WO2022041351A1 - 一种燃料电池金属双极板及其制备方法 - Google Patents

一种燃料电池金属双极板及其制备方法 Download PDF

Info

Publication number
WO2022041351A1
WO2022041351A1 PCT/CN2020/116340 CN2020116340W WO2022041351A1 WO 2022041351 A1 WO2022041351 A1 WO 2022041351A1 CN 2020116340 W CN2020116340 W CN 2020116340W WO 2022041351 A1 WO2022041351 A1 WO 2022041351A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
fuel cell
bipolar plate
printing
metal bipolar
Prior art date
Application number
PCT/CN2020/116340
Other languages
English (en)
French (fr)
Inventor
高鹏然
张华农
刘颖
Original Assignee
深圳市氢雄燃料电池有限公司
深圳市雄韬电源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市氢雄燃料电池有限公司, 深圳市雄韬电源科技股份有限公司 filed Critical 深圳市氢雄燃料电池有限公司
Publication of WO2022041351A1 publication Critical patent/WO2022041351A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of fuel cells, and in particular relates to a metal bipolar plate of a fuel cell and a preparation method thereof.
  • a fuel cell is a device that uses the chemical conversion of fuel and oxygen to generate water to generate electrical energy, and mainly includes bipolar plates, membrane electrodes, current collectors and accessories.
  • the bipolar plate as the core component of the fuel cell, can be prepared from graphite plate, metal or metal oxide.
  • the bipolar plate is the main place for fluid distribution, and the rationally designed flow channel can evenly disperse the fluid on the surface of the membrane electrode, effectively improving the performance of the battery.
  • the flow channel has many fine structures and complex designs, so the manufacturing of metal bipolar plates requires high precision.
  • the traditional metal bipolar plate manufacturing process is complex, requiring casting, electroplating and other processes, the manufacturing route is complicated and lengthy, and the time cost is high.
  • the traditional manufacturing process needs to grind the metal plate, which not only wastes the metal material, but also has low forming precision and large tolerance of the obtained metal plate.
  • the purpose of the present invention is to solve the deficiencies in the prior art, and to provide a fuel cell metal bipolar plate and a preparation method thereof.
  • the preparation method of the invention has simple process and low production cost, and the metal bipolar plate prepared under the same conditions has uniform and stable performance and small tolerance, and can meet the requirements of the fuel cell bipolar plate.
  • an embodiment of the present invention provides a method for preparing a metal bipolar plate for a fuel cell, including the following steps:
  • Step S01 shearing and grinding the metal material at 50°C-500°C for 1-48 hours to obtain metal powder;
  • Step S02 drying the metal powder in step S01 to obtain a dry metal powder; then sieving the dried metal powder to obtain a 3D printing metal material;
  • Step S03 3D printing the 3D printed metal material of step S02 according to the drawing of the metal bipolar plate to obtain a fuel cell metal bipolar plate.
  • step S01
  • the metal material is an elemental metal, a mixture of at least two elements of the elemental metal, or an alloy of elemental metals.
  • the metal element is one of copper, zirconium, titanium, lead, molybdenum, nickel, silver, aluminum, palladium, zinc, iron, cobalt, chromium, gold, manganese, tin, iridium, ruthenium, indium or lanthanide metals .
  • the metal material is copper, titanium alloy or stainless steel.
  • the pressure of the shear grinding is 1-300Mpa, preferably 100Mpa.
  • the shear grinding is carried out under the condition of ultrasonic, and the frequency of the ultrasonic is 5-150KHZ , preferably 40KHZ .
  • the shear grinding time is preferably 24h.
  • step S02
  • the drying conditions are drying at 120°C-150°C for 9-12 hours, preferably at 150°C for 10 hours.
  • the sieving is performed by using a 100-300 mesh screen, preferably a 100-mesh screen.
  • step S03
  • the 3D printing is performed by selective laser melting technology (SLM), and the operating conditions are as follows: the frequency of the laser is 20-900KHz, the power of the laser is 10-500W, and the spot diameter of the laser is 0.1-10mm , the scanning speed of the laser is 0.1-10mm/s, and the scanning distance of the laser is 0.1-2mm.
  • SLM selective laser melting technology
  • the 3D printing is performed by electron beam melting molding (EBM), and the operating conditions are as follows: the power of the electron beam is 0-4KW, and the scanning speed of the electron beam is 0-1000m/s.
  • EBM electron beam melting molding
  • the 3D printing is carried out by direct metal laser sintering (DMLS) technology, and the operation steps are as follows: using a high-energy laser beam and then controlled by the 3D model data to locally melt the metal matrix, at the same time sintering and solidifying the powder metal material and automatically layer-by-layer stacking, A fuel cell metal bipolar plate is obtained.
  • DMLS direct metal laser sintering
  • the 3D printing is carried out by electron beam free forming (EBF), and the operation steps are as follows: In a vacuum environment, a high-energy density electron beam bombards the metal surface to form a molten pool, and the metal wire is fed into the molten pool through a wire feeding device, and the molten pool is formed. At the same time, the molten pool moves according to a pre-planned path, and the metal material solidifies and accumulates layer by layer to form a dense metallurgical bond to obtain a fuel cell metal bipolar plate.
  • EMF electron beam free forming
  • the 3D printing is performed by fused deposition modeling (FDM).
  • FDM fused deposition modeling
  • the embodiments of the present invention also provide the fuel cell metal bipolar plate obtained by the above preparation method.
  • the present invention has the following beneficial effects: the preparation method of the present application is simple in operation, low in production cost, and short in preparation time; required fuel cell metal bipolar plates.
  • the prepared fuel cell metal bipolar plate has good flexibility, excellent mechanical properties and electrical properties, and can meet the requirements of the fuel cell bipolar plate.
  • the directional indications are only used to explain that in a certain posture ( As shown in the accompanying drawings), the relative positional relationship, movement situation, etc. between the various components, if the specific posture changes, the directional indication also changes accordingly.
  • the invention overcomes the disadvantages of complex process flow, long manufacturing cycle, low utilization rate of raw materials, low manufacturing precision, and difficulty in manufacturing plates with complex structures in the traditional method for manufacturing fuel cell bipolar plates, and can quickly obtain fuel cells with fine structures on the surface.
  • Metal bipolar plates In the present application, metal bipolar plates with fine-structured surfaces can be obtained without the need to manufacture molds with complex structures or mold opening operations, and excess metal materials can be recycled, thereby reducing material consumption and further effective reduce costs.
  • an embodiment of the present invention provides a method for preparing a metal bipolar plate for a fuel cell, including the following steps:
  • Step S01 shearing and grinding the metal material at 50°C-500°C for 1-48 hours to obtain metal powder;
  • Step S02 drying the metal powder in step S01 to obtain a dry metal powder; then sieving the dried metal powder to obtain a 3D printing metal material;
  • Step S03 3D printing the 3D printed metal material of step S02 according to the drawing of the metal bipolar plate to obtain a fuel cell metal bipolar plate.
  • step S01 Specifically, in step S01,
  • the metal material is an elemental metal, a mixture composed of at least two elements of the elemental metal (herein, the mixture refers to a physical mixture), or an alloy of elemental metals.
  • the metal element is one of copper, zirconium, titanium, lead, molybdenum, nickel, silver, aluminum, palladium, zinc, iron, cobalt, chromium, gold, manganese, tin, iridium, ruthenium, indium or lanthanide metals .
  • the metal material is copper, titanium alloy or stainless steel (there is no special requirement for the type of stainless steel, all of which can implement the solution of the present application).
  • the temperature of shearing and grinding can be different according to actual needs. For example, when copper is selected as the metal material, the temperature of shearing and grinding is generally 50 °C; if stainless steel is selected as the metal material, the temperature of shearing and grinding is Usually 60 °C.
  • the pressure of the shear grinding is 1-300Mpa, generally preferably 100Mpa. Different metal materials are selected, and the pressure of shear grinding can be different according to actual needs. Generally speaking, for the metal materials selected in this application, the pressure of shear grinding is 100Mpa and can meet the requirements.
  • the shear grinding is carried out under the condition of ultrasonic, and the frequency of the ultrasonic is 5-150KHZ , preferably 40KHZ .
  • the ultrasonic frequency of shear grinding can be different according to actual needs.
  • the pressure of shear grinding is 40KH Z , which can meet the requirements.
  • the shear grinding time is preferably 24h.
  • step S02
  • the drying conditions are drying at 120°C-150°C for 9-12 hours, preferably at 150°C for 10 hours.
  • the sieving is performed by using a 100-300 mesh screen, preferably a 100-mesh screen. By selecting these meshes, while meeting the requirements of 3D printing, it can ensure that the required fuel cell metal bipolar plate can be prepared in one molding, and the prepared fuel cell metal bipolar plate has good flexibility and excellent mechanical properties and electrical properties. The performance can meet the requirements of the fuel cell bipolar plate.
  • step S03
  • the 3D printing is performed by selective laser melting technology (SLM), and the operating conditions are as follows: the frequency of the laser is 20-900KHz, the power of the laser is 10-500W, and the spot diameter of the laser is 0.1-10mm , the scanning speed of the laser is 0.1-10mm/s, and the scanning distance of the laser is 0.1-2mm.
  • SLM selective laser melting technology
  • the 3D printing is performed by electron beam melting molding (EBM), and the operating conditions are as follows: the power of the electron beam is 0-4KW, that is, the power of the electron beam is greater than zero and less than 4KW, and the scanning of the electron beam The speed is 0-1000m/s, that is, the scanning speed of the electron beam is greater than zero and less than 1000m/s.
  • EBM electron beam melting molding
  • the 3D printing is performed by direct metal laser sintering technology (DMLS), and the operation steps are as follows: use a high-energy (can melt metal material) laser beam and then control the 3D model data to locally melt the metal matrix, and sinter and solidify at the same time Powder metal materials are automatically stacked layer by layer to obtain a fuel cell metal bipolar plate.
  • DMLS direct metal laser sintering technology
  • the 3D printing is performed by electron beam free forming (EBF), and the operation steps are as follows: in a vacuum environment, an electron beam with high energy density (which can melt metal materials) (the power of the electron beam is greater than zero and less than 4KW) That is) bombard the metal surface to form a molten pool, the metal wire is fed into the molten pool through the wire feeding device and melted, and the molten pool moves according to a pre-planned path, and the metal materials solidify and accumulate layer by layer to form a dense metallurgical bond to obtain a fuel cell.
  • Metal bipolar plates are used to produce a molten pool.
  • the 3D printing is performed by fused deposition modeling (FDM).
  • FDM fused deposition modeling
  • the embodiments of the present invention also provide the fuel cell metal bipolar plate obtained by the above preparation method.
  • the preparation method of the present application is simple in operation, low in production cost, and short in preparation time.
  • the 3D printing metal material of the present application can be quickly 3D printed according to actual needs, and the required fuel cell metal bipolar plate can be prepared by one-time molding.
  • the prepared fuel cell metal bipolar plate has good flexibility, excellent mechanical properties and electrical properties, and can meet the requirements of the fuel cell bipolar plate.
  • a preparation method of a fuel cell metal bipolar plate comprising the following steps:
  • Step S01 shearing and grinding the copper metal for 24 hours at 50°C, a pressure of 100MPa, and an ultrasonic frequency of 40KHz to obtain metal powder;
  • Step S02 drying the metal powder in step S01 at 150° C. for 10 hours to obtain a dry metal powder; then sieving the dried metal powder through a 100-mesh sieve to obtain a 3D printing metal material with uniform particles;
  • Step S03 According to the drawing of the metal bipolar plate, the 3D printing metal material of Step S02 is 3D printed by the selective laser melting technology to obtain the metal bipolar plate of the fuel cell; wherein, the laser power is 200W, and the spot diameter is about 1mm, The scanning speed is 0.5mm/s, and the scanning spacing is 0.5mm.
  • the prepared fuel cell metal bipolar plate meets the relevant requirements of the fuel cell bipolar plate.
  • a preparation method of a fuel cell metal bipolar plate comprising the following steps:
  • Step S01 shearing and grinding the copper metal for 24 hours at 50°C, a pressure of 100MPa, and an ultrasonic frequency of 40KHz to obtain metal powder;
  • Step S02 drying the metal powder in step S01 at 150° C. for 10 hours to obtain a dry metal powder; then sieving the dried metal powder through a 100-mesh sieve to obtain a 3D printing metal material with uniform particles;
  • Step S03 According to the drawing of the metal bipolar plate, the 3D printed metal material in Step S02 is 3D printed by the direct metal laser sintering technology to obtain the fuel cell metal bipolar plate; wherein, the laser power is 200W, and the spot diameter is about 1mm, The scanning speed is 0.5mm/s, and the scanning spacing is 0.5mm.
  • the prepared fuel cell metal bipolar plate meets the relevant requirements of the fuel cell bipolar plate.
  • a preparation method of a fuel cell metal bipolar plate comprising the following steps:
  • Step S01 shearing and grinding the copper metal for 24 hours at 50°C, a pressure of 100MPa, and an ultrasonic frequency of 40KHz to obtain metal powder;
  • Step S02 drying the metal powder in step S01 at 150° C. for 10 hours to obtain a dry metal powder; then sieving the dried metal powder through a 100-mesh sieve to obtain a 3D printing metal material with uniform particles;
  • Step S03 According to the drawing of the metal bipolar plate, the 3D printing metal material of Step S02 is 3D printed by the direct electron beam melting molding technology to obtain the fuel cell metal bipolar plate; wherein, the electron beam power is 0-4KW, and the melting speed is 0.3 -0.5m/s, the electron beam scanning speed is 0-1000m/s, and the scanning spacing is 0.5mm.
  • the prepared fuel cell metal bipolar plate meets the relevant requirements of the fuel cell bipolar plate.
  • a preparation method of a fuel cell metal bipolar plate comprising the following steps:
  • Step S01 shearing and grinding the copper metal for 24 hours at 50°C, a pressure of 100MPa, and an ultrasonic frequency of 40KHz to obtain metal powder;
  • Step S02 drying the metal powder in step S01 at 150°C for 10 hours to obtain dry metal powder; then sieving the dried metal powder through a 100-mesh sieve to obtain a 3D printing metal material with uniform particles;
  • Step S03 According to the drawing of the metal bipolar plate, the 3D printed metal material of Step S02 is 3D printed by electron beam free forming manufacturing technology to obtain a fuel cell metal bipolar plate; wherein, the degree of vacuum is 0.013Pa, and the power of the electron gun is 42KW.
  • the prepared fuel cell metal bipolar plate meets the relevant requirements of the fuel cell bipolar plate.
  • a preparation method of a fuel cell metal bipolar plate comprising the following steps:
  • Step S01 shearing and grinding the stainless steel at 60°C, pressure 100MPa, and ultrasonic frequency 40KHz for 24h to obtain metal powder;
  • Step S02 drying the metal powder in step S01 at 150° C. for 10 hours to obtain a dry metal powder; then sieving the dried metal powder through a 100-mesh sieve to obtain a 3D printing metal material with uniform particles;
  • Step S03 According to the drawing of the metal bipolar plate, the 3D printing metal material of Step S02 is 3D printed by the selective laser melting technology to obtain the metal bipolar plate of the fuel cell; wherein, the laser power is 200W, and the spot diameter is about 1mm, The scanning speed is 0.5mm/s, and the scanning spacing is 0.5mm.
  • the prepared fuel cell metal bipolar plate meets the relevant requirements of the fuel cell bipolar plate.
  • a preparation method of a fuel cell metal bipolar plate comprising the following steps:
  • Step S01 shearing and grinding the stainless steel at 60°C, pressure 100MPa, and ultrasonic frequency 40KHz for 24h to obtain metal powder;
  • Step S02 drying the metal powder in step S01 at 150° C. for 10 hours to obtain a dry metal powder; then sieving the dried metal powder through a 100-mesh sieve to obtain a 3D printing metal material with uniform particles;
  • Step S03 According to the drawing of the metal bipolar plate, the 3D printing metal material of Step S02 is 3D printed by the direct electron beam melting molding technology to obtain the fuel cell metal bipolar plate; wherein, the electron beam power is 0-4KW, and the melting speed is 0.3 -0.5m/s, the electron beam scanning speed is 0-1000m/s, and the scanning spacing is 0.5mm.
  • the prepared fuel cell metal bipolar plate meets the relevant requirements of the fuel cell bipolar plate.
  • a preparation method of a fuel cell metal bipolar plate comprising the following steps:
  • Step S01 shearing and grinding the titanium alloy at 50°C, pressure 100MPa, and ultrasonic frequency 40KHz for 24h to obtain metal powder;
  • Step S02 drying the metal powder in step S01 at 150° C. for 10 hours to obtain a dry metal powder; then sieving the dried metal powder through a 100-mesh sieve to obtain a 3D printing metal material with uniform particles;
  • Step S03 According to the drawing of the metal bipolar plate, the 3D printed metal material of Step S02 is 3D printed by electron beam free forming manufacturing technology to obtain a fuel cell metal bipolar plate; wherein, the degree of vacuum is 0.013Pa, and the power of the electron gun is 42KW.
  • the prepared fuel cell metal bipolar plate meets the relevant requirements of the fuel cell bipolar plate.
  • a preparation method of a fuel cell metal bipolar plate comprising the following steps:
  • Step S01 shearing and grinding the titanium alloy at 50°C, pressure 100MPa, and ultrasonic frequency 40KHz for 24h to obtain metal powder;
  • Step S02 drying the metal powder in step S01 at 150° C. for 10 hours to obtain a dry metal powder; then sieving the dried metal powder through a 100-mesh sieve to obtain a 3D printing metal material with uniform particles;
  • Step S03 According to the drawing of the metal bipolar plate, the 3D printing metal material of Step S02 is 3D printed by the direct electron beam melting molding technology to obtain the fuel cell metal bipolar plate; wherein, the electron beam power is 0-4KW, and the melting speed is 0.3 -0.5m/s, the electron beam scanning speed is 0-1000m/s, and the scanning spacing is 0.5mm.
  • the prepared fuel cell metal bipolar plate meets the relevant requirements of the fuel cell bipolar plate.
  • the preparation method of the present application is simple in operation, low in production cost and short in preparation time, so that the prepared paste can be suitable for 3D printing using selective laser sintering technology, and the required fuel cell bipolar can be quickly prepared according to actual needs
  • the prepared bipolar plate has good flexibility, excellent mechanical and electrical properties, and can meet the requirements of the fuel cell bipolar plate.
  • a preparation method of a fuel cell metal bipolar plate comprising the following steps:
  • Step S01 shearing and grinding the copper metal at 30°C, pressure 100MPa, and ultrasonic frequency 40KHz for 24h to obtain metal powder;
  • Step S02 drying the metal powder in step S01 at 100° C. for 10 hours to obtain dry metal powder; then sieving the dried metal powder through a 100-mesh sieve to obtain a 3D printing metal material with uniform particles;
  • Step S03 According to the drawing of the metal bipolar plate, the 3D printing metal material of Step S02 is 3D printed by the selective laser melting technology to obtain the metal bipolar plate of the fuel cell; wherein, the laser power is 200W, and the spot diameter is about 1mm, The scanning speed is 0.5mm/s, and the scanning spacing is 0.5mm.
  • the prepared fuel cell metal bipolar plate After testing, due to the influence of shear grinding temperature and drying temperature, the prepared fuel cell metal bipolar plate has poor uniformity and large tolerance, which does not meet the relevant requirements of fuel cell bipolar plate.
  • a preparation method of a fuel cell metal bipolar plate comprising the following steps:
  • Step S01 shearing and grinding the copper metal for 24 hours at 50°C, a pressure of 100MPa, and an ultrasonic frequency of 40KHz to obtain metal powder;
  • Step S02 drying the metal powder in step S01 at 150° C. for 10 hours to obtain a dry metal powder; then sieving the dried metal powder through a 100-mesh sieve to obtain a 3D printing metal material with uniform particles;
  • Step S03 According to the drawing of the metal bipolar plate, the 3D printing metal material of Step S02 is 3D printed by the selective laser melting technology to obtain the metal bipolar plate of the fuel cell; wherein, the laser power is 5W, and the spot diameter is about 1mm, The scanning speed was 0.5 mm/s, and the scanning pitch was 3.0 mm.
  • the prepared fuel cell metal bipolar plate After testing, due to the influence of laser power and scanning distance, the prepared fuel cell metal bipolar plate has poor uniformity and large tolerance, which does not meet the relevant requirements of fuel cell bipolar plate.
  • a preparation method of a fuel cell metal bipolar plate comprising the following steps:
  • Step S01 shearing and grinding the copper metal for 24 hours at 50°C, a pressure of 100MPa, and an ultrasonic frequency of 40KHz to obtain metal powder;
  • Step S02 drying the metal powder in step S01 at 150° C. for 10 hours to obtain a dry metal powder; then sieving the dried metal powder through a 100-mesh sieve to obtain a 3D printing metal material with uniform particles;
  • Step S03 According to the drawing of the metal bipolar plate, the 3D printing metal material of Step S02 is 3D printed by selective laser melting technology to obtain a fuel cell metal bipolar plate; wherein, the laser power is 200W, and the spot diameter is about 20mm, The scanning speed was 15.0 mm/s, and the scanning pitch was 0.5 mm.
  • the prepared fuel cell metal bipolar plate After testing, due to the influence of the spot diameter and the scanning speed, the prepared fuel cell metal bipolar plate has poor uniformity and large tolerance, which does not meet the relevant requirements of the fuel cell bipolar plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种燃料电池金属双极板及其制备方法,属于燃料电池技术领域。该燃料电池金属双极板的制备方法包括如下步骤:步骤S01:于50℃-500℃将金属材料进行剪切研磨1-48h,得到金属粉体;步骤S02:将步骤S01的金属粉体进行干燥,得到干燥的金属粉体;然后将所述干燥的金属粉体进行分筛,得到3D打印金属材料;步骤S03:按照金属双极板的图纸、将步骤S02的3D打印金属材料进行3D打印,得到燃料电池金属双极板。其操作简单、制作成本低,制备时间短,3D打印金属材料可根据实际需要进行3D打印,一次成型制备得到所需的燃料电池金属双极板。制备得到的燃料电池金属双极板可以满足燃料电池双极板的要求。

Description

一种燃料电池金属双极板及其制备方法 技术领域
本发明属于燃料电池技术领域,尤其涉及一种燃料电池金属双极板及其制备方法。
背景技术
燃料电池是利用燃料与氧气生成水的化学转化来产生电能的装置,主要包含有双极板、膜电极、集电器以及附件。其中,双极板作为燃料电池的核心部件,可以用石墨板、金属或者金属氧化物制备得到。双极板是流体分布的主要场所,合理设计的流道能将流体均匀分散在膜电极的表面,有效提升电池的性能。流道拥有较多的精细结构,设计复杂,因此对于金属双极板的制造,精度要求较高。传统的金属双极板制造工艺复杂,需要铸模、电镀等工艺,制造路线复杂冗长,时间成本较高。另外,传统的制造工艺需要对金属板进行打磨,不但浪费金属材料,成型的精度低,而且得到的金属板的公差较大。
发明内容
本发明的目的在于解决现有技术中存在的不足,提供一种燃料电池金属双极板及其制备方法。本发明的制备方法工艺简单、制作成本低,相同条件下制备的金属双极板性能均一、稳定,公差较小,可以满足燃料电池双极板的要求。
一方面,本发明实施例提供一种燃料电池金属双极板的制备方法,包括如下步骤:
步骤S01:于50℃-500℃将金属材料进行剪切研磨1-48h,得到金属粉体;
步骤S02:将步骤S01的金属粉体进行干燥,得到干燥的金属粉体;然后 将所述干燥的金属粉体进行分筛,得到3D打印金属材料;
步骤S03:按照金属双极板的图纸、将步骤S02的3D打印金属材料进行3D打印,得到燃料电池金属双极板。
进一步地,步骤S01中,
所述金属材料为金属单质、至少两种所述金属单质组成的混合物、或所述金属单质的合金。
所述金属单质为铜、锆、钛、铅、钼、镍、银、铝、钯、锌、铁、钴、铬、金、锰、锡、铱、钌、铟或镧系金属中的一种。
优选的,所述金属材料为铜、钛合金或者不锈钢。
所述剪切研磨的压力为1-300Mpa,优选为100Mpa。
所述剪切研磨在超声的条件下进行,所述超声的频率为5-150KH Z,优选为40KH Z
所述剪切研磨的时间优选为24h。
进一步地,步骤S02中,
所述干燥的条件为于120℃-150℃干燥9-12h,优选为于150℃干燥10h。
所述分筛为采用100-300目的筛网进行分筛,优选采用100目的筛网进行分筛。
进一步地,步骤S03中,
所述3D打印通过选择性激光熔化技术(SLM)进行打印,操作条件如下:所述激光的频率为20-900KHz,所述激光的功率为10-500W,所述激光的光斑直径为0.1-10mm,所述激光的扫描速度为0.1-10mm/s,所述激光的扫描间距为0.1-2mm。
所述3D打印通过电子束熔化成型技术(EBM)进行打印,操作条件如下:所述电子束的功率为0-4KW,所述电子束的扫描速度为0-1000m/s。
所述3D打印通过直接金属激光烧结技术(DMLS)进行打印,操作步骤如下:使用高能量的激光束再由3D模型数据控制来局部熔化金属基体,同时烧结固化粉末金属材料并自动地层层堆叠,得到燃料电池金属双极板。
所述3D打印通过电子束自由成形制造(EBF)进行打印,操作步骤如下: 在真空环境中,高能量密度的电子束轰击金属表面形成熔池,金属丝材通过送丝装置送入熔池并熔化,同时熔池按照预先规划的路径运动,金属材料逐层凝固堆积,形成致密的冶金结合,得到燃料电池金属双极板。
所述3D打印通过熔融沉积成型法(FDM)进行打印,操作步骤如下:金属的熔丝从加热的喷嘴挤出,按照零件每一层的预定轨迹,以固定的速率进行熔体沉积,得到燃料电池金属双极板。
另一方面,本发明实施例还提供由上述制备方法得到的燃料电池金属双极板。
本发明与现有技术相比具有以下有益效果:本申请的制备方法操作简单、制作成本低,制备时间短,本申请的3D打印金属材料可以根据实际需要快速进行3D打印,一次成型制备得到所需的燃料电池金属双极板。制备得到的燃料电池金属双极板具有良好的柔韧性和优异的力学性能及电学性能,可以满足燃料电池双极板的要求。
本发明目的的实现、功能特点及优点将结合实施例,做进一步说明。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后、顶、底……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之 间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明克服了传统制造燃料电池双极板方法中工艺流程复杂、制造周期长、原料利用率低、制造精度低、难以制造结构复杂的板体等缺点,能够快速获得表面具有精细结构的燃料电池金属双极板。在本申请中,不需要制造结构复杂的模具、也不需要开模操作即可能够获得具有精细结构表面的金属双极板,多余的金属材料可以回收利用,从而降低材料的消耗、进而进一步有效降低成本。
具体的,一方面,本发明实施例提供一种燃料电池金属双极板的制备方法,包括如下步骤:
步骤S01:于50℃-500℃将金属材料进行剪切研磨1-48h,得到金属粉体;
步骤S02:将步骤S01的金属粉体进行干燥,得到干燥的金属粉体;然后将所述干燥的金属粉体进行分筛,得到3D打印金属材料;
步骤S03:按照金属双极板的图纸、将步骤S02的3D打印金属材料进行3D打印,得到燃料电池金属双极板。
具体地,在步骤S01中,
所述金属材料为金属单质、至少两种所述金属单质组成的混合物(此处的混合物是指物理混合物)、或所述金属单质的合金。
所述金属单质为铜、锆、钛、铅、钼、镍、银、铝、钯、锌、铁、钴、铬、金、锰、锡、铱、钌、铟或镧系金属中的一种。
具体的,在本申请的实施例中,所述金属材料为铜、钛合金或者不锈钢(不锈钢的型号无特别要求,均能实现本申请的方案)。
选择金属材料不同,剪切研磨的温度可以根据实际需要而随之不同,例如选择铜作为金属材料时,剪切研磨的温度一般为50℃;如果选择不锈钢作为金属材料,则剪切研磨的温度一般为60℃。
所述剪切研磨的压力为1-300Mpa,一般优选为100Mpa。选择的金属材料不同,剪切研磨的压力可以根据实际需要而随之不同,一般来说,对于本 申请选择的金属材料,剪切研磨的压力为100Mpa即可满足需求。
所述剪切研磨在超声的条件下进行,所述超声的频率为5-150KH Z,优选为40KH Z。选择的金属材料不同,剪切研磨的超声频率可以根据实际需要而随之不同,一般来说,对于本申请选择的金属材料,剪切研磨的压力为40KH Z即可满足需求。
本申请中,所述剪切研磨的时间优选为24h。
进一步地,步骤S02中,
所述干燥的条件为于120℃-150℃干燥9-12h,优选为于150℃干燥10h。
所述分筛为采用100-300目的筛网进行分筛,优选采用100目的筛网进行分筛。选择这些目数,在满足3D打印要求的同时,可以保证一次成型制备得到所需的燃料电池金属双极板,制备得到的燃料电池金属双极板具有良好的柔韧性和优异的力学性能及电学性能,可以满足燃料电池双极板的要求。
进一步地,步骤S03中,
所述3D打印通过选择性激光熔化技术(SLM)进行打印,操作条件如下:所述激光的频率为20-900KHz,所述激光的功率为10-500W,所述激光的光斑直径为0.1-10mm,所述激光的扫描速度为0.1-10mm/s,所述激光的扫描间距为0.1-2mm。
所述3D打印通过电子束熔化成型技术(EBM)进行打印,操作条件如下:所述电子束的功率为0-4KW,即电子束的功率大于零、小于4KW即可,所述电子束的扫描速度为0-1000m/s,即电子束的扫描速度大于零、小于1000m/s即可。
所述3D打印通过直接金属激光烧结技术(DMLS)进行打印,操作步骤如下:使用高能量(能使金属材料熔化即可)的激光束再由3D模型数据控制来局部熔化金属基体,同时烧结固化粉末金属材料并自动地层层堆叠,得到燃料电池金属双极板。
所述3D打印通过电子束自由成形制造(EBF)进行打印,操作步骤如下:在真空环境中,高能量密度(能使金属材料熔化即可)的电子束(电子束的功率大于零、小于4KW即可)轰击金属表面形成熔池,金属丝材通过送丝装 置送入熔池并熔化,同时熔池按照预先规划的路径运动,金属材料逐层凝固堆积,形成致密的冶金结合,得到燃料电池金属双极板。
所述3D打印通过熔融沉积成型法(FDM)进行打印,操作步骤如下:金属的熔丝从加热的喷嘴挤出,按照零件每一层的预定轨迹,以固定的速率进行熔体沉积,得到燃料电池金属双极板。
另一方面,本发明实施例还提供由上述制备方法得到的燃料电池金属双极板。
本申请的制备方法操作简单、制作成本低,制备时间短,本申请的3D打印金属材料可以根据实际需要快速进行3D打印,一次成型制备得到所需的燃料电池金属双极板。制备得到的燃料电池金属双极板具有良好的柔韧性和优异的力学性能及电学性能,可以满足燃料电池双极板的要求。
实施例1
一种燃料电池金属双极板的制备方法,包括如下步骤:
步骤S01:于50℃、压力100MPa、超声频率40KHz下将铜金属进行剪切研磨24h,得到金属粉体;
步骤S02:于150℃将步骤S01的金属粉体干燥10h,得到干燥的金属粉体;然后将所述干燥的金属粉体通过100目筛体进行分筛,得到颗粒均匀的3D打印金属材料;
步骤S03:按照金属双极板的图纸、将步骤S02的3D打印金属材料通过选择性激光熔化技术进行3D打印,得到燃料电池金属双极板;其中,激光功率为200W,光斑直径约为1mm,扫描速度为0.5mm/s,扫描间距为0.5mm。
经检测,制备得到的燃料电池金属双极板符合燃料电池双极板的相关要求。
实施例2
一种燃料电池金属双极板的制备方法,包括如下步骤:
步骤S01:于50℃、压力100MPa、超声频率40KHz下将铜金属进行剪切研磨24h,得到金属粉体;
步骤S02:于150℃将步骤S01的金属粉体干燥10h,得到干燥的金属粉体;然后将所述干燥的金属粉体通过100目筛体进行分筛,得到颗粒均匀的3D打印金属材料;
步骤S03:按照金属双极板的图纸、将步骤S02的3D打印金属材料通过直接金属激光烧结技术进行3D打印,得到燃料电池金属双极板;其中,激光功率为200W,光斑直径约为1mm,扫描速度为0.5mm/s,扫描间距为0.5mm。
经检测,制备得到的燃料电池金属双极板符合燃料电池双极板的相关要求。
实施例3
一种燃料电池金属双极板的制备方法,包括如下步骤:
步骤S01:于50℃、压力100MPa、超声频率40KHz下将铜金属进行剪切研磨24h,得到金属粉体;
步骤S02:于150℃将步骤S01的金属粉体干燥10h,得到干燥的金属粉体;然后将所述干燥的金属粉体通过100目筛体进行分筛,得到颗粒均匀的3D打印金属材料;
步骤S03:按照金属双极板的图纸、将步骤S02的3D打印金属材料通过直接电子束熔化成型技术进行3D打印,得到燃料电池金属双极板;其中,电子束功率0-4KW,熔解速度0.3-0.5m/s,电子束扫描速度0-1000m/s,扫描间距为0.5mm。
经检测,制备得到的燃料电池金属双极板符合燃料电池双极板的相关要求。
实施例4
一种燃料电池金属双极板的制备方法,包括如下步骤:
步骤S01:于50℃、压力100MPa、超声频率40KHz下将铜金属进行剪切研磨24h,得到金属粉体;
步骤S02:于150℃将步骤S01的金属粉体干燥10h,得到干燥的金属粉 体;然后将所述干燥的金属粉体通过100目筛体进行分筛,得到颗粒均匀的3D打印金属材料;
步骤S03:按照金属双极板的图纸、将步骤S02的3D打印金属材料通过电子束自由成形制造技术进行3D打印,得到燃料电池金属双极板;其中,真空度0.013Pa,电子枪功率42KW。
经检测,制备得到的燃料电池金属双极板符合燃料电池双极板的相关要求。
实施例5
一种燃料电池金属双极板的制备方法,包括如下步骤:
步骤S01:于60℃、压力100MPa、超声频率40KHz下将不锈钢进行剪切研磨24h,得到金属粉体;
步骤S02:于150℃将步骤S01的金属粉体干燥10h,得到干燥的金属粉体;然后将所述干燥的金属粉体通过100目筛体进行分筛,得到颗粒均匀的3D打印金属材料;
步骤S03:按照金属双极板的图纸、将步骤S02的3D打印金属材料通过选择性激光熔化技术进行3D打印,得到燃料电池金属双极板;其中,激光功率为200W,光斑直径约为1mm,扫描速度为0.5mm/s,扫描间距为0.5mm。
经检测,制备得到的燃料电池金属双极板符合燃料电池双极板的相关要求。
实施例6
一种燃料电池金属双极板的制备方法,包括如下步骤:
步骤S01:于60℃、压力100MPa、超声频率40KHz下将不锈钢进行剪切研磨24h,得到金属粉体;
步骤S02:于150℃将步骤S01的金属粉体干燥10h,得到干燥的金属粉体;然后将所述干燥的金属粉体通过100目筛体进行分筛,得到颗粒均匀的3D打印金属材料;
步骤S03:按照金属双极板的图纸、将步骤S02的3D打印金属材料通过直接电子束熔化成型技术进行3D打印,得到燃料电池金属双极板;其中,电子束功率0-4KW,熔解速度0.3-0.5m/s,电子束扫描速度0-1000m/s,扫描间距为0.5mm。
经检测,制备得到的燃料电池金属双极板符合燃料电池双极板的相关要求。
实施例7
一种燃料电池金属双极板的制备方法,包括如下步骤:
步骤S01:于50℃、压力100MPa、超声频率40KHz下将钛合金进行剪切研磨24h,得到金属粉体;
步骤S02:于150℃将步骤S01的金属粉体干燥10h,得到干燥的金属粉体;然后将所述干燥的金属粉体通过100目筛体进行分筛,得到颗粒均匀的3D打印金属材料;
步骤S03:按照金属双极板的图纸、将步骤S02的3D打印金属材料通过电子束自由成形制造技术进行3D打印,得到燃料电池金属双极板;其中,真空度0.013Pa,电子枪功率42KW。
经检测,制备得到的燃料电池金属双极板符合燃料电池双极板的相关要求。
实施例8
一种燃料电池金属双极板的制备方法,包括如下步骤:
步骤S01:于50℃、压力100MPa、超声频率40KHz下将钛合金进行剪切研磨24h,得到金属粉体;
步骤S02:于150℃将步骤S01的金属粉体干燥10h,得到干燥的金属粉体;然后将所述干燥的金属粉体通过100目筛体进行分筛,得到颗粒均匀的3D打印金属材料;
步骤S03:按照金属双极板的图纸、将步骤S02的3D打印金属材料通过 直接电子束熔化成型技术进行3D打印,得到燃料电池金属双极板;其中,电子束功率0-4KW,熔解速度0.3-0.5m/s,电子束扫描速度0-1000m/s,扫描间距为0.5mm。
经检测,制备得到的燃料电池金属双极板符合燃料电池双极板的相关要求。
本申请的制备方法操作简单、制作成本低,制备时间短,使其制得的膏状物可以适用于采用选择性激光烧结技术进行3D打印,可以根据实际需要快速制备所需的燃料电池双极板;制备得到的双极板具有良好的柔韧性和优异的力学性能及电学性能,可以满足燃料电池双极板的要求。
对比实施例1
一种燃料电池金属双极板的制备方法,包括如下步骤:
步骤S01:于30℃、压力100MPa、超声频率40KHz下将铜金属进行剪切研磨24h,得到金属粉体;
步骤S02:于100℃将步骤S01的金属粉体干燥10h,得到干燥的金属粉体;然后将所述干燥的金属粉体通过100目筛体进行分筛,得到颗粒均匀的3D打印金属材料;
步骤S03:按照金属双极板的图纸、将步骤S02的3D打印金属材料通过选择性激光熔化技术进行3D打印,得到燃料电池金属双极板;其中,激光功率为200W,光斑直径约为1mm,扫描速度为0.5mm/s,扫描间距为0.5mm。
经检测,由于剪切研磨温度以及干燥温度的影响,制备得到的燃料电池金属双极板均一性较差,公差较大,不符合燃料电池双极板的相关要求。
对比实施例2
一种燃料电池金属双极板的制备方法,包括如下步骤:
步骤S01:于50℃、压力100MPa、超声频率40KHz下将铜金属进行剪切研磨24h,得到金属粉体;
步骤S02:于150℃将步骤S01的金属粉体干燥10h,得到干燥的金属粉体;然后将所述干燥的金属粉体通过100目筛体进行分筛,得到颗粒均匀的3D打印金属材料;
步骤S03:按照金属双极板的图纸、将步骤S02的3D打印金属材料通过选择性激光熔化技术进行3D打印,得到燃料电池金属双极板;其中,激光功率为5W,光斑直径约为1mm,扫描速度为0.5mm/s,扫描间距为3.0mm。
经检测,由于激光功率以及扫描间距的影响,制备得到的燃料电池金属双极板均一性较差,公差较大,不符合燃料电池双极板的相关要求。
对比实施例3
一种燃料电池金属双极板的制备方法,包括如下步骤:
步骤S01:于50℃、压力100MPa、超声频率40KHz下将铜金属进行剪切研磨24h,得到金属粉体;
步骤S02:于150℃将步骤S01的金属粉体干燥10h,得到干燥的金属粉体;然后将所述干燥的金属粉体通过100目筛体进行分筛,得到颗粒均匀的3D打印金属材料;
步骤S03:按照金属双极板的图纸、将步骤S02的3D打印金属材料通过选择性激光熔化技术进行3D打印,得到燃料电池金属双极板;其中,激光功率为200W,光斑直径约为20mm,扫描速度为15.0mm/s,扫描间距为0.5mm。
经检测,由于光斑直径以及扫描速度的影响,制备得到的燃料电池金属双极板均一性较差,公差较大,不符合燃料电池双极板的相关要求。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

  1. 一种燃料电池金属双极板的制备方法,其特征在于,包括如下步骤:
    步骤S01:于50℃-500℃将金属材料进行剪切研磨1-48h,得到金属粉体;
    步骤S02:将步骤S01的金属粉体进行干燥,得到干燥的金属粉体;然后将所述干燥的金属粉体进行分筛,得到3D打印金属材料;
    步骤S03:按照金属双极板的图纸、将步骤S02的3D打印金属材料进行3D打印,得到燃料电池金属双极板。
  2. 根据权利要求1所述的燃料电池金属双极板的制备方法,其特征在于,步骤S01中,所述金属材料为金属单质、至少两种所述金属单质组成的混合物、或所述金属单质的合金。
  3. 根据权利要求2所述的燃料电池金属双极板的制备方法,其特征在于,所述金属单质为铜、锆、钛、铅、钼、镍、银、铝、钯、锌、铁、钴、铬、金、锰、锡、铱、钌、铟或镧系金属中的一种。
  4. 根据权利要求1所述的燃料电池金属双极板的制备方法,其特征在于,所述金属材料为铜、钛合金或者不锈钢。
  5. 根据权利要求1所述的燃料电池金属双极板的制备方法,其特征在于,步骤S01中,所述剪切研磨的压力为1-300Mpa;所述剪切研磨在超声的条件下进行,所述超声的频率为5-150KH Z
    步骤S02中,所述干燥的条件为于120℃-150℃干燥9-12h;所述分筛为采用100-300目的筛网进行分筛。
  6. 根据权利要求1所述的燃料电池金属双极板的制备方法,其特征在于,步骤S03中,所述3D打印通过选择性激光熔化技术进行打印,操作条件如下:所述激光的频率为20-900KHz,所述激光的功率为10-500W,所述激光的光斑直径为0.1-10mm,所述激光的扫描速度为0.1-10mm/s,所述激光的扫描间距为0.1-2mm。
  7. 根据权利要求1所述的燃料电池金属双极板的制备方法,其特征在于,步骤S03中,所述3D打印通过电子束熔化成型技术进行打印,操作条件如下: 所述电子束的功率为0-4KW,所述电子束的扫描速度为0-1000m/s。
  8. 根据权利要求1所述的燃料电池金属双极板的制备方法,其特征在于,步骤S03中,所述3D打印通过直接金属激光烧结技术进行打印,操作步骤如下:使用激光束再由3D模型数据控制来局部熔化金属基体,同时烧结固化粉末金属材料并自动地层层堆叠,得到燃料电池金属双极板。
  9. 根据权利要求1所述的燃料电池金属双极板的制备方法,其特征在于,步骤S03中,所述3D打印通过电子束自由成形制造进行打印,操作步骤如下:在真空环境中,使用电子束轰击金属表面形成熔池,金属丝材通过送丝装置送入熔池并熔化,同时熔池按照预先规划的路径运动,金属材料逐层凝固堆积,形成致密的冶金结合,得到燃料电池金属双极板;或者,
    所述3D打印通过熔融沉积成型法进行打印,操作步骤如下:金属的熔丝从加热的喷嘴挤出,按照零件每一层的预定轨迹,以固定的速率进行熔体沉积,得到燃料电池金属双极板。
  10. 一种燃料电池金属双极板,由权利要求1至9任一项所述燃料电池金属双极板的制备方法制备得到。
PCT/CN2020/116340 2020-08-26 2020-09-19 一种燃料电池金属双极板及其制备方法 WO2022041351A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010868237.7A CN112103529A (zh) 2020-08-26 2020-08-26 一种燃料电池金属双极板及其制备方法
CN202010868237.7 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022041351A1 true WO2022041351A1 (zh) 2022-03-03

Family

ID=73754286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116340 WO2022041351A1 (zh) 2020-08-26 2020-09-19 一种燃料电池金属双极板及其制备方法

Country Status (2)

Country Link
CN (1) CN112103529A (zh)
WO (1) WO2022041351A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116422904A (zh) * 2023-06-15 2023-07-14 钢研昊普科技有限公司 一种铝合金动力电池壳的制备方法
CN116613338A (zh) * 2023-07-18 2023-08-18 北京新研创能科技有限公司 一种用于燃料电池双极板的生产系统及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112803054B (zh) * 2021-01-05 2021-12-14 广东省科学院新材料研究所 一种电化学反应装置及其制作方法
CN112713281A (zh) * 2021-01-13 2021-04-27 范钦柏 一种燃料电池双极板及燃料电池堆
RU2750394C1 (ru) * 2021-03-22 2021-06-28 Закрытое акционерное общество "Инновационный центр "Бирюч" (ЗАО "ИЦ "Бирюч") Блок твердооксидных топливных элементов с напечатанными на 3d-принтере керамическими каркасными пластинами и монополярной коммутацией
CN113328113B (zh) * 2021-05-28 2022-07-12 广东省科学院新材料研究所 一种固体氧化物燃料电池/电解池连接体的制备方法
CN114635149A (zh) * 2022-03-01 2022-06-17 中国电建集团城市规划设计研究院有限公司 一种双极板及其制备方法
CN114899413B (zh) * 2022-06-13 2024-01-30 中汽创智科技有限公司 一种多孔钛镍集流体及其制备方法和锂电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105537591A (zh) * 2016-01-25 2016-05-04 中南大学 一种金属3d打印装置及打印方法
CN205464328U (zh) * 2016-03-23 2016-08-17 北京科技大学 一种电烧结金属材料3d打印装置
CN106077649A (zh) * 2016-08-22 2016-11-09 合肥东方节能科技股份有限公司 一种快速成型复合硬质合金粉末成型导卫辊的方法
CN108666593A (zh) * 2017-03-28 2018-10-16 北京亿华通科技股份有限公司 燃料电池双极板的制作方法
CN208279694U (zh) * 2018-06-02 2018-12-25 南通安思卓新能源有限公司 一种基于3d打印技术的一体化电解槽双极板结构
CN110336053A (zh) * 2019-07-16 2019-10-15 中南大学 一种含流道燃料电池双极板的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937997B (zh) * 2010-09-21 2013-07-17 武汉理工大学 质子交换膜燃料电池金属双极板及其构成的单池和电堆
JP6676245B2 (ja) * 2015-12-04 2020-04-08 高雄醫學大學Kaohsiung Medical University 3dプリント物を積層造形する方法
CN109378497A (zh) * 2018-10-26 2019-02-22 成都新柯力化工科技有限公司 一种3d打印制备燃料电池极板的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105537591A (zh) * 2016-01-25 2016-05-04 中南大学 一种金属3d打印装置及打印方法
CN205464328U (zh) * 2016-03-23 2016-08-17 北京科技大学 一种电烧结金属材料3d打印装置
CN106077649A (zh) * 2016-08-22 2016-11-09 合肥东方节能科技股份有限公司 一种快速成型复合硬质合金粉末成型导卫辊的方法
CN108666593A (zh) * 2017-03-28 2018-10-16 北京亿华通科技股份有限公司 燃料电池双极板的制作方法
CN208279694U (zh) * 2018-06-02 2018-12-25 南通安思卓新能源有限公司 一种基于3d打印技术的一体化电解槽双极板结构
CN110336053A (zh) * 2019-07-16 2019-10-15 中南大学 一种含流道燃料电池双极板的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116422904A (zh) * 2023-06-15 2023-07-14 钢研昊普科技有限公司 一种铝合金动力电池壳的制备方法
CN116422904B (zh) * 2023-06-15 2023-09-01 钢研昊普科技有限公司 一种铝合金动力电池壳的制备方法
CN116613338A (zh) * 2023-07-18 2023-08-18 北京新研创能科技有限公司 一种用于燃料电池双极板的生产系统及方法
CN116613338B (zh) * 2023-07-18 2023-10-17 北京新研创能科技有限公司 一种用于燃料电池双极板的生产系统及方法

Also Published As

Publication number Publication date
CN112103529A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2022041351A1 (zh) 一种燃料电池金属双极板及其制备方法
US20220032369A1 (en) Hierarchical porous metals with deterministic 3d morphology and shape via de-alloying of 3d printed alloys
Wang et al. Recent Advances in Electrode Fabrication for Flexible Energy‐Storage Devices
Tian et al. 3D printing of cellular materials for advanced electrochemical energy storage and conversion
KR20210029275A (ko) 전기화학 전지의 다공성 수송층을 제조하는 방법
EP3388172B1 (en) Article surface finishing method
WO2011142338A1 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
CN109396434A (zh) 一种基于选区激光熔化技术制备钛合金零件的方法
JP4484105B2 (ja) 金属ガラス積層体からなる金型成形体、及びその製造方法
JPS6344820B2 (zh)
WO2008005185B1 (en) Novel fuel cells and methods of manufacturing the same
KR20230010840A (ko) 3d 프린팅에 의해 전자 부품을 제조하는 방법
CN108941552B (zh) 一种组分连续梯度变化的Ti/Ti6Al4V复合材料
CN111633306B (zh) 一种镍钛形状记忆合金零件及其制造方法
KR20210091750A (ko) 적층 제조된 내화 금속 부품, 적층 제조 방법 및 분말
JP3430166B2 (ja) 多孔質導電板
CN104476653B (zh) 一种多孔铌制件的3d打印制造方法
JP2017154951A (ja) 多孔質炭素材料の製造方法および球状の多孔質炭素材料
CN114744221A (zh) 多孔阳极层结构及其制备方法、燃料电池
CN114045535A (zh) 一种CoCrNi中熵合金制备方法
DE19730003B4 (de) Elektrisch leitfähiges Hochtemperaturbrennstoffzellenbauteil und Verwendung eines Metall-Keramik-Verbundwerkstoffs zur Herstellung eines Hochtemperaturbrennstoffzellenbauteils
CN113174615B (zh) 一种铝电解惰性阳极用金属陶瓷材料及其制备方法
CN106903303A (zh) 一种应用于选择性激光烧结技术的高强度金属粉末及其工艺
CH493271A (de) Verfahren zur Herstellung einer Platte, welche mindestens teilweise aus Raney-Metall besteht
DE69608126T2 (de) Verfahren zur herstellung von elektroden durch zerstäuben von metallschmelzen mit glas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20951019

Country of ref document: EP

Kind code of ref document: A1