WO2022039215A1 - 筋肉の分解抑制剤 - Google Patents
筋肉の分解抑制剤 Download PDFInfo
- Publication number
- WO2022039215A1 WO2022039215A1 PCT/JP2021/030339 JP2021030339W WO2022039215A1 WO 2022039215 A1 WO2022039215 A1 WO 2022039215A1 JP 2021030339 W JP2021030339 W JP 2021030339W WO 2022039215 A1 WO2022039215 A1 WO 2022039215A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- muscle
- polymer
- glycerol phosphate
- salt
- atrogin
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
- A23L2/52—Adding ingredients
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/66—Phosphorus compounds
- A61K31/661—Phosphorus acids or esters thereof not having P—C bonds, e.g. fosfosal, dichlorvos, malathion or mevinphos
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/66—Phosphorus compounds
- A61K31/683—Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/74—Synthetic polymeric materials
- A61K31/80—Polymers containing hetero atoms not provided for in groups A61K31/755 - A61K31/795
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
Definitions
- the present invention relates to suppression of muscle degradation, and particularly to inhibition of muscle degradation caused by the expression of Atrogin-1.
- muscle mass is formed by a balance between synthesis and decomposition, of which muscle synthesis is promoted by exercise and nutritional intake.
- muscle breakdown is promoted by aging, inactivity (bed rest, cast fixation, etc.), nutritional starvation, disease and the like.
- tumor necrosis factor- ⁇ tumor necrosis factor- ⁇ : TNF-
- Patent Document 1 contains Lactobacillus gasseri, which is a kind of lactic acid bacterium, as an active ingredient with respect to a physical activity promoting agent that supports an increase in muscle mass and activity.
- Lactobacillus gasseri which is a kind of lactic acid bacterium
- the physical activity promoter disclosed in Patent Document 1 increases muscle mass by ingesting it, it does not suppress muscle decomposition.
- Patent Documents 2 and 3 as a technique related to muscle decomposition.
- An object of the present invention is to provide a novel technique capable of suppressing muscle decomposition.
- muscle degradation is caused by proteolytic enzymes, and in particular, the ubiquitin-proteasome system is enhanced.
- two muscle-specific ubiquitin ligase genes related to this [MAFbx (muscle atrophy F-box) / Atrogin-1 and MuRF1 (muscle ring finger 1)] are known. It is known that the expression of these muscle-specific ubiquitin ligase genes is enhanced by inflammatory cytokines, TNF- ⁇ , glucocorticoids and the like, and as a result, muscles are degraded.
- the expression of these genes is one of the indicators of muscle breakdown.
- the present inventor has found that ingestion of glycerol phosphate, a salt thereof, and / or a polymer thereof suppresses the expression of Atrogin-1, and completed the present invention.
- the gist of the present invention is as follows. [1] A muscle degradation inhibitor containing glycerol phosphate, a salt thereof, and / or a polymer thereof. [2] The muscle degradation inhibitor according to [1], wherein the number of repeating units of the glycerol phosphate, a salt thereof, and / or a polymer thereof is 1-110. [3] A food or drink for suppressing muscle decomposition, which contains glycerol phosphate, a salt thereof, and / or a polymer thereof. [4] The food or drink for suppressing muscle decomposition according to [3], wherein the number of repeating units of the glycerol phosphate, a salt thereof, and / or a polymer thereof is 1 to 110.
- glycerol phosphate, a salt thereof, and / or a polymer thereof is present as such.
- the present embodiment relates to a muscle degradation inhibitor (hereinafter, also simply referred to as a degradation inhibitor) and contains glycerol phosphate, a salt thereof, and / or a polymer thereof.
- a muscle degradation inhibitor hereinafter, also simply referred to as a degradation inhibitor
- Glycerol phosphate and its polymer can be represented, for example, as a compound having the following structure, and the case where the repeating unit (monomer unit) is 1 in the following structural formula corresponds to glycerol phosphate as a monomer.
- the glycerol phosphate and its polymer may be salts such as sodium salt, lithium salt and magnesium salt.
- the number of repeating units contained in the glycerol phosphate, the salt thereof, and the polymers thereof according to the present embodiment is not particularly limited, but 1 to 110 is preferable from the viewpoint of further suppressing muscle decomposition.
- the hydroxyl group of glycerol in the repeating unit of glycerol phosphate, a salt thereof, and a polymer thereof may be partially substituted with an amino acid such as alanine or a sugar such as glucose.
- glycerol phosphate, a salt thereof, and / or a polymer thereof are present as such.
- Glycerol phosphate, salts thereof, and / or polymers thereof are isolated from synthetic cells, cells such as lactic acid bacteria, and compounds having a larger molecular weight such as lipoteichoic acid, which will be described later, through treatments such as extraction and decomposition. It is possible to exemplify what has been done.
- the glycerol phosphate, a salt thereof, and / or a polymer thereof can be obtained from, for example, lactic acid bacteria, or commercially available ones can also be used.
- glycerol phosphate, a salt thereof, and / or a polymer thereof are obtained from lactic acid bacteria or the like, lipoteichoic acid is extracted from lactic acid bacteria based on a known method, for example, Patent Document 3, and further decomposed. Obtainable. Specifically, first, the crushed cells are suspended in a solution such as water, and the supernatant is collected by centrifugation.
- lipoteichoic acid obtained by purifying an extract obtained from the supernatant using butanol or phenol is subjected to decomposition treatment using an acid or the like, and glycerol phosphate and a salt thereof. , And / or obtain polymers thereof.
- the decomposition inhibitor of the present embodiment may contain glycerol phosphate, a salt thereof, and / or a polymer thereof as well as other components as long as the effects of the present invention can be obtained.
- the embodiment of the decomposition inhibitor of this embodiment is not particularly limited, and can be produced as a pharmaceutical product, a quasi-drug, a food or drink, or the like.
- glycerol phosphates, salts thereof, and / or their polymers are used as active ingredients, and for example, excipients, binders, stabilizers, disintegrants, lubricants.
- the dosage form can be tablets, pills, capsules, granules, powders, powders, syrups and the like, and it is desirable to administer these orally.
- a food for special use such as a food for specified health use, a food with a functional claim, a food with a nutritional function, or the like, in addition to a normal food or drink.
- food and drink include refreshing beverages such as nutritional supplements, carbonated beverages, tea beverages, coffee beverages, fruit juice beverages, and sports beverages, milk, processed milk, lactic acid bacteria beverages, milk beverages, fermented milk, etc.
- sweets / breads such as gummy and gum, liquid foods, and foods for the sick.
- the decomposition inhibitor of the present embodiment may be used as a feed for livestock, for example, by blending glycerol phosphate, a salt thereof, and / or a polymer thereof with a feed raw material.
- the daily intake of the decomposition inhibitor of the present embodiment is also not particularly limited, and for example, in the case of an adult, the glycerol phosphate, a salt thereof, and / or a polymer thereof according to the present embodiment may be 0.1.
- the blending amount and the like may be adjusted so that ⁇ 10 g, preferably 0.5 to 5 g can be ingested.
- the content ratio of glycerol phosphate, a salt thereof, and / or a polymer thereof in the muscle decomposition inhibitor of the present embodiment is not particularly limited, and may be appropriately adjusted according to ease of production, preferable daily dose, and the like. Just do it.
- glycerol phosphate, a salt thereof, and / or a polymer thereof is ingested by a subject such as a patient in an amount necessary for prevention or treatment.
- the mode of ingestion of glycerol phosphate, a salt thereof, and / or a polymer thereof according to the present embodiment is not particularly limited, but for example, a pharmaceutical product containing glycerol phosphate, a salt thereof, and / or a polymer thereof.
- glycerol phosphates, salts thereof, and / or polymers thereof can be used for the prevention or treatment of diseases associated with loss of muscle mass, such as sarcopenia.
- the glycerol phosphate, a salt thereof, and / or a polymer thereof according to the present embodiment can be obtained from, for example, a lactic acid bacterium strain, can be supplied in large quantities at a relatively low cost, and is extremely safe.
- Test strains and culture conditions Table 1 shows the bacterial strains of lactic acid bacteria used in the test. Lactobacillus was cultured overnight in Lactobacilli MRS Broth. The cultured bacterial cells were centrifuged at 200 ⁇ g at 20 ° C. for 10 minutes, washed with sterile water, heated at 90 ° C. for 30 minutes to kill them, and lyophilized.
- glycerol phosphate polymer (hereinafter, also referred to as Poly-GroP) was prepared from LTAs derived from each of the five strains. Cleavage was performed by adding 98% (v / v) acetic acid and treating at 100 ° C. for 3 hours. After removing the acetic acid by centrifugal evaporation, the product was treated with chloroform / methanol / water (1: 1: 0.9). , V / v). The organic layer was used as the glycolipid anchor fraction and the aqueous layer was used as the glycerol phosphate polymer fraction. Sodium sn-glycerol-1-phosphate was purchased from Sigma-Aldrich.
- C2C12 cells (KAC), which are mouse striated cells, were used.
- KAC KAC
- C2C12 cells were suspended in Dulbecco's improved Eagle's medium containing 10% fetal bovine serum, 1% Penicillin-Streptomaycin, and high glucose (2.0 x 104 cells / ml in Sigma-Aldrich, and 1 ml each was added to a 12-well plate. Under the conditions of 37 ° C. and 5% CO2, the cells were cultured to 90% confluent while changing the medium every 2 to 3 days.
- the medium was then replaced with 2% horse serum, 1% Penicillin-Streptomaycin-containing low glucose-containing Dalveco-improved medium, and cultured for 6 days with the medium changed every 2-3 days to differentiate C2C12 cells. Then, 1% Penicillin-Streptomaycin-containing high glucose Dulbecco improved medium was added.
- the sample was added to the medium, and dexamethasone (DEX), which is known to increase the expression of Atorogin-1 in skeletal muscle, was added to the medium to 1 ⁇ M.
- DEX dexamethasone
- RNA of cells was recovered using RNeasy Plus Mini (QIAGEN). RNA was diluted with sterile distilled water to 100 ng / ml, and cDNA was prepared using the High Capacity cDNA Reverse Transcription Kit (Applied Biosytems). Furthermore, the expression levels of GAPDH and Atorogin-1 were measured using QuantStudio3 (Applied Biosystems), and the values of Atrogin-1 / GAPDH were determined. Fast SYBR Green Master Mix (Applied Biosystems) was used for the measurement.
- Test Example 1 Confirmation of suppression of Atrogin-1 expression of LTA degradation product
- Figure 4 shows the results.
- the glycerol phosphate polymer significantly suppressed the expression of Atrogin-1 promoted by DEX.
- sn-glycerol-1-phosphate which is a common component in the glycerol phosphate polymer of the test strain, also significantly suppressed the expression of Atrogin-1 (Fig. 4B).
- Test Example 2 Confirmation of suppression of Atrogin-1 expression in cells in which the amount of glycerol phosphate polymer was reduced Lactobacillus under the same conditions as in (1) except that Lactobacilli MRS Broth without MnSO 4 4H 2 O was used. Gasseri JCM 1131T was cultured and treated to obtain heat-killed cells with a reduced amount of glycerol phosphate polymer. The decrease in the amount of glycerol phosphate polymer was confirmed by dot blotting (Fig. 5A).
- the normal cells suppressed the expression of Atrogin-1 promoted by DEX, while the amount of glycerol phosphate polymer was suppressed.
- the cells that reduced Atrogin-1 did not suppress the expression of Atrogin-1 (Fig. 5B).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Nutrition Science (AREA)
- Physical Education & Sports Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Neurology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Mycology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
【課題】筋肉の分解を抑制可能である新規な技術を提供する。 【解決手段】グリセロールリン酸、その塩、および/またはそれらのポリマーを含有する、筋肉の分解抑制剤。
Description
本発明は筋肉の分解抑制に関し、特にAtrogin-1の発現によって引き起こされる筋肉の分解の抑制に関する。
ヒトなどにおける筋肉の分解としては例えば加齢によるものが公知となっている。具体的には、加齢に伴う筋肉量の減少は30歳ごろから始まり、60歳を超えるとその減少率が高くなることが知られている。筋肉量の減少は、生活の質(QOL)の低下や、転倒による骨折、入院、寝たきり等のリスクを増加させるだけでなく、急性疾患や外科手術後の予後の悪化リスクにも関与している。筋肉量の減少が関与する疾患としては、例えば、サルコペニアが挙げられる。骨格筋量および筋力の一定以上の低下はサルコペニアと診断され、60代では約10%、75歳以上の後期高齢者では実に35%がサルコペニアと診断されている。
この加齢による筋肉量の減少は、筋肉分解の促進が主な原因とされている。
具体的に説明すると、筋肉量は合成と分解のバランスにより形成され、このうち、筋肉の合成は運動や栄養の摂取により促進される。一方、筋肉の分解は老化、不活動(ベットレスト、ギブス固定等)、栄養飢餓、疾患等により促進される。
具体的に説明すると、筋肉量は合成と分解のバランスにより形成され、このうち、筋肉の合成は運動や栄養の摂取により促進される。一方、筋肉の分解は老化、不活動(ベットレスト、ギブス固定等)、栄養飢餓、疾患等により促進される。
老化、不活動(ベットレスト、ギブス固定等)、栄養飢餓、疾患等では、体内に産生される炎症性サイトカイン(例えば、IL-6)、腫瘍壊死因子-α(tumor necrosis factor-α:TNF-α)および糖質コルチコイド等の量が増加し、これらが筋肉の分解を促進することが知られている。
高齢者はこれらのサイトカインやホルモンの分泌が老化等により過多状態となっている場合が多く、その結果、筋肉の分解が促進されていると考えられている。
ここで、高齢者におけるQOLの低下を抑制可能である技術として、特許文献1に開示される技術が提案されている。特許文献1は、筋肉量および活動量増加を支援する身体活動促進剤に関し、乳酸菌の1種であるラクトバチルス・ガセリ(Lactobacillus gasseri)を有効成分としている。しかしながら、特許文献1に開示される身体活動促進剤はこれを摂取することにより筋肉量を増加させるものである一方、筋肉の分解を抑制するものではない。
一方、出願人は、これまでに筋肉の分解に係る技術として特許文献2、3を開示している。
本発明は、筋肉の分解を抑制可能である新規な技術を提供することを目的とする。
筋肉の減少の予防・改善には運動や栄養摂取による筋肉の合成促進が着目されているが、内部環境から進行する筋肉の分解の原因を改善することで効率的な筋肉の減少の予防・改善が可能となる。
筋肉の分解はタンパク分解酵素によって生じ、なかでもユビキチン-プロテアソーム系が亢進されることが知られている。また、これに関する2つの筋特異的ユビキチンリガーゼ遺伝子[MAFbx(muscle atrophy F-box)/Atrogin-1 とMuRF1(muscle ring finger 1)]が知られている。
これら筋特異的ユビキチンリガーゼ遺伝子は、炎症性サイトカイン、TNF-α、糖質コルチコイド等によりその発現が亢進され、その結果、筋肉が分解されることが知られている。そのため、これらの遺伝子の発現は筋肉の分解の指標の一つとなっている。
本発明者は、鋭意研究の結果、グリセロールリン酸、その塩、および/またはそれらのポリマーを摂取することによりAtrogin-1の発現が抑制されることを見出し、本発明を完成させた。
筋肉の分解はタンパク分解酵素によって生じ、なかでもユビキチン-プロテアソーム系が亢進されることが知られている。また、これに関する2つの筋特異的ユビキチンリガーゼ遺伝子[MAFbx(muscle atrophy F-box)/Atrogin-1 とMuRF1(muscle ring finger 1)]が知られている。
これら筋特異的ユビキチンリガーゼ遺伝子は、炎症性サイトカイン、TNF-α、糖質コルチコイド等によりその発現が亢進され、その結果、筋肉が分解されることが知られている。そのため、これらの遺伝子の発現は筋肉の分解の指標の一つとなっている。
本発明者は、鋭意研究の結果、グリセロールリン酸、その塩、および/またはそれらのポリマーを摂取することによりAtrogin-1の発現が抑制されることを見出し、本発明を完成させた。
本発明の要旨は以下のとおりである。
[1]
グリセロールリン酸、その塩、および/またはそれらのポリマーを含有する、筋肉の分解抑制剤。
[2]
前記グリセロールリン酸、その塩、および/またはそれらのポリマーの繰り返し単位の数が1~110である、[1]に記載の筋肉の分解抑制剤。
[3]
グリセロールリン酸、その塩、および/またはそれらのポリマーを含有する、筋肉分解抑制用飲食品。
[4]
前記グリセロールリン酸、その塩、および/またはそれらのポリマーの繰り返し単位の数が1~110である、[3]に記載の筋肉分解抑制用飲食品。
[5]
グリセロールリン酸、その塩、および/またはそれらのポリマーを摂取させることを含む、筋肉の分解を抑制する方法(但し、ヒトに対する医療行為を除いてもよい)。
[6]
前記グリセロールリン酸、その塩、および/またはそれらのポリマーの繰り返し単位の数が1~110である、[5]に記載の筋肉の分解を抑制する方法。
[7]
筋肉量の減少が関与する疾患の予防または治療のためのグリセロールリン酸、その塩、および/またはそれらのポリマー。
なお、[1]~[7]において、グリセロールリン酸、その塩、および/またはそれらのポリマーは、それ自体として存在している。
[1]
グリセロールリン酸、その塩、および/またはそれらのポリマーを含有する、筋肉の分解抑制剤。
[2]
前記グリセロールリン酸、その塩、および/またはそれらのポリマーの繰り返し単位の数が1~110である、[1]に記載の筋肉の分解抑制剤。
[3]
グリセロールリン酸、その塩、および/またはそれらのポリマーを含有する、筋肉分解抑制用飲食品。
[4]
前記グリセロールリン酸、その塩、および/またはそれらのポリマーの繰り返し単位の数が1~110である、[3]に記載の筋肉分解抑制用飲食品。
[5]
グリセロールリン酸、その塩、および/またはそれらのポリマーを摂取させることを含む、筋肉の分解を抑制する方法(但し、ヒトに対する医療行為を除いてもよい)。
[6]
前記グリセロールリン酸、その塩、および/またはそれらのポリマーの繰り返し単位の数が1~110である、[5]に記載の筋肉の分解を抑制する方法。
[7]
筋肉量の減少が関与する疾患の予防または治療のためのグリセロールリン酸、その塩、および/またはそれらのポリマー。
なお、[1]~[7]において、グリセロールリン酸、その塩、および/またはそれらのポリマーは、それ自体として存在している。
本発明によれば、筋肉の分解を抑制可能である新規な技術を提供することができる。
以下、本発明の1つの実施形態について詳述する。
本実施形態は筋肉の分解抑制剤(以下、単に分解抑制剤ともいう)に関し、グリセロールリン酸、その塩、および/またはそれらのポリマーを含有する。
本実施形態は筋肉の分解抑制剤(以下、単に分解抑制剤ともいう)に関し、グリセロールリン酸、その塩、および/またはそれらのポリマーを含有する。
グリセロールリン酸およびそのポリマーは、例えば以下のような構造を有する化合物として表すことができ、以下の構造式において繰り返し単位(モノマーユニット)が1の場合がモノマーであるグリセロールリン酸に該当する。また、グリセロールリン酸およびそのポリマーは、ナトリウム塩、リチウム塩、マグネシウム塩などの塩であってもよい。
本実施形態に係るグリセロールリン酸、その塩、およびそれらのポリマーが有する繰り返し単位の数は特に限定されないが、筋肉分解のさらなる抑制の観点から1~110が好ましい。
本実施形態に係るグリセロールリン酸、その塩、およびそれらのポリマーが有する繰り返し単位の数は特に限定されないが、筋肉分解のさらなる抑制の観点から1~110が好ましい。
なお、グリセロールリン酸、その塩、およびそれらのポリマーが有する繰り返し単位中のグリセロールの水酸基は、その一部がアラニンなどのアミノ酸やグルコースなどの糖で置換されていてもよい。
また、上述のとおり、本実施形態の分解抑制剤において、グリセロールリン酸、その塩、および/またはそれらのポリマーは、それ自体として存在している。グリセロールリン酸、その塩、および/またはそれらのポリマーとしては、合成されたものや、乳酸菌等の細胞や後述するリポテイコ酸のような分子量がより大きな化合物から抽出や分解などの処理を経て単離されたものなどを例示することができる。
また、上述のとおり、本実施形態の分解抑制剤において、グリセロールリン酸、その塩、および/またはそれらのポリマーは、それ自体として存在している。グリセロールリン酸、その塩、および/またはそれらのポリマーとしては、合成されたものや、乳酸菌等の細胞や後述するリポテイコ酸のような分子量がより大きな化合物から抽出や分解などの処理を経て単離されたものなどを例示することができる。
本実施形態においてグリセロールリン酸、その塩、および/またはそれらのポリマーは、例えば乳酸菌などから得ることができるほか、市販のものを用いることもできる。
本実施形態においてグリセロールリン酸、その塩、および/またはそれらのポリマーを乳酸菌などから得る場合には公知の方法、例えば特許文献3に基づきリポテイコ酸を乳酸菌から抽出し、さらにこれを分解することで得ることができる。具体的にはまず、粉砕した菌体を水などの溶液に懸濁し、遠心により上清を回収する。次に、上清からブタノールまたはフェノールを用いて得た抽出物を精製し得られたリポテイコ酸(以下、LTAともいう)に対して酸などを用いた分解処理を行い、グリセロールリン酸、その塩、および/またはそれらのポリマーを得る。
本実施形態においてグリセロールリン酸、その塩、および/またはそれらのポリマーを乳酸菌などから得る場合には公知の方法、例えば特許文献3に基づきリポテイコ酸を乳酸菌から抽出し、さらにこれを分解することで得ることができる。具体的にはまず、粉砕した菌体を水などの溶液に懸濁し、遠心により上清を回収する。次に、上清からブタノールまたはフェノールを用いて得た抽出物を精製し得られたリポテイコ酸(以下、LTAともいう)に対して酸などを用いた分解処理を行い、グリセロールリン酸、その塩、および/またはそれらのポリマーを得る。
本実施形態の分解抑制剤はグリセロールリン酸、その塩、および/またはそれらのポリマーに加えて本発明の効果を得ることができる限り他の成分を含んでいてもよい。本実施形態の分解抑制剤の態様については特に限定されず、医薬品、医薬部外品または飲食品などとして製造することができる。
医薬品、医薬部外品または飲食品とする場合、グリセロールリン酸、その塩、および/またはそれらのポリマーを有効成分として用いるとともに、例えば賦型剤、結合剤、安定剤、崩壊剤、滑沢剤、矯味矯臭剤、懸濁剤、コーティング剤、その他の任意の成分と適宜混合して定法どおり製剤化することができる。剤形としては、錠剤、丸剤、カプセル剤、顆粒剤、散剤、粉剤、シロップ剤等が可能であり、これらを経口的に投与することが望ましい。
または、特に限定されないが、飲食品としての態様で製造される場合、通常の飲食品のほか、特定保健用食品等の特別用途食品や機能性表示食品、栄養機能食品などであってもよい。飲食品の具体例としては、例えば、栄養補助食品(サプリメント)、炭酸飲料、茶飲料、コーヒー飲料、果汁飲料、スポーツ飲料などの清涼飲料、牛乳、加工乳、乳酸菌飲料、乳飲料、発酵乳、ヨーグルト、チーズ、調製粉乳、幼児用粉乳等食品、授乳婦用粉乳等食品などの乳製品、ゼリー、キャンディ、マヨネーズ等の卵加工品、パン、ビスケット、クラッカー、ピッツァクラスト、バターケーキ、アイスクリーム、グミ、ガムなどの菓子・パン類、流動食、病者用食品等を挙げることができる。
また、本実施形態の分解抑制剤は、例えばグリセロールリン酸、その塩、および/またはそれらのポリマーを飼料原料に配合するなどして例えば家畜用のための飼料としてもよい。
医薬品、医薬部外品または飲食品とする場合、グリセロールリン酸、その塩、および/またはそれらのポリマーを有効成分として用いるとともに、例えば賦型剤、結合剤、安定剤、崩壊剤、滑沢剤、矯味矯臭剤、懸濁剤、コーティング剤、その他の任意の成分と適宜混合して定法どおり製剤化することができる。剤形としては、錠剤、丸剤、カプセル剤、顆粒剤、散剤、粉剤、シロップ剤等が可能であり、これらを経口的に投与することが望ましい。
または、特に限定されないが、飲食品としての態様で製造される場合、通常の飲食品のほか、特定保健用食品等の特別用途食品や機能性表示食品、栄養機能食品などであってもよい。飲食品の具体例としては、例えば、栄養補助食品(サプリメント)、炭酸飲料、茶飲料、コーヒー飲料、果汁飲料、スポーツ飲料などの清涼飲料、牛乳、加工乳、乳酸菌飲料、乳飲料、発酵乳、ヨーグルト、チーズ、調製粉乳、幼児用粉乳等食品、授乳婦用粉乳等食品などの乳製品、ゼリー、キャンディ、マヨネーズ等の卵加工品、パン、ビスケット、クラッカー、ピッツァクラスト、バターケーキ、アイスクリーム、グミ、ガムなどの菓子・パン類、流動食、病者用食品等を挙げることができる。
また、本実施形態の分解抑制剤は、例えばグリセロールリン酸、その塩、および/またはそれらのポリマーを飼料原料に配合するなどして例えば家畜用のための飼料としてもよい。
本実施形態の分解抑制剤の一日あたりの摂取量についても特に限定されず、例えば、成人の場合、本実施形態に係るグリセロールリン酸、その塩、および/またはそれらのポリマーを、0.1~10g、好ましくは0.5~5g摂取できるように配合量等を調整すればよい。本実施形態の筋肉の分解抑制剤におけるグリセロールリン酸、その塩、および/またはそれらのポリマーの含有割合も特に限定されず、製造の容易性や好ましい一日の投与量等に合わせて適宜調節すればよい。
以上、本実施形態によれば、筋肉の分解を抑制可能である新規な技術を提供できる。
例えば、グリセロールリン酸、その塩、および/またはそれらのポリマーを、予防または治療に必要な量で、患者などの対象に摂取させる。具体的には本実施形態に係るグリセロールリン酸、その塩、および/またはそれらのポリマーを、摂取の態様は特に限定されないが、例えばグリセロールリン酸、その塩、および/またはそれらのポリマーを含む医薬品、医薬部外品、食品などの態様で摂取させる。その結果、対象において筋肉の分解を抑制することができる。具体的には、筋肉の分解に関与する筋特異的ユビキチンリガーゼ遺伝子Atrogin-1の発現を抑制することができる。
そのため、個人差はあるが、例えば加齢などによる筋肉の分解を抑制して筋肉量の減少を抑える効果が期待できる。よって、グリセロールリン酸、その塩、および/またはそれらのポリマーは、サルコペニアなどの筋肉量の減少が関与する疾患の予防または治療のために使用することができる。また、本実施形態に係るグリセロールリン酸、その塩、および/またはそれらのポリマーは例えば乳酸菌株から得ることができ、比較的安価に大量供給が可能であり、かつ、極めて安全性が高い。
例えば、グリセロールリン酸、その塩、および/またはそれらのポリマーを、予防または治療に必要な量で、患者などの対象に摂取させる。具体的には本実施形態に係るグリセロールリン酸、その塩、および/またはそれらのポリマーを、摂取の態様は特に限定されないが、例えばグリセロールリン酸、その塩、および/またはそれらのポリマーを含む医薬品、医薬部外品、食品などの態様で摂取させる。その結果、対象において筋肉の分解を抑制することができる。具体的には、筋肉の分解に関与する筋特異的ユビキチンリガーゼ遺伝子Atrogin-1の発現を抑制することができる。
そのため、個人差はあるが、例えば加齢などによる筋肉の分解を抑制して筋肉量の減少を抑える効果が期待できる。よって、グリセロールリン酸、その塩、および/またはそれらのポリマーは、サルコペニアなどの筋肉量の減少が関与する疾患の予防または治療のために使用することができる。また、本実施形態に係るグリセロールリン酸、その塩、および/またはそれらのポリマーは例えば乳酸菌株から得ることができ、比較的安価に大量供給が可能であり、かつ、極めて安全性が高い。
以下、本発明を実施例により更に詳細に説明するが、本発明はこれらに限定されない。[試料等の調製、試験条件]
(1)供試菌株および培養条件
試験に供した乳酸菌の細菌株を表1に記載する。乳酸菌は、Lactobacilli MRS Broth中で一晩培養した。培養した細菌細胞を200×g、20℃で10分間遠心分離し、滅菌水で洗浄し、90℃で30分間加熱して死滅させ、凍結乾燥させた。
(1)供試菌株および培養条件
試験に供した乳酸菌の細菌株を表1に記載する。乳酸菌は、Lactobacilli MRS Broth中で一晩培養した。培養した細菌細胞を200×g、20℃で10分間遠心分離し、滅菌水で洗浄し、90℃で30分間加熱して死滅させ、凍結乾燥させた。
(2)ペプチドグリカン(以下、PGともいう)の調製
菌体(Lactobacillus gasseri JCM 1131T、乾燥重量6.4g)を滅菌水80mlに懸濁し、湿式微粒化装置スターバーストミニ(スギノマシン)を用いて破砕した。室温まで冷却した後、破砕菌体懸濁液を4,200×g、4℃で50分間遠心分離した。得られたペレットを滅菌水で数回洗浄し、凍結乾燥した。これを100℃で20分間、10%(v/v)トリクロロ酢酸(TCA)で処理した後、クロロホルムおよび滅菌水で数回洗浄し、20℃で20分間、5,900×gで遠心分離してTCAを除去した。エタノールおよびジエチルエーテルで連続洗浄した後、ペレットを凍結乾燥し、PGとして使用した。
菌体(Lactobacillus gasseri JCM 1131T、乾燥重量6.4g)を滅菌水80mlに懸濁し、湿式微粒化装置スターバーストミニ(スギノマシン)を用いて破砕した。室温まで冷却した後、破砕菌体懸濁液を4,200×g、4℃で50分間遠心分離した。得られたペレットを滅菌水で数回洗浄し、凍結乾燥した。これを100℃で20分間、10%(v/v)トリクロロ酢酸(TCA)で処理した後、クロロホルムおよび滅菌水で数回洗浄し、20℃で20分間、5,900×gで遠心分離してTCAを除去した。エタノールおよびジエチルエーテルで連続洗浄した後、ペレットを凍結乾燥し、PGとして使用した。
(3)リポテイコ酸の調製
(2)で得られた破砕菌体懸濁液の上清に等量の1-ブタノールを水で添加した。混合物を室温で30分間撹拌し、20℃で5900×gで20分間遠心分離した。下部水層を回収し、凍結乾燥し、100mM酢酸ナトリウム緩衝液(pH4.7)中の15%(v/v) 1-プロパノールに溶解した。該溶液を0.45μmのフィルターを通過させた後、オクチルセファロース4ファストフローカラム(GE Healthcare)に通した。100mM酢酸ナトリウム緩衝液(pH4.7)中の15、25、35および45%(v/v)の1-プロパノールで段階的に溶出した。LTAは、25および35% (v/v) 1-プロパノールを含む酢酸ナトリウム緩衝液で溶出された。溶出させたLTA画分を濃縮し、滅菌水に対して透析し、凍結乾燥した。
同様の操作を表1に示した他の4菌株についても行い、それぞれからLTAを取得した。
(2)で得られた破砕菌体懸濁液の上清に等量の1-ブタノールを水で添加した。混合物を室温で30分間撹拌し、20℃で5900×gで20分間遠心分離した。下部水層を回収し、凍結乾燥し、100mM酢酸ナトリウム緩衝液(pH4.7)中の15%(v/v) 1-プロパノールに溶解した。該溶液を0.45μmのフィルターを通過させた後、オクチルセファロース4ファストフローカラム(GE Healthcare)に通した。100mM酢酸ナトリウム緩衝液(pH4.7)中の15、25、35および45%(v/v)の1-プロパノールで段階的に溶出した。LTAは、25および35% (v/v) 1-プロパノールを含む酢酸ナトリウム緩衝液で溶出された。溶出させたLTA画分を濃縮し、滅菌水に対して透析し、凍結乾燥した。
同様の操作を表1に示した他の4菌株についても行い、それぞれからLTAを取得した。
(4)グリセロールリン酸塩およびグリセロールリン酸ポリマーの調製
各5菌株由来のLTAからグリセロールリン酸ポリマー((以下、Poly-GroPともいう)を調製した。LTAのグリセロールリン酸ポリマーのホスホジエステル結合の開裂は、98%(v/v)酢酸を添加し100℃で3時間処理することによって行った。遠心エバポレーションにより酢酸を除去した後、生成物をクロロホルム/メタノール/水(1:1:0.9、v/v)で分割した。有機層を糖脂質アンカー画分として使用し、水性層をグリセロールリン酸ポリマー画分として使用した。
sn-グリセロール-1-リン酸ナトリウムは、Sigma-Aldrichから購入した。
各5菌株由来のLTAからグリセロールリン酸ポリマー((以下、Poly-GroPともいう)を調製した。LTAのグリセロールリン酸ポリマーのホスホジエステル結合の開裂は、98%(v/v)酢酸を添加し100℃で3時間処理することによって行った。遠心エバポレーションにより酢酸を除去した後、生成物をクロロホルム/メタノール/水(1:1:0.9、v/v)で分割した。有機層を糖脂質アンカー画分として使用し、水性層をグリセロールリン酸ポリマー画分として使用した。
sn-グリセロール-1-リン酸ナトリウムは、Sigma-Aldrichから購入した。
(5)ドットブロッティング
ポリフッ化ビニリデン膜(GE Healthcare)をメタノールで予備湿潤し、リン酸緩衝生理食塩水(PBS)に浸した。湿潤メンブレン上にサンプルをスポッティングした。ブロッティングしたメンブレンを、0.1%(v/v)ポリソルベート20を含むPBS中の5%(w/v)スキムミルクで、室温で60分間ブロッキングした。ブロッキングされた膜を、マウス抗LTAモノクローナル抗体クローン55(Hycult Biotech)の1:500希釈液に浸漬し、室温で60分間インキュベートし、次いで、ワサビペルオキシダーゼ標識ヤギ抗マウス免疫グロブリン抗体(Cell Signaling Technology)の1:1000希釈液で、室温で60分間反応させた。特異的結合は、ECL Prime Western Blotting Detection Reagent(GE Healthcare)を用いて検出した。
ポリフッ化ビニリデン膜(GE Healthcare)をメタノールで予備湿潤し、リン酸緩衝生理食塩水(PBS)に浸した。湿潤メンブレン上にサンプルをスポッティングした。ブロッティングしたメンブレンを、0.1%(v/v)ポリソルベート20を含むPBS中の5%(w/v)スキムミルクで、室温で60分間ブロッキングした。ブロッキングされた膜を、マウス抗LTAモノクローナル抗体クローン55(Hycult Biotech)の1:500希釈液に浸漬し、室温で60分間インキュベートし、次いで、ワサビペルオキシダーゼ標識ヤギ抗マウス免疫グロブリン抗体(Cell Signaling Technology)の1:1000希釈液で、室温で60分間反応させた。特異的結合は、ECL Prime Western Blotting Detection Reagent(GE Healthcare)を用いて検出した。
(6)細胞試験(Atrogin-1の発現抑制についての試験)
マウス横紋細胞であるC2C12細胞(ケーエーシー)を用いた。C2C12細胞は10%ウシ胎児血清、1%Penicillin-Streptomaycin含有、高グルコース含有ダルベッコ改良イーグル培地(Sigma-Aldrichに2.0×104個/mlになるように懸濁し、12ウェルプレートに1mlずつ加えた後、37℃、5%CO2条件下で、2~3日おきに培地を交換しながら、90%コンフルエントまで培養した。
次に培地を2%ウマ血清、1%Penicillin-Streptomaycin含有低グルコース含有ダルベッコ改良培地に交換し、2~3日おきに培地を交換しながら、6日間培養し、C2C12細胞を分化させた。その後、1%Penicillin-Streptomaycin含有高グルコースダルベッコ改良培地を添加した。その培地に検体を添加するとともに、骨格筋においてAtorogin-1の発現を上昇させることが知られているデキサメタゾン(DEX)を1μMになるように培地に添加した。なお、参考試験例1、参考試験例3、試験例1および試験例2においては100μg/mlの濃度になるように検体を添加した。参考試験例2においては100μg/mlまたは1000μg/mlの濃度になるように検体を添加した。
その後、RNeasy Plus Mini(QIAGEN)を用いて、細胞のRNAを回収した。RNAは100ng/mlになるように滅菌蒸留水を用いて希釈し、High Capacity cDNA Reverse Transcription Kit (Applied Biosytems)を用いて、cDNAを作成した。さらにQuantStudio3 (Applied Biosystems)を用いてのGAPDHおよびAtorogin-1の発現量測定を行い、Atrogin-1/GAPDHの値を求めた。測定にはFast SYBR Green Master Mix (Applied Biosystems)を用いた。また、プライマーとして、Atrogin-1の発現はAtrogin-1F、5' ATCCCAGCACACGACAACAC 3'およびAtrogin-1R、5' CGGCAACTGCATCTCTTC 3'を、GAPDHの発現はGAPDH F 5' ATGGCCTTCCGTGTTCCTAC 3'およびGAPDH R、5' TGCCTGCTTCACCACCTTC 3'を用いた。N=6で測定を実施した。
マウス横紋細胞であるC2C12細胞(ケーエーシー)を用いた。C2C12細胞は10%ウシ胎児血清、1%Penicillin-Streptomaycin含有、高グルコース含有ダルベッコ改良イーグル培地(Sigma-Aldrichに2.0×104個/mlになるように懸濁し、12ウェルプレートに1mlずつ加えた後、37℃、5%CO2条件下で、2~3日おきに培地を交換しながら、90%コンフルエントまで培養した。
次に培地を2%ウマ血清、1%Penicillin-Streptomaycin含有低グルコース含有ダルベッコ改良培地に交換し、2~3日おきに培地を交換しながら、6日間培養し、C2C12細胞を分化させた。その後、1%Penicillin-Streptomaycin含有高グルコースダルベッコ改良培地を添加した。その培地に検体を添加するとともに、骨格筋においてAtorogin-1の発現を上昇させることが知られているデキサメタゾン(DEX)を1μMになるように培地に添加した。なお、参考試験例1、参考試験例3、試験例1および試験例2においては100μg/mlの濃度になるように検体を添加した。参考試験例2においては100μg/mlまたは1000μg/mlの濃度になるように検体を添加した。
その後、RNeasy Plus Mini(QIAGEN)を用いて、細胞のRNAを回収した。RNAは100ng/mlになるように滅菌蒸留水を用いて希釈し、High Capacity cDNA Reverse Transcription Kit (Applied Biosytems)を用いて、cDNAを作成した。さらにQuantStudio3 (Applied Biosystems)を用いてのGAPDHおよびAtorogin-1の発現量測定を行い、Atrogin-1/GAPDHの値を求めた。測定にはFast SYBR Green Master Mix (Applied Biosystems)を用いた。また、プライマーとして、Atrogin-1の発現はAtrogin-1F、5' ATCCCAGCACACGACAACAC 3'およびAtrogin-1R、5' CGGCAACTGCATCTCTTC 3'を、GAPDHの発現はGAPDH F 5' ATGGCCTTCCGTGTTCCTAC 3'およびGAPDH R、5' TGCCTGCTTCACCACCTTC 3'を用いた。N=6で測定を実施した。
(7)統計解析
データ解析は、BellCurve(SSRI)を用いて、Dunnet 検定により行った。P<0.1またはP<0.05の値を統計的に有意とみなした。
データ解析は、BellCurve(SSRI)を用いて、Dunnet 検定により行った。P<0.1またはP<0.05の値を統計的に有意とみなした。
[試験結果]
参考試験例1:加熱死菌体(以下、HKともいう)についてのAtrogin-1の発現抑制の確認
結果を図1に示す。供試した5菌株は全て、DEXにより促進されたAtrogin-1の発現を抑制した。
参考試験例1:加熱死菌体(以下、HKともいう)についてのAtrogin-1の発現抑制の確認
結果を図1に示す。供試した5菌株は全て、DEXにより促進されたAtrogin-1の発現を抑制した。
参考試験例2:加熱死菌体、およびそれ由来のLTA、PGのAtrogin-1の発現抑制の確認
結果を図2に示す。Lactobacillus gasseri JCM 1131Tの加熱死菌体、該加熱死菌体に由来するLTAはDEXにより促進されたAtrogin-1の発現を抑制した。
結果を図2に示す。Lactobacillus gasseri JCM 1131Tの加熱死菌体、該加熱死菌体に由来するLTAはDEXにより促進されたAtrogin-1の発現を抑制した。
参考試験例3:LTAのAtrogin-1の発現抑制の確認
結果を図3に示す。供試した5菌株から抽出したLTAは全て、DEXにより促進されたAtrogin-1の発現を抑制した。
結果を図3に示す。供試した5菌株から抽出したLTAは全て、DEXにより促進されたAtrogin-1の発現を抑制した。
試験例1:LTA分解物のAtrogin-1の発現抑制の確認
結果を図4に示す。
LTA分解物のうち、グリセロールリン酸ポリマーはDEXにより促進されたAtrogin-1の発現を有意に抑制した。(図4A)。
また、供試菌株のグリセロールリン酸ポリマー中の共通成分である、sn-glycerol-1-phosphateもまた、Atrogin-1の発現を有意に抑制した(図4B)。
結果を図4に示す。
LTA分解物のうち、グリセロールリン酸ポリマーはDEXにより促進されたAtrogin-1の発現を有意に抑制した。(図4A)。
また、供試菌株のグリセロールリン酸ポリマー中の共通成分である、sn-glycerol-1-phosphateもまた、Atrogin-1の発現を有意に抑制した(図4B)。
試験例2:グリセロールリン酸ポリマー量を減少させた菌体についてのAtrogin-1の発現抑制の確認
MnSO44H2Oを添加しないLactobacilli MRS Brothを用いた以外は(1)と同様の条件でLactobacillus gasseri JCM 1131Tの培養および処理を行い、グリセロールリン酸ポリマー量が減少している加熱死菌体を得た。グリセロールリン酸ポリマー量減少の確認はドットブロッティングにより行った(図5A)。
得られた加熱死菌体をAtrogin-1の発現抑制を確認する細胞試験に供試したところ、通常の菌体はDEXにより促進されたAtrogin-1の発現を抑制した一方、グリセロールリン酸ポリマー量を減少させた菌体はAtrogin-1の発現を抑制しなかった(図5B)。
MnSO44H2Oを添加しないLactobacilli MRS Brothを用いた以外は(1)と同様の条件でLactobacillus gasseri JCM 1131Tの培養および処理を行い、グリセロールリン酸ポリマー量が減少している加熱死菌体を得た。グリセロールリン酸ポリマー量減少の確認はドットブロッティングにより行った(図5A)。
得られた加熱死菌体をAtrogin-1の発現抑制を確認する細胞試験に供試したところ、通常の菌体はDEXにより促進されたAtrogin-1の発現を抑制した一方、グリセロールリン酸ポリマー量を減少させた菌体はAtrogin-1の発現を抑制しなかった(図5B)。
Claims (6)
- グリセロールリン酸、その塩、および/またはそれらのポリマーを含有する、筋肉の分解抑制剤。
- 前記グリセロールリン酸、その塩、および/またはそれらのポリマーの繰り返し単位の数が1~110である、請求項1に記載の筋肉の分解抑制剤。
- グリセロールリン酸、その塩、および/またはそれらのポリマーを含有する、筋肉分解抑制用飲食品。
- 前記グリセロールリン酸、その塩、および/またはそれらのポリマーの繰り返し単位の数が1~110である、請求項3に記載の筋肉分解抑制用飲食品。
- グリセロールリン酸、その塩、および/またはそれらのポリマーを摂取させることを含む、筋肉の分解を抑制する方法。
- 前記グリセロールリン酸、その塩、および/またはそれらのポリマーの繰り返し単位の数が1~110である、請求項5に記載の筋肉の分解を抑制する方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022543983A JPWO2022039215A1 (ja) | 2020-08-21 | 2021-08-19 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020139934 | 2020-08-21 | ||
JP2020-139934 | 2020-08-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022039215A1 true WO2022039215A1 (ja) | 2022-02-24 |
Family
ID=80323481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/030339 WO2022039215A1 (ja) | 2020-08-21 | 2021-08-19 | 筋肉の分解抑制剤 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2022039215A1 (ja) |
TW (1) | TW202220670A (ja) |
WO (1) | WO2022039215A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005336145A (ja) * | 2004-05-31 | 2005-12-08 | Ryuichi Kamioka | リポソーム型筋ジストロフィー治療薬 |
US20110052729A1 (en) * | 2009-08-26 | 2011-03-03 | Golini Jeffrey M | Pharmaceutical or nutraceutical composition |
US20130338114A1 (en) * | 2012-05-23 | 2013-12-19 | Chemi Nutra | Compositions for increasing strength, muscle mass, and lean body mass |
JP2016216408A (ja) * | 2015-05-22 | 2016-12-22 | アサヒグループホールディングス株式会社 | 筋肉の分解抑制剤 |
JP2018083761A (ja) * | 2016-11-21 | 2018-05-31 | アサヒグループホールディングス株式会社 | 筋肉の分解抑制剤 |
-
2021
- 2021-08-19 WO PCT/JP2021/030339 patent/WO2022039215A1/ja active Application Filing
- 2021-08-19 JP JP2022543983A patent/JPWO2022039215A1/ja active Pending
- 2021-08-20 TW TW110130824A patent/TW202220670A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005336145A (ja) * | 2004-05-31 | 2005-12-08 | Ryuichi Kamioka | リポソーム型筋ジストロフィー治療薬 |
US20110052729A1 (en) * | 2009-08-26 | 2011-03-03 | Golini Jeffrey M | Pharmaceutical or nutraceutical composition |
US20130338114A1 (en) * | 2012-05-23 | 2013-12-19 | Chemi Nutra | Compositions for increasing strength, muscle mass, and lean body mass |
JP2016216408A (ja) * | 2015-05-22 | 2016-12-22 | アサヒグループホールディングス株式会社 | 筋肉の分解抑制剤 |
JP2018083761A (ja) * | 2016-11-21 | 2018-05-31 | アサヒグループホールディングス株式会社 | 筋肉の分解抑制剤 |
Non-Patent Citations (3)
Title |
---|
KATSUKI RYO, SAKATA SHINJI, NAKAO REIKO, OISHI KATSUTAKA, NAKAMURA YASUNORI: "<i>Lactobacillus curvatus</i> CP2998 Prevents Dexamethasone-Induced Muscle Atrophy in C2C12 Myotubes", JOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY, vol. 65, no. 5, 31 October 2019 (2019-10-31), pages 455 - 458, XP055902216, ISSN: 0301-4800, DOI: 10.3177/jnsv.65.455 * |
SAKATA, SHINJI ET AL.: "Effects of administration of Lactobacillus curvatus CP2998 on physical function in the older adults - A placebo-controlled, randomized, double- blind, parallel-group study", JAPANESE PHARMACOLOGY AND THERAPEUTICS, vol. 47, no. 6, 2019, pages 937 - 947, XP009532681 * |
UCHITOMI RAN, HATAZAWA YUKINO, SENOO NANAMI, YOSHIOKA KIYOSHI, FUJITA MARIKO, SHIMIZU TAKAHIKO, MIURA SHINJI, ONO YUSUKE, KAMEI YA: "Metabolomic Analysis of Skeletal Muscle in Aged Mice", SCIENTIFIC REPORTS, vol. 9, no. 1, 1 December 2019 (2019-12-01), pages 10425, XP055902215, DOI: 10.1038/s41598-019-46929-8 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022039215A1 (ja) | 2022-02-24 |
TW202220670A (zh) | 2022-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3209308B1 (en) | Activated bifidobacteria and methods of use thereof | |
EP2127660B1 (en) | Agent for reducing visceral fat | |
JP5925274B2 (ja) | 子宮内膜症の予防及び/又は改善剤及びこれを含んでなる飲食品組成物 | |
CN106103696A (zh) | 新颖的拟干酪乳杆菌菌株 | |
JP2019528763A (ja) | 新規なラクトバチルス・サケイ及びそれを含む組成物 | |
JP6762855B2 (ja) | 筋肉の分解抑制剤 | |
CN111466439A (zh) | 具有血糖值上升抑制作用的发酵乳 | |
JP2024083578A (ja) | 新規ビフィドバクテリウム属細菌、および当該細菌を含む組成物、並びに当該細菌の増殖促進用の組成物 | |
JP5229977B2 (ja) | 血中アディポネクチン濃度増加促進及び/又は減少抑制剤 | |
JP5225652B2 (ja) | アディポネクチン分泌促進及び/又は減少抑制剤 | |
WO2022039215A1 (ja) | 筋肉の分解抑制剤 | |
JP5089942B2 (ja) | 内臓脂肪蓄積抑制剤 | |
KR20200070081A (ko) | 충치 억제 활성을 갖는 락토바실러스 살리바리우스를 포함하는 조성물 | |
JPWO2018003898A1 (ja) | 軟骨再生促進用組成物 | |
JP2024501148A (ja) | F.プラウスニッツイ(F.prausnitzii)の存在量を促進することにおいて使用するための2’-フコシルラクトース | |
AU2018414925B2 (en) | Composition for promoting the secretion of FGF21 | |
KR20200070080A (ko) | 충치 억제 활성을 갖는 락토바실러스 루테리 mg505 를 포함하는 조성물 | |
EP4342535A1 (en) | Composition for inhibition of differentiation of osteoclast precursor cells into osteoclasts, and composition for improving bone metabolism | |
JP7219026B2 (ja) | 食後血糖値上昇抑制用組成物及びその製造方法 | |
JP2023037491A (ja) | 分岐デキストラン、整腸剤、コレステロール低下剤、血糖値上昇抑制剤、澱粉老化抑制剤、パンの食感改良剤、原料、及び分岐デキストランの製造方法 | |
JP2023159578A (ja) | Gabaを有効成分とするサルコペニア予防または改善剤 | |
WO2024079472A1 (en) | Oligosaccharide composition for use in the reduction of the level of branched short chain fatty acids | |
JP2023126304A (ja) | 腎機能障害予防又は改善用組成物、並びに、該腎機能障害予防又は改善用組成物を用いた医薬品組成物及び飲食品組成物 | |
CN118217312A (zh) | 一种嗜热链球菌st7用于调节免疫能力及抗病毒的用途 | |
EP2057992B1 (en) | Renal-function-ameliorating agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21858359 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022543983 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21858359 Country of ref document: EP Kind code of ref document: A1 |