WO2022041694A1 - 一种中熵合金板材的超声滚压表面强化工艺 - Google Patents

一种中熵合金板材的超声滚压表面强化工艺 Download PDF

Info

Publication number
WO2022041694A1
WO2022041694A1 PCT/CN2021/081652 CN2021081652W WO2022041694A1 WO 2022041694 A1 WO2022041694 A1 WO 2022041694A1 CN 2021081652 W CN2021081652 W CN 2021081652W WO 2022041694 A1 WO2022041694 A1 WO 2022041694A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
entropy alloy
ultrasonic rolling
ultrasonic
machine tool
Prior art date
Application number
PCT/CN2021/081652
Other languages
English (en)
French (fr)
Inventor
张显程
赵鹏程
仝永刚
谈建平
涂善东
刘爽
孙彬涵
李晓
谢煜
Original Assignee
华东理工大学
长沙理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学, 长沙理工大学 filed Critical 华东理工大学
Publication of WO2022041694A1 publication Critical patent/WO2022041694A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the invention relates to the technical field of alloy sheet manufacturing, and more particularly to an ultrasonic rolling surface strengthening process of a medium-entropy alloy sheet.
  • Medium/high-entropy alloys are multi-principal alloys formed from multiple metals in equal or approximately equal amounts.
  • the main metal components in traditional alloys usually contained only one or two kinds.
  • the design concept was usually based on a metal element such as iron, and then some trace elements were added to regulate and improve the performance of the alloy, such as various grades of steel.
  • the proportion of all the elements is close to the same proportion, and because all the elements are almost “equal", it is easy to form a "super solid solution”.
  • such alloys usually have special strengthening mechanisms such as the "cocktail” effect, so they have broader application potential than traditional alloy materials.
  • CoCrNi multi-principal alloy also known as medium-entropy alloy
  • medium-entropy alloy is a single-phase FCC (Face Center Cubic, face-centered cubic lattice) solid solution structure. Due to its good thermal stability and excellent low temperature performance, such materials have great application potential in various harsh environments and aerospace fields. However, CoCrNi alloys have good plasticity but low strength, which greatly limits their application as high-performance structural materials.
  • the ultrasonic rolling surface strengthening method involves relatively complex process parameters, among which the ultrasonic frequency, amplitude, rolling route of the machine tool, cutting speed, and the amount of pressure on the processing head will all affect the microstructure and morphology of the prepared nano-gradient structure.
  • the properties of the corresponding alloy sheets have a greater impact.
  • the combined effect of grain refinement strengthening and residual stress can effectively improve the strength of the alloy.
  • the strengthening process is not properly controlled, the plasticity of the alloy will be greatly reduced and the surface overtreatment will easily occur. Defects such as micro-cracks and holes are formed, which eventually lead to the reduction of mechanical properties.
  • the purpose of the present invention is to provide an ultrasonic rolling surface strengthening process of a medium-entropy alloy plate, so as to prepare a nano-gradient structure CoCrNi medium-entropy alloy plate with high strength and smooth surface.
  • the invention provides an ultrasonic rolling surface strengthening process of a medium-entropy alloy sheet, comprising the following steps:
  • S3 respectively install the alloy sheet and the ultrasonic rolling strengthening tool on the CNC machine tool, and set the spring down pressure of the ultrasonic rolling strengthening tool, the machine tool travel route and the machine tool travel speed;
  • step S6 Repeat step S5 until the preset requirement is met, thereby obtaining the entropy alloy plate in the nano-gradient structure.
  • the atomic percentage composition of the medium-entropy alloy is Co x C y Ni 1-xy , wherein the value ranges of x and y are both 0.3-0.35.
  • the preset frequency is 18-20 kHz.
  • the preset amplitude parameter is 16-18 ⁇ m.
  • the amount of spring depression of the ultrasonic rolling strengthening tool is 12-15 mm.
  • the tool travel route of the machine tool is a straight reciprocating route.
  • the cutting speed of the machine tool is 2000-3000 mm/min.
  • the uninterrupted cooling and lubrication of the surface of the alloy plate during processing is specifically: using a liquid burette to perform uninterrupted cyclic titration on the surface of the alloy plate with a lubricating medium.
  • the lubricating medium is diesel oil.
  • the preset requirement is to repeat step S5 for 15-25 times.
  • the surface grains of the alloy are significantly refined, and the internal dislocation and twinning deformation are activated, forming a nano-gradient structure with a gradual increase in the grain size from the surface to the internal matrix. Thereby improving the mechanical properties of the alloy sheet.
  • the rolled surface of the alloy sheet is smooth, and its surface roughness value is significantly lower than that of the original turning sheet.
  • the nano-gradient structure layer has fine grains and uniform composition distribution.
  • the surface residual compressive stress is introduced by rolling, which makes it have very excellent fatigue performance.
  • FIG. 1 is a flowchart of an ultrasonic rolling surface strengthening process of a medium-entropy alloy sheet provided by an embodiment of the present invention
  • an embodiment of the present invention provides an ultrasonic rolling surface strengthening process for a medium-entropy alloy sheet, which includes the following steps:
  • S1 preparing the metal raw material into a meso-entropy alloy ingot according to the composition of the meso-entropy alloy.
  • Medium-entropy alloy ingots can be prepared by arc melting. Specifically, first weigh Co, Cr and Ni metal raw materials according to the composition of the medium-entropy alloy and put them into the arc melting furnace, vacuum the melting furnace, and then fill with high-purity protective gas, and adjust the melting current to make the metal raw materials completely Melting, after smelting into an alloy ingot, turn it over once to continue smelting; in order to make the composition of the medium-entropy alloy uniform, turn on the magnetic stirring for 10s each time smelting, and repeatedly invert and smelt 4 to 5 times. After cooling in the furnace, the medium-entropy alloy ingot is obtained.
  • the high-purity shielding gas can be high-purity argon with a purity of 99.999%, and the smelting current can be set between 200-350A.
  • the atomic percentage composition of the medium-entropy alloy is Co x C y Ni 1-xy , where x and y are both in the range of 0.3 to 0.35.
  • this ratio can be used. Weigh out the metal raw material.
  • the size of the alloy plate can be cut by a lathe according to actual requirements, and the lathe cutting process can adopt any process in the prior art, which is not limited in the present invention.
  • S3 Install the alloy sheet and the ultrasonic rolling strengthening tool on the CNC machine tool respectively, and set the spring down pressure of the ultrasonic rolling strengthening tool, the machine tool travel route and the machine tool travel speed.
  • the turned alloy plate on the CNC plane machine tool and fix it, and at the same time use a fixture to install and fix the ultrasonic rolling strengthening tool on the feed tool head of the machine tool, and then set the spring of the ultrasonic rolling strengthening tool Processing parameters such as the amount of pressing down, the tool path of the machine tool, and the tool speed of the machine tool.
  • the downward pressure of the spring can be set between 12-15mm. According to the elastic coefficient of the ultrasonic rolling strengthening tool spring, the downward pressure is about 330-420N.
  • the downward pressure is one of the main parameters to ensure a smooth surface. The downward pressure is too small. It is impossible to form a nano-gradient layer, and if it is too large, the surface integrity of the material will be destroyed.
  • the gradient layer can be prepared while ensuring the surface integrity without over-treatment such as surface cracks. .
  • the tool path of the machine tool is set as a linear reciprocating route, that is, the CNC machine tool adopts a linear reciprocating route to roll the alloy sheet, which can make the surface force more uniform and ensure the surface smoothness.
  • the cutting speed of the machine tool can be set between 2000-3000mm/min
  • the preset frequency of the ultrasonic generator is 18-20kHz, and the preset amplitude parameter is 16-18 ⁇ m.
  • the function of the ultrasonic wave is to ensure a smooth surface. The higher the frequency, the better the surface quality.
  • Cooling and lubrication can be achieved by using a burette.
  • the burette is installed on the CNC machine tool, and its outlet is aligned with the surface of the alloy plate, the lubricating medium is stored in the burette, and then the valve switch of the burette is turned on to perform uninterrupted titration lubrication.
  • the lubricating medium is diesel oil.
  • step S6 Repeat step S5 until the preset requirement is met, thereby obtaining the entropy alloy plate in the nano-gradient structure.
  • the number of rolling times is one of the most important parameters to ensure smooth surface. Then, the accumulated plasticity will be too much, resulting in surface defects such as cracks.
  • the number of rollings can be controlled between 15-25 times.
  • the preset requirement is to repeat step S5 for 15-25 times. In this way, it can be ensured that the alloy sheet is rolled for 15-25 times, and a nano-gradient structure medium-entropy alloy sheet with high strength and smooth surface can be obtained after the rolling is completed.
  • the ultrasonic rolling surface strengthening process of the medium-entropy alloy sheet utilizes the severe plastic deformation processing of the surface at room temperature, so that the grains of the alloy surface layer are significantly refined, and the internal dislocation and twinning deformation are activated, forming a structure with From the surface to the inner matrix, the grain size gradually increases the nano-gradient structure, thereby improving the mechanical properties of the alloy sheet; through the surface rolling phenotype combined with ultrasonic vibration, the problems of component segregation and uneven stress inside the material are effectively eliminated.
  • the surface of the alloy sheet is smooth after rolling. Compared with the original turning sheet, the surface roughness value of the alloy sheet is significantly reduced.
  • the nano-gradient structure layer has fine grains and uniform composition distribution.
  • the surface residual compressive stress is introduced by rolling, which makes it have excellent performance. Fatigue performance.
  • the process of the invention is simple and has strong applicability, and can be extended to the preparation of entropy alloy plates in other components.
  • the turned CoCrNi medium-entropy alloy plate was placed on the CNC plane machine tool and fixed, and the ultrasonic rolling strengthening tool was installed and fixed on the machine tool feed head with a fixture.
  • the downward pressure of the ultrasonic rolling strengthening tool was set to 14 mm, corresponding to a downward pressure of about 400 N.
  • the ultrasonic generator parameters were then turned on and set with a frequency of 18 kHz and an amplitude of 16 ⁇ m. Then set the tool path of the machine tool as a straight reciprocating path, and the tool speed is 2000mm/min. Install the lubricating oil burette on the machine tool and turn on the valve switch for uninterrupted titration lubrication.
  • the metallographic structure and microhardness of the CoCrNi medium-entropy alloy plate after surface strengthening by ultrasonic rolling were tested and analyzed. It was found that after ultrasonic rolling, the surface of the alloy plate to the internal matrix formed
  • the nano-gradient structure with a depth of about 350 ⁇ m can be divided into three regions from the surface layer to the matrix: nanocrystals, twin crystals and matrix structures.
  • the microhardness of the original turning CoCrNi medium entropy alloy plate is 171 ⁇ 15HV.
  • the microhardness of the plate strengthened by the strengthening process of the present invention is increased by about 130%, and the surface is smooth at the same time.
  • the roughness values are significantly reduced.
  • the hardness value is generally increased from the initial 400HV to 520HV, an increase of about 30%.
  • its microhardness value is The improvement ratio is significantly higher than that of other alloy materials.
  • the turned CoCrNi medium-entropy alloy plate was placed on the CNC plane machine tool and fixed, and the ultrasonic rolling strengthening tool was installed and fixed on the machine tool feed head with a fixture.
  • the downward pressure of the ultrasonic rolling strengthening tool was set to 14 mm, corresponding to a downward pressure of about 400 N.
  • the ultrasonic generator parameters were then turned on and set with a frequency of 18 kHz and an amplitude of 16 ⁇ m. Then set the tool path of the machine tool as a linear reciprocating path, and the tool speed is 2000mm/min. Install the lubricating oil burette on the machine tool and turn on the valve switch for uninterrupted titration lubrication. Finally, the number of rolling processing times was set to 25 times, and the machine tool was started. After a total of 25 times of surface ultrasonic rolling processing on the CoCrNi medium-entropy alloy sheet, the nano-gradient structure CoCrNi medium-entropy alloy sheet was obtained.
  • the metallographic structure and microhardness of the CoCrNi medium-entropy alloy plate after surface strengthening processing by ultrasonic rolling were tested and analyzed.
  • the nano-gradient structure with a depth of about 400 ⁇ m can be divided into three regions from the surface layer to the matrix: nanocrystal, twin crystal and matrix structure.
  • the microhardness is increased by about 140%, and the surface is smooth and the roughness value is significantly reduced.
  • the medium-entropy alloy sheet prepared by the ultrasonic rolling surface strengthening process of the present invention has higher strength and smoother surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明涉及一种中熵合金板材的超声滚压表面强化工艺,包括以下步骤:S1:根据中熵合金的成分将金属原材料制备成中熵合金铸锭;S2:将合金铸锭通过车床削成表面平整的合金板材;S3:将合金板材和超声滚压强化工具分别安装在数控机床上,并设置超声滚压强化工具的弹簧下压量、机床走刀路线和机床走刀速度;S4:设置并启动超声波发生器,并调节至预设频率和预设振幅参数;S5:开启数控机床,对合金板材表面进行覆盖式滚压加工,且在加工过程中对合金板材表面进行不间断的冷却和润滑;S6:重复执行步骤S5直至达到预设要求,从而得到纳米梯度结构中熵合金板材。采用本发明的超声滚压表面强化工艺制备得到的板材强度高,表面光滑。

Description

一种中熵合金板材的超声滚压表面强化工艺 技术领域
本发明涉及合金板材制造技术领域,更具体地涉及一种中熵合金板材的超声滚压表面强化工艺。
背景技术
中/高熵合金是由多种等量或大约等量金属所形成的多主元合金。以往传统合金中主要的金属成分通常只包含一至两种,其设计理念通常以一种金属元素如铁为基础,再加入一些微量元素来调控与提升合金的性能,比如各类牌号的钢材。然而在中/高熵合金中所有组元的元素占比接近于等比例,由于所有元素几乎“平等”,而易于形成“超级固溶体”。同时,该类合金通常具有“鸡尾酒”效应等特殊的强化机制,因此其具有相较于传统合金材料更为广阔的应用潜力。
其中CoCrNi多主元合金,亦称中熵合金,为单相FCC(Face Center Cubic,面心立方晶格)固溶体结构。由于其具有较好的热稳定性及十分优异的低温性能,使得该类材料在各种严苛环境及航空航天等领域中均具有巨大的应用潜力。然而,CoCrNi合金塑性虽好,但强度较低,大大限制了其作为高性能结构材料的应用。
近年来,大量研究报道已经证明了纳米及超细晶金属材料相较传统粗晶金属材料来说具备更加优异的性能。因此,通过结合细晶强化法与中/高熵合金的设计概念,制备具有更高性能的纳米及超细晶中/高熵合金的相关研究受到了国内外学者的广泛关注。根据经典Hall-Petch关系,多晶体晶粒尺寸的增大会造成自身强度与硬度的降低,同时晶粒长大也可能导致材料耐腐蚀性或其他特殊性能的丧失。由于纳米及超细晶材料的晶界占比高且其晶界一般处于亚稳态,因此根据熵增原理,这类材料极易发生晶粒长大现象。然而中/高熵合金由于溶质更易于偏析从而导致晶界能较低,并且由于构型的复杂性而造成其原子迁移率较低,这些综合效应导致其晶粒的稳定性通常高于传统金属材料。因此通过将细晶强化法与中/高熵合金的设计理念相结合,有望 开发出性能更为优异的新一代高性能金属材料。
超声滚压表面强化方法涉及较复杂的工艺参数,其中超声波频率、振幅,加工机床滚压路线、走刀速度,加工头下压量等参数均会对所制备纳米梯度结构的微观组织形貌及相应合金板材的性能产生较大影响。通常,在经表面强化加工后,由于细晶强化及残余应力的共同作用可有效提高合金强度,然而强化过程如若控制不当,往往导致合金塑性大幅度降低且容易导致表面过处理现象的发生,从而形成微裂纹与孔洞等缺陷,最终导致力学性能的降低。虽然迄今为止,超声滚压表面强化方法已成功应用于多种金属材料,用于制备具有表面纳米梯度结构的高性能金属材料。然而,由于CoCrNi中熵合金是一种在近几年刚刚兴起的新型材料,关于其板材的超声滚压表面强化方法迄今未见报道。因此,如何通过控制各项工艺参数而获得强度高、表面光滑的纳米梯度结构CoCrNi中熵合金板材仍然是目前面临的技术难题。
发明内容
本发明的目的在于提供一种中熵合金板材的超声滚压表面强化工艺,以制备出强度高、表面光滑的纳米梯度结构CoCrNi中熵合金板材。
本发明提供一种中熵合金板材的超声滚压表面强化工艺,包括以下步骤:
S1:根据中熵合金的成分将金属原材料制备成中熵合金铸锭;
S2:将所述合金铸锭通过车床削成表面平整的合金板材;
S3:将所述合金板材和超声滚压强化工具分别安装在数控机床上,并设置超声滚压强化工具的弹簧下压量、机床走刀路线和机床走刀速度;
S4:设置并启动超声波发生器,并调节至预设频率和预设振幅参数;
S5:开启数控机床,通过超声波发生器和超声滚压强化工具对所述合金板材表面进行覆盖式滚压加工,且在加工过程中对所述合金板材表面进行不间断的冷却和润滑;
S6:重复执行步骤S5直至达到预设要求,从而得到纳米梯度结构中熵合金板材。
进一步地,所述中熵合金的原子百分比组成为Co xCr yNi 1-x-y,其中x和y 的取值范围均为0.3~0.35。
进一步地,所述预设频率为18-20kHz。
进一步地,所述预设振幅参数为16-18μm。
进一步地,所述超声滚压强化工具的弹簧下压量为12-15mm。
进一步地,所述机床走刀路线为直线往复路线。
进一步地,所述机床走刀速度为2000-3000mm/min。
进一步地,在加工过程中对所述合金板材表面进行不间断的冷却和润滑具体为:利用液体滴定管采用润滑介质对合金板材表面进行不间断的循环滴定。
进一步地,所述润滑介质为柴油。
进一步地,所述预设要求为重复执行步骤S5的次数达到15-25次。
本发明提供的中熵合金板材的超声滚压表面强化工艺具有以下有益效果:
1、利用在室温下的表面剧烈塑性变形加工,使合金表层晶粒显著细化,内部位错和孪晶变形开动,形成具有由表面到内部基体晶粒度逐渐增大趋势的纳米梯度组织,从而提高合金板材的力学性能。
2、通过表面滚压表型结合超声波震动,有效消除了材料内部的成分偏析和受力不均匀等问题,合金板材被滚压表面光滑,相较于原始车削板材,其表面粗糙度值明显降低,纳米梯度组织层晶粒细小,成分分布均匀,通过滚压引入表面残余压应力,使其具有十分优异的疲劳性能。
3、工艺简单且适用性强,可推广至其他成分中熵合金板材的制备中。
附图说明
图1为本发明实施例提供的中熵合金板材的超声滚压表面强化工艺的流程图;
图2a-图2b分别为方案1和方案2中的中熵合金板材的维氏显微硬度值分布图。
具体实施方式
下面结合附图,给出本发明的较佳实施例,并予以详细描述。
如图1所示,本发明实施例提供一种中熵合金板材的超声滚压表面强化工艺,其包括以下步骤:
S1:根据中熵合金的成分将金属原材料制备成中熵合金铸锭。
中熵合金铸锭可通过电弧熔炼法制备而成。具体地,首先根据中熵合金的成分称取Co、Cr和Ni金属原材料并将它们放入电弧熔炼炉中,将熔炼炉抽真空,然后充入高纯度保护气体,调节熔炼电流使金属原材料完全熔化,待熔炼成合金铸锭后翻转一次继续熔炼;为使中熵合金成分均匀,每次熔炼时打开磁搅拌10s,反复翻转熔炼4~5次,随炉冷却后得到中熵合金铸锭。
高纯度保护气体可以为纯度99.999%的高纯氩气,熔炼电流可以设置在200-350A之间。
在一可行的实施方式中,中熵合金的原子百分比组成为Co xCr yNi 1-x-y,其中x和y的取值范围均为0.3~0.35,在制备合金铸锭时,可按该比例称取金属原材料。
S2:将合金铸锭通过车床削成表面平整的合金板材。
合金板材的尺寸可按实际需求通过车床切削,车床切削工艺可采用现有技术中任意一种工艺,本发明对此不做限定。
S3:将合金板材和超声滚压强化工具分别安装在数控机床上,并设置超声滚压强化工具的弹簧下压量、机床走刀路线和机床走刀速度。
具体地,首先将车削好的合金板材放置于数控平面机床上并予以固定,同时利用夹具将超声滚压强化工具安装并固定在机床进给刀头上,然后再设置超声滚压强化工具的弹簧下压量、机床走刀路线、机床走刀速度等加工参数。
弹簧下压量可以设置在12-15mm之间,根据超声滚压强化工具弹簧的弹性系数换算可得下压力约为330-420N,下压力是保证表面光滑的主要参数之一,下压力过小无法形成纳米梯度层,过大则会破坏材料表面完整性,通过将下压力控制在330-420N的范围内,可在制备出梯度层的同时保证表面完整性,不产生表面裂纹等过处理现象。
机床走刀路线设置为直线往复路线,即数控机床采用直线型往复路线对合金板材进行滚压加工,这样可以使表面受力更均匀,保证表面光滑度。
机床走刀速度过快会出现较大切削力导致裂纹,过慢则会增加加工时间,从而增加成本,为了克服上述缺陷,可以将机床走刀速度设置在2000-3000mm/min之间
S4:设置并启动超声波发生器,并调节至预设频率和预设振幅参数。
超声波发生器的预设频率为18-20kHz,预设振幅参数为16-18μm,超声波的作用是为了保证表面光滑,频率越高可以使表面质量越好。
S5:开启数控机床,对合金板材表面进行覆盖式滚压加工,且在加工过程中对合金板材表面进行不间断的冷却和润滑。
冷却和润滑可通过采用滴定管来实现。具体地,将滴定管安装在数控机床上,并使其出口对准合金板材表面,滴定管中存入润滑介质,然后开启滴定管的阀门开关,进行不间断滴定润滑。
优选地,润滑介质为柴油。
S6:重复执行步骤S5直至达到预设要求,从而得到纳米梯度结构中熵合金板材。
为了使合金板材的强度更高,表面更光滑,需要对合金板材的表面进行多次滚压,滚压次数是保证表面光滑的最主要参数之一,次数过少无法形成纳米梯度层,过多则会使累积塑性过多而产生裂纹等表面缺陷,优选地,滚压次数可控制在15-25次之间,此时,预设要求即为重复执行步骤S5的次数达到15-25次,这样,可保证合金板材被滚压15-25遍,滚压完成后即可得到强度高、表面光滑的纳米梯度结构中熵合金板材。
本发明实施例提供的中熵合金板材的超声滚压表面强化工艺,利用在室温下的表面剧烈塑性变形加工,使合金表层晶粒显著细化,内部位错和孪晶变形开动,形成具有由表面到内部基体晶粒度逐渐增大趋势的纳米梯度组织,从而提高合金板材的力学性能;通过表面滚压表型结合超声波震动,有效消除了材料内部的成分偏析和受力不均匀等问题,合金板材被滚压表面光滑,相较于原始车削板材,其表面粗糙度值明显降低,纳米梯度组织层晶粒细小,成分分布均匀,通过滚压引入表面残余压应力,使其具有十分优异的 疲劳性能。本发明的工艺简单且适用性强,可推广至其他成分中熵合金板材的制备中。
下面以方案1和方案2为例,说明本发明实施例提供的中熵合金板材的超声滚压表面强化工艺的效果,方案1和方案2中均采用本发明的强化工艺对中熵合金板材进行加工,两者的区别在于强化工艺中的参数不同。
方案1
将车削好的CoCrNi中熵合金板材放置于数控平面机床上并予以固定,同时利用夹具将超声滚压强化工具安装并固定于机床进给刀头上。超声滚压强化工具下压量设置为14mm,对应于下压力约400N。随后开启并设置超声波发生器参数,其中频率为18kHz,振幅为16μm。随后设置机床走刀路线为直线往复轨迹,走刀速度为2000mm/min。将润滑油滴定管安装在机床上并开启阀门开关,进行不间断滴定润滑。最后设置滚压加工遍数为15遍,启动机床,对CoCrNi中熵合金板材进行共15遍表面超声滚压加工后,得到纳米梯度结构CoCrNi中熵合金板材。
如图2a所示,对经超声滚压表面强化加工完成后的CoCrNi中熵合金板材进行金相组织与显微硬度测试分析,发现经超声滚压加工后,由合金板材表面至内部基体形成了约350μm深的纳米梯度组织,从表层至基体可分为纳米晶、孪晶与基体组织三个区域。其中最表层显微硬度达到387±14HV,表面粗糙度约为Ra=0.2。原始车削CoCrNi中熵合金板材的显微硬度为171±15HV,与原始车削CoCrNi中熵合金板材相比,经过本发明强化工艺强化后的板材的显微硬度提高了约130%,同时表面光滑,粗糙度值显著降低。现有其他材料如镍合金经过超声滚压强化后,其硬度值一般从初始400HV提升至520HV,提升约30%,与现有经超声滚压加工的其他金属材料相比,其显微硬度值的提升比例显著高于其他合金材料。
方案2
将车削好的CoCrNi中熵合金板材放置于数控平面机床上并予以固定,同时利用夹具将超声滚压强化工具安装并固定于机床进给刀头上。超声滚压强化工具下压量设置为14mm,对应于下压力约400N。随后开启并设置超声波发生器参数,其中频率为18kHz,振幅为16μm。随后设置机床走刀路线为直 线往复轨迹,走刀速度为2000mm/min。将润滑油滴定管安装在机床上并开启阀门开关,进行不间断滴定润滑。最后设置滚压加工遍数为25遍,启动机床,对CoCrNi中熵合金板材进行共25遍表面超声滚压加工后,得到纳米梯度结构CoCrNi中熵合金板材。
如图2b所示,对经超声滚压表面强化加工完成后的CoCrNi中熵合金板材进行金相组织与显微硬度测试分析,发现经超声滚压加工后,由合金板材表面至内部基体形成了约400μm深的纳米梯度组织,从表层至基体可为纳米晶、孪晶与基体组织三个区域。其中最表层显微硬度达到405±12HV,表面粗糙度约为Ra=0.2。较原始车削CoCrNi中熵合金板材(171±15HV),显微硬度提高了约140%,同时表面光滑,粗糙度值显著降低。
由此可知,由本发明的超声滚压表面强化工艺制备得到的中熵合金板材强度更高,表面更光滑。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (10)

  1. 一种中熵合金板材的超声滚压表面强化工艺,其特征在于,包括以下步骤:
    S1:根据中熵合金的成分将金属原材料制备成合金铸锭;
    S2:将所述合金铸锭通过车床削成表面平整的合金板材;
    S3:将所述合金板材和超声滚压强化工具分别安装在数控机床上,并设置超声滚压强化工具的弹簧下压量、机床走刀路线和机床走刀速度;
    S4:设置并启动超声波发生器,并调节至预设频率和预设振幅参数;
    S5:开启数控机床,通过超声波发生器和超声滚压强化工具对所述合金板材表面进行覆盖式滚压加工,且在加工过程中对所述合金板材表面进行不间断的冷却和润滑;
    S6:重复执行步骤S5直至达到预设要求,从而得到纳米梯度结构中熵合金板材。
  2. 根据权利要求1所述的中熵合金板材的超声滚压表面强化工艺,其特征在于,所述中熵合金的原子百分比组成为Co xCr yNi 1-x-y,其中x和y的取值范围均为0.3~0.35。
  3. 根据权利要求1或2所述的中熵合金板材的超声滚压表面强化工艺,其特征在于,所述预设频率为18-20kHz。
  4. 根据权利要求3所述的中熵合金板材的超声滚压表面强化工艺,其特征在于,所述预设振幅参数为16-18μm。
  5. 根据权利要求1或2所述的中熵合金板材的超声滚压表面强化工艺,其特征在于,所述超声滚压强化工具的弹簧下压量为12-15mm。
  6. 根据权利要求1或2所述的中熵合金板材的超声滚压表面强化工艺,其特征在于,所述机床走刀路线为直线往复路线。
  7. 根据权利要求6所述的中熵合金板材的超声滚压表面强化工艺,其特征在于,所述机床走刀速度为2000-3000mm/min。
  8. 根据权利要求1或2所述的中熵合金板材的超声滚压表面强化工艺,其特征在于,在加工过程中对所述合金板材表面进行不间断的冷却和润滑具体为:利用液体滴定管采用润滑介质对合金板材表面进行不间断的循环滴定。
  9. 根据权利要求8所述的中熵合金板材的超声滚压表面强化工艺,其特征在于,所述润滑介质为柴油。
  10. 根据权利要求1或2所述的中熵合金板材的超声滚压表面强化工艺,其特征在于,所述预设要求为重复执行步骤S5的次数达到15-25次。
PCT/CN2021/081652 2020-08-31 2021-03-19 一种中熵合金板材的超声滚压表面强化工艺 WO2022041694A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010892938.4A CN112080713A (zh) 2020-08-31 2020-08-31 一种中熵合金板材的超声滚压表面强化工艺
CN202010892938.4 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022041694A1 true WO2022041694A1 (zh) 2022-03-03

Family

ID=73729426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081652 WO2022041694A1 (zh) 2020-08-31 2021-03-19 一种中熵合金板材的超声滚压表面强化工艺

Country Status (2)

Country Link
CN (1) CN112080713A (zh)
WO (1) WO2022041694A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774811A (zh) * 2022-04-25 2022-07-22 贵州电网有限责任公司 一种强化铝合金表面的加工方法
CN115125463A (zh) * 2022-07-04 2022-09-30 贵州大学 一种提高高强韧钛合金扭转疲劳性能的嵌套式梯度组织的制备方法
CN115537627A (zh) * 2022-09-19 2022-12-30 华东理工大学 一种抗疲劳中熵合金及其制备方法
CN115725887A (zh) * 2022-11-21 2023-03-03 广东省科学院中乌焊接研究所 一种中熵合金及其制备方法和应用
CN116254449A (zh) * 2023-02-20 2023-06-13 广州大学 一种力学性能优异双相中熵合金以及制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112080713A (zh) * 2020-08-31 2020-12-15 华东理工大学 一种中熵合金板材的超声滚压表面强化工艺
CN113174619A (zh) * 2021-04-28 2021-07-27 湖北亿纬动力有限公司 一种电池壳及其制备方法和用途
CN114645229B (zh) * 2022-02-23 2023-07-14 华东理工大学 一种镍基单晶高温合金表面性能优化的超声滚压表面强化方法
CN114682800B (zh) * 2022-05-31 2022-09-06 太原理工大学 超声滚压表面强化激光增材制造共晶高熵合金板材的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2551376A1 (en) * 2010-03-25 2013-01-30 Osaka Municipal Technical Research Institute Method for forming metal membrane
CN109518018A (zh) * 2018-11-28 2019-03-26 湘潭大学 一种耐磨、耐蚀MnNbTaTiV高熵合金材料及其制备方法
CN109971980A (zh) * 2019-05-05 2019-07-05 西北工业大学 利用磁场提高CrCoNi中熵合金力学性能的方法
CN110835754A (zh) * 2019-09-30 2020-02-25 太原理工大学 一种碳钢表面高熵合金涂层的制备方法
CN112080713A (zh) * 2020-08-31 2020-12-15 华东理工大学 一种中熵合金板材的超声滚压表面强化工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101220405A (zh) * 2007-10-10 2008-07-16 天津大学 一种超声表面滚压加工纳米化方法及装置
CN107587086B (zh) * 2017-08-24 2019-06-11 西安交通大学 一种金属材料表面纳米化改性及纳米-微米梯度结构的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2551376A1 (en) * 2010-03-25 2013-01-30 Osaka Municipal Technical Research Institute Method for forming metal membrane
CN109518018A (zh) * 2018-11-28 2019-03-26 湘潭大学 一种耐磨、耐蚀MnNbTaTiV高熵合金材料及其制备方法
CN109971980A (zh) * 2019-05-05 2019-07-05 西北工业大学 利用磁场提高CrCoNi中熵合金力学性能的方法
CN110835754A (zh) * 2019-09-30 2020-02-25 太原理工大学 一种碳钢表面高熵合金涂层的制备方法
CN112080713A (zh) * 2020-08-31 2020-12-15 华东理工大学 一种中熵合金板材的超声滚压表面强化工艺

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774811A (zh) * 2022-04-25 2022-07-22 贵州电网有限责任公司 一种强化铝合金表面的加工方法
CN115125463A (zh) * 2022-07-04 2022-09-30 贵州大学 一种提高高强韧钛合金扭转疲劳性能的嵌套式梯度组织的制备方法
CN115125463B (zh) * 2022-07-04 2023-09-01 贵州大学 一种提高高强韧钛合金扭转疲劳性能的嵌套式梯度组织的制备方法
CN115537627A (zh) * 2022-09-19 2022-12-30 华东理工大学 一种抗疲劳中熵合金及其制备方法
CN115725887A (zh) * 2022-11-21 2023-03-03 广东省科学院中乌焊接研究所 一种中熵合金及其制备方法和应用
CN115725887B (zh) * 2022-11-21 2023-09-19 广东省科学院中乌焊接研究所 一种中熵合金及其制备方法和应用
CN116254449A (zh) * 2023-02-20 2023-06-13 广州大学 一种力学性能优异双相中熵合金以及制备方法

Also Published As

Publication number Publication date
CN112080713A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
WO2022041694A1 (zh) 一种中熵合金板材的超声滚压表面强化工艺
Da Huo et al. Annealing coordinates the deformation of shear band to improve the microstructure difference and simultaneously promote the strength-plasticity of composite plate
CN110586822B (zh) 提高GH720Li合金饼坯锻件组织均匀性的热加工方法
CN112813356B (zh) 一种1500MPa超高强度低密度钢及制备方法
CN103205608B (zh) 用于铝蜂窝板芯的稀土铝锰合金箔的制备方法
CN110484886B (zh) 一种含微量稀土元素的镍铼合金旋转管状靶材及制备方法
CN103014435A (zh) 一种铸造薄铝合金的材料及制备方法
CN103014438A (zh) 一种用于高压铸造薄铝合金的材料及制备方法
CN103014437A (zh) 一种用于高压铸造薄铝合金的材料
CN114606413A (zh) 一种增材制造用高温合金及其用途
CN112877570A (zh) 一种钴铬镍多元铸造合金及其制备方法
EP0460234B1 (en) Sheet of titanium-aluminum intermetallic compound and process for producing the same
CN112048682A (zh) 一种中熵合金板材的加工热处理工艺
CN110684937A (zh) 一种层状双尺度镁合金的制备方法
WO2017124823A1 (zh) 一种三通止回阀
CN114807646B (zh) 镍基合金板坯及其制备方法
CN116676500A (zh) 一种高性能铝合金厚板及其制备工艺
CN111519050B (zh) 一种低针孔高光洁度电子标签用铝箔及其生产工艺
CN114645254A (zh) 一种TiAlMoNbW高熵合金氮化物薄膜及其制备工艺
Yang et al. Effect of CeO2 on the Performance of Laser Cladding Coating of Ni-based Alloy
CN116716501B (zh) 一种航空航天用钛合金及其熔炼工艺
TW202129023A (zh) 改質後的合金粉體及其改質方法
Xia et al. A Comparative Study on the Microstructures and Mechanical Properties of Two Kinds of Iron-Based Alloys by WAAM
CN111961952B (zh) 一种电热合金的制备方法及其制备得到的电热合金材料
CN115522148B (zh) 钴基复合材料的精细组织调控方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21859543

Country of ref document: EP

Kind code of ref document: A1