WO2022041984A1 - 一种扑翼无人机自主弹射起飞与回收重复利用装置及方法 - Google Patents

一种扑翼无人机自主弹射起飞与回收重复利用装置及方法 Download PDF

Info

Publication number
WO2022041984A1
WO2022041984A1 PCT/CN2021/101928 CN2021101928W WO2022041984A1 WO 2022041984 A1 WO2022041984 A1 WO 2022041984A1 CN 2021101928 W CN2021101928 W CN 2021101928W WO 2022041984 A1 WO2022041984 A1 WO 2022041984A1
Authority
WO
WIPO (PCT)
Prior art keywords
recovery
motor
gear
ejection
fixed
Prior art date
Application number
PCT/CN2021/101928
Other languages
English (en)
French (fr)
Inventor
张军
张茂增
宋爱国
黄繁章
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2022041984A1 publication Critical patent/WO2022041984A1/zh
Priority to US17/693,365 priority Critical patent/US11685547B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C33/00Ornithopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/028Micro-sized aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/04Ground or aircraft-carrier-deck installations for launching aircraft
    • B64F1/06Ground or aircraft-carrier-deck installations for launching aircraft using catapults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/30Launching, take-off or landing arrangements for capturing UAVs in flight by ground or sea-based arresting gear, e.g. by a cable or a net
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/40Ornithopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/70Launching or landing using catapults, tracks or rails

Definitions

  • the invention relates to the intersecting fields of bionics, mechanics, robotics, instrument science, control science, computer science, sensor technology, etc., and relates to a flapping-wing unmanned aerial vehicle autonomously ejecting, taking off, and recovering and reusing a device and method.
  • flapping-wing UAVs Compared with fixed-wing and rotary-wing UAVs, flapping-wing UAVs have the advantages of high efficiency, agility and concealment, and can perform tasks such as large-scale reconnaissance and detection, security inspection and post-disaster search, and can be widely used in the military field. It also has great application prospects in agriculture, forestry and other civil fields.
  • the take-off of the flapping-wing UAV is still a problem.
  • the take-off method of the flapping-wing UAV directly affects the reliability and stability of the UAV system, and is the key link for the large-scale application of the flapping-wing UAV.
  • the catapult take-off has become one of the main take-off methods of UAVs in recent years due to its advantages of no runway, controllable take-off angle, simple and safe operation, and the ability to work in complex mountain and forest environments, which greatly relaxes the use of UAVs. It improves the environmental adaptability and expands the application field of the flapping-wing UAV.
  • the catapult rope is tightened by a hoist, one end of the catapult rope is fixed on the shelf, and the other end is connected to the trolley; the catapult rope is pulled After tightening, it has a certain elastic potential energy.
  • the elastic potential energy of the ejection rope is converted into kinetic energy, which drives the drone set on the trolley to generate an acceleration.
  • the drone reaches a certain speed, it separates from the trolley and takes off. .
  • the recovery system of the flapping-wing drone is related to the safe recovery and reuse of the flapping-wing drone, and is a necessary prerequisite for fully realizing the value of the drone.
  • accidents are prone to occur during the recovery process, which may damage the flapper or injure people, with serious consequences. Therefore, whether the recovery system of the flapping-wing drone can safely and reliably recover the flapping-wing drone is a very critical indicator.
  • the "autonomous circulation launch and recovery device of an unmanned aerial vehicle" disclosed in the invention patent application with the application number of 201310752444.6 is also not suitable for the catapult take-off of the flapping-wing unmanned aerial vehicle. and recycling.
  • the patent of the present invention aims at the problems of ejection and take-off and recovery and reuse of the current flapping UAV, and overcomes the deficiencies of various ejection systems and recovery systems in the above-mentioned patents.
  • a deployable mechanism is proposed, and an autonomous ejection take-off and recycling device and method for flapping-wing drones are proposed, which are helpful to broaden the application scope and scenarios of flapping-wing drones.
  • the technical problem to be solved by the present invention is to overcome the problems of complex structure, long launch period, difficult adjustment of the ejection angle, excessive volume of the recovery system, insufficient reliability and low recovery efficiency of the flapping UAV ejection take-off system.
  • a flapping-wing unmanned aerial vehicle autonomously ejects, takes off, and recovers and reuses a device and method.
  • the present invention provides a flapping-wing unmanned aerial vehicle autonomous ejection, take-off, and recovery and reuse device, including a base, an attitude adjustment mechanism, an ejection mechanism, A recovery mechanism, a control processing unit, a sensor unit and a power supply module, the base is a tripod structure, the attitude adjustment mechanism is installed on the top of the base, the ejection mechanism and the recovery mechanism are installed on the upper part of the attitude adjustment mechanism, The attitude adjustment mechanism, the ejection mechanism and the recovery mechanism are all connected with the control processing unit; the attitude adjustment mechanism, the ejection mechanism, the recovery mechanism, the control processing unit and the sensor unit are all connected with the power supply module;
  • the ejection mechanism is composed of an ejection motor frame, an ejection motor, an ejection input gear, a toothless gear, a toothless gear shaft, a capstan gear, a capstan gear shaft, a capstan, a left sliding rod, a right sliding rod, a left compression spring, and a right compression spring.
  • the ejection motor frame is fixed on the top of the installation platform, and the ejection motor is fixed on the ejection motor frame;
  • the ejection input gear is installed on the output shaft of the ejection motor, and meshes with the half of the missing tooth gear without missing teeth;
  • the missing tooth gear is fixed on the tooth missing gear shaft;
  • the winch gear is fixed on the winch gear shaft, and is connected with
  • the tooth-missing gear has half-side meshing with missing teeth;
  • the tooth-missing gear shaft and the winch gear shaft are both connected with the ejection motor frame through bearings, and can rotate relative to the ejection motor frame;
  • the winch is fixed on the winch gear, and coaxial with it;
  • the left sliding rod and the right sliding rod are parallel, and the rear ends are fixed on the installation platform,
  • the left compression spring is coaxially sleeved on the outer surface of the left sliding rod, and the rear end is fixed on the installation platform , the right compression
  • the fixed part of the flapper is close to the pull rope to fix the slider, and the pulley shaft is fixed on the installation platform.
  • the pulley is sleeved on the pulley shaft, one end of the pull rope is fixed on the pull rope fixing slider, and the other end of the pull rope passes through the circular hole on the installation platform, bypasses the pulley and fixed on the winch;
  • the recovery mechanism includes a recovery motor, a recovery gear transmission mechanism, a high elastic cloth, a recovery platform frame, a first sprocket, a second sprocket and a recovery mechanical arm, and the mounting platform is provided with a plurality of through holes for installing the recovery motor.
  • Recycling gear transmission mechanism and recycling mechanical arm the recycling platform frame is a high-elasticity steel sheet, and there is a square through hole at the same distance on the recycling platform frame for meshing with sprocket 1 and sprocket 2
  • the bottom surface of the installation platform is provided with two symmetrical d-shaped slot holes on the left and right, and the outer surface of the front end of the slot hole is provided with a circular block stopper.
  • the hole is used to fit on the round table block on the outer surface of the front end of the d-shaped slot hole of the installation platform.
  • the two ends of the recovery platform frame are respectively fixed with the left and right cylinders through the two d-shaped slot holes of the installation platform.
  • the power module provides energy for the attitude adjustment mechanism, the ejection mechanism, the recovery mechanism, the sensor unit and the control processor.
  • the attitude adjustment mechanism includes a connecting piece, a counterweight, a base root, an attitude adjustment motor, an attitude adjustment input gear, an attitude adjustment output gear, an attitude adjustment output gear shaft and an installation platform.
  • the front end of the connecting piece is installed on the top of the base, the counterweight is installed on the rear end of the connecting piece, and the base root is installed on the upper part of the connecting piece;
  • the adjustment input gear is fixed on the output shaft of the attitude adjustment motor;
  • the attitude adjustment input gear meshes with the attitude adjustment output gear;
  • the attitude adjustment output gear is fixed on the attitude adjustment output gear shaft, and the attitude adjustment output gear shaft It is mounted on the base of the base through a bearing and is parallel to the output shaft of the attitude adjustment motor.
  • the base includes three foot pads, respectively a right foot pad, a left foot pad and a rear foot pad, and the three foot tubes are respectively a right foot tube, a left foot tube and a rear foot tube, a foot tube restraint
  • the middle bearing take over, the middle shaft locking knob, the middle shaft, the pitch adjustment handle and the connecting piece locking knob, the foot pads are respectively installed at the lower ends of the corresponding leg tubes and are in contact with the ground; the three outer sleeves of the leg tube restraints
  • the barrel is respectively connected with the three leg tubes, the inner sleeve of the leg tube restraint is connected with the bottom end of the middle bearing nozzle; the upper end of the middle bearing nozzle is connected with the three leg tubes, and the lower end of the central shaft is sleeved on the middle bearing
  • the inside of the take-over is fixed by the central axis locking knob; the upper end of the central axis is connected with the pitch adjustment handle; the pitch adjustment handle is connected with the connecting piece locking
  • the recovery gear transmission mechanism includes a recovery input gear, a primary transmission gear shaft, a secondary transmission gear shaft, a recovery output gear shaft 1, a recovery output gear shaft 2, a primary transmission gear, and a secondary transmission gear.
  • the recovery input gear is mounted on the output shaft of the recovery motor and meshes with the primary transmission gear
  • the primary transmission gear is fixed to the primary transmission gear shaft and meshes with the secondary transmission gear and the recovery output gear
  • the recovery output gear one is fixed to one end of the recovery output gear shaft one
  • the other end of the recovery output gear shaft one is fixed to the sprocket wheel one
  • the secondary transmission gear is fixed to the secondary transmission gear shaft and meshes with the second recovery output gear
  • the second recovery output gear is fixed to one end of the second recovery output gear shaft, and the other end of the second recovery output gear shaft Fixed sprocket two.
  • the recycling manipulator includes a first joint motor, a large arm, a second joint motor, a middle arm, a third joint motor, a small arm, a rotating motor, a gripper motor and a gripper.
  • the four round holes of the base are fixed at the corresponding positions of the installation platform, one end of the big arm is fixed on the output shaft of the joint motor one, the other end is connected with the joint motor two, and one end of the middle arm is fixed on the output shaft of the joint motor two.
  • the other end is connected with the joint motor three, one end of the forearm is fixed on the output shaft of the joint motor three, the other end is coaxially connected with the rotating motor, one side of the gripper is fixed with the gripper motor, and the bottom end of the gripper Fixed on the output shaft of the rotating electrical machine.
  • the sensor unit is composed of an encoder, an inclination sensor and a vision sensor;
  • the encoder is fixed at the end of the recovery motor, and transmits the running state of the recovery motor to the motor controller in real time, so as to realize the recovery motor speed regulation and start-stop;
  • the inclination sensor is fixed on the upper surface of the base root of the attitude adjustment mechanism to collect the inclination of the installation platform during attitude adjustment;
  • the vision sensor is fixed beside the forearm of the recovery mechanical arm, It is used to detect the real-time position and attitude information of the flapping UAV.
  • control processing unit is composed of a data acquisition and storage unit and a processing and control processor.
  • the data processing unit completes the collection of the rotation, inclination and visual information of the sensor unit; the processing and control processor completes the sensor unit.
  • the base is a tripod structure.
  • the present invention provides a method for autonomous ejection, take-off and recovery and reuse of a flapping-wing unmanned aerial vehicle, comprising the following steps:
  • A. Ejection angle adjustment After the personnel deploy the device, the ejection mechanism is initially in a horizontal posture. By controlling the forward rotation of the posture adjustment motor, the posture adjustment input gear, the posture adjustment output gear, and the posture adjustment output gear shaft are rotated in turn. The pitch attitude adjustment of the installation platform is realized, the inclination angle of the installation platform is detected by the inclination sensor, and the rotation angle of the motor is controlled by the control processing unit, so that the attitude of the installation platform and the ejection mechanism is inclined upward, and the optimal ejection angle of the flapping UAV is achieved. .
  • the pull-rope fixed slider pushes the fixed parts of the flapping drone to eject at high speed, and the ejection and take-off of the flapping drone can be realized.
  • Attitude adjustment and recovery Before the flapping drone is recovered, the attitude adjustment motor of the attitude adjustment mechanism is reversed, and the inclination of the installation platform and the recovery mechanism is adjusted, so that the plane composed of the recovery platform frame and the high elastic cloth is inclined downward at a certain angle , it is convenient for the flapping drone to detect and land on the high elastic cloth through the visual positioning method. After the flapping drone landed on the high elastic cloth, the attitude adjustment mechanism adjusts the angle so that the recovery platform frame is parallel to the horizontal plane. , the rotation of the recovery motor starts to rotate forward, driving the recovery input gear to rotate, the recovery input gear further drives the primary transmission gear to rotate, the primary transmission gear further drives the secondary transmission gear, and the primary transmission gear further drives the secondary transmission gear.
  • the first-stage transmission gear and the second-stage transmission gear drive the recovery output gear 1 and the recovery output gear 2 to rotate respectively.
  • the shaft rotates, so that the frame of the recovery platform is continuously retracted into the d-shaped slot of the installation platform. Slide down to the center of the high-stretch fabric.
  • the visual sensor captures the position of the flapping drone, the joint motor 1, joint motor 2, joint motor 3 and the rotating motor of the recovery robot arm work at the same time, and the recovery robot arm unfolds and rotates all
  • the gripper is adapted to the angle of the flapping-wing drone, the gripper motor works, and the gripper grabs the frame of the flapping-wing drone that can grab the plane and rotates the frame.
  • the gripper grabs the grab ring on the upper part of the frame of the flapping drone and re-sleeves the flapper fixing part on the left slide bar and the ejection mechanism.
  • takeoff and reloading can be realized.
  • the attitude adjustment mechanism designed by the present invention can change the angle at which the UAV is ejected and take off, preventing the phenomenon of take-off failure caused by the excessive resistance of the ejection take-off at the horizontal angle, and is more suitable for the outdoor complex terrain environment. Work;
  • the ejection mechanism designed by the present invention adopts the input gear fixed on the output shaft of the ejection motor to realize the transmission through the tooth-missing gear and the winch gear, and realizes the energy storage and ejection of the flapping drone through the cooperation of the compression spring and the pulling rope. Take-off can effectively improve the utilization efficiency of the catapult system. In addition to being used for the catapult take-off of the flapping-wing UAV, it can also be used for the catapult take-off of the fixed-wing UAV.
  • the recycling mechanism designed by the present invention can effectively improve the reliability and stability of the recycling system. It adopts a space deployable mechanism, which can be completely retracted to the bottom of the installation platform when not in operation, and has the advantages of small size, easy portability and rapid deployment. It has the advantages of safe and reliable recovery and take-off and reloading of the flapping-wing drone, which can greatly improve the practical value of the flapping-wing drone.
  • the present invention integrates the ejection link and the recovery link of the flapping-wing UAV into one system, and no one is involved in the whole process, which is better able to be used for flapping wings in harsh environments or situations that are not suitable for long-term personnel on duty UAV catapult take-off and recovery and reuse work.
  • FIG. 1 is a schematic diagram of a system composition according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the overall mechanism of the device of the present invention.
  • FIG. 3 is a front view of the overall mechanism of the device of the present invention.
  • FIG. 4 is a schematic diagram of a device base of the present invention.
  • FIG. 5 is a perspective view 1 of an attitude adjustment mechanism of the present invention.
  • FIG. 6 is a perspective view 2 of the attitude adjustment mechanism of the present invention.
  • FIG. 7 is a perspective view 1 of the ejection mechanism of the present invention.
  • FIG. 8 is a perspective view 2 of the ejection mechanism of the present invention.
  • FIG. 9 is a perspective view 3 of the ejection mechanism of the present invention.
  • Figure 10 is a side view 1 of the ejection mechanism of the present invention.
  • Figure 11 is a side view 2 of the ejection mechanism of the present invention.
  • Figure 12 is a top view of the ejection mechanism of the present invention.
  • FIG. 13 is a sequence diagram of the ejection process of the ejection mechanism of the present invention.
  • Figure 14 is a perspective view of the recycling mechanism of the present invention.
  • Figure 15 is a top view of the recycling mechanism of the present invention.
  • 16 is a schematic diagram 1 of the drive system composition of the recovery mechanism of the present invention.
  • 17 is a schematic diagram 2 of the drive system composition of the recovery mechanism of the present invention.
  • Fig. 18 is the movement sequence diagram of the recycling process of the present invention.
  • 19 is a perspective view of the mechanical arm of the recycling mechanism of the present invention.
  • Figure 21 is a perspective view of the take-off reassembly mechanism of the present invention.
  • Figure 22 is a front view of the take-off reassembly mechanism of the present invention.
  • Fig. 23 is the sequence diagram 1 of the take-off reloading process of the present invention.
  • FIG. 24 is a sequence diagram 2 of the take-off reloading process of the present invention.
  • Base 1-1-1, right foot pad; 1-1-2, left foot pad; 1-1-3, rear foot pad; 1-2-1, right foot tube; 1-2-2, left Foot tube; 1-2-3, rear foot tube; 1-3, foot tube restraint; 1-4, middle bearing connection; 1-5, central shaft locking knob; 1-6, central shaft; 1-7, Pitch adjustment handle; 1-8, connector locking knob; 2, attitude adjustment mechanism; 2-1, connector; 2-2, counterweight; 2-3, base root; 2-4, attitude adjustment motor; 2-5, Attitude adjustment input gear; 2-6, Attitude adjustment output gear; 2-7, Attitude adjustment output gear shaft; 2-8, Installation platform; 3, Ejection mechanism; 3-1, Ejection motor frame; 3- 2.
  • Ejection motor; 3-3 ejection input gear; 3-4, missing tooth gear; 3-5, missing tooth gear shaft; 3-6, capstan gear; 3-7, capstan gear shaft; 3-8, capstan ;3-9, left slide bar; 3-10, right slide bar; 3-11, left compression spring; 3-12, right compression spring; 3-13, pull rope fixed slider; 3-14, flapper Fixing parts; 3-15, pulley shaft; 3-16, pulley; 3-17, pull rope; 4, recovery mechanism; 4-1, recovery motor; 4-2, recovery gear transmission mechanism; 4-2-1, Recover input gear; 4-2-2, primary transmission gear shaft; 4-2-3, secondary transmission gear shaft; 4-2-4, recover output gear shaft 1; 4-2-5, recover output gear shaft 2; 4-2-6, primary transmission gear; 4-2-7, secondary transmission gear; 4-2-8, recovery output gear 1; 4-2-9, recovery output gear 2; 4-3, High elastic cloth; 4-4, recovery platform frame; 4-5, sprocket one; 4-6, sprocket two; 4-7, recycling robotic arm; 4-7-1
  • Embodiment Referring to FIG. 1, a flapping-wing UAV autonomously ejects, takes off and recovers and reuses a device consisting of a base 1, an attitude adjustment mechanism 2, an ejection mechanism 3, a recovery mechanism 4, a control processing unit 5, a sensor unit 6, and a power supply module.
  • the base 1 is used to install, fix and support the mentioned mechanism, unit and module
  • the attitude adjustment mechanism 2 realizes the attitude adjustment function of the device
  • the ejection mechanism 3 realizes the ejection take-off function of the flapping drone
  • the recovery mechanism 4 realizes The landing recovery, position adjustment and take-off reloading functions of the flapping UAV
  • the control processing unit 5 realizes the control of the attitude adjustment mechanism 2, the ejection mechanism 3 and the recovery mechanism 4, and the sensor data processing and storage of the sensor unit 6.
  • the sensor unit 6 To realize the detection of the rotation angle information of the motor, the attitude detection of the device and the position and attitude detection of the flapping UAV, the power supply module 7 supplies power to each mechanism, unit and module of the device;
  • the base 1 includes a right foot pad 1-1-1, a right foot tube 1-2-1, a left foot pad 1-1-2, and a left foot tube 1-2-2, rear foot pad 1-1-3, rear foot tube 1-2-3, foot tube restraint 1-3, middle bearing nozzle 1-4, central shaft locking knob 1-5, central shaft 1- 6. Pitch adjustment handle 1-7 and connector locking knob 1-8.
  • the right foot pad 1-1-1 is installed at the lower end of the right foot tube 1-2-1
  • the left foot pad 1-1-2 is installed at the lower end of the left foot tube 1-2-2
  • the rear foot pad 1- 1-3 is installed at the lower end of the rear leg tube 1-2-3, and both are in contact with the ground to prevent the base 1 and the ground from sliding; the three outer sleeves of the foot tube restraint 1-3 are respectively connected with the right leg tube 1-2. -1.
  • the left leg tube 1-2-2 and the rear leg tube 1-2-3 are hinged, and the inner sleeve of the foot tube restraint 1-3 is sleeved on the middle bearing nozzle 1-4; the middle bearing nozzle 1
  • the upper end of the -4 is connected with the right leg tube 1-2-1, the left leg tube 1-2-2 and the rear leg tube 1-2-3, the central shaft 1-6 is sleeved inside the middle bearing tube 1-4, It can slide up and down and is fixed by the central axis locking knob 1-5; the upper end of the central axis 1-6 is fixed with a pitch adjustment handle 1-7; .
  • the attitude adjustment mechanism 2 includes a connector 2-1, a counterweight 2-2, a base root 2-3, an attitude adjustment motor 2-4,
  • the attitude adjustment input gear 2-5, the attitude adjustment output gear 2-6, the attitude adjustment output gear shaft 2-7, and the installation platform 2-8 are composed.
  • the front bottom of the connecting piece 2-1 meshes with the pitch adjustment handle 1-7 , which is fixed by tightening the knobs 1-8 of the connector, the counterweight 2-2 is installed at the rear end of the connector 2-1, the upper part of the connector 2-1 is fixed with a base root 2-3, and the base root
  • the attitude adjustment motor 2-4 is installed on the 2-3
  • the attitude adjustment input gear 2-5 is fixed on the output shaft of the attitude adjustment motor 2-4
  • the attitude adjustment output gear shaft 2-7 is installed through the bearing connection
  • the attitude adjustment output gear 2-6 is fixed on the attitude adjustment output gear shaft 2-7, and is connected with the attitude adjustment input gear 2 -5 meshing
  • the installation platform 2-8 is sleeved on the attitude adjustment output gear shaft 2-7, and is fixed on the surface of the attitude adjustment output gear 2-6.
  • the ejection mechanism 3 is composed of an ejection motor frame 3-1, an ejection motor 3-2 , Ejection input gear 3-3, missing gear 3-4, missing gear shaft 3-5, capstan gear 3-6, capstan gear shaft 3-7, capstan 3-8, left slide bar 3-9, right slide Rod 3-10, left compression spring 3-11, right compression spring 3-12, rope fixing slider 3-13, flapper fixing piece 3-14, pulley shaft 3-15, pulley 3-16 and rope 3-17, the ejection motor frame 3-1 is fixed on the installation platform 2-8, the ejection motor 3-2 is installed on the ejection motor frame 3-1, and the ejection input gear 3-3 is installed on the ejection motor 3-2 on the output shaft, and meshes with the toothless half of the toothless gear 3-4, the toothless gear 3-4 is fixed on the toothless gear shaft 3-5, the winch gear 3-4 -6 is fixed on the capstan gear shaft 3-7, and meshes with the tooth-missing gear 3-4 with
  • the motor frame 3-1 is connected and can be rotated relative to the ejection motor frame 3-1; the winch 3-8 is fixed on the winch gear 3-6 and is coaxial with it.
  • the right slide bar 3-10 is parallel, and the rear end is fixed on the installation platform 2-8, the left compression spring 3-11 is coaxially sleeved on the outer surface of the left slide bar 3-9, and the rear end is fixed on the installation platform 2-8, the right compression spring 3-12 is coaxially sleeved on the outer surface of the right sliding rod 3-10, the rear end is fixed on the installation platform 2-8, the front end of the left compression spring 3-11 and the right compression spring 3- 12
  • the front end is fixedly connected to the pull rope fixing slider 3-13; the left and right two symmetrical through holes of the flapper fixing piece 3-14 are respectively sleeved on the left sliding rod 3-9 and the right sliding rod 3-10, and
  • the slider 3-13 is fixed against the pull rope
  • the pulley shaft 3-15 is fixed on the installation platform 2
  • the ejection motor 3-2 When the ejection motor 3-2 rotates, it can drive the ejection input gear 3-3 to rotate, and the ejection input gear 3-3 further drives the toothless gear 3-4 to rotate, and the toothless gear 3-4 rotates. Further drive the winch gear 3-6 to rotate, and further drive the winch 3-8 to rotate, so that the pull rope 3-17 is continuously wound on the winch 3-8.
  • the block 3-13 slides on the left sliding rod 3-9 and the right sliding rod 3-10, thereby compressing the left compression spring 3-11 and the right compression spring 3-12 to store elastic potential energy, when the toothless gear 3-4 rotates one circle
  • the ejection motor 3-2 stops rotating when it reaches the non-engaging position with the winch gear 3-6, and is driven by the elastic potential energy of the left compression spring 3-11 and the right compression spring 3-12.
  • the rope 3-17 is quickly pulled away, and the rope fixing slider 3-13 pushes the flapper fixing piece 3-14 to eject at high speed, so that the ejection take-off can be realized.
  • the recycling mechanism includes recycling Motor 4-1, recovery gear transmission mechanism 4-2, high elastic cloth 4-3, recovery platform frame 4-4, sprocket 1 4-5, sprocket 2 4-6 and recovery mechanical arm 4-7.
  • the installation platform 2-8 is provided with a plurality of through holes for installing the recovery motor 4-1, the recovery gear transmission mechanism 4-2 and the recovery mechanical arm 4-7, and the recovery platform frame 4-4 is a high elastic steel sheet , there is a square through hole at the same distance, which is used to engage with the first sprocket 4-5 and the second sprocket 4-6.
  • the bottom surface of the installation platform 2-8 is provided with two symmetrical d-shaped grooves on the left and right.
  • the outer surface of the front end of the slot hole is provided with a round table stopper.
  • the edge of the high elastic cloth 4-3 wraps the recovery platform frame 4-4.
  • On the round table stopper on the outer surface of the front end of the d-slot hole it can be ensured that the high elastic cloth 4-3 will not be retracted with the recovery platform frame 4-4, and the two ends of the recovery platform frame 4-4 pass through the installation platform 2-
  • the two d-shaped slot holes of The platform frame 4-4 engages.
  • the recovery gear transmission mechanism includes a recovery input gear 4-2-1, a primary transmission gear shaft 4-2-2, a secondary transmission gear shaft 4-2-3, and a recovery output gear shaft One 4-2-4, recovery output gear shaft two 4-2-5, primary transmission gear 4-2-6, secondary transmission gear 4-2-7, recovery output gear one 4-2-8 and recovery output Gear two 4-2-9, the recovery input gear 4-2-1 is installed on the output shaft of the recovery motor 4-1, the primary transmission gear shaft 4-2-2, the secondary transmission gear Shaft 4-2-3, recovery output gear shaft 1 4-2-4, recovery output gear shaft 2 4-2-5 are fixed on the installation platform 2-8, and are parallel to each other, the first-stage transmission gear 4-2-6 is mounted on the primary transmission gear shaft 4-2-2, and meshes with the recovery input gear 4-2-1, and the secondary transmission gear 4-2-7 is mounted on the The secondary transmission gear shaft 4-2-3 is meshed with the primary transmission gear 4-2-6, the recovery output gear 1 4-2-8 and the recovery output gear 2 4-2-9 are respectively It is sleeved on the recovery output gear shaft one
  • the recycling robot arm 4-7 includes a joint motor 4-7-1, a large arm 4-7-2, and a joint motor Two 4-7-3, middle arm 4-7-4, joint motor three 4-7-5, forearm 4-7-6, rotating motor 4-7-7, gripper motor 4-7-8, clamp Claws 4-7-9, the joint motor one 4-7-1 is fixed on the corresponding position of the installation platform 2-8 through the four round holes of its base, and one end of the big arm 4-7-2 is fixed on the joint motor one.
  • the other end On the output shaft of 4-7-1, the other end is installed in the sleeve of the joint motor 2 4-7-3 shell, and one end of the middle arm 4-7-4 is fixed to the output shaft of the joint motor 2 4-7-3
  • the other end is installed in the sleeve provided by the joint motor three 4-7-5 shell, one end of the forearm 4-7-6 is fixed on the output shaft of the joint motor three 4-7-5, and the other end is connected with the rotating motor 4 -7-7 is fixed coaxially, one side of the jaw 4-7-9 is installed with the jaw motor 4-7-8, and the bottom end of the jaw 4-7-9 is installed on the output shaft of the rotary motor 4-7-7 superior.
  • the recovery motor 4-1 When the recovery motor 4-1 rotates, it can drive the recovery input gear 4-2-1 to rotate, and the recovery input gear 4-2-1 further drives the primary transmission gear 4-2-6 to rotate , the primary transmission gear 4-2-6 further drives the secondary transmission gear 4-2-7, and the primary transmission gear 4-2-6 and the secondary transmission gear 4-2-7 drive the
  • the recovery output gear 1 4-2-8 and the recovery output gear 2 4-2-9 rotate, the recovery output gear 1 4-2-8 drives the sprocket 1 4-5 to rotate coaxially, and the recovery output gear 2 4 -2-9 drives the second sprocket 4-6 to rotate coaxially, so that the recovery platform frame 4-4 is continuously retracted into the d-shaped slot hole of the installation platform 2-8, and the high elastic cloth 4-3 is installed on the platform 2 -8
  • the circular block on the outer surface of the front end of the d-slot hole is blocked and will not be recovered.
  • the visual sensor 6-3 The position of the flapping drone is captured, and the joint motor one 4-7-1, the joint motor two 4-7-3, the joint motor three 4-7-5 and the rotation motor 4- 7-7 work at the same time, the recovery mechanical arm 4-7 unfolds and rotates the gripper 4-7-9 to adapt to the angle of the flapping drone, the gripper motor 4-7-8 works, the gripper 4- 7-9 Grab the rack of the flapping drone that can grab the plane and rotate the rack.
  • the clip Claw 4-7-9 grabs the grab ring on the upper part of the flapping drone frame and re-slips the flapper fixing piece 3-14 on the left slide bar 3-9 and right slide bar 3- of the ejection mechanism 10, you can achieve recovery and take-off reloading.
  • the sensor unit 6 includes The encoder 6-1, the inclination sensor 6-2 and the vision sensor 6-3, the encoder 6-1 is installed at the end of the recovery motor 4-1, and transmits the running state of the recovery motor 4-1 to the motor control in real time It realizes the speed regulation and start-stop of the recovery motor 4-1.
  • the inclination sensor 6-2 is fixed on the upper surface of the base root 2-3 of the attitude adjustment mechanism 2, and is used to collect the information of the installation platform 2-8 during attitude adjustment.
  • the inclination angle; the visual sensor 6-3 is fixed on the forearm of the recovery manipulator 4-7, and is used to detect the real-time position and attitude information of the flapping drone.
  • the power supply module 7 provides energy for the attitude adjustment mechanism 2 , the ejection mechanism 3 , the recovery mechanism 4 , the control processing unit 5 and the sensor unit 6 .
  • Attitude adjustment mechanism 2 and ejection mechanism 3 work together.
  • the left compression spring 3-11 and the right compression spring 3-12 have a certain amount of compression;
  • Attitude adjustment mechanism 2 works, installation platforms 2-8 return to the horizontal angle, and prepare for the next ejection takeoff.
  • S10 Recover the robotic arm 4-7 and turn the gripper 4-7-9 to adapt to the angle of the flapping-wing drone frame, and grab the frame part of the flapping-wing drone that can grab the plane;
  • the recovery robotic arm 4-7 rotates the gripper 4-7-9, so that the plane where the flapping-wing drone frame is located coincides with the graspable plane of the recovery robotic arm 4-7;
  • S12 Recover the gripper 4-7-9 of the robotic arm 4-7 to grab the grab ring on the upper part of the frame of the flapping-wing drone.
  • the recovery robotic arm 4-7 grabs the flapping drone and re-slips the flapper fixing 3-14 on the left slide bar 3-9 and the right slide bar 3-10 of the ejection mechanism 3;

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)
  • Manipulator (AREA)

Abstract

本发明公开了一种扑翼无人机自主弹射起飞与回收重复利用装置及方法,包括底座、姿态调整机构、弹射机构、回收机构、控制处理单元、电源模块和传感器单元;所述姿态调整机构包括连接件、配重、调节电机、姿态调整输入齿轮、姿态调整输出齿轮、姿态调整输出齿轮轴和安装平台;所述弹射机构包括弹射电机、弹射电机架子、滑轮、拉绳、绞盘、拉绳固定件、扑翼机固定件、两个滑杆、两个压缩弹簧和一个弹射齿轮组;所述回收机构包括回收电机、回收机械臂、回收平台、两个链轮和一个回收齿轮组。本发明的装置及方法可实现无人机弹射起飞角度自主调整和弹射起飞,也可完成无人机回收和起飞重装,并且可重复利用,具有高效性和实用性的优点。

Description

一种扑翼无人机自主弹射起飞与回收重复利用装置及方法 技术领域
本发明涉及仿生学、机械学、机器人学、仪器科学、控制科学、计算机科学、传感器技术等的交叉领域,涉及一种扑翼无人机自主弹射起飞与回收重复利用装置及方法。
背景技术
相比较于固定翼和旋翼无人机,扑翼无人机具有高效性、敏捷性和隐蔽性等优点,可执行大范围侦察探测、安全巡检和灾后搜索等任务,可以广泛应用于军事领域,在农业、林业等民用领域也有很大的应用前景。
目前扑翼无人机的起飞仍然是一个问题,扑翼无人机的起飞方式直接影响了无人机系统的可靠性和稳定性,是扑翼无人机实现大范围应用的关键环节。而弹射起飞以其无需跑道、起飞角度可控、操作简单安全并且可在情况复杂的山林环境下工作等优点成为了近年来无人机的主要起飞方式之一,极大的放宽了无人机的使用限制,提高了环境适应性,扩大了扑翼式无人机的应用领域。申请号为201711406496.2的发明专利申请公开的“一种小型无人机起飞弹射架”中,利用卷扬机把弹射绳索拉紧,该弹射绳索一端固定在架子上,另一端与小车相连;弹射绳索被拉紧后具有一定的弹性势能,通过解开小车的固定锁,弹射绳索的弹性势能转化为动能,带动设置在小车上面的无人机产生一个加速度,当无人机达到一定的速度后脱离小车起飞。上述“一种小型无人机起飞弹射架”虽然能够实现无人机起飞,但是仍然存在着结构复杂,安装困难,不便于携带并且弹射起飞角度不可调的问题,不能够胜任野外的复杂环境下的工作。
扑翼无人机的回收系统关系着扑翼无人机的安全回收和重复利用,是充分实现无人机价值的必要前提。然而在回收过程中易出现事 故,可能会造成扑翼机的损坏或者伤及到人员,后果严重。因此扑翼无人机的回收系统能否安全可靠的对扑翼无人机进行回收是其一个非常关键的指标。
目前我国无人机的发射系统和回收系统大多是相互隔离的,存在着体积大,发射周期长,可靠性不够,回收效率低下等问题,且整个过程中均需要人的参与。因此如何将无人机的发射和回收环节集成到一个系统中并且尽可能的减小体积,成为了现在亟待解决的问题。申请号为201910711298.X的发明专利申请公开的“一种无人机起飞和回收一体化作业车”提供了一种适用于无人机弹射起飞和挂绳回收的一体化作业车,虽能实现功能,但是体积庞大且需要拖车运输,存在隐秘性差的缺陷。而申请号为201310752444.6的发明专利申请公开的“一种无人机的自主循环发射、回收装置”由于结构复杂且由于其姿态调整机构的特殊性,同样不适用于扑翼无人机的弹射起飞和回收。
本发明专利针对目前扑翼无人机弹射起飞和回收重复利用等问题,并克服了上述专利中各种弹射系统和回收系统的不足,综合考虑从弹射起飞到回收重装的各个环节,采用空间可展开机构,提出了一种扑翼无人机自主弹射起飞与回收重复利用装置及方法,对于拓宽扑翼无人机的应用范围和场景具有一定的帮助作用。
发明内容
本发明所要解决的技术问题在于,克服扑翼无人机弹射起飞系统结构复杂、发射周期长、弹射角度难以调整、回收系统体积过大、可靠性不够、回收效率低下的问题,设计了一种扑翼无人机自主弹射起飞与回收重复利用装置及方法,为达此目的,本发明提供一种扑翼无人机自主弹射起飞与回收重复利用装置,包括底座、姿态调整机构、弹射机构、回收机构、控制处理单元、传感器单元和电源模块,所述 底座为三脚架式结构,所述姿态调整机构安装在所述底座的顶端,所述弹射机构和回收机构安装在所述姿态调整机构上部,所述姿态调整机构、弹射机构和回收机构均与控制处理单元相连;所述姿态调整机构、弹射机构、回收机构、控制处理单元和传感器单元均与电源模块相连;
所述的弹射机构由弹射电机架、弹射电机、弹射输入齿轮、缺齿齿轮、缺齿齿轮轴、绞盘齿轮、绞盘齿轮轴,绞盘、左滑杆、右滑杆、左压缩弹簧、右压缩弹簧、拉绳固定滑块、扑翼机固定件、滑轮轴、滑轮和拉绳;所述弹射电机架固定在安装平台顶端,所述弹射电机固接在弹射电机架上;所述弹射输入齿轮安装在弹射电机的输出轴上,且与所述缺齿齿轮无缺齿的半边啮合;所述缺齿齿轮固接在缺齿齿轮轴上;所述的绞盘齿轮固接在绞盘齿轮轴上,且与缺齿齿轮有缺齿的半边啮合;所述缺齿齿轮轴和绞盘齿轮轴均通过轴承与在弹射电机架连接,可相对于弹射电机架转动;所述绞盘固定在所述绞盘齿轮上,并与其同轴;所述左滑杆和所述右滑杆平行,并且后端均固定在安装平台上,所述左压缩弹簧同轴套装在左滑杆外表面,并且后端固定在安装平台上,所述右压缩弹簧同轴套装在右滑杆外表面,后端固定在安装平台上,左压缩弹簧前端和右压缩弹簧前端均固接拉绳固定滑块;所述扑翼机固定件上设置有两个左右对称的通孔,分别套在左滑杆和右滑杆上,所述扑翼机固定件紧靠着拉绳固定滑块,所述的滑轮轴固定在所述的安装平台上,所述的滑轮套装在所述的滑轮轴上,所述拉绳的一端固接拉绳固定滑块上,拉绳的另一端穿过所述安装平台上的圆孔,绕过滑轮并固定在绞盘上;
所述的回收机构包括回收电机、回收齿轮传动机构、高弹力布、回收平台框架、链轮一、链轮二和回收机械臂,所述安装平台设有多个通孔,用于安装回收电机、回收齿轮传动机构和回收机械臂,所述回收平台框架为高弹性钢片,所述回收平台框架上每隔相同的距离就 有一个正方形通孔,用于和链轮一和链轮二啮合,所述安装平台的底面设有左右两个对称的d型槽孔,槽孔前端外表面均设有圆台挡块,所述高弹力布边缘包裹住回收平台框架,两端均有圆型通孔,用于套在安装平台的d型槽孔前端外表面的圆台挡块上,所述回收平台框架两端分别通过安装平台的两个d型槽孔,分别与左右两个圆柱固定在一起,两个d型槽孔的中间各有一个长方体缺口,用于链轮一和链轮二与回收平台框架啮合;
所述的电源模块为姿态调整机构、弹射机构、回收机构、传感器单元和控制处理器提供能源。
作为本发明结构进一步改进,所述的姿态调整机构包括连接件、配重、基座根部、姿态调整电机、姿态调整输入齿轮、姿态调整输出齿轮、姿态调整输出齿轮轴和安装平台,所述的连接件的前端安装在底座顶端,所述的配重安装在连接件的后端,所述的基座根部安装在所述连接件上部;基座根部上安装有姿态调整电机,所述的姿态调整输入齿轮固接在姿态调整电机输出轴上;所述姿态调整输入齿轮与姿态调整输出齿轮啮合;所述姿态调整输出齿轮固接在姿态调整输出齿轮轴上,所述的姿态调整输出齿轮轴通过轴承安装在基座根部上,并且与姿态调整电机的输出轴平行。
作为本发明结构进一步改进,所述的底座包括三个脚垫分别为右脚垫、左脚垫和后脚垫、三根脚管分别为右脚管、左脚管和后脚管、脚管约束件、中轴承接管、中轴锁紧旋钮、中轴、俯仰调整手柄和连接件锁紧旋钮,所述脚垫分别安装在对应脚管下端且与地面接触;所述脚管约束件的三个外部套筒分别与三个脚管相连,所述脚管约束件的内部套筒与中轴承接管的底端相连;所述中轴承接管的上端与三根脚管相连,所述中轴下端套在中轴承接管的内部,通过所述中轴锁紧旋钮固定;所述中轴上端与俯仰调整手柄相连;所述俯仰调整手柄与所述连接件锁紧旋钮相连。
作为本发明结构进一步改进,所述回收齿轮传动机构包括回收输入齿轮、一级传动齿轮轴、二级传动齿轮轴、回收输出齿轮轴一、回收输出齿轮轴二、一级传动齿轮、二级传动齿轮、回收输出齿轮一和回收输出齿轮二,所述回收输入齿轮安装在所述回收电机的输出轴上并与所述一级传动齿轮啮合,所述一级传动齿轮固接一级传动齿轮轴且与所述二级传动齿轮和所述回收输出齿轮一啮合,所述回收输出齿轮一固接在回收输出齿轮轴一的一端,所述回收输出齿轮轴一的另一端固接链轮一,所述二级传动齿轮固接二级传动齿轮轴且与所述回收输出齿轮二啮合,所述回收输出齿轮二固接在回收输出齿轮轴二的一端,所述回收输出齿轮轴二的另一端固接链轮二。
作为本发明结构进一步改进,所述回收机械臂包括关节电机一、大臂、关节电机二、中臂、关节电机三、小臂、旋转电机、夹爪电机和夹爪,所述关节电机一通过其底座的四个圆孔固定在安装平台相对应的位置,所述大臂一端固定在关节电机一的输出轴,另一端与关节电机二相连,所述中臂一端固定在关节电机二的输出轴,另一端与关节电机三相连,所述小臂一端固定在关节电机三的输出轴,另一端与所述旋转电机同轴相连,所述夹爪一侧固定夹爪电机,夹爪底端固定在旋转电机的输出轴上。
作为本发明结构进一步改进,所述的传感器单元由编码器、倾角传感器和视觉传感器组成;所述编码器固定在回收电机的末端,将回收电机的运行状态实时传送给电机控制器,实现回收电机的调速和启停;所述倾角传感器固定在姿态调整机构的基座根部上表面,用来收集姿态调整时安装平台的倾角;所述视觉传感器固定在所述回收机械臂的小臂旁边,用来检测扑翼无人机实时的位置和姿态信息。
作为本发明结构进一步改进,所述的控制处理单元由数据采集存储单元和处理与控制处理器组成,数据处理单元完成传感器单元的旋转、倾角和视觉信息的采集;处理与控制处理器完成传感器单元采集 数据的处理,系统的姿态调整电机、弹射电机和回收电机的驱动控制功能。
作为本发明结构进一步改进,所述底座为三脚架式结构。
本发明提供一种扑翼无人机自主弹射起飞与回收重复利用的方法,包括以下步骤,
A.弹射角度调节:在人员部署好本装置后,弹射机构初始为水平姿态,通过控制姿态调整电机的正转运动,驱动姿态调整输入齿轮、姿态调整输出齿轮、姿态调整输出齿轮轴依次转动,实现安装平台的俯仰姿态调整,通过倾角传感器检测安装平台的倾角,通过控制处理单元控制电机的转动角度,使得安装平台和弹射机构的姿态斜向上,并且达到最佳的扑翼无人机弹射角度。
B.弹射起飞:在弹射角度调节好后,所述的弹射电机转动,带动所述的弹射输入齿轮转动,弹射输入齿轮进一步带动所述的缺齿齿轮转动,缺齿齿轮带动所述的绞盘齿轮转动,进一步带动绞盘转动,从而将拉绳不断缠绕在绞盘上,拉绳缠绕的同时,带动拉绳固定滑块在左滑杆和右滑杆上滑动,从而压缩左压缩弹簧和右压缩弹簧存储弹性势能,当缺齿齿轮转动一圈达到与绞盘齿轮转动无啮合的部位时弹射电机停止转动,在左压缩弹簧和右压缩弹簧弹性势能的驱动下,缠绕在绞盘上的拉绳迅速被拉开,拉绳固定滑块推动扑翼机固定件高速弹射出去,即可实现扑翼无人机的弹射起飞。
C.姿态调整回收:在扑翼无人机回收前,姿态调整机构的姿态调整电机反转,调整安装平台和回收机构的倾角,使得回收平台框架和高弹力布组成的平面斜向下一定角度,便于扑翼无人机上通过视觉定位方法,检测并降落到高弹力布上,在扑翼无人机降落到高弹力布上后,所述姿态调整机构调整角度,使得回收平台框架与水平面平行,所述的回收电机转动开始正转,带动所述回收输入齿轮转动,回收输入齿轮进一步带动所述的一级传动齿轮转动,一级传动齿轮进一步带 动所述的二级传动齿轮,所述一级传动齿轮和二级传动齿轮又分别带动所述的回收输出齿轮一和回收输出齿轮二转动,回收输出齿轮一带动所述链轮一同轴转动,回收输出齿轮二带动所述链轮二同轴转动,从而将回收平台框架不断收缩至安装平台的d型槽孔中,高弹力布被安装平台的d型槽孔前端外表面的圆台挡块阻挡,扑翼无人机由于重力作用,会滑落到高弹力布的中心位置。
D.起飞重装:所述视觉传感器捕捉到扑翼无人机的位置,所述回收机械臂的关节电机一、关节电机二、关节电机三和旋转电机同时工作,回收机械臂展开并且转动所述夹爪以适应扑翼无人机的角度,所述夹爪电机工作,夹爪抓取可抓取平面的扑翼无人机的机架并转动机架,当扑翼无人机的机架所处平面和回收机械臂可抓取平面重合时,夹爪抓取扑翼无人机机架上部的抓取环并将所述扑翼机固定件重新套在弹射机构的左滑杆和右滑杆上,即可实现起飞重装。
有益效果:与现有技术相比,本发明具有如下的有益效果:
(1)本发明所设计的姿态调整机构可以改变无人机弹射起飞的角度,防止其因水平角度弹射起飞的阻力过大而导致的起飞失败的现象,更适用于野外的复杂地形环境下的工作;
(2)本发明所设计的弹射机构采用固定在弹射电机输出轴上的输入齿轮通过缺齿齿轮与绞盘齿轮实现传动,通过压缩弹簧和拉绳的配合实现扑翼无人机的储能和弹射起飞,能够有效的提高弹射系统的利用效率,除了用于扑翼无人机弹射起飞外,还可以用于固定翼无人机的弹射起飞。
(3)本发明所设计的回收机构可以有效提高回收系统的可靠性和稳定性,采用了空间可展开机构,不工作时可完全收至安装平台底部,具有体积小、携带方便和可快速部署的优点,能够安全可靠的对扑翼无人机进行回收和起飞重装,可大大提高扑翼无人机的实用价值。
(4)本发明将扑翼无人机的弹射环节和回收环节集成到了一个系统中,并且可以全程没有人的参与,能够更好的胜任环境恶劣或者不适合人员长期值守的场合下的扑翼无人机的弹射起飞和回收重复利用工作。
附图说明
图1是本发明实施例的系统组成示意图;
图2为本发明的装置整体机构立体视图;
图3为本发明的装置整体机构主视图;
图4为本发明的装置基座示意图;
图5为本发明的姿态调节机构立体图1;
图6为本发明的姿态调节机构立体图2;
图7为本发明的弹射机构立体视图1;
图8为本发明的弹射机构立体视图2;
图9为本发明的弹射机构立体视图3;
图10为本发明的弹射机构侧视图1;
图11为本发明的弹射机构侧视图2;
图12为本发明的弹射机构俯视图;
图13为本发明的弹射机构弹射过程序列图;
图14为本发明的回收机构立体视图;
图15为本发明的回收机构俯视图;
图16为本发明回收机构的驱动系统组成示意图1;
图17为本发明回收机构的驱动系统组成示意图2;
图18为本发明回收过程运动序列图;
图19为本发明的回收机构机械臂立体图;
图20为本发明的回收机构机械臂多次协调序列图;
图21为本发明的起飞重装机构立体视图;
图22为本发明的起飞重装机构主视图;
图23为本发明的起飞重装过程序列图1;
图24为本发明的起飞重装过程序列图2。
标记说明:
1、底座;1-1-1、右脚垫;1-1-2、左脚垫;1-1-3、后脚垫;1-2-1、右脚管;1-2-2、左脚管;1-2-3、后脚管;1-3、脚管约束件;1-4、中轴承接管;1-5、中轴锁紧旋钮;1-6、中轴;1-7、俯仰调整手柄;1-8、连接件锁紧旋钮;2、姿态调整机构;2-1、连接件;2-2、配重;2-3、基座根部;2-4、姿态调整电机;2-5、姿态调整输入齿轮;2-6、姿态调整输出齿轮;2-7、姿态调整输出齿轮轴;2-8、安装平台;3、弹射机构;3-1、弹射电机架;3-2、弹射电机;3-3、弹射输入齿轮;3-4、缺齿齿轮;3-5、缺齿齿轮轴;3-6、绞盘齿轮;3-7、绞盘齿轮轴;3-8、绞盘;3-9、左滑杆;3-10、右滑杆;3-11、左压缩弹簧;3-12、右压缩弹簧;3-13、拉绳固定滑块;3-14、扑翼机固定件;3-15、滑轮轴;3-16、滑轮;3-17、拉绳;4、回收机构;4-1、回收电机;4-2、回收齿轮传动机构;4-2-1、回收输入齿轮;4-2-2、一级传动齿轮轴;4-2-3、二级传动齿轮轴;4-2-4、回收输出齿轮轴一;4-2-5、回收输出齿轮轴二;4-2-6、一级传动齿轮;4-2-7、二级传动齿轮;4-2-8、回收输出齿轮一;4-2-9、回收输出齿轮二;4-3、高弹力布;4-4、回收平台框架;4-5、链轮一;4-6、链轮二;4-7、回收机械臂;4-7-1、关节电机一;4-7-2、大臂;4-7-3、关节电机二;4-7-4、中臂;4-7-5、关节电机三;4-7-6、小臂;4-7-7、旋转电机;4-7-8、夹爪电机;4-7-9、夹爪;5、控制处理单元;6、传感器单元;6-1、编码器;6-2、倾角传感器;6-3、视觉传感器;7、电源模块。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述:
实施例:参照图1,一种扑翼无人机自主弹射起飞与回收重复利用装置由底座1、姿态调整机构2、弹射机构3、回收机构4、控制处理单元5、传感器单元6、电源模块7组成,底座1用于安装、固定和支撑所述的机构、单元和模块,姿态调整机构2实现装置的姿态调整功能,弹射机构3实现扑翼无人机的弹射起飞功能,回收机构4实现扑翼无人机的降落回收、位置调整和起飞重装功能,控制处理单元5实现姿态调整机构2、弹射机构3和回收机构4的控制,以及传感器单元6的传感器数据处理保存,传感器单元6实现电机的转动角度信息检测、装置的姿态检测和扑翼无人机的位置和姿态检测,电源模块7为装置的各个机构、单元和模块供电;
参照图1、图2、图3和图4,所述的基座1包括右脚垫1-1-1、右脚管1-2-1、左脚垫1-1-2、左脚管1-2-2、后脚垫1-1-3、后脚管1-2-3、脚管约束件1-3、中轴承接管1-4、中轴锁紧旋钮1-5、中轴1-6、俯仰调整手柄1-7和连接件锁紧旋钮1-8。所述右脚垫1-1-1安装在右脚管1-2-1下端,所述左脚垫1-1-2安装在左脚管1-2-2下端,所述后脚垫1-1-3安装在后脚管1-2-3下端,均与地面接触以防止底座1和地面产生滑动;所述脚管约束件1-3的三个外部套筒分别与右脚管1-2-1、左脚管1-2-2和后脚管1-2-3铰接,所述脚管约束件1-3的内部套筒套在中轴承接管1-4上;所述中轴承接管1-4的上端与右脚管1-2-1、左脚管1-2-2和后脚管1-2-3相连,所述中轴1-6套在中轴承接管1-4的内部,可上下滑动并通过所述中轴锁紧旋钮1-5固定;所述中轴1-6上端固定俯仰调整手柄1-7;所述俯仰调整手柄1-7固定连接件旋紧旋钮1-8。
参照图1、图2、图3、图5和图6,所述的姿态调节机构2包括连接件2-1、配重2-2、基座根部2-3、姿态调整电机2-4、姿态调整输入齿轮2-5、姿态调整输出齿轮2-6、姿态调整输出齿轮轴2-7、安装平台2-8组成,所述连接件2-1的前端底部和俯仰调节手柄1-7 啮合,通过连接件旋紧旋钮1-8固定,所述配重2-2安装在连接件2-1的后端,所述连接件2-1上部固定有基座根部2-3,基座根部2-3上安装有姿态调整电机2-4,所述的姿态调整输入齿轮2-5固定在姿态调整电机2-4输出轴上,所述的姿态调整输出齿轮轴2-7通过轴承连接安装在基座根部2-3上,并且与姿态调整电机2-4输出轴平行,所述姿态调整输出齿轮2-6固接在姿态调整输出齿轮轴2-7上,并且与姿态调整输入齿轮2-5啮合,所述的安装平台2-8套在所述的姿态调整输出齿轮轴2-7上,并且与姿态调整输出齿轮2-6表面固定。通过控制姿态调整电机2-4的正反转运动,驱动姿态调整输入齿轮2-5、姿态调整输出齿轮2-6、姿态调整输出齿轮轴2-7依次转动,即可实现安装平台2-8的俯仰姿态调整。
参照图1、图2、图3、图7、图8、图9、图10、图11、图12和图13,所述的弹射机构3由弹射电机架3-1、弹射电机3-2、弹射输入齿轮3-3、缺齿齿轮3-4、缺齿齿轮轴3-5、绞盘齿轮3-6、绞盘齿轮轴3-7,绞盘3-8、左滑杆3-9、右滑杆3-10、左压缩弹簧3-11、右压缩弹簧3-12、拉绳固定滑块3-13、扑翼机固定件3-14、滑轮轴3-15、滑轮3-16和拉绳3-17组成,所述弹射电机架3-1固定在安装平台2-8,所述弹射电机3-2安装在弹射电机架3-1上,所述弹射输入齿轮3-3安装在弹射电机3-2的输出轴上,且与所述缺齿齿轮3-4无缺齿的半边啮合,所述缺齿齿轮3-4固接在缺齿齿轮轴3-5上,所述的绞盘齿轮3-6固接在绞盘齿轮轴3-7上,且与缺齿齿轮3-4有缺齿的半边啮合,所述缺齿齿轮轴3-5和绞盘齿轮轴3-7均通过轴承与在弹射电机架3-1连接,可相对于弹射电机架3-1转动;所述绞盘3-8固定在所述绞盘齿轮3-6上,并与其同轴,所述左滑杆3-9和所述右滑杆3-10平行,并且后端均固定在安装平台2-8上,所述左压缩弹簧3-11同轴套装在左滑杆3-9外表面,并且后端固定在安装平台2-8上,所述右压缩弹簧3-12同轴套装在右滑杆3-10外表面,后 端固定在安装平台2-8上,左压缩弹簧3-11前端和右压缩弹簧3-12前端均固接拉绳固定滑块3-13;所述扑翼机固定件3-14左右两个对称的通孔分别套在左滑杆3-9和右滑杆3-10上,并紧靠着拉绳固定滑块3-13,所述的滑轮轴3-15固定在所述的安装平台2-8上,所述的滑轮3-16套装在所述的滑轮轴3-15上,所述拉绳3-17的一端固接拉绳固定滑块3-13上,拉绳3-17的另一端穿过所述安装平台2-8上的圆孔,绕过滑轮3-16并固定在绞盘3-8上。
所述的弹射机构工作原理如下:
当所述的弹射电机3-2转动时,可以带动所述的弹射输入齿轮3-3转动,弹射输入齿轮3-3进一步带动所述的缺齿齿轮3-4转动,缺齿齿轮3-4进一步带动所述的绞盘齿轮3-6转动,进一步带动绞盘3-8转动,从而将拉绳3-17不断缠绕在绞盘3-8上,拉绳3-17缠绕的同时,带动拉绳固定滑块3-13在左滑杆3-9和右滑杆3-10上滑动,从而压缩左压缩弹簧3-11和右压缩弹簧3-12存储弹性势能,当缺齿齿轮3-4转动一圈达到与绞盘齿轮3-6转动无啮合的部位时弹射电机3-2停止转动,在左压缩弹簧3-11和右压缩弹簧3-12弹性势能的驱动下,缠绕在绞盘3-8上的拉绳3-17迅速被拉开,拉绳固定滑块3-13推动扑翼机固定件3-14高速弹射出去,即可实现弹射起飞。
参照图1、图2、图3、图14、图15、图16、图17、图18、图19、图20、图21、图22、图23和图24,所述的回收机构包括回收电机4-1、回收齿轮传动机构4-2、高弹力布4-3、回收平台框架4-4、链轮一4-5、链轮二4-6和回收机械臂4-7组成,所述安装平台2-8设有多个通孔,用于安装回收电机4-1、回收齿轮传动机构4-2和回收机械臂4-7,所述回收平台框架4-4为高弹性钢片,其上每隔相同的距离就有一个正方形通孔,用于和链轮一4-5和链轮二4-6啮合,安装平台2-8的底面设有左右两个对称的d型槽孔,槽孔前端外表面均设有圆台挡块,所述高弹力布4-3边缘包裹住回收平台框架4-4, 两端均有圆型通孔,用于套在安装平台2-8的d型槽孔前端外表面的圆台挡块上,可以保证高弹力布4-3不会随回收平台框架4-4被收回,所述回收平台框架4-4两端分别通过安装平台2-8的两个d型槽孔,分别与左右两个圆柱固定在一起,两个d型槽孔的中间各有一个长方体缺口,用于链轮一4-5和链轮二4-6与回收平台框架4-4啮合。
参照图15和图16,所述的回收齿轮传动机构包括回收输入齿轮4-2-1、一级传动齿轮轴4-2-2、二级传动齿轮轴4-2-3、回收输出齿轮轴一4-2-4、回收输出齿轮轴二4-2-5、一级传动齿轮4-2-6、二级传动齿轮4-2-7、回收输出齿轮一4-2-8和回收输出齿轮二4-2-9,所述回收输入齿轮4-2-1安装在所述回收电机4-1的输出轴上,所述的一级传动齿轮轴4-2-2、二级传动齿轮轴4-2-3、回收输出齿轮轴一4-2-4、回收输出齿轮轴二4-2-5固定在所述的安装平台2-8上,并且相互平行,所述一级传动齿轮4-2-6安装在一级传动齿轮轴4-2-2上,并与所述回收输入齿轮4-2-1啮合,所述的二级传动齿轮4-2-7安装在所述的二级传动齿轮轴4-2-3上,并与所述一级传动齿轮4-2-6啮合,所述的回收输出齿轮一4-2-8和回收输出齿轮二4-2-9分别套接在回收输出齿轮轴一4-2-4和回收输出齿轮轴二4-2-5上,并且分别与所述的一级传动齿轮4-2-6和二级传动齿轮4-2-7啮合,所述的链轮一4-5和链轮二4-6套接在回收输出齿轮轴一4-2-4和回收输出齿轮轴二4-2-5上,所述的回收输出齿轮一4-2-8与所述的链轮4-5固定,所述的回收输出齿轮二4-2-9与链轮4-6固定。
参照图1、图2、图3、图17、图18、图19和图20,所述回收机械臂4-7包括关节电机一4-7-1、大臂4-7-2、关节电机二4-7-3、中臂4-7-4、关节电机三4-7-5、小臂4-7-6、旋转电机4-7-7、夹爪电机4-7-8、夹爪4-7-9,所述关节电机一4-7-1通过其底座的四个圆孔固定在安装平台2-8相对应的位置,大臂4-7-2一端固定于关节电机一4-7-1的输出轴上,另一端安装在关节电机二4-7-3外壳设置 的套筒内,中臂4-7-4一端固定于关节电机二4-7-3的输出轴上,另一端安装在关节电机三4-7-5外壳设置的套筒内,小臂4-7-6一端固定于关节电机三4-7-5的输出轴上,另一端与旋转电机4-7-7同轴固定,夹爪4-7-9的一侧安装有夹爪电机4-7-8,夹爪4-7-9底端安装在旋转电机4-7-7的输出轴上。
所述的回收机构工作原理如下:
当所述的回收电机4-1转动时,可以带动所述的回收输入齿轮4-2-1转动,回收输入齿轮4-2-1进一步带动所述的一级传动齿轮4-2-6转动,一级传动齿轮4-2-6进一步带动所述的二级传动齿轮4-2-7,所述一级传动齿轮4-2-6和二级传动齿轮4-2-7又分别带动所述的回收输出齿轮一4-2-8和回收输出齿轮二4-2-9转动,回收输出齿轮一4-2-8带动所述链轮一4-5同轴转动,回收输出齿轮二4-2-9带动所述链轮二4-6同轴转动,从而将回收平台框架4-4不断收缩至安装平台2-8的d型槽孔中,高弹力布4-3被安装平台2-8的d型槽孔前端外表面的圆台挡块阻挡,不会被回收,扑翼无人机由于重力作用,会滑落到高弹力布4-3的中心位置,所述视觉传感器6-3捕捉到扑翼无人机的位置,所述回收机械臂4-7的关节电机一4-7-1、关节电机二4-7-3、关节电机三4-7-5和旋转电机4-7-7同时工作,回收机械臂4-7展开并且转动所述夹爪4-7-9以适应扑翼无人机的角度,所述夹爪电机4-7-8工作,夹爪4-7-9抓取可抓取平面的扑翼无人机的机架并转动机架,当扑翼无人机的机架所处平面和回收机械臂4-7可抓取平面重合时,夹爪4-7-9抓取扑翼无人机机架上部的抓取环并将所述扑翼机固定件3-14重新套在弹射机构的左滑杆3-9和右滑杆3-10上,即可实现回收和起飞重装。
参照图1、图2、图3、图4、图13、图14、图17、图18、图19、图20、图21、图22、图23和图24,所述的传感器单元6包括编码器6-1、倾角传感器6-2和视觉传感器6-3,所述的编码器6-1 安装在回收电机4-1的末端,将回收电机4-1的运行状态实时传送给电机控制器,实现回收电机4-1的调速和启停,所述倾角传感器6-2固定在姿态调整机构2的基座根部2-3上表面,用来收集姿态调整时安装平台2-8的倾角;所述视觉传感器6-3固定在所述回收机械臂4-7小臂上,用来检测扑翼无人机实时的位置和姿态信息。
参照图1,所述的电源模块7为姿态调整机构2、弹射机构3、回收机构4、控制处理单元5和传感器单元6提供能源。
参照图12,所述装置的弹射起飞步骤如下:
S1:将扑翼无人机与扑翼机固定件3-14固定,扑翼机固定件3-14左右两个通孔套在弹射机构2的左滑杆3-9和右滑杆3-10上;
S2:姿态调整机构2和弹射机构3一起工作,扑翼无人机弹射角度调整到适合弹射起飞的角度的同时,左压缩弹簧3-11和右压缩弹簧3-12有一定的压缩量;
S3:扑翼无人机完成弹射起飞;
S4:姿态调整机构2工作,安装平台2-8回归水平角度,做好下一次弹射起飞准备。
参照图17,所述装置的回收步骤如下:
S5:扑翼无人机从远处飞来;
S6:姿态调整机构2工作,将安装平台2-8调整到适合进行扑翼无人机回收的角度,准备进行回收;
S7:扑翼无人机落到高弹力布4-3上,同时安装平台2-8调整到水平位置;
S8:回收电机4-1工作,回收平台缩小,扑翼无人机落到高弹力布4-3中心。
参照图19,所述装置的回收机械臂的多次协调步骤如下:
S9:扑翼无人机的回收完成;
S10:回收机械臂4-7转动夹爪4-7-9以适应扑翼无人机机架的 角度,同时抓取可抓取平面的扑翼无人机的机架部分;
S11:回收机械臂4-7转动夹爪4-7-9,使扑翼无人机机架所处平面和回收机械臂4-7可抓取平面重合;
S12:回收机械臂4-7的夹爪4-7-9抓取扑翼无人机机架上部的抓取环。
参照图22和图23,所述装置的起飞重装步骤如下:
S13:扑翼无人机位于高弹力布中心,回收机械臂4-7准备抓取无人机;
S14:回收机械臂4-7多次协调扑翼无人机,通过无人机的抓取环将无人机抓起;
S15:回收机械臂4-7抓着扑翼无人机并将扑翼机固定件3-14重新套在弹射机构3的左滑杆3-9和右滑杆3-10上;
S16:起飞重装完成,回收机构4复原并准备下一次的回收工作。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作任何其他形式的限制,而依据本发明的技术实质所作的任何修改或等同变化,仍属于本发明所要求保护的范围。

Claims (9)

  1. 一种扑翼无人机自主弹射起飞与回收重复利用装置,包括底座(1)、姿态调整机构(2)、弹射机构(3)、回收机构(4)、控制处理单元(5)、传感器单元(6)和电源模块(7),其特征在于,所述姿态调整机构(2)安装在所述底座(1)的顶端,所述弹射机构(3)和回收机构(4)安装在所述姿态调整机构(2)上部,所述姿态调整机构(2)、弹射机构(3)和回收机构(4)均与控制处理单元(5)相连;所述姿态调整机构(2)、弹射机构(3)、回收机构(4)、控制处理单元(5)和传感器单元(6)均与电源模块(7)相连;
    所述的弹射机构(3)由弹射电机架(3-1)、弹射电机(3-2)、弹射输入齿轮(3-3)、缺齿齿轮(3-4)、缺齿齿轮轴(3-5)、绞盘齿轮(3-6)、绞盘齿轮轴(3-7),绞盘(3-8)、左滑杆(3-9)、右滑杆(3-10)、左压缩弹簧(3-11)、右压缩弹簧(3-12)、拉绳固定滑块(3-13)、扑翼机固定件(3-14)、滑轮轴(3-15)、滑轮(3-16)和拉绳(3-17);所述弹射电机架(3-1)固定在安装平台(2-8)顶端,所述弹射电机(3-2)固接在弹射电机架(3-1)上;所述弹射输入齿轮(3-3)安装在弹射电机(3-2)的输出轴上,且与所述缺齿齿轮(3-4)无缺齿的半边啮合;所述缺齿齿轮(3-4)固接在缺齿齿轮轴(3-5)上;所述的绞盘齿轮(3-6)固接在绞盘齿轮轴(3-7)上,且与缺齿齿轮(3-4)有缺齿的半边啮合;所述缺齿齿轮轴(3-5)和绞盘齿轮轴(3-7)均通过轴承与在弹射电机架(3-1)连接,可相对于弹射电机架转动;所述绞盘(3-8)固定在所述绞盘 齿轮(3-6)上,并与其同轴;所述左滑杆(3-9)和所述右滑杆(3-10)平行,并且后端均固定在安装平台(2-8)上,所述左压缩弹簧(3-11)同轴套装在左滑杆(3-9)外表面,并且后端固定在安装平台(2-8)上,所述右压缩弹簧(3-12)同轴套装在右滑杆(3-10)外表面,后端固定在安装平台(2-8)上,左压缩弹簧(3-11)前端和右压缩弹簧(3-12)前端均固接拉绳固定滑块(3-13);所述扑翼机固定件(3-14)上设置有两个左右对称的通孔,分别套在左滑杆(3-9)和右滑杆(3-10)上,所述扑翼机固定件(3-14)紧靠着拉绳固定滑块(3-13),所述的滑轮轴(3-15)固定在所述的安装平台(2-8)上,所述的滑轮(3-16)套装在所述的滑轮轴(3-15)上,所述拉绳(3-17)的一端固接拉绳固定滑块(3-13)上,拉绳(3-17)的另一端穿过所述安装平台(2-8)上的圆孔,绕过滑轮(3-16)并固定在绞盘(3-8)上;
    所述的回收机构(4)包括回收电机(4-1)、回收齿轮传动机构(4-2)、高弹力布(4-3)、回收平台框架(4-4)、链轮一(4-5)、链轮二(4-6)和回收机械臂(4-7),所述安装平台(2-8)设有多个通孔,用于安装回收电机(4-1)、回收齿轮传动机构(4-2)和回收机械臂(4-7),所述回收平台框架(4-4)为高弹性钢片,所述回收平台框架(4-4)上每隔相同的距离就有一个正方形通孔,用于和链轮一(4-5)和链轮二(4-6)啮合,所述安装平台(2-8)的底面设有左右两个对称的d型槽孔,槽孔前端外表面均设有圆台挡块,所述高弹力布(4-3)边缘包裹住回收平台框架(4-4),两端均有圆型通孔,用于套在安装平台(2-8)的d型槽孔前端外表面的圆台挡块 上,所述回收平台框架(4-4)两端分别通过安装平台(2-8)的两个d型槽孔,分别与左右两个圆柱固定在一起,两个d型槽孔的中间各有一个长方体缺口,用于链轮一(4-5)和链轮二(4-6)与回收平台框架(4-4)啮合;
    所述的电源模块(7)为姿态调整机构(2)、弹射机构(3)、回收机构(4)、传感器单元(5)和控制处理器(6)提供能源。
  2. 根据权利1所述的一种扑翼无人机自主弹射起飞与回收重复利用装置,其特征在于,所述的姿态调整机构(2)包括连接件(2-1)、配重(2-2)、基座根部(2-3)、姿态调整电机(2-4)、姿态调整输入齿轮(2-5)、姿态调整输出齿轮(2-6)、姿态调整输出齿轮轴(2-7)和安装平台(2-8),所述的连接件(2-1)的前端安装在底座(1)顶端,所述的配重(2-2)安装在连接件(2-1)的后端,所述的基座根部(2-3)安装在所述连接件(2-1)上部;基座根部(2-3)上安装有姿态调整电机(2-4),所述的姿态调整输入齿轮(2-5)固接在姿态调整电机输出轴上;所述姿态调整输入齿轮(2-5)与姿态调整输出齿轮(2-6)啮合;所述姿态调整输出齿轮(2-6)固接在姿态调整输出齿轮轴(2-7)上,所述的姿态调整输出齿轮轴(2-7)通过轴承安装在基座根部(2-3)上,并且与姿态调整电机的输出轴平行。
  3. 根据权利1所述的一种扑翼无人机自主弹射起飞与回收重复利用装置,其特征在于,所述的底座(1)包括三个脚垫分别为右脚垫(1-1-1)、左脚垫(1-1-2)和后脚垫(1-1-3)、三根脚管分别为 右脚管(1-2-1)、左脚管(1-2-2)和后脚管(1-2-3)、脚管约束件(1-3)、中轴承接管(1-4)、中轴锁紧旋钮(1-5)、中轴(1-6)、俯仰调整手柄(1-7)和连接件锁紧旋钮(1-8),所述脚垫分别安装在对应脚管下端且与地面接触;所述脚管约束件(1-3)的三个外部套筒分别与三个脚管相连,所述脚管约束件(1-3)的内部套筒与中轴承接管(1-4)的底端相连;所述中轴承接管(1-4)的上端与三根脚管相连,所述中轴(1-6)下端套在中轴承接管(1-4)的内部,通过所述中轴锁紧旋钮(1-5)固定;所述中轴(1-6)上端与俯仰调整手柄(1-7)相连;所述俯仰调整手柄(1-7)与所述连接件锁紧旋钮(1-8)相连。
  4. 根据权利1所述的一种扑翼无人机自主弹射起飞与回收重复利用装置,其特征在于,所述回收齿轮传动机构(4-2)包括回收输入齿轮(4-2-1)、一级传动齿轮轴(4-2-2)、二级传动齿轮轴(4-2-3)、回收输出齿轮轴一(4-2-4)、回收输出齿轮轴二(4-2-5)、一级传动齿轮(4-2-6)、二级传动齿轮(4-2-7)、回收输出齿轮一(4-2-8)和回收输出齿轮二(4-2-9),所述回收输入齿轮(4-2-1)安装在所述回收电机(4-1)的输出轴上并与所述一级传动齿轮(4-2-6)啮合,所述一级传动齿轮(4-2-6)固接一级传动齿轮轴(4-2-2)且与所述二级传动齿轮(4-2-7)和所述回收输出齿轮一(4-2-8)啮合,所述回收输出齿轮一(4-2-8)固接在回收输出齿轮轴一(4-2-4)的一端,所述回收输出齿轮轴一(4-2-4)的另一端固接链轮一(4-5),所述二级传动齿轮(4-2-7)固接二级传动齿轮轴(4-2-3)且与所述回收 输出齿轮二(4-2-9)啮合,所述回收输出齿轮二(4-2-9)固接在回收输出齿轮轴二(4-2-5)的一端,所述回收输出齿轮轴二(4-2-9)的另一端固接链轮二(4-6)。
  5. 根据权利1所述的一种扑翼无人机自主弹射起飞与回收重复利用装置,其特征在于,所述回收机械臂(4-7)包括关节电机一(4-7-1)、大臂(4-7-2)、关节电机二(4-7-3)、中臂(4-7-4)、关节电机三(4-7-5)、小臂(4-7-5)、旋转电机(4-7-7)、夹爪电机(4-7-8)和夹爪(4-7-9),所述关节电机一(4-7-1)通过其底座的四个圆孔固定在安装平台(2-8)相对应的位置,所述大臂(4-7-2)一端固定在关节电机一(4-7-1)的输出轴,另一端与关节电机二(4-7-3)相连,所述中臂(4-7-4)一端固定在关节电机二(4-7-3)的输出轴,另一端与关节电机三(4-7-5)相连,所述小臂(4-7-5)一端固定在关节电机三(4-7-5)的输出轴,另一端与所述旋转电机(4-7-7)同轴相连,所述夹爪(4-7-9)一侧固定夹爪电机(4-7-8),夹爪(4-7-9)底端固定在旋转电机(4-7-7)的输出轴上。
  6. 根据权利1所述的一种扑翼无人机自主弹射起飞与回收重复利用装置,其特征在于,所述的传感器单元(6)由编码器(6-1)、倾角传感器(6-2)和视觉传感器(6-3)组成;所述编码器(6-1)固定在回收电机(4-1)的末端,将回收电机(4-1)的运行状态实时传送给电机控制器,实现回收电机(4-1)的调速和启停;所述倾角传感器(6-2)固定在姿态调整机构(2)的基座根部(2-3)上表面,用来收集姿态调整时安装平台的倾角;所述视觉传感器(6-3)固定在 所述回收机械臂(4-7)的小臂(4-7-6)旁边,用来检测扑翼无人机实时的位置和姿态信息。
  7. 根据权利1所述的一种扑翼无人机自主弹射起飞与回收重复利用装置,其特征在于,所述的控制处理单元(5)由数据采集存储单元和处理与控制处理器组成,数据处理单元完成传感器单元的旋转、倾角和视觉信息的采集;处理与控制处理器完成传感器单元采集数据的处理,系统的姿态调整电机、弹射电机和回收电机的驱动控制功能。
  8. 根据权利1所述的一种扑翼无人机自主弹射起飞与回收重复利用装置,其特征在于,所述底座(1)为三脚架式结构。
  9. 一种扑翼无人机自主弹射起飞与回收重复利用的方法,包括以下步骤,其特征在于,
    A.弹射角度调节:在人员部署好本装置后,弹射机构(3)初始为水平姿态,通过控制姿态调整电机(2-4)的正转运动,驱动姿态调整输入齿轮(2-5)、姿态调整输出齿轮(2-6)、姿态调整输出齿轮轴(2-7)依次转动,实现安装平台(2-8)的俯仰姿态调整,通过倾角传感器(6-2)检测安装平台(2-8)的倾角,通过控制处理单元(5)控制电机的转动角度,使得安装平台(2-8)和弹射机构(3)的姿态斜向上,并且达到最佳的扑翼无人机弹射角度;
    B.弹射起飞:在弹射角度调节好后,所述的弹射电机(3-2)转动,带动所述的弹射输入齿轮(3-3)转动,弹射输入齿轮(3-3)进一步带动所述的缺齿齿轮(3-4)转动,缺齿齿轮(3-4)带动所述的绞盘齿轮(3-6)转动,进一步带动绞盘(3-8)转动,从而将拉绳(3-17) 不断缠绕在绞盘(3-8)上,拉绳(3-17)缠绕的同时,带动拉绳固定滑块(3-13)在左滑杆(3-9)和右滑杆(3-10)上滑动,从而压缩左压缩弹簧(3-11)和右压缩弹簧(3-12)存储弹性势能,当缺齿齿轮(3-4)转动一圈达到与绞盘齿轮(3-6)转动无啮合的部位时弹射电机停止转动,在左压缩弹簧(3-11)和右压缩弹簧弹(3-12)性势能的驱动下,缠绕在绞盘(3-8)上的拉绳(3-17)迅速被拉开,拉绳固定滑块(3-13)推动扑翼机固定件高速弹射出去,即可实现扑翼无人机的弹射起飞;
    C.姿态调整回收:在扑翼无人机回收前,姿态调整机构(2)的姿态调整电机(2-4)反转,调整安装平台(2-8)和回收机构(4)的倾角,使得回收平台框架(4-4)和高弹力布(4-3)组成的平面斜向下一定角度,便于扑翼无人机上通过视觉定位方法,检测并降落到高弹力布上,在扑翼无人机降落到高弹力布(4-3)上后,所述姿态调整机构(2)调整角度,使得回收平台框架(4-4)与水平面平行,所述的回收电机(4-1)转动开始正转,带动所述回收输入齿轮(4-2-1)转动,回收输入齿轮(4-2-1)进一步带动所述的一级传动齿轮(4-2-6)转动,一级传动齿轮(4-2-6)进一步带动所述的二级传动齿轮(4-2-7),所述一级传动齿轮(4-2-6)和二级传动齿轮(4-2-7)又分别带动所述的回收输出齿轮一(4-2-8)和回收输出齿轮二(4-2-9)转动,回收输出齿轮一(4-2-8)带动所述链轮一(4-5)同轴转动,回收输出齿轮二(4-2-9)带动所述链轮二(4-6)同轴转动,从而将回收平台框架(4-4)不断收缩至安装平台(2-8)的d型 槽孔中,高弹力布(4-3)被安装平台(2-8)的d型槽孔前端外表面的圆台挡块阻挡,扑翼无人机由于重力作用,会滑落到高弹力布的中心位置;
    D.起飞重装:所述视觉传感器(6-3)捕捉到扑翼无人机的位置,所述回收机械臂(4-7)的关节电机一(4-7-1)、关节电机二(4-7-3)、关节电机三(4-7-5)和旋转电机(4-7-7)同时工作,回收机械臂(4-7)展开并且转动所述夹爪(4-7-9)以适应扑翼无人机的角度,所述夹爪电机(4-7-8)工作,夹爪(4-7-9)抓取可抓取平面的扑翼无人机的机架并转动机架,当扑翼无人机的机架所处平面和回收机械臂(4-7)可抓取平面重合时,夹爪抓取扑翼无人机机架上部的抓取环并将所述扑翼机固定件重新套在弹射机构的左滑杆和右滑杆上,即可实现起飞重装。
PCT/CN2021/101928 2020-08-31 2021-06-24 一种扑翼无人机自主弹射起飞与回收重复利用装置及方法 WO2022041984A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/693,365 US11685547B2 (en) 2020-08-31 2022-03-13 Autonomous catapult-assisted take-off, recycling, and reuse device and method of flapping-wing unmanned aerial vehicle (UAV)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010895921.4 2020-08-31
CN202010895921.4A CN112046741B (zh) 2020-08-31 2020-08-31 一种扑翼无人机自主弹射起飞与回收重复利用装置及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/693,365 Continuation US11685547B2 (en) 2020-08-31 2022-03-13 Autonomous catapult-assisted take-off, recycling, and reuse device and method of flapping-wing unmanned aerial vehicle (UAV)

Publications (1)

Publication Number Publication Date
WO2022041984A1 true WO2022041984A1 (zh) 2022-03-03

Family

ID=73606702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101928 WO2022041984A1 (zh) 2020-08-31 2021-06-24 一种扑翼无人机自主弹射起飞与回收重复利用装置及方法

Country Status (3)

Country Link
US (1) US11685547B2 (zh)
CN (1) CN112046741B (zh)
WO (1) WO2022041984A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112046741B (zh) * 2020-08-31 2021-09-21 东南大学 一种扑翼无人机自主弹射起飞与回收重复利用装置及方法
CN113955121B (zh) * 2021-12-01 2023-03-24 北京航空航天大学 一种无人机空基回收装置与方法
CN114148518B (zh) * 2021-12-10 2023-02-28 东南大学 一种刚柔耦合主被动变形扑翼机构及攻角调节方法
CN114275189B (zh) * 2021-12-29 2023-06-20 绵阳小巨人动力设备有限公司 用于航行装置水下发射模拟的固定及回收装置
KR102642792B1 (ko) * 2022-09-26 2024-02-29 오승섭 교육용 소형 이동식 발사장치
CN116923760B (zh) * 2023-09-14 2023-12-22 天津航天中为数据系统科技有限公司 一种车载伸缩无人机升降归位平台

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002085860A (ja) * 2000-09-11 2002-03-26 Yohei Takatani 非固定式羽ばたき翼の羽ばたき飛行機
CN201525506U (zh) * 2009-10-19 2010-07-14 东北大学 扑翼飞行器弹射起飞装置
CN104015828A (zh) * 2014-06-17 2014-09-03 东南大学 一种仿生扑翼与弹跳多模式运动机器人
US20190100315A1 (en) * 2017-09-29 2019-04-04 Shawn M. Theiss Device and method to intercept an aerial vehicle
CN112046741A (zh) * 2020-08-31 2020-12-08 东南大学 一种扑翼无人机自主弹射起飞与回收重复利用装置及方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL177185A0 (en) * 2006-07-31 2007-07-04 Elbit Systems Ltd An unmanned aerial vehicle launching and landing system
US8573536B2 (en) * 2010-03-26 2013-11-05 Aerovel Corporation Method and apparatus for automated launch, retrieval, and servicing of a hovering aircraft
CN102372091A (zh) * 2010-08-27 2012-03-14 广州天海翔航空科技有限公司 车载无人飞行器弹射架
CN103693206B (zh) 2013-12-31 2015-11-04 东北大学 一种无人机的自主循环发射、回收装置
CN108313324A (zh) 2017-12-22 2018-07-24 成都才智圣有科技有限责任公司 一种小型无人机起飞弹射架
CN108248886A (zh) * 2017-12-22 2018-07-06 成都才智圣有科技有限责任公司 一种无人机的自主循环发射、回收装置
CN108312137B (zh) * 2018-03-26 2023-08-15 河南工程学院 基于多关节机械臂的无人机着陆对接机构
DE102018004549B3 (de) * 2018-06-07 2019-10-31 Bundesrepublik Deutschland, vertr. durch das Bundesministerium der Verteidigung, vertr. durch das Bundesamt für Ausrüstung, Informationstechnik und Nutzung der Bundeswehr Startgerät für Luftfahrzeug-gestützte Flugkörper
CN109436364B (zh) * 2018-10-22 2021-10-15 南京航空航天大学 一种用于无人机连续发射的装置及方法
CN110316398A (zh) 2019-08-02 2019-10-11 西安探索鹰航空科技有限公司 一种无人机起飞和回收一体化作业车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002085860A (ja) * 2000-09-11 2002-03-26 Yohei Takatani 非固定式羽ばたき翼の羽ばたき飛行機
CN201525506U (zh) * 2009-10-19 2010-07-14 东北大学 扑翼飞行器弹射起飞装置
CN104015828A (zh) * 2014-06-17 2014-09-03 东南大学 一种仿生扑翼与弹跳多模式运动机器人
US20190100315A1 (en) * 2017-09-29 2019-04-04 Shawn M. Theiss Device and method to intercept an aerial vehicle
CN112046741A (zh) * 2020-08-31 2020-12-08 东南大学 一种扑翼无人机自主弹射起飞与回收重复利用装置及方法

Also Published As

Publication number Publication date
CN112046741A (zh) 2020-12-08
US11685547B2 (en) 2023-06-27
CN112046741B (zh) 2021-09-21
US20220194625A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2022041984A1 (zh) 一种扑翼无人机自主弹射起飞与回收重复利用装置及方法
US11542036B2 (en) Aerial launch and/or recovery for unmanned aircraft, and associated systems and methods
CA2658842C (en) Method and apparatus for retrieving a hovering aircraft
CN105059550B (zh) 一种提升续航能力的双无人机
US20200339280A1 (en) Apparatus and method for continuous launching of unmanned aerial vehicles
EP2371715A2 (en) Method and apparatus for automated launch, retrieval, and servicing of a hovering aircraft
TWI593451B (zh) Unmanned vehicle battery replacement system
CN110466765A (zh) 一种空中悬停精准操控系统
CN106586009A (zh) 一种无人机
CN110733661B (zh) 一种用于航空测绘的无人机及其使用方法
CN108928483A (zh) 一种能自动伸缩机械臂的航拍无人机
CN109551514B (zh) 一种面向抓取作业型旋翼飞行机械臂系统
CN110626516A (zh) 用于垂直起降飞行器的着舰装置及舰船
EP2969771B1 (en) Swing down mount for helicopter and method for operating same
CN112758283A (zh) 一种基站式无人机救援系统及救援方法
CN107161299A (zh) 一种海上无人机的救援方式及装置
CN207360445U (zh) 一种履带式自动探索机器人
CN206494135U (zh) 一种无人机
CN115352624A (zh) 一种仿生无人机
WO2017092168A1 (zh) 用于执行救援任务的无人飞行器
CN209870726U (zh) 一种仿鸟多旋翼无人机起落架
CN109747841B (zh) 一种无人机空基机背“串糖葫芦”式回收装置及回收方法
CN113386965A (zh) 一种无人机抓物装置
CN206344999U (zh) 一种可飞行式高空作业机器人
CN113148161B (zh) 一种直升机模拟搜救系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21859826

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21859826

Country of ref document: EP

Kind code of ref document: A1