WO2017124823A1 - 一种三通止回阀 - Google Patents

一种三通止回阀 Download PDF

Info

Publication number
WO2017124823A1
WO2017124823A1 PCT/CN2016/106576 CN2016106576W WO2017124823A1 WO 2017124823 A1 WO2017124823 A1 WO 2017124823A1 CN 2016106576 W CN2016106576 W CN 2016106576W WO 2017124823 A1 WO2017124823 A1 WO 2017124823A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
alloy sheet
hours
check valve
hydrochloric acid
Prior art date
Application number
PCT/CN2016/106576
Other languages
English (en)
French (fr)
Inventor
李海伟
Original Assignee
江苏盐电阀门有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏盐电阀门有限公司 filed Critical 江苏盐电阀门有限公司
Publication of WO2017124823A1 publication Critical patent/WO2017124823A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/02Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the invention relates to a three-way check valve and a production method thereof, and belongs to the field of machinery.
  • Valves, especially check valves, are an integral part of the pipeline.
  • the role of the check valve in preventing water backflow is irreplaceable.
  • two pipelines are required to enter the same pipeline, and the two pipelines cannot be connected. This requires a three-way check valve, such as the application number.
  • Aluminum alloy is one of the most widely used non-ferrous metal structural materials in the industry. It has been widely used in aviation, aerospace, automobile, machinery manufacturing, shipbuilding and chemical industries. It is divided into 1000 series, 2000 series, 3000 series... 9000 series.
  • the 6000 series aluminum alloy mainly contains two elements of magnesium and silicon, and has the advantages of low melting point, corrosion resistance, heat resistance, wear resistance, easy coating and good workability, but the 6000 series aluminum alloy is rarely With steel strength and formability, aluminum alloy can not completely replace steel to reduce the weight of equipment and reduce energy consumption and pollutant emissions.
  • the oxide film formed on the surface of the aluminum alloy in the natural environment is about 4 nm thick, porous and uneven in structure, and corroded under severe working conditions. Occurs from the pores of the oxide film, or from the wear of the oxide film, causing metal failure, which cannot meet the requirements of today's industrial development.
  • the present invention aims to provide a novel three-way check valve which is made of a novel aluminum alloy material and has high strength, high formability, long life, and superior corrosion resistance in a water conservancy system. Summary of the invention
  • the present invention is directed to the current aluminum alloy three-way check valve, but has the disadvantages of poor airtightness, corrosion resistance, low strength, and short life, and provides a novel three-way check valve.
  • Made of a new type of aluminum alloy material it has high strength, high formability, long life, and superior corrosion resistance in water conservancy systems.
  • the invention has obtained optimized formulas and parameters through a large number of experiments in a large number of production experiments, thereby producing an aluminum alloy three-way check valve with unexpected high strength, high formability and long life.
  • Significant advantages such as super corrosion resistance in hydraulic systems, especially mechanical properties and corrosion resistance, far exceed the expectations of those skilled in the art.
  • An aluminum alloy three-way check valve is prepared by the following method:
  • the aluminum alloy sheet is subjected to solution treatment at 550 ° C for half an hour, and then water quenched;
  • the invention has obtained optimized formulas and parameters through a large number of experiments in a large number of production experiments, thereby producing an aluminum alloy three-way check valve with unexpectedly high strength, high formability, and long length. Lifetime, significant advantages such as super-corrosion resistance in hydraulic systems, especially mechanical properties and corrosion resistance far exceed the expectations of those skilled in the art.
  • the molten metal liquid is poured into the crucible which has been preheated to about 300 °C for 2 h under the condition of 100 MPa, which can prevent the ingot formed by the loose structure during the solidification process of the metal liquid, thereby affecting the strength of the aluminum alloy sheet.
  • the ultrasonic vibration of the aluminum alloy is extended under a certain amplitude, which can reduce the friction force during the rolling process, thereby reducing the influence of friction on the surface of the aluminum alloy sheet. Compared with the static cold rolling, the ultrasonic vibration cold-rolled aluminum alloy The surface is smoother and facilitates the next step. 6. Evenly apply the mixed powders C and V to the surface of the aluminum alloy sheet, and use a cross-flow continuous wave Cq laser to laser-modify the aluminum alloy sheet, which can effectively form the nano-scale indentation on the surface of the aluminum alloy sheet while mixing.
  • the powders C and V are melted to cover the surface of the aluminum alloy sheet, and the surface of the aluminum alloy sheet forms nano-scale pits, which increases the surface area of the aluminum alloy sheet and improves the friction while making the next step of the 18-inch trichlorosilane solution. It is easier to enter the surface of the aluminum alloy sheet, form various microstructures on the surface of the aluminum alloy, and then self-assemble the silicon germanium film with anti-corrosion and wear resistance on the surface, thereby changing the surface properties of the aluminum alloy sheet, and the aluminum alloy sheet
  • the CV film formed on the surface can effectively improve the oxidation resistance of the aluminum alloy sheet at high temperatures and change the surface properties of the aluminum alloy sheet.
  • Figure 1 is a schematic view of a conventional swing-type three-way check valve, which is merely an example and can be generally applied to the HVAC and water supply and drainage industries.
  • valve body 1, the valve body, 2, the valve flap, 3, the shaft.
  • An aluminum alloy three-way check valve is prepared by the following method:
  • the aluminum alloy sheet is subjected to solution treatment at 550 ° C for half an hour, and then water quenched;
  • An aluminum alloy three-way check valve is prepared by the following method:
  • the ingot is heated to 48 CTC and then kept for 2 hours, and three passes of hot rolling are performed. After the second hot rolling, the temperature is kept at 550 ° C for 25 min;
  • the aluminum alloy sheet is subjected to solution treatment at 550 ° C for half an hour, and then water quenched;
  • An aluminum alloy three-way check valve is prepared by the following method:
  • the aluminum alloy sheet is subjected to solution treatment at 550 ° C for half an hour, and then water quenched;
  • An aluminum alloy three-way check valve is prepared by the following method:
  • the aluminum alloy sheet is subjected to solution treatment at 550 ° C for half an hour, and then water quenched;
  • the three-way check valve of the aluminum alloy of the invention has the unexpected high strength, high formability, long life (acid and alkali resistance and salt water resistance), and remarkable advantages such as super corrosion resistance in the water system, especially It is the mechanical properties and corrosion resistance that far exceed the expectations of those skilled in the art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种铝合金三通止回阀及其制作方法,其中控制铝合金各元素质量百分比为:Mg 0.3-0.5%,Si 2.2%,Cu 4.2%,Mn 0.2-0.3%,Fe 0.4-0.6%,Zr 0.1%,Er 0.05-0.08%,Cr 0.01-0.03%,Ni 0.03%,Ti 0.12%,Mo 0.1%,Al余量。

Description

一种三通止回阀 技术领域
本发明涉及一种三通止回阀及其生产方法, 属于机械领域。
背景技术
阀门, 尤其是止回阀是管路中不可或缺的部件, 在水利系统中, 止回阀防 止水倒流的作用无可替代。 同时, 由于管路水利的特性, 需要两个管道进入同 一个管道中, 而这两个管道不能连通, 这就需要一种三通止回阀, 如申请号为
201320690404. 9的中国专利, 该专利有效地达到了这一效果。
铝合金是工业中应用最广泛的一类有色金属结构材料, 在航空、 航天、 汽 车、机械制造、船舶及化学工业中已大量应用,分为 1000系列、 2000系列、 3000 系列…… 9000系列。 相关技术中, 6000系列铝合金主要含有镁和硅两种元素, 具有、 低熔点、 耐蚀性、 耐热、 耐磨、 容易涂层和加工性好等优点, 但是, 6000 系列铝合金很少具有钢材强度和成型性, 使得铝合金无法完全取代钢材以减轻 装置设备的重量, 减少能源消耗和污染物排放。 而且随着铝合金应用的发展, 人们希望铝合金可应用不同领域和环境, 因此对铝合金耐蚀性的要求越来越高。 虽然铝合金在自然环境下其表面会生成一层氧化膜来抵御腐蚀, 但是自然环境 中铝合金表面生成的氧化膜厚约 4nm, 疏松多孔且结构并不均匀, 在恶劣的工 作条件下腐蚀或从氧化膜的孔洞, 或从氧化膜的磨损处发生, 导致金属失效, 无法满足当今工业发展的要求。
市面上已有铝合金三通止回阀, 但是其气密性差, 容易腐蚀, 强度低, 寿 命短。 本发明旨在提供一种新型的三通止回阀, 其由新型铝合金材料制作而成, 具有高强度, 高成型性, 超长寿命, 在水利系统中超耐腐蚀等显著的优点。 发明内容
基于背景技术存在的技术问题, 本发明针对目前铝合金三通止回阀, 但是 其气密性差, 容易腐蚀, 强度低, 寿命短的缺点, 提供了一种新型的三通止回 阀, 其由新型铝合金材料制作而成, 具有高强度, 高成型性, 超长寿命, 在水 利系统中超耐腐蚀等显著的优点。
本发明在大量的生产实践中, 通过大量的实验, 得出优化的配方和参数, 从而生产得到的铝合金三通止回阀具有意料不到地的高强度, 高成型性, 超长 寿命, 在水利系统中超耐腐蚀等显著的优点, 尤其是力学性能和防腐性能远超 本领域技术人员的预期。
本发明的技术方案如下:
一种铝合金三通止回阀, 其由如下方法制备而成:
( 1 ) 按比例称取原料, 控制各元素质量百分比为: MgO. 3-0. 5%, Si 2. 2%, Cu 4. 2%, Mn 0. 2-0. 3%, Fe 0. 4-0. 6%, Zr 0. 1%, Er 0. 05—0. 08%, Cr 0. 01-0. 03%, Ni 0. 03%, Ti 0. 12%, Mo 0. 1%, Al余量;
( 2 ) 于 300°C下预热纯铝 1〜1. 5h;
( 3 )预热后的纯铝在 50-60KPa气压下, 熔炼温度为 780°C的加热炉中完全 熔化后加入其他原料, 保温 20-30min后, 继续升温至所有其他中间合金完全熔 化, 降温至 700°C, 在真空的条件下保温 20min;
( 4 ) 加入 Al-5Ti-B、 Al-10Sr和 RE三种金属细化变质剂, 三者加入的重 量百分比比例为 8 : 1 : 3; (5) 加入精炼剂充分反应, 除气、 除渣;
(6) 熔炼好的金属液浇注到已经预热至 300°C的坩埚中在 80MPa的条件下 静置 2h, 形成铸锭;
(7)所述铸锭切割成合适尺寸后于 550°C的条件下进行 12小时的均匀化退 火, 炉冷至室温;
(8) 所述铸锭升温至 48CTC后保温 2小时, 进行三个道次的热轧, 每个道 次热轧完后在 550°C保温 20-25min;
(9) 热轧后进行三个道次的冷轧, 铝合金一端相对固定并连接超声波振动 装置, 另一端进入轧机中, 激振频率为 15kHz, 铝合金超声振动受压延伸, 冷轧 后对合金在 220°C下进行 2个小时的退火处理, 得到一定厚度的铝合金板材;
(10) 对铝合金板材在 550°C下进行半小时的固溶处理, 然后水淬;
(11) 铝合金板材进行双级时效:
在 180°C下进行 3小时的人工时效;
在 220°C下进行 0.5-1小时的人工时效;
( 12) 将混合粉末 C和 V均匀涂抹于铝合金板材的表面, 使用横流连续波 Cq激光器对铝合金板材进行激光处理改性, 使得铝合金板材表面形成纳米级压 痕的同时将混合粉末 c和 V熔融覆盖于铝合金板材的表面, 处理过程中使用氩 气进行保护, 其激光器工艺参数范围为:激光功率 1.7kw,扫描速率 13mn/s,束斑 直径均为 4mm;
(13) 配置盐酸体积与去离子水体积比为 2:1的盐酸溶液, 以乙醇为溶质 配置 5mM的十八垸基三氯硅垸溶液,将得到的铝合金放入盐酸溶液中处理 2min, 处理完后用大量去离子水冲洗铝合金表面以去除多余的盐酸, 随后将样品放置 于十八垸基三氯硅垸溶液中浸泡 12h, 制备的样品在 80°C下干燥 30min;
( 14) 根据需要冲压塑型;
( 15) 组装制作成为铝合金材质的三通止回阀。
本发明的有益之处在于:
1、本发明在大量的生产实践中, 通过大量的实验, 得出优化的配方和参数, 从而生产得到的铝合金三通止回阀具有意料不到地的高强度, 高成型性, 超长 寿命, 在水利系统中超耐腐蚀等显著的优点, 尤其是力学性能和防腐性能远超 本领域技术人员的预期。
2、 减压状态下熔炼铝合金可有效地降低熔炼温度, 节省资源。
3、 三种细化变质剂对铝合金都有积极作用, 但是单独使用时存在一定的局 限性, 如单独加入 Sr作变质处理,合金吸气倾向加剧,降低合金的致密性,易形 成严重的柱状晶组织,导致力学性能反而下降, 稀土容易氧化,变质效果维持时 间短等; 而 Al-5Ti-B细化剂的抗衰减性能仍不能令人满意,而且易受 Zr原子的 毒化而失去细化晶粒的能力, 无法充分发挥其各自的优点。 而将三者结合使用 在克服其本身具有的缺陷的同时可充分发挥各自的优点。
4、熔炼好的金属液浇注到已经预热至 300°C左右的坩埚中在 lOOMPa的条件 下静置 2h, 可防止金属液体凝固过程中形成疏松结构的铸锭, 从而影响铝合金 板材的强度, 同时在高压的条件下有利于形成致密结构的铸锭, 增强铝合金的 强度。
5、 铝合金在一定振幅下超声振动受压延伸, 可减少轧制过程中受到的摩擦 力, 从而降低摩擦力对铝合金板材表面的影响, 相对于静态冷轧, 超声振动冷 轧的铝合金表面更加光滑, 有利于进行下一步骤的操作。 6、 将混合粉末 C和 V均匀涂抹于铝合金板材的表面, 使用横流连续波 Cq 激光器对铝合金板材进行激光处理改性, 能有效地使铝合金板材表面形成纳米 级压痕的同时将混合粉末 C和 V熔融覆盖于铝合金板材的表面, 铝合金板材表 面形成纳米级的凹坑, 增加铝合金板材的表面积, 提高摩擦力的同时使得下一 步骤的十八垸基三氯硅垸溶液更容易进入铝合金板材表面, 在铝合金表面形成 多种形貌的微结构, 然后在表面上自组装具备防腐耐磨性能的硅垸膜, 从而改 变铝合金板材的表面性质, 而铝合金板材表面形成的 C-V覆膜可有效地提高铝 合金板材在高温下的抗氧化性能, 改变铝合金板材的表面性质。
附图说明
附图 1为常规的一种旋启式三通止回阀示意图, 仅为示例, 能普遍应用在 暖通及给排水行业上。
图中: 1、 阀体, 2、 阀瓣, 3、 转轴。
具体实施方式
实施例 1
一种铝合金三通止回阀, 其由如下方法制备而成:
( 1 )按比例称取原料,控制各元素质量百分比为: MgO. 3%, Si 2. 2%, Cu 4. 2%, Mn 0. 3%, Fe 0. 4%, Zr 0. 1%, Er 0. 08%, Cr 0. 01%, Ni 0. 03%, Ti 0. 12%, Mo 0. 1%, Al余量;
( 2 ) 于 300°C下预热纯铝 1. 5h;
( 3 ) 预热后的纯铝在 50KPa气压下, 熔炼温度为 780°C的加热炉中完全熔 化后加入其他原料, 保温 20min后, 继续升温至所有其他中间合金完全熔化, 降温至 700°C, 在真空的条件下保温 20min; (4) 加入 Al-5Ti-B、 Al-10Sr和 RE三种金属细化变质剂, 三者加入的重 量百分比比例为 8: 1:3;
(5) 加入精炼剂充分反应, 除气、 除渣;
(6) 熔炼好的金属液浇注到已经预热至 300°C的坩埚中在 80MPa的条件下 静置 2h, 形成铸锭;
(7)所述铸锭切割成合适尺寸后于 550°C的条件下进行 12小时的均匀化退 火, 炉冷至室温;
(8) 所述铸锭升温至 48CTC后保温 2小时, 进行三个道次的热轧, 每个道 次热轧完后在 550°C保温 20min;
(9) 热轧后进行三个道次的冷轧, 铝合金一端相对固定并连接超声波振动 装置, 另一端进入轧机中, 激振频率为 15kHz, 铝合金超声振动受压延伸, 冷轧 后对合金在 220°C下进行 2个小时的退火处理, 得到一定厚度的铝合金板材;
(10) 对铝合金板材在 550°C下进行半小时的固溶处理, 然后水淬;
(11) 铝合金板材进行双级时效:
在 180°C下进行 3小时的人工时效;
在 220°C下进行 1小时的人工时效;
( 12) 将混合粉末 C和 V均匀涂抹于铝合金板材的表面, 使用横流连续波 Cq激光器对铝合金板材进行激光处理改性, 使得铝合金板材表面形成纳米级压 痕的同时将混合粉末 c和 V熔融覆盖于铝合金板材的表面, 处理过程中使用氩 气进行保护, 其激光器工艺参数范围为:激光功率 1.7kw,扫描速率 13mn/s,束斑 直径均为 4mm;
(13) 配置盐酸体积与去离子水体积比为 2:1的盐酸溶液, 以乙醇为溶质 配置 5mM的十八垸基三氯硅垸溶液,将得到的铝合金放入盐酸溶液中处理 2min, 处理完后用大量去离子水冲洗铝合金表面以去除多余的盐酸, 随后将样品放置 于十八垸基三氯硅垸溶液中浸泡 12h, 制备的样品在 80°C下干燥 30min;
(14) 根据需要冲压塑型;
(15) 组装制作成为铝合金材质的三通止回阀。
实施例 2
一种铝合金三通止回阀, 其由如下方法制备而成:
(1)按比例称取原料,控制各元素质量百分比为: MgO.5%, Si 2.2%, Cu 4.2%, Mn 0.2%, Fe 0.6%, Zr 0.1%, Er 0.05%, Cr 0.03%, Ni 0.03%, Ti 0.12%, Mo 0.1%, Al余量;
(2) 于 300°C下预热纯铝 lh;
(3) 预热后的纯铝在 60KPa气压下, 熔炼温度为 780°C的加热炉中完全熔 化后加入其他原料, 保温 20min后, 继续升温至所有其他中间合金完全熔化, 降温至 700°C, 在真空的条件下保温 20min;
(4) 加入 Al-5Ti-B、 Al-10Sr和 RE三种金属细化变质剂, 三者加入的重 量百分比比例为 8: 1:3;
(5) 加入精炼剂充分反应, 除气、 除渣;
(6) 熔炼好的金属液浇注到已经预热至 300°C的坩埚中在 80MPa的条件下 静置 2h, 形成铸锭;
(7)所述铸锭切割成合适尺寸后于 550°C的条件下进行 12小时的均匀化退 火, 炉冷至室温;
(8) 所述铸锭升温至 48CTC后保温 2小时, 进行三个道次的热轧, 每个道 次热轧完后在 550°C保温 25min;
( 9 ) 热轧后进行三个道次的冷轧, 铝合金一端相对固定并连接超声波振动 装置, 另一端进入轧机中, 激振频率为 15kHz, 铝合金超声振动受压延伸, 冷轧 后对合金在 220°C下进行 2个小时的退火处理, 得到一定厚度的铝合金板材;
( 10) 对铝合金板材在 550°C下进行半小时的固溶处理, 然后水淬;
( 11 ) 铝合金板材进行双级时效:
在 180°C下进行 3小时的人工时效;
在 220°C下进行 0. 5小时的人工时效;
( 12 ) 将混合粉末 C和 V均匀涂抹于铝合金板材的表面, 使用横流连续波 Cq激光器对铝合金板材进行激光处理改性, 使得铝合金板材表面形成纳米级压 痕的同时将混合粉末 c和 V熔融覆盖于铝合金板材的表面, 处理过程中使用氩 气进行保护, 其激光器工艺参数范围为:激光功率 1. 7kw,扫描速率 13mn/s,束斑 直径均为 4mm;
( 13 ) 配置盐酸体积与去离子水体积比为 2 : 1的盐酸溶液, 以乙醇为溶质 配置 5mM的十八垸基三氯硅垸溶液,将得到的铝合金放入盐酸溶液中处理 2min, 处理完后用大量去离子水冲洗铝合金表面以去除多余的盐酸, 随后将样品放置 于十八垸基三氯硅垸溶液中浸泡 12h, 制备的样品在 80°C下干燥 30min;
( 14) 根据需要冲压塑型;
( 15 ) 组装制作成为铝合金材质的三通止回阀。
实施例 3
一种铝合金三通止回阀, 其由如下方法制备而成:
( 1 )按比例称取原料,控制各元素质量百分比为: MgO. 4%, Si 2. 2%, Cu 4. 2%, Mn 0. 3%, Fe 0. 5%, Zr 0. 1%, Er 0. 07%, Cr 0. 02%, Ni 0. 03%, Ti 0. 12%, Mo 0. 1%, Al余量;
(2 ) 于 300°C下预热纯铝 1. 3h;
(3 ) 预热后的纯铝在 55KPa气压下, 熔炼温度为 780°C的加热炉中完全熔 化后加入其他原料, 保温 25min后, 继续升温至所有其他中间合金完全熔化, 降温至 700°C, 在真空的条件下保温 20min;
(4) 加入 Al-5Ti-B、 Al-10Sr和 RE三种金属细化变质剂, 三者加入的重 量百分比比例为 8 : 1 : 3;
(5 ) 加入精炼剂充分反应, 除气、 除渣;
(6 ) 熔炼好的金属液浇注到已经预热至 300°C的坩埚中在 80MPa的条件下 静置 2h, 形成铸锭;
( 7)所述铸锭切割成合适尺寸后于 550°C的条件下进行 12小时的均匀化退 火, 炉冷至室温;
(8 ) 所述铸锭升温至 48CTC后保温 2小时, 进行三个道次的热轧, 每个道 次热轧完后在 550°C保温 23min;
(9) 热轧后进行三个道次的冷轧, 铝合金一端相对固定并连接超声波振动 装置, 另一端进入轧机中, 激振频率为 15kHz, 铝合金超声振动受压延伸, 冷轧 后对合金在 220°C下进行 2个小时的退火处理, 得到一定厚度的铝合金板材;
( 10) 对铝合金板材在 550°C下进行半小时的固溶处理, 然后水淬;
( 11 ) 铝合金板材进行双级时效:
在 180°C下进行 3小时的人工时效;
在 220°C下进行 0. 7小时的人工时效; ( 12) 将混合粉末 C和 V均匀涂抹于铝合金板材的表面, 使用横流连续波 Cq激光器对铝合金板材进行激光处理改性, 使得铝合金板材表面形成纳米级压 痕的同时将混合粉末 c和 V熔融覆盖于铝合金板材的表面, 处理过程中使用氩 气进行保护, 其激光器工艺参数范围为:激光功率 1.7kw,扫描速率 13mn/s,束斑 直径均为 4mm
(13) 配置盐酸体积与去离子水体积比为 2:1的盐酸溶液, 以乙醇为溶质 配置 5mM的十八垸基三氯硅垸溶液,将得到的铝合金放入盐酸溶液中处理 2min, 处理完后用大量去离子水冲洗铝合金表面以去除多余的盐酸, 随后将样品放置 于十八垸基三氯硅垸溶液中浸泡 12h, 制备的样品在 80°C下干燥 30min;
(14) 根据需要冲压塑型;
(15) 组装制作成为铝合金材质的三通止回阀。
实施例 4
一种铝合金三通止回阀, 其由如下方法制备而成:
(1)按比例称取原料,控制各元素质量百分比为: MgO.5%, Si 2.2%, Cu 4.2%, Mn 0.2%, Fe 0.4%, Zr 0.1%, Er 0.06%, Cr 0.01%, Ni 0.03%, Ti 0.12%, Mo 0.1%, Al余量;
(2) 于 300°C下预热纯铝 1.2h;
(3) 预热后的纯铝在 58KPa气压下, 熔炼温度为 780°C的加热炉中完全熔 化后加入其他原料, 保温 21min后, 继续升温至所有其他中间合金完全熔化, 降温至 700°C, 在真空的条件下保温 20min;
(4) 加入 Al-5Ti-B、 Al-10Sr和 RE三种金属细化变质剂, 三者加入的重 量百分比比例为 8: 1:3; (5) 加入精炼剂充分反应, 除气、 除渣;
(6) 熔炼好的金属液浇注到已经预热至 300°C的坩埚中在 80MPa的条件下 静置 2h, 形成铸锭;
(7)所述铸锭切割成合适尺寸后于 550°C的条件下进行 12小时的均匀化退 火, 炉冷至室温;
(8) 所述铸锭升温至 48CTC后保温 2小时, 进行三个道次的热轧, 每个道 次热轧完后在 550°C保温 22min;
(9) 热轧后进行三个道次的冷轧, 铝合金一端相对固定并连接超声波振动 装置, 另一端进入轧机中, 激振频率为 15kHz, 铝合金超声振动受压延伸, 冷轧 后对合金在 220°C下进行 2个小时的退火处理, 得到一定厚度的铝合金板材;
(10) 对铝合金板材在 550°C下进行半小时的固溶处理, 然后水淬;
(11) 铝合金板材进行双级时效:
在 180°C下进行 3小时的人工时效;
在 220°C下进行 0.8小时的人工时效;
( 12) 将混合粉末 C和 V均匀涂抹于铝合金板材的表面, 使用横流连续波 Cq激光器对铝合金板材进行激光处理改性, 使得铝合金板材表面形成纳米级压 痕的同时将混合粉末 c和 V熔融覆盖于铝合金板材的表面, 处理过程中使用氩 气进行保护, 其激光器工艺参数范围为:激光功率 1.7kw,扫描速率 13mn/s,束斑 直径均为 4mm;
(13) 配置盐酸体积与去离子水体积比为 2:1的盐酸溶液, 以乙醇为溶质 配置 5mM的十八垸基三氯硅垸溶液,将得到的铝合金放入盐酸溶液中处理 2min, 处理完后用大量去离子水冲洗铝合金表面以去除多余的盐酸, 随后将样品放置 于十八垸基三氯硅垸溶液中浸泡 12h, 制备的样品在 80°C下干燥 30min;
( 14) 根据需要冲压塑型;
( 15 ) 组装制作成为铝合金材质的三通止回阀。
实施例 5
经检测, 本发明的铝合金材质的三通止回阀具有意料不到的高强度, 高成 型性, 超长寿命 (耐酸耐碱耐盐水), 在水利系统中超耐腐蚀等显著的优点, 尤 其是力学性能和防腐性能远超本领域技术人员的预期。
其他数据如表 1所示:
表 1
Figure imgf000014_0001
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 根据本 发明的技术方案及其发明构思加以等同替换或改变, 都应涵盖在本发明的保护 范围之内。

Claims

权 利 要 求 书
1、 一种铝合金三通止回阀的制备方法, 其步骤如下:
(1) 按比例称取原料, 控制各元素质量百分比为: MgO.3-0.5%, Si 2.2%, Cu 4.2%, Mn 0.2—0.3%, Fe 0.4—0.6%, Zr 0.1%, Er 0.05—0.08%, Cr 0.01—0.03%, Ni 0.03%, Ti 0.12%, Mo 0.1%, Al余量;
(2) 于 300°C下预热纯铝 1〜1.5h;
(3) 预热后的纯铝在 50-60KPa气压下, 熔炼温度为 780°C的加热炉中完 全熔化后加入其他原料, 保温 20-30min后, 继续升温至所有其他中间合金完全 熔化, 降温至 700°C, 在真空的条件下保温 20min;
(4) 加入 Al-5Ti-B、 Al-10Sr和 RE三种金属细化变质剂, 三者加入的重 量百分比比例为 8: 1:3;
(5) 加入精炼剂充分反应, 除气、 除渣;
(6) 熔炼好的金属液浇注到已经预热至 300°C的坩埚中在 80MPa的条件下 静置 2h, 形成铸锭;
(7) 所述铸锭切割成合适尺寸后于 550°C的条件下进行 12小时的均匀化 退火, 炉冷至室温;
(8) 所述铸锭升温至 48CTC后保温 2小时, 进行三个道次的热轧, 每个道 次热轧完后在 550°C保温 20-25min;
(9)热轧后进行三个道次的冷轧, 铝合金一端相对固定并连接超声波振动 装置, 另一端进入轧机中, 激振频率为 15kHz, 铝合金超声振动受压延伸, 冷 轧后对合金在 220°C下进行 2个小时的退火处理, 得到一定厚度的铝合金板材;
(10) 对铝合金板材在 550°C下进行半小时的固溶处理, 然后水淬;
(11) 铝合金板材进行双级时效:
在 180°C下进行 3小时的人工时效; 在 220°C下进行 0. 5-1小时的人工时效;
( 12 ) 将混合粉末 C和 V均匀涂抹于铝合金板材的表面, 使用横流连续波 Cq激光器对铝合金板材进行激光处理改性, 使得铝合金板材表面形成纳米级压 痕的同时将混合粉末 c和 V熔融覆盖于铝合金板材的表面, 处理过程中使用氩 气进行保护,其激光器工艺参数范围为:激光功率 1. 7kw,扫描速率 13mn/s,束斑 直径均为 4mm;
( 13 ) 配置盐酸体积与去离子水体积比为 2 : 1的盐酸溶液, 以乙醇为溶质 配置 5mM的十八垸基三氯硅垸溶液,将得到的铝合金放入盐酸溶液中处理 2min, 处理完后用大量去离子水冲洗铝合金表面以去除多余的盐酸, 随后将样品放置 于十八垸基三氯硅垸溶液中浸泡 12h, 制备的样品在 80°C下干燥 30min;
( 14) 根据需要冲压塑型;
( 15 ) 组装制作成为铝合金材质的三通止回阀。
2、 权利要求 1所述的制备方法生产得到的铝合金三通止回阀。
PCT/CN2016/106576 2016-01-21 2016-11-21 一种三通止回阀 WO2017124823A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610037908.9A CN105671385B (zh) 2016-01-21 2016-01-21 一种三通止回阀
CN201610037908.9 2016-01-21

Publications (1)

Publication Number Publication Date
WO2017124823A1 true WO2017124823A1 (zh) 2017-07-27

Family

ID=56301784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106576 WO2017124823A1 (zh) 2016-01-21 2016-11-21 一种三通止回阀

Country Status (2)

Country Link
CN (1) CN105671385B (zh)
WO (1) WO2017124823A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105671385B (zh) * 2016-01-21 2017-05-03 江苏盐电阀门有限公司 一种三通止回阀
CN106801168A (zh) * 2016-12-20 2017-06-06 铜陵市经纬流体科技有限公司 一种轻质球阀用铝合金启闭件
CN109988933A (zh) * 2017-12-30 2019-07-09 宜兴市恒邦环保有限公司 一种给排水设备用阀门构件制备工艺
US11852616B2 (en) * 2021-01-07 2023-12-26 Saudi Arabian Oil Company High pressure high temperature direct fluid injection to gas chromatography in a PVT system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263720A (ja) * 2008-04-24 2009-11-12 Nippon Light Metal Co Ltd 耐力に優れた低熱膨張アルミニウム合金板材およびその製造方法
CN101705401A (zh) * 2009-11-27 2010-05-12 北京工业大学 稀土Er微合金化的Al-Zn-Mg-Mn-Zr合金及其制备方法
CN103526083A (zh) * 2013-09-25 2014-01-22 苏州吉利不锈钢制品有限公司 一种用于汽车板材的压铸铝合金的时效方法
CN103993208A (zh) * 2014-05-29 2014-08-20 合肥工业大学 一种Al-Mg-Si-Cu-Mn-Er合金材料及其制备方法
CN105063385A (zh) * 2015-08-06 2015-11-18 苏州好洁清洁器具有限公司 一种新型铝合金管材的制备方法
CN105671385A (zh) * 2016-01-21 2016-06-15 江苏盐电阀门有限公司 一种三通止回阀

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102912340A (zh) * 2012-10-15 2013-02-06 秦皇岛格瑞得节能技术服务有限公司 一种耐高温冲击磨损梯度复合材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263720A (ja) * 2008-04-24 2009-11-12 Nippon Light Metal Co Ltd 耐力に優れた低熱膨張アルミニウム合金板材およびその製造方法
CN101705401A (zh) * 2009-11-27 2010-05-12 北京工业大学 稀土Er微合金化的Al-Zn-Mg-Mn-Zr合金及其制备方法
CN103526083A (zh) * 2013-09-25 2014-01-22 苏州吉利不锈钢制品有限公司 一种用于汽车板材的压铸铝合金的时效方法
CN103993208A (zh) * 2014-05-29 2014-08-20 合肥工业大学 一种Al-Mg-Si-Cu-Mn-Er合金材料及其制备方法
CN105063385A (zh) * 2015-08-06 2015-11-18 苏州好洁清洁器具有限公司 一种新型铝合金管材的制备方法
CN105671385A (zh) * 2016-01-21 2016-06-15 江苏盐电阀门有限公司 一种三通止回阀

Also Published As

Publication number Publication date
CN105671385B (zh) 2017-05-03
CN105671385A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
CN100453671C (zh) 一种汽车用Al-Mg-Si-Cu合金及其加工工艺
WO2017124823A1 (zh) 一种三通止回阀
TW201925489A (zh) 用於成形一體型圓形防爆閥之電池蓋用鋁合金板及其製造方法
CN101509091A (zh) 一种高强高韧Al-Zn-Mg-Cu-Sr合金及制备方法
CN103014435A (zh) 一种铸造薄铝合金的材料及制备方法
CN108707790B (zh) 一种高强铸造铝合金
CN103014441A (zh) 一种用于高压铸造薄铝合金制备方法
CN111733346B (zh) 氢燃料电池空压机轴承用高温合金及其制备方法
CN110714156A (zh) 一种轻质高强耐蚀高熵合金及其制备方法
CN103014437A (zh) 一种用于高压铸造薄铝合金的材料
CN114231765A (zh) 一种高温合金棒材的制备方法与应用
CN106893909A (zh) 一种铝合金板材及其制作方法
CN113523282A (zh) 一种通过3d打印制备细小等轴晶钛合金的方法
TWI696706B (zh) 用於成形一體型防爆閥之電池蓋用鋁合金板及其製造方法
CN105803278A (zh) 新型高强度抗腐蚀铝合金门窗
CN107267778B (zh) 一种炼镁还原罐及其制作方法
CN113278827A (zh) 一种中等强度易挤压5系铝合金铸锭
CN109097626A (zh) 一种具有高阻尼特性和时效稳定性的亚稳β钛合金
CN107699755A (zh) 一种车身用铝合金及其制备方法
CN103725923A (zh) 一种铝强化的镍基合金及其制备方法
CN113403505A (zh) 一种1系铝合金带材制备电池盖板防爆片及翻转片方法
CN107828990A (zh) 一种机器人连接杆及其制备工艺
CN113322402A (zh) 一种高强度耐腐蚀变形镁合金
CN108048705B (zh) 一种含钇耐腐蚀铝合金材料的制备方法
CN105734371A (zh) 新型高强度抗腐蚀铝合金管道

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886083

Country of ref document: EP

Kind code of ref document: A1