WO2022042536A1 - 导频传输方法和设备 - Google Patents

导频传输方法和设备 Download PDF

Info

Publication number
WO2022042536A1
WO2022042536A1 PCT/CN2021/114278 CN2021114278W WO2022042536A1 WO 2022042536 A1 WO2022042536 A1 WO 2022042536A1 CN 2021114278 W CN2021114278 W CN 2021114278W WO 2022042536 A1 WO2022042536 A1 WO 2022042536A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
symbols
zero
communication device
data sequence
Prior art date
Application number
PCT/CN2021/114278
Other languages
English (en)
French (fr)
Inventor
袁璞
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21860371.0A priority Critical patent/EP4203401A4/en
Publication of WO2022042536A1 publication Critical patent/WO2022042536A1/zh
Priority to US18/168,030 priority patent/US20230188295A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03834Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2644Modulators with oversampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure

Definitions

  • the present application belongs to the field of communication technologies, and specifically relates to a pilot frequency transmission method and device.
  • FTN Faster Than Nyquist
  • Hz*s Hertz per second
  • ISI Inter-Symbol Interference
  • ICI Inter-Channel Interference
  • pilots exist in the form of bursts sent periodically, generally a sequence consisting of tens to hundreds of symbols. Due to overhead constraints, the transmission cycle cannot be too frequent. Therefore, when the channel changes rapidly in the time domain, the traditional scheme cannot capture the channel dynamics well.
  • the embodiments of the present application provide a pilot transmission method and device, which can solve the problem that the pilot transmission scheme in the related art cannot well capture the dynamics of the channel.
  • a first aspect provides a pilot transmission method, the method comprising: a communication device inserting a pilot symbol in a first data sequence to obtain a second data sequence; the communication device sends the second data sequence, wherein , and the second data sequence undergoes super-Nyquist processing.
  • a communication device comprising: a pilot frequency insertion module, configured to insert a pilot frequency symbol into a first data sequence to obtain a second data sequence; a sending module, configured to send the second data sequence, Wherein, the second data sequence undergoes super-Nyquist processing.
  • a communication device comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor When executed, the method as described in the first aspect is implemented.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the method according to the first aspect is implemented.
  • a computer program product comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the When executed by the processor, the method as described in the first aspect is implemented.
  • a chip in a sixth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the method according to the first aspect .
  • the communication device inserts pilot symbols in the first data sequence to obtain the second data sequence, and thus, the data symbols in the second data sequence and the inserted pilot symbols are interleaved.
  • the embodiment of the present application can place pilot symbols in a distributed manner in the data frame, which can solve the problem that the pilots placed centrally in the traditional solution cannot well track the time-varying characteristics of the channel, and the overhead is small; at the same time, the present application implements For example, the insertion position and insertion density of pilot symbols can also be flexibly adjusted according to the channel state, so as to improve the flexibility of pilot transmission.
  • FIG. 1 is a block diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a pilot transmission method according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a shaping filter operation according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the effect after shaping and filtering according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a data sequence after upsampling processing according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a pilot symbol insertion position according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a baseband signal processing flow according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a frame structure according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the effect of the frame structure saving interval GAP overhead shown in FIG. 8;
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device according to another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the following description, these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6th generation ). Generation, 6G) communication system.
  • 6th generation 6th generation
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (vehicle user equipment, VUE), pedestrian terminal (pedestrian user equipment, PUE) and other terminal-side equipment, wearable devices include: bracelets, headphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Next Generation Node B (gNB), Home Node B, Home Evolved Node B, WLAN Access point, WiFi node, Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary. In the application embodiments, only the base station in the NR system is used as an example, but the specific type of the base station is not limited.
  • ISI Inter-Symbol Interference
  • ICI Inter-Channel Interference
  • the receiver is limited by hardware conditions, and the complexity of the decoding algorithm implemented is limited. When the overlap exceeds a certain threshold, the required decoding complexity will greatly increase, exceeding the ability of the decoding algorithm, resulting in inability to decode. At this time, it is necessary to introduce pilot symbols to reduce the complexity of the decoding algorithm at the receiving end.
  • the signal is compensated (channel equalization), and then the demodulation and decoding of the super-Nyquist (Faster-Than-Nyquist, FTN) signal is performed.
  • pilots exist in the form of bursts sent periodically, generally a sequence consisting of dozens to hundreds of symbols, and pilots and data are sent in blocks. Due to overhead constraints, the pilot frequency transmission period cannot be too frequent. Therefore, when the channel changes rapidly in the time domain, the traditional scheme cannot well capture the dynamic change of the channel.
  • pilot symbols need to be shaped with the same order as the data. filter, and perform corresponding upsampling, which may cause unnecessary overhead (because pilot symbols do not need to be sent overlapping, and overlapping transmission of pilot symbols will cause unnecessary overhead, so it can be considered to use shaping with a smaller order. filter).
  • two basebands need to be processed in parallel, or one baseband needs to be processed serially for a longer time, at the cost of more complicated process or hardware implementation.
  • the pilot insertion scheme of the traditional single-carrier system is as follows: the pilot is a cluster of symbols and is sent in blocks with the data, so the problem of the time-varying dynamic characteristics of the channel cannot be well captured.
  • the traditional scheme if the pilot symbols and data are processed uniformly in the baseband, it will cause the problem of pilot baseband processing overhead; if they are processed separately, the cost is complicated in process or hardware implementation.
  • the main idea of the embodiments of the present application is: inserting pilot symbols into the data sequence, the embodiments of the present application, compared to the scheme in which the pilots are a cluster of symbols and the pilots and data are sent in blocks, not only The overhead is small, and the dynamics of the channel can be well captured.
  • the pilot symbols and data of the communication equipment can be processed uniformly, which can simplify the baseband signal processing at the transceiver end.
  • the communication device at the transmitting end can use a shaping filter of the same order as the data symbol for the pilot symbol to reduce the baseband processing overhead of the pilot symbol; the two basebands do not need to perform parallel processing on the pilot symbol and the data symbol respectively, It is simpler in process or hardware implementation.
  • pilot symbol group the number of pilot symbols may be 1, that is, channel estimation is performed through a single-point pilot to reduce the overhead of channel estimation.
  • the pilot transmission method provided in this embodiment of the present application can be applied to super-Nyquist transmission.
  • the number of guard symbols at at least one end of the two ends of the pilot symbol and the time-domain overlap coefficient ⁇ of the FTN are in accordance with the rules presented later in the embodiments of the present application. It is calculated that after baseband processing, pilot symbols without Inter-Symbol Interference (ISI) and data symbols with ISI can be obtained at the same time, and the channel can be captured more accurately through the above pilot symbols without ISI Dynamic.
  • ISI Inter-Symbol Interference
  • an embodiment of the present application provides a pilot transmission method 200, which can be executed by a communication device, in other words, the method can be executed by software or hardware installed in the communication device, and the method includes the following step.
  • S202 The communication device inserts pilot symbols into the first data sequence to obtain a second data sequence.
  • S204 The communication device sends a second data sequence, where the second data sequence undergoes super-Nyquist processing.
  • the pilot transmission method provided in the embodiment of the present application can be applied to a single-carrier system.
  • the communication device before sending the second data sequence, may further perform Faster-Than-Nyquist (FTN) processing on the second data sequence, and the FTN processing may include the following two steps: upsampling Processing; matched filter processing for shaping filters.
  • FTN processing may include the following two steps: upsampling Processing; matched filter processing for shaping filters.
  • the insertion of pilot symbols into the first data sequence mentioned in S202 may be performed before the step of upsampling processing; or may be performed after the step of upsampling processing and before matched filtering processing.
  • At least one end of both ends of the pilot symbols is provided with zero-level symbols, for example, the left end of the pilot symbols is provided with multiple zero-level symbols; or the right end of the pilot symbols is provided with zero-level symbols; Multiple zero-level symbols are set; or multiple zero-level symbols are set at the left end of the pilot symbol, and multiple zero-level symbols are also set at the right end of the pilot symbol.
  • the number of the zero-level symbols at both ends of the pilot symbol is equal, or the zero-level symbols at both ends of the pilot symbol are equal.
  • the number of symbols differs by 1.
  • the communication device sends a second data sequence.
  • the second data sequence is sent in a first subframe, and one of the first subframes includes a guard interval (GAP), the pilot frequency symbol and data segment, wherein, in one of the first subframes, the number of the pilot symbols may be 1.
  • GAP guard interval
  • the frame structure in which the first subframe is located includes a plurality of the first subframes, and each of the first subframes includes one of the guard interval, one of the pilot symbols, and one of the data part.
  • the frame structure further includes a second subframe, where the second subframe is used to send a synchronization signal burst (Sync burst).
  • the number of second subframes in each of the frame structures is 1, and the second subframe may be located at the head of the frame structure.
  • the communication device inserts pilot symbols in the first data sequence to obtain the second data sequence, so that the data symbols in the second data sequence and the inserted pilot symbols are interleaved.
  • the embodiment of the present application can place pilot symbols in a distributed manner in the data frame, which can solve the problem that the pilots placed centrally in the traditional solution cannot well track the time-varying characteristics of the channel, and the overhead is small; at the same time, the present application implements For example, the insertion position and insertion density of pilot symbols can also be flexibly adjusted according to the channel state, so as to improve the flexibility of pilot transmission.
  • the embodiment of the present application can increase the insertion density of pilot symbols, so as to better track the time-varying characteristic of the channel;
  • the embodiment of the present application can reduce the insertion density of pilot symbols and reduce overhead.
  • the insertion position of the pilot symbol can be adjusted.
  • the pilot symbol is inserted between the guard interval and the data segment.
  • a certain number of zero-level symbols need to be added between the pilot symbol and the data segment, which is convenient for reducing overhead (see Embodiment 4 for details); wherein, the purpose of adding a certain number of zero-level symbols mentioned here is This is to ensure that there is no ISI between pilot symbols and data symbols.
  • Embodiment 200 after the communication device inserts a pilot symbol into the first data sequence to obtain the second data sequence (before S204), the method further includes the following step: The data sequence is subjected to up-sampling processing; wherein, the super-Nyquist processing includes the up-sampling processing.
  • This embodiment corresponds to the first embodiment.
  • the method further includes: adding a zero-level symbol to at least one side of the pilot symbol in the second data sequence.
  • the number of added zero-level symbols satisfies the following formula:
  • K is the number of the added zero-level symbols
  • L O is the minimum value of the total number of the pilot symbols and the zero-level symbols adjacent to the pilot symbols after the pilot symbols are inserted
  • N is the upsampling multiple of the upsampling process.
  • L O used in each embodiment of the present application may be the minimum value of the total number of pilot symbols in the pilot symbol group and the zero-level symbols on both sides of the pilot symbols (need to satisfy no ISI).
  • the minimum value means: if the number of symbols in the pilot symbol group is less than L O , the pilot symbols may generate ISI, and if the number of symbols in the pilot symbol group is greater than or equal to L O , the pilot symbols can be implemented ISI free.
  • the rule for inserting zero-level symbols in this embodiment may be: the number of the zero-level symbols at both ends of the pilot symbol is equal, or the number of the zero-level symbols at both ends of the pilot symbol differs by one.
  • the pilot symbol without ISI and the data symbol with ISI can be obtained at the same time, and the dynamics of the channel can be more accurately captured by the pilot symbol without ISI.
  • the method further includes: the communication device performs an upsampling process on the first data sequence; Wherein, the super-Nyquist processing includes the upsampling processing.
  • the communication device performs an upsampling process on the first data sequence; Wherein, the super-Nyquist processing includes the upsampling processing.
  • the method further includes: adding a zero-level symbol to the position where the pilot symbol is to be inserted in the first data sequence.
  • the addition of the zero-level symbol mentioned in this example may be the operation of setting zero to the data symbol in the original data sequence at the position where the pilot symbol is to be inserted in the first data sequence; it may also be the original Additional zero-scale symbols added to the data.
  • the number of added zero-level symbols satisfies the following formula:
  • q is the number of the added zero-level symbols
  • L O is the minimum value of the total number of the pilot symbols and the zero-level symbols adjacent to the pilot symbols after the pilot symbols are inserted
  • N is the upsampling multiple of the upsampling process.
  • the rule for inserting zero-level symbols in this embodiment may be: the number of the zero-level symbols at both ends of the pilot symbol is equal, or the number of the zero-level symbols at both ends of the pilot symbol differs by one.
  • the pilot symbol without ISI and the data symbol with ISI can be obtained at the same time, and the dynamics of the channel can be more accurately captured by the pilot symbol without ISI.
  • the minimum value of the total number of the pilot symbols and the zero-level symbols adjacent to the pilot symbols after the pilot symbols are inserted is determined by the following formula:
  • is the time-domain overlap coefficient of the super-Nyquist process.
  • the flexible adjustment of the time-domain overlap coefficient ⁇ is achieved by adjusting the upsampling coefficients of the data and shaping filters respectively.
  • N referring to the number of data sampling points in one symbol time/sampling period
  • the data in one symbol time is an impulse response, so the upsampling is equivalent to the operation of complementing (N-1) zeros
  • the upsampling multiple of the shaping filter is M (referring to the number of filter sampling points in a symbol time/sampling period T)
  • OVTDM Overlapped X-Domain Multiplexing
  • the obtained OVXTM signal can be said to be K times the overlap of the Nyquist sampling signal.
  • the sampling period of the Nyquist signal is T
  • the sampling period of the FTN signal is ⁇ T.
  • the pilot symbol is p 0
  • the two adjacent data symbols on the left and right sides of the pilot symbol group centered on p 0 are x ⁇ and x + .
  • the concept of a symbol group has been introduced in the above-mentioned embodiments, that is, it includes a pilot symbol and one or more zero-level symbols at the left and right ends thereof.
  • the symbol interval is ⁇ T.
  • the number of symbols that need to be vacated between x - and x + to be allocated to the pilot symbol group be L, then L satisfies Then the minimum value of L that satisfies the condition is:
  • the pilot symbol may be inserted into the center of the L upsampling symbols to ensure that there is no inter-symbol interference between the pilot symbol and the data symbol.
  • the pilot symbols are located in the center of the pilot symbol group, that is:
  • the transmit data sequence Perform a convolution operation with the shaping filter used.
  • the waveform shown in FIG. 4 is obtained by the above-mentioned convolution operation. It should be noted that, for the convenience of description, different filter waveforms are used to represent the form of symbol waveform superposition, and the actual waveform envelope should be the superposition effect of these filter waveforms.
  • the transmission sequence (ie, the first data sequence) is filled with zeros at intervals, and there is no waveform component at the position of the zero-level symbol.
  • the actual waveform decomposition is shown in Figure 5.
  • Embodiment 1 corresponds to Case 1 in FIG. 7 .
  • the pilot mapping position that is, the position at which the pilot symbol to be inserted mentioned in the above-mentioned embodiment is to be inserted
  • the pilot symbol is directly inserted into a specific position of the original data symbol.
  • the number of zero-level symbols on the left and right sides of the pilot symbol is N-1.
  • the number of pilot symbol groups to ensure that the pilot has no interference is L o , minus one pilot symbol, the number of zero-level symbols in the pilot symbol group is L o -1, then after the upsampling
  • the position of the pilot symbol in the second data sequence can be filled with zeros on both sides (that is, adding zero-level symbols), and ensure that the number of zero-filling satisfies the following formula:
  • both ends of the pilot symbol are provided with zero-level symbols, and the number of zero-level symbols at both ends of the pilot symbol is equal, or the number of zero-level symbols at both ends of the pilot symbol differs by 1.
  • Embodiment 2 corresponds to Case 2 in FIG. 7 .
  • a “virtual” x 3 is inserted between x 2 and x 5 and x 4 , which is actually a 0-level time interval of one symbol length.
  • the pre-processed signal is subjected to up-sampling processing to obtain an up-sampled signal.
  • the pilot symbol can be inserted into a certain position between x 3 and x 4 of the up-sampled signal.
  • the third embodiment describes the data processing technology using the pilot insertion scheme provided by the embodiment of the present application.
  • the FTN technology is determined by its own characteristics, and its data decoding complexity is exponentially related to the length L of the data code block that has a convolution relationship.
  • pilot insertion scheme provided by the embodiment of the application, it is assumed that W pilot symbols are inserted, and the data code block of length L is divided into W lengths of There is no convolutional relationship between the data code segments, so they can be decoded independently.
  • the complexity of the pilot cluster scheme in the related art is 0 (2 L ).
  • the complexity is reduced for Obviously, in most cases, the complexity of the method in the embodiments of the present application is relatively low.
  • the advantages of the pilot transmission method provided by the embodiments of the present application are more obvious. Therefore, the additional advantage brought by the pilot insertion scheme of the pilot transmission method provided by the embodiment of the present application is that the data divided by the pilot symbols can be processed separately, which reduces the decoding complexity of the receiver.
  • the fourth embodiment provides a frame structure.
  • the frame structure utilizes the pilot transmission method provided by the above embodiment, and by reasonably placing the position of the pilot symbol, the guard interval (GAP) overhead in the multipath channel can be further reduced,
  • the frame structure is shown in Figure 8.
  • FIG. 9 is a schematic diagram showing the effect of saving GAP overhead by the frame structure shown in FIG. 8 .
  • the frame structure provided by this embodiment includes a plurality of first subframes (three are schematically shown in FIG. 8 ) and a second subframe, and each of the first subframes includes a guard interval, pilot symbols and data segment, wherein, in a first subframe, the number of pilot symbols may be 1.
  • the second subframe in the frame structure is used to transmit a synchronization signal burst (syncburst).
  • the synchronization signal clusters in the frame structure provided by this embodiment are used to obtain time timing synchronization, wherein:
  • Periodic synchronization signal clusters can be used for multipath estimation.
  • the dotted scattered pilot symbols provided in the embodiments of the present application can be used for accurate channel estimation.
  • the pilot symbol is placed at the beginning of a data segment, and a guard interval (GAP) is placed in front of the pilot symbol to deal with multipath interference.
  • GAP guard interval
  • Zero power can be inserted between the pilot symbol and the data segment according to the scheme introduced in the above embodiment.
  • there is a guard interval on the left side of the pilot symbol so there is no need to perform the operation of inserting zero-level symbols, and the protection of the guard interval is fully utilized, which is convenient for saving overhead.
  • This embodiment can ensure that the pilot symbols have no ISI.
  • multipath can be estimated by performing circular convolution; the use of 144 or other symbols is to increase the correlation peak energy for easy detection, and it is essentially for synchronization services.
  • the synchronization signal cluster is used to realize this function, and the accurate channel estimation only needs to be realized by using the following single-point pilot symbols, which can reduce the symbol overhead of channel estimation.
  • the embodiment of the present application uses a synchronization signal cluster with a longer period for tracking. If more fine-grained channel information is required, accurate measurement can be performed through discrete single-point pilot symbols inserted in the data frame.
  • the data segment may be at the head of the first subframe
  • the guard interval may be at the end of the first subframe
  • the pilot symbol may be at the data segment and the guard interval
  • the execution subject may be a communication device, or a control module in the communication device for executing the pilot frequency transmission method.
  • a method for performing pilot transmission by a communication device is used as an example to describe the communication device provided by the embodiments of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device may be a terminal or a network-side device.
  • the communication device 1000 includes the following modules.
  • the pilot insertion module 1002 may be configured to insert pilot symbols into the first data sequence to obtain the second data sequence.
  • the sending module 1004 may be configured to send the second data sequence, wherein the second data sequence undergoes super-Nyquist processing.
  • the communication device inserts pilot symbols into the first data sequence to obtain the second data sequence, and thus, the data symbols in the second data sequence and the inserted pilot symbols are interleaved.
  • pilot symbols can be distributed in the data frame, which can solve the problem that pilots placed centrally in the traditional solution cannot track the time-varying characteristics of the channel well, and the overhead is small; at the same time, the present application implements For example, the insertion position and insertion density of pilot symbols can also be flexibly adjusted according to the channel state, so as to improve the flexibility of pilot transmission.
  • the communication device 100 further includes a processing module configured to perform up-sampling processing on the second data sequence; wherein, the super-Nyquist processing includes the up-sampling processing.
  • the processing module is further configured to add a zero-level symbol to at least one side of the pilot symbol in the second data sequence.
  • the number of the added zero-level symbols satisfies the following formula:
  • K is the number of the added zero-level symbols
  • L O is the minimum value of the total number of the pilot symbols and the zero-level symbols adjacent to the pilot symbols after the pilot symbols are inserted
  • N is the upsampling multiple of the upsampling process.
  • the communication device 1000 further includes a processing module configured to perform up-sampling processing on the first data sequence; wherein, the super-Nyquist processing includes the up-sampling processing.
  • the processing module is further configured to add a zero-level symbol to the position where the pilot symbol is to be inserted in the first data sequence.
  • the number of the added zero-level symbols satisfies the following formula:
  • q is the number of the added zero-level symbols
  • L O is the minimum value of the total number of the pilot symbols and the zero-level symbols adjacent to the pilot symbols after the pilot symbols are inserted
  • N is the upsampling multiple of the upsampling process.
  • the minimum value of the total number of the pilot symbols and the zero-level symbols adjacent to the pilot symbols after the pilot symbols are inserted is determined by the following formula:
  • is the time-domain overlap coefficient of the super-Nyquist process.
  • At least one of both ends of the pilot symbol is provided with a zero-level symbol.
  • the number of the zero-level symbols at both ends of the pilot symbol is equal, or the pilot The number of said zero-level symbols across the symbols differs by one.
  • the second data sequence is sent in a first subframe, and the first subframe includes a guard interval, the pilot symbol, and a data segment.
  • the frame structure in which the first subframe is located includes a plurality of the first subframes, and each of the first subframes includes one of the guard interval, one of the pilot symbols and one of said data segments.
  • the frame structure further includes a second subframe, the second subframe is located at the head of the frame structure, the second subframe is used for sending a synchronization signal cluster, and the second subframe is A guard interval is set at the head of the two subframes.
  • the communication device is a terminal or a network-side device.
  • the communication device 1000 may refer to the process of the method 200 corresponding to the embodiment of the present application, and each unit/module and the above-mentioned other operations and/or functions in the communication device 1000 are respectively for the purpose of realizing the corresponding steps in the method 200. process, and can achieve the same or equivalent technical effect, for brevity, no further description is given here.
  • the communication device in this embodiment of the present application may be an apparatus, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the communication device in this embodiment of the present application may be an apparatus having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the communication device provided in this embodiment of the present application can implement each process implemented by the method embodiments in FIG. 2 to FIG. 9 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 1100, including a processor 1101, a memory 1102, a program or instruction stored in the memory 1102 and executable on the processor 1101,
  • a communication device 1100 including a processor 1101, a memory 1102, a program or instruction stored in the memory 1102 and executable on the processor 1101,
  • the communication device 1100 is a terminal
  • the program or instruction is executed by the processor 1101
  • each process of the above-mentioned embodiments of the pilot transmission method can be implemented, and the same technical effect can be achieved.
  • the communication device 1100 is a network side device
  • the program or instruction is executed by the processor 1101
  • each process of the above-mentioned pilot transmission method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • FIG. 12 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1200 includes but is not limited to: a radio frequency unit 1201, a network module 1202, an audio output unit 1203, an input unit 1204, a sensor 1205, a display unit 1206, a user input unit 1207, an interface unit 1208, a memory 1209, a processor 1210 and other components .
  • the terminal 1200 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1210 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 12 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1204 may include a graphics processor (Graphics Processing Unit, GPU) 12041 and a microphone 12042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1206 may include a display panel 12061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1207 includes a touch panel 12071 and other input devices 12072 .
  • the touch panel 12071 is also called a touch screen.
  • the touch panel 12071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 12072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • the radio frequency unit 1201 receives the downlink data from the network side device, and then processes it to the processor 1210; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1201 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 1209 may be used to store software programs or instructions as well as various data.
  • the memory 1209 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1209 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM) ), erasable programmable read-only memory (ErasablePROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • ErasablePROM ErasablePROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1210 may include one or more processing units; optionally, the processor 1210 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1210.
  • the processor 1210 is used for inserting pilot symbols in the first data sequence to obtain a second data sequence; the radio frequency unit 1201 is used for sending the second data sequence, wherein the second data sequence passes through the supernatant Quest handles.
  • the terminal inserts pilot symbols in the first data sequence to obtain the second data sequence, and thus, the data symbols in the second data sequence and the inserted pilot symbols are interleaved.
  • the embodiment of the present application can place pilot symbols in a distributed manner in the data frame, which can solve the problem that the pilots placed centrally in the traditional solution cannot well track the time-varying characteristics of the channel, and the overhead is small; at the same time, the present application implements For example, the insertion position and insertion density of pilot symbols can also be flexibly adjusted according to the channel state, so as to improve the flexibility of pilot transmission.
  • the terminal 1200 provided in this embodiment of the present application can also implement each process of the above-mentioned pilot frequency transmission method embodiments, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the network device 1300 includes: an antenna 131 , a radio frequency device 132 , and a baseband device 133 .
  • the antenna 131 is connected to the radio frequency device 132 .
  • the radio frequency device 132 receives information through the antenna 131, and sends the received information to the baseband device 133 for processing.
  • the baseband device 133 processes the information to be sent and sends it to the radio frequency device 132
  • the radio frequency device 132 processes the received information and sends it out through the antenna 131 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 133 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 133 .
  • the baseband apparatus 133 includes a processor 134 and a memory 135 .
  • the baseband device 133 may include, for example, at least one baseband board on which a plurality of chips are arranged, as shown in FIG. 13 , one of the chips is, for example, the processor 134 , which is connected to the memory 135 to call the program in the memory 135 to execute
  • the network devices shown in the above method embodiments operate.
  • the baseband device 133 may further include a network interface 136 for exchanging information with the radio frequency device 132, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present invention further includes: instructions or programs that are stored in the memory 135 and run on the processor 134, and the processor 134 invokes the instructions or programs in the memory 135 to execute the modules shown in FIG. 10 .
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the foregoing pilot transmission method embodiment is implemented, and can achieve The same technical effect, in order to avoid repetition, will not be repeated here.
  • the processor may be the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement the above-mentioned embodiments of the pilot frequency transmission method and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • An embodiment of the present application further provides a computer program product, where the computer program product is stored in a non-volatile memory, and the computer program product is executed by at least one processor to implement each process of the foregoing pilot frequency transmission method embodiments , and can achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • the embodiment of the present application further provides a communication device, which is configured to perform each process of the above-mentioned pilot transmission method embodiment, and can achieve the same technical effect, and to avoid repetition, details are not described here.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种导频传输方法和设备,能够解决相关技术中的导频传输方案不能很好的捕获信道的动态的问题。该方法包括:通信设备在第一数据序列中插入导频符号,得到第二数据序列;所述通信设备发送所述第二数据序列,其中,所述第二数据序列经过超奈奎斯特处理。

Description

导频传输方法和设备
交叉引用
本申请要求在2020年8月24日在中国提交的申请号为202010859876.7、发明名称为“导频传输方法和设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种导频传输方法和设备。
背景技术
超奈奎斯特(Faster ThanNyquist,FTN)是通过对发送信号进行预处理(又称波形编码),可加快码元发送速率,即增加每赫兹每秒(Hz*s)内发送的符号数量。
在复杂的电磁波传输环境中,由于存在大量的散射、反射和折射面,造成了无线信号经不同路径到达接收天线的时刻不同,即传输的多径效应。当发送信号的前后符号经过不同路径同时抵达时,或者说,当后一个符号在前一个符号的时延扩展内到达时,即产生了符号间干扰(Inter-Symbol Interference,ISI)。类似的,在频域上,由于频偏效应,多普勒效应等原因,信号所在的各个子载波会产生频率上不同程度的偏移,造成原本可能正交的子载波产生重叠,即信道间干扰(Inter-Channel Interference,ICI)。
由于波形编码和多径信道的叠加效应,导致了等效多径数量的增加,以及更加“靠近”的符号间隔和子载波间隔,使得等效的时频域重叠程度增加。这种时频域重叠程度的增加,在接收端反映为更加严重的ISI和ICI,对接收机的设计提出了挑战。
基于上述原因,一般需要通过插入一段已知信号(在单载波系统中一般 称为导频),通过比较发送端和接收端的上述已知信号的差异来进行信道估计。传统单载波系统中,导频以周期发送的簇(burst)形式存在,一般为几十到几百个符号组成的序列。由于开销限制,发送周期不可能过于频繁,因此,当信道为时域快变时,传统方案不能很好的捕获信道的动态。
发明内容
本申请实施例提供一种导频传输方法和设备,能够解决相关技术中的导频传输方案不能很好的捕获信道的动态的问题。
第一方面,提供了一种导频传输方法,所述方法包括:通信设备在第一数据序列中插入导频符号,得到第二数据序列;所述通信设备发送所述第二数据序列,其中,所述第二数据序列经过超奈奎斯特处理。
第二方面,提供了一种通信设备,包括:导频插入模块,用于在第一数据序列中插入导频符号,得到第二数据序列;发送模块,用于发送所述第二数据序列,其中,所述第二数据序列经过超奈奎斯特处理。
第三方面,提供了一种通信设备,该通信设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法。
第四方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法。
第五方面,提供了一种计算机程序产品,该计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时,实现如第一方面所述的方法。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
在本申请实施例中,通信设备在第一数据序列中插入导频符号得到第二 数据序列,这样,第二数据序列中的数据符号和插入的导频符号交织放置。本申请实施例可以在数据帧中分布式的放置导频符号,能够解决传统方案中集中放置的导频不能很好的跟踪信道的时变特性的问题,且开销较小;同时,本申请实施例还可以根据信道状态灵活的调整导频符号的插入位置和插入密度,提高导频传输的灵活性。
附图说明
图1是根据本申请的一个实施例的无线通信系统的框图;
图2是根据本申请的一个实施例的导频传输方法的示意性流程图;
图3是根据本申请的一个实施例的成型滤波器运算示意图;
图4是根据本申请的一个实施例的成型滤波后的效果示意图;
图5是根据本申请的一个实施例的上采样处理后的数据序列示意图;
图6是根据本申请的一个实施例的导频符号插入位置示意图;
图7是根据本申请的一个实施例的基带信号处理流程示意图;
图8是根据本申请的一个实施例的帧结构示意图;
图9是图8所示的帧结构节省间隔GAP开销效果示意图;
图10是根据本申请的一个实施例的通信设备的结构示意图;
图11是根据本申请的另一个实施例的通信设备的结构示意图;
图12是根据本申请的一个实施例的终端的结构示意图;
图13是根据本申请的一个实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(NewRadio,NR)系统,并且在以下大部分描述中使用NR术语,这些技术也可应用于NR系统应用以外的应用,如第6代(6 thGeneration,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(vehicle user  equipment,VUE)、行人终端(pedestrian user equipment,PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、下一代节点B(gNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(TransmittingReceivingPoint,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
由于无线电信号在通过无线信道过程中产生的符号间干扰(Inter-Symbol Interference,ISI)和/或信道间干扰(Inter-Channel Interference,ICI),与发送机采用波形编码引入的ISI/ICI叠加,造成了等效的更加严重的ISI/ICI。接收机受硬件条件限制,实现的译码算法复杂度有限,当重叠程度超过一定阈值时,所需求的译码复杂度会大大增加,超过译码算法的能力,造成无法译码。此时需要通过引入导频符号,通过引入导频符号,以降低接收端译码算法复杂度,具体地,在接收端通过导频符号对无线信道进行信道估计,用信道估计的结果对收端信号进行补偿(信道均衡),之后再进行超奈奎斯特(Faster-Than-Nyquist,FTN)信号的解调和译码。
传统单载波系统中,导频以周期发送的簇(burst)形式存在,一般为几十到几百个符号组成的序列,导频与数据分块发送。由于开销限制,导频发送周期不可能过于频繁,因此,当信道为时域快变时,传统方案不能很好的捕获信道的动态变化。
此外,FTN传输中,传统方案中为了生成无符号间干扰(InterSymbol Interference,ISI)的导频和有ISI的数据,如果用同一套基带处理,需要对 导频符号使用与数据相同阶数的成型滤波器,并且进行相应的上采样,可能会造成不必要的开销(因为导频符号不需要重叠发送,导频符号重叠发送则会造成不必要的开销,因此可以考虑采用阶数较小的成型滤波器)。或者,如果想减少导频符号的基带处理开销,就需要两个基带并行处理,或者一个基带使用更长时间串行处理,代价是在流程上或硬件实现上较为复杂。
综上所述,传统单载波系统的导频插入方案是:导频为一簇符号,与数据分块发送,无法很好地捕捉信道时变动态特性的问题。此外,按照传统方案,如果在基带中把导频符号和数据统一处理,会造成导频基带处理开销问题;如果分开处理,则代价是在流程上或硬件实现上较为复杂。
为解决上述技术问题,本申请实施例的主要思想是:在数据序列中插入导频符号,本申请实施例相对于导频为一簇符号且导频与数据分块发送的方案而言,不仅开销较小,且可以很好的捕获信道的动态。
同时,本申请实施例通过插入导频符号,以及在导频符号左右两侧的至少一侧插入的零电平符号,可以使通信设备导频符号和数据统一处理,可以简化收发端的基带信号处理流程。具体地,发送端通信设备可以对导频符号使用与数据符号相同阶数的成型滤波器,减少导频符号的基带处理开销;不需要两个基带分别对导频符号和数据符号进行并行处理,在流程上或硬件实现上较为简便。
上述提到,导频符号的左右两端(或称两侧)的至少一端还设置一个或者多个零电平的符号,该处的一个或多个零电平的符号可以称为保护符号。一个导频符号和它两侧的至少一侧的一个或多个保护符号,称为一个导频符号组。每个导频符号组中,导频符号数量可以为1,即通过单点导频进行信道估计,降低信道估计的开销。
本申请实施例提供的导频传输方法可以应用在超奈奎斯特传输中,导频 符号两端的至少一端的保护符号的数量与FTN的时域重叠系数τ按照本申请实施例后续呈现的规则计算得出,经基带处理后,可以同时得到无符号间干扰(Inter-Symbol Interference,ISI)的导频符号和有ISI的数据符号,通过上述无ISI的导频符号,可以更准确地捕获信道的动态。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的导频传输方法和设备进行详细地说明。
如图2所示,本申请的一个实施例提供一种导频传输方法200,该方法可以由通信设备执行,换言之,该方法可以由安装在通信设备的软件或硬件来执行,该方法包括如下步骤。
S202:通信设备在第一数据序列中插入导频符号,得到第二数据序列。
S204:通信设备发送第二数据序列,其中,第二数据序列经过超奈奎斯特处理。
本申请实施例提供的导频传输方法可以应用在单载波系统中。
本申请实施例中,通信设备在发送第二数据序列之前还可以对第二数据序列进行超奈奎斯特(Faster-Than-Nyquist,FTN)处理,FTN处理可以包括以下两个步骤:上采样处理;成型滤波器的匹配滤波处理。S202中提到的在第一数据序列中插入导频符号,可以是在上采样处理的步骤之前执行;也可以是在上采样处理的步骤之后且在匹配滤波处理之前。
可选地,插入导频符号得到的第二数据序列中,导频符号两端的至少一端设置有零电平符号,例如,导频符号左端设置有多个零电平符号;或导频符号右端设置有多个零电平符号;或导频符号左端设置有多个零电平符号,且导频符号的右端也设置有多个零电平符号。
在一个具体的例子中,在导频符号两端均设置有零电平符号时,导频符号两端的所述零电平符号的数量相等,或所述导频符号两端的所述零电平符 号的数量相差1。
该实施例在S204中提到通信设备发送第二数据序列,可选地,第二数据序列在第一子帧中发送,一个所述第一子帧包括保护间隔(GAP)、所述导频符号和数据段,其中,在一个所述第一子帧内,所述导频符号的数量可以为1。
可选地,所述第一子帧所在的帧结构包括多个所述第一子帧,每个所述第一子帧包括一个所述保护间隔、一个所述导频符号以及一个所述数据段。
可选地,所述帧结构还包括第二子帧,所述第二子帧用于发送同步信号簇(Sync burst)。每个所述帧结构中的第二子帧的数量为1,且第二子帧可以位于帧结构的头部。
本申请实施例提供的导频传输方法,通信设备在第一数据序列中插入导频符号得到第二数据序列,这样,第二数据序列中的数据符号和插入的导频符号交织放置。本申请实施例可以在数据帧中分布式的放置导频符号,能够解决传统方案中集中放置的导频不能很好的跟踪信道的时变特性的问题,且开销较小;同时,本申请实施例还可以根据信道状态灵活的调整导频符号的插入位置和插入密度,提高导频传输的灵活性。
可以理解,在信道的时变特性变化较快(例如时变特性满足第一条件)时,本申请实施例可以提高导频符号的插入密度,便于更好的跟踪信道的时变特性;在信道的时变特性变化较慢(例如时变特性满足第二条件)时,本申请实施例可以降低导频符号的插入密度,降低开销。
另外,本申请实施例可以调整导频符号的插入位置,例如,导频符号插入在保护间隔和数据段之间,这样,可以无需在保护间隔和导频符号之间添加零电平符号,只需在导频符号和数据段之间添加一定数量的零电平符号即可,便于降低开销(具体见实施例四);其中,该处提到的添加一定数量的零电平符号,其目的是为了保证导频符号和数据符号之间无ISI。
可选地,实施例200中通信设备在第一数据序列中插入导频符号,得到第二数据序列之后(在S204之前),所述方法还包括如下步骤:所述通信设备对所述第二数据序列进行上采样处理;其中,所述超奈奎斯特处理包括所述上采样处理。该实施例对应于实施例一。
上述提到的对所述第二数据序列进行上采样处理之后,所述方法还包括:在所述第二数据序列中所述导频符号的至少一侧添加零电平符号。
在一个具体例子中,添加的所述零电平符号的数量满足如下公式:
K≥L O-2N+1;
K为添加的所述零电平符号的数量;L O为插入所述导频符号后所述导频符号以及与所述导频符号相邻的零电平符号的总数量的最小取值;N为所述上采样处理的上采样倍数。
本申请各个实施例中使用的L O,可以是导频符号组中导频符号以及导频符号两侧的零电平符号的总数量(需满足无ISI)的最小取值。该最小取值意味着:如果导频符号组中的符号数量小于L O,则导频符号可能会产生ISI,如果导频符号组中的符号数量大于或等于L O,则可以实现导频符号无ISI。
该实施例插入零电平符号的规则可以是:导频符号两端的所述零电平符号的数量相等,或所述导频符号两端的所述零电平符号的数量相差1。
在其他的实施例中,如实施例四,仅需要在导频符号的单侧插入零电平符号,则插入的零电平符号的数量可以是上述公式计算的取值的一半,也即
Figure PCTCN2021114278-appb-000001
该实施例通过添加到零电平符号,可以同时得到无ISI的导频符号和有ISI的数据符号,通过上述无ISI的导频符号,可以更准确地捕获信道的动态。
可选地,实施例200中通信设备在第一数据序列中插入导频符号,得到第二数据序列之前,所述方法还包括:所述通信设备对所述第一数据序列进行上采样处理;其中,所述超奈奎斯特处理包括所述上采样处理。该实施例对应于实施例二。
通信设备对所述第一数据序列进行上采样处理之前,所述方法还包括:在所述第一数据序列中待插入所述导频符号的位置添加零电平符号。该例子中提到的添加零电平符号,可以是在所述第一数据序列中待插入所述导频符号的位置,对原始数据序列中的数据符号进行置零的操作;还可以是原始数据中多添加的零电平符号。
在一个例子中,添加的所述零电平符号的数量满足如下公式:
Figure PCTCN2021114278-appb-000002
q为添加的所述零电平符号的数量;L O为插入所述导频符号后所述导频符号以及与所述导频符号相邻的零电平符号的总数量的最小取值;N为所述上采样处理的上采样倍数。
该实施例插入零电平符号的规则可以是:导频符号两端的所述零电平符号的数量相等,或所述导频符号两端的所述零电平符号的数量相差1。
在其他的实施例中,如实施例四,仅需要在导频符号的单侧插入零电平符号,则插入的零电平符号的数量可以是上述公式计算的取值的一半,也即
Figure PCTCN2021114278-appb-000003
该实施例通过添加到零电平符号,可以同时得到无ISI的导频符号和有ISI的数据符号,通过上述无ISI的导频符号,可以更准确地捕获信道的动态。
可选地,上述两个例子中,插入所述导频符号后所述导频符号以及与所 述导频符号相邻的零电平符号的总数量的最小取值通过以下公式确定:
Figure PCTCN2021114278-appb-000004
τ为所述超奈奎斯特处理的时域重叠系数。
为详细说明上述几个实施例中提到的添加的零电平符号的数量,以下将对其实现原理进行说明。
FTN基带信号处理时,对于时域重叠系数τ的灵活调节是通过分别调整数据和成型滤波器的上采样系数来实现的。假设数据的上采样倍数为N(指一个符号时间/采样周期T内的数据采样点数,一个符号时间内数据是一个冲激响应,所以上采样等效为补(N-1)个零的操作),成型滤波器的上采样倍数为M(指一个符号时间/采样周期T内的滤波器采样点数),则有如下公式成立:
Figure PCTCN2021114278-appb-000005
X域重叠复用(Overlapped X-Domain Multiplexing,OVXDM)是FTN技术的一个特例,在OVTDM中,τ为一系列离散的点值:
Figure PCTCN2021114278-appb-000006
当τ=1/K时,则可以称所得到OVXTM信号为奈奎斯特采样信号的K倍重叠。推广到FTN系统,则可认为τ=N/M的FTN信号为奈奎斯特采样信号的M/N倍重叠。
下面将分析插入导频符号的一般规则。已知奈奎斯特信号的采样周期为T,则FTN信号的采样周期为τT。假设上述实施例提到的第二数据序列中,导频符号为p 0,与以p 0为中心的导频符号组左右分别相邻的两个数据符号为x -和x +,关于导频符号组的概念上述实施例已经介绍过,即包括导频符号及 其左右两端的一个或多个零电平符号。
假设p 0与x -的距离为t -,p 0与x +的距离为t +,x -与x +的距离为t ±,易知导频符号p 0与数据符号x -和x +无符号间干扰的充分必要条件为:
t -≥T,t +≥T
由此可得,
t ±=t -+t +≥2T
对于经过N倍上采样处理的发送序列x[n],即上述实施例提到的第一数据序列,其符号间隔为τT。令在x -与x +间需要空出分配给导频符号组的符号数为L,则L满足
Figure PCTCN2021114278-appb-000007
则满足条件的L的最小取值为:
Figure PCTCN2021114278-appb-000008
该公式表示向上取整。在L O个上采样符号中,假设实际发送的原始数据符号数为q个(这q个数据符号实际上可能是置零处理),由于上采样,而添加的零电平的符号数为(q+1)*(N-1)个,以下等式成立:
q+(q+1)*(N-1)=L o
解得:
Figure PCTCN2021114278-appb-000009
由此得出了原始数据符号中需要置零作为所插入的导频符号的保护符号原始符号的数量。
本申请实施例中,导频符号可以插入L个上采样符号的中心位置,确保导频符号与数据符号间无符号间干扰。假设长度为L的导频符号组为S={s 0,s 1,L,s L-1}。
当L为奇数时,导频符号位于导频符号组中心,即:
Figure PCTCN2021114278-appb-000010
当L为偶数时,导频符号位置为:
Figure PCTCN2021114278-appb-000011
或者;
Figure PCTCN2021114278-appb-000012
下面举例说明本申请实施例的原理。如图3所示,发送数据序列
Figure PCTCN2021114278-appb-000013
和所用的成型滤波器进行卷积运算。其中N=2,M=3,该处的N为上采样处理的上采样倍数,M为成型滤波器的上采样倍数。
通过上述卷积运算得到图4所示的波形。需要说明是的是,此处为了描述方便,用不同的滤波器波形表示符号波形叠加的形式,实际的波形包络应该是这些滤波器波形的叠加效果。
假设2倍上采样处理,则发送序列(即第一数据序列)间隔补零,零电平符号的位置并不存在波形分量,实际波形分解如图5所示。
此时,假设要在x 2后插入导频符号,则需要x 2和x 5之间的间隔满足公式:t ±=t -+t +≥2T。由此需要把x 3和x 4置零,并且在x 2和x 5之间的采样点的中心放置导频符号p 0,如图6所示。
可以看出,在图6所示的导频信号的采样位置,没有来自数据符号脉冲的主瓣干扰;而在数据信号的采样位置,则保持了之间的ISI。
本申请各个实施例提供的技术方案可以在基带信号处理的不同阶段灵活实施。如图7所示:在图7中,竖直方向的箭头指向部分是可以进行导频符号插入的节点。情况1和情况2分别在实施例一和二中具体阐述。
实施例一
实施例一对应图7中的情况1。本实施例中,假设导频映射位置(即上述实施例提到的待插入导频符号的位置)已经确定,导频符号直接插入原始数据符号的特定位置中。
数据经过N倍上采样之后,导频符号左右两侧的零电平符号数各为N-1。又根据前述公式
Figure PCTCN2021114278-appb-000014
的计算,保证导频无干扰的导频符号组数为L o,减去一个导频符号,则导频符号组中的零电平符号数为L o-1,则在上采样后的第二数据序列中的导频符号所在位置两侧补零(即添加零电平符号)即可,保证补零数量满足如下公式:
K≥L O-1-2*(N-1)=L O-2N+1
经过上述补零处理后,导频符号两端均设置有零电平符号,导频符号两端的零电平符号的数量相等,或导频符号两端的零电平符号的数量相差1。
实施例二
实施例二对应图7中的情况2。本实施例中,假设导频映射位置已经确定,则对原始数据需要进行预补零操作。
如图6所示,假设原始数据的信息比特{x 1,x 2,x 5,L},为了达到本申请实施例的设计效果,在x 2和x 5之间插入“虚拟的”x 3和x 4,实际是一个符号长度的0电平时间间隔。经过这样预处理的信号,进行上采样处理,得到上采样信号。则导频符号插入上采样后信号的x 3和x 4中间的某一位置即可。
实施例三
实施例三阐述了采用本申请实施例提供的导频插入方案下的数据处理技术。
FTN技术的自身特点决定,其数据译码复杂度与存在卷积关系的数据码块长度L呈指数相关。采用申请实施例提供的导频插入方案时,假定插入了W 个导频符号,长度为L的数据码块被分成了W个长度为
Figure PCTCN2021114278-appb-000015
的数据码段,数据码块段之间不存在卷积关系,因此可以独立译码。
假设二进制相移键控(Binary Phase Shift Keying,BPSK)调制,则相关技术中导频簇的方案的复杂度为0(2 L),使用本申请实施例提供的导频传输方法,复杂度降为
Figure PCTCN2021114278-appb-000016
显然在大部分情况下本申请实施例的方法复杂度较低。
此外,对于更高阶的调制,假设调制符号集的数量为m,则相应的复杂度为0(m L)对
Figure PCTCN2021114278-appb-000017
本申请实施例提供的导频传输方法优势更为明显。因此,本申请实施例提供的导频传输方法的导频插入方案带来的额外好处是:可以让被导频符号分割的数据单独处理,减少了接收机译码复杂度。
实施例四
实施例四给出了一种帧结构,该帧结构利用上述实施例提供的导频传输方法,通过合理放置导频符号所在位置,可以进一步减少在多径信道中的保护间隔(GAP)开销,该帧结构如图8所示。图9是图8所示的帧结构节省GAP开销效果示意图。
该实施例提供的帧结构包括多个第一子帧(图8中示意性地显示出3个)和一个第二子帧,每个所述第一子帧包括保护间隔、导频符号和数据段,其中,在一个第一子帧内,导频符号的数量可以为1。该帧结构中的第二子帧用于发送同步信号簇(syncburst)。
本实施例提供的帧结构中的同步信号簇用于获取时间定时同步,其中:
1、周期性的同步信号簇可以用于多径估计。
2、本申请实施例提供的点状离散导频符号可以用于精确信道估计。
3、导频符号放在一段数据段的起始位置,导频符号前放置保护间隔(GAP)应对多径干扰,导频符号和数据段之间可以按上述实施例介绍的方案进行插入零电平符号的操作,导频符号左侧因存在保护间隔,因此无需执行插入零电平符号的操作,充分利用保护间隔的保护,便于节约开销。
a)该实施例可以保证导频符号无ISI。
b)导频符号和数据段间不需要为多径设置额外GAP,理由为:导频符号已知,由多径造成的对数据的ISI可以通过连续干扰消除(Successive Interference Cancellation,SIC)消除;或者,FTN系统就是利用ML/MAP接收机,算法本身可以克服单点导频的少许ISI影响。这里不同于传统奈奎斯特系统的MMSE接收机,其性能受ISI影响很大。
c)传统方案的帧结构,数据帧前也需要留一段GAP,本方案数据段导频符号前的GAP并没有带来额外开销。
d)传统方案的簇形式的导频,通过进行圆周卷积可以估计多径;采用144或其他数量的符号是为了增加相关峰能量易于检测,本质上还是为了同步服务的。本申请实施例中利用同步信号簇实现这个功能,而进行精确信道估计只需要利用后面的单点导频符号实现,可以减少信道估计的符号开销。
e)实际环境中,多径的生灭较慢,所以本申请实施例利用周期较长的同步信号簇进行跟踪。如果需要粒度更细腻的信道信息,则可以通过数据帧内插入的离散单点导频符号进行精确测量。
4、本申请实施例的额外益处(类似实施例三的阐述):GAP+导频符号+数据段的结构,相当于FTN数据流被插入的导频分割,使FTN带来的ISI只存在于本地数据段之间,每个数据段可以单独解调,减少了单次最大似然(Maximum Likelihood,ML)/最大后验概率(Maximum APosteriori,MAP) 接收机处理的码长,极大减少了FTN解调复杂度。
在实施例四中提到的第一子帧,在其他的实施方式中,还可以是数据段在第一子帧的头部,保护间隔位于第一子帧的尾部,导频符号位于数据段和保护间隔之间,该实施方式可以达到图8所示的实施例相同或等同的技术效果。
需要说明的是,本申请实施例提供的导频传输方法,执行主体可以为通信设备,或者,该通信设备中的用于执行导频传输方法的控制模块。本申请实施例中以通信设备执行导频传输方法为例,说明本申请实施例提供的通信设备。
图10是根据本申请实施例的通信设备的结构示意图,该通信设备可以是终端,还可以是网络侧设备。如图10所示,通信设备1000包括如下模块。
导频插入模块1002,可以用于在第一数据序列中插入导频符号,得到第二数据序列。
发送模块1004,可以用于发送所述第二数据序列,其中,所述第二数据序列经过超奈奎斯特处理。
在本申请实施例中,通信设备在第一数据序列中插入导频符号得到第二数据序列,这样,第二数据序列中的数据符号和插入的导频符号交织放置。本申请实施例可以在数据帧中分布式的放置导频符号,能够解决传统方案中集中放置的导频不能很好的跟踪信道的时变特性的问题,且开销较小;同时,本申请实施例还可以根据信道状态灵活的调整导频符号的插入位置和插入密度,提高导频传输的灵活性。
可选地,作为一个实施例,所述通信设备100还包括处理模块,用于对所述第二数据序列进行上采样处理;其中,所述超奈奎斯特处理包括所述上采样处理。
可选地,作为一个实施例,所述处理模块,还用于在所述第二数据序列中所述导频符号的至少一侧添加零电平符号。
可选地,作为一个实施例,添加的所述零电平符号的数量满足如下公式:
K≥L O-2N+1;
K为添加的所述零电平符号的数量;L O为插入所述导频符号后所述导频符号以及与所述导频符号相邻的零电平符号的总数量的最小取值;N为所述上采样处理的上采样倍数。
可选地,作为一个实施例,所述通信设备1000还包括处理模块,用于对所述第一数据序列进行上采样处理;其中,所述超奈奎斯特处理包括所述上采样处理。
可选地,作为一个实施例,所述处理模块,还用于在所述第一数据序列中待插入所述导频符号的位置添加零电平符号。
可选地,作为一个实施例,添加的所述零电平符号的数量满足如下公式:
Figure PCTCN2021114278-appb-000018
q为添加的所述零电平符号的数量;L O为插入所述导频符号后所述导频符号以及与所述导频符号相邻的零电平符号的总数量的最小取值;N为所述上采样处理的上采样倍数。
可选地,作为一个实施例,插入所述导频符号后所述导频符号以及与所述导频符号相邻的零电平符号的总数量的最小取值通过以下公式确定:
Figure PCTCN2021114278-appb-000019
τ为所述超奈奎斯特处理的时域重叠系数。
可选地,作为一个实施例,所述导频符号两端的至少一端设置有零电平 符号。
可选地,作为一个实施例,在所述导频符号两端均设置有所述零电平符号时,所述导频符号两端的所述零电平符号的数量相等,或所述导频符号两端的所述零电平符号的数量相差1。
可选地,作为一个实施例,所述第二数据序列在第一子帧中发送,所述第一子帧包括保护间隔、所述导频符号和数据段。
可选地,作为一个实施例,所述第一子帧所在的帧结构包括多个所述第一子帧,每个所述第一子帧包括一个所述保护间隔、一个所述导频符号以及一个所述数据段。
可选地,作为一个实施例,所述帧结构还包括一个第二子帧,所述第二子帧位于所述帧结构的头部,所述第二子帧用于发送同步信号簇,第二子帧的头部设置有保护间隔。
可选地,作为一个实施例,所述通信设备为终端或网络侧设备。
根据本申请实施例的通信设备1000可以参照对应本申请实施例的方法200的流程,并且,该通信设备1000中的各个单元/模块和上述其他操作和/或功能分别为了实现方法200中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
本申请实施例中的通信设备可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的通信设备可以为具有操作系统的装置。该操作系统可 以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的通信设备能够实现图2至图9的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图11所示,本申请实施例还提供一种通信设备1100,包括处理器1101,存储器1102,存储在存储器1102上并可在所述处理器1101上运行的程序或指令,例如,该通信设备1100为终端时,该程序或指令被处理器1101执行时实现上述导频传输方法实施例的各个过程,且能达到相同的技术效果。该通信设备1100为网络侧设备时,该程序或指令被处理器1101执行时实现上述导频传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图12为实现本申请实施例的一种终端的硬件结构示意图。
该终端1200包括但不限于:射频单元1201、网络模块1202、音频输出单元1203、输入单元1204、传感器1205、显示单元1206、用户输入单元1207、接口单元1208、存储器1209、以及处理器1210等部件。
本领域技术人员可以理解,终端1200还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1210逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图12中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1204可以包括图形处理器(Graphics Processing Unit,GPU)12041和麦克风12042,图形处理器12041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1206可包括显示面板12061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板12061。用户输入单元1207包括触控面板12071以及其他输入设备12072。触控面板12071, 也称为触摸屏。触控面板12071可包括触摸检测装置和触摸控制器两个部分。其他输入设备12072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1201将来自网络侧设备的下行数据接收后,给处理器1210处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1201包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1209可用于存储软件程序或指令以及各种数据。存储器1209可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1209可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-OnlyMemory,ROM)、可编程只读存储器(ProgrammableROM,PROM)、可擦除可编程只读存储器(ErasablePROM,EPROM)、电可擦除可编程只读存储器(ElectricallyEPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1210可包括一个或多个处理单元;可选的,处理器1210可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1210中。
其中,处理器1210,用于在第一数据序列中插入导频符号,得到第二数据序列;射频单元1201,用于发送所述第二数据序列,其中,所述第二数据序列经过超奈奎斯特处理。
在本申请实施例中,终端在第一数据序列中插入导频符号得到第二数据序列,这样,第二数据序列中的数据符号和插入的导频符号交织放置。本申请实施例可以在数据帧中分布式的放置导频符号,能够解决传统方案中集中 放置的导频不能很好的跟踪信道的时变特性的问题,且开销较小;同时,本申请实施例还可以根据信道状态灵活的调整导频符号的插入位置和插入密度,提高导频传输的灵活性。
本申请实施例提供的终端1200还可以实现上述导频传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图13所示,该网络设备1300包括:天线131、射频装置132、基带装置133。天线131与射频装置132连接。在上行方向上,射频装置132通过天线131接收信息,将接收的信息发送给基带装置133进行处理。在下行方向上,基带装置133对要发送的信息进行处理,并发送给射频装置132,射频装置132对收到的信息进行处理后经过天线131发送出去。
上述频带处理装置可以位于基带装置133中,以上实施例中网络侧设备执行的方法可以在基带装置133中实现,该基带装置133包括处理器134和存储器135。
基带装置133例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图13所示,其中一个芯片例如为处理器134,与存储器135连接,以调用存储器135中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置133还可以包括网络接口136,用于与射频装置132交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器135上并可在处理器134上运行的指令或程序,处理器134调用存储器135中的指令或程序执行图10所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述导频传输方法实施例的各 个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器可以为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述导频传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品存储于非易失性的存储器,所述计算机程序产品被至少一个处理器执行以实现上述导频传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例另提供了一种通信设备,被配置成用于执行上述导频传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例 如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (32)

  1. 一种导频传输方法,所述方法包括:
    通信设备在第一数据序列中插入导频符号,得到第二数据序列;
    所述通信设备发送所述第二数据序列,其中,所述第二数据序列经过超奈奎斯特处理。
  2. 根据权利要求1所述的方法,其中,所述通信设备在第一数据序列中插入导频符号,得到第二数据序列之后,所述方法还包括:
    所述通信设备对所述第二数据序列进行上采样处理;其中,所述超奈奎斯特处理包括所述上采样处理。
  3. 根据权利要求2所述的方法,其中,所述对所述第二数据序列进行上采样处理之后,所述方法还包括:
    在所述第二数据序列中所述导频符号的至少一侧添加零电平符号。
  4. 根据权利要求3所述的方法,其中,添加的所述零电平符号的数量满足如下公式:
    K≥L O-2N+1;
    K为添加的所述零电平符号的数量;L O为插入所述导频符号后所述导频符号以及与所述导频符号相邻的零电平符号的总数量的最小取值;N为所述上采样处理的上采样倍数。
  5. 根据权利要求1所述的方法,其中,所述通信设备在第一数据序列中插入导频符号,得到第二数据序列之前,所述方法还包括:
    所述通信设备对所述第一数据序列进行上采样处理;其中,所述超奈奎斯特处理包括所述上采样处理。
  6. 根据权利要求5所述的方法,其中,所述通信设备对所述第一数据序列进行上采样处理之前,所述方法还包括:
    在所述第一数据序列中待插入所述导频符号的位置添加零电平符号。
  7. 根据权利要求6所述的方法,其中,添加的所述零电平符号的数量满足如下公式:
    Figure PCTCN2021114278-appb-100001
    q为添加的所述零电平符号的数量;L O为插入所述导频符号后所述导频符号以及与所述导频符号相邻的零电平符号的总数量的最小取值;N为所述上采样处理的上采样倍数。
  8. 根据权利要求4或7所述的方法,其中,插入所述导频符号后所述导频符号以及与所述导频符号相邻的零电平符号的总数量的最小取值通过以下公式确定:
    Figure PCTCN2021114278-appb-100002
    τ为所述超奈奎斯特处理的时域重叠系数。
  9. 根据权利要求1所述的方法,其中,所述导频符号两端的至少一端设置有零电平符号。
  10. 根据权利要求9所述的方法,其中,当所述导频符号两端均设置有所述零电平符号时,所述导频符号两端的所述零电平符号的数量相等,或所述导频符号两端的所述零电平符号的数量相差1。
  11. 根据权利要求1所述的方法,其中,所述第二数据序列在第一子帧中发送,所述第一子帧包括保护间隔、所述导频符号和数据段。
  12. 根据权利要求11所述的方法,其中,所述第一子帧所在的帧结构包 括多个所述第一子帧,每个所述第一子帧包括一个所述保护间隔、一个所述导频符号以及一个所述数据段。
  13. 根据权利要求12所述的方法,其中,所述帧结构还包括一个第二子帧,所述第二子帧位于所述帧结构的头部,所述第二子帧用于发送同步信号簇。
  14. 一种通信设备,包括:
    导频插入模块,用于在第一数据序列中插入导频符号,得到第二数据序列;
    发送模块,用于发送所述第二数据序列,其中,所述第二数据序列经过超奈奎斯特处理。
  15. 根据权利要求14所述的通信设备,其中,所述通信设备还包括处理模块,用于对所述第二数据序列进行上采样处理;其中,所述超奈奎斯特处理包括所述上采样处理。
  16. 根据权利要求15所述的通信设备,其中,所述处理模块,还用于在所述第二数据序列中所述导频符号的至少一侧添加零电平符号。
  17. 根据权利要求16所述的通信设备,其中,添加的所述零电平符号的数量满足如下公式:
    K≥L O-2N+1;
    K为添加的所述零电平符号的数量;L O为插入所述导频符号后所述导频符号以及与所述导频符号相邻的零电平符号的总数量的最小取值;N为所述上采样处理的上采样倍数。
  18. 根据权利要求14所述的通信设备,其中,所述通信设备还包括处理模块,用于对所述第一数据序列进行上采样处理;其中,所述超奈奎斯特处 理包括所述上采样处理。
  19. 根据权利要求18所述的通信设备,其中,所述处理模块,还用于在所述第一数据序列中待插入所述导频符号的位置添加零电平符号。
  20. 根据权利要求19所述的通信设备,其中,添加的所述零电平符号的数量满足如下公式:
    Figure PCTCN2021114278-appb-100003
    q为添加的所述零电平符号的数量;L O为插入所述导频符号后所述导频符号以及与所述导频符号相邻的零电平符号的总数量的最小取值;N为所述上采样处理的上采样倍数。
  21. 根据权利要求17或20所述的通信设备,其中,插入所述导频符号后所述导频符号以及与所述导频符号相邻的零电平符号的总数量的最小取值通过以下公式确定:
    Figure PCTCN2021114278-appb-100004
    τ为所述超奈奎斯特处理的时域重叠系数。
  22. 根据权利要求14所述的通信设备,其中,所述导频符号两端的至少一端设置有零电平符号。
  23. 根据权利要求22所述的通信设备,其中,当所述导频符号两端均设置有所述零电平符号时,所述导频符号两端的所述零电平符号的数量相等,或所述导频符号两端的所述零电平符号的数量相差1。
  24. 根据权利要求14所述的通信设备,其中,所述第二数据序列在第一子帧中发送,一个所述第一子帧包括保护间隔、所述导频符号和数据段。
  25. 根据权利要求24所述的通信设备,其中,所述第一子帧所在的帧结 构包括多个所述第一子帧,每个所述第一子帧包括一个所述保护间隔、一个所述导频符号以及一个所述数据段。
  26. 根据权利要求25所述的通信设备,其中,所述帧结构还包括第二子帧,所述第二子帧位于所述帧结构的头部,所述第二子帧用于发送同步信号簇。
  27. 根据权利要求14所述的通信设备,其中,所述通信设备为终端或网络侧设备。
  28. 一种通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至13任一项所述的导频传输方法。
  29. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至13任一项所述的导频传输方法。
  30. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至13任一项所述的导频传输方法。
  31. 一种计算机程序产品,所述计算机程序产品存储于非易失性的存储器,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至13任一项所述的导频传输方法。
  32. 一种通信设备,被配置成用于执行如权利要求1至13任一项所述的导频传输方法。
PCT/CN2021/114278 2020-08-24 2021-08-24 导频传输方法和设备 WO2022042536A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21860371.0A EP4203401A4 (en) 2020-08-24 2021-08-24 PILOT TRANSMISSION METHOD AND DEVICE
US18/168,030 US20230188295A1 (en) 2020-08-24 2023-02-13 Pilot transmission method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010859876.7A CN114095316B (zh) 2020-08-24 2020-08-24 导频传输方法和设备
CN202010859876.7 2020-08-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/168,030 Continuation US20230188295A1 (en) 2020-08-24 2023-02-13 Pilot transmission method and device

Publications (1)

Publication Number Publication Date
WO2022042536A1 true WO2022042536A1 (zh) 2022-03-03

Family

ID=80295707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114278 WO2022042536A1 (zh) 2020-08-24 2021-08-24 导频传输方法和设备

Country Status (4)

Country Link
US (1) US20230188295A1 (zh)
EP (1) EP4203401A4 (zh)
CN (1) CN114095316B (zh)
WO (1) WO2022042536A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104394110A (zh) * 2014-12-19 2015-03-04 华南师范大学 一种时域超奈奎斯特非正交传输导频设计方法
US20170126451A1 (en) * 2015-10-29 2017-05-04 Electronics And Telecommunications Research Institute Pilot signal generating apparatus, method thereof, and transmitting apparatus
CN206775509U (zh) * 2017-05-27 2017-12-19 王柯 一种基于ftn映射的自适应编码调制系统的传输设备
CN110266617A (zh) * 2019-06-18 2019-09-20 西安电子科技大学 超奈奎斯特系统的多径信道估计方法
CN110380994A (zh) * 2019-05-13 2019-10-25 上海海事大学 快速贝叶斯匹配追踪海上稀疏信道估计方法
CN110545142A (zh) * 2019-09-16 2019-12-06 中南大学 基于超奈奎斯特技术的连续变量量子密钥分发方法
CN111327551A (zh) * 2020-03-10 2020-06-23 中国科学院上海高等研究院 数据与导频频域复用的超奈奎斯特传输方法及传输装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5692013A (en) * 1995-11-07 1997-11-25 Hitachi America, Ltd. Shared resources modulator-demodulator circuits for use with quadrature amplitude modulated signals
US9571232B2 (en) * 2014-03-14 2017-02-14 Huawei Technologies Co., Ltd. System and method for faster than Nyquist transmission
KR20170126298A (ko) * 2016-05-09 2017-11-17 한국전자통신연구원 에프티엔 신호 송신장치 및 그 방법
KR102519836B1 (ko) * 2017-01-18 2023-04-11 한국전자통신연구원 파일럿을 포함하는 ftn 통신 시스템의 반복 간섭 제거 및 채널 추정을 위한 방법 및 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104394110A (zh) * 2014-12-19 2015-03-04 华南师范大学 一种时域超奈奎斯特非正交传输导频设计方法
US20170126451A1 (en) * 2015-10-29 2017-05-04 Electronics And Telecommunications Research Institute Pilot signal generating apparatus, method thereof, and transmitting apparatus
CN206775509U (zh) * 2017-05-27 2017-12-19 王柯 一种基于ftn映射的自适应编码调制系统的传输设备
CN110380994A (zh) * 2019-05-13 2019-10-25 上海海事大学 快速贝叶斯匹配追踪海上稀疏信道估计方法
CN110266617A (zh) * 2019-06-18 2019-09-20 西安电子科技大学 超奈奎斯特系统的多径信道估计方法
CN110545142A (zh) * 2019-09-16 2019-12-06 中南大学 基于超奈奎斯特技术的连续变量量子密钥分发方法
CN111327551A (zh) * 2020-03-10 2020-06-23 中国科学院上海高等研究院 数据与导频频域复用的超奈奎斯特传输方法及传输装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4203401A4 *

Also Published As

Publication number Publication date
CN114095316A (zh) 2022-02-25
US20230188295A1 (en) 2023-06-15
EP4203401A1 (en) 2023-06-28
CN114095316B (zh) 2023-07-25
EP4203401A4 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
US10243763B2 (en) Apparatus and method for transmitting data with conditional zero padding
WO2007146713A1 (en) Doppler frequency determination for mobile wireless devices
CN103873397B (zh) 一种新的联合时域和频域正交频分复用接收信道估计方法
CN107294567A (zh) 一种脉冲成型方法、发射机、接收机及系统
WO2022135587A1 (zh) 导频传输方法、装置、设备及存储介质
JP2014161033A5 (zh)
CN114158090A (zh) 数据发送方法、数据接收处理方法及相关设备
CN101860497A (zh) 一种利用改进球译码算法实现fbmc系统的均衡的方法
Qi et al. An enabling waveform for 5G—QAM-FBMC: Initial analysis
WO2022171084A1 (zh) 接入方法、装置、通信设备及可读存储介质
CN103220242B (zh) 单载波频域均衡系统中基于导频块的信道估计方法
WO2022183979A1 (zh) 同步信号传输方法、装置、设备及存储介质
RU2471298C2 (ru) Способы и системы для выбора циклических задержек в оfdm-системах с множеством антенн
CN104333527B (zh) 一种飞机用cofdm调制解调方法
CN101394385A (zh) 基于时域处理联合信道估计的正交频分复用系统
WO2022121891A1 (zh) 导频传输方法、装置、网络侧设备及存储介质
CN101330316A (zh) 一种应用在无线通信系统上行链路中的时间同步方法及装置
WO2022042536A1 (zh) 导频传输方法和设备
CN114221837A (zh) 帧结构指示方法、帧结构更新方法及相关设备
KR20180100837A (ko) 윈도윙과 사이클릭 프리픽스와 사이클릭 포스트픽스를 이용한 직교 주파수 분할 멀티플렉싱 시스템
CN107959649B (zh) Ofdm系统接收机中的符号定时同步简化方法
CN107302513B (zh) 适用于tdd sc-fde的宽带无线传输系统的物理层帧结构
EP4293945A1 (en) Resource determination method, resource configuration method, and communication device
CN109639602A (zh) 面向5g高速移动场景的低复杂度gfdm信道估计算法
WO2017181827A1 (zh) 传输导频信号的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021860371

Country of ref document: EP

Effective date: 20230324