sub-array unit: in the YOZ plane, construct a ternary omnidirectional sub-array unit, including a dielectric plate 10, symmetric arms 21, 22, a center feed point 34, and a short-circuit point 35 at both ends, the center Feed point 34 provides pads and non-metallized vias, said shorting point 35 provides metallized vias, and printed parallel conductor feed lines 31, 32 and 33, each portion being as shown in FIG.
- a matrix array, and the circumference diameter is perpendicular to the PCB dielectric board 10 of each omnidirectional sub-array unit; each sub-array number is UC#1 ⁇ UC#8 (UC, Unit Cell, unit unit), respectively located in the azimuth 90°, 135°, 180°, 225°, 270°, 325°, and 360°, as shown in Figures 3 and 4.
- Step 4 Array beamforming: using equal amplitude in-phase or different phase feeds to form eight Types of beams, as shown in Figures 7-14.
- the symmetric vibrator of the coaxial array in the omnidirectional sub-array unit is a half-wave oscillator, and may also include a half-wave vibrator or a vibrator of other wavelengths.
- the symmetric oscillators of the omnidirectional sub-array unit are coaxially arrayed into a vertically polarized sub-array or a coplanar array into a horizontally polarized sub-array.
- the symmetric vibrator of the omni-directional sub-array unit is printed on a PCB dielectric plate, and the dielectric plate is perpendicular to the diameter direction of the circular array.
- the symmetrical vibrator of the omnidirectional sub-array unit can also be constructed in the form of a metal tube.
- the different types of beams include: single omnidirectional beam #1, single directional beam #2, directional double narrow beam #3, directional double wide beam #4, and non-collinear Directional dual beam #5, directional unequal width dual beam #6, directional three beam #7 and directional four beam #8, a total of eight types of beams;
- the shaping algorithm of the single directional beam #2 is an equal-amplitude excitation of each omnidirectional sub-array unit, and the phase satisfies:
- the service beam 1) equal amplitude in-phase excitation, forming an omnidirectional beam covering the horizontal periphery; 2) equal amplitude different phase excitation, forming a horizontal directional beam, pointing to a certain azimuth; 3) equal amplitude different phase excitation, forming a horizontal bidirectional narrow beam, two waves
- the beam is collinear and equal in width; 4) the equal amplitude is excited by different phases to form a horizontal bidirectional wide beam, the two beams are collinear and equal in width; 5) the equal amplitude different phases are excited to form a horizontal bidirectional unequal width beam, two Beam collinear, unequal wave width; 6) equal amplitude different phase excitation, forming a horizontal bidirectional narrow beam, two beams equal wave width, not
- FIG. 5 is a standing wave VSWR curve of the omnidirectional sub-array unit of the present invention. It can be seen from the figure that in the 3.4 to 3.6 GHz band, the sub-array unit standing wave VSWR ⁇ 1.60, and the impedance matching is good.
- the H-plane is ideal omnidirectional radiation ( The out-of-roundness is less than 0.24 dB), and the gain G is 6.68 dBi.
- the gain G 6.47dBi
- the radiation characteristics are almost the same as the sub-array unit.
- the sidelobe level SLL is lower than the main lobe by about 7 dB and 5.5 dB, respectively, and forms a deep zero point with the main beam orthogonal direction and the intersection of the side side lobe and the main lobe.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明的全向阵列天线,包括N个全向子阵单元沿圆周排列成圆形阵,每个所述全向子阵单元包括p个共轴组阵的对称振子,其中N和p均为自然数。本发明全向阵列天线波束赋形方法,对各全向子阵单元采用等幅、同相或不同相方式激励形成全向、双波束、三波束和四波束等不同类型事务波束。本发明实现了全向天线的多种MIMO波束赋形能力,其增益高、赋形波束多、算法简单、阵元耦合低、成本低,且所述全向阵列天线将在未来5G应用中展现出巨大的潜力。另外,该方法还具有思路新颖、原理清晰、方法普适、简单易行等特点,对于并为H、V单极化全向阵列天线或H/V双极化全向天线的波束赋形设计提供也是有效和适用的。
Description
本发明涉及通信领域,特别是涉及一种适合5G应用的MIMO全向阵列天线波束赋形方法及技术。
工程上,越是简单的东西越是有用。全向天线是天线家族中最原始、最简单,同时也是最有应用价值的类型。首先,水平全向辐射是全向天线最显著、而又恰好是无线通信最需要的特点。在无线通信系统中,因发射台和接收设备的相互位置不固定,双方均需要安装全向天线以确保彼此处于任意方位关系时仍能保持链路畅通。其次,全向天线具有小型化和低成本的天然优势,易安装、易部署、视觉隐蔽。相比之下,定向天线用于水平全向覆盖时,需要多副共圆周排列、分扇区方式实现。由于天线数量多、尺寸大、重量重、安装要求高,站点建设成本高,且用户视觉感差。上述优点,使得全向天线成为无线通信领域中一种经典的天线类型,已在短波通信、蜂窝通信、交通警务、国防军事、航空航天、航海探险、业余无线电等领域获得了广泛应用。在无线业务持续、强劲的需求刺激下,全向天线获得了大量创新研究,其性能不断提升和增强,应用领域进一步扩展。可以预见,全向天线将焕发新的生命力,并在未来无线系统中继续大放异彩。
在5G时代,蜂窝系统将实现高容量、高数据率、高可靠性、低延迟、低功耗等。为了提高系统容量,大规模天线阵列(Massive MIMO,mMIMO)技术将得到广泛应用,使得数据传输率数十或百倍提升。目前,mMIMO天线的研发工作主要集中于大型宏基站场景。由于容量要求高、覆盖范围大、覆盖模式多,该类基站的天线阵列规模通常很大,如128单元或256单元,工作频段为低频2.6G、3.5G和4.5G。显然,跟传统宏站天线一样,mMIMO阵列的天线尺寸大、重量重、选址难、安装困难,而且成本更高。高成本可由容量提升所带来利润增加而抵消。然而,除了高容量、多模式场合,5G还存在很多低容量、少模式的应用场景。这时迫切需要一种阵列规模较小,但尺寸、重量和成本都大大减少的低阶MIMO天线,如8单元或16单元。
这种情况下,全向天线小型化、低成本的优势,使其成为最具诱惑力的mMIMO方案。然而,全向天线实现波束赋形,将遇到增益低、赋形波束少、算法复杂、阵元耦合强、可借鉴经验少等挑战。
目前本领域天线存在尺寸大、重量重、选址难、安装困难、成本更高,而且增益低、赋形波束少、算法复杂等技术问题。
本发明的目的在于提供一种增益高、赋形波束多、算法简单的全向阵列天线波束赋形方法及全向阵列天线。
为实现本发明目的,提供以下技术方案:
本发明提供一种全向阵列天线,其包括N个全向子阵单元沿圆周排列组成的天线组阵,圆形阵的直径为中心波长λc的整数倍(即D=2·R=m·λc,m为自然数),每个所述全向子阵单元包括p个共轴组阵的对称振子,其中N和p均为自然数。
优选的,所述全向子阵单元的共轴组阵的对称振子为半波振子,也可以包括半波振子或其他波长的振子。
优选的,所述全向子阵单元的对称振子共轴组阵成垂直极化子阵或共面组阵成水平极化子阵。
优选的,所述全向子阵单元的对称振子印制于PCB介质板,所述介质板垂直于圆阵的直径方向。在其他一些实施方式中,也可以所述全向子阵单元的对称振子构造形式为金属管。
本发明还提供一种全向阵列天线波束赋形方法,其应用于如上所述的全向阵列天线,各全向子阵单元采用等幅(In=1;n=1,2,3...,N)、同相或不同相方式激励形成不同类型波束。
优选的,所述不同类型波束包括:单全向波束、单定向波束、定向双窄波束、定向双宽波束、不共线定向双波束、定向不等宽双波束、定向三波束和定向四波束中至少任一个。
优选的,其中单全向波束的赋形算法为各全向子阵单元等幅激励,相位满足:四个奇数阵元同相,即β1=β3=β5=β7;四个偶数阵元同
相,即β2=β4=β6=β8;且两组相位分别满足关系式:β1=β2+Δβ,Δβ∈[0,π/2]。
优选的,其中单定向波束的赋形算法为各全向子阵单元等幅激励,相位满足:
优选的,其中定向双窄波束的赋形算法为各全向子阵单元等幅激励,相位则满足:β1=β4=(1/1.75+2·q)·π,β2=β3=2·q·π,β5=β8=[(1+1/1.75)+2·q]·π,β6=β7=(1+2·q)·π,其中q为整数。
优选的,其中定向双宽波束的赋形算法为各阵元等幅激励,相位则满足:β1=β2=β3=β4=2·q·π;β5=β6=β7=β8==(1+2·q)·π(q为整数)。
优选的,其中定向不等宽双波束的赋形算法为各阵元等幅激励,相位则满足:β1=β3={[1-cos(π/4)]+2·q}·π,β2=2·q·π,β4=β8=π,β5=β7=[(1-1/4)+2·q]·π,β6=[(1-1/6)+2·q]·π,其中q为整数。
优选的,其中不共线定向双波束的赋形算法为各阵元等幅激励,相位则满足:β1=β3=(1/1.75+2·q)·π,β2=2·q·π,β4=(1/1.75+1/2+2·q)·π,β5=[(1+1/1.75+1/2)+2·q]·π,β7=π,β6=β8=[(1+1/1.75)+2·q]·π,其中q为整数。
优选的,其中定向三波束的赋形算法为各阵元等幅激励,相位满足:β1=β3={[1-cos(π/4)]+2·q}·π,β2=2·q·π,β4=β8=(1+2·q)·π,β5=[(1+1/3.5)+2·q]·π,β6=[(1+1/2.875)+2·q]·π,β7=[(1-1/3.5)+2·q]·π,其中q为整数。
优选的,其中定向四波束的赋形算法为各阵元等幅激励,相位则满足:β1=β4=β5=β8=2·q·π,β2=β3=β6=β7=(1+2·q)·π,其中q为整数。
对比现有技术,本发明具有以下优点:
本发明所提的全向阵列天线波束赋形方法,采用阵元数N个、阵元由p元对称振子子阵构成,独特地运用如下波束赋形算法,实现了不同类型的业务波束,多种MIMO波束赋形能力的实现,其增益高、赋形波束多、算法简单、阵元耦合低。且所述全向阵列天线将在
5G应用中展现出巨大的潜力。另外,该方法还具有思路新颖、原理清晰、方法普适、简单易行等特点,对于并为H、V单极化全向阵列天线或H/V双极化全向天线的波束赋形设计提供也是有效和适用的。
在一些实施方式中,所述不同类型波束如1)等幅同相激励,形成一个全向波束,覆盖水平四周;2)等幅不同相激励,形成一个水平定向波束,指向某个方位角;3)等幅不同相激励,形成一个水平双向窄波束,两波束共线并等波宽;4)等幅不同相激励,形成一个水平双向宽波束,两波束共线并等波宽;5)等幅不同相激励,形成一个水平双向不等宽波束,两波束共线、不等波宽;6)等幅不同相激励,形成一个水平双向窄波束,两波束等波宽、不共线;7)等幅不同相激励,形成一个水平定向三波束,三波束不等波宽、不等夹角;8)等幅不同相激励,形成一个水平定向四窄波束,四波束等波宽、等夹角。上述不同波束,是未来5G应用中最典型、最有用的几种类型。
本发明所提的全向阵列天线波束赋形方法,采用阵元数N个、阵元由p元对称振子子阵构成,独特地运用如下波束赋形算法,实现了不同类型的业务波束,多种MIMO波束赋形能力的实现,其增益高、赋形波束多、算法简单、阵元耦合低。且所述全向阵列天线将在5G应用中展现出巨大的潜力。另外,该方法还具有思路新颖、原理清晰、方法普适、简单易行等特点,对于并为H、V单极化全向阵列天线或H/V双极化全向天线的波束赋形设计提供也是有效和适用的。
在一些实施方式中,所述不同类型波束如1)等幅同相激励,形成一个全向波束,覆盖水平四周;2)等幅不同相激励,形成一个水平定向波束,指向某个方位角;3)等幅不同相激励,形成一个水平双向窄波束,两波束共线并等波宽;4)等幅不同相激励,形成一个水平双向宽波束,两波束共线并等波宽;5)等幅不同相激励,形成一个水平双向不等宽波束,两波束共线、不等波宽;6)等幅不同相激励,形成一个水平双向窄波束,两波束等波宽、不共线;7)等幅不同相激励,形成一个水平定向三波束,三波束不等波宽、不等夹角;8)等幅不同相激励,形成一个水平定向四窄波束,四波束等波
宽、等夹角。上述不同波束,是未来5G应用中最典型、最有用的几种类型。
本发明针对未来5G应用,设计了一个八元波束赋形全向天线,8个子阵单元均匀排列在直径为一个中心波长(1·λc)的圆周上。通过特殊的波束赋形算法,阵列实现了方位面内单全向波束、单定向波束、等宽或不等宽双波束、共线或不共线双波束、三波束和四波束覆盖,基本满足多种业务模式的波束需求。这使得全向赋形阵列,将成为未来5G应用的一种极具应用潜力的天线方案。另外,该方法还具有思路新颖、原理清晰、方法普适、简单易行等特点,对于H、V单极化全向天线或H/V双极化全向天线的波束赋形设计也是适用和有效的。
图1为本发明天线模型所采用的直角坐标系的定义示意图。
图2为本发明全向阵列天线的全向子阵单元的正视图。
图3为本发明全向阵列天线模型的俯视图。
图4为本发明全向阵列天线模型的正视图。
图5为本发明全向子阵单元驻波VSWR曲线。
图6为本发明全向子阵单元中心频点fc=3.5GHz的2D方向图。
图7为本发明全向阵列天线的赋形单全向波束#1在fc=3.5GHz的2D方向图。
图8为本发明全向阵列天线的赋形单定向波束#2在fc=3.5GHz的2D方向图。
图9为本发明全向阵列天线的赋形双定向窄波束#3在fc=3.5GHz的2D方向图。
图10为本发明全向阵列天线的赋形双定向宽波束#4在fc=3.5GHz的2D方向图。
图11为本发明全向阵列天线的赋形双定向不等宽波束#6在fc=3.5GHz的2D方向图。
图12为本发明全向阵列天线的赋形不共线双定向波束#5在fc=3.5GHz的2D方向图。
图13为本发明全向阵列天线的赋形定向三波束#7在fc=3.5GHz
的2D方向图。
图14为本发明全向阵列天线的赋形定向四波束#7在fc=3.5GHz的2D方向图。
本文附图是用来对本发明的进一步阐述和理解,并且构成说明书的一部分,与本发明的具体实施例一起用于解释本发明,但并不构成对本发明的限制或限定。
下面结合附图给出本发明的较佳实施例,以详细说明本发明的技术方案。
这里,将着重于超宽带和高增益两大特点来论述本发明,并给出相应附图对本发明进行详细说明。需要特别说明的是,这里所描述的优选实施例仅用于说明和解释本发明,并不用于限制或限定本发明。
本发明旨在为未来5G应用,提供一种波束可赋形的全向阵列天线设计方案,并为H、V单极化全向阵列天线或H/V双极化全向天线的波束赋形设计提供有效的参考方法。
请参阅图1~4,本发明全向阵列天线建构方法如下:
步骤一,建立空间直角坐标系,见图1。
步骤二,构造全向子阵单元:在YOZ平面,构造三元全向子阵单元,包括介质板10、对称双臂21、22、中心馈电点34、两端短路点35,所述中心馈电点34设置焊盘与非金属化过孔、所述短路点35设置金属化过孔,以及印制平行双导体馈线31、32和33,各部分如图2所示。
步骤三,八个全向子阵单元组成圆阵,将步骤二的三单元全向子阵单元沿Z轴旋转复制八次,形成一个沿直径D=1·λc的圆均匀排布的八元组阵,且圆周直径垂直于各全向子阵单元的PCB介质板10;各子阵编号为UC#1~UC#8(UC,Unit Cell,单位单元),分别位于方位角90°、135°、180°、225°、270°、325°和360°,如图3、4所示。
步骤四,阵列波束赋形:采用等幅同相或不同相馈电,形成八
种类型波束,如图7~14所示。
上述构建方法得到的本发明一种全向阵列天线,其包括N个全向子阵单元沿圆周排列组成的天线组阵,圆形阵的直径为中心波长λc的整数倍(即D=2·R=m·λc,m为自然数),每个所述全向子阵单元包括p个共轴组阵的对称振子,其中N和p均为自然数。本实施例中,N为8,p为3。
所述全向子阵单元中共轴组阵的对称振子为半波振子,也可以包括半波振子或其他波长的振子。
所述全向子阵单元的对称振子共轴组阵成垂直极化子阵或共面组阵成水平极化子阵。
所述全向子阵单元的对称振子印制于PCB介质板,所述介质板垂直于圆阵的直径方向。在其他一些实施方式中,也可以所述全向子阵单元的对称振子构造形式为金属管。
N个阵元排成均匀圆阵(N≥1,N为自然数),相邻阵元间隔角度为圆阵直径为中心波长λc的整数倍(即D=2·R=m·λc,m为自然数)。本实施例中,选取阵元数N=8=23为较佳实施例;其中每个全向子阵单元包括p=3个对称振子。
本发明应用于上述全向子阵单元的全向阵列天线波束赋形方法,各全向子阵单元采用等幅(In=1;n=1,2,3...,N)、同相或不同相方式激励形成不同类型波束。
请结合参阅图5~14,本实施例中,所述不同类型波束包括:单全向波束#1、单定向波束#2、定向双窄波束#3、定向双宽波束#4、不共线定向双波束#5、定向不等宽双波束#6、定向三波束#7和定向四波束#8,共八种类型的波束;
其中单全向波束#1的赋形算法为各全向子阵单元等幅激励,相位则满足:四个奇数阵元同相,即β1=β3=β5=β7;四个偶数阵元同相,即β2=β4=β6=β8;且两组相位分别满足关系式:β1=β2+Δβ,Δβ∈[0,π/2];
其中单定向波束#2的赋形算法为各全向子阵单元等幅激励,相位则满足:
其中定向双窄波束#3的赋形算法为各全向子阵单元等幅激励,相位则满足:β1=β4=(1/1.75+2·q)·π,β2=β3=2·q·π,β5=β8=[(1+1/1.75)+2·q]·π,β6=β7=(1+2·q)·π,其中q为整数。
其中定向双宽波束#4的赋形算法为各阵元等幅激励,相位则满足:β1=β2=β3=β4=2·q·π;β5=β6=β7=β8==(1+2·q)·π(q为整数)。
其中定向不等宽双波束#5的赋形算法为各阵元等幅激励,相位则满足:β1=β3={[1-cos(π/4)]+2·q}·π,β2=2·q·π,β4=β8=π,β5=β7=[(1-1/4)+2·q]·π,β6=[(1-1/6)+2·q]·π,其中q为整数。
其中不共线定向双波束#6的赋形算法为各阵元等幅激励,相位则满足:β1=β3=(1/1.75+2·q)·π,β2=2·q·π,β4=(1/1.75+1/2+2·q)·π,β5=[(1+1/1.75+1/2)+2·q]·π,β7=π,β6=β8=[(1+1/1.75)+2·q]·π,其中q为整数。
其中定向三波束#7的赋形算法为各阵元等幅激励,相位则满足:β1=β3={[1-cos(π/4)]+2·q}·π,β2=2·q·π,β4=β8=(1+2·q)·π,β5=[(1+1/3.5)+2·q]·π,β6=[(1+1/2.875)+2·q]·π,β7=[(1-1/3.5)+2·q]·π,其中q为整数。
其中定向四波束#8的赋形算法为各阵元等幅激励,相位则满足:β1=β4=β5=β8=2·q·π,β2=β3=β6=β7=(1+2·q)·π,其中q为整数。
本发明所提的全向阵列天线波束赋形方法,采用阵元数N=8个、阵元由p=3元对称振子子阵构成,独特地运用如下波束赋形算法,实现了八种典型的业务波束:1)等幅同相激励,形成一个全向波束,覆盖水平四周;2)等幅不同相激励,形成一个水平定向波束,指向某个方位角;3)等幅不同相激励,形成一个水平双向窄波束,两波
束共线并等波宽;4)等幅不同相激励,形成一个水平双向宽波束,两波束共线并等波宽;5)等幅不同相激励,形成一个水平双向不等宽波束,两波束共线、不等波宽;6)等幅不同相激励,形成一个水平双向窄波束,两波束等波宽、不共线;7)等幅不同相激励,形成一个水平定向三波束,三波束不等波宽、不等夹角;8)等幅不同相激励,形成一个水平定向四窄波束,四波束等波宽、等夹角。上述八种不同波束,是未来5G应用中最典型、最有用的几种类型。多种MIMO波束赋形能力的实现,意味着全向阵列天线将在5G应用中展现出巨大的潜力。
本发明全向阵列天线的波束赋形实现效果可参考下面表I,全向阵列天线的波束赋形实现的具体算法实例表,以及图7~14,各类型波束在fc=3.5GHz的2D方向图。
表I.全向阵列天线的波束赋形算法
图5为本发明全向子阵单元驻波VSWR曲线。由图知,在3.4~3.6GHz频带内,子阵单元驻波VSWR≤1.60,阻抗匹配良好。
图6为本发明全向子阵单元中心频点fc=3.5GHz的2D方向图。其中,实线表示H-面(Theta=90°,XOY平面),虚线表示E-面(Phi=90°,YOZ平面);E面波宽HPBW=24.73°,H面为理想全向辐射(不圆度小于0.24dB),增益G=6.68dBi。
图7为本发明全向阵列天线的赋形单全向波束#1在fc=3.5GHz的2D方向图。其中,实线表示H-面(Theta=90°,XOY平面),虚线表示E-面(Phi=90°,YOZ平面);E面波宽HPBW=20.37°,H面不圆度小于0.24dB,增益G=6.47dBi,辐射特性与子阵单元几乎一样。
图8为本发明全向阵列天线的赋形单定向波束#2在fc=3.5GHz的2D方向图。其中,实线表示H-面(Theta=90°,XOY平面),虚线表示E-面(Phi=0°,YOZ平面);主瓣指向方位角方向,E/H面波宽分别为:HPBW=23.92°、40.67°,增益G=13.78dBi;旁瓣电平SLL低于主瓣约13.78dB,前后比FTBR为7.5dB。
图9为本发明全向阵列天线的赋形双定向窄波束#3在fc=3.5GHz的2D方向图。其中,实线表示H-面(Theta=90°,XOY平面),虚线表示E-面(Phi=113°,YOZ平面);主瓣指向方位角293°方向,两主瓣夹角为180°,E/H面波宽分别为:HPBW=25.18°、32.68°,增益G=12.33dBi;旁瓣电平SLL低于主瓣约9dB,与主波束正交方向则形成深的零点。
图10为本发明全向阵列天线的赋形双定向宽波束#4在fc=3.5GHz的2D方向图。其中,实线表示H-面(Theta=90°,XOY平面),虚线表示E-面(Phi=112°,YOZ平面);主瓣指向方位角292°方向,两主瓣夹角为180°,E/H面波宽分别为:HPBW=28.85°、50.18°,增益G=9.41dBi,与主波束正交方向则形成深的零点。
图11为本发明全向阵列天线的赋形双定向不等宽波束#6在
fc=3.5GHz的2D方向图。其中,实线表示H-面(Theta=90°,XOY平面),虚线表示E-面(Phi=90°,YOZ平面);主瓣指向方位角270°方向,两主瓣夹角为180°,E/H面波宽分别为:HPBW=24.50°、117.0°(宽波束)/31.20°(窄波束),增益G=9.47dBi;主次波束相交处形成深的零点。
图12为本发明全向阵列天线的赋形不共线双定向波束#5在fc=3.5GHz的2D方向图。其中,实线表示H-面(Theta=90°,XOY平面),虚线表示E-面(Phi=97°,YOZ平面);主瓣指向方位角309°方向,两主瓣夹角为148°(锐角)或212°(钝角),E/H面波宽分别为:HPBW=24.60°、31.20°,增益G=11.96dBi;同侧和异侧旁瓣电平SLL分别低于主瓣约7dB、5.5dB,与主波束正交方向及异侧旁瓣与主瓣相交处均形成深的零点。
图13为本发明全向阵列天线的赋形定向三波束#7在fc=3.5GHz的2D方向图。其中,实线表示H-面(Theta=90°,XOY平面),虚线表示E-面(Phi=90°,YOZ平面);三主瓣指向方位角215°、315°方向,相邻主瓣夹角分别为143°、135°和100°,E/H面波宽分别为:HPBW=24.5°、65°/50°/46°,增益G=10.73dBi;三波束相交处均形成较深的零点。
图14为本发明全向阵列天线的赋形定向四波束#7在fc=3.5GHz的2D方向图。其中,实线表示H-面(Theta=90°,XOY平面),虚线表示E-面(Phi=23°/113°,YOZ平面);四主瓣分别指向方位角113°、203°和293°方向,相邻主瓣夹角为90°,E/H面波宽分别为:HPBW=25.13°、47.24°,增益G=8.81dBi;四波束相交处均形成深的零点。
以上仅为本发明的优选实例而已,并不用于限制或限定本发明。对于本领域的研究或技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明所声明的保护范围之内。
Claims (17)
- 一种全向阵列天线,其特征在于,其包括N个全向子阵单元沿圆周排列成圆形阵,圆形阵的直径为中心波长λc的整数倍,每个所述全向子阵单元包括p个共轴组阵的对称振子,其中N和p均为自然数。
- 如权利要求1所述的全向阵列天线,其特征在于,所述全向子阵单元的共轴组阵的对称振子为半波振子。
- 如权利要求2所述的全向阵列天线,其特征在于,所述全向子阵单元的对称振子共轴组阵成垂直极化子阵或共面组阵成水平极化子阵。
- 如权利要求1所述的全向阵列天线,其特征在于,所述全向子阵单元的对称振子印制于PCB介质板,所述介质板垂直于圆阵的直径方向。
- 如权利要求1所述的全向阵列天线,其特征在于,所述全向子阵单元的对称振子构造形式为金属管。
- 如权利要求1所述的全向阵列天线,其特征在于,所述全向子阵单元具有不同类型波束,包括:单全向波束、单定向波束、定向双窄波束、定向双宽波束、不共线定向双波束、定向不等宽双波束、定向三波束和定向四波束中至少任一个。
- 一种全向阵列天线波束赋形方法,其特征在于,其应用于如权利要求1~7任一项所述的全向阵列天线,各全向子阵单元采用等幅、同相或不同相方式激励形成不同类型波束。
- 如权利要求8所述的全向阵列天线波束赋形方法,其特征在于,所述不同类型波束包括:单全向波束、单定向波束、定向双窄波束、定向双宽波束、不共线定向双波束、定向不等宽双波束、定向三波束和定向四波束中至少任一个。
- 如权利要求9所述的全向阵列天线波束赋形方法,其特征在于,所述全向阵列天线包括八个全向子阵单元,其中单全向波束的赋形算法为各全向子阵单元等幅激励,相位满足:四个奇数阵元同相, 即β1=β3=β5=β7;四个偶数阵元同相,即β2=β4=β6=β8;且两组相位分别满足关系式:β1=β2+Δβ,Δβ∈[0,π/2]。
- 如权利要求9所述的全向阵列天线波束赋形方法,其特征在于,所述全向阵列天线包括八个全向子阵单元,其中定向双窄波束的赋形算法为各全向子阵单元等幅激励,相位则满足:β1=β4=(1/1.75+2·q)·π,β2=β3=2·q·π,β5=β8=[(1+1/1.75)+2·q]·π,β6=β7=(1+2·q)·π,其中q为整数。
- 如权利要求9所述的全向阵列天线波束赋形方法,其特征在于,所述全向阵列天线包括八个全向子阵单元,其中定向双宽波束的赋形算法为各阵元等幅激励,相位则满足:β1=β2=β3=β4=2·q·π;β5=β6=β7=β8==(1+2·q)·π,其中q为整数。
- 如权利要求9所述的全向阵列天线波束赋形方法,其特征在于,所述全向阵列天线包括八个全向子阵单元,其中定向不等宽双波束的赋形算法为各阵元等幅激励,相位则满足:β1=β3={[1-cos(π/4)]+2·q}·π,β2=2·q·π,β4=β8=π,β5=β7=[(1-1/4)+2·q]·π,β6=[(1-1/6)+2·q]·π,其中q为整数。
- 如权利要求9所述的全向阵列天线波束赋形方法,其特征在于,所述全向阵列天线包括八个全向子阵单元,其中不共线定向双波束的赋形算法为各阵元等幅激励,相位则满足:β1=β3=(1/1.75+2·q)·π,β2=2·q·π,β4=(1/1.75+1/2+2·q)·π,β5=[(1+1/1.75+1/2)+2·q]·π,β7=π,β6=β8=[(1+1/1.75)+2·q]·π,其中q为整数。
- 如权利要求9所述的全向阵列天线波束赋形方法,其特征在于,所述全向阵列天线包括八个全向子阵单元,其中定向三波束的赋形算法为各阵元等幅激励,相位满足:β1=β3={[1-cos(π/4)]+2·q}·π, β2=2·q·π,β4=β8=(1+2·q)·π,β5=[(1+1/3.5)+2·q]·π,β6=[(1+1/2.875)+2·q]·π,β7=[(1-1/3.5)+2·q]·π,其中q为整数。
- 如权利要求9所述的全向阵列天线波束赋形方法,其特征在于,所述全向阵列天线包括八个全向子阵单元,其中定向四波束的赋形算法为各阵元等幅激励,相位则满足:β1=β4=β5=β8=2·q·π,β2=β3=β6=β7=(1+2·q)·π,其中q为整数。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/113091 WO2019100376A1 (zh) | 2017-11-27 | 2017-11-27 | 全向阵列天线及其波束赋形方法 |
EP17932945.3A EP3720008A4 (en) | 2017-11-27 | 2017-11-27 | Omnidirectional array antenna and beamforming method therefor |
US16/651,505 US11233335B2 (en) | 2017-11-27 | 2017-11-27 | Omnidirectional array antenna and beamforming method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/113091 WO2019100376A1 (zh) | 2017-11-27 | 2017-11-27 | 全向阵列天线及其波束赋形方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019100376A1 true WO2019100376A1 (zh) | 2019-05-31 |
Family
ID=66630879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/113091 WO2019100376A1 (zh) | 2017-11-27 | 2017-11-27 | 全向阵列天线及其波束赋形方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11233335B2 (zh) |
EP (1) | EP3720008A4 (zh) |
WO (1) | WO2019100376A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111988075A (zh) * | 2020-07-10 | 2020-11-24 | 中国人民解放军战略支援部队航天工程大学 | 一种基于最大相关信噪比准则的天线组阵信号合成方法 |
CN112054829A (zh) * | 2020-07-10 | 2020-12-08 | 中国人民解放军战略支援部队航天工程大学 | 一种具有固定相位中心特性的天线组阵信号合成方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201803433D0 (en) * | 2018-03-02 | 2018-04-18 | Secr Defence | Dual polarised antenna |
CA3224709A1 (en) * | 2021-07-06 | 2023-01-12 | John Mezzalingua Associates, LLC | 8t8r quasi-omnidirectional antenna |
CN118394108B (zh) * | 2024-06-25 | 2024-09-10 | 青岛蟒龙防务科技有限公司 | 一种基于实时数据分析的分布式无人机行进环境预警系统 |
CN118763434B (zh) * | 2024-09-02 | 2025-01-24 | 中国科学院空天信息创新研究院 | 一种短波混合极化接收天线阵列 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2293901Y (zh) * | 1997-03-13 | 1998-10-07 | 北京信威通信技术有限公司 | 用于无线通信系统的环形智能天线阵 |
US20100066590A1 (en) * | 2008-07-28 | 2010-03-18 | Physical Domains, LLC | Omnidirectional Retrodirective Antennas |
CN107275800A (zh) * | 2017-05-16 | 2017-10-20 | 南京航空航天大学 | 一种大规模mimo阵列的天线结构 |
CN107863996A (zh) * | 2017-11-27 | 2018-03-30 | 广东通宇通讯股份有限公司 | 全向阵列天线及其波束赋形方法 |
CN207475549U (zh) * | 2017-11-27 | 2018-06-08 | 广东通宇通讯股份有限公司 | 全向阵列天线 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4973971A (en) * | 1989-12-18 | 1990-11-27 | Allied-Signal Inc. | Broadband circular phased array antenna |
GB2376568B (en) * | 2001-06-12 | 2005-06-01 | Mobisphere Ltd | Improvements in or relating to smart antenna arrays |
GB2376567B (en) * | 2001-06-12 | 2005-07-20 | Mobisphere Ltd | Improvements in or relating to smart antenna arrays |
US20130321207A1 (en) * | 2012-05-31 | 2013-12-05 | Alcatel-Lucent Usa Inc. | Transforming precoded signals for wireless communication |
JP2014143591A (ja) * | 2013-01-24 | 2014-08-07 | Nippon Dengyo Kosaku Co Ltd | アレイアンテナ |
US9729213B2 (en) * | 2014-01-30 | 2017-08-08 | Xirrus, Inc. | MIMO antenna system |
WO2016126908A1 (en) * | 2015-02-04 | 2016-08-11 | Artsys360 Ltd. | Multimodal radar system |
CN106450703A (zh) * | 2016-11-24 | 2017-02-22 | 中国科学院国家空间科学中心 | 一种基于循环子阵的干涉式微波辐射计圆环天线阵列 |
US10505609B2 (en) * | 2017-06-14 | 2019-12-10 | Commscope Technologies Llc | Small cell beam-forming antennas |
-
2017
- 2017-11-27 US US16/651,505 patent/US11233335B2/en active Active
- 2017-11-27 WO PCT/CN2017/113091 patent/WO2019100376A1/zh unknown
- 2017-11-27 EP EP17932945.3A patent/EP3720008A4/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2293901Y (zh) * | 1997-03-13 | 1998-10-07 | 北京信威通信技术有限公司 | 用于无线通信系统的环形智能天线阵 |
US20100066590A1 (en) * | 2008-07-28 | 2010-03-18 | Physical Domains, LLC | Omnidirectional Retrodirective Antennas |
CN107275800A (zh) * | 2017-05-16 | 2017-10-20 | 南京航空航天大学 | 一种大规模mimo阵列的天线结构 |
CN107863996A (zh) * | 2017-11-27 | 2018-03-30 | 广东通宇通讯股份有限公司 | 全向阵列天线及其波束赋形方法 |
CN207475549U (zh) * | 2017-11-27 | 2018-06-08 | 广东通宇通讯股份有限公司 | 全向阵列天线 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111988075A (zh) * | 2020-07-10 | 2020-11-24 | 中国人民解放军战略支援部队航天工程大学 | 一种基于最大相关信噪比准则的天线组阵信号合成方法 |
CN112054829A (zh) * | 2020-07-10 | 2020-12-08 | 中国人民解放军战略支援部队航天工程大学 | 一种具有固定相位中心特性的天线组阵信号合成方法 |
CN111988075B (zh) * | 2020-07-10 | 2021-05-28 | 中国人民解放军战略支援部队航天工程大学 | 一种基于最大相关信噪比准则的天线组阵信号合成方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3720008A1 (en) | 2020-10-07 |
US11233335B2 (en) | 2022-01-25 |
EP3720008A4 (en) | 2021-07-07 |
US20200303831A1 (en) | 2020-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019100376A1 (zh) | 全向阵列天线及其波束赋形方法 | |
CN107863996B (zh) | 全向阵列天线及其波束赋形方法 | |
Tang et al. | Pattern-reconfigurable, flexible, wideband, directive, electrically small near-field resonant parasitic antenna | |
CN109687116B (zh) | C波段的小型化宽带宽波束圆极化微带天线 | |
CN106450714A (zh) | 一种适用于阵列的宽带圆极化天线 | |
US9112260B2 (en) | Microstrip antenna | |
CN105048079B (zh) | 一种全向性圆极化平面天线 | |
CN109962335A (zh) | 一种双波段宽带圆极化共口径天线 | |
CN207475549U (zh) | 全向阵列天线 | |
CN107134648A (zh) | 一种l波段宽带双极化电磁偶极子天线 | |
CN104505578A (zh) | 一种全向双圆极化天线 | |
CN105703084B (zh) | 一种室分天线 | |
CN103107420A (zh) | 一种小型超宽带对称环-振子组合天线 | |
CN107611601A (zh) | 小型化高增益双极化全向天线 | |
CN107732441B (zh) | 波束上仰高增益全向天线 | |
CN206850028U (zh) | 宽带高增益垂直极化全向天线 | |
CN104993245A (zh) | S波段动中通双频圆极化微带天线及其阵列 | |
CN116231300B (zh) | 1bit宽带辐射式可重构单元及波束扫描阵列天线 | |
CN115275589B (zh) | 全耦合谐振环天线单元及二维切比雪夫网络馈电阵列天线 | |
CN103268984B (zh) | 双波束缝隙阵列天线 | |
CN113013604A (zh) | 天线和天线阵列 | |
CN107508044B (zh) | 半球透镜馈源收发集成双椭球面透镜天线 | |
CN215418582U (zh) | 天线 | |
CN116826369A (zh) | 一种基于气球的带宽拓展的高增益阵列天线 | |
Floc’h et al. | On the design of planar printed dipole array antennas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17932945 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017932945 Country of ref document: EP Effective date: 20200629 |