WO2022038861A1 - 組成物、組成物を含むエアゾール組成物、洗浄剤、溶媒、シリコーン溶剤、発泡剤、熱伝達媒体、消火剤、および燻蒸剤、熱伝達媒体を含む熱伝達装置、ならびに熱伝達装置が含まれるシステム - Google Patents

組成物、組成物を含むエアゾール組成物、洗浄剤、溶媒、シリコーン溶剤、発泡剤、熱伝達媒体、消火剤、および燻蒸剤、熱伝達媒体を含む熱伝達装置、ならびに熱伝達装置が含まれるシステム Download PDF

Info

Publication number
WO2022038861A1
WO2022038861A1 PCT/JP2021/021171 JP2021021171W WO2022038861A1 WO 2022038861 A1 WO2022038861 A1 WO 2022038861A1 JP 2021021171 W JP2021021171 W JP 2021021171W WO 2022038861 A1 WO2022038861 A1 WO 2022038861A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloro
heat transfer
composition
tetrafluoropropene
trans
Prior art date
Application number
PCT/JP2021/021171
Other languages
English (en)
French (fr)
Inventor
夏奈子 長舩
正宗 岡本
康平 住田
直樹 西中
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to CN202180057317.7A priority Critical patent/CN116057161A/zh
Priority to JP2022543289A priority patent/JPWO2022038861A1/ja
Priority to EP21858012.4A priority patent/EP4183860A1/en
Priority to KR1020237008421A priority patent/KR20230052918A/ko
Publication of WO2022038861A1 publication Critical patent/WO2022038861A1/ja
Priority to US18/108,122 priority patent/US20230193161A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/24Organic compounds containing halogen
    • C11D3/245Organic compounds containing halogen containing fluorine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N29/00Biocides, pest repellants or attractants, or plant growth regulators containing halogenated hydrocarbons
    • A01N29/02Acyclic compounds or compounds containing halogen attached to an aliphatic side-chain of a cycloaliphatic ring system
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0028Liquid extinguishing substances
    • A62D1/0057Polyhaloalkanes
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0071Foams
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0092Gaseous extinguishing substances, e.g. liquefied gases, carbon dioxide snow
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/30Materials not provided for elsewhere for aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0043For use with aerosol devices
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/08Liquid soap, e.g. for dispensers; capsuled
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/28Organic compounds containing halogen
    • C11D7/30Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5004Organic solvents
    • C11D7/5009Organic solvents containing phosphorus, sulfur or silicon, e.g. dimethylsulfoxide
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5036Azeotropic mixtures containing halogenated solvents
    • C11D7/504Azeotropic mixtures containing halogenated solvents all solvents being halogenated hydrocarbons
    • C11D7/5045Mixtures of (hydro)chlorofluorocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/005Installations wherein the liquid circulates in a closed loop ; Alleged perpetua mobilia of this or similar kind
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/32The mixture being azeotropic

Definitions

  • One of the embodiments of the present invention relates to a composition containing trans-1-chloro-3,3,3-trifluoropropene and 1-chloro-1,3,3,3-tetrafluoropropene.
  • Hydrofluoroolefins HFOs
  • hydrochlorofluoroolefins HCFOs
  • Patent Document 1 the HCFOs cis-1-chloro-1,3,3,3-tetrafluoropropene and trans-1-chloro-1,3,3,3-tetrafluoropropene have an environmental load. It is described that it can be used as a heat transfer medium for small refrigeration cycle systems, high temperature heat pump systems, and organic Rankine cycles.
  • One of the embodiments of the present invention is to provide a composition in which an HFO or HCFO system is present in an effective amount for forming an azeotropic mixture or an azeotropic mixture.
  • one of the embodiments of the present invention is a refrigeration cycle system, a heat pump system, and a heat pump system having extremely small contributions to ozone layer depletion and global warming, small composition changes, and thermal cycle characteristics equal to or higher than those of existing refrigerants.
  • One of the challenges is to provide a composition containing an HFO or HCFO system that functions as a heat transfer medium for an organic Rankine cycle system.
  • one of the embodiments of the present invention is to provide a heat transfer method in the above system and a method of converting heat energy into mechanical energy.
  • One of the embodiments of the present invention comprises trans-1-chloro-3,3,3-trifluoropropene and 1-chloro-1,3,3,3-tetrafluoropropene, 1-chloro-1,1, A composition in which 3,3,3-tetrafluoropropene is present in an effective amount to form an azeotropic or azeotropic mixture with trans-1-chloro-3,3,3-trifluoropropene.
  • the above 1-chloro-1,3,3,3-tetrafluoropropene is cis-1-chloro-1,3,3,3-tetrafluoropropene, trans-1-chloro-1,3,3-3. It may be tetrafluoropropene or a mixture thereof.
  • This composition is 90.000 mol% based on the total amount of trans-1-chloro-3,3,3-trifluoropropene and cis-1-chloro-1,3,3,3-tetrafluoropropene.
  • Trans-1-chloro-3,3,3-trifluoropropene 99.9999 mol% or less and cis-1-chloro-1,3,3,3-tetra of 0.0001 to 10.0000 mol%.
  • Fluoropropene may be included.
  • This composition comprises trans-1-chloro-3,3,3-trifluoropropene, cis-1-chloro-1,3,3,3-tetrafluoropropene and trans-1-chloro-1,3,3.
  • 3-Tetrafluoropropene 80.000 mol% or more and 99.9998 mol% or less of trans-1-chloro-3,3,3-trifluoropropene, and 0.0001 mol% or more and 10 .000 mol% or less of cis-1-chloro-1,3,3,3-tetrafluoropropene and 0.0001 mol% or more and 10.000 mol% or less of trans-1-chloro-1,3,3 3-Tetrafluoropropene may be included.
  • One of the embodiments of the present invention is an aerosol composition containing the above composition.
  • Another embodiment of the present invention is a cleaning agent, a solvent, a silicone solvent, a foaming agent, a fire extinguishing agent, or a fumigant containing the above composition.
  • One of the embodiments of the present invention is a heat transfer medium containing the above composition.
  • One of the embodiments of the present invention is a heat transfer device including the above heat transfer medium.
  • One of the embodiments of the present invention is a refrigeration cycle system including a heat transfer device, a heat pump cycle system, or an organic Rankine cycle system.
  • One of the embodiments of the present invention is a heat transfer method or a method of converting heat energy into mechanical energy using the above refrigeration cycle system, high temperature heat pump cycle system, or organic Rankine cycle system.
  • One of the embodiments of the present invention is a refrigeration cycle system, a high temperature heat pump cycle system, or an organic Rankine cycle system using a heat transfer medium containing 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123).
  • HCFC-123 2,2-dichloro-1,1,1-trifluoroethane
  • azeotrope refers to azeotrope in the strict thermodynamic sense.
  • ethanol 96% by mass
  • water 4% by mass
  • azeotropic the composition of ethanol (96% by mass) and water (4% by mass)
  • azeotropic the composition of the azeotropic mixture is only one point.
  • An azeotropic composition is called an azeotropic composition. Since the azeotropic composition volatilizes with the same composition as the liquid composition, it is a very preferable composition in which the liquid composition does not change during use.
  • Azeotrope is also called “pseudo-azeotropic” and refers to a phenomenon in which the composition of a gas in equilibrium is substantially equal to the composition of a liquid, although it is not thermodynamically strict azeotropic. .. Even if the compositions of the gas phase portion and the liquid phase portion do not completely match, if the compositions of the gas phase portion and the liquid phase product substantially match, they can be treated in the same manner as the azeotropic composition. At this time, the smaller the gas-liquid equilibrium composition difference between the gas phase portion and the liquid phase portion, the better.
  • Such a phenomenon in which the gas-liquid equilibrium composition of the gas phase portion and the liquid phase portion substantially match is called an azeotropic or pseudo-azeotropic composition, and the composition is called an azeotropic composition or a pseudo-azeotropic composition. .. "Azeotrope" is not theoretically derived, and it is only when the vapor-liquid equilibrium is experimentally investigated for various liquid types and composition ratios and the composition of the gas phase and the composition of the liquid phase are substantially the same. You can find it.
  • azeotropic and azeotropic should be distinguished, but when a mixed solvent is used for cleaning, heat transfer media, etc., azeotropic and azeotropic (or pseudo). There is no need to distinguish between azeotropics) and they can be treated in exactly the same way. Therefore, in the present specification, the azeotropic phenomenon and the azeotropic phenomenon (or quasi-azeotropic phenomenon) are collectively referred to as "azeotropic”. Further, the composition at that time is referred to as an "azeotropic composition", and the composition having an azeotropic composition is referred to as an "azeotropic composition". In azeotropic (like), the presence or absence of azeotropic point does not matter. It suffices if the gas-liquid equilibrium composition of the gas phase portion and the liquid phase portion substantially match.
  • Heat transfer medium refers to a medium that exchanges heat with a cooled medium or a heated medium in a refrigeration cycle system, a high temperature heat pump cycle system, or an organic Rankine cycle system.
  • the heat transfer medium may be a single compound or a mixture.
  • the heat transfer medium may be referred to as a refrigerant, a refrigerant composition, a heat transfer composition, a working fluid, a working fluid composition, a working medium, and the like.
  • Compatibility refers to the relationship between the refrigerant and the lubricating oil, which are determined to be compatible when determined in accordance with the 2009 Japanese Industrial Standards JIS K2211 Annex D. show. In general, in many heat transfer applications such as refrigeration cycle systems, it is preferred that the refrigerant and the lubricating oil are compatible. Lubricating oil is sometimes called refrigerating machine oil.
  • Refrigeration Cycle System is a steam compression type refrigeration cycle system that includes at least an evaporator, a compressor, a condenser, and an expansion valve as elemental equipment, and is a system mainly intended for cooling. Point to.
  • the expansion valve is a device for the heat transfer medium to be throttled and expanded, and may be a capillary tube.
  • the refrigeration cycle system can be used as a refrigerator, air conditioning system, or cooling device.
  • High temperature heat pump cycle system is a steam compression type heat pump cycle system that includes at least an evaporator, a compressor, a condenser, and an expansion valve as elemental equipment, and is mainly intended for heating.
  • the expansion valve is a device for squeezing and expanding the heat transfer medium, and may be a capillary tube.
  • the high temperature heat pump cycle system can be used as a hot water supply system, a steam generation system, or a heating device. Further, the high temperature heat pump cycle system may utilize solar heat energy, factory waste heat, or the like as a heat source.
  • Organic Rankine Cycle System is a Rankine cycle system that includes at least an evaporator, an expander, a condenser, and a booster pump as elemental equipment, and is mainly intended to convert heat energy into electrical energy. Refers to the system.
  • the organic Rankine cycle system can be used as a power generation device for recovering medium-low temperature heat. Further, the organic Rankine cycle system may utilize solar heat energy, factory waste heat, or the like as a heat source.
  • Heat transfer system In the present specification, the above-mentioned refrigeration cycle system, high temperature heat pump cycle system, and organic Rankine cycle system are collectively referred to as a heat transfer system.
  • Azeotrope (like) composition The azeotrope (like) composition according to one of the embodiments of the present invention is trans-1-chloro-3,3,3-trifluoropropene and 1-chloro-1,3,3.
  • 1-Chloro-1,3,3,3-tetrafluoropropene has trans-form (E-form) and cis-form (Z-form) geometric isomers, and cis-1-chloro-1,3,3, respectively.
  • 3-Tetrafluoropropene Trans-1-chloro-1,3,3,3-Tetrafluoropropene.
  • the azeotropic composition comprises 0.0001 mol% or more and 99.9999 mol% or less of trans-1-chloro-3,3,3-trifluoropropene and 0.0001 mol. It may contain cis-1-chloro-1,3,3,3-tetrafluoropropene in an amount of% or more and 99.99999 mol% or less. Alternatively, the composition comprises 50.000 mol% or more and 99.99999 mol% or less of trans-1-chloro-3,3,3-trifluoropropene and 0.0001 to 50.000 mol% of cis-1. -Chloro-1,3,3,3-tetrafluoropropene may be included.
  • the composition comprises 90.0000 mol% or more and 99.99999 mol% or less of trans-1-chloro-3,3,3-trifluoropropene and 0.0001 to 10.0000 mol% of cis-1.
  • -Chloro-1,3,3,3-tetrafluoropropene may be included.
  • this co-boiling (like) composition comprises 0.0001 mol% or more and 99.9998 mol% or less of trans-1-chloro-3,3,3-trifluoropropene and 0.0001 mol% or more and 99.99998.
  • the composition comprises 50.000 mol% or more and 99.9998 mol% or less of trans-1-chloro-3,3,3-trifluoropropene and 0.0001 mol% or more and 50.000 mol% or less. Sis-1-chloro-1,3,3,3-tetrafluoropropene and trans-1-chloro-1,3,3,3-tetrafluoropropene of 0.0001 mol% or more and 50.000 mol% or less. It may be included.
  • the composition comprises 80.0000 mol% or more and 99.9998 mol% or less of trans-1-chloro-3,3,3-trifluoropropene and 0.0001 mol% or more and 10.0000 mol% or less.
  • the above composition is the total amount of trans-1-chloro-3,3,3-trifluoropropene and cis-1-chloro-1,3,3,3-tetrafluoropropene, or trans-1-chloro-.
  • 100 mol of 3,3,3-trifluoropropene, cis-1-chloro-1,3,3,3-tetrafluoropropene and trans-1-chloro-1,3,3,3-tetrafluoropropene It represents the ratio of each component (that is, the relative ratio between two components or three components) when it is defined as%.
  • the azeotropic composition is preferably of high purity and is substantially free of impurities. However, if the properties of the azeotropic composition are to be maintained, a small amount of by-products (each component is usually less than 5% by weight and less than 3% by weight, based on the azeotropic composition). Alternatively, it may be contained (less than 1% by mass).
  • 1-Chloro-1,3,3,3-tetrafluoropropene can be synthesized by the following method. 1,1-Dichloro-1,3,3,3-tetrafluoropropane (234fb) is synthesized by the photochlorination reaction of 1-chloro-1,3,3,3-tetrafluoropropane (244fa). Subsequently, 1-chloro-1,3,3,3-tetrafluoropropene was converted to cis-1-chloro-1,3,3,3-tetrafluoropropene by dehydrochlorinating 234fb with an aqueous solution of base.
  • the base may be either an inorganic base or an organic base.
  • alkali metal hydroxides such as lithium, sodium or potassium, carbonates, bicarbonates, phosphates or acetates, or alkaline earth metal hydroxides such as calcium
  • Lithium acetate, sodium formate, sodium acetate, potassium formate or potassium acetate can be exemplified. Further, 2,6-lutidine, DBU and the like can also be applied.
  • the temperature of dehydrochlorinated hydrogen is preferably 0 ° C to 60 ° C or 15 to 35 ° C. Further, dehydrochlorination may be carried out in the presence of a phase transfer catalyst.
  • the obtained geometric isomer mixture of 1-chloro-1,3,3,3-tetrafluoropropene can be extracted from the reaction system by, for example, a reaction distillation operation at 20 ° C. or higher, preferably 25 ° C. or higher.
  • a reaction distillation operation at 20 ° C. or higher, preferably 25 ° C. or higher.
  • purification operations such as distillation on the extracted mixture
  • trans-1-chloro-1,3,3,3-tetrafluoropropene can be obtained. Can be separated.
  • one embodiment of the invention is a heat transfer medium in a heat transfer system comprising the azeotropic composition.
  • the azeotropic composition may be used as it is, or various additives may be added.
  • the additives will be described.
  • Lubricating oil As lubricating oil, mineral oil (paraffin oil or naphthenic oil) or synthetic oil alkylbenzene (AB), poly- ⁇ -olefin (PAO), esters, polyol esters (POE), poly Examples thereof include alkylene glycols (PAG) and polyvinyl ethers (PVE). These materials may be used alone or in combination of two or more. As will be described later, the co-boiling (like) composition of the present invention is completely compatible with these lubricating oils over a wide temperature range, and is also compatible with lubricating oils containing no oxygen atom (mineral oils, alkylbenzenes, etc.). Has good compatibility. Therefore, these lubricating oils can be effectively used as a heat transfer medium in a heat transfer system.
  • alkylbenzenes examples include n-octylbenzene, n-nonylbenzene, n-decylbenzene, n-undecylbenzene, n-dodecylbenzene, n-tridecylbenzene, 2-methyl-1-phenylheptane, and 2-methyl-.
  • esters examples include aromatic esters such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid and mixtures thereof, dibasic acid esters, polyol esters, complex esters, carbonate esters and the like. Be done.
  • Alcohols used as raw materials for polyol esters include neopentylglycol, trimethylolethane, trimethylolpropane, trimethylolbutane, di- (trimethylolpropane), tri- (trimethylolpropane), pentaerythritol, and di- (penta).
  • Hindered alcohols such as erythritol) and tri (pentaerythritol), ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 2-methyl-1,3- Propanediol, 1,5-pentanediol, 1,6-hexanediol, 2-ethyl-2-methyl-1,3-propanediol, 1,7-heptanediol, 2-methyl-2-propyl-1,3 -Propanediol, 2,2-diethyl-1,3-propanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecane Diol, glycerin, polyglycerin, 1,3,5-
  • the carboxylic acids used as raw materials for polyol esters include butanoic acid, 2-methylpropanoic acid, pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropanoic acid, 2-methylpentanoic acid, and 3-.
  • Methylpentanoic acid 4-methylpentanoic acid, 2,2-dimethylbutanoic acid, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, hexaneic acid, 2-methylhexanoic acid, 3-methylbutanoic acid, 4- Methylbutanoic acid, 5-methylbutanoic acid, 2,2-dimethylpentanoic acid, 2,3-dimethylpentanoic acid, 2,4-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 3,4-dimethylpentanoic acid, 4, 4-dimethylpentanoic acid, 2-ethylpentanoic acid, 3-ethylpentanoic acid, 1,1,2-trimethylbutanoic acid, 1,2,2-trimethylbutanoic acid, 1-ethyl-1-methylbutanoic acid, 1-ethyl -2-Methylbutanoic acid, o
  • Polyalkylene glycols include methanol, ethanol, linear or branched propanol, linear or branched butanol, linear or branched pentanol, linear or branched hexanol, etc. Examples thereof include compounds obtained by addition-polymerizing ethylene oxide, propylene oxide, butylene oxid or the like to an aliphatic alcohol having 1 or more and 18 or less carbon atoms.
  • polyvinyl ethers examples include polymethyl vinyl ether, polyethyl vinyl ether, poly (n-propyl vinyl ether), and polyisopropyl vinyl ether.
  • the acid value of the lubricating oil is not particularly limited, but is 0.1 mgKOH / g or less or 0.05 mgKOH / g in order to prevent corrosion of metals used in heat transfer systems and the like and to prevent decomposition of the lubricating oil.
  • the following is preferable.
  • the acid value means an acid value measured in accordance with Japanese Industrial Standards JIS K2501.
  • the ash content of the lubricating oil is not particularly limited, but is preferably 100 ppm or less or 50 ppm or less in order to improve the thermal stability and chemical stability of the lubricating oil and suppress the generation of sludge and the like.
  • the ash content means the value of the ash content measured in accordance with Japanese Industrial Standards JIS K2272.
  • the kinematic viscosity of the lubricating oil is not particularly limited, but the kinematic viscosity at 40 ° C. is preferably 3 to 1000 mm 2 / s, 4 to 500 mm 2 / s, or 5 to 400 mm 2 / s.
  • the kinematic viscosity at 100 ° C. is preferably 1 to 100 mm 2 / s.
  • Stabilizers examples include nitro compounds, epoxy compounds, phenols, imidazoles, amines, phosphate esters, hydrocarbons and the like.
  • nitro compound examples include known compounds, but examples thereof include aliphatic and / or aromatic derivatives.
  • aliphatic nitro compound include nitromethane, nitroethane, 1-nitropropane, 2-nitropropane and the like.
  • aromatic nitro compounds include nitrobenzene, o-, m- or p-dinitrobenzene, trinitrobenzene, o-, m- or p-nitrotoluene, o-, m- or p-ethylnitrobenzene, 2,3-2.
  • Examples of the epoxy compound include ethylene oxide, 1,2-butylene oxide, propylene oxide, styrene oxide, cyclohexene oxide, glycidol, epichlorohydrin, glycidyl methacrylate, phenylglycidyl ether, allyl glycidyl ether, methyl glycidyl ether, and butyl glycidyl ether, 2.
  • -Monoepoxy compounds such as ethylhexyl glycidyl ether, polyepoxy compounds such as diepoxybutane, vinylcyclohexendioxide, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, glycerin polyglycidyl ether, and trimethylolpropanthrglycidyl ether. And so on.
  • Phenols include phenols containing various substituents such as alkyl groups, alkenyl groups, alkoxy groups, carboxyl groups, carbonyl groups and halogens in addition to hydroxyl groups.
  • substituents such as alkyl groups, alkenyl groups, alkoxy groups, carboxyl groups, carbonyl groups and halogens in addition to hydroxyl groups.
  • Phenol and the like are exemplified.
  • imidazoles examples include 1-methylimidazole, 1-n-butylimidazole, which has a linear or branched chain and has an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group, or an aryl group as a substituent at the N-position.
  • amines examples include benzylamine, hexylamine, diisopropylamine, diisobutylamine, di-n-propylamine, diallylamine, triethylamine, N-methylaniline, pyridine, morpholine, N-methylmorpholin, triallylamine, allylamine, ⁇ -methyl.
  • Benzylamine, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, propylamine, isopropylamine, dipropylamine, butylamine, isobutylamine, dibutylamine, tributylamine, dibenzylamine, tribenzylamine, 2-ethylhexylamine, aniline , N, N-dimethylaniline, N, N-diethylaniline, ethylenediamine, propylenediamine, diethylenetriamine, tetraethylenepentamine, benzylamine, dibenzylamine, diphenylamine, diethylhydroxylamine and the like are exemplified. These may be used alone or in combination of two or more.
  • hydrocarbons examples include aromatic unsaturated hydrocarbons such as ⁇ -methylstyrene and p-isopropenyltoluene, isoprenes, propadiens, and terpenes. These may be used alone or in combination of two or more.
  • the stabilizer may be added in advance to one or both of the azeotropic composition and the lubricating oil, or may be added to a heat transfer device (for example, a condenser) in the heat transfer system.
  • the amount of the stabilizer used is not particularly limited, but is 0.001% by mass with respect to the azeotropic (like) composition or the mixture (100% by mass) of the azeotropic (like) composition and the lubricating oil. It is preferably 10% by mass or less, 0.01% by mass or more and 5% by mass or less, or 0.02% by mass or more and 2% by mass or less.
  • the water content is low. Specifically, it is preferably 50 ppm or less, 20 ppm or less, or 10 ppm or less based on the total amount of the heat transfer medium. By controlling the water content, it is possible to prevent adverse effects on the thermal stability, chemical stability and electrical insulation of the azeotropic composition and other additives.
  • a desiccant useful for removing water may be used as an additive.
  • the desiccant may be selected from activated alumina, silica gel, molecular sieves typified by zeolite, and combinations thereof.
  • the type of molecular sieve is not particularly limited, but zeolite is particularly preferable in terms of chemical reactivity with a heat transfer medium, hygroscopic ability as a desiccant, and breaking strength.
  • Typical zeolites include Zeolite A-3 and Zeolite A-4 (manufactured by Tosoh Corporation), but the zeolite is not limited to these zeolites.
  • the pore size of the zeolite is not particularly limited, but 3A or 4A is particularly preferable in order to selectively remove only the water content in the system without adsorbing the heat transfer medium.
  • the heat transfer medium is less likely to be adsorbed on the zeolite, and the corrosion of the materials constituting the system and the generation of insoluble products can be suppressed.
  • the size of the zeolite-based desiccant is not particularly limited, but is preferably 0.5 mm or more and 5 mm or less in order to prevent clogging in the system and not to reduce the drying capacity.
  • the shape of the zeolite-based desiccant is not particularly limited, but is preferably spherical or cylindrical.
  • the azeotropic composition according to one of the embodiments of the present invention is HCFO trans-1-chloro-3,3,3-trifluoropropene and 1-chloro-1,3,3,3-. Includes tetrafluoropropene. Since HCFO is highly compatible with various solvents, it is possible to easily formulate a uniform composition. However, in general, such a composition has an inherent problem that the liquid composition is liable to fluctuate. That is, even if a plurality of types of liquids can be mixed and compatibility can be ensured, the problem that the liquid composition tends to fluctuate due to the difference in the volatility of each component cannot be avoided.
  • the low boiling point component (component with high vapor pressure), which generally has high volatility, volatilizes preferentially and enters the cleaning tank.
  • High boiling point components with low volatility are concentrated.
  • the concentration of the low boiling point component in the cleaning liquid may decrease with time, causing cleaning failure.
  • the cleaning liquid may become a flammable composition if the nonflammable component volatilizes preferentially.
  • the liquid composition may fluctuate during long-term driving of the heat transfer system. If the liquid composition fluctuates, the heat capacity, viscosity, or affinity with the lubricant of the heat transfer medium may change, and the operating performance of the heat transfer system may deteriorate.
  • the non-azeotropic binary (multidimensional) liquid composition changes its composition when it is used as a heat transfer medium, when it is filled in a refrigerating and air-conditioning device from a storage container, or when it leaks from a heat transfer device. May occur.
  • a binary (multidimensional) liquid composition is used as a cleaning agent or heat transfer medium, the liquid composition is frequently analyzed and constantly formulated in the appropriate proportions to the proper composition range. And the volatile components must be replenished.
  • such liquid composition control can be a heavy work load.
  • the inventors conducted a gas-liquid equilibrium experiment with trans-1-chloro-3,3,3-trifluoropropene and 1-chloro-1,3,3,3-tetrafluoropropene.
  • azeotropic (like) composition in which the composition of the gas and liquid was substantially the same as the liquid phase of the gas phase.
  • the azeotropic composition according to one of the embodiments of the present invention that is, trans-1-chloro-3,3,3-trifluoropropene and cis-1-chloro-1,3,3 , 3-Tetrafluoropropene, or trans-1-chloro-3,3,3-trifluoropropene, cis-1-chloro-1,3,3,3-tetrafluoropropene, trans-1-chloro-1 , 3, 3,3-
  • the composition containing tetrafluoropropene was found to be an azeotropic composition in which the composition of the gas phase portion and the composition of the liquid phase portion are substantially the same in a predetermined composition. ..
  • trans-1-chloro-3,3,3-trifluoropropene and 1-chloro-1,3,3,3-tetrafluoropropene contained in the present co-boiling (like) composition are carbon-carbon in the molecule. Since it contains a double bond between them and has high reactivity with hydroxyl radicals, it has a short life in the atmosphere and has excellent environmental performance with a small ozone layer depletion potential and global warming potential. Therefore, by using this azeotropic composition, it is possible to provide a heat transfer medium having a small load on the environment, a small change in composition, and a heat cycle characteristic equal to or higher than that of an existing refrigerant.
  • the refrigerating cycle system uses an evaporator to transfer the heat of air, water, brine, silicone oil, or other object to be cooled as latent heat of evaporation of the refrigerant, and compresses the generated refrigerant vapor with work in the compressor.
  • This is a system in which the heat of condensation is discharged and liquefied by the condenser, the condensed refrigerant is squeezed to low pressure and low temperature by the expansion valve, expanded, and sent to the evaporator for evaporation.
  • the refrigerant receives the heat energy of the object to be cooled in the evaporator to cool the object to be cooled and lower the temperature to a lower temperature.
  • this system is a system that heats the load fluid and raises the temperature to a higher temperature by applying the thermal energy of the refrigerant to the load fluid in the condenser, it can be applied to various known systems.
  • the heat transfer medium described in the first embodiment is used as the refrigerant in the evaporator and the condenser. Thereby, cold water of 10 ° C. or lower, 7 ° C. or lower, or 5 ° C. or lower can be generated.
  • FIG. 1 is a schematic view showing an example of a refrigeration cycle system 100 to which a heat transfer medium according to an embodiment of the present invention can be applied.
  • the refrigeration cycle system 100 includes an evaporator 11 that takes in heat and a condenser 13 that supplies heat. Further, the refrigeration cycle system 100 includes a compressor 12 that pressurizes the heat transfer medium vapor that has exited the evaporator 11, and an expansion valve 14 that throttles and expands the supercooled heat transfer medium that has exited the condenser 13.
  • the refrigeration cycle system 100 further includes piping for transporting heat transfer media between these elemental devices.
  • the refrigeration cycle system 100 may include an internal heat exchanger, a dryer, a liquid separator, an oil recovery device, and a non-condensable gas separator.
  • the type of compressor is not particularly limited, but it may be a single-stage or multi-stage centrifugal compressor or a positive displacement compressor.
  • a positive displacement compressor a rotary piston compressor, a rotary vane compressor, a scroll compressor, a screw compressor, a piston / crank compressor or a piston / swash plate compressor may be used.
  • a single-stage or multi-stage centrifugal compressor In order to maximize the heat transfer characteristics of the heat transfer medium, it is particularly preferable to use a single-stage or multi-stage centrifugal compressor.
  • the trans-1-chloro-3,3,3-trifluoropropene and 1-chloro-1,3,3,3-tetrafluoropropene contained in the heat transfer medium according to the embodiment of the present invention are the same as the existing refrigerant.
  • the vapor pressure is lower than that, and depending on the operating conditions, the inside of the thermal cycle system may be operated under negative pressure.
  • Oxygen contained in the air that may be mixed during the negative pressure operation reacts with the heat transfer medium and the lubricating oil, so it is preferable to remove it to the outside of the heat cycle system by using a non-condensable gas separator or the like.
  • the heat transfer medium according to the embodiment of the present invention has a large global warming potential (GWP) exemplified by 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) and an ozone depletion potential.
  • GWP global warming potential
  • HCFC-123 2,2-dichloro-1,1,1-trifluoroethane
  • ODP oxygen depleted potential
  • one of the embodiments of the present invention is a method of replacing the environmental load type heat transfer medium used in the refrigeration cycle system with the heat transfer medium of the present invention.
  • One aspect of this method is to recover all the contained environmentally-friendly heat transfer medium and then fill the heat transfer medium according to the embodiment of the present invention.
  • the method of replacing the heat transfer medium is not particularly limited, but it is desirable to perform it when the operation of the refrigeration cycle system is stopped.
  • the recovery device used when recovering the fluorocarbon refrigerant in order to reduce the load on the environment.
  • the method for filling the heat transfer medium according to the embodiment of the present invention is not particularly limited, but the heat transfer medium may be filled by using the pressure difference between the heat transfer medium and the refrigeration cycle system, and may be filled by using mechanical power such as a pump. You may.
  • the high temperature heat pump cycle system is a steam compression type heat transfer system similar to the refrigeration cycle system 100 shown in FIG. 1, and is a system intended for heating by heat exchange in a condenser.
  • the heat transfer medium according to the embodiment of the present invention is used as the working medium used for the condenser and the evaporator. From this, hot water, pressurized hot water or steam of 60 ° C. or higher, 80 ° C. or higher, 110 ° C. or higher can be generated.
  • the high-temperature heat pump cycle system may include an internal heat exchanger, a dryer, a liquid separator, an oil recovery device, and a non-condensable gas separator. ..
  • the condensation temperature of the heat transfer medium in the high temperature heat pump cycle system is 60 ° C. or higher and 170 ° C. or lower, preferably 80 ° C. or higher and 150 ° C. or lower.
  • the condensation pressure of the heat transfer medium is determined by the composition of the heat transfer medium and the condensation temperature. That is, the condensation pressure is equal to the saturated vapor pressure of the heat transfer composition at the condensation temperature.
  • the condensation pressure exceeds 5.0 MPa, the compressor, the condenser and the piping component are required to have high withstand voltage performance, and as a result, the cost increases.
  • the condensation pressure can be made lower than 5.0 MPa, and known compressors, condensers, evaporators, expansion valves and piping parts can be used.
  • the type of compressor is not particularly limited, but it may be a single-stage or multi-stage centrifugal compressor or a positive displacement compressor.
  • a positive displacement compressor a rotary piston compressor, a rotary vane compressor, a scroll compressor, a screw compressor, a piston / crank compressor or a piston / swash plate compressor may be used.
  • the energy equal to or higher than the electric power input to the heated medium in the condenser is heated through the following steps (a) to (d). It can be taken out as energy.
  • the working medium in a liquid state is heat-exchanged with the fluid to be cooled (air, water, etc.) and vaporized.
  • B) The vaporized working medium is taken out from the heat exchanger, the vaporized working medium is passed through a compressor, and high-pressure superheated steam is supplied.
  • the heat transfer medium according to the embodiment of the present invention has a large global warming potential (GWP) exemplified by 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) and ozone. It can be applied to high temperature heat pump cycle systems that use or are designed to use a heat transfer medium (environmentally loaded heat transfer medium) for which the depletion potential (ODP) is not negligible.
  • GWP global warming potential
  • HCFC-123 2,2-dichloro-1,1,1-trifluoroethane
  • ODP depletion potential
  • one of the embodiments of the present invention is a method of replacing the environmental load type heat transfer medium used in the high temperature heat pump cycle system with the heat transfer medium of the present invention.
  • One aspect of this method is substantially the same as the method of replacing the environmental load type heat transfer medium used in the above-mentioned refrigeration cycle system with the heat transfer medium according to the embodiment of the present invention.
  • FIG. 2 is a schematic view showing an example of the organic Rankine cycle system 200 according to the embodiment of the present invention.
  • heat energy 50 ° C. or higher and 200 ° C. or lower, or 80 ° C. or higher and 150 ° C. or lower can be converted into mechanical energy. ..
  • the organic Rankine cycle system 200 includes an evaporator 20 (boiler) that receives heat and a condenser 21 (condenser) that supplies heat. Further, the organic Rankine cycle system 200 has an expander 22 that adiabatically expands the working medium, a circulation pump 23 that increases the pressure of the working medium exiting the condenser 21 and consumes electric power, and a working medium between these elements. It has a pipe for transportation, and drives a generator 24 that generates electric power by an expander 22.
  • the type of the inflator is not particularly limited, but may be a single-stage or multi-stage centrifugal inflator or a positive displacement inflator.
  • the organic Rankine cycle system 200 may include an internal heat exchanger, a dryer, a liquid separator, an oil recovery device, and a non-condensable gas separator in addition to the elemental devices.
  • non-condensable gas is mixed in the organic Rankine cycle system 200, it will have adverse effects such as poor heat transfer in the condenser and evaporator and an increase in operating pressure. Therefore, take measures to prevent non-condensable gas from being mixed in the system. It is preferable to take it. Therefore, it is preferable to provide a non-condensable gas separator or the like.
  • the organic Rankine cycle system 200 in the evaporator, heat energy is supplied from the heating source to the working medium, and the working medium that has become steam in a high temperature and high pressure state is adiabatically expanded by an expander, and the work generated by this adiabatic expansion causes the work. , Drive a generator to generate electricity.
  • the working medium vapor after adiabatic expansion is condensed by a cooling source in the condenser to become a liquid, which is then transferred to the evaporator by a pump.
  • the fluid to be cooled or the fluid to be heated that functions as a reduction in heating and a reduction in cooling includes air, water, brine, silicone oil, and the like. These are preferably selected and used depending on the cycle operating temperature conditions.
  • hot water of 50 ° C. or higher and 200 ° C. or lower, or hot water of 80 ° C. or higher and 120 ° C. or lower, pressurized hot water, or steam may be used.
  • waste heat at a medium and low temperature of 200 ° C. or lower may be used.
  • renewable thermal energy may be used as a heating reduction.
  • heat energy is converted into mechanical energy through the following steps (a) to (e), and the heat energy is converted into mechanical energy, and then a generator is used. It can be extracted as electrical energy.
  • the working medium of the liquid is heat-exchanged with the fluid to be cooled (heating source) and vaporized (phase change from liquid to gas).
  • B) Take out the vaporized working medium from the heat exchanger.
  • the vaporized working medium is expanded by passing it through an expander (turbine for power generation) 22 and converted into mechanical (electrical) energy.
  • the evaporation temperature of the working medium is 50 ° C. or higher and 200 ° C. or lower, or 80 ° C. or higher and 150 ° C. or lower.
  • the evaporation pressure of the working medium is determined by the composition of the working medium and the evaporation temperature. That is, the evaporation pressure is equal to the saturated vapor pressure of the working medium at the evaporation temperature.
  • the evaporation pressure exceeds 5.0 MPa, the compressor, the condenser and the piping component are required to have high withstand voltage performance, which causes an increase in cost.
  • the evaporation pressure can be made lower than 5.0 MPa, and known expanders, condensers, pumps and piping parts can be used.
  • the heat transfer medium according to the embodiment of the present invention has a large global warming potential (GWP) exemplified by 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) and ozone. It can be applied to organic Rankine cycle systems that use or are designed to use working media (environmentally loaded working media) for which the depletion potential (ODP) is not negligible.
  • GWP global warming potential
  • ODP depletion potential
  • one of the embodiments of the present invention is a method of replacing the environmental load type working medium used in the organic Rankine cycle system with the heat transfer medium according to the embodiment of the present invention.
  • One aspect of this method is to recover all the contained environmentally friendly working medium and then fill it with the heat transfer medium according to the embodiment of the present invention.
  • the method of replacing the working medium is not particularly limited, but it is desirable to perform it when the operation of the organic Rankine cycle system is stopped.
  • the working medium accommodating portion of the organic Rankine cycle system may be depressurized by a vacuum pump.
  • the filling method of the heat transfer medium is not particularly limited, but may be filled by using the pressure difference between the heat transfer medium and the organic Rankine cycle system, or may be filled by using mechanical power such as a pump.
  • the dynamic heat transfer medium according to the embodiment of the present invention is nonflammable and is a general-purpose environmentally-friendly working medium of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123).
  • HCFC-123 2,2-dichloro-1,1,1-trifluoroethane
  • the impact on the environment is extremely small in comparison.
  • the heat transfer medium according to the embodiment of the present invention is excellent in heat transfer and heat energy conversion characteristics, and therefore can be suitably used for an organic Rankine cycle system.
  • index for evaluating the characteristics of the working medium used in the organic Rankine cycle system examples include power generation cycle efficiency ( ⁇ cycle) and expander size parameter (SP).
  • Power cycle efficiency ( ⁇ cycle) is a generally accepted measure of working medium performance and is particularly useful for representing the relative thermodynamic efficiency of working medium in the Rankine cycle.
  • the ratio of the electric energy generated by the working medium in the expander and the generator to the thermal energy supplied from the heating source when the working medium evaporates is expressed by ⁇ cycle.
  • the inflator size parameter is a scale for evaluating the size of the inflator and is generally accepted (Energy 2012, Vol. 38, P136-143).
  • SP inflator size parameter
  • the value of the power generation cycle efficiency when the value of the power generation cycle efficiency is high, the value of SP is also high, and conversely, when the value of the power generation cycle efficiency is low, the value of SP is low. That is, there is a trade-off relationship between the value of the power generation cycle efficiency and the value of SP.
  • the power generation cycle efficiency is high, and in order to satisfy the demand for miniaturization of the Rankine cycle system, it is preferable that the SP value is low. With conventional working media, it has been difficult to satisfy this condition within a practical range.
  • the heat transfer medium according to the embodiment of the present invention is a novel heat transfer medium capable of adjusting the value of the power generation cycle efficiency ( ⁇ cycle) and the value of the expander size parameter (SP) within a practical range.
  • the heat transfer medium according to the embodiment of the present invention has 2,2-dichloro-1,1 which are generally used for the volume flow rate at the inlet of the expander and the volumetric flow rate at the outlet of the expander when generating the same amount of electric energy.
  • 1-trifluoroethane (HCFC-123) can be lower than those of, and thus the system can be miniaturized.
  • the azeotropic composition according to the embodiment of the present invention has excellent detergency.
  • the field of cleaning using this azeotropic composition is not particularly limited, but so far CFC-113 (chlorotrifluoromethane), HCFC-141b (1,1-dichloro-1-fluoroethane), HCFC-225 ( Of 3,3-dichloro-1,1,1,2,2-pentafluoropropane (HCFC-225ca) and 1,3-dichloro-1,1,2,2,3-pentafluoropropane (HCFC-225cc)
  • the field in which the mixture) is used as a cleaning agent is suitable.
  • cleaning of electronic parts printed boards, liquid crystal displays, magnetic recording parts, semiconductor materials, etc.
  • electrical parts precision mechanical parts, resin processed parts, optical lenses, clothing, etc., automobiles, motorcycles, etc.
  • cleaning of various vehicles, vehicles, and transportation such as bicycles, construction machinery, agricultural machinery, aircraft, railroad vehicles, and ships (especially cleaning of these parts and brakes) can be mentioned.
  • the type of stain is not limited, but the stain that can be removed by CFC-113, HCFC-141b, and HCFC-225 can be removed by optimizing the composition ratio of this azeotropic composition.
  • examples of such stains include particles, oils, greases, waxes, fluxes, inks and the like.
  • the cleaning method is not particularly limited, and a conventionally used method can be adopted. Specific examples thereof include immersion, spraying, boiling cleaning, ultrasonic cleaning, steam cleaning, or a combination thereof. Above all, a method of removing stains by dipping is particularly preferable.
  • the immersion means that an object (object to be cleaned) to which dirt such as oil is attached is brought into contact with the main azeotropic composition. By immersing the object to be cleaned in the azeotropic composition, the stains adhering to the object to be cleaned can be dissolved in the azeotropic composition and the stains can be removed from the composition to be cleaned.
  • other cleaning operations can be combined.
  • spray cleaning for example, a method of mixing the azeotropic composition with an injection gas to make it aerosolized and spraying it onto various articles to be cleaned is also one of the preferred embodiments.
  • various surface active agents may be added to the cleaning agent containing the azeotropic composition as needed.
  • the surfactant include sorbitan aliphatic esters such as sorbitan monooleate and sorbitan trioleate; polyoxyethylene sorbit fatty acid esters such as sorbit tetraoleate of polyoxyethylene; polyethylene glycols such as polyoxyethylene monolaurate.
  • Fatty acid esters such as polyoxyethylene lauryl ether; Polyoxyethylene alkyl phenyl ethers such as polyoxyethylene nonylphenyl ether; Polyoxyethylene alkylamine fatty acid amides such as polyoxyethylene oleic acid amide Examples thereof include nonionic surfactants such as. These surfactants may be used alone or in combination of two or more. In addition to these nonionic surfactants, cationic surfactants and anionic surfactants are added to the detergents containing this co-boiling (like) composition for the purpose of synergistically improving the detergency and surface action. You may.
  • the amount of the surfactant used varies depending on the type, but it may be such that it does not interfere with the properties of the azeotropic composition, and is usually 0.1% by mass or more in the azeotropic composition 20. It is about mass% or less, and preferably about 0.3% by mass or more and 5% by mass or less.
  • stabilizers may be further added to the cleaning agent containing the azeotropic composition when used under harsh conditions.
  • the type of stabilizer is not particularly limited, but one that is azeotropically distilled by a distillation operation or one that forms an azeotropic mixture is more preferable.
  • Specific examples of such stabilizers include aliphatic nitro compounds such as nitromethane, nitroethane and nitropropane; aromatic nitro compounds such as nitrobenzene, nitrotoluene, nitrostyrene and nitroaniline; dimethoxymethane, 1,2-dimethoxyethane, and the like.
  • Ethers such as 1,4-dioxane, 1,3,5-trioxane, tetrahydrofuran; epoxides such as glycidol, methylglycidyl ether, allylglycidyl ether, 1,2-butylene oxide, phenylglycidyl ether, cyclohexene oxide, epichlorohydrin and the like; Unsaturated hydrocarbons such as hexene, heptene, pentadiene, cyclopentene, cyclohexene; olefinic alcohols such as allyl alcohol and 1-buten-3-ol; 3-methyl-1-butin-3-ol, 3-methyl- Acetylene-based alcohols such as 1-pentin-3-ol; examples thereof include acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate and vinyl methacrylate.
  • phenols, amines and benzotriazoles may be used in combination. These stabilizers may be used alone or in combination of two or more.
  • the amount of the stabilizer used varies depending on the type of stabilizer, but it may be such that it does not interfere with the properties of the azeotropic composition, and is usually 0.01% by mass or more in the azeotropic composition. It is about 10% by mass or less, and preferably about 0.1% by mass or more and 5% by mass or less.
  • the composition change is very small even if volatilization occurs over time, and the composition is always changed. It is possible to obtain a stable cleaning ability. In addition, it is possible to avoid a change in composition in the storage container during storage.
  • various solvents may be added to the detergent containing the azeotropic composition, if necessary.
  • the solvent include water, hydrocarbons, alcohols, ketones, ethers, esters, chlorocarbons, hydrofluorocarbons (HFCs), hydrofluoroethers (HFEs), and hydrochlorofluoroolefins (HCFOs) (HCFOs).
  • HFCs hydrofluorocarbons
  • HFEs hydrofluoroethers
  • HCFOs hydrochlorofluoroolefins
  • Trans-1-chloro-3,3,3-tetrafluoropropene excluding 1-chloro-1,3,3,3-tetrafluoropropene
  • hydrofluoroolefins (HFOs) and the like can be mentioned.
  • the amount of these solvents added is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 20% by mass or less, based on the azeotropic composition. It is particularly
  • trans-1-chloro-3,3,3-trifluoropropene is commercially produced as a foaming agent, and a formulation optimized for trans-1-chloro-3,3,3-trifluoropropene is proposed.
  • 1-chloro-1,3,3,3-tetrafluoropropene is added to the formulation, the heat insulating property of the rigid urethane foam can be improved without major modification of the formulation.
  • This azeotropic composition containing 1-chloro-1,3,3,3-tetrafluoropropene and 1-chloro-3,3,3-trifluoropropene is a rigid polyurethane foam or polyisocyanurate. It can be used as a foaming agent used in the production of foam.
  • the production of rigid urethane foam or polyisocyanurate foam requires a premix, which is a mixture of foaming agents, one or more polyols, catalysts, foam stabilizers, flame retardants, water and the like. Is.
  • the azeotropic composition according to the present invention as a foaming agent for this premix and reacting it with isocyanate, the desired rigid polyurethane foam or polyisocyanurate foam can be produced.
  • the azeotropic composition to which the above-mentioned substances are added is also within the technical category of the present invention.
  • the isocyanate includes aromatics, cyclic aliphatics, chain aliphatics, etc., and generally bifunctional ones are used.
  • isocyanates include tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanate, tolylene diisocyanate, naphthalin diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, and dicyclohexylmethane isocyanate.
  • polyisocyanates such as, prepolymer-type modified products thereof, nurate-modified products, and urea-modified products. These are used alone or in admixture.
  • polystyrene resin examples include polyether-based polyols, polyester-based polyols, polyhydric alcohols, hydroxyl group-containing diethylene-based polymers, etc., but polyether-based polyols are generally used. Further, a polyester-based polyol or a polyether-based polyol may be used as a main component, and other polyols may be used.
  • polyester-based polyols examples include phthalic anhydride, waste polyester, compounds derived from castor oil, condensed polyester polyols, lactone-based polyester polyols, polycarbonate polyols, and the like.
  • the hydroxyl value (OH value) of the polyester polyol is 100 mgKOH / g or more and 400 mgKOH / g or less, and the viscosity is 200 Pa ⁇ s /. It is preferably 25 ° C. or higher and 4000 mPa ⁇ s / 25 ° C. or lower.
  • polyether polyol in addition to polypropylene glycol, polytetramethylene glycol and their modified products, a compound containing active hydrogen such as sugar, polyhydric alcohol and alkanolamine is used as an initiator, and propylene oxide, ethylene oxide and epichlorohydrin are used as an initiator. , Butylene oxide or the like to which a cyclic ether is added is preferably used.
  • polyether polyol one having a hydroxyl value of 400 mgKOH / g or more and 1000 mgKOH / g or less is usually used.
  • the catalyst contained in the premix includes an organometallic catalyst and an organic amine catalyst.
  • an organotin compound is preferably used, and examples thereof include stanas octoate, stanas laurate, dibutyl tin dilaurate, dibutyl tin dimarate, dibutyl tin diacetate, and dioctyl tin diacetate.
  • the organic amine-based catalyst include tertiary amines such as triethylenediamine, N-ethylmorpholine, bis (2-dimethylaminoethyl) ether, N, N', N'-triethylethanolamine and the like.
  • an organosilicon compound-based surfactant is usually used, and Shinetsu Silicone (SH-193, SH-195, SH-200, SRX-253, etc., manufactured by Toray Silicone Co., Ltd.) F-230, F-305, F-341, F-348, etc. manufactured by Nippon Unicar Co., Ltd., L-544, L-5310, L-5320, L-5420, L-5720 manufactured by Nippon Unicar Co., Ltd. or Toshiba Silicone Co., Ltd. ) TFA-4200, TFA-4202 and the like.
  • the flame retardant contained in the premix is a phosphoric acid ester used for rigid polyurethane foam or polyisocyanurate foam, and is tris (2-chloroethyl) phosphate, tris (2-chloropropyl) phosphate, tris (butoxyethyl). Examples thereof include phosphate, trismethyl phosphate, trisethyl phosphate, triphenyl phosphate, tris (isopropylphenyl) phosphate and the like.
  • additives added to the premix include UV inhibitors, scorch inhibitors, premix storage stabilizers and other additives for improving the physical properties of rigid polyurethane foams or polyisocyanurate foams.
  • the addition of water contributes to the economic efficiency of the rigid polyurethane foam or polyisocyanurate foam and the reduction of the vapor pressure of the premix because the amount of the fluorine-based foaming agent used is reduced.
  • epoxy compounds such as 1,2-epoxybutane, 1,2-epoxyhexane, and epoxycyclohexane, ⁇ -methylstyrene, p- It is preferable to add an unsaturated compound such as isopropenyltoluene or amylene or a stabilizer such as a nitro compound such as nitromethane, nitroethane, nitropropane, nitrotoluene or nitrobenzene to the premix.
  • the azeotropic composition according to the embodiment of the present invention is used as a foaming agent, it is usually 5 parts by mass or more and 80 parts by mass or less, preferably 10 parts by mass or more and 70 parts by mass or less, per 100 parts by mass of the polyol. It is preferably used in an amount of 15 parts by mass or more and 60 parts by mass or less.
  • a rigid urethane foam or polyisocyanate having a density of 20 kg / m 3 or more, particularly 30 kg / m 3 or more and 80 kg / m 3 or less. Nurate foam can be manufactured.
  • the mixing temperature is preferably 5 ° C. or higher and 50 ° C. or lower, 10 ° C. or higher and 40 ° C. or lower, or 15 ° C. or higher and 35 ° C. or lower. Since this azeotropic composition has vapor pressure, it volatilizes at these temperatures, but since the composition of the gas-liquid phase is substantially the same, it is excellent in foam, heat insulating property, shape stability at low temperature, etc. ..
  • the method for producing a rigid polyurethane foam or a polyisocyanurate foam using the azeotropic composition according to the embodiment of the present invention is not particularly limited, and various conventionally known methods can be adopted. For example, it can be produced by a one-shot method or a prepolymer method. Further, as the foaming method for obtaining the foam, various foaming methods such as in-situ foaming, slab foaming, injection foaming (filling method, molding method), laminate foaming, and spray foaming can be adopted.
  • the azeotropic composition according to the embodiment of the present invention has very excellent properties as a silicone solvent. That is, this azeotropic composition has substantially zero ozone depletion potential and global warming potential, is nonflammable, has excellent volatility, and dissolves various silicones at an arbitrary ratio. be able to. In particular, since this azeotropic composition has a wide azeotropic composition range, it is possible to select the optimum composition according to various silicone compounds.
  • azeotropic composition is used as a silicone solvent.
  • a silicone coating solution obtained by dissolving silicone as a lubricant in a volatile solvent is applied to the object, and then the solvent is evaporated.
  • the injection needle is coated with silicone to improve slipperiness.
  • silicone used for example, various silicones used for surface coating can be used, but the present invention is not limited to this, and one kind or a mixture of two or more kinds may be used.
  • straight silicone oils such as dimethyl silicone oil, methyl phenyl silicone oil, and methyl hydrogen silicone oil bonded with a methyl group, a phenyl group, and a hydrogen atom as substituents, and components secondarily derived from the straight silicone oil.
  • Silicone such as modified silicone oil such as reactive silicone oil and non-reactive silicone oil may be used.
  • Examples of the reactive silicone oil include amino modification, diamino modification, epoxy modification, carboxy modification, carbinol modification, methacryl modification, phenol modification, heterologous functional group modification and the like, and the non-reactive silicone includes polyether modification. , Methylstyryl denaturation, alkyl denaturation, higher fatty acid ester denaturation, hydrophilic special denaturation, fluorine denaturation and the like.
  • the silicone include those containing a copolymer of aminoalkylsiloxane and dimethylsiloxane as the main component, reaction products of amino group-containing silane and epoxy group-containing silane, and polydiorganosiloxane containing silanol groups.
  • a reaction product as the main component a silicone mixture consisting of silicone containing an amino group at the side chain or the terminal and polydiorganosiloxane, an amino group-containing alkoxysilane, an epoxy group-containing alkoxysilane, and a silanol group at both ends. Examples thereof include, but are not limited to, a mixture of a silicone obtained by reacting a silicone having a siloxane and a non-reactive silicone.
  • the ratio of the azeotropic (like) composition as the silicone solvent in the silicone solution for coating is preferably 0.1% by mass or more and 80% by mass or less, or 1% by mass or more and 20% by mass or less. By satisfying the above ratio, a coating film having a sufficient thickness can be formed with a uniform thickness.
  • a silicone coating solution containing the azeotropic composition is applied to the surface of the object, and the azeotropic composition is evaporated and removed to form a silicone film on the surface of the object.
  • the object to which the method according to the present embodiment can be applied can be applied to various materials such as a metal member, a resin member, a ceramic member, and a glass member, and in particular, a needle tube portion of an injection needle and a dispenser (liquid quantitative ejection). It can be applied to the spring of the device), the spring part, and the like.
  • the needle tube portion of the injection needle is immersed in a silicone coating solution and is applied to the outer surface of the needle tube portion.
  • a dip coating method may be applied in which the solvent composition containing the azeotropic composition is evaporated by leaving it at room temperature or under heating to form a silicone film.
  • the azeotropic composition according to the embodiment of the present invention is also useful as a solvent for lubricants other than silicone.
  • the lubricant other than silicone include mineral oil-based lubricants, synthetic oil-based lubricants, and fluorine-based lubricants.
  • a fluorine-based lubricant is preferable because it has excellent solubility or dispersibility.
  • the fluorine-based lubricant refers to a lubricant having a fluorine atom in the molecule, and examples thereof include, but are not limited to, fluorine-based solid lubricants such as fluorine oil, fluorine grease, and polytetrafluoroethylene. Since the azeotropic composition according to the embodiment of the present invention has sufficient quick-drying property, it is also suitable as a solvent for forming a lubricant coating film on an article.
  • Aerosol composition Since the azeotropic composition according to the embodiment of the present invention is nonflammable, it can be used in the form of an aerosol composition.
  • the azeotropic composition can be filled in the injector at high pressure, and the azeotropic composition can be injected from the injector. At this time, by mixing the coating film forming composition with the azeotropic (like) composition, the coating film forming composition can be applied to the surface of various articles.
  • this azeotropic composition When this azeotropic composition is used as an aerosol composition, it may further contain a pressor agent.
  • a pressor agent As the pressurizing agent, it is preferable that the pressure fluctuation during use of the injector is small and the pressure agent can be uniformly and evenly injected onto the substrate to be coated.
  • Specific pressor agents include 1,3,3,3-tetrafluoropropene (1234ze), 1,2,2,2-tetrafluoroethane (134a), and 2,3,3,3-tetrafluoropropene (1234ze). 1234yf), dimethyl ether, carbon dioxide, methane, ethane, propane, isobutane and the like.
  • the pressurizing agent may be used in the state of compressed gas or in the state of liquefied gas.
  • Fire extinguishing agent Trans-1-chloro-3,3,3-trifluoropropene and 1-chloro-1,3,3,3-tetrafluoropropene contained in this azeotropic composition both have a vapor pressure. It has a relatively low halogen that suppresses flammability, and a carbon-carbon double bond that is easily decomposed by OH radicals. Therefore, it can be used as a fire extinguishing agent.
  • a nonflammable compound may be further added.
  • the nonflammable compound include nitrogen, carbon dioxide, noble gas, and nonflammable fluorine-containing compound.
  • the nonflammable fluorine-containing compound include fluoroalkanes, fluoroalkenes, fluoroketones, and fluoroethers.
  • Fluoroalkanes include trifluoromethane (HFC-23), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1,2-tetrafluoroethane (HFC-134a), and trifluo iodide.
  • Fluoroalkene includes trans-1,3,3,3-tetrafluoropropene (1234ze (E)), cis-1,3,3,3-tetrafluoropropene (1234ze (Z)), cis-1,1 , 1,4,4,4-hexafluoro-2-butene (1336mzz (Z)), trans-1,1,1,4,4,4-hexafluoro-2-butene (1336mzz (E)), cis -1-Chloro-3,3,3-trifluoropropene (1233zd (Z)), trans-1-chloro-2,3,3,3-tetrafluoropropene (1224yd (E)), 2-bromo-3 , 3,3-Trifluoropropene (2-BTP), 1-bromo-3,3,3-trifluoropropene (1-BTP) and the like.
  • fluoroketone examples include dodecafluoro-2-methylpentane-3-one, tetradecafluoro-2,4-dimethylpentane-3-one, tetradecafluoro-2-methylhexane-3-one and the like.
  • fluoroether examples include pentafluoroethyl methyl ether (HFE-245mc), 1,1,2,2-tetrafluoroethylmethyl ether (HFE-254pc), heptafluoroisopropylmethyl ether (HFE-347mmy), and heptafluoropropylmethyl.
  • fluoroether examples include ether (HFE-347mcc), 1,1,2,2-tetrafluoroethyl-2,2,2-trifluloethyl ether (HFE-347pc-f) and the like.
  • the fire extinguishing agent containing the azeotropic composition may contain a stabilizer.
  • Stabilizers include phenolic compounds, unsaturated hydrocarbon group-containing aromatic compounds, aromatic amine compounds, aromatic thiazine compounds, terpene compounds, quinone compounds, nitro compounds, epoxy compounds, lactone compounds, orthoester compounds, and phthalic acids.
  • Oxidation resistance improver and heat resistance improver such as mono or dialkali metal salt compound, thiodiphenyl ether hydroxide compound, heterocyclic nitrogen-containing compound such as imidazole compound, thiazole compound, triazole compound, amine salt of alkyl acid phosphate or Metal inactivating agents such as those derivatives are exemplified.
  • Fumigant 1-Chloro-1,3,3,3-tetrafluoropropene contained in this azeotropic composition is a colorless and transparent liquid, is nonflammable, and has a high fumigation effect. It can also be used as a fumigant. Therefore, the pests can be effectively exterminated by filling the atomizer with the azeotropic composition and injecting the azeotropic composition onto the pests.
  • a pressor agent for increasing the pressure in the atomizer may be added.
  • the pressor agent include liquefied petroleum gas (LPG) such as propane, propylene, n-butane and isobutane, ethers such as dimethyl ether, compressed gas such as carbon dioxide, nitrogen and compressed air, and 1,1-difluoroethane (HFC-152a). ), 1,1,1,2-tetrafluoroethane (HFC-134a), 2,3,3,3-tetrafluoro-1-propen (HFO-1234yf), trans-1,3,3,3-tetra Fluoropropene (HFO-1234ze) and the like can be mentioned.
  • LPG liquefied petroleum gas
  • HFC-134a 1,1,1,2-tetrafluoroethane
  • HFO-1234yf 2,3,3,3-tetrafluoro-1-propen
  • trans-1,3,3,3-tetra Fluoropropene (HFO-1234ze) and the like can
  • co-boiling (like) composition When this co-boiling (like) composition is used as a steaming agent, other components include water, alcohols such as isopropyl alcohol and ethanol, glycols such as propylene glycol and ethylene glycol, and isoparaffin and normal paraffin. Paraffin-based hydrocarbons, naphthen-based hydrocarbons, petroleum products such as kerosene, solvents such as esters such as isopropyl myristate and hexyl laurate, lactic acid esters, alkylpyrrolidones, polyvinylpyrrolidones, carbonates, nonionic surfactants. , A solubilizing agent such as a cationic surfactant, an anionic surfactant, and an amphoteric surfactant may be added.
  • alcohols such as isopropyl alcohol and ethanol
  • glycols such as propylene glycol and ethylene glycol
  • isoparaffin and normal paraffin Paraffin-based hydro
  • additives such as fungicides, preservatives, synergists, deodorants, fragrances, insecticides, and repellents may be used.
  • the disinfectant and preservative include phenolic compounds such as chloroxylenol, 3-methyl-4-isopropylphenol and timol; quaternary ammonium compounds such as benzalkonium chloride and cetylpyridinium chloride; 3-iodo-.
  • examples thereof include 2-propynylbutylcarbamate, phenoxyethanol, triclosan, N-dichlorofluoromethylthio-N', N'-dimethyl-N-phenylsulfamide and the like.
  • deodorant examples include plant extracts such as tea extract, catechin, and plant polyphenol; lauryl methacrylate, geranyl crotonate, acetophenone myristylate, paramethyl acetophenone benzaldehyde, and the like.
  • fragrances include natural fragrances such as jade, bergamot oil, cinnamon oil, citronellal oil, lemon oil, and lemongrass oil; artificial fragrances such as pinen, limonen, linalool, menthol, borneol, eugenol, citral, citronellal, and geraniol. Examples include fragrances.
  • synergistic agent examples include piperonyl butoxide, octachlorodipropyl ether, N- (2-ethylhexyl) bicyclo [2.2.1] hepto-5-en-2,3-dicarboxyimide and the like.
  • insecticides and repellents include natural pyrethrins, alesulins, resmethrins, flamethrins, praretrins, terraresulins, phthalthrins, phenothrins, permethrins, ciphenothrins, transfluthrins, metoflutrins, profluthrins, empentrins, imiprothrins, ethopheneprox and the like.
  • System compounds Carbamate compounds such as propoxer and carbalyl; Organic phosphorus compounds such as fenitrothione and DDVP; Oxaziazole compounds such as metoxadiazone; Neonicotinoid compounds such as dinotefuran, imidacloprid and acetamiprid; Insect growth regulators such as proxyphen; phenylpyrazole compounds such as fipronil and pyriplol; pyrrol compounds such as chlorphenapir; sulfonamide compounds such as amide flumeth; Examples thereof include insecticidal and repellent essential oils such as.
  • Vapor-liquid equilibrium measurement The following is a composition containing trans-1-chloro-3,3,3-trifluoropropene and cis-1-chloro-1,3,3,3-tetrafluoropropene, and trans-1-chloro.
  • Composition containing -3,3,3-trifluoropropene, cis-1-chloro-1,3,3,3-tetrafluoropropene and trans-1-chloro-1,3,3,3-tetrafluoropropene An example of performing gas-liquid parallel measurement of an object will be described.
  • Example 1 Mixed solution of trans-1-chloro-3,3,3-trifluoropropene and cis-1-chloro-1,3,3,3-tetrafluoropropene Trans-1-chloro-3,3, Trans-1-chloro-3,3,3-trifluoropropene and cis-1-chloro-with different composition ratios of 3-trifluoropropene and cis-1-chloro-1,3,3,3-tetrafluoropropene Each mixed solution (230 g) of 1,3,3,3-tetrafluoropropene was charged into an Osmer-type gas-liquid equilibrium distillation apparatus, and the gas phase composition and liquid phase composition when the equilibrium state was reached were determined by gas chromatography analysis. rice field. The measurement results are shown in Table 1.
  • the mixed solution of trans-1-chloro-3,3,3-trifluoropropene and cis-1-chloro-1,3,3,3-tetrafluoropropene is azeotropic. It can be seen that it forms a composition.
  • Example 2 Trans-1-chloro-3,3,3-trifluoropropene and cis-1-chloro-1,3,3,3-tetrafluoropropene and trans-1-chloro-1,3,3 Mixed solution of 3-tetrafluoropropene Sis-1-chloro-1,3,3,3-tetrafluoropropene and trans-1- instead of cis-1-chloro-1,3,3,3-tetrafluoropropene The same operation as in Example 1 was carried out except that a mixed solution of chloro-1,3,3,3-tetrafluoropropene was used. The gas phase composition and the liquid phase composition when the equilibrium state was reached were determined by gas chromatography. The measurement results are shown in Table 2.
  • the coefficient of performance is a generally accepted measure of refrigerant performance and represents the relative thermodynamic efficiency of a heat transfer medium in a particular heating or cooling cycle, including evaporation or condensation of the heat transfer medium. Especially beneficial to.
  • the ratio of the amount of heat received by the heat transfer medium in the evaporator from the medium to be cooled to the amount of work applied by the compressor when compressing the steam is expressed in COP R.
  • the ratio of the amount of heat released by the heat transfer medium in the condenser to the medium to be heated to the amount of work applied by the compressor when compressing steam is expressed in COP H.
  • the volume capacity of the heat transfer medium represents the amount of heat of cooling or heating given by the heat transfer medium per unit suction volume of the compressor. That is, the larger the volume capacity of the heat transfer medium with respect to a specific compressor, the larger the heat transfer medium can absorb or dissipate heat.
  • the formula for calculating the coefficient of performance (COP R ) of the refrigeration cycle system will be described in detail below.
  • COPR coefficient of performance
  • Examples 3-1 to 3-3 An azeotropic composition comprising trans-1-chloro-3,3,3-trifluoropropene and cis-1-chloro-1,3,3,3-tetrafluoropropene.
  • Refrigeration cycle system used for heat transfer medium Table 3 shows the calculation conditions for the refrigeration cycle system. Under these calculation conditions, the composition ratios of trans-1-chloro-3,3,3-trifluoropropene and cis-1-chloro-1,3,3,3-tetrafluoropropene are different.
  • the coefficient of performance (COP R ), refrigerating capacity (Q R ), and volume capacity (CAP R ) of the refrigeration cycle system using the material as the heat transfer medium were calculated. Under this condition, it was assumed that 7 ° C. cold water was generated by heat exchange between the heat transfer medium and the heat source water in the evaporator.
  • HCFC-123 2,2-dichloro-1,1,1-trifluoroethane
  • COP R coefficient of performance of the refrigeration cycle system
  • Q R refrigerating capacity
  • CAP R volume capacity
  • the boiling point of HCFC-123 is 27.8 ° C under atmospheric pressure, the atmospheric life is 1.3 years, the global warming potential (GWP) is 77 (IPCC 4th evaluation report 2007), and the ozone depletion potential (ODP) is 0. It is 0.02.
  • the refrigeration cycle system coefficient of performance ( COPR ), refrigeration capacity (QR), and volume capacity (CAP R ) of HCFC-123 calculated according to the calculation conditions in Table 3 are 1.0, and the mass ratios are different in Table 4.
  • An azeotropic composition containing trans-1-chloro-3,3,3-trifluoropropene and cis-1-chloro-1,3,3,3-tetrafluoropropene) is used as a heat transfer medium. The calculated result is shown as a relative value.
  • FIG. 3 shows a Ph diagram according to Example 3-1.
  • cycle points 1, 2, 3, and 4 indicate refrigeration cycle system calculation conditions.
  • Examples 4-1 to 4-10 Trans-1-chloro-3,3,3-trifluoropropene, cis-1-chloro-1,3,3,3-tetrafluoropropene, trans-1-chloro- Refrigeration cycle system with azeotropic composition containing 1,3,3,3-tetrafluoropropene Trans-1-chloro-3,3,3-trifluoropropene, cis-1-chloro-1, Performance evaluation of a refrigeration cycle system using an azeotropic composition containing 3,3,3-tetrafluoropropene and trans-1-chloro-1,3,3,3-tetrafluoropropene as a heat transfer medium.
  • the refrigerating cycle system performance coefficient (COP R ), refrigerating capacity (Q R ), and volume capacity (CAP R ) were calculated under the conditions shown in Table 3.
  • FIG. 4 shows a Ph diagram in Example 4-10.
  • cycle points 1, 2, 3, and 4 show the refrigeration cycle system calculation conditions.
  • the refrigeration cycle system coefficient of performance (COP R ), refrigeration capacity, and volume capacity (CAP R ) of HCFC-123 calculated according to the calculation conditions in Table 3 are set to 1.0, and Table 5 shows transformers with different mass ratios.
  • Azeotropic consisting of chloro-3,3,3-trifluoropropene, cis-1-chloro-1,3,3,3-tetrafluoropropene and trans-1-chloro-1,3,3,3-tetrafluoropropene.
  • the calculation result using the azeotropic (like) composition composed of the boiling composition as the heat transfer medium is shown as a relative value.
  • Examples 5-1 to 5-3 Azeotrope consisting of trans-1-chloro-3,3,3-trifluoropropene and cis-1-chloro-1,3,3,3-tetrafluoropropene.
  • Table 6 shows the calculation conditions for the high temperature heat pump cycle system. Under this condition, it is assumed that hot water at 80 ° C. is generated by heat exchange between the heat transfer medium and the heat source water in the condenser. Under these conditions, an azeotropic composition comprising trans-1-chloro-3,3,3-trifluoropropene and cis-1-chloro-1,3,3,3-tetrafluoropropene having different mass ratios. was used as a heat transfer medium to calculate the coefficient of performance (COP H ), heating capacity (Q H ), and volume capacity (CAP H ) of the high temperature heat pump cycle system.
  • COP H coefficient of performance
  • Q H heating capacity
  • CAP H volume capacity
  • Comparative Example 2 Refrigeration cycle system using HCFC-123 Similar to Comparative Example 1, trans-1-chloro-3,3,3-trifluoropropene and cis-1-chloro-1,3,3,3-tetrafluoro
  • COP H high temperature heat pump cycle system performance coefficient
  • FIG. 5 shows a Ph diagram in Example 5-1.
  • cycle points 1, 2, 3, and 4 show high temperature heat pump cycle system calculation conditions.
  • the high temperature heat pump cycle system coefficient of performance (COP H ), refrigerating capacity, and volume capacity (CAP H ) of HCFC-123 calculated according to the calculation conditions in Table 6 are set to 1.0.
  • Examples 6-1 to 6-10 Trans-1-chloro-3,3,3-trifluoropropene, cis-1-chloro-1,3,3,3-tetrafluoropropene, trans-1-chloro- High temperature heat pump cycle system using a co-boiling (like) composition containing 1,3,3,3-tetrafluoropropene Trans-1-chloro-3,3,3-trifluoropropene, cis-1-chloro-1 , 3,3,3-Tetrafluoropropene, Trans-1-chloro-1,3,3,3-Tetrafluoropropene-containing co-boiling (like) composition as heat transfer medium performance of high temperature heat pump cycle system
  • COP H high temperature heat pump cycle system coefficient of performance
  • CAP H volume capacity
  • FIG. 6 shows a Ph diagram in Example 6-10.
  • cycle points 1, 2, 3, and 4 show high temperature heat pump cycle system calculation conditions.
  • the high temperature heat pump cycle system coefficient of performance (COP H ), refrigerating capacity, and volume capacity (CAP H ) of HCFC-123 calculated according to the calculation conditions in Table 6 are set to 1.0, and Table 8 shows transformers with different mass ratios-1. -Includes chloro-3,3,3-trifluoropropene, cis-1-chloro-1,3,3,3-tetrafluoropropene, trans-1-chloro-1,3,3,3-tetrafluoropropene The calculation results using the azeotropic (like) composition as the heat transfer medium are shown as relative values.
  • the azeotropic agent comprising trans-1-chloro-3,3,3-trifluoropropene and 1-chloro-1,3,3,3-tetrafluoropropene according to the embodiment of the present invention. It was found that the coefficient of performance (COP H ) of the high temperature heat pump cycle system using the boiling (like) composition as the heat transfer medium was equivalent to that of the existing refrigerant HCFC-123. It was also found that the volume capacity (CAP H ) was larger than that of HCFC-123.
  • the cis form cis-1-chloro-1,3,3,3-tetrafluoropropene was 71.455 area%, and the trans form was trans-1-chloro.
  • the composition of -1,3,3,3-tetrafluoropropene was 27.570 area%, and the conversion rate of 234fb was 99%.
  • Thermal stability test An azeotropic composition containing trans-1-chloro-3,3,3-trifluoropropene and 1-chloro-1,3,3,3-tetrafluoropropene according to the embodiment of the present invention.
  • the thermal stability test of the object was performed.
  • a SUS304L cylinder (capacity 50 mL) was washed with a sample and dried in a constant temperature bath at 50 ° C. After evacuating the cylinder, 20 g of a sample was added to the cylinder using a fluororesin (PFA) tube. Further, the inside of the cylinder was frozen and degassed using liquid nitrogen (10 minutes was repeated 3 times). Then, the cylinder was put in a constant temperature bath which had been heated to 160 ° C.
  • PFA fluororesin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Lubricants (AREA)

Abstract

ハイドロフルオロオレフィン系又はハイドロクロロフルオロオレフィン系の共沸又は共沸様組成物を提供することを課題の一つとする。この共沸又は共沸様組成物は、トランス-1-クロロ-3,3,3-トリフルオロプロペンと1-クロロ-1,3,3,3-テトラフルオロプロペンを含む。共沸又は共沸様組成物において、1-クロロ-1,3,3,3-テトラフルオロプロペンは、トランス-1-クロロ-3,3,3-トリフルオロプロペンと共沸混合物又は共沸様混合物を形成するための有効量で存在する。

Description

組成物、組成物を含むエアゾール組成物、洗浄剤、溶媒、シリコーン溶剤、発泡剤、熱伝達媒体、消火剤、および燻蒸剤、熱伝達媒体を含む熱伝達装置、ならびに熱伝達装置が含まれるシステム
 本発明の実施形態の一つは、トランス-1-クロロ-3,3,3-トリフルオロプロペンと1-クロロ-1,3,3,3-テトラフルオロプロペンを含む組成物に関する。
 ハイドロフルオロオレフィン(HFO)やハイドロクロロフルオロオレフィン(HCFO)は、大気中での寿命が短く、地球温暖化係数が小さいという優れた環境性能を有する。例えば特許文献1には、HCFOであるシス-1-クロロ-1,3,3,3-テトラフルオロプロペン、トランス-1-クロロ-1,3,3,3-テトラフルオロプロペンが環境に対する負荷の小さい冷凍サイクルシステムや高温ヒートポンプシステム、有機ランキンサイクルのための熱伝達媒体として使用できることが記載されている。
特開2013-249326
 本発明の実施形態の一つは、HFO若しくはHCFO系が共沸混合物又は共沸様混合物を形成するための有効量で存在する組成物を提供することを課題の一つとする。あるいは、本発明の実施形態の一つは、オゾン層破壊及び地球温暖化への寄与が極めて小さく、組成変化が小さく、既存冷媒と同等以上の熱サイクル特性を有する冷凍サイクルシステム、ヒートポンプシステム、及び有機ランキンサイクルシステム用の熱伝達媒体として機能する、HFO若しくはHCFO系を含む組成物を提供することを課題の一つとする。あるいは、本発明の実施形態の一つは、上記システムにおける熱伝達方法、及び熱エネルギーを機械エネルギーへ変換する方法を提供することを課題の一つとする。
 本発明の実施形態の一つは、トランス-1-クロロ-3,3,3-トリフルオロプロペンと1-クロロ-1,3,3,3-テトラフルオロプロペンを含み、1-クロロ-1,3,3,3-テトラフルオロプロペンがトランス-1-クロロ-3,3,3-トリフルオロプロペンと共沸混合物又は共沸様混合物を形成するための有効量で存在する組成物である。
 上記1-クロロ-1,3,3,3-テトラフルオロプロペンは、シス-1-クロロ-1,3,3,3-テトラフルオロプロペン、トランス-1-クロロ-1,3,3,3-テトラフルオロプロペン、又はこれらの混合物であってもよい。
 この組成物は、トランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペンとの総量に対して、90.0000モル%以上99.9999モル%以下のトランス-1-クロロ-3,3,3-トリフルオロプロペンと、0.0001~10.0000モル%のシス-1-クロロ-1,3,3,3-テトラフルオロプロペンを含んでもよい。
 この組成物は、トランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペンとトランス-1-クロロ-1,3,3,3-テトラフルオロプロペンとの総量に対して、80.0000モル%以上99.9998モル%以下のトランス-1-クロロ-3,3,3-トリフルオロプロペンと、0.0001モル%以上10.0000モル%以下のシス-1-クロロ-1,3,3,3-テトラフルオロプロペンと、0.0001モル%以上10.0000モル%以下のトランス-1-クロロ-1,3,3,3-テトラフルオロプロペンを含んでもよい。
 本発明の実施形態の一つは、上記組成物を含むエアゾール組成物である。
 本発明の実施形態の他の一つは、上記組成物を含む洗浄剤、溶媒、シリコーン溶剤、発泡剤、消火剤、又は燻蒸剤である。
 本発明の実施形態の一つは、上記組成物を含む熱伝達媒体である。
 本発明の実施形態の一つは、上記熱伝達媒体を含む熱伝達装置である。
 本発明の実施形態の一つは、熱伝達装置を含む冷凍サイクルシステム、ヒートポンプサイクルシステム、又は有機ランキンサイクルシステムである。
 本発明の実施形態の一つは、上記冷凍サイクルシステム、高温ヒートポンプサイクルシステム、又は有機ランキンサイクルシステムを利用する、熱伝達方法又は熱エネルギーを機械エネルギーへ変換する方法である。
 本発明の実施形態の一つは、2,2-ジクロロ-1,1,1-トリフルオロエタン(HCFC-123)を含む熱伝達媒体を使用する冷凍サイクルシステム、高温ヒートポンプサイクルシステム、又は有機ランキンサイクルシステムにおいて、HCFC-123を前記熱伝達媒体で置換する方法である。
本発明の実施形態の一つに係る熱伝達媒体を適用可能な冷凍サイクルシステムの一例を示す概略図。 本発明の実施形態の一つに係る熱伝達媒体を作動媒体として適用可能な有機ランキンサイクルシステムの一例を示す概略図。 実施例3-1におけるPh線図。 実施例4-10におけるPh線図。 実施例5-1におけるPh線図。 実施例6-10におけるPh線図。
 以下、本発明の実施形態について説明する。ただし、本発明の実施形態は、以下に示す実施形態及び実施例の記載内容に限定して解釈されるものではない。本発明の実施形態及び実施例で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
 本発明の実施形態の詳細を述べる前に、本明細書で用いられる用語について説明する。
1.共沸
 本明細書において「共沸」とは熱力学的に厳密な意味での共沸を指す。例えば水/エタノールの混合物の場合、エタノール(96質量%)と水(4質量%)の組成物は共沸する混合物(azeotrope)であって、これと気液平衡して存在する蒸気も「エタノール(96質量%):水(4質量%)」となり、液組成と完全に一致する。この現象を「共沸」と呼ぶ。特定の温度、圧力では共沸混合物の組成は、ただ1点となる。共沸する組成物を共沸組成物と呼ぶ。共沸組成物は、液組成と同じ組成で揮発するので、使用中に液組成が変化しない非常に好ましい組成である。
2.共沸様
 「共沸様」は、「擬共沸」とも呼ばれ、熱力学的に厳密な共沸ではないが、液組成と平衡状態にある気体の組成が実質的に等しくなる現象を指す。完全に気相部と液相部の組成が一致せずとも、実質的に気相部と液相物の組成が一致すれば、共沸組成と同様に取り扱うことができる。このとき、気相部と液相部の気液平衡組成差は小さければ小さいほど良い。このように、実質的に気相部と液相部の気液平衡組成が一致する現象を共沸様、又は擬共沸と呼び、その組成を共沸様組成、又は擬共沸組成と呼ぶ。「共沸様」は理論的に導かれるものではなく、様々な液体の種類、組成比について気液平衡を実験によって調査し、気相の組成と液相の組成が実質的に一致した時に初めて見出せるものである。
 学術的には共沸現象と擬共沸現象(又は共沸様)は区別すべきであるが、混合溶媒を洗浄や熱伝達媒体等に用いる場合、共沸現象と共沸様現象(又は擬共沸)を区別する必要は無く、全く同じように取り扱うことができる。したがって、本明細書においては、共沸現象と共沸様現象(又は擬共沸)を併せて“共沸(様)”と呼ぶ。また、そのときの組成を“共沸(様)組成”と呼び、共沸(様)組成を有する組成物を“共沸(様)組成物”と呼ぶ。共沸(様)においては、共沸点の有無は問われない。実質的に気相部と液相部の気液平衡組成が一致すれば良い。
3.熱伝達媒体
 「熱伝達媒体」とは、冷凍サイクルシステム、高温ヒートポンプサイクルシステム、又は有機ランキンサイクルシステムにおいて、被冷却媒体又は被加熱媒体と熱交換する媒体を指す。熱伝達媒体は、単一化合物であってもよく、混合物であってもよい。熱伝達媒体は、本発明の技術分野では、冷媒、冷媒組成物、熱伝達組成物、作動流体、作動流体組成物、作動媒体などと表されることがある。
4.相溶性
 本明細書において、「相溶性」とは、2009年版の日本工業規格JISK2211附属書Dに準拠して判定した際に、相溶性であると判定される冷媒と潤滑油との関係性を示す。一般的に、冷凍サイクルシステムなどの多くの熱伝達用途においては、冷媒と潤滑油とが相溶性であることが好ましい。潤滑油は冷凍機油と呼ばれることもある。
5.冷凍サイクルシステム
 「冷凍サイクルシステム」とは、少なくとも蒸発器、圧縮機、凝縮器、及び膨張弁を要素機器として含む蒸気圧縮式の冷凍サイクルシステムであり、主に冷却することを目的とするシステムを指す。膨張弁は、熱伝達媒体が絞り膨張するための装置であり、キャピラリーチューブであってもよい。冷凍サイクルシステムは、冷蔵庫、空調システム、又は冷却装置として用いることができる。
6.高温ヒートポンプサイクルシステム
 「高温ヒートポンプサイクルシステム」とは、少なくとも蒸発器、圧縮機、凝縮器、及び膨張弁を要素機器として含む蒸気圧縮式のヒートポンプサイクルシステムであり、主に加熱することを目的とするシステムを指す。膨張弁は、熱伝達媒体を絞り膨張させるための装置であり、キャピラリーチューブであってもよい。高温ヒートポンプサイクルシステムは、給湯システム、蒸気生成システム、又は加熱装置として用いることができる。また、高温ヒートポンプサイクルシステムは、熱源として、太陽熱エネルギー、工場廃熱などを利用してもよい。
7.有機ランキンサイクルシステム
 「有機ランキンサイクルシステム」とは、少なくとも蒸発器、膨張機、凝縮器、昇圧ポンプを要素機器として含むランキンサイクルシステムであり、主に熱エネルギーを電気エネルギーへと変換することを目的とするシステムを指す。有機ランキンサイクルシステムは、中低温熱を回収する発電装置として用いることができる。また、有機ランキンサイクルシステムは、熱源として、太陽熱エネルギー、工場廃熱などを利用してもよい。
8.熱伝達システム
 本明細書では、上述した冷凍サイクルシステム、高温ヒートポンプサイクルシステム、および有機ランキンサイクルシステムを総じて熱伝達システムと称する。
<第1実施形態>
 本実施形態では、本発明の実施形態の一つに係る共沸(様)組成物について説明する。
1.共沸(様)組成物
 本発明の実施形態の一つに係る共沸(様)組成物は、トランス-1-クロロ-3,3,3-トリフルオロプロペンと1-クロロ-1,3,3,3-テトラフルオロプロペンを所定の組成で含む組成物である。1-クロロ-1,3,3,3-テトラフルオロプロペンは、トランス体(E体)、シス体(Z体)の幾何異性体が存在し、それぞれシス-1-クロロ-1,3,3,3-テトラフルオロプロペン、トランス-1-クロロ-1,3,3,3-テトラフルオロプロペンと呼ぶ。より具体的には、本共沸(様)組成物は、0.0001モル%以上99.9999モル%以下のトランス-1-クロロ-3,3,3-トリフルオロプロペンと、0.0001モル%以上99.9999モル%以下のシス-1-クロロ-1,3,3,3-テトラフルオロプロペンを含んでもよい。あるいは、この組成物は、50.0000モル%以上99.9999モル%以下のトランス-1-クロロ-3,3,3-トリフルオロプロペンと、0.0001~50.0000モル%のシス-1-クロロ-1,3,3,3-テトラフルオロプロペンを含んでもよい。あるいは、この組成物は、90.0000モル%以上99.9999モル%以下のトランス-1-クロロ-3,3,3-トリフルオロプロペンと、0.0001~10.0000モル%のシス-1-クロロ-1,3,3,3-テトラフルオロプロペンを含んでもよい。
 あるいはこの共沸(様)組成物は、0.0001モル%以上99.9998モル%以下のトランス-1-クロロ-3,3,3-トリフルオロプロペンと、0.0001モル%以上99.9998モル%以下のシス-1-クロロ-1,3,3,3-テトラフルオロプロペンと、0.0001モル%以上99.9998モル%以下のトランス-1-クロロ-1,3,3,3-テトラフルオロプロペンを含んでもよい。あるいは、この組成物は、50.0000モル%以上99.9998モル%以下のトランス-1-クロロ-3,3,3-トリフルオロプロペンと、0.0001モル%以上50.0000モル%以下のシス-1-クロロ-1,3,3,3-テトラフルオロプロペンと、0.0001モル%以上50.0000モル%以下のトランス-1-クロロ-1,3,3,3-テトラフルオロプロペンを含んでもよい。あるいは、この組成物は、80.0000モル%以上99.9998モル%以下のトランス-1-クロロ-3,3,3-トリフルオロプロペンと、0.0001モル%以上10.0000モル%以下のシス-1-クロロ-1,3,3,3-テトラフルオロプロペンと、0.0001モル%以上10.0000モル%以下のトランス-1-クロロ-1,3,3,3-テトラフルオロプロペンを含んでもよい。
 ここで、上記組成は、トランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペンの全量、又はトランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペンとトランス-1-クロロ-1,3,3,3-テトラフルオロプロペンの全量を100モル%としたときの各成分の割合(すなわち、二成分、又は三成分間の相対的割合)を表す。この範囲の組成であれば、実務上、液体組成物を開放系で取り扱っても、さらには蒸留による回収操作を行っても、組成変動が起こりにくい。
 本共沸(様)組成物は、不純物が実質的に混入していない、高純度のものが好ましい。しかし、共沸(様)組成物としての性質を保つのであれば、副生成物を少量(各成分とも、該共沸(様)組成物に対して通常5質量%未満、3質量%未満、又は1質量%未満)含んでもよい。
 1-クロロ-1,3,3,3-テトラフルオロプロペンは、以下の方法により合成することができる。1-クロロ-1,3,3,3-テトラフルオロプロパン(244fa)の光塩素化反応により、1,1-ジクロロ-1,3,3,3-テトラフルオロプロパン(234fb)を合成する。引き続き、塩基の水溶液を用いて234fbを脱塩化水素することにより、1-クロロ-1,3,3,3-テトラフルオロプロペンをシス-1-クロロ-1,3,3,3-テトラフルオロプロペンとトランス-1-クロロ-1,3,3,3-テトラフルオロプロペン幾何異性体の混合物として得る。塩基としては、無機塩基、有機塩基のいずれでもよい。例えば、リチウム、ナトリウムもしくはカリウム等のアルカリ金属の水酸化物、炭酸塩、炭酸水素塩、リン酸塩もしくは酢酸塩、又はカルシウム等のアルカリ土類金属の水酸化物を例示することができる。より具体的には、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸リチウム、炭酸水素リチウム、リン酸リチウム、炭酸ナトリウム、炭酸水素ナトリウム、リン酸ナトリウム、炭酸カリウム、炭酸水素カリウム、リン酸カリウム、酢酸リチウム、ギ酸ナトリウム、酢酸ナトリウム、ギ酸カリウム又は酢酸カリウムを例示することができる。また、2,6-ルチジンやDBUなども適用可能である。脱塩化水素の温度は、0℃~60℃又は15~35℃が好ましい。また、脱塩化水素は相間移動触媒の存在下で行ってもよい。
 得られた1-クロロ-1,3,3,3-テトラフルオロプロペンの幾何異性体混合物は、例えば20℃以上、好ましくは25℃以上の反応蒸留操作により反応系から抜き出すことができる。抜き出した混合物に蒸留等の精製操作を行うことで、シス-1-クロロ-1,3,3,3-テトラフルオロプロペン、トランス-1-クロロ-1,3,3,3-テトラフルオロプロペンに分離することができる。
2.添加剤
 上述したように、本発明の実施形態の一つは、本共沸(様)組成物を含む、熱伝達システムにおける熱伝達媒体である。本共沸(様)組成物を熱伝達媒体として利用する場合、共沸(様)組成物をそのまま用いてもよく、あるいは種々の添加剤を添加してもよい。以下、添加剤について説明する。
2-1.潤滑油
 潤滑油としては、鉱物油(パラフィン系油又はナフテン系油)、又は合成油であるアルキルベンゼン類(AB)、ポリ-α-オレフィン(PAO)、エステル類、ポリオールエステル類(POE)、ポリアルキレングリコール類(PAG)又はポリビニルエーテル類(PVE)が挙げられる。これらの材料は単独で用いてもよく、2種以上を併用してもよい。本発明の共沸(様)組成物は、後述するように、広い温度範囲にわたってこれらの潤滑油に完全に相溶性であり、酸素原子を含有しない潤滑油(鉱物油、アルキルベンゼン類など)にも良好な相溶性を有する。そのため、これらの潤滑油を熱伝達システムにおいて熱伝達媒体として効果的に使用することができる。
 アルキルベンゼン類としては、n-オクチルベンゼン、n-ノニルベンゼン、n-デシルベンゼン、n-ウンデシルベンゼン、n-ドデシルベンゼン、n-トリデシルベンゼン、2-メチル-1-フェニルヘプタン、2-メチル-1-フェニルオクタン、2-メチル-1-フェニルノナン、2-メチル-1-フェニルデカン、2-メチル-1-フェニルウンデカン、2-メチル-1-フェニルドデカン、2-メチル-1-フェニルトリデカン等が挙げられる。
 エステル類としては、安息香酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸及びこれらの混合物等の芳香族エステル、二塩基酸エステル、ポリオールエステル、コンプレックスエステル、炭酸エステル等が挙げられる。
 ポリオールエステル類の原料となるアルコールとしては、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジ-(トリメチロールプロパン)、トリ-(トリメチロールプロパン)、ペンタエリスリトール、ジ-(ペンタエリスリトール)、トリ-(ペンタエリスリトール)等のヒンダードアルコール、エチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、1,2-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2-エチル-2-メチル-1,3-プロパンジオール、1,7-ヘプタンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、グリセリン、ポリグリセリン、1,3,5-ペンタントリオール、ソルビトール、ソルビタン、ソルビトールグリセリン縮合物、アドニトール、アラビトール、キシリトール、マンニトール、キシロース、アラビノース、リボース、ラムノース、グルコース、フルクトース、ガラクトース、マンノース、ソルボース、セロビオースなどが挙げられる。
 ポリオールエステル類の原料となるカルボン酸としては、ブタン酸、2-メチルプロパン酸、ペンタン酸、2-メチルブタン酸、3-メチルブタン酸、2,2-ジメチルプロパン酸、2-メチルペンタン酸、3-メチルペンタン酸、4-メチルペンタン酸、2,2-ジメチルブタン酸、2,3-ジメチルブタン酸、3,3-ジメチルブタン酸、ヘキサン酸、2-メチルヘキサン酸、3-メチルブタン酸、4-メチルブタン酸、5-メチルブタン酸、2,2-ジメチルペンタン酸、2,3-ジメチルペンタン酸、2,4-ジメチルペンタン酸、3,3-ジメチルペンタン酸、3,4-ジメチルペンタン酸、4,4-ジメチルペンタン酸、2-エチルペンタン酸、3-エチルペンタン酸、1,1,2-トリメチルブタン酸、1,2,2-トリメチルブタン酸、1-エチル-1-メチルブタン酸、1-エチル-2-メチルブタン酸、オクタン酸、2-エチルヘキサン酸、3-エチルヘキサン酸、3,5-ジメチルヘキサン酸、2,4-ジメチルヘキサン酸、3,4-ジメチルヘキサン酸、4,5-ジメチルヘキサン酸、2,2-ジメチルヘキサン酸、2-メチルヘプタン酸、3-メチルヘプタン酸、4-メチルヘプタン酸、5-メチルヘプタン酸、6-メチルヘプタン酸、2-プロピルペンタン酸、ノナン酸、2,2-ジメチルヘプタン酸、2-メチルオクタン酸、2-エチルヘプタン酸、3-メチルオクタン酸、3,5,5-トリメチルヘキサン酸、2-エチル-2,3,3-トリメチル酪酸、2,2,4,4-テトラメチルペンタン酸、2,2,3,3-テトラメチルペンタン酸、2,2,3,4-テトラメチルペンタン酸、2,2-ジイソプロピルプロパン酸、酢酸、プロピオン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、エイコサン酸、オレイン酸などが挙げられる。
 ポリアルキレングリコールは、メタノール、エタノール、直鎖状又は分枝状のプロパノール、直鎖状又は分枝状のブタノール、直鎖状又は分枝状のペンタノール、直鎖状又は分枝状のヘキサノール等といった炭素数1以上18以下の脂肪族アルコールに、エチレンオキシド、プロピレンオキシド、ブチレンオキド等を付加重合した化合物が挙げられる。
 ポリビニルエーテル類としては、ポリメチルビニルエーテル、ポリエチルビニルエーテル、ポリ(n-プロピルビニルエーテル)、ポリイソプロピルビニルエーテル等が挙げられる。
 潤滑油の酸価は特に限定されないが、熱伝達システムなどに用いられている金属の腐食を防止するため、及び潤滑油の分解を防止するため、0.1mgKOH/g以下又は0.05mgKOH/g以下が好ましい。本明細書において酸価とは、日本工業規格JIS K2501に準拠して測定した酸価を意味する。
 潤滑油の灰分は特に限定されないが、潤滑油の熱安定性、化学的安定性を高め、スラッジ等の発生を抑制するため、100ppm以下又は50ppm以下であることが好ましい。本明細書において灰分とは、日本工業規格JIS K2272に準拠して測定した灰分の値を意味する。
 潤滑油の動粘度は特に限定されないが、40℃における動粘度は、3~1000mm2/s、4~500mm2/s、又は5~400mm2/sが好ましい。また、100℃における動粘度は、好ましくは1~100mm2/sである。
2-2.安定剤
 安定剤としては、ニトロ化合物、エポキシ化合物、フェノール類、イミダゾール類、アミン類、リン酸エステル類、炭化水素類等が挙げられる。
 ニトロ化合物としては、公知の化合物が例示されるが、脂肪族及び/又は芳香族誘導体が挙げられる。脂肪族系ニトロ化合物として、例えばニトロメタン、ニトロエタン、1-ニトロプロパン、2-ニトロプロパン等が挙げられる。芳香族ニトロ化合物として、例えばニトロベンゼン、o-、m-又はp-ジニトロベンゼン、トリニトロベンゼン、o-、m-又はp-ニトロトルエン、o-、m-又はp-エチルニトロベンゼン、2,3-、2,4-、2,5-、2,6-、3,4-又は3,5-ジメチルニトロベンゼン、o-、m-又はp-ニトロアセトフェノン、o-、m-又はp-ニトロフェノール、o-、m-又はp-ニトロアニソール等が挙げられる。
 エポキシ化合物としては、例えばエチレンオキサイド、1,2-ブチレンオキサイド、プロピレンオキサイド、スチレンオキサイド、シクロヘキセンオキサイド、グリシドール、エピクロルヒドリン、グリシジルメタアクリレート、フェニルグリシジルエーテル、アリルグリシジルエーテル、メチルグリシジルエーテル、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル等のモノエポキシ系化合物、ジエポキシブタン、ビニルシクロヘキセンジオキサイド、ネオペンチルグリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、グリセリンポリグリシジルエーテル、トリメチロールプロパントルグリシジルエーテル等のポリエポキシ系化合物等が挙げられる。
 フェノール類としては、水酸基以外にアルキル基、アルケニル基、アルコキシ基、カルボキシル基、カルボニル基、ハロゲン等各種の置換基を含むフェノール類も含むものである。たとえば、2,6-ジ-t-ブチル-p-クレゾール、o-クレゾール、m-クレゾール、p-クレゾール、チモール、p-t-ブチルフェノール、o-メトキシフェノール、m-メトキシフェノール、p-メトキシフェノール、オイゲノール、イソオイゲノール、ブチルヒドロキシアニソール、フェノール、キシレノール等の1価のフェノールあるいはt-ブチルカテコール、2,5-ジ-t-アミノハイドロキノン、2,5-ジ-t-ブチルハイドロキノン等の2価のフェノール等が例示される。
 イミダゾール類としては、直鎖もしくは分岐鎖を有する炭素数1以上18以下のアルキル基、シクロアルキル基、又はアリール基をN位の置換基とする、1-メチルイミダゾール、1-n-ブチルイミダゾール、1-フェニルイミダゾール、1-ベンジルイミダゾール、1-(β-オキシエチル)イミダゾール、1-メチル-2-プロピルイミダゾール、1-メチル-2-イソブチルイミダゾール、1-n-ブチル-2-メチルイミダゾール、1,2-ジメチルイミダゾール、1,4-ジメチルイミダゾール、1,5-ジメチルイミダゾール、1,2,5-トリメチルイミダゾール、1,4,5-トリメチルイミダゾール、1-エチル-2-メチルイミダゾール等が挙げられる。これらの化合物は単独で使用してもよく、あるいは併用してもよい。
 アミン類としては、ベンジルアミン、ヘキシルアミン、ジイソプロピルアミン、ジイソブチルアミン、ジ-n-プロピルアミン、ジアリルアミン、トリエチルアミン、N-メチルアニリン、ピリジン、モルホリン、N-メチルモルホリン、トリアリルアミン、アリルアミン、α-メチルベンジルアミン、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、プロピルアミン、イソプロピルアミン、ジプロピルアミン、ブチルアミン、イソブチルアミン、ジブチルアミン、トリブチルアミン、ジベンジルアミン、トリベンジルアミン、2-エチルヘキシルアミン、アニリン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、エチレンジアミン、プロピレンジアミン、ジエチレントリアミン、テトラエチレンペンタミン、ベンジルアミン、ジベンジルアミン、ジフェニルアミン、ジエチルヒドロキシルアミン等が例示される。これらは単独で用いてもよく、2種以上を併用してもよい。
 炭化水素類としては、α-メチルスチレンやp-イソプロペニルトルエン等の芳香族不飽和炭化水素類、イソプレン類、プロパジエン類、テルペン類等が例示される。これらは単独で用いてもよく、2種以上を併用してもよい。
 安定剤は、予め本共沸(様)組成物と潤滑油の一方又は両方に添加されてもよく、また、熱伝達システム内の熱伝達装置(例えば凝縮機)内に添加されてもよい。このとき、安定剤の使用量は特に限定されないが、本共沸(様)組成物又は本共沸(様)組成物と潤滑油の混合物(100質量%)に対して、0.001質量%以上10質量%以下、0.01質量%以上5質量%以下、又は0.02質量%以上2質量%以下であることが好ましい。これらの範囲で安定剤を添加することで、高い熱伝達媒体の安定性と熱サイクル性能が十分に得られる。
2-3.乾燥剤
 本発明の実施形態の一つに係る共沸(様)組成物を熱伝達媒体として利用する場合には、水分含有量が少ないことが好ましい。具体的には、熱伝達媒体全量を基準として50ppm以下、20ppm以下、又は10ppm以下が好ましい。水分含有量を制御することにより、共沸(様)組成物及び他の添加剤の熱安定性、化学的安定性及び電気絶縁性への悪影響を防止することができる。
 したがって、水の除去に有用である乾燥剤を添加剤として用いてもよい。乾燥剤は、活性アルミナ、シリカゲル、ゼオライトに代表されるモレキュラーシーブ及びそれらの組合せから選択されてもよい。モレキュラーシーブの種類は特に限定されないが、熱伝達媒体との化学反応性、乾燥剤としての吸湿能力及び破壊強度の点から、ゼオライトが特に好ましい。代表的なゼオライトとして、ゼオラムA-3及びゼオラムA-4(東ソー株式会社製)があるが、これらのゼオライトに限定されるわけではない。ゼオライトの細孔径は特に限定されないが、熱伝達媒体を吸着することなくシステム内の水分のみを選択的に除去するためには、3A又は4Aが特に好ましい。上記細孔径のゼオライトを使用することにより、熱伝達媒体のゼオライトへの吸着が起こりにくくなり、システムを構成する材料の腐食や不溶生成物の発生を抑制することができる。
 ゼオライト系乾燥剤のサイズは、特に限定されないが、システム内での詰まり防止や乾燥能力を低下させないために、0.5mm以上5mm以下が好ましい。ゼオライト系乾燥剤の形状は、特に限定されないが、球状又は円筒状が好ましい。
 本発明の実施形態の一つに係る共沸(様)組成物は、HCFOであるトランス-1-クロロ-3,3,3-トリフルオロプロペンと1-クロロ-1,3,3,3-テトラフルオロプロペンを含む。HCFOは種々の溶剤との相溶性が高いので、容易に均一な組成物を調合することが可能である。しかし、一般的に、このような組成物には、液組成が変動しやすいという問題が内在している。すなわち、仮に複数種類の液体を混合し、相溶性を確保できたとしても、各成分の揮発度の違いにより、液組成が変動しやすいという問題は避けられない。例えば、二元系の液体組成物を超音波洗浄機に入れて洗浄剤として用いた場合、一般に揮発度の高い低沸点成分(蒸気圧の大きい成分)が優先的に揮発し、洗浄槽内に揮発度の低い高沸点成分が濃縮される。例えば、洗浄力の高い低沸点成分と洗浄力の低い高沸点成分との組成物の場合、洗浄液における低沸点成分濃度が経時的に減少して洗浄不良を引き起こす恐れがある。特に、可燃性の溶剤に不燃性の溶剤をブレンドして不燃性組成物を調合した場合、不燃性成分が優先的に揮発すると洗浄液が可燃性組成物になることがある。
 また、洗浄溶媒は、使用後に蒸留等の操作によって回収、再利用するのが環境保護の面からも経済面からも望ましいが、二成分系の液体の場合、一般に沸点の異なる二成分の液体を別々に回収せざるを得ず、回収・再利用を行うには、操作上の負荷がかかりやすい。
 熱伝達システムの熱伝達媒体として用いる場合も、同様の問題がある。すなわち、熱伝達システムの長期にわたる駆動において、液組成が変動する可能性がある。液組成が変動すれば、熱伝達媒体の持つ熱容量、粘度、或いは潤滑剤との親和性に変化が生じ、熱伝達システムの作動性能が低下することがある。
 また、非共沸である二元系(多元系)の液体組成物は、熱伝達媒体として用いる際、保管容器から冷凍空調機器等に充填する際、あるいは熱伝達装置から漏洩した際に組成変化を生じる可能性がある。このため、二元系(多元系)の液体組成物を洗浄剤や熱伝達媒体として使用する場合、頻繁に液組成を分析し、適正な組成範囲になるように、絶えず適切な比率に調合して、揮発した成分を補充しなければならない。しかし、こうした液組成管理は作業上の大きな負荷となり得る。
 しかしながら発明者らは、実施例において示すように、トランス-1-クロロ-3,3,3-トリフルオロプロペン、1-クロロ-1,3,3,3-テトラフルオロプロペンとの気液平衡実験を行ったところ、気液の組成が実質的に気相の液相と同一である共沸(様)組成を見出すことが出来た。その結果、本発明の実施形態の一つに係る共沸(様)組成物、すなわち、トランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペン、又は、トランス-1-クロロ-3,3,3-トリフルオロプロペン、シス-1-クロロ-1,3,3,3-テトラフルオロプロペン、トランス-1-クロロ-1,3,3,3-テトラフルオロプロペンを含む組成物は、所定の組成において、気相部と液相部の組成が実質的に同じである共沸(様)組成物であることが分かった。
 本共沸(様)組成物に含まれるトランス-1-クロロ-3,3,3-トリフルオロプロペン及び1-クロロ-1,3,3,3-テトラフルオロプロペンは、分子内に炭素-炭素間の二重結合を含み、水酸基ラジカルとの反応性が高いため、大気中での寿命が短く、オゾン層破壊係数や地球温暖化係数が小さいという優れた環境性能を有する。このため、本共沸(様)組成物を用いることにより、環境への負荷が少なく、組成変化が小さく、既存冷媒と同等以上の熱サイクル特性を有する熱伝達媒体を提供することができる。
<第2実施形態>
 本実施形態では、第1実施形態で述べた共沸(様)組成物を含む熱伝達媒体を用いる熱伝達システム、および当該システムを利用する熱伝達方法について、図面を参照して説明する。なお、当該熱伝達媒体及び熱伝達方法は、パッケージ型の小型装置だけでなく、工場スケールの大規模システムにも適用可能である。
1.冷凍サイクルシステム
 冷凍サイクルシステムとは、蒸発器で空気、水又はブライン、シリコーンオイルなどの被冷却物が有する熱を冷媒の蒸発潜熱として移動させ、発生した冷媒蒸気を圧縮機において仕事を加えて圧縮し、凝縮器で凝縮熱を排出して液化し、凝縮した冷媒を膨張弁で低圧・低温に絞り膨張させ、蒸発器に送り込んで蒸発させるシステムである。このシステムでは、蒸発器において被冷却物が有する熱エネルギーを冷媒が受け取ることにより、被冷却物を冷却し、より低い温度へ降温する。このシステムは、凝縮器において冷媒の熱エネルギーを負荷流体に与えることにより、負荷流体を加熱し、より高い温度に昇温するシステムであることから、様々な公知のシステムに適用できる。本発明の実施形態の一つに係る冷凍サイクルシステムでは、蒸発器と凝縮器において、冷媒として第1実施形態で述べた熱伝達媒体が用いられる。これにより、10℃以下、7℃以下、又は5℃以下の冷水を生成することができる。
 図1は、本発明の実施形態に係る熱伝達媒体を適用可能な冷凍サイクルシステム100の一例を示す概略図である。冷凍サイクルシステム100は、熱を取り込む蒸発器11と、熱を供給する凝縮器13を備える。さらに、冷凍サイクルシステム100は、蒸発器11を出た熱伝達媒体蒸気を加圧する圧縮機12と、凝縮器13を出た過冷却状態の熱伝達媒体を絞り膨張させる膨張弁14とを有する。冷凍サイクルシステム100はさらに、これらの要素機器間で熱伝達媒体を輸送する配管を有する。冷凍サイクルシステム100は、これらの要素機器の他に、内部熱交換器、乾燥器(ドライヤ)、液分離器、油回収器、及び不凝縮ガス分離器を備えていてもよい。
 圧縮機の種類は特に限定されないが、単段又は多段の遠心式圧縮機、又は容積式圧縮機であってもよい。容積式圧縮機としては、回転ピストン式圧縮機、ロータリーベーン式圧縮機、スクロール式圧縮機、スクリュ式圧縮機、ピストン・クランク式圧縮機又はピストン・斜板式圧縮機を使用してもよい。熱伝達媒体の熱伝達特性を最大限発揮するためには、単段又は多段の遠心式圧縮機を使用することが特に好ましい。
 本発明の実施形態に係る熱伝達媒体を用いて冷凍サイクルシステム100の熱サイクルを繰り返す場合、以下の工程(a)~(d)を経て、圧縮機12に投入される電力以上のエネルギーを蒸発器11において被冷却媒体から熱エネルギーとして取り出すこと、すなわち冷却することができる。
(a)熱交換器(蒸発器11)内で液体状態の冷媒を被冷却流体(空気、水など)と熱交換させ、気化させる。
(b)熱交換器から気化した冷媒を取り出し、気化した冷媒を圧縮機12に通し、高圧の過熱蒸気を供給する。
(c)圧縮機12から出た冷媒を凝縮器13へ通し、気体状態の冷媒を被加熱流体(空気、水など)と熱交換させ、液化させる。
(d)液化した冷媒を膨張弁14により絞り膨張させ、低圧の湿り蒸気を供給し、工程(a)へ再循環させる。
 冷凍サイクルシステム100内に不凝縮性気体が混入すると、凝縮器や蒸発器における熱伝達の不良及び作動圧力の上昇という悪影響が生じるため、不凝縮性気体が混入しないような措置を講じることが好ましい。本発明の実施形態に係る熱伝達媒体に含まれるトランス-1-クロロ-3,3,3-トリフルオロプロペンと1-クロロ-1,3,3,3-テトラフルオロプロペンは、既存の冷媒と比較して蒸気圧が低く、運転条件によっては、熱サイクルシステム内が負圧運転となることがある。負圧運転時に混入する可能性がある空気中に含まれる酸素は、熱伝達媒体や潤滑油と反応するため、不凝縮ガス分離器などを用いて熱サイクルシステム外へ除去することが好ましい。
 本発明の実施形態に係る熱伝達媒体は、2,2-ジクロロ-1,1,1-トリフルオロエタン(HCFC-123)に例示される地球温暖化係数(GWP)が大きく、かつオゾン破壊係数(ODP)が無視できない熱伝達媒体(環境負荷型の熱伝達媒体)を使用する、又は使用するよう設計されている冷凍サイクルシステムに適用することができる。このような冷凍サイクルシステムにおいて、環境負荷型の熱伝達媒体を本発明の実施形態に係る熱伝達媒体に置換えることにより、地球温暖化やオゾン層への影響を極めて小さくし、環境への負荷を低減することができる。
 上述したように、本発明の実施形態の一つは、冷凍サイクルシステムに用いられる環境負荷型の熱伝達媒体を本発明の熱伝達媒体に置換える方法である。この方法の一態様は、収容されている環境負荷型の熱伝達媒体を全て回収し、その後、本発明の実施形態に係る熱伝達媒体を充填する、という方法である。熱伝達媒体を置換える方法は、特に限定されないが、冷凍サイクルシステムの運転を停止しているときに行うことが望ましい。環境負荷型の熱伝達媒体の回収は、環境に対する負荷を軽減するために、フルオロカーボン冷媒を回収するときに用いられる回収装置を使用することが望ましい。本発明の実施形態に係る熱伝達媒体の充填方法は特に限定されないが、熱伝達媒体と冷凍サイクルシステムの圧力差を利用して充填してもよく、ポンプなどの機械的動力を利用して充填してもよい。
2.高温ヒートポンプサイクルシステム
 以下、本発明の実施形態に係る高温ヒートポンプサイクルシステムについて説明する。高温ヒートポンプサイクルシステムは、図1に示した冷凍サイクルシステム100に類似する蒸気圧縮式の熱伝達システムであって、凝縮器における熱交換による加熱を目的とするシステムである。ここでは、凝縮器と蒸発器に用いられる作動媒体として本発明の実施形態に係る熱伝達媒体が用いられる。これより、60℃以上又は80℃以上、110℃以上の熱水、加圧熱水又は水蒸気を生成することができる。なお、高温ヒートポンプサイクルシステムは、図1に示した要素機器の他に、内部熱交換器、乾燥器(ドライヤ)、液分離器、油回収器、及び不凝縮ガス分離器を備えていてもよい。
 高温ヒートポンプサイクルシステムにおける熱伝達媒体の凝縮温度は、60℃以上170℃以下、好ましくは80℃以上150℃以下である。熱伝達媒体の凝縮圧力は、熱伝達媒体の組成及び凝縮温度によって決められる。すなわち、凝縮圧力は、凝縮温度における熱伝達組成物の飽和蒸気圧力と等しくなる。一般的に、凝縮圧力が5.0MPaを超えると、圧縮機、凝縮器及び配管部品に高い耐圧性能が求められ、その結果、コストが増大する。本発明に係る熱伝達媒体を用いる場合、凝縮圧力を5.0MPaより低くすることができ、公知の圧縮機、凝縮器、蒸発器、膨張弁及び配管部品を使用することができる。
 圧縮機の種類は特に限定されないが、単段又は多段の遠心式圧縮機、又は容積式圧縮機であってもよい。容積式圧縮機としては、回転ピストン式圧縮機、ロータリーベーン式圧縮機、スクロール式圧縮機、スクリュ式圧縮機、ピストン・クランク式圧縮機又はピストン・斜板式圧縮機を使用してもよい。
 高温ヒートポンプサイクルサイクルシステム内に不凝縮性気体が混入すると、凝縮器や蒸発器における熱伝達の不良及び作動圧力の上昇という悪影響が生じるため、システム内に不凝縮性気体が混入しないような措置を講じることが好ましい。そのため、運転条件によってシステム内が負圧運転となった際に混入する可能性がある空気中に含まれる酸素は、上述した冷凍サイクルシステム100と同様に、不凝縮ガス分離器などを用いて熱サイクルシステム外へ除去することが好ましい。
 本発明の実施形態に係る熱伝達媒体を用いて高温ヒートポンプサイクルシステムを繰り返す場合、以下の工程(a)~(d)を経て、凝縮器において被加熱媒体に投入される電力以上のエネルギーを熱エネルギーとして取り出すことができる。
(a)熱交換器(蒸発器)内で液体状態の作動媒体を被冷却流体(空気、水など)と熱交換させ、気化させる。
(b)熱交換器から気化した作動媒体を取り出し、気化した作動媒体を圧縮機に通し、高圧の過熱蒸気を供給する。
(c)圧縮機から出た作動媒体を凝縮器へ通し、気体状態の作動媒体を被加熱流体(空気、水など)と熱交換させ、液化させる。
(d)液化した作動媒体を膨張弁により絞り膨張させ、低圧の湿り蒸気を供給し、工程(a)へ再循環させる。
 また、本発明の実施形態に係る熱伝達媒体は、2,2-ジクロロ-1,1,1-トリフルオロエタン(HCFC-123)に例示される地球温暖化係数(GWP)が大きく、かつオゾン破壊係数(ODP)が無視できない熱伝達媒体(環境負荷型の熱伝達媒体)を使用する、又は使用するよう設計されている高温ヒートポンプサイクルシステムに適用することができる。このような高温ヒートポンプサイクルシステムにおいて、環境負荷型の熱伝達媒体を本発明の実施形態に係る熱伝達媒体に置換えることにより、地球温暖化やオゾン層への影響を極めて小さくし、環境への負荷を低減することができる。
 上述したように、本発明の実施形態の一つは、高温ヒートポンプサイクルシステムに用いられる環境負荷型の熱伝達媒体を本発明の熱伝達媒体に置換える方法である。この方法の一態様は、上述した冷凍サイクルシステムに用いられる環境負荷型の熱伝達媒体を本発明の実施形態に係る熱伝達媒体に置換える方法と略同様である。
3.有機ランキンサイクルシステム
 以下、本発明の実施形態に係る有機ランキンサイクルシステムについて説明する。図2は、本発明の実施形態に係る有機ランキンサイクルシステム200の一例を示す概略図である。本発明の実施形態に係る熱伝達媒体を有機ランキンサイクルシステム200の作動媒体として用いることにより、50℃以上200℃以下、又は80℃以上150℃以下の熱エネルギーを機械エネルギーへ変換することができる。
 有機ランキンサイクルシステム200は、熱を受け取る蒸発器20(ボイラー)と、熱を供給する凝縮器21(コンデンサー)とを備える。さらに、有機ランキンサイクルシステム200は、作動媒体を断熱膨張させる膨張機22と、凝縮器21を出た作動媒体の圧力を高め、電力を消費する循環ポンプ23と、これらの要素間で作動媒体を輸送する配管とを有しており、膨張機22によって電力を発生させる発電機24を駆動する。膨張機の種類は特に限定されないが、単段又は多段の遠心式膨張機、又は容積式膨張機であってもよい。容積式膨張機としては、回転ピストン式膨張機、ロータリーベーン式膨張機、スクロール式膨張機、スクリュ式膨張機又はピストン・クランク式膨張機を使用してもよい。有機ランキンサイクルシステム200は、前記要素機器の他に、内部熱交換器、乾燥器(ドライヤ)、液分離器、油回収器、不凝縮ガス分離器を備えていてもよい。
 有機ランキンサイクルシステム200内に不凝縮性気体が混入すると、凝縮器や蒸発器における熱伝達の不良及び作動圧力の上昇という悪影響が生じるため、システム内に不凝縮性気体が混入しないような措置を講じることが好ましい。そのため、不凝縮ガス分離器などを備えることが好ましい。
 有機ランキンサイクルシステム200では、蒸発器において、加熱源から作動媒体へ熱エネルギーを供給し、高温高圧状態の蒸気となった作動媒体を膨張機にて断熱膨張させ、この断熱膨張によって発生する仕事によって、発電機を駆動させて発電を行う。断熱膨張した後の作動媒体蒸気は、凝縮器において冷却源によって凝縮されて液体となり、ポンプにより蒸発器へ移送される。加熱減および冷却減として機能する被冷却流体又は被加熱流体は、空気、水、ブライン、シリコーンオイルなどが挙げられる。これらはサイクル運転温度条件により、選択して使用されることが好ましい。例えば、被冷却流体としては、50℃以上200℃以下、又は80℃以上120℃以下の温水、加圧熱水又は水蒸気を使用してもよい。あるいは、200℃以下の中低温度の排熱を用いてもよい。あるいは、加熱減として再生可能熱エネルギーを使用してもよい。
 本発明の実施形態に係る熱伝達媒体を作動媒体として用いて有機ランキンサイクルを繰り返す場合、以下の工程(a)~(e)を経て、熱エネルギーを機械エネルギーへ変換し、発電機を経て、電気的エネルギーとして取り出すことができる。
(a)熱交換器(蒸発器20)内で液体の作動媒体を被冷却流体(加熱源)と熱交換させ、気化(液体から気体へ相変化)させる。
(b)熱交換器から気化した作動媒体を取り出す。
(c)気化した作動媒体を膨張器(発電用タービン)22に通して膨張させ、機械的(電気的)エネルギーに変換する。
(d)膨張器から出た作動媒体を凝縮器へ通し、気体の作動媒体を凝縮(気体から液体への相変化)させる。
(e)液化した作動媒体を循環ポンプ23により昇圧するとともに移送して、工程(a)へ再循環させる。
 作動媒体の蒸発温度は、50℃以上200℃以下、又は80℃以上150℃以下である。
 作動媒体の蒸発圧力は、作動媒体の組成及び蒸発温度によって決められる。すなわち、蒸発圧力は、蒸発温度における作動媒体の飽和蒸気圧力と等しくなる。一般的に、蒸発圧力が5.0MPaを超えると、圧縮機、凝縮器及び配管部品に高い耐圧性能が求められ、コスト増を引き起こす。本発明の実施形態に係る熱伝達媒体を作動媒体として用いる場合、蒸発圧力を5.0MPaより低くすることができ、公知の膨張機、凝縮器、ポンプ及び配管部品を使用することができる。
 また、本発明の実施形態に係る熱伝達媒体は、2,2-ジクロロ-1,1,1-トリフルオロエタン(HCFC-123)に例示される地球温暖化係数(GWP)が大きく、かつオゾン破壊係数(ODP)が無視できない作動媒体(環境負荷型の作動媒体)を使用する、又は使用するよう設計されている有機ランキンサイクルシステムに適用することができる。このような環境負荷型の作動媒体を本発明の実施形態に係る熱伝達媒体に置換えることにより、地球温暖化やオゾン層への影響を極めて小さくし、環境への負荷を低減することができる。
 上述したように、本発明の実施形態の一つは、有機ランキンサイクルシステムに用いられる環境負荷型の作動媒体を本発明の実施形態に係の熱伝達媒体に置換える方法である。この方法の一態様は、収容されている環境負荷型の作動媒体を全て回収し、その後、本発明の実施形態に係る熱伝達媒体を充填する、という方法である。作動媒体を置換える方法は特に限定されないが、有機ランキンサイクルシステムの運転を停止しているときに行う
ことが望ましい。環境負荷型の作動媒体の回収は、環境に対する負荷を軽減するために、フルオロカーボン冷媒を回収するときに用いられる回収装置を使用することが望ましい。環境負荷型の作動媒体を回収した後、本発明の実施形態に係る熱伝達媒体を充填する前に、有機ランキンサイクルシステムの作動媒体収容部を真空ポンプで減圧してもよい。熱伝達媒体の充填方法は、特に限定されないが、熱伝達媒体と有機ランキンサイクルシステムの圧力差を利用して充填してもよく、ポンプなどの機械的動力を利用して充填してもよい。
 本発明の実施形態に係る動熱伝達媒体は不燃性であり、さらに汎用される環境負荷型の作動媒体である2,2-ジクロロ-1,1,1-トリフルオロエタン(HCFC-123)と比較して環境への影響が極めて小さい。また、本発明の実施形態に係る熱伝達媒体は、熱伝達及び熱エネルギー変換特性に優れるため、有機ランキンサイクルシステムに好適に用いることができる。
 有機ランキンサイクルシステムに用いる作動媒体の特性評価の指標として、例えば、発電サイクル効率(ηcycle)及び膨張機サイズパラメータ(SP)が挙げられる。
 発電サイクル効率(ηcycle)は、一般に認められている作動媒体性能の尺度であり、ランキンサイクルにおける作動媒体の相対的な熱力学的効率を表すのに特に有益である。作動媒体が蒸発する際に加熱源から供給された熱エネルギーに対する膨張機及び発電機における作動媒体が生み出す電気エネルギーの比率をηcycleで表す。
 膨張機サイズパラメータ(SP)は、膨張機の大きさを評価するための尺度であり、一般的に認められている(Energy 2012,Vol.38, P136-143)。同一条件のランキンサイクルにおいて作動媒体を置き換えたとき、SP値が大きいほど、その作動媒体はより大きなサイズの膨張機を必要とすることを意味する。すなわち、SP値が小さいほど、より小型の膨張機を採用することができ、ランキンサイクルシステムの小型化に寄与するため、より好ましい。
 一方、一般的に、発電サイクル効率の値が高いと、SPの値も高くなり、逆に発電サイクル効率の値が低いと、SPの値は低くなる。すなわち、発電サイクル効率の値とSPの値とはトレードオフの関係にある。有機ランキンサイクルシステムに用いる作動媒体において、発電サイクル効率が高いことが好ましいく、ランキンサイクルシステムの小型化への要求を満たすためには、SPの値が低いことが好ましい。従来の作動媒体では、この条件を実用的な範囲で満たすのは困難であった。
 本発明の実施形態に係る熱伝達媒体は、実用的な範囲で発電サイクル効率(ηcycle)の値と膨張機サイズパラメータ(SP)の値とを調整することができる新規な熱伝達媒体である。
 また、本発明の実施形態に係る熱伝達媒体は、同容量の電気エネルギーを生成する際に、膨張機入口体積流量と膨張機出口体積流量とを汎用される2,2-ジクロロ-1,1,1-トリフルオロエタン(HCFC-123)のそれらより低くすることができ、このため、システムを小型化することができる。
<第3実施形態>
 本実施形態では、第1実施形態で述べた共沸(様)組成物の種々の用途について説明する。
1.洗浄剤
 本発明の実施形態に係る共沸(様)組成物は優れた洗浄力を有する。本共沸(様)組成物を用いる洗浄の分野は特に限定されないが、これまでCFC-113(クロロトリフルオロメタン)、HCFC-141b(1,1-ジクロロ-1-フルオロエタン)、HCFC-225(3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパン(HCFC-225ca)及び1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(HCFC-225cb)の混合物)が洗浄剤として使用された分野が好適である。具体的には、電子部品(プリント基板、液晶表示器、磁気記録部品、半導体材料等)、電機部品、精密機械部品、樹脂加工部品、光学レンズ、衣料品等の洗浄や、自動車、二輪自動車、自転車、建機、農機、航空機、鉄道車両、船舶などの各種車両・乗物・輸送機関の洗浄(特にこれらのパーツクリーニングやブレーキクリーニング)が挙げられる。汚れの種類も限定されないが、CFC-113、HCFC-141b、HCFC-225で除去可能な汚れは、本共沸(様)組成物の組成比を最適化することで除去することが可能であり、そのような汚れとしてはパーティクル、油、グリース、ワックス、フラックス、インキ等が挙げられる。
 洗浄方法は特に限定されず、従来から用いられている方法を採用することができる。具体的には、浸漬、スプレー、沸騰洗浄、超音波洗浄、蒸気洗浄、若しくはこれらの組み合わせ等が挙げられる。中でも、浸漬を行うことで汚れを除去する方法が特に好ましい。ここで、浸漬とは、油等の汚れが付着した対象物(被洗浄物)を、本共沸(様)組成物と接触させることを指す。被洗浄物を本共沸(様)組成物に浸漬させることにより、被洗浄物に付着した汚れを共沸(様)組成物中に溶解させ、汚れを被洗浄物から取り除くことができる。なお、当該浸漬操作と共に、他の洗浄操作(沸騰洗浄、超音波洗浄など)を組み合わせることもできる。また、スプレー洗浄、例えば、本共沸(様)組成物を噴射ガスと混合してエアゾール化させて各種洗浄対象物品に吹き付ける方法、も好ましい態様の一つである。
 洗浄力、界面作用等をより一層改善する為に、本共沸(様)組成物を含む洗浄剤に必要に応じて各種の界面活性剤を添加してもよい。界面活性剤としては、ソルビタンモノオレエート、ソルビタントリオレエート等のソルビタン脂肪族エステル類;ポリオキシエチレンのソルビットテトラオレエート等のポリオキシエチレンソルビット脂肪酸エステル類;ポリオキシエチレンモノラウレート等のポリエチレングリコール脂肪酸エステル類;ポリオキシエチレンラウリルエーテル等のポリオキシエチレンアルキルエーテル類;ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル類;ポリオキシエチレンオレイン酸アミド等のポリオキシエチレンアルキルアミン脂肪酸アミド類等のノニオン系界面活性剤が挙げられる。これらの界面活性剤は、単独で使用されてもよく、2種以上組み合わせて使用されてもよい。相乗的に洗浄力及び界面作用を改善する目的で、これらのノニオン系界面活性剤に加えてカチオン系界面活性剤やアニオン系界面活性剤を本共沸(様)組成物を含む洗浄剤に添加してもよい。界面活性剤の使用量は、その種類により異なるが、共沸(様)組成物の性質に支障のない程度であればよく、通常、共沸(様)組成物中0.1質量%以上20質量%以下程度であり、0.3質量%以上5質量%以下程度とすることが好ましい。
 本共沸(様)組成物を含む洗浄剤には、過酷な条件での使用に際して、更に各種の安定剤を添加してもよい。安定剤の種類は特に限定されないが、蒸留操作により共沸されるもの或いは共沸様混合物を形成するものがより望ましい。このような安定剤の具体例としては、ニトロメタン、ニトロエタン、ニトロプロパン等の脂肪族ニトロ化合物;ニトロベンゼン、ニトロトルエン、ニトロスチレン、ニトロアニリン等の芳香族ニトロ化合物;ジメトキシメタン、1,2-ジメトキシエタン、1,4-ジオキサン、1,3,5-トリオキサン、テトラヒドロフラン等のエーテル類;グリシドール、メチルグリシジルエーテル、アリルグリシジルエーテル、1,2-ブチレンオキシド、フェニルグリシジルエーテル、シクロヘキセンオキシド、エピクロルヒドリン等のエポキシド類;ヘキセン、ヘプテン、ペンタジエン、シクロペンテン、シクロヘキセン等の不飽和炭化水素類;アリルアルコール、1-ブテン-3-オール等のオレフィン系アルコール類;3-メチル-1-ブチン-3-オール、3-メチル-1-ペンチン-3-オール等のアセチレン系アルコール類;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸ビニル等のアクリル酸エステル類が挙げられる。また、更に相乗的安定化効果を得るために、フェノール類、アミン類、ベンゾトリアゾール類を併用してもよい。これらの安定剤は、単独で使用されてもよく、2種以上組み合わせて使用されてもよい。安定剤の使用量は、安定剤の種類により異なるが、共沸(様)組成物の性質に支障のない程度であればよく、通常、共沸(様)組成物中0.01質量%以上10質量%以下程度であり、0.1質量%以上5質量%以下程度とすることが好ましい。
 本共沸(様)組成物は、気液平衡での液相組成比と気相組成比とが実質的に同一となるため、経時的に揮発が生じても組成変化が非常に小さく、常に安定した洗浄能力を得ることが可能となる。また、保管時における保管容器内での組成変化も避けることができる。
 また、本共沸(様)組成物を含む洗浄剤には、必要に応じて各種の溶剤を添加してもよい。溶剤としては、水、炭化水素類、アルコール類、ケトン類、エーテル類、エステル類、クロロカーボン類、ハイドロフルオロカーボン(HFC)類、ハイドロフルオロエーテル(HFE)類、ハイドロクロロフルオロオレフィン(HCFO)類(トランス-1-クロロ-3,3,3-テトラフルオロプロペン、1-クロロ-1,3,3,3-テトラフルオロプロペンを除く)、ハイドロフルオロオレフィン(HFO)類等が挙げられる。これらの溶剤の添加量は、本共沸(様)組成物に対して50質量%以下であることが好ましく、40質量%以下であることがより好ましく、20質量%以下であることがさらに好ましく、10質量%以下であることが特に好ましい。
2.発泡剤
 本共沸(様)組成物を発泡剤として用いる場合について詳細に述べる。
 現在、トランス-1-クロロ-3,3,3-トリフルオロプロペンが発泡剤として商業生産されており、トランス-1-クロロ-3,3,3-トリフルオロプロペンに最適化された処方が提案されているが、その処方に1-クロロ-1,3,3,3-テトラフルオロプロペンを添加すると、大掛かりな処方変更なく、硬質ウレタンフォームの断熱性を向上させることができる。
 1-クロロ-1,3,3,3-テトラフルオロプロペンと1-クロロ-3,3,3-トリフルオロプロペンとを含有する本共沸(様)組成物は、硬質ポリウレタンフォーム又はポリイソシアヌレートフォームの製造に用いる発泡剤として用いることができる。硬質ウレタンフォーム又はポリイソシアヌレートフォームの製造には、プレミックスが必要であり、そのプレミックスは、発泡剤、1種以上のポリオール、触媒、整泡剤、難燃剤、及び水などを混合した混合物である。このプレミックスの発泡剤として本発明に係る共沸様組成物を用いて、イソシアネートと反応させることによって、該目的物である硬質ポリウレタンフォーム又はポリイソシアヌレートフォームを製造することができる。もちろん、本共沸(様)組成物に上述の物質を添加したものも本発明の技術範疇である。
 イソシアネートは、芳香族、環状脂肪族、鎖状脂肪族系等のものが包含され、一般には2官能性のものが使用される。このようなイソシアネートとしては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート、トリレンジイソシアネート、ナフタリンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート、ジシクロヘキシルメタンイソシアネート等のポリイソシアネート及びこれらのプレポリマー型変性体、ヌレート変性体、尿素変性体が挙げられる。これらは単独又は混合物で用いられる。
 プレミックスに含まれるポリオールには、ポリエーテル系ポリオール、ポリエステル系ポリオール、多価アルコール、水酸基含有ジエチレン系ポリマー等が挙げられるが、ポリエーテル系ポリオールが一般的に使用される。また、ポリエステル系ポリオール及びポリエーテル系ポリオールを主成分としてもよく、その他のポリオールを使用してもよい。
 ポリエステル系ポリオールには、無水フタル酸、廃ポリエステル、ひまし油に由来する化合物の他に縮合系ポリエステルポリオール、ラクトン系ポリエステルポリオール、ポリカーボネートポリオール等が挙げられる。
 発泡剤、添加剤等との相溶性ならびに、発泡性、フォーム物性等の観点から、ポリエステルポリオールの水酸基価(OH価)は100mgKOH/g以上400mgKOH/g以下であり、かつ粘度が200Pa・s/25℃以上4000mPa・s/25℃以下であることが好ましい。
 ポリエーテル系ポリオールとしては、ポリプロピレングリコール、ポリテトラメチレングリコール及びそれら変性体の他、糖、多価アルコール、アルカノールアミン等の活性水素を含む化合物をイニシエータにして、これに、プロピレンオキシド、エチレンオキシド、エピクロルヒドリン、ブチレンオキシド等の環状エーテルを付加したものが好ましく使用される。
 ポリエーテルポリオールは、通常、水酸基価が400mgKOH/g以上1000mgKOH/g以下のものが使用される。
 プレミックスに含まれる触媒には、有機金属系触媒及び有機アミン系触媒が包含される。有機金属触媒としては、有機スズ化合物が好ましく使用され、スタナスオクトエート、スタナスラウレート、ジブチル錫ジラウレート、ジブチル錫ジマレート、ジブチル錫ジアセテート、ジオクチル錫ジアセテート等が挙げられる。有機アミン系触媒としては、第3級アミン、例えば、トリエチレンジアミン、N-エチルモルホリン、ビス(2-ジメチルアミノエチル)エーテル、N,N’,N’-トリエチルエタノールアミン等が挙げられる。
 プレミックスに含まれる整泡剤としては、通常有機ケイ素化合物系の界面活性剤が用いられ、東レシリコーン(株)製SH-193、SH-195、SH-200又はSRX-253等、信越シリコーン(株)製F-230、F-305、F-341、F-348等、日本ユニカー(株)製L-544、L-5310、L-5320、L-5420、L-5720又は東芝シリコーン(株)製TFA-4200、TFA-4202等が挙げられる。
 プレミックスに含まれる難燃剤としては、硬質ポリウレタンフォーム又はポリイソシアヌレートフォームに使用されるリン酸エステルであり、トリス(2-クロロエチル)ホスフェート、トリス(2-クロロプロピル)ホスフェート、トリス(ブトキシエチル)ホスフェート、トリスメチルホスフェート、トリスエチルホスフェート、トリフェニルホスフェート、トリス(イソプロピルフェニル)ホスフェート等が挙げられる。
 プレミックスに添加されるその他の添加剤としては、紫外線防止剤、スコーチ防止剤、プレミックス貯蔵安定剤など硬質ポリウレタンフォーム又はポリイソシアヌレートフォームの諸物性を向上させるための添加剤が挙げられる。
 水の添加は、フッ素系発泡剤の使用量を低減するため、硬質ポリウレタンフォーム又はポリイソシアヌレートフォームの経済性ならびにプレミックスの蒸気圧低下に寄与する。水をプレミックスに添加し、さらにポリエステル系ポリオールを添加して保存する場合には、1,2-エポキシブタン、1,2-エポキシヘキサン、エポキシシクロヘキサン等のエポキシ化合物、α-メチルスチレン、p-イソプロペニルトルエン、アミレン等の不飽和化合物又はニトロメタン、ニトロエタン、ニトロプロパン、ニトロトルエン、ニトロベンゼン等のニトロ化合物等の安定剤をプレミックスに添加することが好ましい。
 本発明の実施形態に係る共沸(様)組成物を発泡剤として用いる場合は、ポリオール100質量部当たり、通常5質量部以上80質量部以下、好ましくは10質量部以上70質量部以下、より好ましくは15質量部以上60質量部以下で使用される。このような量の本共沸(様)組成物を発泡剤として使用することにより、20kg/m3以上、特に、30kg/m3以上80kg/m3以下の密度を有する硬質ウレタンフォーム又はポリイソシアヌレートフォームを製造することができる。
 また、これらの原料は混合するとすみやかに反応し反応熱を発生し発泡する。混合温度は、5℃以上50℃以下、10℃以上40℃以下、又は15℃以上35℃以下が好ましい。本共沸(様)組成物は蒸気圧を有するためこれらの温度で揮発するが、気液相の組成が実質的に同一であるため、フォーム、断熱性、低温での形状安定性等に優れる。
 本発明の実施形態に係る共沸(様)組成物を用いた硬質ポリウレタンフォーム又はポリイソシアヌレートフォームを製造する方法は、特に限定されず、従来公知の各種の方法を採用することができる。例えば、ワンショット法やプレポリマー法で製造することができる。また、そのフォームを得る際の発泡方法としては、現場発泡、スラブ発泡、注入発泡(充填法、モールド法)、ラミネート発泡、スプレー発泡等の各種の発泡方法を採用することができる。
3.シリコーン溶剤
 本発明の実施形態に係る共沸(様)組成物はシリコーンの溶剤として非常に優れた特性を有する。即ち、本共沸(様)組成物は、オゾン層破壊係数及び地球温暖化係数が実質的にゼロで、不燃性であり、揮発性に優れ、かつ、種々のシリコーンを任意の割合で溶解させることができる。特に、本共沸(様)組成物は、広い共沸様組成範囲を持つので、各種のシリコーン化合物に応じた最適の組成を選定することができる。
 本共沸(様)組成物をシリコーン溶剤として用いると優れた効果を発揮する例としては、表面コーティングが挙げられる。表面コーティングにおいては、対象物の表面の保護、潤滑性を付与させるために、揮発性の溶剤に潤滑剤のシリコーンを溶解させて得たシリコーン塗布溶液を対象物に塗布した後に溶剤を蒸発させる事が一般的である。例えば、注射針にはすべり性を良くするために、シリコーンが塗布されている。本発明の実施形態に係る共沸(様)組成物とシリコーンとを混合させることで、シリコーン塗布溶液として使用することができる。
 使用されるシリコーンとしては、例えば、表面コーティング用に使用されている各種のシリコーンを使用することができるがこれに限定されず、1種類又は2種類以上の混合物を用いてもよい。中でも、メチル基、フェニル基、水素原子を置換基として結合したジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチル水素シリコーンオイルなどのストレートシリコーンオイル、また、ストレートシリコーンオイルから二次的に誘導された構成部分を持つ、反応性シリコーンオイル、非反応性シリコーンオイルなどの変性シリコーンオイルなどのシリコーンを使用してもよい。反応性シリコーンオイルとしては、例えば、アミノ変性、ジアミノ変性、エポキシ変性、カルボキシ変性、カルビノール変性、メタクリル変性、フェノール変性、異種官能基変性などが挙げられ、非反応性シリコーンとしては、ポリエーテル変性、メチルスチリル変性、アルキル変性、高級脂肪酸エステル変性、親水性特殊変性、フッ素変性などが挙げられる。
 具体的なシリコーンとしては、アミノアルキルシロキサンとジメチルシロキサンとの共重合体を主成分とするもの、アミノ基含有シラン及びエポキシ基含有シランの反応生成物と、シラノール基を含有するポリジオルガノシロキサンとの反応生成物を主成分とするもの、側鎖又は末端にアミノ基を含有するシリコーンとポリジオルガノシロキサンとからなるシリコーン混合物、及びアミノ基含有アルコキシシラン、エポキシ基含有アルコキシシラン、及び両末端にシラノール基を有するシリコーンを反応させて得られたシリコーンと非反応性シリコーンとの混合物等が挙げられるが、これらに限定されない。
 コーティング用シリコーン溶液におけるシリコーン溶剤としての本共沸(様)組成物の割合は、0.1質量%以上80質量%以下、又は1質量%以上20質量%以下であることが好ましい。上記割合を満たすことで、十分な厚さのコーティング被膜を均一な厚さで形成できる。
 本共沸(様)組成物を含むシリコーン塗布溶液を対象物の表面に塗布し、本共沸(様)組成物を蒸発させて除去することにより、対象物表面にシリコーンの被膜を形成する。本実施形態に係る方法を適用できる対象物としては、金属部材、樹脂部材、セラミックス部材、ガラス部材などの各種材質に適用することができ、特に、注射針の針管部や、ディスペンサー(液体定量噴出装置)のスプリングやバネ部分等に適用することができる。
 例えば、注射針の針管部などにシリコーンの被膜を形成する場合、シリコーンを注射針の針管部に塗布する方法として、注射針の針管部を、シリコーン塗布溶液に浸漬させ、針管部の外表面に塗布した後、室温あるいは加温下に放置して本共沸(様)組成物を含む溶剤組成物を蒸発させ、シリコーンの被膜を形成させるディップコート法が適用されてもよい。
 本発明の実施形態に係る共沸(様)組成物は、シリコーン以外の潤滑剤の溶剤としても有用である。シリコーン以外の潤滑剤としては、鉱物油系潤滑剤、合成油系潤滑剤、フッ素系潤滑剤等が挙げられる。中でも、溶解性又は分散性が優れる点から、フッ素系潤滑剤が好ましい。フッ素系潤滑剤は、分子内にフッ素原子を有する潤滑剤を指し、例えば、フッ素オイル、フッ素グリース、ポリテトラフルオロエチレン等のフッ素系固体潤滑剤が挙げられるが、これらに限定されない。本発明の実施形態に係る共沸(様)組成物は、充分な速乾性を有するため、物品への潤滑剤塗膜を形成するための溶剤としても好適である。
4.エアゾール組成物
 本発明の実施形態に係る共沸(様)組成物は、不燃性であることから、エアゾール組成物の形態で用いることができる。本共沸(様)組成物を噴射器に高圧で充填し、噴射器から本共沸(様)組成物を噴射することができる。この時、本共沸(様)組成物に塗膜形成用組成物を混合させておくことで、塗膜形成用組成物を種々の物品の表面に塗布することができる。
 本共沸(様)組成物をエアゾール組成物として用いる場合には、さらに昇圧剤を含んでもよい。昇圧剤としては、噴射器の使用時の圧力変動が小さく、塗布対象の基材にムラなく均一に噴射できるものが好ましい。具体的な昇圧剤としては、1,3,3,3-テトラフルオロプロペン(1234ze)、1,2,2,2-テトラフルオロエタン(134a)、2,3,3,3-テトラフルオロプロペン(1234yf)、ジメチルエーテル、二酸化炭素、メタン、エタン、プロパン、イソブタン等が挙げられる。昇圧剤は圧縮ガスの状態で用いてもよく液化ガスの状態で用いてもよい。本共沸(様)組成物をエアゾール組成物として使用することにより、浸漬によって塗膜形成用組成物を塗布する方法と比較し、溶剤組成物の使用量を削減することができる。
5.消火剤
 本共沸(様)組成物に含まれるトランス-1-クロロ-3,3,3-トリフルオロプロペンや1-クロロ-1,3,3,3-テトラフルオロプロペンは、ともに蒸気圧が比較的低く、燃焼性を抑制するハロゲン、およびOHラジカルによって分解されやすい炭素-炭素二重結合を有する。このため、消火剤として利用することが可能である。本共沸(様)組成物を消火剤として用いる場合、不燃性化合物をさらに添加してもよい。不燃性化合物としては、窒素や二酸化炭素、希ガス、あるいは不燃性含フッ素化合物が挙げられる。不燃性含フッ素化合物としては、フルオロアルカン、フルオロアルケン、フルオロケトン、フルオロエーテルなどが挙げられる。
 フルオロアルカンとしては、トリフルオロメタン(HFC-23)、1,1,2,2-テトラフルオロエタン(HFC-134)、1,1,1,2-テトラフルオロエタン(HFC-134a)、ヨウ化トリフルオロメタン(CF3I)、1,1-ジクロロ-2,2,2-トリフルオロエタン(HCFC-123)、1-クロロ-1,2,2,2-テトラフルオロエタン(HCFC-124)、ペンタフルオロエタン(HFC-125)、1,1,1,2,3,3-ヘキサフルオロプロパン(HFC-236ea)、1,1,1,3,3,3-ヘキサフルオロプロパン(HFC-236fa)、1,1,1,2,3,3,3-ヘプタフルオロプロパン(HFC-227ea)、1,1,1,2,2,3,3-ヘプタフルオロプロパン(HFC-227ca)、1,1,1,3,3-ペンタフルオロプロパン(HFC-245fa)等が挙げられる。
 フルオロアルケンとしては、トランス-1,3,3,3-テトラフルオロプロペン(1234ze(E))、シス-1,3,3,3-テトラフルオロプロペン(1234ze(Z))、シス-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(1336mzz(Z))、トランス-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(1336mzz(E))、シス-1-クロロ-3,3,3-トリフルオロプロペン(1233zd(Z))、トランス-1-クロロ-2,3,3,3-テトラフルオロプロペン(1224yd(E))、2-ブロモ-3,3,3-トリフルオロプロペン(2-BTP)、1-ブロモ-3,3,3-トリフルオロプロペン(1-BTP)等が挙げられる。
 フルオロケトンとしては、ドデカフルオロ-2-メチルペンタン-3-オン、テトラデカフルオロ-2,4-ジメチルペンタン-3-オン、テトラデカフルオロ-2-メチルヘキサン-3-オン等が挙げられる。
 フルオロエーテルとしては、ペンタフルオロエチルメチルエーテル(HFE-245mc)、1,1,2,2-テトラフルオロエチルメチルエーテル(HFE-254pc)、ヘプタフルオロイソプロピルメチルエーテル(HFE-347mmy)、ヘプタフルオロプロピルメチルエーテル(HFE-347mcc)、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルロエチルエーテル(HFE-347pc-f)等が挙げられる。
 さらに、本共沸(様)組成物を含む消火剤は、安定剤を含んでもよい。安定剤としては、フェノール系化合物、不飽和炭化水素基含有芳香族化合物、芳香族アミン化合物、芳香族チアジン化合物、テルペン化合物、キノン化合物、ニトロ化合物、エポキシ化合物、ラクトン化合物、オルトエステル化合物、フタル酸のモノ又はジアルカリ金属塩化合物、水酸化チオジフェニルエーテル化合物等の耐酸化性向上剤および耐熱性向上剤、イミダゾール化合物、チアゾール化合物、トリアゾール化合物といった複素環式窒素含有化合物や、アルキル酸ホスフェートのアミン塩又はそれらの誘導体などの金属不活性剤が例示される。
6.燻蒸剤
 本共沸(様)組成物に含まれる1-クロロ-1,3,3,3-テトラフルオロプロペンは、無色透明の液体であり、不燃性であるとともに、燻蒸作用が高いことから、燻蒸剤としても使用することができる。このため、本共沸(様)組成物を噴霧器に充填し、害虫に対して本共沸(様)組成物を噴射させることで、効果的に害虫を駆除することができる。
 本共沸(様)組成物を噴霧器に充填する際には、噴霧器内の圧力を増大させるための昇圧剤を添加してもよい。昇圧剤としては、プロパン、プロピレン、n-ブタン、イソブタンなどの液化石油ガス(LPG)やジメチルエーテル等のエーテル類、二酸化炭素、窒素、圧縮空気等の圧縮ガス、1、1-ジフルオロエタン(HFC-152a)、1,1,1,2-テトラフルオロエタン(HFC-134a)、2,3,3,3-テトラフルオロ-1-プロペン(HFO-1234yf)、トランス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze)などが挙げられる。
 本共沸(様)組成物を燻蒸剤として用いる場合には、さらに他の成分として、水、イソプロピルアルコールやエタノール等のアルコール類、プロピレングリコールやエチレングリコール等のグリコール類、イソパラフィンやノルマルパラフィン等のパラフィン系炭化水素、ナフテン系炭化水素等、灯油等の石油類、ミリスチン酸イソプロピルやラウリン酸ヘキシル等のエステル類等の溶剤、乳酸エステル、アルキルピロリドン、ポリビニルピロリドン、炭酸エステル、非イオン系界面活性剤、陽イオン系界面活性剤、陰イオン系界面活性剤、両性系界面活性剤等の溶解助剤等を添加してもよい。
 さらに、殺菌剤、防腐剤、共力剤、消臭剤、芳香剤、殺虫剤、忌避剤等の添加剤を用いてもよい。殺菌剤や防腐剤としては、例えば、クロロキシレノール、3-メチル-4-イソプロピルフェノール、チモール等のフェノール系化合物;塩化ベンザルコニウム、塩化セチルピリジニウム等の第4級アンモニウム系化合物;3-ヨード-2-プロピニルブチルカーバメイト、フェノキシエタノール、トリクロサン、N-ジクロロフルオロメチルチオ-N´,N´-ジメチル-N-フェニルスルファミド等が挙げられる。
 消臭剤としては、例えば、茶抽出物、カテキン、植物ポリフェノール等の植物抽出物;ラウリルメタクリレート、ゲラニルクロトネート、ミリスチル酸アセトフエノン、パラメチルアセトフエノンベンズアルデヒド等が挙げられる。
 芳香剤としては、例えば、じゃ香、ベルガモット油、シンナモン油、シトロネラ油、レモン油、レモングラス油等の天然香料;ピネン、リモネン、リナロール、メントール、ボルネオール、オイゲノール、シトラール、シトロネラール、ゲラニオール等の人工香料等が挙げられる。
 共力剤としては、例えば、ピペロニルブトキシド、オクタクロロジプロピルエーテル、N-(2-エチルヘキシル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド等が挙げられる。
 殺虫剤、忌避剤としては、例えば、天然ピレトリン、アレスリン、レスメトリン、フラメトリン、プラレトリン、テラレスリン、フタルスリン、フェノトリン、ペルメトリン、シフェノトリン、トランスフルスリン、メトフルトリン、プロフルトリン、エンペントリン、イミプロトリン、エトフェンプロックス等のピレスロイド系化合物;プロポクサー、カルバリル等のカーバメイト系化合物;フェニトロチオン、DDVP等の有機リン系化合物;メトキサジアゾン等のオキサジアゾール系化合物;ジノテフラン、イミダクロプリド、アセタミプリド等のネオニコチノイド系化合物;メトプレン、ハイドロプレン、ピリプロキシフェン等の昆虫成長制御剤;フィプロニル、ピリプロール等のフェニルピラゾール系化合物;クロルフェナピル等のピロール系化合物;アミドフルメト等のスルホンアミド系化合物;フィットンチッド、ハッカ油、オレンジ油、桂皮油、丁子油等の殺虫性、忌避性の精油類が挙げられる。
1.気液平衡測定
 以下、トランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペンを含む組成物、およびトランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペンとトランス-1-クロロ-1,3,3,3-テトラフルオロプロペンとを含む組成物の気液平行測定を行った例について述べる。
1-1.実施例1:トランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペンの混合溶液
 トランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペンの組成比が異なるトランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペンの各混合溶液(230g)をオスマー式気液平衡蒸留装置に仕込み、平衡状態に達した時の気相組成と液相組成をガスクロマトグラフィー分析により求めた。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示される通り、トランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペンの混合溶液は、共沸(様)組成物を形成することが分かる。
1-2.実施例2:トランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペンとトランス-1-クロロ-1,3,3,3-テトラフルオロプロペンの混合溶液
 シス-1-クロロ-1,3,3,3-テトラフルオロプロペンの代わりにシス-1-クロロ-1,3,3,3-テトラフルオロプロペンとトランス-1-クロロ-1,3,3,3-テトラフルオロプロペンの混合溶液を用いたこと以外は実施例1と同様の操作を行った。平衡状態に達した時の気相組成と液相組成をガスクロマトグラフィーで求めた。測定結果を表2に示す。実施例2-1~2-5ではシス-1-クロロ-1,3,3,3-テトラフルオロプロペン/トランス-1-クロロ-1,3,3,3-テトラフルオロプロペン=35.6/64.4、実施例2-6~2-10ではシス-1-クロロ-1,3,3,3-テトラフルオロプロペン/トランス-1-クロロ-1,3,3,3-テトラフルオロプロペン=80.3/19.7の溶液を調整し、トランス-1-クロロ-3,3,3-トリフルオロプロペンと混合して測定試料を作製した。測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示される通り、トランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペンとトランス-1-クロロ-1,3,3,3-テトラフルオロプロペンの混合溶液は、共沸(様)組成物を形成することが分かる。
2.熱伝達システムへの応用のための計算
 以下、冷凍サイクルシステムおよび高温ヒートポンプサイクルシステムに本発明の実施形態に係る共沸(様)組成物を利用するための計算を行った結果を示す。具体的には、成績係数(COP)と体積能力(CAP)についての計算を行った。
 成績係数(COP)は、一般に認められている冷媒性能の尺度であり、熱伝達媒体の蒸発又は凝縮を含む特定の加熱又は冷却のサイクルにおける熱伝達媒体の相対的な熱力学的効率を表すのに特に有益である。蒸気を圧縮する際に圧縮機によって加えられた仕事量に対する蒸発器における熱伝達媒体が被冷却媒体から受け入れる熱量の比率はCOPRで表される。一方、蒸気を圧縮する際に圧縮機によって加えられた仕事量に対する凝縮器における熱伝達媒体が被加熱媒体へ放出する熱量の比率はCOPHで表される。
 熱伝達媒体の体積能力は、圧縮機の単位吸込み体積当たりの熱伝達媒体が与える冷却又は加熱の熱量を表す。すなわち、特定の圧縮機に対して、熱伝達媒体の体積能力が大きいほど、その熱伝達媒体はより大きな熱量を吸熱又は放熱することができる。
 具体的な計算結果は後述するが、トランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペンを含む共沸(様)組成物、又はトランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペンとトランス-1-クロロ-1,3,3,3-テトラフルオロプロペンとを含む共沸(様)組成物を熱伝達媒体として用いた冷凍サイクルシステム及び高温ヒートポンプサイクルシステムの性能評価のため、表3、表6に示す条件で、成績係数(COPR、COPH)を算出した。熱伝達媒体の物性値は、米国国立標準技術研究所(NIST)のREFPROP ver.10.0により求めた。
 なお、冷凍サイクルシステムの成績係数(COPR)及び高温ヒートポンプサイクルシステム成績係数(COPH)を算出するにあたり、次の項目を仮定した。
(A)圧縮機の圧縮過程は等エントロピー圧縮とする。
(B)膨張弁における絞り膨張過程は等エンタルピー膨張とする。
(C)配管及び熱交換器における熱損失、圧力損失は無視する。
(D)圧縮機効率ηを0.7とする。
 以下に、冷凍サイクルシステムの成績係数(COPR)を算出する式について詳細に説明する。蒸発器への入熱量QEVAは、
            QEVA=G×(h1-h4)・・・(1)
であり、凝縮器における放熱量QCONは、
            QCON=G×(h2-h3)・・・(2)
となる。
 ただし、等エントロピー圧縮後の圧縮機出口における熱伝達媒体のエンタルピーをh2thで表したとき、圧縮機効率を加味したときの圧縮機出口における熱伝達媒体のエンタルピーh2は、
          h2=h1+(h2th-h1)/η・・・(3)
となる。
 熱伝達媒体の蒸気を圧縮する際に、圧縮機によって加えられた仕事量Wは、
          W=G×(h2-h1)・・・(4)
となる。
 冷凍サイクルシステムの成績係数(COPR)は、
      COPR=QEVA/W=(h1-h4)/(h2-h1)・・・(5)
となる。
 また、高温ヒートポンプサイクルシステムの成績係数(COPH)は、
     COPH=QCON/W=(h2-h3)/(h2-h1)・・・(6)
となる。
 次に、熱伝達媒体の体積能力(CAP)を算出する式について詳細に説明する。圧縮機吸い込み口における熱伝達媒体の蒸気密度はρ2であり、蒸発器における吸熱量QEVAであるから、冷凍サイクルシステムにおける熱伝達媒体の体積能力(CAPR)は、
       CAPR=ρ2×QEVA=ρ2×(h1-h4)・・・(7)
となる。
 また、高温ヒートポンプサイクルシステムにおける熱伝達媒体の体積能力(CAPH)は、
       CAPH=ρ2×QCON=ρ2×(h2-h3)・・・(8)
となる。
 冷凍サイクルシステムの冷凍能力(QR)は、
             QR=(h1-h4)×G
高温ヒートポンプシステムの加熱能力(QH)は、
             QR=(h2-h3)×G
となる。
 なお、上記式(1)~(8)において、各種記号は以下を意味する。
 G:熱伝達媒体循環量
 W:圧縮仕事
 QEVA:入熱量
 QCON:放熱量
 COPR:成績係数(冷却)
 COPH:成績係数(加熱)
 CAPR:体積能力(冷却)
 CAPH:体積能力(加熱)
 h:比エンタルピー
2-1.実施例3-1~3-3:トランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペンを含む共沸組成物を熱伝達媒体に用いた冷凍サイクルシステム
 冷凍サイクルシステム計算条件を表3に示す。この計算条件下、トランス-1-クロロ-3,3,3-トリフルオロプロペンと、シス-1-クロロ-1,3,3,3-テトラフルオロプロペンの組成比が異なる共沸(様)組成物を熱伝達媒体に用いた冷凍サイクルシステムの成績係数(COPR)、冷凍能力(QR)、体積能力(CAPR)を算出した。なお、この条件では、蒸発器において、熱伝達媒体と熱源水との熱交換による7℃冷水の生成を想定した。
Figure JPOXMLDOC01-appb-T000003
                  
2-2.比較例1:2,2-ジクロロ-1,1,1-トリフルオロエタンを用いる冷凍サイクルシステム
 比較例1として、トランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペン)からなる共沸(様)組成物の代わりに、2,2-ジクロロ-1,1,1-トリフルオロエタン(以下、HCFC-123と記す)を熱伝達媒体として用いた冷凍サイクルシステムの性能評価を行った。具体的には、表3に示す条件で冷凍サイクルシステム成績係数(COPR)、冷凍能力(QR)、体積能力(CAPR)を算出した。なお、HCFC-123は不燃性であり、許容濃度が10ppmである。HCFC-123の沸点は、大気圧下において27.8℃、大気寿命は1.3年、地球温暖化係数(GWP)は77(IPCC4次評価報告書2007)、オゾン破壊係数(ODP)は0.02である。
 表3の計算条件により算出されたHCFC-123の冷凍サイクルシステム成績係数(COPR)、冷凍能力(QR)、体積能力(CAPR)を1.0とし、表4に、質量比が異なるトランス-1-クロロ-3,3,3-トリフルオロプロペンと、シス-1-クロロ-1,3,3,3-テトラフルオロプロペン)を含む共沸(様)組成物を熱伝達媒体に用いた計算結果を相対値として示す。
 図3は、実施例3-1におけるPh線図を示す。図3において、サイクルポイント1、2、3、4は冷凍サイクルシステム計算条件を示す。
Figure JPOXMLDOC01-appb-T000004
2-3.実施例4-1~4-10:トランス-1-クロロ-3,3,3-トリフルオロプロペン、シス-1-クロロ-1,3,3,3-テトラフルオロプロペン、トランス-1-クロロ-1,3,3,3-テトラフルオロプロペンを含む共沸(様)組成物を用いた冷凍サイクルシステム
 トランス-1-クロロ-3,3,3-トリフルオロプロペン、シス-1-クロロ-1,3,3,3-テトラフルオロプロペン、およびトランス-1-クロロ-1,3,3,3-テトラフルオロプロペンを含む共沸(様)組成物を熱伝達媒体に用いた冷凍サイクルシステムの性能評価について、表3に示す条件で冷凍サイクルシステム成績係数(COPR)、冷凍能力(QR)、体積能力(CAPR)を算出した。
 図4は、実施例4-10におけるPh線図を示す。図4において、サイクルポイント1、2、3、4は冷凍サイクルシステム計算条件を示す。
 表3の計算条件により算出されたHCFC-123の冷凍サイクルシステム成績係数(COPR)、冷凍能力、体積能力(CAPR)を1.0とし、表5に、質量比が異なるトランス-1-クロロ-3,3,3-トリフルオロプロペン、シス-1-クロロ-1,3,3,3-テトラフルオロプロペン、トランス-1-クロロ-1,3,3,3-テトラフルオロプロペンからなる共沸組成物からなる共沸(様)組成物を熱伝達媒体に用いた計算結果を相対値として示す。
Figure JPOXMLDOC01-appb-T000005
 表4及び表5に示す通り、本発明の実施形態に係るトランス-1-クロロ-3,3,3-トリフルオロプロペンと1-クロロ-1,3,3,3-テトラフルオロプロペンからなる共沸(様)組成物を熱伝達媒体に用いた冷凍サイクルシステムにおいて、従来使用されてきたHCFC-123と同等の成績係数(COPR)を有していることがわかった。また、体積能力(CAPR)が、HCFC-123より大きいことがわかった。この結果は、HCFC-123用冷凍サイクルシステムと同等の冷却能力を有する冷凍サイクルシステムを設計する場合、本発明の実施形態に係る共沸(様)組成物を用いることでシステム全体のサイズを小型化できることを意味する。また、HCFC-123より冷却能力が大きいことから、HCFC-123と同等の冷却性能を、より少量の本共沸(様)組成物を用いることでで得られることを意味している。
2-4.実施例5-1~5-3:トランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペンからなる共沸(様)組成物を熱伝達媒体に用いた高温ヒートポンプサイクルシステム
 高温ヒートポンプサイクルシステム計算条件を表6に示す。この条件では、凝縮器における熱伝達媒体と熱源水との熱交換によって80℃熱水を生成することを想定している。この条件において、質量比が異なるトランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペンからなる共沸(様)組成物を熱伝達媒体に用い、高温ヒートポンプサイクルシステム成績係数(COPH)、加熱能力(QH)、体積能力(CAPH)を算出した。
Figure JPOXMLDOC01-appb-T000006
2-5.比較例2:HCFC-123を用いる冷凍サイクルシステム
 比較例1と同様、トランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-1,3,3,3-テトラフルオロプロペンからなる共沸(様)組成物の代わりに、HCFC-123を熱伝達媒体として用いた高温ヒートポンプサイクルシステムの性能評価において、表6に示す条件で高温ヒートポンプサイクルシステム成績係数(COPH)、冷凍能力、体積能力(CAPH)を算出した。
 図5は、実施例5-1におけるPh線図を示す。図5において、サイクルポイント1、2、3、4は高温ヒートポンプサイクルシステム計算条件を示す。
 表6の計算条件により算出されたHCFC-123の高温ヒートポンプサイクルシステム成績係数(COPH)、冷凍能力、体積能力(CAPH)を1.0とし、表7に、質量比が異なるトランス-1-クロロ-3,3,3-トリフルオロプロペンと、シス-1-クロロ-1,3,3,3-テトラフルオロプロペン)からなる共沸(様)組成物を熱伝達媒体に用いた計算結果を相対値として示した。
Figure JPOXMLDOC01-appb-T000007
2-6.実施例6-1~6-10:トランス-1-クロロ-3,3,3-トリフルオロプロペン、シス-1-クロロ-1,3,3,3-テトラフルオロプロペン、トランス-1-クロロ-1,3,3,3-テトラフルオロプロペンを含む共沸(様)組成物を用いた高温ヒートポンプサイクルシステム
トランス-1-クロロ-3,3,3-トリフルオロプロペン、シス-1-クロロ-1,3,3,3-テトラフルオロプロペン、トランス-1-クロロ-1,3,3,3-テトラフルオロプロペンを含む共沸(様)組成物を熱伝達媒体に用いた高温ヒートポンプサイクルシステムの性能評価について、表6に示す条件で高温ヒートポンプサイクルシステム成績係数(COPH)、加熱能力、体積能力(CAPH)を算出した。
 図6は、実施例6-10におけるPh線図を示す。図6において、サイクルポイント1、2、3、4は高温ヒートポンプサイクルシステム計算条件を示す。
 表6の計算条件により算出されたHCFC-123の高温ヒートポンプサイクルシステム成績係数(COPH)、冷凍能力、体積能力(CAPH)を1.0とし、表8に、質量比が異なるトランス-1-クロロ-3,3,3-トリフルオロプロペン、シス-1-クロロ-1,3,3,3-テトラフルオロプロペン、トランス-1-クロロ-1,3,3,3-テトラフルオロプロペンを含む共沸(様)組成物を熱伝達媒体に用いた計算結果を相対値として示した。
Figure JPOXMLDOC01-appb-T000008
 表7及び表8に示す通り、本発明の実施形態に係るトランス-1-クロロ-3,3,3-トリフルオロプロペンと1-クロロ-1,3,3,3-テトラフルオロプロペンを含む共沸(様)組成物を熱伝達媒体に用いた高温ヒートポンプサイクルシステムの成績係数(COPH)は、既存冷媒であるHCFC-123と同等であることがわかった。また、体積能力(CAPH)が、HCFC-123より大きいことがわかった。この結果は、HCFC-123用冷凍サイクルシステムと同等の加熱能力を有する高温ヒートポンプサイクルシステムを設計する場合、本共沸(様)組成物を用いることで、HFC-123用システムと比較してシステム全体のサイズをより小型化できることを意味する。また、HCFC-123より加熱能力が大きいことから、HCFC-123と同等の加熱する性能を、より少量の本共沸(様)組成物で得られることを意味している。
3.1-クロロ-1,3,3,3-テトラフルオロプロペンの合成
 以下、1-クロロ-1,3,3,3-テトラフルオロプロペンを合成した結果について述べる。
 ボールフィルター、温度計、ジムロート及び撹拌子を備えた500mL三つ口フラスコに、1-クロロ-1,3,3,3-テトラフルオロプロパン(244fa)を310.36g(2.06mol)仕込み、-10℃の冷媒をジムロートに流し、フラスコを0~5℃の氷浴に浸け攪拌を開始した。反応器外側から100W高圧水銀ランプにてUV光を照射しながら、塩素142.41g(2.02mol)を240分かけて導入した。生成した粗体を炭酸水素ナトリウム水溶液で洗浄し、305.26gの有機物を回収した。ガスクロマトグラフィー分析を行ったところ、244faが0.023面積%、1,1-ジクロロ-1,3,3,3-テトラフルオロプロパン(234fb)が99.081面積%の組成であり、244faの転化率は99%であった。
 引き続き、容積500mLの滴下ロート、温度計、ジムロート及び撹拌子を備えた1L四つ口フラスコに、234fbを404.90g(2.19mol)、相間移動触媒としてテトラブチルアンモニウムブロミドを17.62g(0.05mol)仕込み、-10℃の冷媒をジムロートに流し、フラスコを水温20~25℃の水浴に浸け攪拌を開始した。滴下ロートより濃度24重量%水酸化ナトリウム水溶液386.3g(2.32mol)を90分かけて徐々にフラスコ内に滴下した。同温度で2時間フラスコ内の内容物を攪拌した後、氷水で冷却し、ジムロートを外しドライアイス-アセトントラップに接続した。水温を30℃に昇温して留分を回収し、1-クロロ-1,3,3,3-テトラフルオロプロペンを含む生成物305.83gを得た。生成物の組成をガスクロマトグラフィーで分析したところ、シス体であるシス-1-クロロ-1,3,3,3-テトラフルオロプロペンが71.455面積%、トランス体であるトランス-1-クロロ-1,3,3,3-テトラフルオロプロペンが27.570面積%の組成であり、234fbの転化率は99%であった。
4.熱安定性試験
 本発明の実施形態に係るトランス-1-クロロ-3,3,3-トリフルオロプロペンと1-クロロ-1,3,3,3-テトラフルオロプロペンを含む共沸(様)組成物の熱安定性試験を行った。SUS304L製シリンダー(容量50mL)をサンプルで洗浄し、50℃の恒温槽で乾燥した。そのシリンダーを真空引きした後、フッ素樹脂(PFA)製チューブを用いて該シリンダーにサンプルを20g加えた。さらに、液体窒素を用いて該シリンダー内を凍結脱気(10分間を3回繰り返した)した。その後、あらかじめ160℃に昇温済みの恒温槽に該シリンダーを入れて、7日間保持した。得られたサンプルに対して酸分測定を行うことで熱安定性の評価を行った。比較として、トランス-1-クロロ-3,3,3-トリフルオロプロペンおよび1-クロロ-1,3,3,3-テトラフルオロプロペン(シス体とトランス体の混合物)を用いて同様の実験を行った。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9に示した結果から明らかなように、トランス-1-クロロ-3,3,3-トリフルオロプロペンと1-クロロ-1,3,3,3-テトラフルオロプロペンを含む共沸(様)組成物の熱分解生成物は見られなかった。このことは、試験後の本共沸(様)組成物の副生酸分(FイオンおよびClイオン)は、トランス-1-クロロ-3,3,3-トリフルオロプロペンおよび1-クロロ-1,3,3,3-テトラフルオロプロペンのそれと比較して極微量であることから示唆される。以上の結果から、本共沸(様)組成物は、高温度状態においても熱安定性に優れていることがわかる。
 11:蒸発器、12:圧縮機、13:凝縮器、14:膨張弁、20:蒸発器、21:凝縮器、22:膨張機、23:循環ポンプ、24:発電機、100:冷凍サイクルシステム、200:有機ランキンサイクルシステム

Claims (15)

  1.  トランス-1-クロロ-3,3,3-トリフルオロプロペンと1-クロロ-1,3,3,3-テトラフルオロプロペンを含み、1-クロロ-1,3,3,3-テトラフルオロプロペンがトランス-1-クロロ-3,3,3-トリフルオロプロペンと共沸混合物又は共沸様混合物を形成するための有効量で存在する、組成物。
  2.  1-クロロ-1,3,3,3-テトラフルオロプロペンが、シス-1-クロロ-1,3,3,3-テトラフルオロプロペン、トランス-1-クロロ-1,3,3,3-テトラフルオロプロペン、又はこれらの混合物である、請求項1に記載の組成物。
  3.  トランス-1-クロロ-3,3,3-トリフルオロプロペンおよびシス-1-クロロ-1,3,3,3-テトラフルオロプロペンの全量に対して、トランス-1-クロロ-3,3,3-トリフルオロプロペンを90.0000モル%以上99.9999モル%以下含み、かつシス-1-クロロ-1,3,3,3-テトラフルオロプロペンを0.0001モル%以上10.0000モル%以下含む、請求項1に記載の組成物。
  4.  トランス-1-クロロ-3,3,3-トリフルオロプロペン、シス-1-クロロ-1,3,3,3-テトラフルオロプロペン、およびトランス-1-クロロ-1,3,3,3-テトラフルオロプロペンの全量に対して、トランス-1-クロロ-3,3,3-トリフルオロプロペンを80.0000モル%以上99.9998モル%以下含み、シス-1-クロロ-1,3,3,3-テトラフルオロプロペンを0.0001モル%以上10.0000モル%以下含み、トランス-1-クロロ-1,3,3,3-テトラフルオロプロペンを0.0001モル%以上10.0000モル%以下含む、請求項1に記載の組成物。
  5.  請求項1~4のいずれか一項に記載の組成物を含む、エアゾール組成物。
  6.  請求項1~4のいずれか一項に記載の組成物を含む、洗浄剤。
  7.  請求項1~4のいずれか一項に記載の組成物を含む、溶媒。
  8.  請求項1~4のいずれか一項に記載の組成物を含む、シリコーン溶剤。
  9.  請求項1~4のいずれか一項に記載の組成物を含む、発泡剤。
  10.  請求項1~4のいずれか一項に記載の組成物を含む、熱伝達媒体。
  11.  請求項10に記載の熱伝達媒体を含む、熱伝達装置。
  12.  請求項11に記載の前記熱伝達装置を含む、冷凍サイクルシステム、高温ヒートポンプサイクルシステム、又は有機ランキンサイクルシステム。
  13.  請求項12に記載の冷凍サイクルシステム、高温ヒートポンプサイクルシステム、又は有機ランキンサイクルシステムを利用する、熱伝達方法又は熱エネルギーを機械エネルギーへ変換する方法。
  14.  請求項1~4のいずれか一項に記載の組成物を含む、消火剤。
  15.  請求項1~4のいずれか一項に記載の組成物を含む、燻蒸剤。
PCT/JP2021/021171 2020-08-17 2021-06-03 組成物、組成物を含むエアゾール組成物、洗浄剤、溶媒、シリコーン溶剤、発泡剤、熱伝達媒体、消火剤、および燻蒸剤、熱伝達媒体を含む熱伝達装置、ならびに熱伝達装置が含まれるシステム WO2022038861A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180057317.7A CN116057161A (zh) 2020-08-17 2021-06-03 组合物、含有组合物的气雾组合物、清洗剂、溶剂、有机硅溶剂、起泡剂、热传递介质、灭火剂、及熏蒸剂、含有热传递介质的热传递装置以及包含热传递装置的系统
JP2022543289A JPWO2022038861A1 (ja) 2020-08-17 2021-06-03
EP21858012.4A EP4183860A1 (en) 2020-08-17 2021-06-03 Composition; aerosol composition, cleaning agent, solvent, silicone solvent, foaming agent, heat transfer medium, fire extinguishing agent, and fumigant containing said composition; heat transfer device containing said heat transfer medium; and system containing said heat transfer device
KR1020237008421A KR20230052918A (ko) 2020-08-17 2021-06-03 조성물, 조성물을 포함하는 에어로졸 조성물, 세정제, 용매, 실리콘 용제, 발포제, 열전달 매체, 소화제, 및 훈증제, 열전달 매체를 포함하는 열전달 장치, 및 열전달 장치가 포함되는 시스템
US18/108,122 US20230193161A1 (en) 2020-08-17 2023-02-10 Composition, Aerosol Composition, Cleaning Agent, Solvent, Silicone Solvent, Foaming Agent, Heat-Transfer Medium, Fire Extinguishing Agent, and Fumigant Containing the Composition, Heat-Transfer Device Containing the Heat-Transfer Medium, and System Containing the Heat-Transfer Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020137461 2020-08-17
JP2020-137461 2020-08-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/108,122 Continuation US20230193161A1 (en) 2020-08-17 2023-02-10 Composition, Aerosol Composition, Cleaning Agent, Solvent, Silicone Solvent, Foaming Agent, Heat-Transfer Medium, Fire Extinguishing Agent, and Fumigant Containing the Composition, Heat-Transfer Device Containing the Heat-Transfer Medium, and System Containing the Heat-Transfer Device

Publications (1)

Publication Number Publication Date
WO2022038861A1 true WO2022038861A1 (ja) 2022-02-24

Family

ID=80322910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021171 WO2022038861A1 (ja) 2020-08-17 2021-06-03 組成物、組成物を含むエアゾール組成物、洗浄剤、溶媒、シリコーン溶剤、発泡剤、熱伝達媒体、消火剤、および燻蒸剤、熱伝達媒体を含む熱伝達装置、ならびに熱伝達装置が含まれるシステム

Country Status (6)

Country Link
US (1) US20230193161A1 (ja)
EP (1) EP4183860A1 (ja)
JP (1) JPWO2022038861A1 (ja)
KR (1) KR20230052918A (ja)
CN (1) CN116057161A (ja)
WO (1) WO2022038861A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116515466A (zh) * 2023-04-19 2023-08-01 湖北及安盾消防科技有限公司 复合冷却剂及其在气溶胶灭火中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249326A (ja) 2012-05-30 2013-12-12 Central Glass Co Ltd フルオロアルケンを含有する熱伝達媒体
WO2013183754A1 (ja) * 2012-06-08 2013-12-12 アース製薬株式会社 害虫防除剤
WO2016052562A1 (ja) * 2014-10-02 2016-04-07 セントラル硝子株式会社 2-クロロ-1,3,3,3-テトラフルオロプロペン及び1-クロロ-3,3,3-トリフルオロプロペンを含有する共沸様組成物
JP2018526389A (ja) * 2015-09-11 2018-09-13 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー ヒドロクロロフルオロカーボンの脱ハロゲン化水素

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005418A (ja) * 2012-06-27 2014-01-16 Central Glass Co Ltd フッ素化不飽和炭化水素を含む熱伝達媒体
FR3015478B1 (fr) * 2013-12-19 2015-12-25 Arkema France Compositions azeotropiques a base de fluorure d'hydrogene et de z-3,3,3-trifluoro-1-chloropropene
CN110869461A (zh) * 2017-07-26 2020-03-06 Agc株式会社 共沸或类共沸组合物、热循环用工作介质和热循环系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249326A (ja) 2012-05-30 2013-12-12 Central Glass Co Ltd フルオロアルケンを含有する熱伝達媒体
WO2013183754A1 (ja) * 2012-06-08 2013-12-12 アース製薬株式会社 害虫防除剤
WO2016052562A1 (ja) * 2014-10-02 2016-04-07 セントラル硝子株式会社 2-クロロ-1,3,3,3-テトラフルオロプロペン及び1-クロロ-3,3,3-トリフルオロプロペンを含有する共沸様組成物
JP2018526389A (ja) * 2015-09-11 2018-09-13 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー ヒドロクロロフルオロカーボンの脱ハロゲン化水素

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ENERGY, vol. 38, 2012, pages 136 - 143

Also Published As

Publication number Publication date
KR20230052918A (ko) 2023-04-20
US20230193161A1 (en) 2023-06-22
CN116057161A (zh) 2023-05-02
JPWO2022038861A1 (ja) 2022-02-24
EP4183860A1 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
JP6205392B2 (ja) ヒドロクロロフルオロオレフィン類の組成物
US10047326B2 (en) Azeotropic like composition containing 2-chloro-1,3,3,3-tetrafluoropropene and 1-chloro-3,3,3-trifluoropropene
KR101780500B1 (ko) Cis-1,1,1,4,4,4-헥사플루오로-2-부텐의 공비성 조성물
KR101150177B1 (ko) 테트라플루오로프로펜과 트리플루오로요오드메탄으로 이루어진 공비-성 조성물
JP5122944B2 (ja) テトラフルオロフ゜ロヘ゜ンとヘ゜ンタフルオロフ゜ロヘ゜ンとの共沸性組成物
US10101065B2 (en) Heat transmission method and high-temperature heat pump device
US20130096218A1 (en) Heat transfer compositions of hydrofluorocarbons and a hydrofluoroolefin
JP6299763B2 (ja) 熱伝達方法および高温ヒートポンプ装置
US10301520B2 (en) Compositions of hydrochlorofluoroolefins
US20230193161A1 (en) Composition, Aerosol Composition, Cleaning Agent, Solvent, Silicone Solvent, Foaming Agent, Heat-Transfer Medium, Fire Extinguishing Agent, and Fumigant Containing the Composition, Heat-Transfer Device Containing the Heat-Transfer Medium, and System Containing the Heat-Transfer Device
JP6435854B2 (ja) 2−クロロ−1,3,3,3−テトラフルオロプロペンを含む熱伝達媒体
US20220073804A1 (en) Azeotropic composition, azeotrope-like composition, composition, cleaning agent, solvent, and heat transfer medium
WO2023027189A1 (ja) 共沸組成物、共沸様組成物、組成物、洗浄剤、溶媒、エアゾール、及び熱移動媒体
WO2021226048A1 (en) Heat transfer compositions of hydrofluorocarbons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858012

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543289

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021858012

Country of ref document: EP

Effective date: 20230214

ENP Entry into the national phase

Ref document number: 20237008421

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE