WO2022041066A1 - 一种针对材料机械性能的测试方法及测试系统 - Google Patents
一种针对材料机械性能的测试方法及测试系统 Download PDFInfo
- Publication number
- WO2022041066A1 WO2022041066A1 PCT/CN2020/111870 CN2020111870W WO2022041066A1 WO 2022041066 A1 WO2022041066 A1 WO 2022041066A1 CN 2020111870 W CN2020111870 W CN 2020111870W WO 2022041066 A1 WO2022041066 A1 WO 2022041066A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- waste
- tensile test
- conveying device
- mechanical properties
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 28
- 238000010998 test method Methods 0.000 title claims abstract description 6
- 238000012360 testing method Methods 0.000 claims abstract description 118
- 239000002699 waste material Substances 0.000 claims abstract description 81
- 238000009864 tensile test Methods 0.000 claims abstract description 74
- 241000287828 Gallus gallus Species 0.000 claims abstract description 17
- 230000002068 genetic effect Effects 0.000 claims abstract description 9
- 238000005452 bending Methods 0.000 claims description 60
- 238000000034 method Methods 0.000 claims description 42
- 230000008569 process Effects 0.000 claims description 29
- 230000007246 mechanism Effects 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 11
- 238000003860 storage Methods 0.000 claims description 10
- 230000009471 action Effects 0.000 claims description 4
- 244000144992 flock Species 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 238000005457 optimization Methods 0.000 abstract description 25
- 235000013330 chicken meat Nutrition 0.000 description 14
- 238000013459 approach Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000429 assembly Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/20—Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
Definitions
- the invention relates to the field of material property detection, in particular to a test method and test system for the mechanical properties of materials.
- a standard sample is actually a "reference value” that provides one or more quantities of a substance as a “reference value” for the accuracy of other measurements. Therefore, the measurement requirements for the sample are relatively high.
- the existing methods for sample measurement usually use manual feeding, perform tensile test and bending test through a tensile machine, and then record the data, and then manually remove the waste material, and then measure the next sample.
- the detection process is mostly manual, and the work efficiency is low.
- the present invention provides a test method and test system for the mechanical properties of materials, which can effectively solve the above problems.
- the specific scheme adopted in the present invention is as follows: a method for testing the mechanical properties of materials, the control center controls the conveying device to transmit the sample to be tested to the testing station, carries out a tensile test or a bending test, and After the above work is completed, the waste is taken out through the waste take-out device; and when the tensile test or the bending test is performed, the chicken flock algorithm and the second-generation genetic hybrid algorithm are used to schedule and optimize the conveying device to improve the unit time production capacity.
- the above-mentioned method for testing the mechanical properties of materials comprises the following steps:
- step S3 Send the sample taken out in step S2 to the measuring component, measure the size of the sample and confirm the size;
- step S4 The sample after the measurement of the size described in step S3 is transferred to the tensile test assembly or the bending test assembly through the conveying device;
- step S5. After the preparation of the sample is completed, the conveying device returns to the silo described in step S1 to take the material for the second time;
- the conveying device places the sample obtained by the second reclaiming at the tensile test assembly or the bending test assembly, and repeats steps S3 to S7.
- S302. Scan the size of the sample to obtain scanning data
- step S301 If the scan data in the step S303 is consistent with the standard data, send it to the tensile test assembly through the conveying device; if the scan data in the step S303 is inconsistent with the standard data, correct the sample until the scan data is consistent with the standard data. .
- the tensile test component first reads the parameters of the experimental process
- step S602. Decompose the entire experimental process in step S601 into different experimental processes
- step S603. Read an experimental process described in step S602, and execute the experimental process;
- the tensile test assembly reads the data in the experimental process described in the step S603, and judges whether the experimental conditions are met;
- step S605. End the experimental process described in step S603 under the condition that the experimental conditions are satisfied.
- a test system for the mechanical properties of materials comprising a control cabinet, a tensile test assembly, a tensile test waste removal device, a conveying device, a bending test assembly, and a bending test waste removal device;
- control cabinet is connected with the conveying device, and is used to control the conveying device to place the sample to be tested on the tensile test assembly or the bending test assembly; at the same time, the control cabinet is respectively connected with the tensile test waste removal device and the bending test waste.
- the extraction device is electrically connected, and is used to control the tensile test waste extraction device or the bending test waste extraction device to take out the tested waste after the tensile test assembly or the bending test assembly is completed.
- the above-mentioned testing system for the mechanical properties of materials further includes a base plate; the control cabinet, the tensile test assembly and the bending test assembly are arranged on the base plate and surround the outside of the conveying device with the conveying device as the center.
- the above-mentioned test system for the mechanical properties of materials also includes a silo
- the silo includes a support frame, a storage slot provided on the support frame, a pushing member and a cylinder;
- the air cylinder is arranged on the support frame; the output end of the air cylinder is connected to one end of the pusher, and the other end of the pusher is opposite to the bottom of the storage slot; both sides of the bottom of the storage slot are provided with notches.
- the tensile test waste removal device includes an upper waste clip mechanism for gripping the waste on the side away from the ground and a lower waste clip mechanism for gripping the waste on the side close to the ground;
- the upper waste clip mechanism includes an upper motor arranged on the tensile test assembly, an upper rocker arm arranged on the output end of the upper motor, an upper clip body, and an upper part for driving the upper clip body to clamp waste.
- the output end of the upper motor is connected to one end of the upper rocker arm; the other end of the upper rocker arm is connected to the upper clamping body, for driving the upper clamping body to approach/away from the waste material through the upper motor;
- the lower waste clip mechanism includes a lower rocker arm, a lower motor, a lower clip body and a lower cylinder for driving the lower clip body to perform clamping action; wherein, the output end of the lower motor is connected to one end of the lower rocker arm, The other end of the lower rocker arm is connected to the lower clamping body, and the lower clamping body is driven by the lower motor to approach/away from the waste material.
- the bending test waste removal device includes a jack-up cylinder, an inclined guide plate and a waste box;
- the lifting cylinder is arranged on one side of the mold for placing the sample to be tested; the inclined guide plate is arranged obliquely at the output end of the lifting cylinder; Below the sample; the end of the inclined guide plate close to the horizontal plane is set above the waste box.
- test system for the mechanical properties of materials also includes guardrails
- the guardrail is arranged on the bottom plate and is located outside the control cabinet, the tensile test assembly, the conveying device and the bending test assembly.
- the method described in the present invention transfers the sample to be tested to the test station by controlling the conveying device in the control center, performs tensile test or bending test, and after completing the above work, takes out the waste material through the waste material extraction device; and During the tensile test or bending test, the scheduling optimization of the conveying device is carried out to increase the capacity per unit time, thereby improving the test efficiency.
- the system of the present invention completes the tensile testing, bending testing and waste removal work of the sample through the tensile testing assembly, the tensile testing waste removal device and the bending test assembly, and the bending testing waste removal device, which can replace the Manual to improve accuracy.
- FIG. 1 is a flow chart of the present invention.
- Figure 2 is a flow chart of sample size measurement in the present invention.
- Fig. 3 is the flow chart of the test in the present invention.
- FIG. 4 is a schematic perspective view of the testing system according to the present invention.
- FIG. 5 is a top view of FIG. 4 .
- FIG. 6 is a schematic structural diagram of a tensile test assembly and a tensile test waste removal device.
- FIG. 7 is a schematic structural diagram of a bending test assembly and a bending test waste removal device.
- FIG. 8 is a schematic diagram of the structure of the silo.
- the control center controls the conveying device to transfer the sample to be tested to the testing station, and conducts a tensile test or a bending test, And after the above work is completed, the waste is taken out through the waste take-out device; and when the tensile test or bending test is performed, the chicken flock algorithm and the second-generation genetic hybrid algorithm are used to schedule and optimize the conveying device to improve the unit time production capacity. Fully replace manual feeding and measurement, realize full automation, and improve measurement accuracy and measurement efficiency.
- a test method for the mechanical properties of materials includes the following steps:
- step S3 Send the sample taken out in step S2 to the measuring component, measure the size of the sample and confirm the size;
- the sample barcode of the sample is read through a handheld barcode scanner or barcode scanning device, and the sample size data corresponding to the above-mentioned sample barcode is read through the database to obtain the standard data;
- S302. Scan the size of the sample through the scanning device to obtain scanning data
- step S301 If the scan data in the step S303 is consistent with the standard data, send it to the tensile test assembly or the bending test assembly through the conveying device; if the scan data in the step S303 is inconsistent with the standard data, correct the sample, such as replacing the test sample until the scanned data is consistent with the standard data;
- step S4 The sample after the measurement of the size described in step S3 is transferred to the tensile test assembly or the bending test assembly through the conveying device;
- step S5 After the sample preparation is completed, the conveying device returns to the silo described in step S1 to take the material for the second time;
- the tensile test component or the bending test component starts the test to test the strength of the sample
- the tensile test and the bending test can be carried out by way of task decomposition. Specifically, the specific process of the tensile test in the S6 step is:
- the tensile test component first reads the parameters of the experimental process
- step S602. Decompose the entire experimental process in step S601 into different experimental processes
- step S603. Read an experimental process described in step S602, and execute the experimental process;
- the tensile test component reads the data in the experimental process described in step S603, and judges whether the experimental conditions are met;
- step S605. Under the condition that the experimental conditions are met, end the experimental process described in step S603;
- the conveying device places the sample obtained from the second reclaiming at the measuring assembly, and repeats steps S3 to S7.
- the scanning device may be a measuring device formed by a laser sensor or a CCD vision measurement system.
- the described use of the chicken flock algorithm and the second-generation genetic hybrid algorithm to schedule and optimize the conveying device specifically refers to the following content.
- the production scheduling problem mainly includes three factors, namely constraints, optimization objectives and optimization algorithms. To solve the production scheduling optimization problem, it is first necessary to establish a production scheduling model, and then use an optimization algorithm to optimize the production scheduling model.
- an optimization method is found to match the equivalent testing time of the testing machine and the loading and unloading time of the manipulator by establishing an optimization model. , in order to improve the test efficiency.
- the optimization objective also considers the deviation between the test time of the sample and the total delivery time of the manipulator. Incoming samples caused the testing machine to wait for the manipulator or the manipulator to wait for the testing machine.
- an optimization method of matching the equivalent test time of the testing machine and the loading and unloading time of the manipulator was found to improve the test efficiency.
- the difference between the equivalent test time of the testing machine and the loading and unloading time of the manipulator is minimized through the combination of samples, so as to improve the efficiency.
- the remaining equivalent test time of a single sample and the manipulator equivalent delivery time information will be used to establish an optimization model for the production scheduling problem.
- Chicken swarm algorithm is a new swarm intelligence global optimization algorithm that integrates the optimization characteristics of genetic algorithm, particle swarm algorithm and bat algorithm, and simulates the life law of chicken swarm.
- the advantages of subgroup cooperative search, etc. have been widely used to solve a variety of practical problems. It simulates the hierarchy of chickens and the behavior of chickens, which is realized according to the behavior of different chickens following different movement laws, hierarchy of chickens, competition between chickens, hens hatching offspring, and chicks growing into roosters or hens. Swarm optimization algorithm.
- NSGA-II is a genetic algorithm for solving multi-objective optimization problems based on Pareto sorting.
- NSGA-II has been widely used in multi-objective optimization problems, and has achieved good practical engineering application results.
- the invention applies NSGA-II to solve the optimization of the production scheduling problem, adopts the multi-point parallel search method to carry out the optimization of the problem, and does not carry out detailed search in the local scope, the method adopts the NSGA-II mixed tabu search algorithm Tabu Search, TS and NSGA-II mixed variable neighborhood search Variable Neighborhood Search, VNS two mixed algorithms to solve the production scheduling problem of tissue paper enterprises.
- NSGA-II conducts a large-scale preliminary search, and then TS or VNS conducts a local search based on the NSGA-II search.
- the hybrid algorithm of NSGA-II and TS or VNS can improve the convergence speed of the algorithm and the quality of the solution. .
- the calculation formula of the individual fitness of the NSGA-II algorithm and the chicken swarm algorithm based on the mixed coding scheme is constructed.
- the form is as follows:
- u, v and w A factor introduced for numerical calculation stability, when all testing machines stop working, u, v and w are equal to 0, otherwise u, v and w are equal to 1;
- ⁇ is a very small number;
- the specific implementation process of solving the optimization problem is to set the population size and the maximum number of iterations of the algorithm; initialize the random number to construct an individual based on the mixed coding scheme; calculate the fitness of the individual according to the fitness calculation formula; sort the individual fitness and record Optimal individual; hierarchical cluster population and update individual position based on improved algorithm; randomly select a small number of individuals with poor fitness and mutate their solution space; loop iteration until the maximum number of iterations; decode the optimal individual output bin location and The tester pairing information instructs the manipulator to deliver the sample.
- the present invention provides a test system for the mechanical properties of materials, including a control cabinet 1, a tensile test assembly 2, a tensile test waste removal device 3, a transport device 4, and a bending test assembly 5, Bending test waste removal device 6, silo 7, guardrail 8, bottom plate 9;
- the guardrail 8 is arranged on the bottom plate 9 and is located outside the control cabinet 1, the tensile test assembly 2, the conveying device 4 and the bending test assembly 5;
- control cabinet 1 is connected to the conveying device 4 for controlling the conveying device 4 to place the sample to be tested on the tensile test assembly 2 or the bending test assembly 5; at the same time, the control cabinet 1 is respectively connected with the tensile test waste
- the removal device 3 and the bending test waste removal device 6 are electrically connected to control the tensile test waste removal device 3 or the bending test waste removal device 6 after the tensile test assembly 2 or the bending test assembly 5 is completed. Waste removal.
- Specific embodiment 1 as shown in Fig. 5, in order to improve work efficiency, 1 control cabinet 1, 2 tensile test assemblies 2, 3 bending test assemblies 5, and silo 7 are arranged on the bottom plate 9; The test assembly 2 , the bending test assembly 5 , and the silo 7 surround the outside of the conveying device 4 with the conveying device 4 as the center, so that the conveying device 4 is convenient to work.
- the tensile test assembly 2 includes a first portal bracket 201 , a beam 202 arranged on the first portal bracket 201 , an upper tensile die 203 arranged in the middle of the beam 202 , and an upper tensile die 203 arranged on the first door.
- the lower stretching die 204 at the bottom of the type bracket 201; wherein, the upper stretching die 203 and the lower stretching die 204 are used to clamp the sample to be tested, and the beam 202 moves up and down in the first portal type bracket 201 to complete the stretching experiment .
- the tensile test waste removal device 3 includes an upper waste clip mechanism 301 for gripping wastes on the side away from the ground and a lower waste clip mechanism 302 for gripping wastes on the side close to the ground; wherein, the upper waste The clamping mechanism 301 includes an upper motor 3011 arranged on the beam 202, an upper rocker arm 3012 arranged on the output end of the upper motor 3011, an upper clamping body 3014, and an upper air cylinder 3013 for driving the upper clamping body 3014 to clamp waste; The output end of the upper motor 3011 is connected to one end of the upper rocker arm 3012; the other end of the upper rocker arm 3012 is connected to the upper clamping body 3014 for driving the upper clamping body 3014 to approach/away from the waste material through the upper motor 3011; the lower The waste clamping mechanism 302 includes a lower rocker arm 3021, a lower motor 3022, a lower clamping body 3023, and a lower cylinder 3024 for driving the lower clamping body 3023 to perform clamping action; where
- a chute 3A and a first waste box 3B are provided at the bottom of the first portal frame 201 for placing discarded samples.
- the bending test assembly 5 includes a second portal support 501 , a movable beam 502 disposed in the second portal support 501 and capable of moving up and down, a pressing member 503 disposed on the moving beam 502 , and A lower mold 504 at the bottom of the second portal frame 501 matched with the lower pressing piece 503 for placing the sample to be tested.
- the bending test waste removal device 6 includes a lifting cylinder 601, an inclined guide plate 602 and a waste box 603; wherein, the lifting cylinder 601 is arranged on one side of the mold for placing the sample to be tested; the The inclined guide plate 602 is inclined and arranged at the output end of the jacking cylinder 601; the end of the inclined guide plate 602 away from the horizontal plane is arranged below the sample to be tested; above.
- the silo 7 includes a support frame 701, a storage slot 702 provided on the support frame 701, a pushing member 703 and a cylinder 704; wherein, the cylinder 704 is set on the support frame 701; the cylinder 704 The output end is connected to one end of the pushing member 703, and the other end of the pushing member 703 is facing the bottom of the storage slot 702; the bottom of the storage slot 702 is provided with a gap 702A on both sides.
- the storage slot 702 can be set in different sizes according to requirements, and it only needs to be matched with the sample, so that the sample can move downward in the storage slot 702 by gravity without tilting.
- the pusher 703 and the notch 702A are all matched with the sample, and can be pushed out under the action of the air cylinder 704 .
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
一种针对材料机械性能的测试方法及测试系统,通过控制中心控制运送装置(4)将待测试样传输至测试工位上,进行拉伸测试或弯曲测试,并在完成上述工作后,通过废料取出装置将废料取出;并且在进行拉伸测试或弯曲测试时,采用鸡群算法与遗传二代混合算法对运送装置(4)进行调度优化,以提升单位时间产能,从而提升测试效率。
Description
本发明涉及材料性能检测领域,尤其涉及一种针对材料机械性能的测试方法及测试系统。
标准试样实际上就是对物质提供一个或多个量值作为其他测量值是否准确的"参照值"。所以,对于试样的测量要求较高。
现有的针对试样测量的手段通常采用人工上料,通过拉伸机进行拉伸测试和弯曲测试,然后记录其数据,再进行人工将废料去掉,然后进行下一个试样的测量。检测过程多依靠人工,工作效率低下。
发明内容
为了解决现有技术中过于依靠人工上料而造成的工作效率低下的问题,本发明提供一种针对材料机械性能的测试方法及测试系统,能够有效解决上述问题。
为了实现上述目的,本发明采用的具体方案为:一种针对材料机械性能的测试方法,通过控制中心控制运送装置将待测试样传输至测试工位上,进行拉伸测试或弯曲测试,并在完成上述工作后,通过废料取出装置将废料取出;并且在进行拉伸测试或弯曲测试时,采用鸡群算法与遗传二代混合算法对运送装置进行调度优化,以提升单位时间产能。
上述的一种针对材料机械性能的测试方法,包括以下步骤:
S1.将待测试样放置在料仓内;
S2.通过运送装置将料仓内的试样取出;
S3.将S2步骤取出的试样送至测量组件处,进行试样尺寸测量并进行尺寸确认;
S4.将S3步骤所述的测量尺寸后的试样通过运送装置传送至拉伸测试组件处或弯曲测试组件处;
S5.试样准备完毕后,运送装置回到S1步骤所述的料仓处进行第二次取料;
S6.开始拉伸测试或者开始弯曲实验;
S7.通过拉伸测试废料取出装置或弯曲测试废料取出装置取出废料;
S8.运送装置将第二次取料获得的试样放置在拉伸测试组件处或弯曲测试组件处,重复S3~S7步骤。
所述的S3步骤的具体过程是:
S301.通过运送装置将试样从料仓内取出后,读取试样的试样条码,通过数据库读取上述试样条码对应的试样尺寸数据,得到标准数据;
S302.扫描试样的尺寸,得到扫描数据;
S303.将S302步骤获得的扫描数据与S301步骤中的标准数据进行对比;
S301.如果S303步骤中的扫描数据与标准数据一致,则通过运送装置传送至拉伸测试组件处;如果S303步骤中的扫描数据与标准数据不一致,则矫正试样,直到扫描数据与标准数据一致。
所述的S6步骤的具体过程是:
S601.拉伸测试组件首先读取实验过程的参数;
S602.将S601步骤中的整个实验过程分解为不同的实验过程;
S603.读取S602步骤所述的一个实验过程,并执行该实验过程;
S604.拉伸测试组件读取S603步骤所述的实验过程中的数据,并判断是 否满足实验条件;
S605.在满足实验条件的条件下,结束S603步骤所述的实验过程。
一种针对材料机械性能的测试系统,包括控制柜、拉伸测试组件、拉伸测试废料取出装置、运送装置以及弯曲测试组件、弯曲测试废料取出装置;
其中,所述的控制柜与运送装置连接,用于控制运送装置将待测试试样放置在拉伸测试组件或弯曲测试组件上;同时,控制柜分别与拉伸测试废料取出装置、弯曲测试废料取出装置电性连接,用于在拉伸测试组件或弯曲测试组件工作完毕后,控制拉伸测试废料取出装置或弯曲测试废料取出装置将测试后的废料取出。
上述的一种针对材料机械性能的测试系统,还包括底板;所述的控制柜、拉伸测试组件以及弯曲测试组件设置在底板上并以运送装置为圆心环绕在运送装置外侧。
上述的一种针对材料机械性能的测试系统,还包括料仓;
其中,所述的料仓包括支撑架、设置在支撑架上的置物槽、推料件以及气缸;
其中,所述的气缸设置在支撑架上;气缸的输出端连接推料件的一端,推料件的另一端正对置物槽的底部;该置物槽的底部两侧均设置有缺口。
所述的拉伸测试废料取出装置包括用于夹取远离地面一侧废料的上废料夹机构和用于夹取靠近地面一侧废料的下废料夹机构;
其中,所述的上废料夹机构包括设置在拉伸测试组件上的上部电机、设置在上部电机输出端上的上部摇臂、上部夹体以及用于驱动上部夹体作夹持废料动作的上部气缸;所述的上部电机的输出端连接上部摇臂的一端;上部摇臂的另一端连接上部夹体,用于通过上部电机驱动上部夹体靠近/远离废料;
所述的下废料夹机构包括下部摇臂、下部电机、下部夹体以及用于驱动下部夹体作夹持动作的下部气缸;其中,所述的下部电机的输出端连接下部摇臂的一端,下部摇臂的另一端连接下部夹体,通过下部电机驱动下部夹体靠近/远离废料。
所述的弯曲测试废料取出装置包括顶升气缸、倾斜导向板以及废料盒;
其中,所述的顶升气缸设置在用于放置待测试样的模具的一侧;所述的倾斜导向板倾斜设置在顶升气缸的输出端;倾斜导向板远离水平面的一端设置在待测试样的下方;倾斜导向板靠近水平面的一端设置在废料盒的上方。
上述的一种针对材料机械性能的测试系统,还包括护栏;
所述的护栏设置在底板上且位于控制柜、拉伸测试组件、运送装置以及弯曲测试组件的外侧。
有益效果:本发明所述方法通过控制中心控制运送装置将待测试样传输至测试工位上,进行拉伸测试或弯曲测试,并在完成上述工作后,通过废料取出装置将废料取出;并且在进行拉伸测试或弯曲测试时,对运送装置进行调度优化,以提升单位时间产能,从而提升测试效率。
本发明所述的系统通过拉伸测试组件、拉伸测试废料取出装置以及弯曲测试组件、弯曲测试废料取出装置完成对试样的拉伸检测、弯曲检测和检测完毕后的废料清除工作,可以代替人工,提升准确性。
图1为本发明的流程图。
图2为本发明中试样尺寸测量的流程图。
图3为本发明中测试的流程图。
图4为本发明所述的测试系统的立体示意图。
图5为图4的俯视图。
图6为拉伸测试组件、拉伸测试废料取出装置的结构示意图。
图7为弯曲测试组件、弯曲测试废料取出装置的结构示意图。
图8为料仓的结构示意图。
其中,1.控制柜;2.拉伸测试组件;3.拉伸测试废料取出装置;4.运送装置;5.弯曲测试组件;6.弯曲测试废料取出装置;7.料仓;8.护栏;9.底板;301.上废料夹机构;302.下废料夹机构;3011.上部电机;3012.上部摇臂;3013.上部气缸;3014.上部夹体;3021.下部摇臂;3022.下部电机;3023.下部夹体;3024.下部气缸;601.顶升气缸;602.倾斜导向板;603.废料盒;701.支撑架;702.置物槽;703.推料件;704.气缸;702A.缺口。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
总的来说,如图1,本发明所述的一种针对材料机械性能的测试方法,通过控制中心控制运送装置将待测试样传输至测试工位上,进行拉伸测试或弯曲测试,并在完成上述工作后,通过废料取出装置将废料取出;并且在进行拉伸测试或弯曲测试时,采用鸡群算法与遗传二代混合算法对运送装置进行调度优化,以提升单位时间产能,从而全面替代人工上料和测量,实现全面自动化,提升测量准确性和测量效率。
具体的,如图3,一种针对材料机械性能的测试方法,包括以下步骤:
S1.将待测试样放置在料仓内;
S2.通过运送装置将料仓内的试样取出;
S3.将S2步骤取出的试样送至测量组件处,进行试样尺寸测量并进行尺寸确认;
如图2,所述的S3步骤的具体过程是:
S301.通过运送装置将试样从料仓内取出后,通过手持扫码器或扫码装置读取试样的试样条码,通过数据库读取上述试样条码对应的试样尺寸数据,得到标准数据;
S302.通过扫描装置扫描试样的尺寸,得到扫描数据;
S303.将S302步骤获得的扫描数据与S301步骤中的标准数据进行对比;
S301.如果S303步骤中的扫描数据与标准数据一致,则通过运送装置传送至拉伸测试组件或弯曲测试组件处;如果S303步骤中的扫描数据与标准数据不一致,则矫正试样,如替换试样,直到扫描数据与标准数据一致;
S4.将S3步骤所述的测量尺寸后的试样通过运送装置传送至拉伸测试组件或弯曲测试组件;
S5.待试样准备完毕,运送装置回到S1步骤所述的料仓处进行第二次取料;
S6.拉伸测试组件或弯曲测试组件开始测试,测试试样的强度;
可通过任务分解的方式进行拉伸测试和弯曲测试,具体的,所述的S6步骤中的拉伸测试的具体过程是:
S601.拉伸测试组件首先读取实验过程的参数;
S602.将S601步骤中的整个实验过程分解为不同的实验过程;
S603.读取S602步骤所述的一个实验过程,并执行该实验过程;
S604.拉伸测试组件读取S603步骤所述的实验过程中的数据,并判断是否满足实验条件;
S605.在满足实验条件的条件下,结束S603步骤所述的实验过程;
S7.通过拉伸测试废料取出装置取出废料;
S8.运送装置将第二次取料获得的试样放置在测量组件处,重复S3~S7步骤。
需要明确的是:弯曲测试的过程可以与拉伸测试的过程一致。
需要明确的是:所述的扫描装置可以是通过激光传感器构成的或CCD视觉测量系统构成的测量装置。
对于本发明而言,所述的采用鸡群算法与遗传二代混合算法对运送装置进行调度优化具体是指以下内容。
生产调度问题主要包括三个因素,分别为约束条件、优化目标和优化算法。解决生产调度优化问题首先需要建立生产调度模型,然后采用优化算法对生产调度模型进行优化。
为了避免因无序无规律不定时的试样来料,导致出现试验机等待机械手或机械手等待试验机的情况,通过建立优化模型寻求试验机等效试验时间与机械手上下料时间相互匹配的优化方法,以提高试验效率。
由于单件测试时间存在小于总的运送装置配送时间的情况,如机械手的配送时间,优化目标同时考虑试样测试时间与机械手总配送时间的离差,为了避免因无序无规律不定时的试样来料,导致出现试验机等待机械手或机械手等待试验机的情况,通过建立优化模型寻求试验机等效试验时间与机械手上下料时间相互匹配的优化方法,以提高试验效率。
为了使得试验机等效试验时间与机械手上下料时间尽可能的匹配,通过试样组合最小化试验机等效试验时间与机械手上下料时间的差值,达到提高效率的目的。
考虑机械手组合调度的复杂性,单件试样的剩余等效试验时间与机械手等效配送时间信息将被用于建立生产调度问题的优化模型。
鸡群算法是一种集成了遗传算法、粒子群算法和蝙蝠算法等的优化特性,模拟鸡群生活规律抽象化得出的一种新的群智能全局优化算法,具有强的自适应能力和多子群协同搜索等优点,已被广泛用解决多种实际问题。它模拟了鸡群等级制度和鸡群行为,根据不同鸡遵循不同移动规律、鸡群的等级制度、鸡群间的竞争、母鸡孵化后代以及小鸡成长为公鸡或母鸡等行为而实现的群智优化算法。
快速非支配排序遗传算法A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization:NSGA-II,NSGA-II是一个基于Pareto排序的解决多目标优化问题的遗传算法。NSGA-II已经广泛应用于多目标优化问题,并且取得了很好的实际工程应用效果。本发明将NSGA-II应用于求解生产调度问题的优化,采用多点并行搜索的方式进行问题的寻优,在局部范围没有进行详细的搜索,本方法采用NSGA-II混合禁忌搜索算法Tabu Search,TS以及NSGA-II混合变邻域搜索Variable Neighborhood Search,VNS两种混合算法求解生活用纸企业的生产调度问题。首先NSGA-II进行大范围的初步搜索,然后TS或者VNS在NSGA-II的搜索基础上进一步的在局部范围进行搜索,NSGA-II和TS或VNS的混合算法能提高算法的收敛速度和解的质量。为了保持鸡群算法优秀的进化机制和充分利用鸡群算法和NSGA-II算法的出色优化特性,一种基于混合编码方案的NSGA-II算法和鸡群算法将被用于求解生产调度问题优化模型。
综合考虑优化问题的目标函数、拉伸测试机与弯曲试样互斥以及弯曲测试机与拉伸试样互斥,基于混合编码方案的NSGA-II算法和鸡群算法的个体适 应度计算式构造形式如下:
其中,式中,f是个体的适应度;M
1是拉伸测试机总台数;M
2是弯曲测试机总台数;M是测试机总台数;A
it(i=1,2,…,M
1)为第i(i=1,2,…,M
1)台拉伸测试机对试样试验的预定时间;B
it(i=1,2,…,M
1)为第i(i=1,2,…,M
1)台拉伸测试机对工件试验的已使用时间;Q
jt(j=1,2,…,M
2)为第j(j=1,2,…,M
2)台弯曲测试机对试样试验的预定时间;P
jt(j=1,2,…,M
2)为第i(i=1,2,…,M
2)台弯曲测试机对试样试验的已使用时间;S
it(i=1,2,…,M)为机械手单次给第i(i=1,2,…,M)台测试机配送所需要的时间;u、v和w为了数值计算稳定而引入的因子,当所有测试机停止工作时,u、v和w等于0,否则u、v和w等于1;ε是一个很小的数;q是测试机与试样互斥的惩罚因子,当存在拉伸试样被配选到弯曲测试机或者弯曲试样被配选到拉伸测试机的情况时q=0,否则q=1。优化问题求解的具体实现过程是设置种群大小和算法的最大迭代次数;基于混合编码方案将随机数初始化二元组来构建个体;根据适应度计算式计算个体的适应度;排序个体适应度并记录最优个体;等级化集群种群并基于改进算法更新个体位置;随机选取一小部分适应度较差的个体并变异其解空间;循环迭代直到最大迭代次数为止;解码最优个体输出料仓仓位与测试机配 对信息指导机械手配送试样。
为了实现上述方法,如图4,本发明提供一种针对材料机械性能的测试系统,包括控制柜1、拉伸测试组件2、拉伸测试废料取出装置3、运送装置4以及弯曲测试组件5、弯曲测试废料取出装置6、料仓7、护栏8、底板9;
其中,所述的护栏8设置在底板9上且位于控制柜1、拉伸测试组件2、运送装置4以及弯曲测试组件5的外侧;
其中,所述的控制柜1与运送装置4连接,用于控制运送装置4将待测试试样放置在拉伸测试组件2或弯曲测试组件5上;同时,控制柜1分别与拉伸测试废料取出装置3、弯曲测试废料取出装置6电性连接,用于在拉伸测试组件2或弯曲测试组件5工作完毕后,控制拉伸测试废料取出装置3或弯曲测试废料取出装置6将测试后的废料取出。
具体实施例I:如图5,为了提升工作效率,设置1个控制柜1、2个拉伸测试组件2、3个弯曲测试组件5、料仓7设置在底板9上;所述的拉伸测试组件2、弯曲测试组件5、料仓7以运送装置4为圆心环绕在运送装置4外侧,方便运送装置4工作。
如图6,所述的拉伸测试组件2包括第一门型支架201、设置在第一门型支架201上的横梁202、设置在横梁202中部的上拉伸模具203、设置在第一门型支架201底部的下拉伸模具204;其中,上拉伸模具203、下拉伸模具204用于夹紧待测试样,横梁202在第一门型支架201内上下移动,完成拉伸实验。
所述的拉伸测试废料取出装置3包括用于夹取远离地面一侧废料的上废料夹机构301和用于夹取靠近地面一侧废料的下废料夹机构302;其中,所述的上废料夹机构301包括设置在横梁202上的上部电机3011、设置在上部电机3011输出端上的上部摇臂3012、上部夹体3014以及用于驱动上部夹体3014作夹持 废料动作的上部气缸3013;所述的上部电机3011的输出端连接上部摇臂3012的一端;上部摇臂3012的另一端连接上部夹体3014,用于通过上部电机3011驱动上部夹体3014靠近/远离废料;所述的下废料夹机构302包括下部摇臂3021、下部电机3022、下部夹体3023以及用于驱动下部夹体3023作夹持动作的下部气缸3024;其中,所述的下部电机3022的输出端连接下部摇臂3021的一端,下部摇臂3021的另一端连接下部夹体3023,通过下部电机3022驱动下部夹体3023靠近/远离废料。上部电机3011、上部气缸3013、下部电机3022、下部气缸3024均与控制柜1电性连接。
同时,在第一门型支架201的底部设置有滑槽3A和第一废料箱3B,用于放置废弃的试样。
如图7,所述的弯曲测试组件5包括第二门型支架501、设置在第二门型支架501内的能够上下移动的移动梁502、设置在移动梁502上的下压件503以及设置在第二门型支架501底部的与下压件503匹配的用于放置待测试样的下模具504。
所述的弯曲测试废料取出装置6包括顶升气缸601、倾斜导向板602以及废料盒603;其中,所述的顶升气缸601设置在用于放置待测试样的模具的一侧;所述的倾斜导向板602倾斜设置在顶升气缸601的输出端;倾斜导向板602远离水平面的一端设置在用于放置待测试样的下方;倾斜导向板602靠近水平面的一端设置在废料盒603的上方。
如图8,所述的料仓7包括支撑架701、设置在支撑架701上的置物槽702、推料件703以及气缸704;其中,所述的气缸704设置在支撑架701上;气缸704的输出端连接推料件703的一端,推料件703的另一端正对置物槽702的底部;该置物槽702的底部两侧均设置有缺口702A。
需要明确的是:所述的置物槽702可以根据需求设置不同尺寸,与试样匹配即可,使试样能够通过重力在置物槽702内向下运动而不发生倾斜。所述的推料件703、缺口702A均与试样匹配,能够满足在气缸704的作用下推出即可。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易变化或替换,都属于本发明的保护范围之内。因此本发明的保护范围所述以权利要求的保护范围为准。
Claims (10)
- 一种针对材料机械性能的测试方法,其特征在于:通过控制中心控制运送装置将待测试样传输至测试工位上,进行拉伸测试或弯曲测试,并在完成上述工作后,通过废料取出装置将废料取出;并且在进行拉伸测试或弯曲测试时,采用鸡群算法与遗传二代混合算法对运送装置进行调度优化,以提升单位时间产能。
- 根据权利要求1所述的一种针对材料机械性能的测试方法,其特征在于:包括以下步骤:S1.将待测试样放置在料仓内;S2.通过运送装置将料仓内的试样取出;S3.将S2步骤取出的试样送至测量组件处,进行试样尺寸测量并进行尺寸确认;S4.将S3步骤所述的测量尺寸后的试样通过运送装置传送至拉伸测试组件处或弯曲测试组件处;S5.试样准备完毕后,运送装置回到S1步骤所述的料仓处进行第二次取料;S6.开始拉伸测试或者开始弯曲实验;S7.通过拉伸测试废料取出装置或弯曲测试废料取出装置取出废料;S8.运送装置将第二次取料获得的试样放置在拉伸测试组件处或弯曲测试组件处,重复S3~S7步骤。
- 根据权利要求2所述的一种针对材料机械性能的测试方法,其特征在于:所述的S3步骤的具体过程是:S301.通过运送装置将试样从料仓内取出后,读取试样的试样条码,通过数据库读取上述试样条码对应的试样尺寸数据,得到标准数据;S302.扫描试样的尺寸,得到扫描数据;S303.将S302步骤获得的扫描数据与S301步骤中的标准数据进行对比;S301.如果S303步骤中的扫描数据与标准数据一致,则通过运送装置传送至拉伸测试组件处;如果S303步骤中的扫描数据与标准数据不一致,则矫正试样,直到扫描数据与标准数据一致。
- 根据权利要求2所述的一种针对材料机械性能的测试方法,其特征在于:所述的S6步骤的具体过程是:S601.拉伸测试组件首先读取实验过程的参数;S602.将S601步骤中的整个实验过程分解为不同的实验过程;S603.读取S602步骤所述的一个实验过程,并执行该实验过程;S604.拉伸测试组件读取S603步骤所述的实验过程中的数据,并判断是否满足实验条件;S605.在满足实验条件的条件下,结束S603步骤所述的实验过程。
- 一种针对材料机械性能的测试系统,其特征在于:包括控制柜(1)、拉伸测试组件(2)、拉伸测试废料取出装置(3)、运送装置(4)以及弯曲测试组件(5)、弯曲测试废料取出装置(6);其中,所述的控制柜(1)与运送装置(4)连接,用于控制运送装置(4)将待测试试样放置在拉伸测试组件(2)或弯曲测试组件(5)上;同时,控制柜(1)分别与拉伸测试废料取出装置(3)、弯曲测试废料取出装置(6)电性连接,用于在拉伸测试组件(2)或弯曲测试组件(5)工作完毕后,控制拉伸测试废料取出装置(3)或弯曲测试废料取出装置(6)将测试后的废料取出。
- 根据权利要求5所述的一种针对材料机械性能的测试系统,其特征在于:还包括底板(9);所述的控制柜(1)、拉伸测试组件(2)以及弯曲测试组件(5)设置在底板(9)上并以运送装置(4)为圆心环绕在运送装置(4)外侧。
- 根据权利要求5或6所述的一种针对材料机械性能的测试系统,其特征在于: 还包括料仓(7);其中,所述的料仓(7)包括支撑架(701)、设置在支撑架(701)上的置物槽(702)、推料件(703)以及气缸(704);其中,所述的气缸(704)设置在支撑架(701)上;气缸(704)的输出端连接推料件(703)的一端,推料件(703)的另一端正对置物槽(702)的底部;该置物槽(702)的底部两侧均设置有缺口(702A)。
- 根据权利要求5所述的一种针对材料机械性能的测试系统,其特征在于:所述的拉伸测试废料取出装置(3)包括用于夹取远离地面一侧废料的上废料夹机构(301)和用于夹取靠近地面一侧废料的下废料夹机构(302);其中,所述的上废料夹机构(301)包括设置在拉伸测试组件(2)上的上部电机(3011)、设置在上部电机(3011)输出端上的上部摇臂(3012)、上部夹体(3014)以及用于驱动上部夹体(3014)作夹持废料动作的上部气缸(3013);所述的上部电机(3011)的输出端连接上部摇臂(3012)的一端;上部摇臂(3012)的另一端连接上部夹体(3014),用于通过上部电机(3011)驱动上部夹体(3014)靠近/远离废料;所述的下废料夹机构(302)包括下部摇臂(3021)、下部电机(3022)、下部夹体(3023)以及用于驱动下部夹体(3023)作夹持动作的下部气缸(3024);其中,所述的下部电机(3022)的输出端连接下部摇臂(3021)的一端,下部摇臂(3021)的另一端连接下部夹体(3023),通过下部电机(3022)驱动下部夹体(3023)靠近/远离废料。
- 根据权利要求5所述的一种针对材料机械性能的测试系统,其特征在于:所述的弯曲测试废料取出装置(6)包括顶升气缸(601)、倾斜导向板(602)以及废料盒(603);其中,所述的顶升气缸(601)设置在用于放置待测试样的模具的一侧;所述的倾斜导向板(602)倾斜设置在顶升气缸(601)的输出端;倾斜导向板(602)远离水平面的一端设置在待测试样的下方;倾斜导向板(602)靠近水平面的一端设置在废料盒(603)的上方。
- 根据权利要求6所述的一种针对材料机械性能的测试系统,其特征在于:还包括护栏(8);所述的护栏(8)设置在底板(9)上且位于控制柜(1)、拉伸测试组件(2)、运送装置(4)以及弯曲测试组件(5)的外侧。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/111870 WO2022041066A1 (zh) | 2020-08-27 | 2020-08-27 | 一种针对材料机械性能的测试方法及测试系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/111870 WO2022041066A1 (zh) | 2020-08-27 | 2020-08-27 | 一种针对材料机械性能的测试方法及测试系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022041066A1 true WO2022041066A1 (zh) | 2022-03-03 |
Family
ID=80352334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/111870 WO2022041066A1 (zh) | 2020-08-27 | 2020-08-27 | 一种针对材料机械性能的测试方法及测试系统 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022041066A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114952889A (zh) * | 2022-06-03 | 2022-08-30 | 济南天辰试验机制造有限公司 | 基于机械手的试样截面尺寸测量方法 |
CN116046525A (zh) * | 2023-02-08 | 2023-05-02 | 江苏汇丰远土木工程有限公司 | 一种材料试验机自动加卸载控制装置 |
CN117990538A (zh) * | 2024-03-19 | 2024-05-07 | 天津威尔德新材料科技有限公司 | 一种硬度检测系统及硬度检测方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101216389A (zh) * | 2007-12-27 | 2008-07-09 | 江苏大学 | 农业物料力学特性试验装置及方法 |
CN104880949A (zh) * | 2015-05-27 | 2015-09-02 | 江南大学 | 基于改进鸡群算法获得工件加工最优调度的方法 |
CN107941624A (zh) * | 2017-12-13 | 2018-04-20 | 吉林大学 | 高温高频材料力学性能原位测试装置 |
JP2019137864A (ja) * | 2018-02-13 | 2019-08-22 | 大日本印刷株式会社 | ポリイミドフィルム、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置 |
CN110569589A (zh) * | 2019-08-30 | 2019-12-13 | 西南交通大学 | 过道布置方法 |
CN110579404A (zh) * | 2019-09-12 | 2019-12-17 | 吉林大学 | 高温复杂机械载荷下材料力学性能原位测试仪器与方法 |
CN110940918A (zh) * | 2019-12-13 | 2020-03-31 | 吴江市金澜机械制造有限公司 | 一种发电机定子电性能自动检测装置 |
-
2020
- 2020-08-27 WO PCT/CN2020/111870 patent/WO2022041066A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101216389A (zh) * | 2007-12-27 | 2008-07-09 | 江苏大学 | 农业物料力学特性试验装置及方法 |
CN104880949A (zh) * | 2015-05-27 | 2015-09-02 | 江南大学 | 基于改进鸡群算法获得工件加工最优调度的方法 |
CN107941624A (zh) * | 2017-12-13 | 2018-04-20 | 吉林大学 | 高温高频材料力学性能原位测试装置 |
JP2019137864A (ja) * | 2018-02-13 | 2019-08-22 | 大日本印刷株式会社 | ポリイミドフィルム、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置 |
CN110569589A (zh) * | 2019-08-30 | 2019-12-13 | 西南交通大学 | 过道布置方法 |
CN110579404A (zh) * | 2019-09-12 | 2019-12-17 | 吉林大学 | 高温复杂机械载荷下材料力学性能原位测试仪器与方法 |
CN110940918A (zh) * | 2019-12-13 | 2020-03-31 | 吴江市金澜机械制造有限公司 | 一种发电机定子电性能自动检测装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114952889A (zh) * | 2022-06-03 | 2022-08-30 | 济南天辰试验机制造有限公司 | 基于机械手的试样截面尺寸测量方法 |
CN116046525A (zh) * | 2023-02-08 | 2023-05-02 | 江苏汇丰远土木工程有限公司 | 一种材料试验机自动加卸载控制装置 |
CN116046525B (zh) * | 2023-02-08 | 2023-12-01 | 江苏汇丰远土木工程有限公司 | 一种材料试验机自动加卸载控制装置 |
CN117990538A (zh) * | 2024-03-19 | 2024-05-07 | 天津威尔德新材料科技有限公司 | 一种硬度检测系统及硬度检测方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022041066A1 (zh) | 一种针对材料机械性能的测试方法及测试系统 | |
WO2022041067A1 (zh) | 一种自动化检测方法、检测系统及应用 | |
CN106829463B (zh) | 动力电池生产线的自动上下料装置 | |
US11508983B2 (en) | Automated batch sample preparation method for button battery | |
CN109239100A (zh) | 锂电池表面检测设备 | |
CN111948414A (zh) | 一种针对材料机械性能的测试方法及测试系统 | |
CN110586494A (zh) | 一种圆柱电芯测试分选装置 | |
US20150249258A1 (en) | Apparatus and method for producing electrochemical cells | |
CN105904478A (zh) | 自动化机器人上下料检测机构及用于该机构的手爪 | |
CN113013508B (zh) | 动力电池化成工艺智能调度追溯系统及方法 | |
CN103594733A (zh) | 锂电芯的自动分选机 | |
CN206638608U (zh) | 一种x光检查机 | |
CN106249167A (zh) | 一种具有不良品下料装置的电芯检测设备 | |
CN205817893U (zh) | 自动化机器人上下料检测机构及用于该机构的手爪 | |
CN105742716A (zh) | 圆柱形锂离子电池自动化分选装置 | |
CN106872475A (zh) | 一种料片检测机 | |
CN213860079U (zh) | 晶棒自动加工装置 | |
CN115201701A (zh) | 一种用于检测不同品类的电芯或电池模组的电池检测系统 | |
CN115133098A (zh) | 电池组生产系统 | |
CN104466224B (zh) | 一种电池热压设备 | |
CN208705356U (zh) | 模组全自动点灯检查机 | |
CN111948413A (zh) | 一种自动化检测方法、检测系统及应用 | |
CN111391520B (zh) | 一种用于自动化打标和称重的方法和设备 | |
CN105521950A (zh) | 活塞自动分类以及将活塞规则摆放的方法及装置 | |
CN210906975U (zh) | 一种圆柱电芯测试分选装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20950737 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/07/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20950737 Country of ref document: EP Kind code of ref document: A1 |