WO2022037074A1 - 数据传输方法及装置、无线通信系统、存储介质 - Google Patents

数据传输方法及装置、无线通信系统、存储介质 Download PDF

Info

Publication number
WO2022037074A1
WO2022037074A1 PCT/CN2021/084185 CN2021084185W WO2022037074A1 WO 2022037074 A1 WO2022037074 A1 WO 2022037074A1 CN 2021084185 W CN2021084185 W CN 2021084185W WO 2022037074 A1 WO2022037074 A1 WO 2022037074A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
grid
angle
horizontal
vertical
Prior art date
Application number
PCT/CN2021/084185
Other languages
English (en)
French (fr)
Inventor
金石
陈伟聪
韩瑜
孙欢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21857176.8A priority Critical patent/EP4191893A4/en
Publication of WO2022037074A1 publication Critical patent/WO2022037074A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity
    • H04B7/0897Space-time diversity using beamforming per multi-path, e.g. to cope with different directions of arrival [DOA] at different multi-paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals

Definitions

  • the present application relates to the field of wireless communication, and in particular, to a data transmission method and device, a wireless communication system, and a storage medium.
  • a wireless communication system usually includes a base station and terminal equipment.
  • an antenna array composed of multiple antenna elements is usually deployed in the base station and the terminal equipment, and the transmission between the base station and the terminal equipment is realized through the antenna array.
  • the energy of the signal is pooled for good signal gain.
  • the terminal device may be a millimeter-wave terminal
  • the base station may be a millimeter-wave base station.
  • the data transmitted between the base station and the terminal equipment is transmitted through the channel between the base station and the terminal equipment.
  • the base station and the terminal equipment perform data transmission, it is usually necessary to reconstruct the channel between the base station and the terminal equipment.
  • the channel between the base station and the terminal device is usually reconstructed by the base station based on a compressive sensing algorithm or a multiple signal classification (multiple signal classification algorithm, MUSIC) algorithm (also known as an angle of arrival algorithm).
  • MUSIC multiple signal classification algorithm
  • the current channel reconstruction scheme is difficult to meet the channel reconstruction requirements of the terminal equipment, so the flexibility of the channel reconstruction is poor, which affects the resource utilization rate of the wireless communication system.
  • the present application provides a data transmission method and device, a wireless communication system, and a storage medium, which help to improve the resource utilization rate of the wireless communication system.
  • the technical solution of this application is as follows:
  • a data transmission method applied to a first communication device in a wireless communication system, the wireless communication system includes a second communication device and a first communication device, and the method includes: according to the second communication device Reconstruction request information, obtain path parameters of at least one propagation path between the first communication device and the second communication device, the reconfiguration request information indicates the channel reconfiguration request of the second communication device; according to the first communication path parameters of the at least one propagation path between the device and the second communication device, to construct a channel between the first communication device and the second communication device; transmit the first data to the second communication device, the first communication device The data is the data obtained by precoding the data to be transmitted based on the constructed channel.
  • the first communication device constructs the channel between the first communication device and the second communication device according to the path parameters of at least one propagation path between the first communication device and the second communication device.
  • the path parameters of the at least one propagation path are obtained by the first communication device according to the reconstruction request information of the second communication device. Therefore, in this technical solution, the first communication device can be reconstructed according to the channel reconstruction of the second communication device. It is required to construct a channel between the first communication device and the second communication device, and the first communication device has high flexibility in constructing a channel, which helps to improve the resource utilization rate of the wireless communication system.
  • the reconfiguration request information includes a channel reconfiguration duration; according to the reconfiguration request information of the second communication device, obtain path parameters of at least one propagation path between the first communication device and the second communication device,
  • the method includes: sending the transmit oversampling parameter of the transmit beam training set of the second communication device to the second communication device, where the second communication device is configured to send the transmission oversampling parameter and the transmit beam training set to the first communication device based on the transmit oversampling parameter and the transmit beam training set Sending a reference signal, the transmit oversampling parameter is determined according to the channel reconstruction duration; measuring the reference signal based on the receive beam training set of the first communication device and the receive oversampling parameter of the receive beam training set to obtain the first communication device
  • the first received signal matrix Y1 of the channel between the second communication device and the second communication device, the received oversampling parameter is determined according to the channel reconstruction duration; according to the first received signal matrix Y1 and the determined i-1 propagation paths
  • the second received signal matrix Y2 determines the path
  • the second communication device sends a reference signal to the first communication device based on the transmission beam training set and the transmission oversampling parameters of the transmission beam training set, and the first communication device sends the reference signal based on the reception beam training set and the reception beam
  • a first received signal matrix is obtained, and the path parameter of the i-th propagation path is determined according to the first received signal matrix and the determined second received signal matrix of the i-1 propagation path , the transmit oversampling parameter and the receive oversampling parameter are both determined according to the channel reconstruction duration, so the first communication device can determine the path parameters of the propagation path according to the channel reconstruction duration, so that the determined path parameters satisfy the channel reconstruction duration time requirement.
  • the method before measuring the reference signal based on the receiving beam training set of the first communication device and the received oversampling parameter of the receiving beam training set, the method further includes: sending resource indication information to the second communication device, the The resource indication information indicates the time-frequency resource for sending the reference signal by the second communication apparatus.
  • the first communication device by sending the resource indication information to the second communication device, the first communication device can facilitate the second communication device to determine the time-frequency resource for sending the reference signal.
  • the path parameters include: constructing a transmission parameter grid corresponding to the i-th propagation path according to the received signal residual matrix Y r of the first received signal matrix Y1 and the second received signal matrix Y2; The difference matrix Y r and the transmission parameter grid determine the path parameters of the i-th propagation path.
  • the transmission parameter grid includes at least one of a transmission angle grid and a transmission delay grid;
  • the reconstruction requirement information further includes at least one of channel reconstruction accuracy and maximum path delay ⁇ max ;
  • constructing the transmission parameter grid corresponding to the i-th propagation path includes: according to the received signal residual matrix Y r and the channel reconstruction accuracy, construct the transmission angle grid corresponding to the ith propagation path; and/or, according to the maximum path delay ⁇ max , construct the transmission delay grid corresponding to the ith propagation path .
  • the transmission parameter grid includes a transmission angle grid and a transmission delay grid
  • the reconstruction requirement information includes channel reconstruction accuracy and maximum path delay ⁇ max , so the first communication device
  • the transmission angle grid and the transmission delay grid are preferably constructed.
  • the path parameter includes at least one of angle parameter, path gain and path delay; according to the received signal residual matrix Y r and the transmission parameter grid, determine the path parameter of the i-th propagation path, Including: determining the angle parameter and path gain of the i-th propagation path according to the received signal residual matrix Y r and the transmission angle grid and/or, according to the received signal residual matrix Y r and the transmission delay grid, determine the path delay of the i-th propagation path
  • the path parameter includes an angle parameter, a path gain and a path delay
  • the first communication device preferably determines the angle parameter, the path gain and the path delay.
  • the transmission angle grid includes a departure angle grid and an angle of arrival grid; according to the received signal residual matrix Y r and the channel reconstruction accuracy, construct the transmission angle grid corresponding to the i-th propagation path, Including: determining the target transmit beam according to the received signal residual matrix Y r and target receive beam emit beams according to the target The departure angle and the channel reconstruction accuracy of , construct the departure angle grid corresponding to the i-th propagation path; receive the beam according to the target The angle of arrival and the reconstruction accuracy of the channel are constructed, and the angle of arrival grid corresponding to the i-th propagation path is constructed.
  • the departure angle grid includes a horizontal departure angle grid and a vertical departure angle grid
  • the transmit beam training set includes a horizontal transmit beam set s t,h and a vertical transmit beam set s t,v , the transmit oversampled
  • the parameters include the horizontal transmit oversampling parameter k t,h of the horizontal transmit beam set st,h and the vertical transmit oversampling parameter k t, v of the vertical transmit beam set st,v ; according to the target transmit beam
  • the departure angle and the channel reconstruction accuracy are determined, and the departure angle grid corresponding to the i-th propagation path is constructed, including: determining the grid accuracy of the horizontal departure angle grid and the vertical departure angle grid according to the channel reconstruction accuracy.
  • beams are transmitted according to this target horizontal departure angle
  • the horizontal transmit beam set s t,h the horizontal transmit oversampling parameter k t,h and the grid precision of the horizontal departure angle grid, construct the horizontal departure angle grid
  • the vertical transmit beamset st,v the vertical transmit oversampling parameter k t,v and the grid precision of the vertical departure grid construct the vertical departure grid.
  • the angle of arrival grid includes a horizontal angle of arrival grid and a vertical angle of arrival grid
  • the receiving beam training set includes a horizontal receiving beam set s r,h and a vertical receiving beam set s r,v , the receiving oversampled
  • the parameters include the horizontal receive oversampling parameter k r,h of the horizontal receive beam set s r,h and the vertical receive oversampling parameter k r,v of the vertical receive beam set s r ,v ; according to the target receive beam
  • the angle of arrival and the channel reconstruction accuracy are determined, and the angle of arrival grid corresponding to the i-th propagation path is constructed, including: determining the grid accuracy of the horizontal angle of arrival grid and the vertical angle of arrival grid according to the channel reconstruction accuracy.
  • the horizontal receiving beam set s r,h , the horizontal receiving oversampling parameter k r,h and the grid precision of the horizontal angle of arrival grid are constructed to construct the horizontal angle of arrival grid; according to the target receiving beam vertical angle of arrival
  • the vertical receive beam set s r,v , the vertical receive oversampling parameter k r,v and the grid precision of the vertical angle of arrival grid construct the vertical angle of arrival grid.
  • the angle parameter includes at least one of a horizontal departure angle, a vertical departure angle, a horizontal angle of arrival and a vertical angle of arrival; the i-th is determined according to the received signal residual matrix Y r and the transmission angle grid.
  • Angle parameters and path gains for each propagation path Including: determining the horizontal departure of the i-th propagation path according to the received signal residual matrix Y r , the departure angle grid corresponding to the i-th propagation path, and the arrival angle grid corresponding to the i-th propagation path Horn vertical departure angle horizontal angle of arrival vertical angle of arrival and path gain
  • constructing a channel between the first communication device and the second communication device according to the path parameters of the at least one propagation path between the first communication device and the second communication device including: when the channel is reached When reconstructing the conditions, the channel matrix between the first communication device and the second communication device is determined according to the determined path parameters of the j propagation paths, so as to construct the channel matrix between the first communication device and the second communication device.
  • the determined j propagation paths are all the propagation paths determined when the channel reconstruction condition is reached, j is an integer greater than or equal to 1 and less than or equal to L, and L is the communication between the first communication device and the second communication device The total number of propagation paths between devices.
  • the method further includes: detecting whether the channel reconstruction condition is reached.
  • the first communication apparatus may detect whether the channel reconstruction condition is met every time the path parameter of a propagation path is determined.
  • detecting whether the channel reconstruction condition is met specifically includes: after acquiring the path parameters of the i-1th propagation path, according to the first received signal matrix Y1 and the second received signal matrix of the i-1 propagation path The received signal residual matrix Y r of Y2 is used to obtain the received signal residual energy; according to the received signal residual energy, it is detected whether the channel reconstruction condition is reached;
  • the channel reconstruction conditions include: is the square of the Frobenius norm of the received signal residual matrix Yr , representing the received signal residual energy, and ⁇ represents the preset residual energy.
  • the first communication device no longer determines the path parameters of the remaining propagation paths, and directly determines the path parameters between the first communication device and the second communication device according to the determined path parameters of all the propagation paths. channel matrix.
  • the method before determining the channel matrix between the first communication device and the second communication device according to the determined path parameters of the j propagation paths, the method further includes: performing a calculation on the path parameters of the j propagation paths. optimization. For example, after each determining the path parameter of a propagation path, the first communication apparatus optimizes the path parameter of the propagation path.
  • the first communication device optimizes the path parameters of the propagation path, which helps to improve the accuracy of the determined path parameters and the accuracy of the constructed channel.
  • the elements in the first received signal matrix Y1 are the received signal strength of the reference signal measured by the first communication device, and the elements in the second received signal matrix Y2 are estimated by the first communication device.
  • the received signal strength of the reference signal, the elements in the received signal residual matrix Yr are the received signal residuals, wherein for the first received signal matrix Y1, the second received signal matrix Y2 and the received signal residual matrix
  • each column element of the matrix corresponds to a subcarrier, and each row element corresponds to a beam pair index number; according to the received signal residual matrix Y r , determine the target transmit beam and target receive beam Including: determining the beam pair index number corresponding to the maximum received signal residual energy according to the received signal residual error matrix Y r ; determining the target transmit beam according to the beam pair index number corresponding to the maximum received signal residual energy and target receive beam
  • the horizontal transmission beam set s t,h , the horizontal transmission oversampling parameter k t,h and the grid precision of the horizontal departure angle grid, constructing the horizontal departure angle grid includes: transmitting a beam according to the target horizontal departure angle
  • the horizontal transmit beam set s t,h and the horizontal transmit oversampling parameter k t,h determine the upper boundary point of the horizontal departure angle grid and the lower boundary point the upper boundary point Corresponding to the target transmit beam determined based on the horizontal transmit oversampling parameter k t,h and the horizontal transmit beam set s t,h
  • the larger value of the horizontal departure angle of two adjacent transmit beams, the lower boundary point Corresponds to the smaller of the horizontal departure angles of the two adjacent transmit beams; transmit beams according to the target horizontal departure angle
  • transmit beams according to the target vertical departure angle of The vertical transmission beam set s t,v , the vertical transmission oversampling parameter k t,v and the grid precision of the vertical departure angle grid includes: transmitting a beam according to the target vertical departure angle of The vertical transmit beam set s t,v and the vertical transmit oversampling parameter k t,v determine the upper boundary point of the vertical departure angle grid and the lower boundary point the upper boundary point Corresponding to the target transmit beam determined based on the vertical transmit oversampling parameter k t,v and the vertical transmit beam set s t,v The larger of the vertical departure angles of two adjacent transmit beams, the lower boundary point Corresponds to the smaller of the vertical departure angles of the two adjacent transmit beams; transmit beams according to the target vertical departure angle of The upper boundary point of the vertical departure corner grid lower boundary point and the grid precision of the vertical off-corner grid, construct the vertical off-corner grid whose center point is the The 2B t,v +1
  • receive beams according to the target horizontal angle of arrival The horizontal receiving beam set s r,h , the horizontal receiving oversampling parameter k r,h and the grid precision of the horizontal angle of arrival grid, constructing the horizontal angle of arrival grid includes: receiving beams according to the target horizontal angle of arrival
  • the horizontal receive beam set s r,h and the horizontal receive oversampling parameter k r,h determine the upper boundary point of the horizontal angle of arrival grid and the lower boundary point the upper boundary point Corresponding to the target receive beam determined based on the horizontal receive oversampling parameter k r,h and the horizontal receive beam set s r,h
  • the larger value of the horizontal angle of arrival of two adjacent receiving beams, the lower boundary point Corresponds to the smaller of the horizontal angle of arrival of the two adjacent receiving beams; according to the target receiving beam horizontal angle of arrival the upper boundary point of the horizontal arrival angle grid lower boundary point and the grid precision of the horizontal arrival angle grid, construct the horizontal arrival angle grid, the horizontal arrival angle grid is the center point for the The 2
  • receive beams according to the target vertical angle of arrival The vertical receiving beam set s r,v , the vertical receiving oversampling parameter k r,v and the grid precision of the vertical angle of arrival grid, constructing the vertical angle of arrival grid includes: receiving beams according to the target vertical angle of arrival
  • the vertical receive beam set s r,v and the vertical receive oversampling parameter k r,v determine the upper boundary point of the vertical angle of arrival grid and the lower boundary point the upper boundary point Corresponding to the target receive beam determined based on the vertical receive oversampling parameter k r,v and the vertical receive beam set s r,v
  • the larger value of the vertical angle of arrival of two adjacent receiving beams, the lower boundary point Corresponds to the smaller of the vertical angles of arrival of the two adjacent receive beams; receive beams according to the target vertical angle of arrival the upper boundary point of the vertical angle of arrival grid lower boundary point and the grid precision of the vertical angle of arrival grid, construct the vertical angle of arrival grid, the vertical angle of arrival grid is the center
  • the departure angle grid corresponding to the ith propagation path, and the arrival angle grid corresponding to the ith propagation path determine the ith propagation path.
  • horizontal departure angle vertical departure angle horizontal angle of arrival vertical angle of arrival and path gain Including: determining a transmission beam matrix according to the horizontal departure angle grid and the vertical departure angle grid, and each column vector in the transmission beam matrix is a transmission beam vector; according to the horizontal angle of arrival grid and the vertical angle of arrival grid Determine the receiving beam matrix, each column vector in the receiving beam matrix is a receiving beam vector; according to the transmitting beam matrix and the receiving beam matrix, determine the received signal residual matrix Y r The energy in the subspace of the transmitting and receiving beam pair Distribution matrix; according to the energy distribution matrix, determine the horizontal departure angle of the i-th propagation path vertical departure angle horizontal angle of arrival vertical angle of arrival and path gain
  • determining the receiving beam matrix according to the horizontal angle of arrival grid and the vertical angle of arrival grid includes: determining a plurality of grid intersections according to the horizontal departure angle grid and the vertical departure angle grid, each grid The intersection point corresponds to a joint transmission beam, and each joint transmission beam has a beam vector; the transmission beam matrix is determined according to the beam vectors of the joint transmission beams corresponding to the multiple grid intersection points;
  • Determining the receiving beam matrix according to the horizontal angle of arrival grid and the vertical angle of arrival grid includes: determining a plurality of grid intersection points according to the horizontal angle of arrival grid and the vertical angle of arrival grid, and each grid intersection corresponds to a joint
  • each joint transmitting beam has a beam vector; the receiving beam matrix is determined according to the transmitting beam vectors of the joint transmitting beams corresponding to the intersection points of the multiple grids.
  • a data transmission method applied to a second communication device in a wireless communication system, where the wireless communication system includes a first communication device and a second communication device, the method comprising: receiving data transmitted by the first communication device The first data, the first data is the data obtained by the first communication device precoding the data to be sent by the first communication device based on the constructed channel, and the channel is the first communication device according to the first communication device and the first communication device.
  • the path parameters of at least one propagation path between the second communication devices are constructed by the path parameters of the at least one propagation path.
  • the path parameters of the at least one propagation path are the path parameters obtained by the first communication device according to the reconstruction request information of the second communication device.
  • the configuration request information indicates the channel reconfiguration request of the second communication device; the data to be sent of the first communication device is recovered according to the first data.
  • the first communication device obtains the path parameters of at least one propagation path between the first communication device and the second communication device according to the channel reconfiguration request of the second communication device, and based on the at least one propagation path
  • the path parameters of the first communication device construct the channel between the first communication device and the second communication device, that is, the first communication device constructs the first communication device and the second communication device according to the channel reconstruction requirements of the second communication device. Therefore, the first communication device has high flexibility in constructing a channel, which helps to improve the resource utilization rate of the wireless communication system.
  • the method before receiving the first data transmitted by the first communication device, the method further includes: receiving a transmission oversampling parameter of the transmission beam training set of the second communication device sent by the first communication device; The sampling parameters and the transmit beam training set send a reference signal to the first communication device.
  • the second communication device sends a reference signal to the first communication device based on the transmission beam training set of the second communication device and the transmission oversampling parameter of the transmission beam training set sent by the first communication device, so as to Interacting with the first communication device to perform beam training facilitates the first communication device to obtain the first received signal matrix of the channel between the first communication device and the second communication device.
  • the method before sending the reference signal to the first communication apparatus based on the transmission oversampling parameter and the transmission beam training set, the method further includes: receiving resource indication information sent by the first communication apparatus, where the resource indication information indicates the second communication apparatus.
  • the communication device sends the time-frequency resource of the reference signal; correspondingly, sending the reference signal to the first communication device based on the transmit oversampling parameter and the transmit beam training set includes: based on the transmit oversampling parameter and the transmit beam training set, through the transmit oversampling parameter and the transmit beam training set
  • the time-frequency resource indicated by the resource indication information sends a reference signal to the first communication apparatus.
  • the first communication device indicates to the second communication device the time-frequency resource for sending the reference signal, which can facilitate the second communication device to use the first communication device based on the transmission oversampling parameter and the transmission beam training set.
  • the time-frequency resource indicated by the device sends a reference signal to the first communication device.
  • a communication device comprising various modules for executing the data transmission method provided by the first aspect or any optional manner of the first aspect.
  • a communication apparatus including various modules for executing the data transmission method provided by the second aspect or any optional manner of the second aspect.
  • a communication device comprising a memory, and the processor is configured to execute a computer program stored in the memory, so that the communication device performs data transmission as provided in the first aspect or any optional manner of the first aspect The method, or, performs the data transmission method provided by the second aspect or any optional manner of the second aspect.
  • the communication device further includes the memory.
  • a wireless communication system including the communication device provided in the third aspect and the communication device provided in the fourth aspect; or, including at least one communication device as provided in the fifth aspect.
  • a communication device including an input and output interface and a logic circuit
  • the logic circuit configured to execute the data transmission method provided by the first aspect or any optional manner of the first aspect to construct a channel between the communication device and the second communication device;
  • the input and output interface is used for outputting first data, where the first data is data obtained by precoding the data to be sent based on the constructed channel.
  • a communication device including an input and output interface and a logic circuit
  • the input and output interface is used to obtain the first data
  • the logic circuit is configured to perform the data transmission method provided by the second aspect or any optional manner of the second aspect to recover the data to be sent by the first communication device according to the first data.
  • a computer-readable storage medium is provided, and a computer program is stored in the computer-readable storage medium.
  • the computer program is executed by a processor, the computer program is executed as described in the first aspect or any optional manner of the first aspect.
  • the provided data transmission method is performed, or the data transmission method provided by the second aspect or any optional manner of the second aspect is performed.
  • a tenth aspect provides a computer program product comprising instructions that, when the computer program product runs on a computer, causes the computer to execute the data transmission method provided in the first aspect or any optional manner of the first aspect, Alternatively, the data transmission method provided by the second aspect or any optional manner of the second aspect is performed.
  • a chip in an eleventh aspect, includes a programmable logic circuit and/or program instructions, and when the chip is running, it is used to implement the data transmission provided by the first aspect or any optional manner of the first aspect The method, or, implements the data transmission method provided by the second aspect or any optional manner of the second aspect.
  • the first communication device acquires at least one propagation path between the first communication device and the second communication device according to the reconstruction request information of the second communication device After the path parameters of the at least one propagation path, the channel between the first communication device and the second communication device is constructed according to the path parameters of the at least one propagation path, and the channel between the first communication device and the second communication device is transmitted to the second communication device.
  • the data is transmitted to the second communication device.
  • the reconfiguration request information indicates a channel reconfiguration requirement of the second communication device, so in the data transmission method, the first communication device constructs the first communication device and the second communication device according to the channel reconfiguration requirement of the second communication device
  • the channel between the communication devices, the first communication device has high flexibility in constructing the channel, which helps to improve the resource utilization rate of the wireless communication system.
  • FIG. 1 is a structural diagram of an antenna provided by an embodiment of the present application.
  • FIG. 2 is another antenna structure diagram provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of obtaining a path parameter of a propagation path provided by an embodiment of the present application
  • FIG. 6 is a flowchart of obtaining path parameters of the i-th propagation path provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of constructing a transmission parameter grid corresponding to the i-th propagation path provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a horizontal separation angle grid provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a vertical separation angle grid provided by an embodiment of the present application.
  • FIG. 11 is a flowchart of constructing an angle of arrival grid corresponding to the i-th propagation path provided by an embodiment of the present application;
  • FIG. 12 is a schematic diagram of a horizontal angle of arrival grid provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a vertical angle of arrival grid provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a transmission delay grid provided by an embodiment of the present application.
  • NMSE normalized mean square error
  • SNR signal-to-noise ratio
  • FIG. 17 is another graph of the relationship between the SNR and the NMSE of the channel provided by the embodiment of the present application.
  • FIG. 19 is a schematic diagram of a logical structure of a communication device provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of a logical structure of another communication apparatus provided by an embodiment of the present application.
  • FIG. 21 is a schematic diagram of a hardware structure of a communication device provided by an embodiment of the present application.
  • Wireless communication systems usually include wireless communication devices such as network equipment (such as base stations) and terminal equipment.
  • wireless communication devices and data services have developed vigorously.
  • the frequency is less than 6GHz) wireless communication system poses a challenge, and the future wireless communication system needs to be expanded to higher frequency bands, for example, to the millimeter wave frequency band.
  • the millimeter-wave frequency band has abundant spectrum resources, which can provide larger transmission bandwidth and faster transmission rate. Therefore, the millimeter-wave communication system (referring to the wireless communication system based on the millimeter-wave frequency band) and its key technologies have received much attention in recent years. focus on.
  • an antenna array can usually be deployed in a millimeter-wave communication device (referring to a millimeter-wave-based wireless communication device), and the signal energy can be concentrated through the antenna array to obtain higher signal gain. Make up for path loss (such as space loss and penetration loss), while achieving strong directional transmission of signals. Millimeter waves have short wavelengths, which facilitates the deployment of more compact, denser antenna arrays in mmWave communication devices.
  • the wireless communication device includes an antenna module, the antenna module includes a baseband part and a radio frequency (RF) part, the baseband part is also called a digital part, the RF part is also called an analog part, and the RF part includes an antenna array and an RF chain (chain). ), the antenna elements in the antenna array are connected to the baseband section by an RF link. The signal received by each antenna element is superimposed in the analog domain and then enters the digital domain for baseband processing, or is transmitted through multiple antenna elements after baseband processing in the digital domain.
  • the RF link includes active components such as low-noise amplifiers, up-converters, and digital-to-analog converters.
  • the millimeter-wave communication system has a large bandwidth and high frequency.
  • the cost of a single active device is very high. Therefore, if a large-scale antenna module is implemented based on these active devices in a millimeter-wave communication device, the design, complexity, power consumption, etc. of the entire millimeter-wave communication system will be very expensive. Under this constraint, in the antenna module of the millimeter-wave communication device, multiple antenna elements are connected to the baseband part through an RF link, thereby reducing the number of RF links in the antenna module and reducing the cost of the millimeter-wave communication system. Design, complexity, power consumption. 1 and 2 show two typical antenna modules in a millimeter-wave communication system. As shown in FIGS.
  • the number of RF links is much smaller than the number of antenna elements.
  • the RF link is connected to the baseband part, and the RF link is connected to all antenna elements through a combiner and a phase shifter.
  • the antenna module shown in Figure 1 is a fully connected antenna module. The antenna module can ensure that the millimeter wave communication system has a large coverage and high link gain.
  • the RF link is connected to the baseband part, and the RF link is connected to part of the antenna elements through a combiner and a phase shifter.
  • the antenna module shown in FIG. 2 is an antenna module in a partially connected form.
  • each antenna element in the antenna module corresponds to a beam
  • each beam has a beam vector
  • the beam vector indicates the direction of the beam
  • the transmit angle and/or the receive angle of each antenna element The angles are characterized by corresponding beam vectors.
  • a wireless communication system data transmitted between two different wireless communication devices (such as a network device and a terminal device) is transmitted through a channel between the two different wireless communication devices.
  • two different wireless communication devices such as a network device and a terminal device
  • the number of antenna elements in the antenna array of a millimeter-wave communication device is much larger than the number of reflectors or reflection clusters (composed of multiple reflectors with a close distance) in the signal transmission space, and the millimeter
  • the strength of the wave signal and its detectable energy are weak, so that the channel experienced by the mmWave signal exhibits a sparse characteristic, that is, the channel between different mmWave communication devices (such as mmWave base stations and mmWave terminals) is propagated by a small number of The paths are superimposed.
  • each propagation path can be characterized by a set of path parameters (in other words, a set of path parameters uniquely determines a propagation path), so reconstructing a channel according to at least one propagation path is also based on the at least one propagation path.
  • the path parameter of the path to construct the channel.
  • the channel can be characterized by a channel matrix, and the path parameters of the at least one propagation path can be substituted into the channel matrix model to obtain the channel matrix between the two different millimeter-wave communication devices to construct the communication between the two different millimeter-wave communication devices.
  • Channel It is easy to understand that, in this embodiment of the present application, constructing a channel means determining a channel matrix.
  • the typical configuration of the antenna array in the millimeter-wave communication device is a planar array (PLA). Therefore, in the millimeter-wave communication system, a set of path parameters for each propagation path may include: horizontal departure angle, vertical departure angle , horizontal angle of arrival, vertical angle of arrival, path gain and path delay.
  • Each propagation path can correspond to a joint transmit beam (that is, a transmit beam in a three-dimensional space formed by a combination of a horizontal transmit beam and a vertical transmit beam) and a joint receive beam (that is, a horizontal receive beam). and the receiving beam in the vertical direction to form a three-dimensional space receiving beam), the horizontal departure angle and vertical departure angle of each propagation path can be the horizontal departure angle and vertical departure angle of the joint transmit beam corresponding to the propagation path.
  • the horizontal and vertical angles of arrival of the path may be the horizontal and vertical angles of arrival of the joint receiving beams corresponding to the propagation path.
  • FIG. 3 shows a schematic diagram of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system includes a network device 01 and a terminal device 02.
  • the wireless communication system may be a millimeter-wave communication system
  • the network device 01 may be a millimeter-wave base station
  • the terminal device 02 may be a millimeter-wave terminal.
  • the channel between the network device 01 and the terminal device 02 is formed by superimposing three propagation paths.
  • propagation path 1 and propagation path 3 respectively contain reflection clusters
  • propagation path 2 does not contain reflection clusters. Reflectors and reflection clusters.
  • FIG. 3 shows a schematic diagram of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system includes a network device 01 and a terminal device 02.
  • the wireless communication system may be a millimeter-wave communication system
  • the network device 01 may be a millimeter-wave base station
  • the terminal device 02 may be a millimeter-wave terminal.
  • the number of propagation paths between the network device and the terminal device may also be greater than 3 or less than 3.
  • the number of propagation paths and whether the propagation paths contain reflectors and/or reflection clusters are based on the millimeter wave communication system and signal transmission. The actual situation is determined, and this is not limited in the embodiments of the present application.
  • the channel between the network device 01 and the terminal device 02 can be constructed by the network device 01 according to the path parameters of the three propagation paths.
  • the network device 01 can obtain the path parameters of the three propagation paths by interacting with the terminal device 02, and then substitute the path parameters of the three propagation paths into the channel matrix model to obtain the distance between the network device 01 and the terminal device 02.
  • Channel matrix to construct the channel between the network device 01 and the terminal device 02. It can be understood that, in this embodiment of the present application, constructing a channel means determining a channel matrix. For example, constructing a channel between the network device 01 and the terminal device 02 means determining the network device 01 and the terminal device 02. The channel matrix of the channels between.
  • the channel matrix model is described below by taking a millimeter wave communication system as an example.
  • the first communication device and the first communication device two different wireless communication devices that need to reconstruct the channel (that is, the channel between the two different wireless communication devices) that need to be reconstructed are referred to as the first communication device and the first communication device.
  • Communication device one of the first communication device and the second communication device may be a transmitting end device, and the other may be a receiving end device.
  • the transmitter device described in the embodiments of the present application may be a communication device that sends reference signals during beam training
  • the receiver device may be a communication device that receives reference signals during beam training.
  • the transmitting end device that sends the reference signal during beam training may be the receiving end device or the transmitting end device during the data transmission process
  • the receiving end device that receives the reference signal during beam training may be the transmitting end device or the transmitting end device during the data transmission process.
  • the receiving end device is not limited in this embodiment of the present application.
  • the channel matrix model may be shown in the following formula (1):
  • L is the total number of propagation paths between the first communication device and the second communication device, is the sub-channel matrix corresponding to the wth propagation path between the first communication device and the second communication device, is the horizontal departure angle of the wth propagation path, The vertical departure angle of the w-th propagation path, is the horizontal arrival angle of the wth propagation path, The vertical angle of arrival of the w-th propagation path, is the path gain of the wth propagation path, is the path delay of the wth propagation path.
  • Mr is the number of antenna elements in the antenna array of the first communication device
  • M t is the number of antenna elements in the antenna array of the second communication device
  • N s is the millimeter wave communication system
  • a r ( ⁇ r,w , ⁇ r,w ) is the response vector of the antenna array of the first communication device
  • d t,h is the distance between two adjacent horizontal antenna elements of the second communication device
  • is the electromagnetic wave emitted by the antenna elements of the second communication device (eg, transmitter device)
  • the wavelength of the signal, ⁇ t,w is the phase difference of the electromagnetic wave signal emitted by the two adjacent horizontal antenna elements of the second communication device.
  • d t,v is the distance between two adjacent vertical antenna elements of the second communication device
  • is the electromagnetic wave emitted by the antenna elements of the second communication device (eg, the transmitter device)
  • the wavelength of the signal, ⁇ t,w is the phase difference of the electromagnetic wave signal emitted by the two adjacent vertical antenna elements of the second communication device.
  • d r,h is the distance between two adjacent horizontal antenna elements of the first communication device
  • is the electromagnetic wave received by the antenna elements of the first communication device (for example, the receiving end device).
  • the wavelength of the signal, ⁇ t,w is the phase difference of the electromagnetic wave signal received by the two adjacent horizontal antenna elements of the first communication device.
  • d r,v is the distance between two adjacent vertical antenna elements of the first communication device
  • is the electromagnetic wave received by the antenna element of the first communication device (for example, the receiving end device).
  • the wavelength of the signal, ⁇ r,w is the phase difference of the electromagnetic wave signal received by the two adjacent vertical antenna elements of the first communication device.
  • ⁇ f is the subcarrier spacing of the millimeter-wave communication system bandwidth.
  • Express round down is the delay correlation vector, which represents the energy distribution of the wth path on multiple subcarriers included in the wth path.
  • the industry generally reconstructs the channel between the base station and the terminal device based on the compressed sensing algorithm or the MUSIC algorithm.
  • the process of reconstructing the channel between the base station and the terminal device based on the compressed sensing algorithm includes: the base station generates a random analog phase shifter value, and according to the analog phase shifter value, the received signal matrix is obtained by interacting with the terminal device through beam training, and according to the analog phase shifter value
  • the received signal matrix searches a complete dictionary for several support vectors to optimally match the channel, and reconstructs the channel between the base station and the terminal device based on the searched several support vectors.
  • the process of reconstructing the channel between the base station and the terminal equipment based on the MUSIC algorithm includes: the base station schedules the terminal equipment to send signals to the base station, and estimates the covariance matrix of the received signal of each antenna element of the base station based on the MUSIC algorithm, and the covariance matrix The matrix performs eigenvalue decomposition to obtain the path parameters of the propagation path between the base station and the terminal device, and reconstructs the channel between the base station and the terminal device according to the path parameters of the propagation path.
  • the value of the analog phase shifter used is random to satisfy the restricted isometry property (RIP), the beamforming (beamforming) gain cannot be obtained, and it needs to be used in a huge
  • the optimal support vector is exhaustively searched in the complete dictionary of , the complexity of the search is high, and there is a certain distance between the support vector searched from the complete dictionary and the real channel components, resulting in a large error in channel reconstruction.
  • the base station needs to obtain the covariance matrix of the received signal on each antenna element.
  • the signals received by the antenna elements are superimposed in the analog domain and then enter the digital domain.
  • an embodiment of the present application provides a data transmission scheme.
  • the first communication device firstly constructs the communication between the first communication device and the second communication device according to the channel reconfiguration requirements of the second communication device. and then precoding the data to be sent based on the constructed channel, and then transmitting the precoded data to the second communication device.
  • the first communication device constructs the channel between the first communication device and the second communication device according to the channel reconstruction requirement of the second communication device, the flexibility of the first communication device in constructing the channel is high, which is helpful for In order to improve the resource utilization rate of the wireless communication system; and, the first communication device does not need to exhaustively search the optimal support vector in the complete dictionary when constructing the channel, and does not need to obtain the covariance matrix of the received signal, so the complexity of constructing the channel is relatively high. It is low-cost, high in accuracy, and can be applied to a wireless communication device with a digital-analog hybrid antenna structure.
  • the data transmission solutions provided in the embodiments of the present application may be applied to a wireless communication device configured with a fully connected antenna module, or may be applied to a wireless communication device configured with a partially connected antenna module.
  • the detailed solutions of the present application will be introduced below with reference to the accompanying drawings.
  • the data transmission scheme provided by the embodiments of the present application may be applied to a wireless communication system, and the wireless communication system may include a first communication apparatus and a second communication apparatus, and the data transmission scheme is used for transmission from the first communication apparatus to the second communication apparatus data.
  • One of the first communication device and the second communication device may be a terminal device, and the other may be a network device; optionally, the first communication device and the second communication device are both terminal devices.
  • the first communication device is a network device and the second communication device is a terminal device as an example for description.
  • the network device may be a transmitting and receiving point (TRP) device, such as but not limited to an evolved base station (evolved Node B, eNB) in LTE, a relay station, and an access network device in a 5G communication system or future Access network equipment in an evolved public land mobile network (PLMN) network.
  • TRP transmitting and receiving point
  • eNB evolved Node B
  • PLMN evolved public land mobile network
  • the network devices in the embodiments of the present application may include various forms of base stations, such as: macro base stations, micro base stations (also referred to as small cells), relay stations, access points, 5G base stations, and devices that implement base station functions in the future.
  • base stations such as: macro base stations, micro base stations (also referred to as small cells), relay stations, access points, 5G base stations, and devices that implement base station functions in the future.
  • transmission point transmitting and receiving point, TRP
  • transmitting point transmitting point
  • TP transmitting point
  • mobile switching center and device-to-device Device-to-Device, D2D
  • vehicle outreach vehicle-to-everything, V2X
  • M2M machine-to-machine
  • a terminal device may be a user equipment (UE), mobile station, access terminal, subscriber unit, subscriber station, mobile station, remote station, remote terminal, mobile device, wireless communication device, user agent, user equipment, cellular telephone , cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, virtual reality (VR) end devices, augmented reality (AR) end devices, wireless devices in industrial control, Wireless devices in self driving, wireless devices in remote medical, wireless devices in smart grid, wireless devices in transportation safety, smart city ), wireless devices in smart homes, etc., and terminal devices in future wireless communication systems.
  • the terminal device may also include other devices capable of performing data communication with the network device, such as a relay.
  • the wireless communication system may be a millimeter wave communication system, for example, the wireless communication system may be a millimeter wave communication system as shown in FIG. 3 .
  • both the first communication device and the second communication device are millimeter wave communication devices, for example, the first communication device is a millimeter wave base station, and the second communication device is a millimeter wave terminal, which is not limited in this embodiment of the present application.
  • FIG. 4 shows a flowchart of a data transmission method provided by an embodiment of the present application.
  • the data transmission method can be used in a wireless communication system including a first communication device and a second communication device.
  • the method may include:
  • Step 10 The first communication device acquires reconfiguration request information of the second communication device, where the reconfiguration request information indicates a channel reconfiguration request of the second communication device.
  • the reconstruction requirement information may include at least one of channel reconstruction duration, channel reconstruction accuracy, and maximum path delay, and in addition, the reconstruction requirement information may also include other information, the embodiment of the present application This is not limited.
  • the channel reconstruction duration may be directly fed back by the second communication device to the first communication device, or the first communication device may be based on the movement state of the second communication device and the demand of the service to be transmitted (for example, according to the feedback from the second communication device) of the second communication device. business delay requirements), etc.
  • the channel reconstruction accuracy may be directly fed back by the second communication device to the first communication device, or determined by the first communication device according to a transmission mode of the second communication device, and the transmission mode may be a single-user transmission mode or a multi-user transmission mode .
  • the maximum path delay may be measured by the first communication device.
  • the process of feeding back information from the second communication device to the first communication device will be described below in step 10 .
  • the information directly fed back by the second communication device to the first communication device in step 10 is referred to as key information.
  • the key information may be the channel reconstruction duration, the channel reconstruction accuracy, or , the key information may be the movement state of the second communication device, the service delay requirement of the service to be transmitted of the second communication device, and the like.
  • the first communication apparatus may request the second communication apparatus to feed back key information to the first communication apparatus through configuration signaling, or the second communication apparatus may actively feed back key information to the first communication apparatus.
  • the first communication device requesting the second communication device to feed back key information to the first communication device through configuration signaling may include: the first communication device directly requesting the second communication device to feed back to the first communication device through configuration signaling.
  • key information or the first communication device requires the second communication device to feed back key information to the first communication device by configuring resources (eg, time-frequency resources) to the second communication device.
  • the first communication device may configure the second communication device to periodically feed back key information to the first communication device, or configure the second communication device to feed back key information to the first communication device aperiodically, or configure the second communication device to be active
  • the second communication device is configured to be in an inactive state (ie, an idle state)
  • the first communication device is configured to feed back key information to the first communication device.
  • the device feeds back key information, which is not limited in this embodiment of the present application.
  • the second communication device actively feeding back the key information to the first communication device may include: the second communication device actively feeding back the key information to the first communication device based on the triggering of the service delay requirement, for example, in the service of the second communication device.
  • the second communication device actively feeds back key information to the first communication device.
  • the second communication device actively feeds back key information to the first communication device based on the trigger of the transmission requirement of the special working mode, for example, the second communication device actively feeds back the key information to the first communication device based on the trigger of the transmission requirement of the power saving mode.
  • the second communication apparatus may feed back key information to the first communication apparatus in an explicit mode, or may feed back key information to the first communication apparatus in an implicit mode, which is not limited in this embodiment of the present application.
  • step 10 is an optional step of the data transmission method provided by the embodiment of the present application, rather than a mandatory step.
  • this step 10 may be performed before executing the data transmission method provided by this embodiment of the present application, so that in the data transmission method, the first communication device does not need to perform this step 10;
  • Step 20 The first communication device acquires path parameters of at least one propagation path between the first communication device and the second communication device according to the reconstruction request information of the second communication device.
  • the first communication apparatus may acquire path parameters of at least one propagation path between the first communication apparatus and the second communication apparatus in sequence according to the reconstruction requirement information of the second communication apparatus. That is, the first communication device first obtains the path parameters of the first propagation path, then obtains the path parameters of the second propagation path, then obtains the path parameters of the third propagation path, and so on.
  • the path parameters of each propagation path may include at least one of a horizontal departure angle, a vertical departure angle, a horizontal arrival angle, a vertical arrival angle, a path gain, and a path delay.
  • Step 30 The first communication device constructs a channel between the first communication device and the second communication device according to the path parameters of the at least one propagation path between the first communication device and the second communication device.
  • the first communication device may detect whether the channel reconstruction condition is met, and when the channel reconstruction condition is met, the first communication device A communication device determines the channel matrix between the first communication device and the second communication device according to the determined path parameters of the j propagation paths, so as to reconstruct the channel between the first communication device and the second communication device .
  • the determined j propagation paths are all the propagation paths determined when the channel reconstruction condition is reached, the j propagation paths are also at least one propagation path described in step 20, and j is greater than or equal to 1 and An integer less than or equal to L, where L is the total number of propagation paths between the first communication device and the second communication device.
  • the first communication device obtains path parameters of at least one propagation path between the first communication device and the second communication device in sequence, and each time the first communication device obtains one (or two, three, etc.) Path parameters of the propagation path to detect whether the channel reconstruction conditions are met.
  • the first communication device detecting whether the channel reconstruction condition is met includes: after the first communication device acquires the path parameters of the i-1th propagation path, according to the channel between the first communication device and the second communication device The received signal residual matrix Y r of the first received signal matrix Y1 and the determined second received signal matrix Y2 of the i-1 propagation paths are obtained, and the received signal residual energy is obtained, and according to the received signal residual energy, it is detected whether The channel reconstruction condition is reached.
  • the channel reconstruction conditions may include: is the square of the Frobenius norm of the received signal residual matrix Yr , representing the received signal residual energy, and ⁇ represents the preset residual energy. That is, after acquiring the path parameters of the i-1th propagation path, the first communication device detects the first received signal matrix Y1 of the channel between the first communication device and the second communication device and the determined i- Whether the received signal residual energy of the received signal residual matrix Y r of the second received signal matrix Y2 of one propagation path is less than the preset residual energy; if the received signal residual energy is less than the preset residual energy, it reaches the channel Reconstruction condition, the first communication device determines the channel matrix between the first communication device and the second communication device according to the determined path parameters of the i-1 propagation paths; if the residual energy of the received signal is not less than a preset value If the residual energy is not reached, the channel reconstruction condition is not reached, and the first communication device continues to determine the path parameter of the i-th propagation path.
  • the channel reconstruction condition when the channel reconstruction condition is reached, it means that the signal energy of the currently determined propagation path is high, the signal energy of the remaining propagation paths is low, and the remaining propagation paths will not have an impact on the constructed channel (or the influence can be ignored), so the first communication device does not Then determine the path parameters of the remaining propagation paths, and directly determine the channel matrix between the first communication device and the second communication device according to the determined path parameters of all the propagation paths.
  • the first communication device may substitute the determined path parameters of the j propagation paths into the channel matrix model described in formula (1) to determine the channel between the first communication device and the second communication device.
  • matrix, the channel matrix between the first communication device and the second communication device can be shown in the following formula (9):
  • the path parameters of the j propagation paths may be performed before the first communication device determines the channel matrix between the first communication device and the second communication device according to the determined path parameters of the j propagation paths. Optimization, the path parameters used to construct the channel between the first communication device and the second communication device in step 30 are the optimized path parameters. For example, each time the first communication apparatus determines a path parameter of a propagation path, the path parameter of the propagation path may be optimized. Optionally, the first communication apparatus may use a Newtonized orthogonal matching pursuit (newtonized orthogonal matching pursuit, NOMP) algorithm to optimize the path parameters of the propagation path.
  • NOMP Newtonized orthogonal matching pursuit
  • Step 40 The first communication apparatus precodes the data to be sent based on the constructed channel to obtain first data.
  • the first communication device determines a precoding matrix according to the constructed channel matrix of the channel, and according to the precoding matrix, uses a precoding technology to precode the data to be sent to obtain the first data.
  • the precoding technology is a channel processing technology widely used at present.
  • the precoding technology precodes the data to be transmitted by means of a precoding matrix matching the channel attributes, so that the precoded data is adapted to the channel.
  • precoding the data to be sent can optimize the data transmission process and improve the quality of the received signal.
  • the first communication apparatus determines the precoding matrix A1 according to the channel matrix shown in formula (9), and uses the precoding technology to precode the data B to be sent according to the precoding matrix A1 to obtain the first data B1.
  • Step 50 The first communication device transmits the first data to the second communication device.
  • the first communication device transmits the first data B1 to the second communication device through the antenna array of the first communication device.
  • Step 60 The second communication device receives the first data transmitted by the first communication device.
  • the second communication device receives the first data transmitted by the first communication device.
  • the second communication device receives the first data B1 transmitted by the first communication device through an antenna array of the second communication device.
  • Step 70 The second communication device restores the to-be-sent data of the first communication device according to the first data.
  • the second communication apparatus recovers the to-be-sent data from the first data according to a precoding matrix used when the first communication apparatus pre-encodes the to-be-sent data.
  • the second communication apparatus recovers the data B to be sent from the first data B1 according to the precoding matrix A1 used when the first communication apparatus precodes the data B to be sent.
  • the second communication apparatus may obtain the precoding matrix used by the first communication apparatus when precoding the data to be sent by using various means, including but not limited to: While transmitting the first data, the two communication devices also transmit a precoded reference signal to the second communication device, and the reference signal and the to-be-sent data are precoded by using the same precoding matrix.
  • the obtained reference signal determines the precoding matrix, which is not limited in this embodiment of the present application.
  • the embodiments of the present application take the first communication device constructing a channel between the first communication device and the second communication device, and then transmit data to the second communication device based on the constructed channel as an example for illustration.
  • the first communication apparatus may also perform multi-user scheduling and resource allocation based on the constructed channel.
  • the first communication device may reacquire at least the data between the first communication device and the second communication device according to the changed reconstruction request information of the second communication device. path parameters of a propagation path, and reconstruct the channel between the first communication device and the second communication device, which is not repeated in this embodiment of the present application.
  • the first communication device firstly constructs the channel between the first communication device and the second communication device according to the channel reconstruction requirement of the second communication device, and then builds the channel between the first communication device and the second communication device based on the The data to be sent is precoded on the channel of the second communication device, and then the precoded data is transmitted to the second communication device. Since the first communication device constructs the channel between the first communication device and the second communication device according to the channel reconstruction requirement of the second communication device, the flexibility of the first communication device in constructing the channel is high, which is helpful for To improve the resource utilization of wireless communication system.
  • step 20 (acquiring path parameters of at least one propagation path between the first communication device and the second communication device according to the reconstruction request information of the second communication device) will be described in detail below with reference to the accompanying drawings.
  • FIG. 5 shows a flowchart of acquiring path parameters of a propagation path provided by an embodiment of the present application.
  • the method may include the following sub-steps:
  • Sub-step 201 the first communication device configures a receiving beam training set for the first communication device according to the antenna architecture of the first communication device.
  • the antenna architecture of the first communication device may be in a fully connected form (such as the fully connected form shown in FIG. 1 ), or may be in a partially connected form (such as the partially connected form shown in FIG. 2 ), which is implemented in this application.
  • the antenna structure of the first communication device may be in a fully connected form for illustration.
  • the first communication device configures a receiving beam training set for the first communication device according to the antenna architecture (full connection form) of the first communication device, where the receiving beam training set includes a plurality of receiving beams.
  • the receiving beam training set may be a discrete Fourier transform (discrete fourier transform, DFT) codebook of the antenna array of the first communication device.
  • the DFT codebook may be a codebook designed based on an antenna array of the first communication device, the DFT codebook may be an antenna matrix, and elements in the antenna matrix are weighting coefficients of antenna elements in the antenna array, and the antenna
  • Each column vector of the matrix corresponds to a direction, the number of elements in each column vector is equal to the number of antenna elements in the corresponding direction, and each direction corresponds to a beam.
  • each column vector of the antenna matrix indicates a beam, the column vector is the beam vector of the beam, and the number of columns of the antenna matrix is equal to the number of receive beams in the receive beam training set.
  • the receiving beam training set of the first communication device may include a horizontal receiving beam set s r,h and a vertical receiving beam set s r,v
  • the first communication device may be based on the antenna architecture of the first communication device as:
  • the first communication device is configured with a horizontal receive beam set s r,h and a vertical receive beam set s r,v , the horizontal receive beam set s r,h and the vertical receive beam set s r,v respectively include a plurality of receive beams
  • Both the horizontal receive beam set s r,h and the vertical receive beam set s r,v may be DFT codebooks of the antenna array of the first communication device.
  • Sub-step 202 the first communication device configures a transmission beam training set for the second communication device according to the antenna architecture of the second communication device.
  • the antenna architecture of the second communication device may be in a fully connected form (such as the fully connected form shown in FIG. 1 ), or may be in a partially connected form (such as the partially connected form shown in FIG. 2 ), which is implemented in this application.
  • the antenna structure of the second communication device may be in a fully-connected form as an example for description.
  • the first communication device configures a transmission beam training set for the second communication device according to the antenna architecture (full connection form) of the second communication device, where the transmission beam training set includes a plurality of transmission beams.
  • the transmission beam training set may be a DFT codebook of an antenna array of the second communication device.
  • the DFT codebook may be a codebook designed based on an antenna array of the second communication device, the DFT codebook may be an antenna matrix, and elements in the antenna matrix are weighting coefficients of antenna elements in the antenna array, and the antenna
  • Each column vector of the matrix corresponds to a direction, the number of elements in each column vector is equal to the number of antenna elements in the corresponding direction, and each direction corresponds to a beam.
  • each column vector of the antenna matrix indicates a beam, the column vector is the beam vector of the beam, and the number of columns of the antenna matrix is equal to the number of transmit beams in the transmit beam training set.
  • the transmission beam training set of the second communication device includes a horizontal transmission beam set st,h and a vertical transmission beam set st,v
  • the first communication device is the first communication device according to the antenna architecture of the second communication device.
  • Two communication devices are configured with a horizontal transmit beam set st,h and a vertical transmit beam set st,v , the horizontal transmit beam set st,h and the vertical transmit beam set st,v respectively include a plurality of transmit beams, the horizontal transmit beam set st,v
  • Both the transmit beamset st,h and the vertical transmit beamset st,v may be a DFT codebook of an antenna array of the second communication device.
  • the first communication apparatus may acquire the antenna structure of the second communication apparatus.
  • the first communication device may request the second communication device to feed back the antenna architecture of the second communication device to the first communication device through configuration signaling, or the second communication device may actively feed back the first communication device to the first communication device.
  • the antenna structure of the second communication device enables the first communication device to obtain the antenna structure of the second communication device.
  • the first communication device may also acquire the antenna architecture of the second communication device by using other means, which will not be repeated in this embodiment of the present application.
  • the transmission beam training set is used for the second communication device to interact with the first communication device to perform beam training (the beam training process is shown in the following sub-step 208 and sub-step 209 ), and the first communication device is the second communication device.
  • the transmission beam training set can be sent to the second communication device so as to perform the beam training process.
  • the first communication device can send the transmission beam training set to the second communication device through high-layer signaling, for example, the first communication device uses physical layer signaling, media access control (media access control, MAC) ) layer signaling and radio resource control (radio resource control, RRC) signaling to send the transmit beam training set to the second communication device, which is not limited in this embodiment of the present application.
  • the first communication device determines, according to the channel reconstruction duration, the receive oversampling parameter of the receive beam training set of the first communication device and the transmit oversampling parameter of the transmit beam training set of the second communication device.
  • the reconfiguration requirement information may include a channel reconfiguration duration
  • the channel reconfiguration duration may be a maximum reconfiguration duration allowed by the second communication apparatus.
  • the first communication device determines, according to the channel reconstruction duration, a receive oversampling parameter of the receive beam training set of the first communication device and a transmit oversampling parameter of the transmit beam training set of the second communication device, and the receive oversampling parameter is related to the transmit oversampling parameter.
  • the oversampling parameters may be equal or unequal, which is not limited in this embodiment of the present application. For example, if the channel reconstruction duration is long, the first communication device may set the receive oversampling parameter of the receive beam training set of the first communication device and the transmit oversampling parameter of the transmit beam training set of the second communication device. If the channel reconstruction duration is shorter, the first communication device may receive oversampling parameters of the training set of the first communication device’s receive beam and the oversampling parameters of the transmit beam training set of the second communication device. Set it smaller to reduce the beam training time.
  • the training set of receive beams of the first communication device may include a set of horizontal receive beams s r,h and a set of vertical receive beams s r,v
  • the training set of transmit beams of the second communication device may include horizontal transmit beams set s t,h and vertical transmit beam set s t,v
  • the first communication device determines the horizontal receive oversampling parameter k r,h of the horizontal receive beam set s r,h according to the channel reconstruction duration, the The vertical receive oversampling parameter k r,v of the vertical receive beam set s r, v, the horizontal transmit oversampling parameter k t,h of the horizontal transmit beam set s t ,h, and the vertical transmit beam set s t,v of the vertical
  • the oversampling parameter k t,v is emitted.
  • the horizontal receive oversampling parameter k r,h , the vertical receive oversampling parameter k r,v , the horizontal transmit oversampling parameter k t,h and the vertical transmit oversampling parameter k t,v may be equal, or are not equal (for example, are not equal to each other), which is not limited in this embodiment of the present application.
  • the beam training set (including the receiving beam training set and the transmitting beam training set) and the oversampling parameters (including the receiving oversampling parameter and the transmitting oversampling parameter) are used for the interaction between the first communication device and the second communication device to conduct beams.
  • Training the beam training process is shown in the following sub-step 208 and sub-step 209)
  • the first communication device determines the receive oversampling parameter of the receive beam training set and the transmit oversampling parameter of the transmit beam training set according to the channel reconstruction duration, It is helpful for the first communication device and the second communication device to complete beam training within the channel reconstruction time period.
  • Sub-step 204 the first communication device sends the transmission oversampling parameter of the transmission beam training set of the second communication device to the second communication device.
  • the first communication apparatus may send the transmission oversampling parameter of the transmission beam training set of the second communication apparatus to the second communication apparatus through high layer signaling.
  • the first communication apparatus sends the transmission oversampling parameter of the transmission beam training set to the second communication apparatus through at least one of physical layer signaling, MAC layer signaling, and RRC signaling.
  • the transmit oversampling parameter of the transmit beam training set includes the horizontal transmit oversampling parameter k t,h of the horizontal transmit beam set s t,h and the vertical transmit oversampling parameter of the vertical transmit beam set st,v k t,v , so the first communication device sends the horizontal transmit oversampling parameter k t,h of the horizontal transmit beam set st,h and the vertical transmit beam set st t ,h to the second communication device through high layer signaling
  • the vertical transmit oversampling parameter k t,v of v The vertical transmit oversampling parameter k t,v of v .
  • Sub-step 205 the second communication device receives the transmission oversampling parameter of the transmission beam training set of the second communication device sent by the first communication device.
  • the second communication device may receive the transmission oversampling parameters of the transmission beam training set.
  • the second communication apparatus receives the transmission oversampling parameter of the transmission beam training set sent by the first communication apparatus through high-layer signaling.
  • the second communication apparatus receives the transmission oversampling parameter of the transmission beam training set that is sent by the first communication apparatus through at least one of physical layer signaling, MAC layer signaling, and RRC signaling.
  • the transmit oversampling parameter of the transmit beam training set includes the horizontal transmit oversampling parameter k t,h of the horizontal transmit beam set s t,h and the vertical transmit oversampling parameter of the vertical transmit beam set st,v k t,v , therefore the second communication device receives the horizontal transmit oversampling parameter k t,h of the horizontal transmit beam set st,h and the vertical transmit beam set st t sent by the first communication device through high layer signaling , v for the vertical transmit oversampling parameter k t,v .
  • Sub-step 206 the first communication apparatus sends resource indication information to the second communication apparatus, where the resource indication information indicates the time-frequency resource for sending the reference signal by the second communication apparatus.
  • the first communication apparatus may schedule time-frequency resources for sending reference signals for the second communication apparatus, then generate resource indication information for indicating the time-frequency resources, and send the resource indication to the second communication apparatus information, where the resource indication information indicates a time-frequency resource for sending the reference signal by the second communication apparatus.
  • the first communication apparatus may send the resource indication information to the second communication apparatus through higher layer signaling.
  • the first communication apparatus sends the resource indication information to the second communication apparatus through at least one of physical layer signaling, MAC layer signaling, and RRC signaling.
  • Sub-step 207 the second communication apparatus receives the resource indication information sent by the first communication apparatus.
  • the second communication apparatus may receive the resource indication information sent by the first communication apparatus.
  • the second communication apparatus receives the resource indication information sent by the first communication apparatus through high-layer signaling.
  • the second communication apparatus receives the resource indication information sent by the first communication apparatus through at least one of physical layer signaling, MAC layer signaling, and RRC signaling.
  • sub-step 204 to sub-step 207 are executed in sequence as an example, and the sequence of sub-step 204 to sub-step 207 is not limited in the actual implementation process.
  • sub-step 204 and sub-step 206 can be executed simultaneously (that is, the first communication device sends the transmission oversampling parameter and resource indication information to the second communication device in one message), and correspondingly, sub-step 205 and sub-step 207 It can be performed simultaneously (that is, the second communication device receives the transmission oversampling parameter and the resource indication information sent by the first communication device by receiving a message).
  • sub-step 204 to sub-step 207 may be executed in the order of sub-step 206 , sub-step 207 , sub-step 204 , and sub-step 205 .
  • sub-step 204 to sub-step 207 may be performed in the order of sub-step 204 , sub-step 206 , sub-step 205 , and sub-step 207 .
  • sub-step 206 and sub-step 207 may be optional steps, for example, the first communication device and the second communication device may pre-agreed time-frequency resources for sending reference signals, or may specify in the protocol which time-frequency resources the first communication device passes through The resource sends a reference signal to the second communication apparatus, so the foregoing sub-step 206 and sub-step 207 may not be executed, which is not limited in this embodiment of the present application.
  • the second communication apparatus sends a reference signal to the first communication apparatus based on the transmission beam training set of the second communication apparatus and the transmission oversampling parameter of the transmission beam training set.
  • the second communication device transmits the time-frequency resource indicated by the resource indication information received in sub-step 207 to the first communication device.
  • the communication device transmits the reference signal.
  • the reference signal may be a reference signal used for channel measurement, for example, the reference signal may be a phase tracking reference signal (PT-RS) or a channel state information reference signal (channel state information reference signal, CSI-RS) and so on.
  • PT-RS phase tracking reference signal
  • CSI-RS channel state information reference signal
  • the second communication device processes the transmission beam training set according to the transmission oversampling parameter to obtain a processed transmission beam training set, and then uses the transmission beams in the processed transmission beam training set, where the resource indication information indicates.
  • the reference signal is sent to the first communication device on the time-frequency resource.
  • the processing of the transmission beam training set by the second communication device according to the transmission oversampling parameter can be understood as that the second communication device adds transmission beams in the transmission beam training set according to the transmission oversampling parameter, so that the processed The transmit beams in the transmit beam training set are denser.
  • the transmit beam training set includes a horizontal transmit beam set st,h and a vertical transmit beam set st,v
  • the transmit oversampling parameter includes a horizontal transmit oversampling parameter of the horizontal transmit beam set st,h k t,h and the vertical transmit oversampling parameter k t,v of the vertical transmit beam set s t, v
  • the second communication device can use the horizontal transmit oversampling parameter k t,h for the horizontal transmit beam set s th Processed to obtain the processed horizontal transmit beam set Process the vertical transmit beam set s tv according to the vertical transmit oversampling parameter k t,v to obtain the processed vertical transmit beam set
  • the processed horizontal transmit beamset The transmit beam in and the processed vertical transmit beam set
  • the transmit beams in are all plane beams
  • the second communication device can set the processed horizontal transmit beams
  • the transmit beam in and the processed vertical transmit beam set The combined transmit beams in the three-dimensional space are combined to obtain a combined transmit beam, and a reference
  • the horizontal transmit beam set s t,h includes four transmit beams (transmit beam t1, transmit beam t2, transmit beam t3 and transmit beam t4) including transmit beam t1, transmit beam t2, transmit beam t3 and transmit beam t4. Both are horizontal transmit beams, the vertical departure angle of the horizontal transmit beam is 0), and the horizontal transmit oversampling parameter k t,h is equal to 2.
  • the second communication device increases the transmission beam t12 between the transmission beam t1 and the transmission beam t2 according to the horizontal transmission oversampling parameter k t,h , adds the transmission beam t23 between the transmission beam t2 and the transmission beam t3 , and increases the transmission beam t23 between the transmission beam t2 and the transmission beam t3 Between t3 and the transmit beam t4, the transmit beam transmit beam t34 is added, and the transmit beam t45 is added after the transmit beam t4 to obtain the processed horizontal transmit beam set It includes: transmit beam t1, transmit beam t12, transmit beam t2, transmit beam t23, transmit beam t3, transmit beam t34, transmit beam t4 and transmit beam t45, a total of 8 transmit beams, transmit beam t1, transmit beam t12, transmit beam t2, transmit beam t23, transmit beam t3, transmit beam t34, transmit beam t4 and transmit beam t45 are all horizontal transmit beams.
  • the direction of the transmit beam t12 may be located between the direction of the transmit beam t1 and the direction of the transmit beam t2 (eg, the difference between the horizontal departure angle of the transmit beam t12 and the horizontal departure angle of the transmit beam t1 is equal to the difference between the horizontal departure angle and the horizontal departure angle of transmit beam t12); the direction of transmit beam t23 may be located between the direction of transmit beam t2 and the direction of transmit beam t3 (eg, the horizontal departure angle of transmit beam t23 and the transmit beam t23)
  • the difference between the horizontal departure angles of the beam t2 is equal to the difference between the horizontal departure angle of the transmission beam t3 and the horizontal departure angle of the transmission beam t23);
  • the direction of the transmission beam t34 may be located in the direction of the transmission beam t3 and the transmission beam t4 (e.g., the difference between the horizontal departure angle of transmit beam t34 and the horizontal departure angle of transmit beam t3 is equal to the difference between the horizontal departure angle of transmit beam
  • the second communication device increases the transmit beam t01 before the transmit beam t1, adds the transmit beam t12 between the transmit beam t1 and the transmit beam t2, and adds the transmit beam t12 between the transmit beam t2 and the transmit beam t2.
  • the transmit beam t23 is added between the beams t3, and the transmit beam t34 is added between the transmit beam t3 and the transmit beam t4, and the processed horizontal transmit beam set is obtained.
  • transmit beam t01, transmit beam t1, transmit beam t12, transmit beam t2, transmit beam t23, transmit beam t3, transmit beam t34 and transmit beam t4 a total of 8 transmit beams, transmit beam t01, transmit beam t1, transmit beam t12, transmit beam t2, transmit beam t23, transmit beam t3, transmit beam t34 and transmit beam t4 are all horizontal transmit beams, and their vertical departure angles are all zero.
  • the direction of the transmit beam t1 may be located between the direction of the transmit beam t01 and the direction of the transmit beam t12 (eg, the difference between the horizontal departure angle of the transmit beam t1 and the horizontal departure angle of the transmit beam t01 is equal to the difference of the transmit beam t12 the difference between the horizontal departure angle and the horizontal departure angle of the transmit beam t1); the direction of the transmit beam t12 may be located between the direction of the transmit beam t1 and the transmit beam t2 (eg, the horizontal departure angle of the transmit beam t12 and the transmit The difference between the horizontal departure angles of the beam t1 is equal to the difference between the horizontal departure angle of the transmission beam t2 and the horizontal departure angle of the transmission beam t12); the direction of the transmission beam t23 can be located between the direction of the transmission beam t2 and the transmission beam t3 (for example, the difference between the horizontal departure angle of transmit beam t23 and the horizontal departure angle of transmit beam t2 is equal to the difference between the horizontal departure angle of
  • this sub-step 208 takes the horizontal transmit beam set s t,h and the horizontal transmit oversampling parameter k t,h as examples to describe that the second communication apparatus processes the transmit beam training set according to the transmit oversampling parameter
  • the process of processing the vertical transmit beam set st,v by the second communication device according to the vertical transmit oversampling parameter k t,v is similar to this, and details are not described herein again in this embodiment of the present application. It is worth noting that the transmit beams in the vertical transmit beam set s tv and the processed vertical transmit beam set The transmissions in are all vertical transmission beams, and the horizontal departure angle of the vertical transmission beams is 0.
  • the first communication device measures the reference signal based on the receiving beam training set of the first communication device and the received oversampling parameters of the receiving beam training set, and obtains the channel between the first communication device and the second communication device.
  • the first received signal matrix is the first received signal matrix.
  • the first communication device measures the time-frequency resource indicated by the resource indication information based on the receiving beam training set of the first communication device and the receiving oversampling parameter of the receiving beam training set.
  • the second communication device is based on the second communication device. The transmission beam training set of the communication device and the reference signal sent by the transmission oversampling parameters of the transmission beam training set.
  • the first communication device processes the receiving beam training set according to the received oversampling parameter to obtain a processed receiving beam training set, and then uses the receiving beams in the processed receiving beam training set, where the resource indication information indicates The reference signal is measured on time-frequency resources.
  • the processing of the receiving beam training set by the first communication device according to the receiving oversampling parameter can be understood as the fact that the first communication device adds a receiving beam in the receiving beam training set according to the receiving oversampling parameter, so that the processed The receive beams in the receive beam training set are denser.
  • the receive beam training set includes a horizontal receive beam set s r,h and a vertical receive beam set s r,v
  • the receive oversampling parameter includes a horizontal receive oversampling parameter of the horizontal receive beam set s r,h k r,h and the vertical receive oversampling parameter k r,v of the vertical receive beam set s r, v
  • the first communication device may receive the horizontal receive oversampling parameter k r,h for the horizontal receive beam set s r according to the horizontal receive oversampling parameter k r,h , h is processed to obtain the processed horizontal receive beam set
  • the vertical receive beam set s r, v is processed according to the vertical receive oversampling parameter k r,v to obtain the processed vertical receive beam set
  • the processed horizontal receive beamset The receive beam in and the processed vertical receive beam set
  • the receiving beams in are all plane beams
  • the first communication device may set the processed horizontal receiving beams The receive beam in and the processed vertical receive beam set
  • the process of processing the horizontal receive beam set s r,h by the first communication device according to the horizontal receive oversampling parameter k r,h , and the vertical receive oversampling parameter k r,v for the vertical receive For the process of processing the beam set s r, v , reference may be made to the process in sub-step 208 where the second communication device processes the vertical transmission beam set s t, v according to the vertical transmission oversampling parameter k t, v . In this embodiment of the present application, This will not be repeated here.
  • the receiving beams in the horizontal receiving beam set s r,h and the processed horizontal receiving beam set are all horizontal receiving beams, the vertical angle of arrival of the horizontal receiving beam is 0, the receiving beams in the vertical receiving beam set s r, v and the processed vertical receiving beam set The receiving beams in are all vertical receiving beams, and the horizontal angle of arrival of the vertical receiving beams is 0.
  • the first communication device can measure the reference signal based on the receiving beam training set of the first communication device and the received oversampling parameters of the receiving beam training set to obtain a received signal matrix.
  • the received signal matrix is obtained by beam training (sub- Step 208 to sub-step 209 are obtained in the beam training process), for the convenience of description, the received signal matrix obtained by beam training is called the first received signal matrix Y1, and the elements in the first received signal matrix Y1 are the first received signal matrix Y1.
  • each column element of the first received signal matrix Y1 corresponds to a subcarrier, and each row element corresponds to a beam pair index number.
  • each column element of the first received signal matrix Y1 corresponds to a subcarrier
  • each row element corresponds to a pair of transceiver antennas
  • each pair of transceiver antennas includes a transmit antenna element of the second communication device and a receiver of the first communication device.
  • each pair of joint transmitting and receiving beams corresponds to at least one pair of transmitting and receiving antennas
  • each pair of joint transmitting and receiving beams includes a joint transmitting beam of the second communication device and a joint receiving beam of the first communication device
  • the joint transmitting beam is a horizontal transmitting beam set
  • the joint receive beam is the receive beam in the horizontal receive beam set s r,h and the vertical receive beam set s r
  • the combined beam of the receive beams in v
  • the first received signal matrix Y1 may be shown in the following formula (10):
  • M represents a beam training matrix
  • each column element of the beam training matrix is a vector formed by a pair of transmitting and receiving training beams
  • each pair of transmitting and receiving training beams includes a joint transmission beam of the second communication device and a joint transmission beam of the first communication device. receive beam.
  • the received signal matrix obtained by the first communication device measuring the reference signal may be a three-dimensional matrix.
  • the first received signal matrix Y1 is a two-dimensional matrix.
  • the first received signal matrix Y1 Y1 may be obtained by converting the measured three-dimensional received signal matrix by the first communication device, which is not limited in this embodiment of the present application.
  • the first communication device determines the first received signal matrix according to the first received signal matrix of the channel between the first communication device and the second communication device and the determined second received signal matrix of i-1 propagation paths Path parameters of the i-th propagation path between the communication device and the second communication device.
  • the received signal residual matrix Y r of the first received signal matrix Y1 and the second received signal matrix Y2 of the channel is the first received signal matrix Y1 itself, and the first communication device according to the first received signal matrix Y1 and the second received signal matrix Y1
  • the received signal matrix Y2 determines the path parameter of the i-th propagation path, that is, the path parameter of the first propagation path is determined according to the first received signal matrix Y1.
  • the element in the second received signal matrix Y2 is the received signal strength of the reference signal estimated by the first communication device according to the determined path parameters of the i-1 propagation paths, and each column of the second received signal matrix Y2 An element corresponds to a subcarrier, and each row of elements corresponds to a beam pair index number.
  • each column element of the second received signal matrix Y2 corresponds to a subcarrier
  • each row element corresponds to a pair of transceiver antennas
  • each pair of transceiver antennas includes a transmit antenna element of the second communication device and a receiver of the first communication device.
  • each pair of joint transceiver beams corresponds to at least one pair of transceiver antennas
  • each pair of joint transceiver beams includes a joint transmit beam of the second communication device and a joint receive beam of the first communication device.
  • the second received signal matrix Y2 can be shown in the following formula (11):
  • M represents a beam training matrix
  • the beam training matrix M is the same as the beam training matrix M in formula (10)
  • the order is the horizontal departure angle, vertical departure angle, horizontal arrival angle, vertical arrival angle, path gain and path delay of the wth propagation path.
  • FIG. 6 shows a flowchart of acquiring path parameters of the i-th propagation path between a first communication device and a second communication device according to an embodiment of the present application.
  • the method may include the following sub-steps:
  • Sub-step 2101 Construct the i-th received signal residual matrix according to the first received signal matrix of the channel between the first communication device and the second communication device and the determined received signal residual matrix of the second received signal matrix of the i-1 propagation paths The transmission parameter grid corresponding to each propagation path.
  • the first communication device first determines the received signal residual matrix of the first received signal matrix Y1 of the channel between the first communication device and the second communication device and the determined second received signal matrix Y2 of the i-1 propagation paths Y r , and then construct a transmission parameter grid corresponding to the i-th propagation path according to the received signal residual matrix Y r .
  • the number of rows of the first received signal matrix Y1 is equal to the number of rows of the second received signal matrix Y2, and the number of columns of the first received signal matrix Y1 is the same as the number of columns of the second received signal matrix Y2 If the numbers are equal, and the number of elements of the first received signal matrix Y1 is equal to the number of elements of the second received signal matrix Y2, the first communication device may subtract the second received signal matrix from the first received signal matrix Y1 Y2 obtains the received signal residual matrix Y r .
  • the elements in the received signal residual matrix Yr are the residual values of a received signal strength in the first received signal matrix Y1 and the corresponding received signal strength in the second received signal matrix Y2 (also That is, the elements in the received signal residual matrix Yr are received signal residuals), each column element of the received signal residual matrix Yr corresponds to a subcarrier, and each row element corresponds to a beam pair index number.
  • each column element of the received signal residual matrix Yr corresponds to a subcarrier, each row element corresponds to a pair of transceiver antennas, and each pair of transceiver antennas includes one transmit antenna element of the second communication device and one of the first communication device.
  • each pair of joint transmitting and receiving beams corresponds to at least one pair of transmitting and receiving antennas, and each pair of joint transmitting and receiving beams includes a joint transmitting beam of the second communication device and a joint receiving beam of the first communication device.
  • the received signal residual matrix Y r can be shown in formula (12):
  • the transmission parameter grid may include at least one of a transmission angle grid and a transmission delay grid
  • the reconstruction requirement information may also include at least one of channel reconstruction accuracy and maximum path delay ⁇ max
  • the first communication device constructing the transmission parameter grid corresponding to the i -th propagation path according to the received signal residual matrix Yr includes: the first communication device constructs the transmission parameter grid according to the received signal residual matrix Yr and the channel reconstruction accuracy A transmission angle grid corresponding to the i-th propagation path; and/or, the first communication device constructs a transmission delay grid corresponding to the i-th propagation path according to the maximum path delay ⁇ max .
  • the process of constructing the transmission angle grid corresponding to the i-th propagation path and the process of constructing the transmission delay grid corresponding to the i-th propagation path by the first communication device will be described in detail later, and will not be repeated here.
  • Sub-step 2102 according to the first received signal matrix of the channel between the first communication device and the second communication device and the received signal residual matrix of the determined second received signal matrix of i-1 propagation paths, and the The transmission parameter grid corresponding to the i propagation path determines the path parameter of the i-th propagation path.
  • the path parameter may include at least one of an angle parameter, a path gain and a path delay
  • the sub-step 2102 may include: the first communication apparatus may The first received signal matrix Y1 and the received signal residual matrix Y r of the second received signal matrix Y2 of the i-1 propagation paths that have been determined, and the transmission angle grid corresponding to the i-th propagation path constructed in sub-step 2101 , determine the angle parameters and path gain of the i-th propagation path And/or, according to the received signal residual matrix Y r and the transmission delay grid corresponding to the i-th propagation path constructed in sub-step 2101, determine the path delay of the i-th propagation path
  • the first communication device determines the angle parameter and path gain of the ith propagation path according to the received signal residual matrix Yr and the transmission angle grid corresponding to the ith propagation path process, and determine the path delay of the i-th propagation path according to the received signal residual matrix Y r and the transmission delay grid corresponding to the i
  • the transmission parameter grid may include at least one of a transmission angle grid and a transmission delay grid.
  • the transmission parameter grid includes a transmission angle grid and a transmission delay grid as Example description.
  • the transmission parameter grid may include a departure angle grid and an arrival angle grid.
  • FIG. 7 shows a flowchart of constructing a transmission parameter grid corresponding to the i-th propagation path provided by an embodiment of the present application. Referring to Figure 7, the method may include the following sub-steps:
  • the first communication device obtains the residual error of the received signal according to the first received signal matrix of the channel between the first communication device and the second communication device and the determined second received signal matrix of the i-1 propagation paths matrix to determine the target transmit beam and target receive beam.
  • the pair of transceiving beams formed by the target transmitting beam and the target receiving beam may be the pair of transceiving beams with the largest residual energy.
  • each column element of the received signal residual matrix Y r corresponds to a subcarrier, and each row element corresponds to a beam pair index number.
  • the first communication device determines the target transmit beam according to the received signal residual matrix Y r and target receive beam
  • the process may include: the first communication device first determines, according to the received signal residual error matrix Y r , the beam pair index number corresponding to the largest received signal residual energy Then according to the beam pair index number corresponding to the maximum received signal residual energy Determine the target transmit beam and target receive beam
  • the first communication device determines the beam pair index number corresponding to the maximum received signal residual energy by the following formula (13): The first communication device is based on the beam pair index number corresponding to the maximum received signal residual energy
  • the target transmit beam is determined by the following equations (14) and (15) and target receive beam
  • n is the number of rows of the received signal residual matrix Y r
  • Y r is the square of the second norm of the element in the nth row of the received signal residual matrix Y r , representing the received signal residual energy of the element in the nth row of the received signal residual matrix Y r
  • N r,c is the first communication the number of joint receive beams of the device, Express Rounded up.
  • Sub-step 1012 the first communication device constructs a departure angle grid corresponding to the i-th propagation path according to the departure angle of the target transmit beam and the channel reconstruction accuracy.
  • the target transmit beam is the emission beam in three-dimensional space
  • the target emission beam The departure angle of can include the horizontal departure angle and vertical departure angle
  • the departure corner grid may include a horizontal departure corner grid and a vertical departure corner grid.
  • FIG. 8 shows a flowchart of constructing a departure angle grid corresponding to the i-th propagation path according to the departure angle of the target transmit beam and the channel reconstruction accuracy provided by an embodiment of the present application, as shown in the figure. 8, the method includes:
  • Sub-step 10121 Determine the grid accuracy of the horizontal departure angle grid and the grid accuracy of the vertical departure angle grid according to the channel reconstruction accuracy.
  • the first communication device may empirically determine the grid accuracy of the horizontal departure angle grid and the grid accuracy of the vertical departure angle grid according to the channel reconstruction accuracy, and the grid accuracy of the horizontal departure angle grid is the same as the grid accuracy of the The grid precision for vertical departure corner grids can be equal or unequal.
  • the first communication device may also refer to the channel reconstruction duration in the reconstruction request information, if the channel reconstruction duration is longer.
  • the first communication device can set the grid precision of the horizontal separation angle grid and the grid accuracy of the vertical separation angle grid to be smaller, so that the number of times of grid exhaustion can be reduced. If the channel is reconstructed When the duration is short, the first communication apparatus may set the grid precision of the horizontal separation angle grid and the grid precision of the vertical separation angle grid to be larger.
  • the first communication device determines the channel reconstruction accuracy as the grid accuracy of the horizontal departure angle grid and the grid accuracy of the vertical departure angle grid.
  • the first communication device may record the first correspondence between the channel reconstruction accuracy and the horizontal departure angle grid accuracy, and the second correspondence between the channel reconstruction accuracy and the vertical departure angle grid accuracy.
  • the channel reconstruction precision and the first correspondence determine the grid precision of the horizontal departure angle grid, and the grid precision of the vertical departure angle grid is determined according to the channel reconstruction precision and the second correspondence.
  • the first correspondence and the second correspondence may be determined based on experience, for example, the first communication apparatus learns according to previous channel construction experience, which is not limited in this embodiment of the present application.
  • Sub-step 10122 Construct a horizontal departure angle grid according to the horizontal departure angle of the target transmission beam, the horizontal transmission beam set, the horizontal transmission oversampling parameter and the grid precision of the horizontal departure angle grid.
  • the first communication device transmits the beam according to the target horizontal departure angle
  • the horizontal transmit beamset s t,h and the horizontal transmit oversampling parameter k t,h of the horizontal transmit beam set st, h determine the upper boundary point of the horizontal departure angle grid and the lower boundary point emit beams according to the target horizontal departure angle
  • the 2B t,h +1 point grid, for example, the horizontal departure corner grid can be shown in Figure 9.
  • 2B t,h represents the number of grids in the horizontal departure angle grid, and the value of 2B t,h is based on the upper boundary point the lower boundary point And the grid precision of this horizontal departure angle grid is determined.
  • 2B t,h is equal to the upper boundary point with the lower boundary point
  • the difference of is divided by the grid precision of the horizontal departure corner grid, which is the width of a single grid in the horizontal departure corner grid.
  • the upper boundary point Corresponding to the target transmit beam determined based on the horizontal transmit oversampling parameter k t,h and the horizontal transmit beam set s t,h
  • the lower boundary point Corresponds to the smaller of the horizontal departure angles of the two adjacent transmit beams.
  • the first communication device processes the horizontal transmit beam set s t,h according to the horizontal transmit oversampling parameter k t,h to obtain a processed horizontal transmit beam set.
  • the process of processing the horizontal transmit beam set s t,h by the first communication device according to the horizontal transmit oversampling parameter k t,h may refer to the aforementioned sub-step 208 , which will not be repeated here.
  • the first communication device processes the horizontal transmit beam set s t,h according to the horizontal transmit oversampling parameter k t,h to obtain the processed horizontal transmit beam set and the processed horizontal transmit beam set obtained by processing the horizontal transmit beam set s t,h by the second communication device according to the horizontal transmit oversampling parameter k t,h in the aforementioned sub-step 208 same.
  • Sub-step 10123 Construct a vertical departure angle grid according to the vertical departure angle of the target transmission beam, the vertical transmission beam set, the vertical transmission oversampling parameter and the grid precision of the vertical departure angle grid.
  • the first communication device transmits the beam according to the target vertical departure angle of The vertical transmit beamset st ,v and the vertical transmit oversampling parameter k t, v of the vertical transmit beamset st,v determine the upper boundary point of the vertical departure angle grid and the lower boundary point emit beams according to the target vertical departure angle of The upper boundary point of the vertical departure corner grid Vertically away from the lower boundary point of the corner grid and the grid precision of the vertical departure angle grid, construct the vertical departure angle grid, the vertical departure angle grid is the center point for the target launch beam vertical departure angle of The 2B t,v +1 point grid, for example, the vertical departure corner grid can be shown in Figure 10.
  • 2B t,v represents the number of grids in the vertical departure angle grid, and the value of 2B t,v is based on the upper boundary point the lower boundary point and the grid precision of the vertical departure corner grid is determined.
  • 2B t,v is equal to the upper boundary point with the lower boundary point
  • the difference of is divided by the grid precision of the vertical off-corner grid, which is the width of a single grid in the vertical off-corner grid.
  • the first communication device processes the vertical transmit beam set s t,v according to the vertical transmit oversampling parameter k t,v to obtain a processed vertical transmit beam set.
  • the process of processing the vertical transmit beam set st,v by the first communication device according to the vertical transmit oversampling parameter k t,v may refer to the aforementioned sub-step 208, and details are not repeated here. It should be noted that the first communication device processes the vertical transmit beam set s t,v according to the vertical transmit oversampling parameter k t,v to obtain a processed vertical transmit beam set. As in the foregoing sub-step 208, the second communication device processes the vertical transmit beam set st,v according to the vertical transmit oversampling parameter k t,v to obtain the processed vertical transmit beam set same.
  • sub-step 10122 to sub-step 10123 as an example to be executed in sequence.
  • the present application does not limit the sequence of sub-step 10122 and sub-step 10123, that is, The sub-step 10122 may be executed first and then the sub-step 10123 may be executed, or the sub-step 10123 may be executed first and then the sub-step 10122 may be executed, which is not limited in this embodiment of the present application.
  • Sub-step 1013 the first communication device receives the beam according to the target The angle of arrival and channel reconstruction accuracy are obtained, and the angle of arrival grid corresponding to the i-th propagation path is constructed.
  • the target receive beam is the receiving beam in three-dimensional space
  • the target receiving beam The angle of arrival can include the horizontal angle of arrival and vertical angle of arrival
  • the angle of arrival grid may include a horizontal angle of arrival grid and a vertical angle of arrival grid.
  • FIG. 11 shows a flowchart of constructing an angle of arrival grid corresponding to the i-th propagation path according to the angle of arrival of the target receiving beam and the channel reconstruction accuracy provided by the embodiment of the present application, as shown in the figure. 11, the method includes:
  • Sub-step 10131 Determine the grid accuracy of the horizontal angle of arrival grid and the grid accuracy of the vertical angle of arrival grid according to the channel reconstruction accuracy.
  • the first communication device may empirically determine the grid accuracy of the horizontal angle of arrival grid and the grid accuracy of the vertical angle of arrival grid according to the channel reconstruction accuracy, and the grid accuracy of the horizontal angle of arrival grid is the same as the grid accuracy of the
  • the grid precision of the vertical angle of arrival grids may be equal or unequal, which is not limited in this embodiment of the present application.
  • the first communication device may also refer to the channel reconstruction duration in the reconstruction request information, if the channel reconstruction duration is longer.
  • the first communication device can set the grid precision of the horizontal angle of arrival grid and the grid precision of the vertical angle of arrival grid to be smaller, so that the number of times of grid exhaustion can be reduced. If the channel is reconstructed If the duration is short, the first communication device may set the grid precision of the horizontal angle of arrival grid and the grid precision of the vertical angle of arrival grid to be larger.
  • the first communication apparatus determines the channel reconstruction accuracy as the grid accuracy of the horizontal angle of arrival grid and the grid accuracy of the vertical angle of arrival grid.
  • the first communication device may record a third correspondence between the channel reconstruction accuracy and the horizontal angle of arrival grid accuracy, and a fourth correspondence between the channel reconstruction accuracy and the vertical angle of arrival grid accuracy.
  • the channel reconstruction precision and the third correspondence determine the grid precision of the horizontal angle of arrival grid
  • the grid precision of the vertical angle of arrival grid is determined according to the channel reconstruction precision and the fourth correspondence.
  • the third corresponding relationship and the fourth corresponding relationship may be determined according to experience, for example, the first communication device learns according to previous channel construction experience, which is not limited in this embodiment of the present application.
  • Sub-step 10132 Construct a horizontal angle of arrival grid according to the horizontal angle of arrival of the target receiving beam, the horizontal receiving beam set, the horizontal receiving oversampling parameter and the grid precision of the horizontal angle of arrival grid.
  • the first communication device receives the beam according to the target horizontal angle of arrival
  • the horizontal receive beam set s r,h and the horizontal receive oversampling parameter k r,h of the horizontal receive beam set s r,h determine the upper boundary point of the horizontal angle of arrival grid and the lower boundary point Receive beams according to this target horizontal angle of arrival the upper boundary point of the horizontal arrival angle grid the lower boundary point of the horizontal arrival angle grid and the grid precision of the horizontal angle of arrival grid, construct the horizontal angle of arrival grid, the horizontal angle of arrival grid is the center point for the target receive beam horizontal angle of arrival
  • the 2B r,h +1 point grid, for example, the horizontal angle of arrival grid is shown in Figure 12.
  • 2B r,h represents the number of grids in the horizontal arrival angle grid, and the value of 2B r,h is based on the upper boundary point the lower boundary point And the grid precision of the horizontal arrival angle grid is determined.
  • 2B r,h is equal to the upper boundary point with the lower boundary point
  • the difference of is divided by the grid precision of the horizontal angle of arrival grid, which is also the width of a single grid in the horizontal angle of arrival grid.
  • the upper boundary point Corresponding to the target receive beam determined based on the horizontal receive oversampling parameter k r,h and the horizontal receive beam set s r,h
  • the lower boundary point Corresponds to the smaller of the horizontal angles of arrival of the two adjacent receive beams.
  • the first communication device processes the horizontal receive beam set s r,h according to the horizontal receive oversampling parameter k r,h to obtain a processed horizontal receive beam set.
  • the larger value of the horizontal angle of arrival of the two receiving beams is determined as the upper boundary point
  • the smaller of the horizontal angles of arrival of the two receive beams is determined as the lower boundary point
  • Sub-step 10133 Construct a vertical angle of arrival grid according to the vertical angle of arrival of the target receiving beam, the vertical receiving beam set, the vertical receiving oversampling parameter and the grid precision of the vertical angle of arrival grid.
  • the first communication device receives the beam according to the target vertical angle of arrival
  • the vertical receiving beam set s r,v and the vertical receiving oversampling parameter k r,v of the vertical receiving beam set s r,v determine the upper boundary point of the vertical angle of arrival grid and the lower boundary point Receive beams according to this target vertical angle of arrival the upper boundary point of the vertical angle of arrival grid the lower boundary point of the vertical angle of arrival grid and the grid precision of the vertical angle of arrival grid, construct the vertical angle of arrival grid, the vertical angle of arrival grid is the center point for the target receive beam vertical angle of arrival
  • the 2B r,v -1 point grid for example, the vertical off-corner grid can be shown in Figure 13.
  • 2B r,v represents the number of grids in the vertical angle of arrival grid, and the value of 2B r,v is based on the upper boundary point the lower boundary point And the grid precision of the vertical angle of arrival grid is determined.
  • 2B r, v is equal to the upper boundary point with the lower boundary point
  • the difference is divided by the grid precision of the vertical angle of arrival grid, and the grid precision of the vertical angle of arrival grid is the width of a single grid in the vertical angle of arrival grid.
  • the upper boundary point Corresponding to the target receive beam determined based on the vertical receive oversampling parameter k r,v and the vertical receive beam set s r,v
  • the lower boundary point Corresponds to the smaller of the vertical angles of arrival of the two adjacent receive beams.
  • the first communication device processes the vertical receiving beam set s r,v according to the vertical receiving oversampling parameter k r,v to obtain a processed vertical receiving beam set.
  • the process of processing the vertical receiving beam set s r,v by the first communication device according to the vertical receiving oversampling parameter k r,v reference may be made to the foregoing sub-step 209, and details are not described herein again in this embodiment of the present application.
  • sub-step 10132 to sub-step 10133 are executed in sequence as an example.
  • the present application does not limit the sequence of sub-step 10132 and sub-step 10133, that is, The sub-step 10132 may be executed first and then the sub-step 10133 may be executed, or the sub-step 10133 may be executed first and then the sub-step 10132 may be executed, which is not limited in this embodiment of the present application.
  • the above is the process of constructing the transmission angle grid corresponding to the i-th propagation path by the first communication device in sub-step 2101 .
  • the following describes the process of constructing the transmission delay grid corresponding to the i-th propagation path by the first communication device in this sub-step 2101.
  • the first communication apparatus constructs a transmission delay grid corresponding to the i-th propagation path according to the maximum path delay ⁇ max .
  • the maximum path delay ⁇ max may be measured by the first communication device.
  • the first communication device determines the grid precision of the transmission delay grid according to the multipath resolution delay of the receiver of the first communication device (that is, the receiver resolves the multipath delay), according to
  • the maximum path delay ⁇ max and the grid precision of the transmission delay grid are used to construct the transmission delay grid corresponding to the i-th propagation path.
  • the grid precision of the transmission delay grid is also the transmission delay grid.
  • the width of the individual grids in the extended grid is a grid with a lower boundary of 0 and an upper boundary of ⁇ max .
  • the transmission delay grid may be as shown in FIG. 14 .
  • the path parameters may include at least one of angle parameters, path gain and path delay
  • the angle parameters may include at least one of horizontal departure angle, vertical departure angle, horizontal arrival angle and vertical arrival angle
  • the first The communication device may determine the horizontal departure angle of the i-th propagation path according to the received signal residual matrix Y r , the departure angle grid corresponding to the i-th propagation path, and the arrival angle grid corresponding to the i-th propagation path vertical departure angle horizontal angle of arrival vertical angle of arrival and path gain Determine the path delay of the i-th propagation path according to the received signal residual matrix Y r and the transmission delay grid corresponding to the i-th propagation path
  • the first communication device determines the ith propagation path according to the received signal residual matrix Y r , the departure angle grid corresponding to the ith propagation path, and the arrival angle grid corresponding to the ith propagation path horizontal departure angle vertical departure angle horizontal angle of arrival vertical angle of arrival and path gain the process of.
  • the first communication device first determines the transmit beam matrix according to the horizontal departure angle grid corresponding to the i-th propagation path and the vertical departure angle grid corresponding to the i-th propagation path, and, according to the i-th propagation path.
  • the horizontal angle of arrival grid corresponding to the path and the vertical angle of arrival grid corresponding to the i-th propagation path determine the receiving beam matrix; then according to the transmitting beam matrix and the receiving beam matrix, determine that the received signal residual matrix Y r
  • the energy distribution matrix of the beam pair subspace; then, the horizontal departure angle of the i-th propagation path is determined according to the energy distribution matrix of the received signal residual matrix Y r in the transmit and receive beam pair subspace vertical departure angle horizontal angle of arrival vertical angle of arrival and path gain
  • the received signal residual matrix Y r may be a matrix with n rows and m columns
  • the transmit beam matrix is a matrix with m rows [(2B t,h +1) ⁇ (2B t,v +1)] columns
  • Each column vector in the transmit beam matrix is a transmit beam vector.
  • the first communication device determining the transmit beam matrix according to the horizontal departure angle grid corresponding to the ith propagation path and the vertical departure angle grid corresponding to the ith propagation path may include: the first communication device determines the transmit beam matrix according to the ith propagation path.
  • the corresponding horizontal departure angle grid and the vertical departure angle grid corresponding to the i-th propagation path determine m ⁇ [(2B t,h +1) ⁇ (2B t,v +1)] grid intersections, each The grid intersection corresponds to a joint transmit beam, and each joint transmit beam has a transmit beam vector; then according to the m ⁇ [(2B t,h +1) ⁇ (2B t,v +1)] corresponding
  • the transmit beam vector determines the transmit beam matrix.
  • the first communication device vertically intersects the horizontal departure angle grid corresponding to the i-th propagation path and the vertical departure angle grid corresponding to the i-th propagation path (for example, crosses the vertical departure angle grid as shown in FIG.
  • the received signal residual matrix Y r can be a matrix with n rows and m columns, and the received beam matrix is a matrix with m rows [(2B r,h +1) ⁇ (2B r,v +1)] columns, Each column vector in the receive beam matrix is a receive beam vector.
  • the first communication device determining the receiving beam matrix according to the horizontal angle of arrival grid corresponding to the ith propagation path and the vertical angle of arrival grid corresponding to the ith propagation path may include: the first communication device according to the ith propagation path.
  • the corresponding horizontal angle of arrival grid and the vertical angle of arrival grid corresponding to the i-th propagation path determine m ⁇ [(2B r,h +1) ⁇ (2B r,v +1)] grid intersections, each The grid intersection corresponds to a joint receiving beam, and each joint receiving beam has a receiving beam vector; then according to the m ⁇ [(2B r,h +1) ⁇ (2B r,v +1)] grid intersections correspond to The receive beam vector determines the receive beam matrix.
  • the first communication device vertically intersects the horizontal angle of arrival grid corresponding to the i-th propagation path and the vertical angle-of-arrival grid corresponding to the i-th propagation path (for example, vertically leaving the angle grid as shown in FIG.
  • the first communication apparatus determining, according to the transmit beam matrix and the receive beam matrix, the energy distribution matrix of the received signal residual matrix Y r in the transceiving beam pair subspace may include: the first communication apparatus uses the transmit beam matrix A transmit beam vector is cross-multiplied with a receive beam vector in the receive beam matrix to obtain a pair of transmit and receive beams (the transmit and receive beams include a joint transmit beam corresponding to the transmit beam vector and a joint receive beam corresponding to the receive beam vector) corresponding to Then, multiply the received signal residual matrix Y r with the beam vector corresponding to the one transmitting and receiving beam pair to obtain the energy of the received signal residual matrix Y r on the transmitting and receiving beam pair, according to the received signal residual matrix Y r The energy of the difference matrix Y r on all the transmit and receive beam pairs determines the energy distribution matrix of the received signal residual matrix Y r in the transmit and receive beam pair subspace.
  • Each element in the energy distribution matrix corresponds to a transmit and receive beam pair, and each element is
  • the first communication device determines the horizontal departure angle of the i-th propagation path according to the energy distribution matrix of the received signal residual matrix Yr in the subspace of the transceiving beam pair vertical departure angle horizontal angle of arrival vertical angle of arrival and path gain It may include: the first communication device determines the largest element value from the energy distribution matrix, and determines the largest element value as the path gain of the i-th propagation path Determine the optimal transceiver beam pair according to the maximum element value, so as to determine the optimal transmit beam (the optimal transmit beam is the joint transmit beam) and the optimal receive beam (the optimal receive beam is the joint receive beam).
  • the horizontal departure angle of the transmit beam is determined as the horizontal departure angle of the i-th propagation path Determine the vertical departure angle of the optimal transmit beam as the vertical departure angle of the i-th propagation path Determine the horizontal angle of arrival of the optimal receive beam as the horizontal angle of arrival of the i-th propagation path Determine the vertical angle of arrival of the optimal receive beam as the vertical angle of arrival of the i-th propagation path
  • the first communication device determines the path delay of the i-th propagation path according to the received signal residual matrix Y r and the transmission delay grid corresponding to the i-th propagation path the process of.
  • the first communication device converts the received signal residual matrix Y r into the delay angle domain according to the transmission delay grid corresponding to the i-th propagation path to obtain a delay angle mapping relationship, and the delay angle mapping
  • the relationship is the mapping relationship between the transmission delay and an angle parameter (the angle parameter can be one of the horizontal departure angle, the vertical departure angle, the horizontal arrival angle and the vertical arrival angle, for example, the angle parameter is the horizontal departure angle),
  • the first communication device determines the path delay of the i-th propagation path according to the determined angular parameter (for example, the horizontal departure angle) of the i-th propagation path and the delay angle mapping relationship
  • the first communication device determines a conversion coefficient according to the transmission delay grid corresponding to the i-th propagation path, and converts the received signal residual matrix Y r into a delay angle domain according to the conversion coefficient.
  • the conversion coefficient may be a DFT coefficient, and the first communication apparatus may convert the received signal residual matrix Y r into the delay angle domain based on the DFT,
  • the first communication device firstly constructs the channel between the first communication device and the second communication device according to the channel reconstruction requirement of the second communication device, and then builds the channel between the first communication device and the second communication device based on the The data to be sent is precoded on the channel of the second communication device, and then the precoded data is transmitted to the second communication device. Since the first communication device constructs the channel between the first communication device and the second communication device according to the channel reconstruction requirement of the second communication device, the flexibility of the first communication device in constructing the channel is high, which is helpful for To improve the resource utilization of wireless communication system.
  • the channel reconstruction scheme involved in the data transmission method provided by the embodiment of the present application adaptively adjusts the channel reconstruction strategy (for example, the oversampling parameter of setting, the setting of the transmission parameter grid accuracy), can achieve a trade-off between the beam training duration and the transmission parameter grid complexity, and because the transmission parameter grid is constructed in the direction of the directional beam, the transmission parameter grid can be greatly reduced.
  • the exhaustive complexity of the channel reconstruction scheme is low, and the channel construction accuracy is high, which can be applied to the millimeter wave communication system.
  • the channel reconstruction scheme involved in the embodiments of the present application uses the DFT codebook to perform beam training, and can obtain beamforming gain.
  • the channel reconstruction scheme involved in the embodiments of the present application does not need to acquire the covariance matrix of the received signal on each antenna element, and can be applied to a mixed digital-analog antenna architecture.
  • the quality of the reconstructed channel depends on the oversampling parameters and the accuracy of the transmission parameter grid (including the transmission angle grid and the transmission delay grid).
  • the transmission angle grid is constructed on the entire angle domain (0- ⁇ ), and the exhaustive complexity of the complete transmission angle grid (that is, the complexity of the search for the complete transmission angle grid) is relatively high.
  • the channel reconstruction scheme involved in the data transmission method provided in this embodiment of the present application does not need to construct a transmission angle grid over the entire angular domain, but only needs to construct a transmission angle grid in the direction of the directional beam (for example, FIG. 9 , FIG. 10 ). , the transmission angle grids in Figure 12 and Figure 13 only occupy a part of the entire angle domain), which can greatly reduce the exhaustive complexity of the transmission parameter grid.
  • the number of antenna elements in the horizontal direction of the second communication device is N t,h , N t,v , N r,h and N r,v in order, when the grid accuracy of horizontal departure corner grid, the grid accuracy of vertical departure corner grid, the horizontal arrival
  • N t,h , N t,v , N r,h and N r,v are the number of antenna elements in the horizontal direction of the second communication device, the number of antenna elements in the vertical direction of the second communication device, and the number of antenna elements in the vertical direction of the second communication device.
  • k t,h , k t,v , k r,h and k r,v are the horizontal transmit oversampling parameters of the horizontal transmit beam set of the second communication device, the vertical transmit oversampling parameters of the vertical transmit beam set of the second communication device in order Sampling parameters, horizontal receive oversampling parameters of a horizontal receive beamset of the first communication device, and vertical receive oversampling parameters of a vertical receive beamset of the first communication device.
  • 2B t,h , 2B t,v , 2B r,h and 2B r,v are, in order, the number of grids in the horizontal departure angle grid of the second communication device, the grids in the vertical departure angle grid of the second communication device The number of grids, the number of grids in the horizontal angle of arrival grid of the first communication device, and the number of grids in the vertical angle of arrival grid of the first communication device.
  • the performance of the channel constructed by the channel reconstruction scheme involved in the present application will be described below with reference to the simulation drawings, and hereinafter, the performance of the channel is the NMSE of the channel as an example.
  • FIG. 15 shows a graph of the relationship between the number of propagation paths and the NMSE of a channel under different SNRs provided by an embodiment of the present application.
  • the simulation conditions of Figure 15 include:
  • N_(t, RF) 5;
  • N s 32;
  • FIG. 16 shows a graph of the relationship between SNR and NMSE of a channel under different subcarriers provided by an embodiment of the present application.
  • BS represents a base station (such as the aforementioned first communication device)
  • UE represents a user equipment (eg, can be the aforementioned second communication device)
  • SC represents the number of subcarriers in the bandwidth of the wireless communication system.
  • the simulation conditions of this Figure 16 include:
  • N_(t, RF) 5;
  • FIG. 17 shows a graph of the relationship between SNR and NMSE of a channel under different transceiver antenna arrays provided by an embodiment of the present application.
  • BS represents a base station (for example, may be the aforementioned first communication device)
  • UE represents a user equipment (eg, may be the aforementioned second communication device)
  • SC represents the number of subcarriers in the bandwidth of the wireless communication system.
  • the simulation conditions of this Figure 17 include:
  • N_(t, RF) 5;
  • FIG. 18 shows a graph of the relationship between the SNR and the NMSE of the channel when the oversampling parameter and the grid resolution of the transmission angle grid take different values according to an embodiment of the present application.
  • the simulation conditions of this Figure 18 include:
  • N_(t, RF) 5;
  • N s 32;
  • FIG. 19 shows a schematic diagram of a logical structure of a communication apparatus 1900 provided by an embodiment of the present application.
  • the communication device 1900 may be the first communication device in the foregoing embodiment.
  • the communication apparatus 1900 may include, but is not limited to, a processing module 1910 and a sending module 1920 .
  • the processing module 1910 is configured to acquire path parameters of at least one propagation path between the communication device 1900 and the second communication device according to reconstruction request information of the second communication device, where the reconstruction request information indicates the second communication The channel reconstruction requirements of the device; according to the path parameters of the at least one propagation path between the communication device 1900 and the second communication device, construct the channel between the communication device 1900 and the second communication device;
  • the sending module 1920 is configured to transmit first data to the second communication device, where the first data is data obtained by precoding the data to be sent based on the constructed channel.
  • the reconfiguration request information includes a channel reconfiguration duration; the processing module 1910 is specifically configured to:
  • the transmit oversampling parameter is determined according to the channel reconstruction duration
  • the reference signal is measured based on the receiving beam training set of the communication device 1900 and the received oversampling parameters of the receiving beam training set, and the first received signal matrix Y1 of the channel between the communication device 1900 and the second communication device is obtained.
  • the oversampling parameter is determined according to the channel reconstruction duration;
  • i is an integer greater than or equal to 1 and less than or equal to L, where L is the total number of propagation paths between the communication device 1900 and the second communication device.
  • the sending module 1920 is further configured to send resource indication information to the second communication device before measuring the reference signal based on the receiving beam training set of the communication device 1900 and the received oversampling parameter of the receiving beam training set,
  • the resource indication information indicates a time-frequency resource for sending the reference signal by the second communication apparatus.
  • Path parameters including:
  • the received signal residual matrix Y r of the first received signal matrix Y1 and the second received signal matrix Y2 construct a transmission parameter grid corresponding to the i-th propagation path
  • the path parameters of the i-th propagation path are determined.
  • the transmission parameter grid includes at least one of a transmission angle grid and a transmission delay grid;
  • the reconstruction requirement information further includes at least one of channel reconstruction accuracy and maximum path delay ⁇ max ;
  • the transmission parameter grid corresponding to the i-th propagation path including:
  • ⁇ max a transmission delay grid corresponding to the i-th propagation path is constructed.
  • the path parameter includes at least one of angle parameter, path gain and path delay; according to the received signal residual matrix Y r and the transmission parameter grid, determine the path parameter of the i-th propagation path, include:
  • the transmission angle grid includes a departure angle grid and an angle of arrival grid; according to the received signal residual matrix Y r and the channel reconstruction accuracy, construct the transmission angle grid corresponding to the i-th propagation path, include:
  • the departure angle and the channel reconstruction accuracy are constructed, and the departure angle grid corresponding to the i-th propagation path is constructed;
  • Receive beams according to this target The angle of arrival and the reconstruction accuracy of the channel are constructed, and the angle of arrival grid corresponding to the i-th propagation path is constructed.
  • the departure angle grid includes a horizontal departure angle grid and a vertical departure angle grid
  • the transmit beam training set includes a horizontal transmit beam set s t,h and a vertical transmit beam set s t,v , the transmit oversampled
  • the parameters include the horizontal transmit oversampling parameter k t,h of the horizontal transmit beam set st,h and the vertical transmit oversampling parameter k t, v of the vertical transmit beam set st,v ;
  • the departure angle and the channel reconstruction accuracy of construct the departure angle grid corresponding to the i-th propagation path, including:
  • the angle of arrival grid includes a horizontal angle of arrival grid and a vertical angle of arrival grid
  • the receiving beam training set includes a horizontal receiving beam set s r,h and a vertical receiving beam set s r,v , the receiving oversampled
  • the parameters include a horizontal receive oversampling parameter k r,h of the horizontal receive beam set s r,h and a vertical receive oversampling parameter k r,v of the vertical receive beam set s r ,v;
  • Receive beams according to this target The angle of arrival and the reconstruction accuracy of the channel are constructed, and the angle of arrival grid corresponding to the i-th propagation path is constructed, including:
  • the vertical receive beamset s r,v , the vertical receive oversampling parameter k r,v and the grid precision of the vertical angle of arrival grid construct a vertical angle of arrival grid.
  • the angle parameter includes at least one of a horizontal departure angle, a vertical departure angle, a horizontal angle of arrival and a vertical angle of arrival; according to the received signal residual matrix Y r and the transmission angle grid, determine the i-th Propagation path angle parameters and path gain Including: determining the horizontal departure angle of the ith propagation path according to the received signal residual matrix Y r , the departure angle grid corresponding to the ith propagation path, and the arrival angle grid corresponding to the ith propagation path vertical departure angle horizontal angle of arrival vertical angle of arrival and path gain
  • the processing module 1910 is specifically configured to: when the channel reconstruction condition is reached, determine the channel matrix between the communication device 1900 and the second communication device according to the determined path parameters of the j propagation paths, to Reconfiguring the channel between the communication device 1900 and the second communication device, the determined j propagation paths are all the propagation paths determined when the channel reconstruction condition is reached, and j is greater than or equal to 1 and less than or equal to L is an integer of , and L is the total number of propagation paths between the communication device 1900 and the second communication device.
  • processing module 1910 is further configured to detect whether a channel reconstruction condition is reached;
  • the channel reconstruction conditions include: is the square of the Frobenius norm of the received signal residual matrix Yr , representing the received signal residual energy, and ⁇ represents the preset residual energy.
  • the processing module 1910 is further configured to, before determining the channel matrix between the communication device 1900 and the second communication device according to the determined path parameters of the j propagation paths, the path of the j propagation paths parameters are optimized.
  • the elements in the first received signal matrix Y1 are the received signal strengths of the reference signals measured by the communication device 1900
  • the elements in the second received signal matrix Y2 are the received signals of the reference signals estimated by the communication device 1900 strength
  • the elements in the received signal residual matrix Yr are the received signal residuals, where, for each of the first received signal matrix Y1, the second received signal matrix Y2, and the received signal residual matrix Yr , each column element of the matrix corresponds to a subcarrier, and each row element corresponds to a beam pair index number;
  • determine the target transmit beam and target receive beam Including: determining the beam pair index number corresponding to the maximum received signal residual energy according to the received signal residual error matrix Y r ; determining the target transmit beam according to the beam pair index number corresponding to the maximum received signal residual energy and target receive beam
  • transmit a beam according to the target horizontal departure angle The horizontal transmission beam set s t,h , the horizontal transmission oversampling parameter k t,h and the grid precision of the horizontal departure angle grid, constructing a horizontal departure angle grid, including: transmitting a beam according to the target horizontal departure angle
  • the horizontal transmit beam set s t,h and the horizontal transmit oversampling parameter k t,h determine the upper boundary point of the horizontal departure angle grid and the lower boundary point the upper boundary point Corresponding to the target transmit beam determined based on the horizontal transmit oversampling parameter k t,h and the horizontal transmit beam set s t,h
  • the larger value of the horizontal departure angle of two adjacent transmit beams, the lower boundary point Corresponds to the smaller of the horizontal departure angles of the two adjacent transmit beams; transmit beams according to the target horizontal departure angle
  • transmit a beam according to the target vertical departure angle of The vertical transmission beam set st,v , the vertical transmission oversampling parameter k t,v and the grid precision of the vertical departure angle grid constructing a vertical departure angle grid, including: transmitting a beam according to the target vertical departure angle of The vertical transmit beam set s t,v and the vertical transmit oversampling parameter k t,v determine the upper boundary point of the vertical departure angle grid and the lower boundary point the upper boundary point Corresponding to the target transmit beam determined based on the vertical transmit oversampling parameter k t,v and the vertical transmit beam set s t,v
  • the larger of the vertical departure angles of two adjacent transmit beams, the lower boundary point Corresponds to the smaller of the vertical departure angles of the two adjacent transmit beams; transmit beams according to the target vertical departure angle of The upper boundary point of the vertical departure corner grid lower boundary point and the grid precision of the vertical off-corner grid, construct the vertical off-corner grid whose center point is the The 2B t,v
  • receive beams according to the target horizontal angle of arrival The horizontal receiving beam set s r,h , the horizontal receiving oversampling parameter k r,h and the grid precision of the horizontal angle of arrival grid, constructing the horizontal angle of arrival grid includes: receiving beams according to the target horizontal angle of arrival
  • the horizontal receive beam set s r,h and the horizontal receive oversampling parameter k r,h determine the upper boundary point of the horizontal angle of arrival grid and the lower boundary point the upper boundary point Corresponding to the target receive beam determined based on the horizontal receive oversampling parameter k r,h and the horizontal receive beam set s r,h
  • the larger value of the horizontal angle of arrival of two adjacent receiving beams, the lower boundary point Corresponds to the smaller of the horizontal angle of arrival of the two adjacent receiving beams; according to the target receiving beam horizontal angle of arrival the upper boundary point of the horizontal arrival angle grid lower boundary point and the grid precision of the horizontal arrival angle grid, construct the horizontal arrival angle grid, the horizontal arrival angle grid is the center point for the The 2
  • receive beams according to the target vertical angle of arrival The vertical receiving beam set s r,v , the vertical receiving oversampling parameter k r,v and the grid precision of the vertical angle of arrival grid, constructing a vertical angle of arrival grid, including: receiving beams according to the target vertical angle of arrival
  • the vertical receive beam set s r,v and the vertical receive oversampling parameter k r,v determine the upper boundary point of the vertical angle of arrival grid and the lower boundary point the upper boundary point Corresponding to the target receive beam determined based on the vertical receive oversampling parameter k r,v and the vertical receive beam set s r,v
  • the larger value of the vertical angle of arrival of two adjacent receiving beams, the lower boundary point Corresponds to the smaller of the vertical angles of arrival of the two adjacent receive beams; receive beams according to the target vertical angle of arrival the upper boundary point of the vertical angle of arrival grid lower boundary point and the grid precision of the vertical angle of arrival grid, construct the vertical angle of arrival grid whose center point is the 2B
  • the departure angle grid corresponding to the ith propagation path, and the arrival angle grid corresponding to the ith propagation path determine the horizontal departure of the ith propagation path.
  • Horn vertical departure angle horizontal angle of arrival vertical angle of arrival and path gain Including: determining a transmission beam matrix according to the horizontal departure angle grid and the vertical departure angle grid, and each column vector in the transmission beam matrix is a transmission beam vector; according to the horizontal angle of arrival grid and the vertical angle of arrival grid Determine the receiving beam matrix, each column vector in the receiving beam matrix is a receiving beam vector; according to the transmitting beam matrix and the receiving beam matrix, determine the received signal residual matrix Y r The energy in the subspace of the transmitting and receiving beam pair Distribution matrix; according to the energy distribution matrix, determine the horizontal departure angle of the i-th propagation path vertical departure angle horizontal angle of arrival vertical angle of arrival and path gain
  • determining the receiving beam matrix according to the horizontal angle of arrival grid and the vertical angle of arrival grid includes: determining a plurality of grid intersections according to the horizontal departure angle grid and the vertical departure angle grid, each grid The intersection point corresponds to a joint transmission beam, and each joint transmission beam has a transmission beam vector; according to the transmission beam vectors of the joint transmission beams corresponding to the multiple grid intersection points, the transmission beam matrix is determined;
  • Determining the receiving beam matrix according to the horizontal angle of arrival grid and the vertical angle of arrival grid includes: determining a plurality of grid intersection points according to the horizontal angle of arrival grid and the vertical angle of arrival grid, and each grid intersection corresponds to a joint
  • each joint transmitting beam has a transmitting beam vector; the receiving beam matrix is determined according to the beam vectors of the joint transmitting beams corresponding to the intersection points of the multiple grids.
  • the communication device firstly constructs the channel between the communication device and the second communication device according to the channel reconstruction requirement of the second communication device, and then the channel to be sent is based on the constructed channel.
  • the data is precoded, and then the precoded data is transmitted to the second communication device. Since the communication device constructs the channel between the communication device and the second communication device according to the channel reconstruction requirement of the second communication device, the flexibility of the communication device in constructing the channel is high, which helps to improve the performance of the wireless communication system. resource utilization.
  • the channel reconstruction scheme involved in the data transmission method provided by the embodiment of the present application adaptively adjusts the channel reconstruction strategy (for example, the oversampling parameter of setting, the setting of the transmission parameter grid accuracy), can achieve a trade-off between the beam training duration and the transmission parameter grid complexity, and because the transmission parameter grid is constructed in the direction of the directional beam, the transmission parameter grid can be greatly reduced.
  • the exhaustive complexity of the channel reconstruction scheme is low, and the channel construction accuracy is high, which can be applied to the millimeter wave communication system.
  • the channel reconstruction scheme involved in the embodiments of the present application uses the DFT codebook to perform beam training, and can obtain beamforming gain.
  • the channel reconstruction scheme involved in the embodiments of the present application does not need to acquire the covariance matrix of the received signal on each antenna element, and can be applied to a mixed digital-analog antenna architecture.
  • FIG. 20 shows a schematic diagram of a logical structure of a communication apparatus 2000 provided by an embodiment of the present application.
  • the communication apparatus 2000 may be the second communication apparatus in the foregoing embodiment.
  • the communication apparatus 2000 may include, but is not limited to, a receiving module 2010 and a processing module 2020 .
  • the receiving module 2010 is configured to receive first data transmitted by the first communication device, where the first data is data obtained by the first communication device precoding the data to be sent by the first communication device based on the constructed channel, the The channel is constructed by the first communication device according to the path parameter of at least one propagation path between the first communication device and the communication device 2000, and the path parameter of the at least one propagation path is the first communication device according to the communication device 2000.
  • the path parameter obtained from the reconfiguration request information, the reconfiguration request information indicates the channel reconfiguration request of the communication device 2000;
  • the processing module 2020 is configured to recover the to-be-sent data of the first communication device according to the first data.
  • the receiving module 2010 is further configured to receive, before receiving the first data transmitted by the first communication device, the transmission oversampling parameter of the transmission beam training set of the communication device 2000 sent by the first communication device;
  • the communication apparatus 2000 includes: a sending module 2030, configured to send a reference signal to the first communication apparatus based on the transmit oversampling parameter and the transmit beam training set.
  • the receiving module 2010 is further configured to, before sending a reference signal to the first communication device based on the transmission oversampling parameter and the transmission beam training set, receive resource indication information sent by the first communication device, the resource The indication information indicates the time-frequency resource for the communication device 2000 to send the reference signal;
  • the sending module 2030 is specifically configured to send a reference signal to the first communication apparatus through the time-frequency resource indicated by the resource indication information based on the transmit oversampling parameter and the transmit beam training set.
  • the communication device first receives the first data transmitted by the first communication device, and then restores the data to be sent by the first communication device according to the first data; wherein, the The first data is the data obtained by the first communication device precoding the data to be sent based on the constructed channel, and the channel is the first communication device according to at least one propagation path between the first communication device and the communication device.
  • the path parameter of the at least one propagation path is the path parameter obtained by the first communication device according to the reconfiguration request information of the communication device, and the reconfiguration request information indicates the channel reconfiguration request of the communication device. Since the first communication device constructs the channel between the first communication device and the communication device according to the channel reconstruction requirement of the communication device, the flexibility of the first communication device in constructing the channel is high, which helps to improve wireless communication System resource utilization.
  • FIG. 21 shows a schematic diagram of a hardware structure of a communication apparatus 2100 provided by an embodiment of the present application.
  • the communication apparatus 2100 may be the first communication apparatus or the second communication apparatus in the foregoing embodiment, and one of the first communication apparatus and the second communication apparatus is a network device and the other is a terminal device.
  • the communication device 2100 includes a processor 2102 , a transceiver 2104 , a plurality of antennas 2106 , a memory 2108 , a communication interface 2110 and a bus 2112 .
  • the processor 2102 , the transceiver 2104 , the memory 2108 and the communication interface 2110 are communicatively connected to each other through a bus 2112 , and a plurality of antennas 2106 are connected to the transceiver 2104 .
  • a bus 2112 a bus
  • antennas 2106 are connected to the transceiver 2104 .
  • FIG. 21 the connection between the processor 2102, the transceiver 2104, the memory 2108 and the communication interface 2110 shown in FIG. 21 is only an example.
  • the memory 2108 and the communication interface 2110 may also be communicatively connected to each other by using other connection modes other than the bus 2112, which are not limited in this embodiment of the present application.
  • the memory 2108 can be used to store a computer program 21081, and the computer program 21081 can include instructions and data.
  • the memory 2108 may be various types of storage media, such as random access memory (RAM), read-only memory (ROM), non-volatile RAM (NVRAM) , programmable ROM (programmable ROM, PROM), erasable PROM (erasable PROM, EPROM), electrically erasable PROM (electrically erasable PROM, EEPROM), flash memory, optical memory and registers, etc.
  • RAM random access memory
  • ROM read-only memory
  • NVRAM non-volatile RAM
  • PROM programmable ROM
  • PROM erasable PROM
  • EPROM erasable PROM
  • electrically erasable PROM electrically erasable PROM
  • flash memory optical memory and registers, etc.
  • the memory 2108 may include hard disk and/or memory.
  • the processor 2102 may be a general-purpose processor, and the general-purpose processor may be a processor that performs specific steps and/or operations by reading and executing the computer program 21081 stored in the memory (eg, the memory 2108 ). Data stored in memory (eg, memory 2108) may be used during the above-described steps and/or operations.
  • a general-purpose processor may be, for example, but not limited to, a central processing unit (CPU).
  • the processor 2102 can also be a special purpose processor, which can be a processor specially designed to perform certain steps and/or operations, and the special purpose processor can be, for example, but not limited to, a digital signal processor ( digital signal processor, DSP), application-specific integrated circuit (application-specific integrated circuit, ASIC) and field-programmable gate array (field-programmable gate array, FPGA), etc.
  • the processor 2102 may also be a combination of multiple processors, such as a multi-core processor.
  • the processor 2102 may include at least one circuit to perform all or part of the steps of the data transmission method provided by the above embodiments.
  • the transceiver 2104 is used for transmitting and receiving signals.
  • the transceiver 2104 transmits and receives signals through at least one antenna among the plurality of antennas 2106 .
  • the communication interface 2110 may include an input/output (input/output, I/O) interface, a physical interface, a logical interface, and other interfaces for realizing the interconnection of devices within the communication device 2100, and for realizing the communication device 2100 and other communication devices. interconnected interface.
  • the physical interface can be a gigabit Ethernet interface (gigabit Ethernet, GE), which can be used to realize the interconnection between the communication device 2100 and other communication devices
  • the logical interface is an interface inside the communication device 2100, which can be used to realize the internal communication device 2100.
  • the communication interface 2110 can be used for the communication device 2100 to communicate with other communication devices, for example, the communication interface 2110 is used for sending and receiving information between the communication device 2100 and other communication devices. It can be understood that the transceiver 2104 may also belong to the communication interface of the communication device 2100 .
  • the bus 2112 may be any type of communication bus, such as a system bus, for implementing interconnection of the processor 2102, the transceiver 2104, the memory 2108 and the communication interface 2110.
  • the processor 2102 may be used to perform, for example, but not limited to, baseband related processing, and the transceiver 2104 may be used to perform, for example, but not limited to, radio frequency transmission and reception.
  • the above-mentioned devices may be respectively arranged on chips that are independent of each other, or at least part or all of them may be arranged on the same chip.
  • the processor 2102 can be further divided into an analog baseband processor and a digital baseband processor, wherein the analog baseband processor can be integrated with the transceiver 2104 on the same chip, and the digital baseband processor can be provided on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip may be referred to as a system on chip. Whether each device is independently arranged on different chips or integrated on one or more chips often depends on the specific needs of product design. The embodiments of the present application do not limit the specific implementation form of the above device.
  • the communication apparatus 2100 shown in FIG. 21 is only exemplary, and during the implementation process, the communication apparatus 2100 may further include other components, which are not listed one by one herein.
  • the communication apparatus 2100 shown in FIG. 21 can perform data transmission by executing all or part of the steps of the data transmission method provided in the above-mentioned embodiments.
  • An embodiment of the present application provides a wireless communication system
  • the wireless communication system may include a first communication apparatus 1900 as shown in FIG. 19 and a second communication apparatus 2000 as shown in FIG. 20 , or the wireless communication system includes at least A communication device 2100 as shown in FIG. 21 .
  • the wireless communication system may be as shown in FIG. 3 .
  • one of the first communication apparatus 1900 and the second communication apparatus 2000 may be a terminal device, and the other may be a network device.
  • the first communication device 1900 is a network device (eg, a base station)
  • the second communication device 2000 is a terminal device (eg, UE).
  • the wireless communication system is a millimeter wave communication system
  • the first communication apparatus 1900 may be a millimeter wave base station
  • the second communication apparatus 2000 may be a millimeter wave terminal.
  • An embodiment of the present application further provides a device, which can be used to implement the functions of the first communication device or the second communication device in the foregoing embodiments, and the device may be a communication device or a chip in the communication device.
  • the communication device includes:
  • the input-output interface may be an input-output circuit.
  • the logic circuit can be a signal processor, a chip, or other integrated circuits that can implement the method of the present application.
  • At least one input and output interface is used for input or output of signals or data.
  • the I/O interface is used for outputting transmit oversampling parameters, resource indication information, and input reference signals, etc.; when the device is the second communication device in the above embodiment
  • the input and output interfaces are used for receiving and transmitting oversampling parameters, resource indication information and output reference signals.
  • the logic circuit is used to execute some or all of the steps of any one of the methods provided in the embodiments of the present application.
  • the logic circuit can implement the functions implemented by the processing module 1910 in the apparatus 1900 , the processing module 2020 in the apparatus 2000 , and the processor 2102 in the apparatus 2100 .
  • the logic circuit is used to obtain the reconstruction of the second communication device request information, obtain path parameters of at least one propagation path in the first communication device and the second communication device according to the reconstruction request information of the second communication device, according to the at least one propagation path in the first communication device and the second communication device The path parameters used to construct the channel between the first communication device and the second communication device, etc.; when the device is the second communication device in the above-mentioned Such steps, for example, the logic circuit is used to recover the data to be sent by the first communication device according to the first data, and so on.
  • Embodiments of the present application provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, enables a computer to implement all of the data transmission methods provided by the above method embodiments or part of the steps.
  • the embodiments of the present application provide a computer program product containing instructions, when the computer program product runs on a computer, the computer is made to execute all or part of the steps of the data transmission method provided by the above method embodiments.
  • the embodiments of the present application provide a chip, which includes a programmable logic circuit and/or program instructions, and is used to implement all or part of the steps of the data transmission method provided by the above method embodiments when the chip is running.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product comprising one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website, computer, server, or data
  • the center transmits to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available media integrated.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media, or semiconductor media (eg, solid state drives), and the like.
  • the disclosed apparatus and the like may be implemented by other structural manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical or other forms.
  • Units described as separate components may or may not be physically separated, and components described as units may or may not be physical units, and may be located in one place or distributed to multiple network devices (such as user equipment )superior. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请提供一种数据传输方法及装置、无线通信系统、存储介质,属于无线通信领域。该方法包括:第一通信装置根据第二通信装置的重构要求信息,获取该第一通信装置与该第二通信装置之间的至少一条传播路径的路径参数,根据该至少一条传播路径的路径参数构建该第一通信装置与该第二通信装置之间的信道,基于构建的信道对待发送数据进行预编码得到第一数据,并向该第二通信装置传输第一数据,其中,重构要求信息指示第二通信装置的信道重构要求。本申请通过根据第二通信装置的信道重构要求构建该第一通信装置与该第二通信装置之间的信道,有助于提高信道构建的灵活性,从而提高无线通信系统的资源利用率。

Description

数据传输方法及装置、无线通信系统、存储介质
本申请要求于2020年08月21日提交的申请号为202010852543.1、发明名称为“数据传输方法及装置、无线通信系统、存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,特别涉及一种数据传输方法及装置、无线通信系统、存储介质。
背景技术
无线通信系统通常包括基站和终端设备,为了提高无线通信系统的覆盖范围,通常在基站和终端设备中分别部署由多个天线元件构成的天线阵列,通过天线阵列实现基站与终端设备之间传输的信号的能量汇聚,以获得良好的信号增益。示例地,在毫米波无线通信系统中,终端设备可以是毫米波终端,基站可以是毫米波基站。
基站与终端设备之间传输的数据通过基站与终端设备之间的信道传输,为了保证数据传输的可靠性,在基站与终端设备进行数据传输时,通常需要重构基站与终端设备之间的信道。目前,通常由基站基于压缩感知算法或多信号分类(multiple signal classification algorithm,MUSIC)算法(又称波达角算法)重构基站与终端设备之间的信道。
但是,目前的信道重构方案难以满足终端设备的信道重构要求,因此信道重构的灵活性较差,影响无线通信系统的资源利用率。
发明内容
本申请提供了一种数据传输方法及装置、无线通信系统、存储介质,有助于提高无线通信系统的资源利用率。本申请的技术方案如下:
第一方面,提供了一种数据传输方法,应用于无线通信系统中的第一通信装置,该无线通信系统包括第二通信装置和第一通信装置,该方法包括:根据该第二通信装置的重构要求信息,获取该第一通信装置与该第二通信装置之间的至少一条传播路径的路径参数,该重构要求信息指示该第二通信装置的信道重构要求;根据该第一通信装置与该第二通信装置之间的该至少一条传播路径的路径参数,构建该第一通信装置与该第二通信装置之间的信道;向该第二通信装置传输第一数据,该第一数据是基于构建的信道对待发送数据进行预编码得到的数据。
本申请提供的技术方案,由于第一通信装置根据该第一通信装置与第二通信装置之间的至少一条传播路径的路径参数构建该第一通信装置与该第二通信装置之间的信道,而该至少一条传播路径的路径参数是该第一通信装置根据该第二通信装置的重构要求信息获取的,因此该技术方案中,该第一通信装置可以根据第二通信装置的信道重构要求构建该第一通信装置与该第二通信装置之间的信道,该第一通信装置构建信道的灵活性较高,有助于提高无线通信系统的资源利用率。
可选地,该重构要求信息包括信道重构时长;根据该第二通信装置的重构要求信息,获取该第一通信装置与该第二通信装置之间的至少一条传播路径的路径参数,包括:向该第二通信装置发送该第二通信装置的发射波束训练集的发射过采样参数,该第二通信装置用于基于该发射过采样参数和该发射波束训练集向该第一通信装置发送参考信号,该发射过采样参数根据该信道重构时长确定;基于该第一通信装置的接收波束训练集和该接收波束训练集的接收过采样参数测量该参考信号,得到该第一通信装置与该第二通信装置之间的信道的第一接收信号矩阵Y1,该接收过采样参数根据该信道重构时长确定;根据该第一接收信号矩阵Y1和已确定的i-1条传播路径的第二接收信号矩阵Y2,确定该第一通信装置与该第二通信装置之间的第i条传播路径的路径参数,i为大于或等于1且小于或等于L的整数,L为该第一通信装置与该第二通信装置之间的传播路径的总数量。
本申请提供的技术方案,第二通信装置基于发射波束训练集和该发射波束训练集的发射过采样参数向第一通信装置发送参考信号,该第一通信装置基于接收波束训练集和该接收波束训练集的接收过采样参数测量该参考信号后得到第一接收信号矩阵,根据第一接收信号矩阵和已确定的i-1条传播路径的第二接收信号矩阵确定第i条传播路径的路径参数,该发射过采样参数和该接收过采样参数均是根据信道重构时长确定的,因此第一通信装置可以根据信道重构时长来确定传播路径的路径参数,使得确定的路径参数满足信道重构时长的要求。
可选地,在基于该第一通信装置的接收波束训练集和该接收波束训练集的接收过采样参数测量该参考信号之前,该方法还包括:向该第二通信装置发送资源指示信息,该资源指示信息指示该第二通信装置发送该参考信号的时频资源。
本申请提供的技术方案,第一通信装置通过向第二通信装置发送资源指示信息,可以便于第二通信装置确定发送参考信号的时频资源。
可选地,根据该第一接收信号矩阵Y1和已确定的i-1条传播路径的第二接收信号矩阵Y2,确定该第一通信装置与该第二通信装置之间的第i条传播路径的路径参数,包括:根据该第一接收信号矩阵Y1和该第二接收信号矩阵Y2的接收信号残差矩阵Y r,构建该第i条传播路径对应的传输参数网格;根据该接收信号残差矩阵Y r和该传输参数网格,确定该第i条传播路径的路径参数。
可选地,该传输参数网格包括传输角度网格和传输时延网格中的至少一种;该重构要求信息还包括信道重构精度和最大路径时延τ max中的至少一种;根据该第一接收信号矩阵Y1和该第二接收信号矩阵Y2的接收信号残差矩阵Y r,构建该第i条传播路径对应的传输参数网格,包括:根据该接收信号残差矩阵Y r和该信道重构精度,构建该第i条传播路径对应的该传输角度网格;和/或,根据该最大路径时延τ max,构建该第i条传播路径对应的该传输时延网格。
本申请提供的技术方案,优选方案为该传输参数网格包括传输角度网格和传输时延网格,该重构要求信息包括信道重构精度和最大路径时延τ max,因此第一通信装置优选构建该传输角度网格和该传输时延网格。
可选地,该路径参数包括角度参数、路径增益和路径时延中的至少一种;根据该接收信号残差矩阵Y r和该传输参数网格,确定该第i条传播路径的路径参数,包括:根据该接收信号残差矩阵Y r和该传输角度网格,确定该第i条传播路径的角度参数和路径增益
Figure PCTCN2021084185-appb-000001
和/或,根据该接收信号残差矩阵Y r和该传输时延网格,确定该第i条传播路径的路径时延
Figure PCTCN2021084185-appb-000002
本申请提供的技术方案,优选方案为该路径参数包括角度参数、路径增益和路径时延, 因此第一通信装置优选确定角度参数、路径增益和路径时延。
可选地,该传输角度网格包括离开角网格和到达角网格;根据该接收信号残差矩阵Y r和该信道重构精度,构建该第i条传播路径对应的传输角度网格,包括:根据该接收信号残差矩阵Y r,确定目标发射波束
Figure PCTCN2021084185-appb-000003
和目标接收波束
Figure PCTCN2021084185-appb-000004
根据该目标发射波束
Figure PCTCN2021084185-appb-000005
的离开角和该信道重构精度,构建该第i条传播路径对应的离开角网格;根据该目标接收波束
Figure PCTCN2021084185-appb-000006
的到达角和该信道重构精度,构建该第i条传播路径对应的到达角网格。
可选地,该离开角网格包括水平离开角网格和垂直离开角网格;该发射波束训练集包括水平发射波束集s t,h和垂直发射波束集s t,v,该发射过采样参数包括该水平发射波束集s t,h的水平发射过采样参数k t,h和该垂直发射波束集s t,v的垂直发射过采样参数k t,v;根据该目标发射波束
Figure PCTCN2021084185-appb-000007
的离开角和该信道重构精度,构建该第i条传播路径对应的离开角网格,包括:根据该信道重构精度确定该水平离开角网格的网格精度和该垂直离开角网格的网格精度;根据该目标发射波束
Figure PCTCN2021084185-appb-000008
的水平离开角
Figure PCTCN2021084185-appb-000009
该水平发射波束集s t,h、该水平发射过采样参数k t,h和该水平离开角网格的网格精度,构建该水平离开角网格;根据该目标发射波束
Figure PCTCN2021084185-appb-000010
的垂直离开角
Figure PCTCN2021084185-appb-000011
该垂直发射波束集s t,v、该垂直发射过采样参数k t,v和该垂直离开角网格的网格精度,构建该垂直离开角网格。
可选地,该到达角网格包括水平到达角网格和垂直到达角网格;该接收波束训练集包括水平接收波束集s r,h和垂直接收波束集s r,v,该接收过采样参数包括该水平接收波束集s r,h的水平接收过采样参数k r,h和该垂直接收波束集s r,v的垂直接收过采样参数k r,v;根据该目标接收波束
Figure PCTCN2021084185-appb-000012
的到达角和该信道重构精度,构建该第i条传播路径对应的到达角网格,包括:根据该信道重构精度确定该水平到达角网格的网格精度和该垂直到达角网格的网格精度;根据该目标接收波束
Figure PCTCN2021084185-appb-000013
的水平到达角
Figure PCTCN2021084185-appb-000014
该水平接收波束集s r,h、该水平接收过采样参数k r,h和该水平到达角网格的网格精度,构建该水平到达角网格;根据该目标接收波束
Figure PCTCN2021084185-appb-000015
的垂直到达角
Figure PCTCN2021084185-appb-000016
该垂直接收波束集s r,v、该垂直接收过采样参数k r,v和该垂直到达角网格的网格精度,构建该垂直到达角网格。
可选地,该角度参数包括水平离开角、垂直离开角、水平到达角和垂直到达角中的至少一种;该根据该接收信号残差矩阵Y r和该传输角度网格,确定该第i条传播路径的角度参数和路径增益
Figure PCTCN2021084185-appb-000017
包括:根据该接收信号残差矩阵Y r、该第i条传播路径对应的该离开角网格和该第i条传播路径对应的该到达角网格,确定该第i条传播路径的水平离开角
Figure PCTCN2021084185-appb-000018
垂直离开角
Figure PCTCN2021084185-appb-000019
水平到达角
Figure PCTCN2021084185-appb-000020
垂直到达角
Figure PCTCN2021084185-appb-000021
和路径增益
Figure PCTCN2021084185-appb-000022
可选地,根据该第一通信装置与该第二通信装置之间的该至少一条传播路径的路径参数,构建该第一通信装置与该第二通信装置之间的信道,包括:当达到信道重构条件时,根据已确定的j条传播路径的路径参数确定该第一通信装置与该第二通信装置之间的信道矩阵,以构建该第一通信装置与该第二通信装置之间的信道,该已确定的j条传播路径为达到该信道重构条件时确定的所有传播路径,j为大于或等于1且小于或等于L的整数,L为该第一通信装置与该第二通信装置之间的传播路径的总数量。
可选地,该方法还包括:检测是否达到该信道重构条件。其中,该第一通信装置可以每确定一条传播路径的路径参数,就检测是否达到该信道重构条件。示例地,检测是否达到该信道重构条件具体包括:获取第i-1条传播路径的路径参数后,根据该第一接收信号矩阵Y1和该i-1条传播路径的该第二接收信号矩阵Y2的接收信号残差矩阵Y r,获取接收信号残差能量; 根据该接收信号残差能量,检测是否达到信道重构条件;
其中,该信道重构条件包括:
Figure PCTCN2021084185-appb-000023
为该接收信号残差矩阵Y r的Frobenius范数的平方,表示该接收信号残差能量,ξ表示预设残差能量。
本申请提供的技术方案,当达到上述信道重构条件时,说明当前已确定传播路径的信号能量较高,剩余传播路径的信号能量较低,剩余传播路径不会对构建的信道产生影响(或者说影响极小可以忽略),因此第一通信装置不再确定剩余的传播路径的路径参数,直接根据已确定的所有传播路径的路径参数确定该第一通信装置与该第二通信装置之间的信道矩阵。
可选地,在根据已确定的j条传播路径的路径参数确定该第一通信装置与该第二通信装置之间的信道矩阵之前,该方法还包括:对该j条传播路径的路径参数进行优化。示例地,第一通信装置每确定一条传播路径的路径参数后,对该传播路径的路径参数进行优化。
本申请提供的技术方案,第一通信装置对传播路径的路径参数进行优化,有助于提高确定的路径参数的准确性,提高构建的信道的准确性。
可选地,该第一接收信号矩阵Y1中的元素为该第一通信装置测量到的该参考信号的接收信号强度,该第二接收信号矩阵Y2中的元素为该第一通信装置估计到的该参考信号的接收信号强度,该接收信号残差矩阵Y r中的元素为接收信号残差,其中,对于该第一接收信号矩阵Y1、该第二接收信号矩阵Y2和该接收信号残差矩阵Y r中的每个矩阵,该矩阵的每列元素对应一个子载波,每行元素对应一个波束对索引号;根据该接收信号残差矩阵Y r,确定目标发射波束
Figure PCTCN2021084185-appb-000024
和目标接收波束
Figure PCTCN2021084185-appb-000025
包括:根据该接收信号残差矩阵Y r,确定最大的接收信号残差能量对应的波束对索引号;根据该最大的接收信号残差能量对应的波束对索引号,确定该目标发射波束
Figure PCTCN2021084185-appb-000026
和目标接收波束
Figure PCTCN2021084185-appb-000027
可选地,根据该目标发射波束
Figure PCTCN2021084185-appb-000028
的水平离开角
Figure PCTCN2021084185-appb-000029
该水平发射波束集s t,h、该水平发射过采样参数k t,h和该水平离开角网格的网格精度,构建该水平离开角网格,包括:根据该目标发射波束
Figure PCTCN2021084185-appb-000030
的水平离开角
Figure PCTCN2021084185-appb-000031
该水平发射波束集s t,h和该水平发射过采样参数k t,h,确定该水平离开角网格的上边界点
Figure PCTCN2021084185-appb-000032
和下边界点
Figure PCTCN2021084185-appb-000033
该上边界点
Figure PCTCN2021084185-appb-000034
对应基于该水平发射过采样参数k t,h和该水平发射波束集s t,h确定的与该目标发射波束
Figure PCTCN2021084185-appb-000035
相邻的两个发射波束的水平离开角中的较大值,该下边界点
Figure PCTCN2021084185-appb-000036
对应该相邻的两个发射波束的水平离开角中的较小值;根据该目标发射波束
Figure PCTCN2021084185-appb-000037
的水平离开角
Figure PCTCN2021084185-appb-000038
该水平离开角网格的上边界点
Figure PCTCN2021084185-appb-000039
下边界点
Figure PCTCN2021084185-appb-000040
和该水平离开角网格的网格精度,构建该水平离开角网格,该水平离开角网格是中心点为该
Figure PCTCN2021084185-appb-000041
的2B t,h+1点网格,2B t,h表示该水平离开角网格中的网格数量。
可选地,根据该目标发射波束
Figure PCTCN2021084185-appb-000042
的垂直离开角
Figure PCTCN2021084185-appb-000043
该垂直发射波束集s t,v、该垂直发射过采样参数k t,v和该垂直离开角网格的网格精度,构建该垂直离开角网格,包括:根据该目标发射波束
Figure PCTCN2021084185-appb-000044
的垂直离开角
Figure PCTCN2021084185-appb-000045
该垂直发射波束集s t,v和该垂直发射过采样参数k t,v,确 定该垂直离开角网格的上边界点
Figure PCTCN2021084185-appb-000046
和下边界点
Figure PCTCN2021084185-appb-000047
该上边界点
Figure PCTCN2021084185-appb-000048
对应基于该垂直发射过采样参数k t,v和该垂直发射波束集s t,v确定的与该目标发射波束
Figure PCTCN2021084185-appb-000049
相邻的两个发射波束的垂直离开角中的较大值,该下边界点
Figure PCTCN2021084185-appb-000050
对应该相邻的两个发射波束的垂直离开角中的较小值;根据该目标发射波束
Figure PCTCN2021084185-appb-000051
的垂直离开角
Figure PCTCN2021084185-appb-000052
该垂直离开角网格的上边界点
Figure PCTCN2021084185-appb-000053
下边界点
Figure PCTCN2021084185-appb-000054
和该垂直离开角网格的网格精度,构建该垂直离开角网格,该垂直离开角网格是中心点为该
Figure PCTCN2021084185-appb-000055
的2B t,v+1点网格,2B t,v表示该垂直离开角网格中的网格数量。
可选地,根据该目标接收波束
Figure PCTCN2021084185-appb-000056
的水平到达角
Figure PCTCN2021084185-appb-000057
该水平接收波束集s r,h、该水平接收过采样参数k r,h和该水平到达角网格的网格精度,构建该水平到达角网格,包括:根据该目标接收波束
Figure PCTCN2021084185-appb-000058
的水平到达角
Figure PCTCN2021084185-appb-000059
该水平接收波束集s r,h和该水平接收过采样参数k r,h,确定该水平到达角网格的上边界点
Figure PCTCN2021084185-appb-000060
和下边界点
Figure PCTCN2021084185-appb-000061
该上边界点
Figure PCTCN2021084185-appb-000062
对应基于该水平接收过采样参数k r,h和该水平接收波束集s r,h确定的与该目标接收波束
Figure PCTCN2021084185-appb-000063
相邻的两个接收波束的水平到达角中的较大值,该下边界点
Figure PCTCN2021084185-appb-000064
对应该相邻的两个接收波束的水平到达角中的较小值;根据该目标接收波束
Figure PCTCN2021084185-appb-000065
的水平到达角
Figure PCTCN2021084185-appb-000066
该水平到达角网格的上边界点
Figure PCTCN2021084185-appb-000067
下边界点
Figure PCTCN2021084185-appb-000068
和该水平到达角网格的网格精度,构建该水平到达角网格,该水平到达角网格是中心点为该
Figure PCTCN2021084185-appb-000069
的2B r,h+1点网格,2B r,h表示该水平到达角网格中的网格数量。
可选地,根据该目标接收波束
Figure PCTCN2021084185-appb-000070
的垂直到达角
Figure PCTCN2021084185-appb-000071
该垂直接收波束集s r,v、该垂直接收过采样参数k r,v和该垂直到达角网格的网格精度,构建该垂直到达角网格,包括:根据该目标接收波束
Figure PCTCN2021084185-appb-000072
的垂直到达角
Figure PCTCN2021084185-appb-000073
该垂直接收波束集s r,v和该垂直接收过采样参数k r,v,确定该垂直到达角网格的上边界点
Figure PCTCN2021084185-appb-000074
和下边界点
Figure PCTCN2021084185-appb-000075
该上边界点
Figure PCTCN2021084185-appb-000076
对应基于该垂直接收过采样参数k r,v和该垂直接收波束集s r,v确定的与该目标接收波束
Figure PCTCN2021084185-appb-000077
相邻的两个接收波束的垂直到达角中的较大值,该下边界点
Figure PCTCN2021084185-appb-000078
对应该相邻的两个接收波束的垂直到达角中的较小值;根据该目标接收波束
Figure PCTCN2021084185-appb-000079
的垂直到达角
Figure PCTCN2021084185-appb-000080
该垂直到达角网格的上边界点
Figure PCTCN2021084185-appb-000081
下边界点
Figure PCTCN2021084185-appb-000082
和该垂直到达角网格的网格精度,构建该垂直到达角网格,该垂直到达角网格是中心点为该
Figure PCTCN2021084185-appb-000083
的2B r,v-1点网格,2B r,v表示该垂直到达角网格中的网格数量。
可选地,根据该接收信号残差矩阵Y r、该第i条传播路径对应的该离开角网格和该第i条传播路径对应的该到达角网格,确定该第i条传播路径的水平离开角
Figure PCTCN2021084185-appb-000084
垂直离开角
Figure PCTCN2021084185-appb-000085
水平到达角
Figure PCTCN2021084185-appb-000086
垂直到达角
Figure PCTCN2021084185-appb-000087
和路径增益
Figure PCTCN2021084185-appb-000088
包括:根据该水平离开角网格和该垂直离开角网格确定发射波束矩阵,该发射波束矩阵中的每个列向量为一个发射波束向量;根据该水平到达角网格和该垂直到达角网格确定接收波束矩阵,该接收波束矩阵中的每个列向量为一 个接收波束向量;根据该发射波束矩阵和该接收波束矩阵,确定该接收信号残差矩阵Y r在收发波束对子空间的能量分布矩阵;根据该能量分布矩阵,确定该第i条传播路径的水平离开角
Figure PCTCN2021084185-appb-000089
垂直离开角
Figure PCTCN2021084185-appb-000090
水平到达角
Figure PCTCN2021084185-appb-000091
垂直到达角
Figure PCTCN2021084185-appb-000092
和路径增益
Figure PCTCN2021084185-appb-000093
可选地,根据该水平到达角网格和该垂直到达角网格确定接收波束矩阵,包括:根据该水平离开角网格和该垂直离开角网格确定多个网格交点,每个网格交点对应一个联合发射波束,每个联合发射波束具有一个波束向量;根据该多个网格交点对应的联合发射波束的波束向量,确定该发射波束矩阵;
根据该水平到达角网格和该垂直到达角网格确定接收波束矩阵,包括:根据该水平到达角网格和该垂直到达角网格确定多个网格交点,每个网格交点对应一个联合发射波束,每个联合发射波束具有一个波束向量;根据该多个网格交点对应的联合发射波束的发射波束向量,确定该接收波束矩阵。
第二方面,提供了一种数据传输方法,应用于无线通信系统中的第二通信装置,该无线通信系统包括第一通信装置和第二通信装置,该方法包括:接收第一通信装置传输的第一数据,该第一数据是该第一通信装置基于构建的信道对该第一通信装置的待发送数据进行预编码得到的数据,该信道是该第一通信装置根据该第一通信装置与该第二通信装置之间的至少一条传播路径的路径参数构建的,该至少一条传播路径的路径参数是该第一通信装置根据该第二通信装置的重构要求信息获取的路径参数,该重构要求信息指示该第二通信装置的信道重构要求;根据该第一数据恢复出该第一通信装置的该待发送数据。
本申请提供的技术方案,第一通信装置根据第二通信装置的信道重构要求获取该第一通信装置与该第二通信装置之间的至少一条传播路径的路径参数,基于该至少一条传播路径的路径参数构建该第一通信装置与该第二通信装置之间的信道,也即是,第一通信装置根据第二通信装置的信道重构要求构建该第一通信装置与该第二通信装置之间的信道,因此该第一通信装置构建信道的灵活性较高,有助于提高无线通信系统的资源利用率。
可选地,在接收第一通信装置传输的第一数据之前,该方法还包括:接收该第一通信装置发送的该第二通信装置的发射波束训练集的发射过采样参数;基于该发射过采样参数和该发射波束训练集向该第一通信装置发送参考信号。
本申请提供的技术方案,第二通信装置基于该第二通信装置的发射波束训练集和第一通信装置发送的该发射波束训练集的发射过采样参数向该第一通信装置发送参考信号,以与第一通信装置交互执行波束训练,便于该第一通信装置获取该第一通信装置与该第二通信装置之间的信道的第一接收信号矩阵。
可选地,在基于发射过采样参数和发射波束训练集向第一通信装置发送参考信号之前,该方法还包括:接收该第一通信装置发送的资源指示信息,该资源指示信息指示该第二通信装置发送该参考信号的时频资源;相应地,基于发射过采样参数和发射波束训练集向第一通信装置发送参考信号,包括:基于该发射过采样参数和该发射波束训练集,通过该资源指示信息指示的时频资源向该第一通信装置发送参考信号。
本申请提供的技术方案,第一通信装置向第二通信装置指示发送参考信号的时频资源,可以便于该第二第二通信装置基于发射过采样参数和发射波束训练集,通过该第一通信装置指示的时频资源向该第一通信装置发送参考信号。
第三方面,提供一种通信装置,该通信装置包括用于执行如第一方面或第一方面的任一 可选方式所提供的数据传输方法的各个模块。
第四方面,提供一种通信装置,该通信装置包括用于执行如第二方面或第二方面的任一可选方式所提供的数据传输方法的各个模块。
第五方面,提供一种通信装置,包括存储器,该处理器用于执行存储器中存储的计算机程序,以使得该通信装置执行如第一方面或第一方面的任一可选方式所提供的数据传输方法,或者,执行如第二方面或第二方面的任一可选方式所提供的数据传输方法。
可选地,该通信装置还包括该存储器。
第六方面,提供一种无线通信系统,包括如第三方面提供的通信装置和第四方面提供的通信装置;或者,包括至少一个如第五方面提供的通信装置。
第七方面,提供一种通信装置,包括输入输出接口和逻辑电路;
该逻辑电路,用于执行如第一方面或第一方面的任一可选方式所提供的数据传输方法构建该通信装置与第二通信装置之间的信道;
该输入输出接口,用于输出第一数据,该第一数据是基于构建的该信道对待发送数据进行预编码得到的数据。
第八方面,提供一种通信装置,包括输入输出接口和逻辑电路;
该输入输出接口,用于获取第一数据;
该逻辑电路,用于执行如第二方面或第二方面的任一可选方式所提供的数据传输方法方法根据该第一数据恢复出第一通信装置的待发送数据。
第九方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,该计算机程序被处理器执行时,使得如第一方面或第一方面的任一可选方式所提供的数据传输方法被执行,或者,如第二方面或第二方面的任一可选方式所提供的数据传输方法被执行。
第十方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行如第一方面或第一方面的任一可选方式所提供的数据传输方法,或者,执行如第二方面或第二方面的任一可选方式所提供的数据传输方法。
第十一方面,提供一种芯片,该芯片包括可编程逻辑电路和/或程序指令,当该芯片运行时用于实现如第一方面或第一方面的任一可选方式所提供的数据传输方法,或者,实现如第二方面或第二方面的任一可选方式所提供的数据传输方法。
本申请提供的技术方案带来的有益效果是:
本申请提供的数据传输方法及装置、无线通信系统、存储介质,第一通信装置根据第二通信装置的重构要求信息获取该第一通信装置与该第二通信装置之间的至少一条传播路径的路径参数之后,根据该至少一条传播路径的路径参数构建该第一通信装置与该第二通信装置之间的信道,并向该第二通信装置传输基于构建的信道对待发送数据进行预编码得到的数据。其中,该重构要求信息指示该第二通信装置的信道重构要求,从而该数据传输方法中,第一通信装置根据第二通信装置的信道重构要求构建该第一通信装置与该第二通信装置之间的信道,该第一通信装置构建信道的灵活性较高,有助于提高无线通信系统的资源利用率。
附图说明
图1是本申请实施例提供的一种天线结构图;
图2是本申请实施例提供的另一种天线结构图;
图3是本申请实施例提供的一种无线通信系统的示意图;
图4是本申请实施例提供的一种数据传输方法的流程图;
图5是本申请实施例提供的一种获取传播路径的路径参数的流程图;
图6是本申请实施例提供的一种获取第i条传播路径的路径参数的流程图;
图7是本申请实施例提供的一种构建第i条传播路径对应的传输参数网格的流程图;
图8是本申请实施例提供的一种构建第i条传播路径对应的离开角网格的流程图;
图9是本申请实施例提供的一种水平离开角网格的示意图;
图10是本申请实施例提供的一种垂直离开角网格的示意图;
图11是本申请实施例提供的一种构建第i条传播路径对应的到达角网格的流程图;
图12是本申请实施例提供的一种水平到达角网格的示意图;
图13是本申请实施例提供的一种垂直到达角网格的示意图;
图14是本申请实施例提供的一种传输时延网格的示意图;
图15是本申请实施例提供的一种传播路径数量与信道的归一化均方误差(normalized mean square error,NMSE)的关系曲线图;
图16是本申请实施例提供的一种信噪比(signal-to-noise ratio,SNR)与信道的NMSE的关系曲线图;
图17是本申请实施例提供的另一种SNR与信道的NMSE的关系曲线图;
图18是本申请实施例提供的再一种SNR与信道的NMSE的关系曲线图;
图19是本申请实施例提供的一种通信装置的逻辑结构示意图;
图20是本申请实施例提供的另一种通信装置的逻辑结构示意图;
图21是本申请实施例提供的一种通信装置的硬件结构示意图。
具体实施方式
无线通信系统通常包括网络设备(例如基站)和终端设备等无线通信装置,近年来,无线通信装置和数据业务蓬勃发展,对现有频谱极度紧张的sub-6GHz(6吉赫兹以下,也即是频率小于6GHz)无线通信系统构成了挑战,未来无线通信系统需要向更高的频段拓展,例如向毫米波频段扩展。毫米波频段具有丰富的频谱资源,能够提供更大的传输带宽,更快的传输速率,因此毫米波通信系统(指的是基于毫米波频段的无线通信系统)及其关键技术近些年来备受关注。但是由于毫米波的频率较高,毫米波信号在空间传播过程中的空间损耗及穿透损耗较大,导致可被检测的毫米波信号的范围缩短。为了提高毫米波通信系统的覆盖范围,通常可以在毫米波通信装置(指的是基于毫米波的无线通信装置)中部署天线阵列,通过天线阵列实现信号能量汇聚,以获得更高的信号增益来弥补路径损耗(例如空间损耗及穿透损耗),同时实现信号的强方向性传输。毫米波的波长短,这有利于在毫米波通信装置中部署更紧凑、更密集的天线阵列。
无线通信装置包括天线模块,天线模块包括基带(baseband)部分和射频(radio frequency,RF)部分,基带部分又称数字部分,RF部分又称模拟部分,RF部分包括天线阵列和RF链路(chain),天线阵列中的天线元件通过RF链路与基带部分连接。每个天线元件接收到的信号经模拟域叠加后进入数字域进行基带处理,或者在数字域进行基带处理后通过多个天线元件发射出去。其中,RF链路中包含低噪放大器、上变频器、数模转换器等有源元器件。毫米 波通信系统的带宽很大,频率很高,在毫米波通信装置中,为保证RF链路中的这些有源器件的性能指标,单个有源器件的造价非常高。因此,如果在毫米波通信装置中基于这些有源器件实现大规模的天线模块,则整个毫米波通信系统的设计、复杂度、功耗等将是非常昂贵的。在这种约束下,在毫米波通信装置的天线模块中,多个天线元件通过一条RF链路与基带部分连接,由此可以减少天线模块中的RF链路的数量,降低毫米波通信系统的设计、复杂度、功耗。示例地,图1和图2示出了毫米波通信系统中的两种典型的天线模块,如图1和图2所示,在天线模块中,RF链路的数量远小于天线元件的数量。如图1所示,RF链路与基带部分连接,且RF链路通过合成器和移相器与所有天线元件连接,该图1所示的天线模块是全连接形式的天线模块,全连接形式的天线模块可以保障毫米波通信系统具有较大的覆盖范围和较高的链路增益。如图2所示,RF链路与基带部分连接,且RF链路通过合成器和移相器与部分天线元件连接,该图2所示的天线模块是部分连接形式的天线模块。如图1和图2所示,天线模块中的每个天线元件对应一个波束(beam),每个波束具有一个波束向量,波束向量表示波束的指向,每个天线元件的发射角度和/或接收角度采用相应的波束向量表征。
在无线通信系统中,两个不同无线通信装置(例如网络设备与终端设备)之间传输的数据通过该两个不同无线通信装置之间的信道传输,为了保证数据传输的可靠性,在进行数据传输时,通常需要重构信道。以毫米波通信系统为例,毫米波通信装置的天线阵列中的天线元件的数量远大于信号传输空间中的反射物或反射簇(由距离较近的多个反射物构成)的数量,且毫米波信号的强度及其可检测的能量较弱,使得毫米波信号经历的信道呈现为稀疏特性,即,不同毫米波通信装置(例如毫米波基站和毫米波终端)之间的信道由少数的传播路径叠加而成。因此,对于毫米波通信系统,可以根据两个不同无线通信装置(例如毫米波基站和毫米波终端)之间的至少一条传播路径来重构(也即是重新构建)该两个不同毫米波通信装置之间的信道。其中,每条传播路径可以采用一组路径参数来表征(换句话来讲,一组路径参数唯一确定一条传播路径),因此根据至少一条传播路径来重构信道也即是根据该至少一条传播路径的路径参数来构建信道。信道可以采用信道矩阵来表征,可以将该至少一条传播路径的路径参数代入信道矩阵模型中求取该两个不同毫米波通信装置之间的信道矩阵以构建该两个不同毫米波通信装置之间的信道。容易理解,在本申请实施例中,构建信道也即是确定信道矩阵。其中,毫米波通信装置中的天线阵列典型配置方式为平面阵(planar array,PLA),因此在毫米波通信系统中,每条传播路径的一组路径参数可以包括:水平离开角、垂直离开角、水平到达角、垂直到达角、路径增益和路径时延。每条传播路径可以对应一个联合发射波束(也即是由水平方向的发射波束和垂直方向的发射波束联合构成的三维空间的发射波束)和一个联合接收波束(也即是由水平方向的接收波束和垂直方向的接收波束联合构成的三维空间的接收波束),每条传播路径的水平离开角和垂直离开角可以是该传播路径对应的联合发射波束的水平离开角和垂直离开角,每条传播路径的水平到达角和垂直到达角可以是该传播路径对应的联合接收波束的水平到达角和垂直到达角。
示例地,请参考图3,其示出了本申请实施例提供的一种无线通信系统的示意图。该无线通信系统包括网络设备01和终端设备02,该无线通信系统可以是毫米波通信系统,则该网络设备01可以是毫米波基站,该终端设备02可以是毫米波终端。如图3所示,网络设备01与终端设备02之间的信道由三条传播路径叠加而成,该三条传播路径中的传播路径1和 传播路径3中分别包含反射簇,传播路径2中不包含反射物和反射簇。本领域技术人员应当明白,该图3中所示的三条传播路径、哪条传播路径中包含反射簇以及哪条传播路径中不包含反射物和反射簇均是示例性的,在实际的毫米波通信系统中,网络设备与终端设备之间的传播路径的数量还可以大于3或者小于3,传播路径的数量以及传播路径中是否包含反射物和/或反射簇根据毫米波通信系统以及信号传输的实际情况确定,本申请实施例对此不作限定。如图3所示,可以由网络设备01根据该三条传播路径的路径参数来构建网络设备01与终端设备02之间的信道。具体地,网络设备01可以通过与终端设备02交互来获取该三条传播路径的路径参数,而后将该三条传播路径的路径参数代入信道矩阵模型中求取该网络设备01与终端设备02之间的信道矩阵,以构建该网络设备01与终端设备02之间的信道。可以理解的是,在本申请实施例中,构建信道也即是确定信道矩阵,例如,构建该网络设备01与该终端设备02之间的信道也即是确定该网络设备01与该终端设备02之间信道的信道矩阵。
下面以毫米波通信系统为例对信道矩阵模型进行说明。
需要指出的是,为了便于描述,下文中将需要重构信道的两个不同无线通信装置(也即是需要重构该两个不同无线通信装置之间的信道)称为第一通信装置和第二通信装置。可以理解的是,该第一通信装置和该第二通信装置中的其中一个可以是发射端装置,另一个可以是接收端装置。值得说明的是,本申请实施例中所述的该发射端装置可以是进行波束训练时发送参考信号的通信装置,接收端装置可以是进行波束训练时接收参考信号的通信装置。在重构信道之后进行数据传输时,该发射端装置和该接收端装置的角色可以互换。例如,进行波束训练时发送参考信号的发射端装置可以是数据传输过程中的接收端装置或发射端装置,进行波束训练时接收参考信号的接收端装置可以是数据传输过程中的发送端装置或接收端装置,本申请实施例对此不作限定。
在本申请实施例中,对于毫米波通信系统,信道矩阵模型可以如下公式(1)所示:
Figure PCTCN2021084185-appb-000094
在公式(1)中,L为第一通信装置与第二通信装置之间的传播路径的总数量,
Figure PCTCN2021084185-appb-000095
为该第一通信装置与该第二通信装置之间的第w条传播路径对应的子信道矩阵,
Figure PCTCN2021084185-appb-000096
为该第w条传播路径的水平离开角,
Figure PCTCN2021084185-appb-000097
该第w条传播路径的垂直离开角,
Figure PCTCN2021084185-appb-000098
为该第w条传播路径的水平到达角,
Figure PCTCN2021084185-appb-000099
该第w条传播路径的垂直到达角,
Figure PCTCN2021084185-appb-000100
为该第w条传播路径的路径增益,
Figure PCTCN2021084185-appb-000101
为该第w条传播路径的路径时延。
Figure PCTCN2021084185-appb-000102
在公式(2)中,M r为该第一通信装置的天线阵列中的天线元件的数量,M t为该第二通信装置的天线阵列中的天线元件的数量,N s为毫米波通信系统带宽占用的子载波的数量,a rr,wr,w)为该第一通信装置的天线阵列的响应矢量,
Figure PCTCN2021084185-appb-000103
为该第二通信装置的天线阵列的响应矢量的共轭转置,
Figure PCTCN2021084185-appb-000104
表示
Figure PCTCN2021084185-appb-000105
和 a rr,wr,w)的张量积。
其中,
Figure PCTCN2021084185-appb-000106
在公式(3)中,d t,h为该第二通信装置的相邻两个水平的天线元件之间的距离,λ为该第二通信装置(例如发射端装置)的天线元件发射的电磁波信号的波长,Φ t,w为该第二通信装置的相邻两个水平的天线元件发射的电磁波信号的相位差。
其中,
Figure PCTCN2021084185-appb-000107
在公式(4)中,d t,v为该第二通信装置的相邻两个垂直的天线元件之间的距离,λ为该第二通信装置(例如发射端装置)的天线元件发射的电磁波信号的波长,Θ t,w为该第二通信装置的相邻两个垂直的天线元件发射的电磁波信号的相位差。
其中,
Figure PCTCN2021084185-appb-000108
在公式(5)中,d r,h为该第一通信装置的相邻两个水平的天线元件之间的距离,λ为该第一通信装置(例如接收端装置)的天线元件接收的电磁波信号的波长,Φ t,w为该第一通信装置的相邻两个水平的天线元件接收的电磁波信号的相位差。
其中,
Figure PCTCN2021084185-appb-000109
在公式(6)中,d r,v为该第一通信装置的相邻两个垂直的天线元件之间的距离,λ为该第一通信装置(例如接收端装置)的天线元件接收的电磁波信号的波长,Θ r,w为该第一通信装置的相邻两个垂直的天线元件接收的电磁波信号的相位差。
其中,
Figure PCTCN2021084185-appb-000110
在公式(7)中,Δf为毫米波通信系统带宽的子载波间距。
其中,
Figure PCTCN2021084185-appb-000111
在公式(8)中,
Figure PCTCN2021084185-appb-000112
表示
Figure PCTCN2021084185-appb-000113
向下取整,
Figure PCTCN2021084185-appb-000114
表示
Figure PCTCN2021084185-appb-000115
向上取整,T表示转置,
Figure PCTCN2021084185-appb-000116
为时延相关向量,表示第w条路径在该第w条路径所包含的多个子载波上的能量分布。
为了便于理解本申请技术方案的技术效果,在对本申请的技术方案进行详细介绍之前,先对目前的信道重构方案进行简单介绍。
目前,业界一般基于压缩感知算法或MUSIC算法重构基站与终端设备之间的信道。基于压缩感知算法重构基站与终端设备之间的信道的过程包括:基站生成随机的模拟相移器值,根据该模拟相移器值通过与终端设备交互进行波束训练得到接收信号矩阵,根据该接收信号矩阵在完备字典中搜索若干个支持向量用以最优匹配信道,基于搜索到的若干个支持向量重构基站与终端设备之间的信道。基于MUSIC算法重构基站与终端设备之间的信道的过程包括:基站调度终端设备向基站发送信号,并基于MUSIC算法估计该基站的每个天线元件的 接收信号的协方差矩阵,对该协方差矩阵进行特征值分解获取该基站与终端设备之间的传播路径的路径参数,根据该传播路径的路径参数重构基站与终端设备之间的信道。
但是,基于压缩感知算法重构信道的方案,采用的模拟相移器值是随机的以满足有限等距性质(restricted isometry property,RIP),无法获得beamforming(波束赋形)增益,且需要在庞大的完备字典中穷举搜索最优支持向量,搜索的复杂度高,并且从完备字典搜索出的支持向量与真实信道分量之间有一定距离,导致信道重构的误差较大。基于MUSIC算法重构信道的方案,基站需要获取每个天线元件上的接收信号的协方差矩阵,而在数模混合天线架构下,天线元件接收到的信号在模拟域被叠加后进入数字域进行处理,这导致基站难以获得其每个天线元件上的接收信号的协方差矩阵,因此该方案难以适用于数模混合天线架构;并且,即使能够获得每个天线元件的接收信号的协方差矩阵,该方案还需要对接收信号的协方差矩阵进行特征值分解,这在大规模天线系统中复杂度很高。并且,上述两个方案进行信道重构的灵活性较差,影响无线通信系统的资源利用率。
有鉴于此,本申请实施例提供一种数据传输方案,在该数据传输方案中,第一通信装置首先根据第二通信装置的信道重构要求构建该第一通信装置与该第二通信装置之间的信道,之后基于构建的信道对待发送数据进行预编码,而后向该第二通信装置传输预编码得到的数据。由于该第一通信装置根据该第二通信装置的信道重构要求构建该第一通信装置与该第二通信装置之间的信道,因此该第一通信装置构建信道的灵活性较高,有助于提高无线通信系统的资源利用率;并且,该第一通信装置构建信道时无需在完备字典中穷举搜索最优支持向量,以及无需获得接收信号的协方差矩阵,因此构建信道的复杂度较低、准确性较高,且能够适用于数模混合天线架构的无线通信装置。本申请实施例提供的数据传输方案可以适用于配置全连接形式的天线模块的无线通信装置,也可以适用于配置部分连接形式的天线模块的无线通信装置。下面结合附图对本申请的详细方案进行介绍。
首先介绍本申请实施例提供的数据传输方案的实施环境。
本申请实施例提供的数据传输方案可以应用于无线通信系统,该无线通信系统可以包括第一通信装置和第二通信装置,该数据传输方案用于该第一通信装置向该第二通信装置传输数据。该第一通信装置和该第二通信装置中的一个可以是终端设备,另一个可以是网络设备;可选的,该第一通信装置和第二通信装置均为终端设备。本申请下文实施例中,以第一通信装置是网络设备,第二通信装置是终端设备为例说明。
其中,网络设备可以是传输接收点(transmitting and receiving point,TRP)设备,例如但不限于LTE中的演进型基站(evolved Node B,eNB)、中继站以及5G通信系统中的接入网设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的接入网设备。可选的,本申请实施例中的网络设备可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、5G基站、未来实现基站功能的设备、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(Device-to-Device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等。
终端设备可以是用户设备(user equipment,UE)、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、无线通信设备、用户代理、用户装置、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless  local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线设备、无人驾驶(self driving)中的无线设备、远程医疗(remote medical)中的无线设备、智能电网(smart grid)中的无线设备、运输安全(transportation safety)中的无线设备、智慧城市(smart city)中的无线设备、智慧家庭(smart home)中的无线设备等等以及未来无线通信系统中的终端设备等。此外,终端设备还可以包括中继(relay)等其他能够和网络设备进行数据通信的设备。
在本申请实施例中,该无线通信系统可以是毫米波通信系统,例如,该无线通信系统可以是如图3所示的毫米波通信系统。当该无线通信系统是毫米波通信系统时,该第一通信装置和该第二通信装置均是毫米波通信装置,例如,该第一通信装置是毫米波基站,该第二通信装置是毫米波终端,本申请实施例对此不作限定。
下面介绍本申请实施例提供的数据传输方法。
请参考图4,其示出了本申请实施例提供的一种数据传输方法的流程图,该数据传输方法可以用于包括第一通信装置和第二通信装置的无线通信系统。参见图4,该方法可以包括:
步骤10、第一通信装置获取第二通信装置的重构要求信息,该重构要求信息指示该第二通信装置的信道重构要求。
其中,该重构要求信息可以包括信道重构时长、信道重构精度和最大路径时延中的至少一种,并且除此之外,该重构要求信息还可以包括其他信息,本申请实施例对此不作限定。其中,信道重构时长可以是第二通信装置向第一通信装置直接反馈的,或者是第一通信装置根据第二通信装置反馈的该第二通信装置的移动状态、待传输业务的需求(例如业务时延需求)等确定的。信道重构精度可以是第二通信装置向第一通信装置直接反馈的,或者是第一通信装置根据第二通信装置的传输模式确定的,该传输模式可以是单用户传输模式或多用户传输模式。最大路径时延可以是第一通信装置测量到的。
下面在该步骤10中介绍第二通信装置向第一通信装置反馈信息的过程。为了便于描述,该步骤10中将该第二通信装置向该第一通信装置直接反馈的信息称为关键信息,可以理解的是,该关键信息可以是信道重构时长、信道重构精度,或者,该关键信息可以是第二通信装置的移动状态、第二通信装置的待传输业务的业务时延需求等。可选地,第一通信装置可以通过配置信令要求第二通信装置向该第一通信装置反馈关键信息,或者,该第二通信装置可以主动向该第一通信装置反馈关键信息。
可选地,第一通信装置通过配置信令要求第二通信装置向该第一通信装置反馈关键信息可以包括:第一通信装置直接通过配置信令要求第二通信装置向该第一通信装置反馈关键信息,或者,第一通信装置通过向第二通信装置配置资源(例如时频资源)要求第二通信装置向该第一通信装置反馈关键信息。其中,第一通信装置可以配置第二通信装置周期性向该第一通信装置反馈关键信息,或者配置第二通信装置非周期性向该第一通信装置反馈关键信息,或者,配置第二通信装置处于激活态(也即是忙碌状态,例如,传输数据的状态)时向该第一通信装置反馈关键信息,或者,配置第二通信装置处于非激活态(也即是空闲状态)时向该第一通信装置反馈关键信息,本申请实施例对此不作限定。
可选地,第二通信装置主动向第一通信装置反馈关键信息可以包括:第二通信装置基于 业务时延需求的触发主动向第一通信装置反馈关键信息,例如,在第二通信装置的业务时延需求发生变化时该第二通信装置主动向第一通信装置反馈关键信息。或者,第二通信装置基于特殊工作模式的传输需求的触发主动向第一通信装置反馈关键信息,例如,第二通信装置基于省电模式的传输需求的触发主动向第一通信装置反馈关键信息。其中,第二通信装置可以以显式模式向第一通信装置反馈关键信息,也可以隐式模式向第一通信装置反馈关键信息,本申请实施例对此不作限定。
需要指出的是,该步骤10是本申请实施例提供的数据传输方法的可选步骤,而并非是必选步骤。例如,该步骤10可以在执行本申请实施例提供的数据传输方法之前执行,这样在该数据传输方法中,该第一通信装置无需执行该步骤10;再例如,第一通信装置中存储有第二通信装置的重构要求信息,这样该第一通信装置无需执行该步骤10,而直接执行后续步骤20,本申请实施例对此不作限定。
步骤20、第一通信装置根据第二通信装置的重构要求信息,获取该第一通信装置与该第二通信装置之间的至少一条传播路径的路径参数。
可选地,第一通信装置可以根据第二通信装置的重构要求信息,按序获取该第一通信装置与该第二通信装置之间的至少一条传播路径的路径参数。也即是,第一通信装置首先获取第1条传播路径的路径参数,然后获取第2条传播路径的路径参数,接着获取第3条传播路径的路径参数,依次类推。其中,每条传播路径的路径参数可以包括水平离开角、垂直离开角、水平到达角、垂直到达角、路径增益和路径时延中的至少一种。
其中,该步骤20的详细实现过程将在后文中介绍。
步骤30、第一通信装置根据该第一通信装置与该第二通信装置之间的该至少一条传播路径的路径参数,构建该第一通信装置与该第二通信装置之间的信道。
可选地,第一通信装置在获取该第一通信装置与第二通信装置之间的传播路径的路径参数的过程中,可以检测是否达到信道重构条件,当达到信道重构条件时,第一通信装置根据已确定的j条传播路径的路径参数确定该第一通信装置与该第二通信装置之间的信道矩阵,以重构该第一通信装置与该第二通信装置之间的信道。其中,该已确定的j条传播路径为达到该信道重构条件时确定的所有传播路径,该j条传播路径也即是步骤20中所述的至少一条传播路径,j为大于或等于1且小于或等于L的整数,L为该第一通信装置与该第二通信装置之间的传播路径的总数量。
可选地,第一通信装置按序获取该第一通信装置与第二通信装置之间的至少一条传播路径的路径参数,该第一通信装置每获取一条(也可以是两条、三条等)传播路径的路径参数,检测是否达到信道重构条件。示例地,该第一通信装置检测是否达到信道重构条件包括:该第一通信装置获取第i-1条传播路径的路径参数后,根据该第一通信装置与第二通信装置之间的信道的第一接收信号矩阵Y1和已确定的i-1条传播路径的第二接收信号矩阵Y2的接收信号残差矩阵Y r,获取接收信号残差能量,根据该接收信号残差能量,检测是否达到信道重构条件。其中,该信道重构条件可以包括:
Figure PCTCN2021084185-appb-000117
为该接收信号残差矩阵Y r的Frobenius范数的平方,表示该接收信号残差能量,ξ表示预设残差能量。也即是,第一通信装置获取第i-1条传播路径的路径参数后,检测该第一通信装置与该第二通信装置之间的信道的第一接收信号矩阵Y1和已确定的i-1条传播路径的第二接收信号矩阵Y2的接收信号残差矩阵Y r的接收信号残差能量是否小于预设残差能量;如果该接收信号残差能量小于预设残差能量,则 达到信道重构条件,第一通信装置根据已确定的i-1条传播路径的路径参数确定该第一通信装置与该第二通信装置之间的信道矩阵;如果该接收信号残差能量不小于预设残差能量,则未达到信道重构条件,该第一通信装置继续确定第i条传播路径的路径参数。值得说明的是,当达到信道重构条件
Figure PCTCN2021084185-appb-000118
时,说明当前已确定传播路径的信号能量较高,剩余传播路径的信号能量较低,剩余传播路径不会对构建的信道产生影响(或者说影响极小可以忽略),因此第一通信装置不再确定剩余的传播路径的路径参数,直接根据已确定的所有传播路径的路径参数确定该第一通信装置与该第二通信装置之间的信道矩阵。此外,需要说明的是,在本申请实施例中,i为大于或等于1且小于或等于L的整数,当i=1时,i-1=0,也即是,已确定的传播路径的数量为0(不存在已确定的传播路径),此时,第一通信装置无法确定该第一通信装置与该第二通信装置之间的信道矩阵,因此第一通信装置需要确定出至少一条传播路径的路径参数才可以确定该第一通信装置与该第二通信装置之间的信道矩阵。
可选地,第一通信装置可以将已确定的j条传播路径的路径参数代入如公式(1)所述的信道矩阵模型,来确定该第一通信装置与该第二通信装置之间的信道矩阵,该第一通信装置与该第二通信装置之间的信道矩阵可以如下公式(9)所示:
Figure PCTCN2021084185-appb-000119
其中,
Figure PCTCN2021084185-appb-000120
表示该j条传播路径中的第w条传播路径对应的子信道的信道矩阵,
Figure PCTCN2021084185-appb-000121
Figure PCTCN2021084185-appb-000122
为该第w条传播路径的路径参数,
Figure PCTCN2021084185-appb-000123
Figure PCTCN2021084185-appb-000124
Figure PCTCN2021084185-appb-000125
依次为该第w条传播路径的水平离开角、垂直离开角、水平到达角、垂直到达角、路径增益和路径时延。
值得说明的是,第一通信装置根据已确定的j条传播路径的路径参数确定该第一通信装置与该第二通信装置之间的信道矩阵之前,可以对该j条传播路径的路径参数进行优化,该步骤30中用于构建该第一通信装置与该第二通信装置之间的信道的路径参数是优化后的路径参数。示例地,第一通信装置每确定一条传播路径的路径参数,可以对该传播路径的路径参数进行优化。可选地,第一通信装置可以采用牛顿正交匹配追踪(newtonized orthogonal matching pursuit,NOMP)算法对传播路径的路径参数进行优化。
步骤40、第一通信装置基于构建的信道对待发送数据进行预编码得到第一数据。
可选地,第一通信装置根据构建的信道的信道矩阵确定预编码矩阵,根据预编码矩阵,采用预编码技术对待发送数据进行预编码得到第一数据。其中,预编码技术是目前广泛采用的信道处理技术,预编码技术借助与信道属性相匹配的预编码矩阵来对待发送数据进行预编码,使得经过预编码的数据与信道相适配。其中,对待发送数据进行预编码可以使数据传输过程得到优化,接收信号质量得以提升。
示例地,第一通信装置根据如公式(9)所示的信道矩阵确定预编码矩阵A1,根据预编码矩阵A1采用预编码技术对待发送数据B进行预编码得到第一数据B1。
步骤50、第一通信装置向第二通信装置传输第一数据。
示例地,第一通信装置通过第一通信装置的天线阵列向第二通信装置传输第一数据B1。
步骤60、第二通信装置接收第一通信装置传输的第一数据。
对应于第一通信装置向第二通信装置传输第一数据,该第二通信装置接收该第一通信装置传输的该第一数据。示例地,该第二通信装置通过该第二通信装置的天线阵列接收该第一 通信装置传输的第一数据B1。
步骤70、第二通信装置根据第一数据恢复出第一通信装置的待发送数据。
可选地,第二通信装置根据第一通信装置对该待发送数据进行预编码时采用的预编码矩阵,从该第一数据中恢复出该待发送数据。示例地,该第二通信装置根据该第一通信装置对待发送数据B进行预编码时采用的预编码矩阵A1从第一数据B1中恢复出待发送数据B。
值得说明的是,第二通信装置可以采用多种手段获得第一通信装置对该待发送数据进行预编码时采用的预编码矩阵,该多种手段包括但不限于:第一通信装置在向第二通信装置传输第一数据的同时,还向该第二通信装置传输预编码后的参考信号,且该参考信号与该待发送数据采用同一预编码矩阵进行预编码,第二通信装置可以根据接收到的参考信号确定预编码矩阵,本申请实施例对此不作限定。
值得说明的是,本申请实施例以第一通信装置构建该第一通信装置与该第二通信装置之间的信道后,基于构建的信道向该第二通信装置传输数据为例说明,实际应用中,该第一通信装置还可以基于构建的信道进行多用户的调度和资源分配等。此外,可以理解的是,该第一通信装置与该第二通信装置基于构建的信道传输数据的过程中,当该第二通信装置的信道重构要求发生变化(例如第二通信装置的移动状态发生变化或业务时延需求发生变化)时,该第一通信装置可以重新根据该第二通信装置的变化后的重构要求信息,获取该第一通信装置与该第二通信装置之间的至少一条传播路径的路径参数,并重新构建该第一通信装置与该第二通信装置之间的信道,本申请实施例在此不再赘述。
综上所述,本申请实施例提供的数据传输方法,第一通信装置首先根据第二通信装置的信道重构要求构建该第一通信装置与该第二通信装置之间的信道,之后基于构建的信道对待发送数据进行预编码,而后向该第二通信装置传输预编码得到的数据。由于该第一通信装置根据该第二通信装置的信道重构要求构建该第一通信装置与该第二通信装置之间的信道,因此该第一通信装置构建信道的灵活性较高,有助于提高无线通信系统的资源利用率。
下面结合附图,对上述步骤20(根据第二通信装置的重构要求信息,获取第一通信装置与第二通信装置之间的至少一条传播路径的路径参数)的实现过程进行详细介绍。
请参考图5,其示出了本申请实施例提供的一种获取传播路径的路径参数的流程图。参见图5,该方法可以包括如下几个子步骤:
子步骤201、第一通信装置根据该第一通信装置的天线架构,为该第一通信装置配置接收波束训练集。
可选地,该第一通信装置的天线架构可以是全连接形式(例如图1所示的全连接形式),也可以是部分连接形式(例如图2所示的部分连接形式),本申请实施例以该第一通信装置的天线架构可以是全连接形式为例说明。第一通信装置根据该第一通信装置的天线架构(全连接形式)为该第一通信装置配置接收波束训练集,该接收波束训练集包括多个接收波束。
可选地,该接收波束训练集可以是该第一通信装置的天线阵列的离散傅里叶变换(discrete fourier transform,DFT)码本。该DFT码本可以是基于该第一通信装置的天线阵列设计的码本,该DFT码本可以是一个天线矩阵,该天线矩阵中的元素为该天线阵列中的天线元件的加权系数,该天线矩阵的每个列向量对应一个方向,每个列向量中的元素数等于相应方向上的天线元件的数量,每个方向对应一个波束。换句话来讲,该天线矩阵的每个列向量指示一个 波束,该列向量为该波束的波束向量,该天线矩阵的列数也即是等于该接收波束训练集中的接收波束的数量。
可选地,该第一通信装置的接收波束训练集可以包括水平接收波束集s r,h和垂直接收波束集s r,v,该第一通信装置可以根据该第一通信装置的天线架构为该第一通信装置配置水平接收波束集s r,h和垂直接收波束集s r,v,该水平接收波束集s r,h和该垂直接收波束集s r,v分别包括多个接收波束,该水平接收波束集s r,h和该垂直接收波束集s r,v均可以是该第一通信装置的天线阵列的DFT码本。
子步骤202、第一通信装置根据第二通信装置的天线架构,为该第二通信装置配置发射波束训练集。
可选地,该第二通信装置的天线架构可以是全连接形式(例如图1所示的全连接形式),也可以是部分连接形式(例如图2所示的部分连接形式),本申请实施例以该第二通信装置的天线架构可以是全连接形式为例说明。第一通信装置根据该第二通信装置的天线架构(全连接形式)为该第二通信装置配置发射波束训练集,该发射波束训练集包括多个发射波束。
可选地,该发射波束训练集可以是该第二通信装置的天线阵列的DFT码本。该DFT码本可以是基于该第二通信装置的天线阵列设计的码本,该DFT码本可以是一个天线矩阵,该天线矩阵中的元素为该天线阵列中的天线元件的加权系数,该天线矩阵的每个列向量对应一个方向,每个列向量中的元素数等于相应方向上的天线元件的数量,每个方向对应一个波束。换句话来讲,该天线矩阵的每个列向量指示一个波束,该列向量为该波束的波束向量,该天线矩阵的列数也即是等于该发射波束训练集中的发射波束的数量。
可选地,该第二通信装置的发射波束训练集包括水平发射波束集s t,h和垂直发射波束集s t,v,该第一通信装置根据该第二通信装置的天线架构为该第二通信装置配置水平发射波束集s t,h和垂直发射波束集s t,v,该水平发射波束集s t,h和该垂直发射波束集s t,v分别包括多个发射波束,该水平发射波束集s t,h和该垂直发射波束集s t,v均可以是该第二通信装置的天线阵列的DFT码本。
值得说明的是,在该子步骤202之前,第一通信装置可以获取第二通信装置的天线架构。该第一通信装置可以通过配置信令要求该第二通信装置向该第一通信装置反馈该第二通信装置的天线架构,或者,该第二通信装置可以主动向该第一通信装置反馈该第二通信装置的天线架构,使得该第一通信装置可以获取该第二通信装置的天线架构。该第一通信装置还可以采用其他手段获取第二通信装置的天线架构,本申请实施例在此不再赘述。此外,该发射波束训练集用于该第二通信装置与该第一通信装置交互进行波束训练(波束训练过程如下述子步骤208和子步骤209所示),该第一通信装置为该第二通信装置配置发射波束训练集后,可以将该发射波束训练集发送给该第二通信装置,以便于执行波束训练过程。可选地,该第一通信装置可以通过高层信令将该发射波束训练集发送给该第二通信装置,例如,该第一通信装置通过物理层信令、媒体访问控制(media access control,MAC)层信令和无线资源控制(radio resource control,RRC)信令中的至少一种信令将该发射波束训练集发送给该第二通信装置,本申请实施例对此不作限定。
子步骤203、第一通信装置根据信道重构时长确定该第一通信装置的接收波束训练集的 接收过采样参数和第二通信装置的发射波束训练集的发射过采样参数。
可选地,该重构要求信息可以包括信道重构时长,该信道重构时长可以是第二通信装置允许的最大重构时长。第一通信装置根据该信道重构时长确定该第一通信装置的接收波束训练集的接收过采样参数和第二通信装置的发射波束训练集的发射过采样参数,该接收过采样参数与该发射过采样参数可以相等,也可以不相等,本申请实施例对此不作限定。示例地,如果该信道重构时长较长,第一通信装置可以将该第一通信装置的接收波束训练集的接收过采样参数和该第二通信装置的发射波束训练集的发射过采样参数设置的大一些,如果该信道重构时长较短,第一通信装置可以将该第一通信装置的接收波束训练集的接收过采样参数和该第二通信装置的发射波束训练集的发射过采样参数设置的小一些,这样减小波束训练时长。
如前所述,该第一通信装置的接收波束训练集可以包括水平接收波束集s r,h和垂直接收波束集s r,v,该第二通信装置的发射波束训练集可以包括水平发射波束集s t,h和垂直发射波束集s t,v,因此,该第一通信装置根据该信道重构时长确定该水平接收波束集s r,h的水平接收过采样参数k r,h、该垂直接收波束集s r,v的垂直接收过采样参数k r,v、该水平发射波束集s t,h的水平发射过采样参数k t,h和该垂直发射波束集s t,v的垂直发射过采样参数k t,v。其中,该水平接收过采样参数k r,h、该垂直接收过采样参数k r,v、该水平发射过采样参数k t,h和该垂直发射过采样参数k t,v可以相等,也可以不相等(例如互不相等),本申请实施例对此不作限定。
需要指出的是,波束训练集(包括接收波束训练集和发射波束训练集)和过采样参数(包括接收过采样参数和发射过采样参数)用于第一通信装置与第二通信装置交互进行波束训练(波束训练过程如下述子步骤208和子步骤209所示),该第一通信装置根据信道重构时长确定该接收波束训练集的接收过采样参数和该发射波束训练集的发射过采样参数,有助于该第一通信装置与该第二通信装置在该信道重构时长内完成波束训练。
子步骤204、第一通信装置向第二通信装置发送该第二通信装置的发射波束训练集的发射过采样参数。
可选地,第一通信装置可以通过高层信令向第二通信装置发送该第二通信装置的发射波束训练集的发射过采样参数。例如,该第一通信装置通过物理层信令、MAC层信令和RRC信令中的至少一种信令向该第二通信装置发送该发射波束训练集的发射过采样参数。
如前所述,该发射波束训练集的发射过采样参数包括水平发射波束集s t,h的水平发射过采样参数k t,h和该垂直发射波束集s t,v的垂直发射过采样参数k t,v,因此该第一通信装置通过高层信令向该第二通信装置发送该水平发射波束集s t,h的水平发射过采样参数k t,h和该垂直发射波束集s t,v的垂直发射过采样参数k t,v
子步骤205、第二通信装置接收第一通信装置发送的该第二通信装置的发射波束训练集的发射过采样参数。
对应于第一通信装置向第二通信装置发送该第二通信装置的发射波束训练集的发射过采样参数,该第二通信装置可以接收该发射波束训练集的发射过采样参数。可选地,该第二通信装置接收该第一通信装置通过高层信令发送的该发射波束训练集的发射过采样参数。例如, 该第二通信装置接收该第一通信装置通过物理层信令、MAC层信令和RRC信令中的至少一种信令发送的该发射波束训练集的发射过采样参数。
如前所述,该发射波束训练集的发射过采样参数包括水平发射波束集s t,h的水平发射过采样参数k t,h和该垂直发射波束集s t,v的垂直发射过采样参数k t,v,因此该第二通信装置接收该第一通信装置通过高层信令发送的该水平发射波束集s t,h的水平发射过采样参数k t,h和该垂直发射波束集s t,v的垂直发射过采样参数k t,v
子步骤206、第一通信装置向第二通信装置发送资源指示信息,该资源指示信息指示该第二通信装置发送参考信号的时频资源。
可选地,第一通信装置可以为第二通信装置调度用于发送参考信号的时频资源,然后生成用于指示该时频资源的资源指示信息,并向该第二通信装置发送该资源指示信息,该资源指示信息指示该第二通信装置发送参考信号的时频资源。
可选地,该第一通信装置可以通过高层信令向该第二通信装置发送该资源指示信息。例如,该第一通信装置通过物理层信令、MAC层信令和RRC信令中的至少一种信令向该第二通信装置发送该资源指示信息。
子步骤207、第二通信装置接收第一通信装置发送的资源指示信息。
对应于第一通信装置向第二通信装置发送资源指示信息,该第二通信装置可以接收该第一通信装置发送的该资源指示信息。可选地,该第二通信装置接收该第一通信装置通过高层信令发送的该资源指示信息。例如,该第二通信装置接收该第一通信装置通过物理层信令、MAC层信令和RRC信令中的至少一种信令发送的该资源指示信息。
本领域技术人员可以理解,本申请实施例是子步骤204至子步骤207按照先后顺序执行为例说明的,实际实现过程中,并不限定子步骤204至子步骤207的先后顺序。例如,子步骤204与子步骤206可以同时执行(也即是第一通信装置在一个消息中向第二通信装置发送发射过采样参数和资源指示信息),相应地,子步骤205与子步骤207可以同时执行(也即是第二通信装置通过接收一个消息接收第一通信装置发送发射过采样参数和资源指示信息)。或者子步骤204至子步骤207可以按照子步骤206、子步骤207、子步骤204、子步骤205这样的顺序执行。或者,子步骤204至子步骤207可以按照子步骤204、子步骤206、子步骤205、子步骤207这样的顺序执行。此外,子步骤206和子步骤207可以是可选步骤,例如,第一通信装置和第二通信装置可以事先约定发送参考信号的时频资源,或者可以在协议中规定第一通信装置通过哪些时频资源向第二通信装置发送参考信号,这样上述子步骤206和子步骤207可以不执行,本申请实施例对此不做限定。
子步骤208、第二通信装置基于该第二通信装置的发射波束训练集和该发射波束训练集的发射过采样参数向第一通信装置发送参考信号。
可选地,第二通信装置基于该第二通信装置的发射波束训练集和该发射波束训练集的发射过采样参数,通过子步骤207中接收到的资源指示信息指示的时频资源向第一通信装置发送参考信号。其中,该参考信号可以是用于进行信道测量的参考信号,例如,该参考信号可以是相位跟踪参考信号(phase tracking reference signal,PT-RS)或信道状态信息参考信号(channel state information reference signal,CSI-RS)等。
可选地,第二通信装置根据发射过采样参数对发射波束训练集进行处理得到处理后的发 射波束训练集,然后通过该处理后的发射波束训练集中的发射波束,在该资源指示信息指示的时频资源上向该第一通信装置发送参考信号。其中,该第二通信装置根据该发射过采样参数对该发射波束训练集进行处理可以理解为该第二通信装置根据该发射过采样参数在该发射波束训练集中增加发射波束,使得该处理后的发射波束训练集中的发射波束更为密集。
如前所述,该发射波束训练集包括水平发射波束集s t,h和垂直发射波束集s t,v,该发射过采样参数包括该水平发射波束集s t,h的水平发射过采样参数k t,h和该垂直发射波束集s t,v的垂直发射过采样参数k t,v,该第二通信装置可以根据该水平发射过采样参数k t,h对该水平发射波束集s th进行处理得到处理后的水平发射波束集
Figure PCTCN2021084185-appb-000126
根据该垂直发射过采样参数k t,v对该垂直发射波束集s tv进行处理得到处理后的垂直发射波束集
Figure PCTCN2021084185-appb-000127
该处理后的水平发射波束集
Figure PCTCN2021084185-appb-000128
中的发射波束和该处理后的垂直发射波束集
Figure PCTCN2021084185-appb-000129
中的发射波束均为平面波束,该第二通信装置可以将该处理后的水平发射波束集
Figure PCTCN2021084185-appb-000130
中的发射波束与该处理后的垂直发射波束集
Figure PCTCN2021084185-appb-000131
中的发射波束联合,得到三维空间中的联合发射波束,通过该联合发射波束,在资源指示信息指示的时频资源上向该第一通信装置发送参考信号。
下面以水平发射波束集s t,h和水平发射过采样参数k t,h为例介绍该第二通信装置根据发射过采样参数对发射波束训练集进行处理的过程。示例地,假设水平发射波束集s t,h中包括发射波束t1、发射波束t2、发射波束t3和发射波束t4共四个发射波束(发射波束t1、发射波束t2、发射波束t3和发射波束t4均为水平发射波束,水平发射波束的垂直离开角为0),水平发射过采样参数k t,h等于2。该第二通信装置根据该水平发射过采样参数k t,h,在发射波束t1和发射波束t2之间增加发射波束t12,在发射波束t2和发射波束t3之间增加发射波束t23,在发射波束t3和发射波束t4之间增加发射波束发射波束t34,在发射波束t4后增加发射波束t45,得到处理后的水平发射波束集
Figure PCTCN2021084185-appb-000132
中包括:发射波束t1、发射波束t12、发射波束t2、发射波束t23、发射波束t3、发射波束t34、发射波束t4和发射波束t45共8个发射波束,发射波束t1、发射波束t12、发射波束t2、发射波束t23、发射波束t3、发射波束t34、发射波束t4和发射波束t45均为水平发射波束。其中,发射波束t12的方向可以位于发射波束t1的方向与发射波束t2的方向之间(例如,发射波束t12的水平离开角与发射波束t1的水平离开角之间的差值等于发射波束t2的水平离开角与发射波束t12的水平离开角之间的差值);发射波束t23的方向可以位于发射波束t2的方向与发射波束t3的方向之间(例如,发射波束t23的水平离开角与发射波束t2的水平离开角之间的差值等于发射波束t3的水平离开角与发射波束t23的水平离开角之间的差值);发射波束t34的方向可以位于发射波束t3的方向与发射波束t4的方向之间(例如,发射波束t34的水平离开角与发射波束t3的水平离开角之间的差值等于发射波束t4的水平离开角与发射波束t34的水平离开角之间的差值);发射波束t4的方向可以位于发射波束t34的方向与发射波束t45的方向之间(例如,发射波束t4的水平离开角与发射波束t34的水平离开角之间的差值等于发射波束t45的水平离开角与发射波束t4的水平离开角之间的差值)。或者,该第二通信装置根据该水平发射过采样参数k t,h,在发射波束t1之前增加发射波束t01,在发射波束t1和发射波束t2之间增加发射波束t12,在发射波束t2和发射波束t3之间增加发射波束t23,在发射波束t3和发射波束t4之间增加发射波束发射波束t34,得到处理后的水平发射波束集
Figure PCTCN2021084185-appb-000133
中包括:发射波束t01、发射波束t1、发射波束t12、发射波束t2、发射波束t23、发射波束t3、发射波束t34和发射波束t4共8个发射波束,发射波束t01、发射波束t1、发射波束t12、发射波束t2、发射波束t23、发射波束t3、发射 波束t34和发射波束t4均为水平发射波束,其垂直离开角均为0。其中,发射波束t1的方向可以位于发射波束t01的方向与发射波束t12的方向之间(例如,发射波束t1的水平离开角与发射波束t01的水平离开角之间的差值等于发射波束t12的水平离开角与发射波束t1的水平离开角之间的差值);发射波束t12的方向可以位于发射波束t1的方向与发射波束t2的方向之间(例如,发射波束t12的水平离开角与发射波束t1的水平离开角之间的差值等于发射波束t2的水平离开角与发射波束t12的水平离开角之间的差值);发射波束t23的方向可以位于发射波束t2的方向与发射波束t3的方向之间(例如,发射波束t23的水平离开角与发射波束t2的水平离开角之间的差值等于发射波束t3的水平离开角与发射波束t23的水平离开角之间的差值);发射波束t34的方向可以位于发射波束t3的方向与发射波束t4的方向之间(例如,发射波束t34的水平离开角与发射波束t3的水平离开角之间的差值等于发射波束t4的水平离开角与发射波束t34的水平离开角之间的差值)。
本领域技术人员应当明白,该子步骤208以水平发射波束集s t,h和水平发射过采样参数k t,h为例介绍该第二通信装置根据发射过采样参数对发射波束训练集进行处理的过程,该第二通信装置根据垂直发射过采样参数k t,v对垂直发射波束集s t,v进行处理的过程与此类似,本申请实施例在此不再赘述。值得说明的是,垂直发射波束集s tv中的发射波束以及处理后的垂直发射波束集
Figure PCTCN2021084185-appb-000134
中的发射均为垂直发射波束,垂直发射波束的水平离开角为0。
子步骤209、第一通信装置基于该第一通信装置的接收波束训练集和该接收波束训练集的接收过采样参数测量参考信号,得到该第一通信装置与第二通信装置之间的信道的第一接收信号矩阵。
可选地,第一通信装置基于该第一通信装置的接收波束训练集和该接收波束训练集的接收过采样参数,在资源指示信息指示的时频资源上测量第二通信装置基于该第二通信装置的发射波束训练集和该发射波束训练集的发射过采样参数发送的参考信号。
可选地,第一通信装置根据接收过采样参数对接收波束训练集进行处理得到处理后的接收波束训练集,然后通过该处理后的接收波束训练集中的接收波束,在该资源指示信息指示的时频资源上测量参考信号。其中,该第一通信装置根据该接收过采样参数对该接收波束训练集进行处理可以理解为该第一通信装置根据该接收过采样参数在该接收波束训练集中增加接收波束,使得该处理后的接收波束训练集中的接收波束更为密集。
如前所述,该接收波束训练集包括水平接收波束集s r,h和垂直接收波束集s r,v,该接收过采样参数包括该水平接收波束集s r,h的水平接收过采样参数k r,h和该垂直接收波束集s r,v的垂直接收过采样参数k r,v,该第一通信装置可以根据该水平接收过采样参数k r,h对该水平接收波束集s r,h进行处理得到处理后的水平接收波束集
Figure PCTCN2021084185-appb-000135
根据该垂直接收过采样参数k r,v对该垂直接收波束集s r,v进行处理得到处理后的垂直接收波束集
Figure PCTCN2021084185-appb-000136
该处理后的水平接收波束集
Figure PCTCN2021084185-appb-000137
中的接收波束和该处理后的垂直接收波束集
Figure PCTCN2021084185-appb-000138
中的接收波束均为平面波束,该第一通信装置可以将该处理后的水平接收波束集
Figure PCTCN2021084185-appb-000139
中的接收波束与该处理后的垂直接收波束集
Figure PCTCN2021084185-appb-000140
中的接收波束联合,得到三维空间中的联合接收波束,通过该联合接收波束,在资源指示信息指示的时频资源上测量参考信号。其中,该第一通信装置根据该水平接收过采样参数k r,h对该水平接收波束集s r,h进行处理的过程,以及,根据该垂直接收过采样参数k r,v对该垂直接收波束集s r,v进行处理的过程可以参考子步骤208中,第二通信装置根据垂直发射过采样参数k t,v对垂直发射波束集s t,v进行处理的过程,本申请实施例在此不再赘述。值得说明的是, 水平接收波束集s r,h中的接收波束以及处理后的水平接收波束集
Figure PCTCN2021084185-appb-000141
中的接收波束均为水平接收波束,水平接收波束的垂直到达角为0,垂直接收波束集s r,v中的接收波束以及处理后的垂直接收波束集
Figure PCTCN2021084185-appb-000142
中的接收波束均为垂直接收波束,垂直接收波束的水平到达角为0。
第一通信装置基于该第一通信装置的接收波束训练集和该接收波束训练集的接收过采样参数测量参考信号可以得到接收信号矩阵,可以理解的是,该接收信号矩阵是通过波束训练(子步骤208至子步骤209为波束训练过程)得到的,为了便于描述,将波束训练得到的该接收信号矩阵称为第一接收信号矩阵Y1,该第一接收信号矩阵Y1中的元素为该第一通信装置测量到的参考信号的接收信号强度,该第一接收信号矩阵Y1的每列元素对应一个子载波,每行元素对应一个波束对索引号。示例地,该第一接收信号矩阵Y1的每列元素对应一个子载波,每行元素对应一对收发天线,每对收发天线包括第二通信装置的一个发射天线元件和第一通信装置的一个接收天线元件,每对联合收发波束对应至少一对收发天线,每对联合收发波束包括第二通信装置的一个联合发射波束和第一通信装置的一个联合接收波束,该联合发射波束是水平发射波束集s t,h中的发射波束和垂直发射波束集s t,v中的发射波束的联合波束,该联合接收波束是水平接收波束集s r,h中的接收波束和垂直接收波束集s r,v中的接收波束的联合波束。示例地,该第一接收信号矩阵Y1可以如下公式(10)所示:
Y1=M×H                   (10);
其中,M表示波束训练矩阵,该波束训练矩阵的每列元素是由一对收发训练波束构成的向量,每对收发训练波束包括第二通信装置的一个联合发射波束和第一通信装置的一个联合接收波束。
值得说明的是,第一通信装置测量参考信号得到的接收信号矩阵可以是三维矩阵,根据前述描述可知该第一接收信号矩阵Y1是二维矩阵,本申请实施例中,该第一接收信号矩阵Y1可以是该第一通信装置对测量得到的三维的接收信号矩阵转换得到的,本申请实施例对此不做限定。
子步骤210、第一通信装置根据该第一通信装置与第二通信装置之间的信道的第一接收信号矩阵和已确定的i-1条传播路径的第二接收信号矩阵,确定该第一通信装置与该第二通信装置之间的第i条传播路径的路径参数。
值得说明的是,在该子步骤210中,i为大于或等于1且小于或等于L的整数,L为该第一通信装置与该第二通信装置之间的传播路径的总数量。可以理解的是,当i=1时,i-1=0,已确定的i-1条传播路径的第二接收信号矩阵Y2为0,该第一通信装置与该第二通信装置之间的信道的第一接收信号矩阵Y1与该第二接收信号矩阵Y2的接收信号残差矩阵Y r为该第一接收信号矩阵Y1本身,第一通信装置根据该第一接收信号矩阵Y1和该第二接收信号矩阵Y2确定该第i条传播路径的路径参数也即是根据该第一接收信号矩阵Y1确定该第1条传播路径的路径参数。
其中,第二接收信号矩阵Y2中的元素为该第一通信装置根据已确定的i-1条传播路径的路径参数估计出的参考信号的接收信号强度,该第二接收信号矩阵Y2的每列元素对应一个子载波,每行元素对应一个波束对索引号。示例地,该第二接收信号矩阵Y2的每列元素对应一个子载波,每行元素对应一对收发天线,每对收发天线包括第二通信装置的一个发射天线元件和第一通信装置的一个接收天线元件,每对联合收发波束对应至少一对收发天线,每对联合收发波束包括第二通信装置的一个联合发射波束和第一通信装置的一个联合接收波束。示 例地,该第二接收信号矩阵Y2可以如下公式(11)所示:
Figure PCTCN2021084185-appb-000143
在该公式(11)中,M表示波束训练矩阵,该波束训练矩阵M与公式(10)中的波束训练矩阵M相同,
Figure PCTCN2021084185-appb-000144
表示该i-1条传播路径中的第w条传播路径对应的子信道的信道矩阵,
Figure PCTCN2021084185-appb-000145
Figure PCTCN2021084185-appb-000146
为该第w条传播路径的路径参数,
Figure PCTCN2021084185-appb-000147
Figure PCTCN2021084185-appb-000148
依次为该第w条传播路径的水平离开角、垂直离开角、水平到达角、垂直到达角、路径增益和路径时延。
下面结合附图,对该子步骤210(根据第一接收信号矩阵Y1和第二接收信号矩阵Y2确定第i条传播路径的路径参数)的实现过程进行详细说明。
请参考图6,其示出了本申请实施例提供的一种获取第一通信装置与第二通信装置之间的第i条传播路径的路径参数的流程图。参见图6,该方法可以包括如下几个子步骤:
子步骤2101、根据第一通信装置与第二通信装置之间的信道的第一接收信号矩阵和已确定的i-1条传播路径的第二接收信号矩阵的接收信号残差矩阵,构建第i条传播路径对应的传输参数网格。
第一通信装置首先确定该第一通信装置与第二通信装置之间的信道的第一接收信号矩阵Y1与已确定的i-1条传播路径的第二接收信号矩阵Y2的接收信号残差矩阵Y r,然后根据该接收信号残差矩阵Y r,构建第i条传播路径对应的传输参数网格。在本申请实施例中,该第一接收信号矩阵Y1的行数与该第二接收信号矩阵Y2的行数相等,该第一接收信号矩阵Y1的列数与该第二接收信号矩阵Y2的列数相等,且该第一接收信号矩阵Y1的元素的数量与该第二接收信号矩阵Y2的元素的数量相等,第一通信装置可以将该第一接收信号矩阵Y1减去该第二接收信号矩阵Y2得到该接收信号残差矩阵Y r。可以理解的是,该接收信号残差矩阵Y r中的元素为该第一接收信号矩阵Y1中的一个接收信号强度与该第二接收信号矩阵Y2中相应的接收信号强度的残差值(也即是该接收信号残差矩阵Y r中的元素为接收信号残差),该接收信号残差矩阵Y r的每列元素对应一个子载波,每行元素对应一个波束对索引号。示例地,该接收信号残差矩阵Y r的每列元素对应一个子载波,每行元素对应一对收发天线,每对收发天线包括第二通信装置的一个发射天线元件和第一通信装置的一个接收天线元件,每对联合收发波束对应至少一对收发天线,每对联合收发波束包括第二通信装置的一个联合发射波束和第一通信装置的一个联合接收波束。示例地,该接收信号残差矩阵Y r可以如公式(12)所示:
Figure PCTCN2021084185-appb-000149
可选地,传输参数网格可以包括传输角度网格和传输时延网格中的至少一种,重构要求信息还可以包括信道重构精度和最大路径时延τ max中的至少一种,该第一通信装置根据该接收信号残差矩阵Y r构建第i条传播路径对应的传输参数网格包括:该第一通信装置根据该接收信号残差矩阵Y r和信道重构精度,构建该第i条传播路径对应的传输角度网格;和/或,该第一通信装置根据最大路径时延τ max,构建该第i条传播路径对应的传输时延网格。第一通信装置构建该第i条传播路径对应的传输角度网格以及构建该第i条传播路径对应的传输时延网格的过程将在后文中进行详细描述,这里不做赘述。
子步骤2102、根据第一通信装置与第二通信装置之间的信道的第一接收信号矩阵和已确定的i-1条传播路径的第二接收信号矩阵的接收信号残差矩阵,以及该第i条传播路径对应的传输参数网格,确定该第i条传播路径的路径参数。
其中,该路径参数可以包括角度参数、路径增益和路径时延中的至少一种,该子步骤2102可以包括:第一通信装置可以根据该第一通信装置与第二通信装置之间的信道的第一接收信号矩阵Y1和已确定的i-1条传播路径的第二接收信号矩阵Y2的接收信号残差矩阵Y r以及子步骤2101中构建的该第i条传播路径对应的传输角度网格,确定该第i条传播路径的角度参数和路径增益
Figure PCTCN2021084185-appb-000150
和/或,根据该接收信号残差矩阵Y r以及子步骤2101中构建的该第i条传播路径对应的传输时延网格,确定该第i条传播路径的路径时延
Figure PCTCN2021084185-appb-000151
该第一通信装置根据该接收信号残差矩阵Y r和该第i条传播路径对应的传输角度网格确定该第i条传播路径的角度参数和路径增益
Figure PCTCN2021084185-appb-000152
的过程,以及根据该接收信号残差矩阵Y r和该第i条传播路径对应的传输时延网格确定该第i条传播路径的路径时延
Figure PCTCN2021084185-appb-000153
的过程将在后文中详细介绍,这里不做赘述。
下面结合附图,对上述子步骤2101(根据第一接收信号矩阵和第二接收信号矩阵的接收信号残差矩阵,构建第i条传播路径对应的传输参数网格)的实现过程进行详细介绍。
如前所述,该传输参数网格可以包括传输角度网格和传输时延网格中的至少一种,本申请实施例以该传输参数网格包括传输角度网格和传输时延网格为例说明。
首先介绍构建第i条传播路径对应的传输角度网格的过程。
在本申请实施例中,传输参数网格可以包括离开角网格和到达角网格。请参考图7,其示出了本申请实施例提供的一种构建第i条传播路径对应的传输参数网格的流程图。参见图7,该方法可以包括如下几个子步骤:
子步骤1011、第一通信装置根据该第一通信装置与第二通信装置之间的信道的第一接收信号矩阵和已确定的i-1条传播路径的第二接收信号矩阵的接收信号残差矩阵,确定目标发射波束和目标接收波束。
可选地,目标发射波束和目标接收波束构成的收发波束对可以是残差能量最大的收发波束对。如前所述,接收信号残差矩阵Y r的每列元素对应一个子载波,每行元素对应一个波束对索引号,因此第一通信装置根据该接收信号残差矩阵Y r确定目标发射波束
Figure PCTCN2021084185-appb-000154
和目标接收波束
Figure PCTCN2021084185-appb-000155
的过程可以包括:第一通信装置首先根据该接收信号残差矩阵Y r,确定最大的接收信号残差能量对应的波束对索引号
Figure PCTCN2021084185-appb-000156
然后根据该最大的接收信号残差能量对应的波束对索引号
Figure PCTCN2021084185-appb-000157
确定目标发射波束
Figure PCTCN2021084185-appb-000158
和目标接收波束
Figure PCTCN2021084185-appb-000159
示例地,第一通信装置根据该接收信号残差矩阵Y r,通过下述公式(13)确定最大的接收信号残差能量对应的波束对索引号
Figure PCTCN2021084185-appb-000160
第一通信装置根据该最大的接收信号残差能量对应的波束对索引号
Figure PCTCN2021084185-appb-000161
通过下述公式(14)和公式(15)确定目标发射波束
Figure PCTCN2021084185-appb-000162
和目标接收波束
Figure PCTCN2021084185-appb-000163
Figure PCTCN2021084185-appb-000164
Figure PCTCN2021084185-appb-000165
Figure PCTCN2021084185-appb-000166
其中,n为该接收信号残差矩阵Y r的行数,
Figure PCTCN2021084185-appb-000167
为该接收信号残差矩阵Y r的第n行元素的二范数的平方,表示该接收信号残差矩阵Y r的第n行元素的接收信号残差能量,N r,c为第一通信装置的联合接收波束的数量,
Figure PCTCN2021084185-appb-000168
表示
Figure PCTCN2021084185-appb-000169
向上取整。
子步骤1012、第一通信装置根据目标发射波束的离开角和信道重构精度,构建第i条传播路径对应的离开角网格。
其中,目标发射波束
Figure PCTCN2021084185-appb-000170
为三维空间中的发射波束,该目标发射波束
Figure PCTCN2021084185-appb-000171
的离开角可以包括水平离开角
Figure PCTCN2021084185-appb-000172
和垂直离开角
Figure PCTCN2021084185-appb-000173
该离开角网格可以包括水平离开角网格和垂直离开角网格。
示例地,请参考图8,其示出了本申请实施例提供的一种根据目标发射波束的离开角和信道重构精度构建第i条传播路径对应的离开角网格的流程图,如图8所示,该方法包括:
子步骤10121、根据信道重构精度确定水平离开角网格的网格精度和垂直离开角网格的网格精度。
可选地,第一通信装置可以根据信道重构精度,按照经验确定水平离开角网格的网格精度和垂直离开角网格的网格精度,该水平离开角网格的网格精度与该垂直离开角网格的网格精度可以相等或不相等。第一通信装置在确定该水平离开角网格的网格精度和该垂直离开角网格的网格精度时,还可以参考重构要求信息中的信道重构时长,如果该信道重构时长较长,第一通信装置可以将该水平离开角网格的网格精度和该垂直离开角网格的网格精度均设置的小一些,这样可以减小网格穷举次数,如果该信道重构时长较短,第一通信装置可以将该水平离开角网格的网格精度和该垂直离开角网格的网格精度均设置的大一些。
示例地,第一通信装置将信道重构精度确定为该水平离开角网格的网格精度和垂直离开角网格的网格精度。或者,第一通信装置可以记录有信道重构精度与水平离开角网格精度的第一对应关系,以及,信道重构精度与垂直离开角网格精度的第二对应关系,第一通信装置根据该信道重构精度以及该第一对应关系确定该水平离开角网格的网格精度,根据该信道重构精度以及该第二对应关系确定该垂直离开角网格的网格精度。其中,该第一对应关系和该第二对应关系可以是根据经验确定的,例如,第一通信装置根据以往的信道构建经验学习到的,本申请实施例对此不作限定。
子步骤10122、根据目标发射波束的水平离开角、水平发射波束集、水平发射过采样参数和水平离开角网格的网格精度,构建水平离开角网格。
可选地,第一通信装置根据目标发射波束
Figure PCTCN2021084185-appb-000174
的水平离开角
Figure PCTCN2021084185-appb-000175
水平发射波束集s t,h和该水平发射波束集s t,h的水平发射过采样参数k t,h,确定该水平离开角网格的上边界点
Figure PCTCN2021084185-appb-000176
和下边界点
Figure PCTCN2021084185-appb-000177
根据该目标发射波束
Figure PCTCN2021084185-appb-000178
的水平离开角
Figure PCTCN2021084185-appb-000179
该水平离开角网格的上边界点
Figure PCTCN2021084185-appb-000180
该水平离开角网格的下边界点
Figure PCTCN2021084185-appb-000181
和该水平离开角网格的网格精度,构建该水平离开角网格,该水平离开角网格是中心点为该目标发射波束
Figure PCTCN2021084185-appb-000182
的水平离开角
Figure PCTCN2021084185-appb-000183
的2B t,h+1点网格,例如,该水平离开角网格可以如图9所示。
其中,2B t,h表示该水平离开角网格中的网格数量,2B t,h的取值根据该上边界点
Figure PCTCN2021084185-appb-000184
该 下边界点
Figure PCTCN2021084185-appb-000185
以及该水平离开角网格的网格精度确定。示例地,2B t,h等于该上边界点
Figure PCTCN2021084185-appb-000186
与该下边界点
Figure PCTCN2021084185-appb-000187
的差值除以该水平离开角网格的网格精度,该水平离开角网格的网格精度也即是该水平离开角网格中的单个网格的宽度。
其中,该上边界点
Figure PCTCN2021084185-appb-000188
对应基于该水平发射过采样参数k t,h和该水平发射波束集s t,h确定的与该目标发射波束
Figure PCTCN2021084185-appb-000189
相邻的两个发射波束的水平离开角中的较大值,该下边界点
Figure PCTCN2021084185-appb-000190
对应该相邻的两个发射波束的水平离开角中的较小值。可选地,该第一通信装置根据该水平发射过采样参数k t,h对该水平发射波束集s t,h进行处理得到处理后的水平发射波束集
Figure PCTCN2021084185-appb-000191
从该处理后的水平发射波束集
Figure PCTCN2021084185-appb-000192
中确定在水平方向上与该目标发射波束
Figure PCTCN2021084185-appb-000193
相邻的两个发射波束,将该两个发射波束的水平离开角中的较大值确定为该上边界点
Figure PCTCN2021084185-appb-000194
将该两个发射波束的水平离开角中的较小值确定为该下边界点
Figure PCTCN2021084185-appb-000195
其中,该第一通信装置根据该水平发射过采样参数k t,h对该水平发射波束集s t,h进行处理的过程可以参考前述子步骤208,在此不再赘述。值得说明的是,该第一通信装置根据该水平发射过采样参数k t,h对该水平发射波束集s t,h进行处理得到的处理后的水平发射波束集
Figure PCTCN2021084185-appb-000196
与前述子步骤208中第二通信装置根据该水平发射过采样参数k t,h对该水平发射波束集s t,h进行处理得到的处理后的水平发射波束集
Figure PCTCN2021084185-appb-000197
相同。
子步骤10123、根据目标发射波束的垂直离开角、垂直发射波束集、垂直发射过采样参数和垂直离开角网格的网格精度,构建垂直离开角网格。
可选地,第一通信装置根据目标发射波束
Figure PCTCN2021084185-appb-000198
的垂直离开角
Figure PCTCN2021084185-appb-000199
垂直发射波束集s t ,v和该垂直发射波束集s t,v的垂直发射过采样参数k t,v,确定该垂直离开角网格的上边界点
Figure PCTCN2021084185-appb-000200
和下边界点
Figure PCTCN2021084185-appb-000201
根据该目标发射波束
Figure PCTCN2021084185-appb-000202
的垂直离开角
Figure PCTCN2021084185-appb-000203
该垂直离开角网格的上边界点
Figure PCTCN2021084185-appb-000204
垂直离开角网格的下边界点
Figure PCTCN2021084185-appb-000205
和该垂直离开角网格的网格精度,构建该垂直离开角网格,该垂直离开角网格是中心点为该目标发射波束
Figure PCTCN2021084185-appb-000206
的垂直离开角
Figure PCTCN2021084185-appb-000207
的2B t,v+1点网格,例如,该垂直离开角网格可以如图10所示。
其中,2B t,v表示该垂直离开角网格中的网格数量,2B t,v的取值根据该上边界点
Figure PCTCN2021084185-appb-000208
该下边界点
Figure PCTCN2021084185-appb-000209
和该垂直离开角网格的网格精度确定。示例地,2B t,v等于该上边界点
Figure PCTCN2021084185-appb-000210
与该下边界点
Figure PCTCN2021084185-appb-000211
的差值除以该垂直离开角网格的网格精度,该垂直离开角网格的网格精度也即是该垂直离开角网格中的单个网格的宽度。
其中,该上边界点
Figure PCTCN2021084185-appb-000212
对应基于该垂直发射过采样参数k t,v和该垂直发射波束集s t,v确定的与该目标发射波束
Figure PCTCN2021084185-appb-000213
相邻的两个发射波束的垂直离开角中的较大值,该下边界点
Figure PCTCN2021084185-appb-000214
对应该相邻的两个发射波束的垂直离开角中的较小值。可选地,该第一通信装置根据该垂直发 射过采样参数k t,v对该垂直发射波束集s t,v进行处理得到处理后的垂直发射波束集
Figure PCTCN2021084185-appb-000215
从该处理后的垂直发射波束集
Figure PCTCN2021084185-appb-000216
中确定在垂直方向上与该目标发射波束
Figure PCTCN2021084185-appb-000217
相邻的两个发射波束,将该两个发射波束的垂直离开角中的较大值确定为该上边界点
Figure PCTCN2021084185-appb-000218
将该两个发射波束的垂直离开角中的较小值确定为该下边界点
Figure PCTCN2021084185-appb-000219
其中,该第一通信装置根据该垂直发射过采样参数k t,v对该垂直发射波束集s t,v进行处理的过程可以参考前述子步骤208,在此不再赘述。值得说明的是,该第一通信装置根据该垂直发射过采样参数k t,v对该垂直发射波束集s t,v进行处理得到处理后的垂直发射波束集
Figure PCTCN2021084185-appb-000220
与前述子步骤208中第二通信装置根据该垂直发射过采样参数k t,v对该垂直发射波束集s t,v进行处理得到处理后的垂直发射波束集
Figure PCTCN2021084185-appb-000221
相同。
本领域技术人员可以理解,本申请实施例是子步骤10122至子步骤10123按照先后顺序执行为例说明的,实际实现过程中,本申请并不限定子步骤10122和子步骤10123的先后顺序,也即是可以先执行子步骤10122后执行子步骤10123,也可以先执行子步骤10123后执行子步骤10122,本申请实施例对此不做限定。
子步骤1013、第一通信装置根据目标接收波束
Figure PCTCN2021084185-appb-000222
的到达角和信道重构精度,构建第i条传播路径对应的到达角网格。
其中,目标接收波束
Figure PCTCN2021084185-appb-000223
为三维空间中的接收波束,该目标接收波束
Figure PCTCN2021084185-appb-000224
的到达角可以包括水平到达角
Figure PCTCN2021084185-appb-000225
和垂直到达角
Figure PCTCN2021084185-appb-000226
到达角网格可以包括水平到达角网格和垂直到达角网格。
示例地,请参考图11,其示出了本申请实施例提供的一种根据目标接收波束的到达角和信道重构精度构建第i条传播路径对应的到达角网格的流程图,如图11所示,该方法包括:
子步骤10131、根据信道重构精度确定水平到达角网格的网格精度和垂直到达角网格的网格精度。
可选地,第一通信装置可以根据信道重构精度,按照经验确定水平到达角网格的网格精度和垂直到达角网格的网格精度,该水平到达角网格的网格精度与该垂直到达角网格的网格精度可以相等或不相等,本申请实施例对此不作限定。第一通信装置在确定该水平到达角网格的网格精度和该垂直到达角网格的网格精度时,还可以参考重构要求信息中的信道重构时长,如果该信道重构时长较长,第一通信装置可以将该水平到达角网格的网格精度和该垂直到达角网格的网格精度均设置的小一些,这样可以减小网格穷举次数,如果该信道重构时长较短,第一通信装置可以将该水平到达角网格的网格精度和该垂直到达角网格的网格精度均设置的大一些。
示例地,第一通信装置将信道重构精度确定为该水平到达角网格的网格精度和垂直到达角网格的网格精度。或者,第一通信装置可以记录有信道重构精度与水平到达角网格精度的第三对应关系,以及,信道重构精度与垂直到达角网格精度的第四对应关系,第一通信装置根据该信道重构精度以及该第三对应关系确定该水平到达角网格的网格精度,根据该信道重构精度以及该第四对应关系确定该垂直到达角网格的网格精度。其中,该第三对应关系和该第四对应关系可以是根据经验确定的,例如,第一通信装置根据以往的信道构建经验学习到的,本申请实施例对此不作限定。
子步骤10132、根据目标接收波束的水平到达角、水平接收波束集、水平接收过采样参数和水平到达角网格的网格精度,构建水平到达角网格。
可选地,第一通信装置根据目标接收波束
Figure PCTCN2021084185-appb-000227
的水平到达角
Figure PCTCN2021084185-appb-000228
水平接收波束集s r,h和该水平接收波束集s r,h的水平接收过采样参数k r,h,确定该水平到达角网格的上边界点
Figure PCTCN2021084185-appb-000229
和下边界点
Figure PCTCN2021084185-appb-000230
根据该目标接收波束
Figure PCTCN2021084185-appb-000231
的水平到达角
Figure PCTCN2021084185-appb-000232
该水平到达角网格的上边界点
Figure PCTCN2021084185-appb-000233
该水平到达角网格的下边界点
Figure PCTCN2021084185-appb-000234
和该水平到达角网格的网格精度,构建该水平到达角网格,该水平到达角网格是中心点为该目标接收波束
Figure PCTCN2021084185-appb-000235
的水平到达角
Figure PCTCN2021084185-appb-000236
的2B r,h+1点网格,例如,该水平到达角网格如图12所示。
其中,2B r,h表示该水平到达角网格中的网格数量,2B r,h的取值根据该上边界点
Figure PCTCN2021084185-appb-000237
该下边界点
Figure PCTCN2021084185-appb-000238
以及该水平到达角网格的网格精度确定。示例地,2B r,h等于该上边界点
Figure PCTCN2021084185-appb-000239
与该下边界点
Figure PCTCN2021084185-appb-000240
的差值除以该水平到达角网格的网格精度,该水平到达角网格的网格精度也即是该水平到达角网格中的单个网格的宽度。
其中,该上边界点
Figure PCTCN2021084185-appb-000241
对应基于该水平接收过采样参数k r,h和该水平接收波束集s r,h确定的与该目标接收波束
Figure PCTCN2021084185-appb-000242
相邻的两个接收波束的水平到达角中的较大值,该下边界点
Figure PCTCN2021084185-appb-000243
对应该相邻的两个接收波束的水平到达角中的较小值。可选地,该第一通信装置根据该水平接收过采样参数k r,h对该水平接收波束集s r,h进行处理得到处理后的水平接收波束集
Figure PCTCN2021084185-appb-000244
从该处理后的水平接收波束集
Figure PCTCN2021084185-appb-000245
中确定在水平方向上与该目标接收波束
Figure PCTCN2021084185-appb-000246
相邻的两个接收波束,将该两个接收波束的水平到达角中的较大值确定为该上边界点
Figure PCTCN2021084185-appb-000247
将该两个接收波束的水平到达角中的较小值确定为该下边界点
Figure PCTCN2021084185-appb-000248
其中,该第一通信装置根据该水平接收过采样参数k r,h对该水平接收波束集s r,h进行处理的过程可以参考前述子步骤209,本申请实施例在此不再赘述。
子步骤10133、根据目标接收波束的垂直到达角、垂直接收波束集、垂直接收过采样参数和垂直到达角网格的网格精度,构建垂直到达角网格。
可选地,第一通信装置根据目标接收波束
Figure PCTCN2021084185-appb-000249
的垂直到达角
Figure PCTCN2021084185-appb-000250
垂直接收波束集s r,v和该垂直接收波束集s r,v垂直接收过采样参数k r,v,确定该垂直到达角网格的上边界点
Figure PCTCN2021084185-appb-000251
和下边界点
Figure PCTCN2021084185-appb-000252
根据该目标接收波束
Figure PCTCN2021084185-appb-000253
的垂直到达角
Figure PCTCN2021084185-appb-000254
该垂直到达角网格的上边界点
Figure PCTCN2021084185-appb-000255
该垂直到达角网格的下边界点
Figure PCTCN2021084185-appb-000256
和该垂直到达角网格的网格精度,构建该垂直到达角网格,该垂直到达角网格是中心点为该目标接收波束
Figure PCTCN2021084185-appb-000257
的垂直到达角
Figure PCTCN2021084185-appb-000258
的2B r,v-1点网格,例如,该垂直离开角网格可以如图13所示。
其中,2B r,v表示该垂直到达角网格中的网格数量,2B r,v的取值根据该上边界点
Figure PCTCN2021084185-appb-000259
该 下边界点
Figure PCTCN2021084185-appb-000260
以及该垂直到达角网格的网格精度确定。示例地,2B r,v等于该上边界点
Figure PCTCN2021084185-appb-000261
与该下边界点
Figure PCTCN2021084185-appb-000262
的差值除以该垂直到达角网格的网格精度,该垂直到达角网格的网格精度也即是该垂直到达角网格中的单个网格的宽度。
其中,该上边界点
Figure PCTCN2021084185-appb-000263
对应基于该垂直接收过采样参数k r,v和该垂直接收波束集s r,v确定的与该目标接收波束
Figure PCTCN2021084185-appb-000264
相邻的两个接收波束的垂直到达角中的较大值,该下边界点
Figure PCTCN2021084185-appb-000265
对应该相邻的两个接收波束的垂直到达角中的较小值。可选地,该第一通信装置根据该垂直接收过采样参数k r,v对该垂直接收波束集s r,v进行处理得到处理后的垂直接收波束集
Figure PCTCN2021084185-appb-000266
从该处理后的垂直接收波束集
Figure PCTCN2021084185-appb-000267
中确定在垂直方向上与该目标接收波束
Figure PCTCN2021084185-appb-000268
相邻的两个接收波束,将该两个接收波束的垂直到达角中的较大值确定为该上边界点
Figure PCTCN2021084185-appb-000269
将该两个接收波束的垂直到达角中的较小值确定为该下边界点
Figure PCTCN2021084185-appb-000270
其中,该第一通信装置根据该垂直接收过采样参数k r,v对该垂直接收波束集s r,v进行处理的过程可以参考前述子步骤209,本申请实施例在此不再赘述。
本领域技术人员可以理解,本申请实施例是子步骤10132至子步骤10133按照先后顺序执行为例说明的,实际实现过程中,本申请并不限定子步骤10132和子步骤10133的先后顺序,也即是可以先执行子步骤10132后执行子步骤10133,也可以先执行子步骤10133后执行子步骤10132,本申请实施例对此不做限定。
以上是子步骤2101中第一通信装置构建第i条传播路径对应的传输角度网格的过程。下面介绍该子步骤2101中第一通信装置构建第i条传播路径对应的传输时延网格的过程。
可选地,第一通信装置根据最大路径时延τ max构建该第i条传播路径对应的传输时延网格。其中,该最大路径时延τ max可以是第一通信装置测量到的。
可选地,第一通信装置根据该第一通信装置的接收机的多径分辨时延(也即是该接收机分辨多径的时延)确定该传输时延网格的网格精度,根据该最大路径时延τ max和该传输时延网格的网格精度,构建该第i条传播路径对应的传输时延网格,该传输时延网格的网格精度也即是该传输时延网格中的单个网格的宽度。示例地,该传输时延网格是下边界为0,上边界为τ max的网格,例如,该传输时延网格可以如图14所示。
下面结合附图,对上述子步骤2102(根据第一接收信号矩阵和第二接收信号矩阵的接收信号残差矩阵,以及该第i条传播路径对应的传输参数网格,确定该第i条传播路径的路径参数)的实现过程进行详细介绍。
其中,路径参数可以包括角度参数、路径增益和路径时延中的至少一种,该角度参数可以包括水平离开角、垂直离开角、水平到达角和垂直到达角中的至少一种;该第一通信装置可以根据该接收信号残差矩阵Y r、该第i条传播路径对应的离开角网格和该第i条传播路径对应的到达角网格,确定该第i条传播路径的水平离开角
Figure PCTCN2021084185-appb-000271
垂直离开角
Figure PCTCN2021084185-appb-000272
水平到达角
Figure PCTCN2021084185-appb-000273
垂直到达角
Figure PCTCN2021084185-appb-000274
和路径增益
Figure PCTCN2021084185-appb-000275
根据该接收信号残差矩阵Y r和该第i条传播路径对应的传输时延网格,确定该第i条传播路径的路径时延
Figure PCTCN2021084185-appb-000276
首先,介绍第一通信装置根据该接收信号残差矩阵Y r、该第i条传播路径对应的离开角网格和该第i条传播路径对应的到达角网格,确定该第i条传播路径的水平离开角
Figure PCTCN2021084185-appb-000277
垂直 离开角
Figure PCTCN2021084185-appb-000278
水平到达角
Figure PCTCN2021084185-appb-000279
垂直到达角
Figure PCTCN2021084185-appb-000280
和路径增益
Figure PCTCN2021084185-appb-000281
的过程。
可选地,第一通信装置首先根据该第i条传播路径对应的水平离开角网格和该第i条传播路径对应的垂直离开角网格确定发射波束矩阵,以及,根据该第i条传播路径对应的水平到达角网格和该第i条传播路径对应的垂直到达角网格确定接收波束矩阵;然后根据该发射波束矩阵和该接收波束矩阵,确定该接收信号残差矩阵Y r在收发波束对子空间的能量分布矩阵;之后根据该接收信号残差矩阵Y r在收发波束对子空间的能量分布矩阵,确定该第i条传播路径的水平离开角
Figure PCTCN2021084185-appb-000282
垂直离开角
Figure PCTCN2021084185-appb-000283
水平到达角
Figure PCTCN2021084185-appb-000284
垂直到达角
Figure PCTCN2021084185-appb-000285
和路径增益
Figure PCTCN2021084185-appb-000286
可选地,接收信号残差矩阵Y r可以为n行m列的矩阵,该发射波束矩阵为m行[(2B t,h+1)×(2B t,v+1)]列的矩阵,该发射波束矩阵中的每个列向量为一个发射波束向量。第一通信装置根据该第i条传播路径对应的水平离开角网格和该第i条传播路径对应的垂直离开角网格确定发射波束矩阵可以包括:第一通信装置根据该第i条传播路径对应的水平离开角网格和该第i条传播路径对应的垂直离开角网格确定m×[(2B t,h+1)×(2B t,v+1)]个网格交点,每个网格交点对应一个联合发射波束,每个联合发射波束具有一个发射波束向量;然后根据该m×[(2B t,h+1)×(2B t,v+1)]个网格交点对应的发射波束向量确定该发射波束矩阵。具体地,第一通信装置将该第i条传播路径对应的水平离开角网格和该第i条传播路径对应的垂直离开角网格垂直交叉(例如将如图10所示的垂直离开角网格旋转90度后与如图9所示的网格交叉)确定m×[(2B t,h+1)×(2B t,v+1)]个网格交点;将该m×[(2B t,h+1)×(2B t,v+1)]个网格交点对应的发射波束向量组合得到该发射波束矩阵,该发射波束矩阵的每列对应一个联合发射波束。
可选地,接收信号残差矩阵Y r可以为n行m列的矩阵,该接收波束矩阵为m行[(2B r,h+1)×(2B r,v+1)]列的矩阵,该接收波束矩阵中的每个列向量为一个接收波束向量。第一通信装置根据该第i条传播路径对应的水平到达角网格和该第i条传播路径对应的垂直到达角网格确定接收波束矩阵可以包括:第一通信装置根据该第i条传播路径对应的水平到达角网格和该第i条传播路径对应的垂直到达角网格确定m×[(2B r,h+1)×(2B r,v+1)]个网格交点,每个该网格交点对应一个联合接收波束,每个联合接收波束具有一个接收波束向量;然后根据该m×[(2B r,h+1)×(2B r,v+1)]个网格交点对应的接收波束向量确定该接收波束矩阵。具体地,第一通信装置将该第i条传播路径对应的水平到达角网格和该第i条传播路径对应的垂直到达角网格垂直交叉(例如将如图13所示的垂直离开角网格旋转90度后与如图12所示的网格交叉)确定m×[(2B r,h+1)×(2B r,v+1)]个网格交点;将该m×[(2B r,h+1)×(2B r,v+1)]个网格交点对应的接收波束向量组合得到该接收波束矩阵,该接收波束矩阵的每列对应一个联合接收波束。
可选地,第一通信装置根据该发射波束矩阵和该接收波束矩阵,确定该接收信号残差矩阵Y r在收发波束对子空间的能量分布矩阵可以包括:第一通信装置将该发射波束矩阵中一个发射波束向量与该接收波束矩阵中的一个接收波束向量叉乘,得到一个收发波束对(该收发波束包括该发射波束向量对应的联合发射波束与该接收波束向量对应的联合接收波束)对应的波束向量;然后,将该接收信号残差矩阵Y r与该一个收发波束对对应的波束向量相乘得到该接收信号残差矩阵Y r在该收发波束对上的能量,根据该接收信号残差矩阵Y r在所有收发波束对上的能量确定该接收信号残差矩阵Y r收发波束对子空间的能量分布矩阵,该能量分布矩阵中的每个元素对应一个收发波束对,每个元素为相应的收发波束对对应的增益(或能量)。
可选地,第一通信装置根据该接收信号残差矩阵Y r在收发波束对子空间的能量分布矩阵,确定该第i条传播路径的水平离开角
Figure PCTCN2021084185-appb-000287
垂直离开角
Figure PCTCN2021084185-appb-000288
水平到达角
Figure PCTCN2021084185-appb-000289
垂直到达 角
Figure PCTCN2021084185-appb-000290
和路径增益
Figure PCTCN2021084185-appb-000291
可以包括:第一通信装置从该能量分布矩阵中确定最大的一个元素值,将该最大的元素值确定为该第i条传播路径的路径增益
Figure PCTCN2021084185-appb-000292
根据该最大的元素值确定最优的收发波束对,从而确定最优发射波束(最优发射波束是联合发射波束)和最优接收波束(最优接收波束是联合接收波束),将该最优发射波束的水平离开角确定为该第i条传播路径的水平离开角
Figure PCTCN2021084185-appb-000293
将该最优发射波束的垂直离开角确定为该第i条传播路径的垂直离开角
Figure PCTCN2021084185-appb-000294
将该最优接收波束的水平到达角确定为该第i条传播路径的水平到达角
Figure PCTCN2021084185-appb-000295
将该最优接收波束的垂直到达角确定为该第i条传播路径的垂直到达角
Figure PCTCN2021084185-appb-000296
其次,介绍第一通信装置根据该接收信号残差矩阵Y r和该第i条传播路径对应的传输时延网格,确定该第i条传播路径的路径时延
Figure PCTCN2021084185-appb-000297
的过程。
可选地,第一通信装置根据该第i条传播路径对应的传输时延网格,将该接收信号残差矩阵Y r转换到时延角度域得到时延角度映射关系,该时延角度映射关系为传输时延与一种角度参数(该角度参数可以是水平离开角、垂直离开角、水平到达角和垂直到达角中的其中一种,例如该角度参数是水平离开角)的映射关系,第一通信装置根据已确定的该第i条传播路径的角度参数(例如水平离开角)和该时延角度映射关系,确定该第i条传播路径的路径时延
Figure PCTCN2021084185-appb-000298
示例地,第一通信装置根据该第i条传播路径对应的传输时延网格确定转换系数,根据该转换系数将该接收信号残差矩阵Y r转换到时延角度域。其中,转换系数可以是DFT系数,第一通信装置可以基于DFT将该接收信号残差矩阵Y r转换到时延角度域,本申请实施例对此不作限定。
综上所述,本申请实施例提供的数据传输方法,第一通信装置首先根据第二通信装置的信道重构要求构建该第一通信装置与该第二通信装置之间的信道,之后基于构建的信道对待发送数据进行预编码,而后向该第二通信装置传输预编码得到的数据。由于该第一通信装置根据该第二通信装置的信道重构要求构建该第一通信装置与该第二通信装置之间的信道,因此该第一通信装置构建信道的灵活性较高,有助于提高无线通信系统的资源利用率。
本申请实施例提供的数据传输方法所涉及的信道重构方案,根据信道重构时长、信道重构精度和最大路径时延等重构要求信息自适应调整信道重构策略(例如过采样参数的设置,传输参数网格精度的设置),能够在波束训练时长和传输参数网格复杂度上取得一个权衡,且由于在指向性波束的方向上构建传输参数网格,能够大大降低传输参数网格的穷举复杂度,该信道重构方案构建信道的复杂度较低,且构建信道的准确性较高,能够适用于毫米波通信系统。相比于基于压缩感知算法重构信道的方案,本申请实施例所涉及的信道重构方案采用DFT码本进行波束训练,能够获得beamforming增益。相比于基于MUSIC算法重构信道的方案,本申请实施例所涉及的信道重构方案无需获取每个天线元件上的接收信号的协方差矩阵,能够适用于数模混合的天线架构。
重构的信道的质量取决于过采样参数和传输参数网格(包括传输角度网格和传输时延网格)的精度,传统的信道重构方案需要构建完备传输角度网格(也即是在整个角度域(0~π)上构建传输角度网格),完备传输角度网格的穷举复杂度(也即是对该完备传输角度网格搜索的复杂度)较高。本申请实施例提供的数据传输方法所涉及的信道重构方案无需在整个角度域上构建传输角度网格,仅需在指向性波束的方向上构建的传输角度网格(例如图9、图10、图12和图13的传输角度网格仅占整个角度域的一部分),能够大大降低传输参数网格的穷举复杂度。
示例地,若第二通信装置的水平方向的天线元件的数量、第二通信装置的垂直方向的天线元件的数量、第一通信装置的水平方向的天线元件的数量和第一通信装置的垂直方向的天线元件的数量依次为N t,h、N t,v、N r,h和N r,v,当水平离开角网格的网格精度、垂直离开角网格的网格精度、水平到达角网格的网格精度和垂直到达角网格的网格精度依次为
Figure PCTCN2021084185-appb-000299
Figure PCTCN2021084185-appb-000300
Figure PCTCN2021084185-appb-000301
时,则完备传输角度网格的大小为N t,hN t,vN r,hN r,vk t,hk t,vk r,hk r,vB t,hB t,vB r,hB r,v,而本申请实施例在指向性波束的方向上构建的传输角度网格的大小为(2B t,h+1)(2B t,v+1)(2B r,h+1)(2B r,v+1),经过对比可以发现,本申请实施例在指向性波束的方向上构建的传输角度网格的大小远远小于完备传输角度网格的大小,本申请实施例在指向性波束的方向上构建的传输角度网格,有助于减小传输角度网格的穷举复杂度。
示例地,假设第二通信装置的天线元件的数量、第一通信装置的天线元件的数量、第二二通信装置的发射过采样参数、第一通信装置的接收过采样参数、第二通信装置的离开角网格中的网格数量以及第一通信装置的到达角网格中的网格数量满足下述公式(16)的条件:
Figure PCTCN2021084185-appb-000302
其中,N t,h、N t,v、N r,h和N r,v依次为第二通信装置的水平方向的天线元件的数量、第二通信装置的垂直方向的天线元件的数量、第一通信装置的水平方向的天线元件的数量和第一通信装置的垂直方向的天线元件的数量。k t,h、k t,v、k r,h和k r,v依次为第二通信装置的水平发射波束集的水平发射过采样参数、第二通信装置的垂直发射波束集的垂直发射过采样参数、第一通信装置的水平接收波束集的水平接收过采样参数和第一通信装置的垂直接收波束集的垂直接收过采样参数。2B t,h、2B t,v、2B r,h和2B r,v依次为第二通信装置的水平离开角网格中的网格数量、第二通信装置的垂直离开角网格中的网格数量、第一通信装置的水平到达角网格中的网格数量和第一通信装置的垂直到达角网格中的网格数量。
则当网格精度为2π/(NkB)时,完备传输角度网格的大小为(NkB) 4,在指向性波束的方向上构建的传输角度网格的大小为(2B+1) 4,该指向性波束的方向上构建的传输角度网格的穷举搜索次数降低到(2/Nk) 4
下面结合仿真附图对本申请涉及的信道重构方案构建的信道的性能进行说明,下文以信道的性能是信道的NMSE为例。
示例地,请参考图15,其示出了本申请实施例提供的一种在不同SNR下,传播路径数量与信道的NMSE的关系曲线图。该图15的仿真条件包括:
无线通信系统的载频:f_c=28GHz;
第一通信装置(例如接收端通信装置)的天线模块的RF链路的数量:N_(r,RF)=5;
第二通信装置(例如发射端通信装置)的天线模块的RF链路的数量:N_(t,RF)=5;
无线通信系统的带宽的子载波间距:Δf=75kHz;
无线通信系统的带宽的子载波的数量:N s=32;
N t,h=N t,v=N r,h=N r,v=4;
k t,h=k t,v=k r,h=k r,v=1;
B t,h=B t,v=B r,h=B r,v=2。
对比图15的三条曲线可以看出,SNR的增加有利于降低信道的NMSE。从该图15的任一曲线可以看出,随着传播路径数量的增加,信道的NMSE略有下降,但总体变化不大,因此传播路径数量对信道的NMSE影响很小,这证明了本申请涉及的信道重构方案在不同传播路径数量下的鲁棒性。
示例地,请参考图16,其示出了本申请实施例提供的一种在不同子载波下,SNR与信道的NMSE的关系曲线图。图16中的BS表示基站(例如可以是前述第一通信装置),UE表示用户设备(例如可以是前述第二通信装置),SC表示无线通信系统的带宽的子载波的数量。
该图16的仿真条件包括:
无线通信系统的载频:f_c=28GHz;
第一通信装置(例如基站)的天线模块的RF链路的数量:N_(r,RF)=5;
第二通信装置(例如UE)的天线模块的RF链路的数量:N_(t,RF)=5;
无线通信系统的带宽的子载波间距:Δf=75kHz;
第一通信装置与第二通信装置之间的传播路径的总数量:L=2;
N t,h=N t,v=N r,h=N r,v=4;
k t,h=k t,v=k r,h=k r,v=1;
B t,h=B t,v=B r,h=B r,v=2。
对比图16的五条曲线可以看出,在第一通信装置(例如基站)的天线阵列(4×4)和第二通信装置(例如UE)的天线阵列(4×4)不变的情况下,子载波的数量的增加有利于降低信道的NMSE。这是因为子载波的数量的增加会使得传输时延网格更加密集,有利于传输时延的估计,也有利于第一通信装置(例如基站)获得更多的信道测量,利于信道估计。
示例地,请参考图17,其示出了本申请实施例提供的一种在不同收发天线阵列下,SNR与信道的NMSE的关系曲线图。图17中的BS表示基站(例如可以是前述第一通信装置),UE表示用户设备(例如可以是前述第二通信装置),SC表示无线通信系统的带宽的子载波的数量。该图17的仿真条件包括:
无线通信系统的载频:f_c=28GHz;
第一通信装置(例如基站)的天线模块的RF链路的数量:N_(r,RF)=5;
第二通信装置(例如UE)的天线模块的RF链路的数量:N_(t,RF)=5;
无线通信系统的带宽的子载波间距:Δf=75kHz;
第一通信装置与第二通信装置之间的传播路径的总数量:L=2;
k t,h=k t,v=k r,h=k r,v=1;
B t,h=B t,v=B r,h=B r,v=2。
对比图17的四条曲线可以看出,在无线通信系统的带宽的子载波的数量的不变的情况下,天线阵列中的天线元件数量的增加有利于降低信道的NMSE。这是因为天线阵列中的天线元件数量的增加会使得天线阵列的增益增大,以及使得波束训练的指向性更强,从而偶构建的传输参数网格更加精确。
示例地,请参考图18,其示出了本申请实施例提供的一种在过采样参数和传输角度网格的网格分辨率取不同值时,SNR与信道的NMSE的关系曲线图。该图18的仿真条件包括:
无线通信系统的载频:f_c=28GHz;
第一通信装置(例如基站)的天线模块的RF链路的数量:N_(r,RF)=5;
第二通信装置(例如UE)的天线模块的RF链路的数量:N_(t,RF)=5;
无线通信系统的带宽的子载波间距:Δf=75kHz;
无线通信系统的带宽的子载波的数量:N s=32;
第一通信装置与第二通信装置之间的传播路径的总数量:L=2;
N t,h=N t,v=N r,h=N r,v=4。
对比图18的四条曲线可以看出,当k×B固定时,k值的增大有利于降低信道的NMSE。这是因为当k×B固定时,k值越大,进行波束训练集中的波束越密集,确定的传输角度网格更准确。当k值固定时,增大B值会使得传输角度网格的穷举搜索次数增大,当B值固定时,增大k值会使得波束训练次数增加。从图18中可以看出,增大k值更有利于降低信道的NMSE,但波束训练次数的增加带来的时频开销比穷举搜索要大。
下述为本申请的装置实施例,可以用于执行本申请的方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图19,其示出了本申请实施例提供的一种通信装置1900的逻辑结构示意图。该通信装置1900可以是前述实施例中的第一通信装置。参见图19,该通信装置1900可以包括但不限于:处理模块1910和发送模块1920。
该处理模块1910,用于根据第二通信装置的重构要求信息,获取该通信装置1900与该第二通信装置之间的至少一条传播路径的路径参数,该重构要求信息指示该第二通信装置的信道重构要求;根据该通信装置1900与该第二通信装置之间的该至少一条传播路径的路径参数,构建该通信装置1900与该第二通信装置之间的信道;
该发送模块1920,用于向第二通信装置传输第一数据,该第一数据是基于构建的信道对待发送数据进行预编码得到的数据。
可选地,该重构要求信息包括信道重构时长;该处理模块1910,具体用于:
向第二通信装置发送该第二通信装置的发射波束训练集的发射过采样参数,该第二通信装置用于基于该发射过采样参数和该发射波束训练集向通信装置1900发送参考信号,该发射过采样参数根据该信道重构时长确定;
基于通信装置1900的接收波束训练集和该接收波束训练集的接收过采样参数测量该参考信号,得到该通信装置1900与该第二通信装置之间的信道的第一接收信号矩阵Y1,该接收过采样参数根据该信道重构时长确定;
根据该第一接收信号矩阵Y1和已确定的i-1条传播路径的第二接收信号矩阵Y2,确定该通信装置1900与该第二通信装置之间的第i条传播路径的路径参数,i为大于或等于1且小于或等于L的整数,L为该通信装置1900与该第二通信装置之间的传播路径的总数量。
可选地,该发送模块1920,还用于在基于通信装置1900的接收波束训练集和该接收波束训练集的接收过采样参数测量该参考信号之前,向该第二通信装置发送资源指示信息,该资源指示信息指示该第二通信装置发送该参考信号的时频资源。
可选地,根据该第一接收信号矩阵Y1和已确定的i-1条传播路径的第二接收信号矩阵Y2,确定该通信装置1900与该第二通信装置之间的第i条传播路径的路径参数,包括:
根据该第一接收信号矩阵Y1和该第二接收信号矩阵Y2的接收信号残差矩阵Y r,构建该 第i条传播路径对应的传输参数网格;
根据该接收信号残差矩阵Y r和该传输参数网格,确定该第i条传播路径的路径参数。
可选地,该传输参数网格包括传输角度网格和传输时延网格中的至少一种;该重构要求信息还包括信道重构精度和最大路径时延τ max中的至少一种;
根据第一接收信号矩阵Y1和该第二接收信号矩阵Y2的接收信号残差矩阵Y r,构建该第i条传播路径对应的传输参数网格,包括:
根据该接收信号残差矩阵Y r和该信道重构精度,构建该第i条传播路径对应的传输角度网格;和/或,
根据该最大路径时延τ max,构建该第i条传播路径对应的传输时延网格。
可选地,该路径参数包括角度参数、路径增益和路径时延中的至少一种;根据该接收信号残差矩阵Y r和该传输参数网格,确定该第i条传播路径的路径参数,包括:
根据该接收信号残差矩阵Y r和该传输角度网格,确定该第i条传播路径的角度参数和路径增益
Figure PCTCN2021084185-appb-000303
和/或,根据该接收信号残差矩阵Y r和该传输时延网格,确定该第i条传播路径的路径时延
Figure PCTCN2021084185-appb-000304
可选地,该传输角度网格包括离开角网格和到达角网格;根据该接收信号残差矩阵Y r和该信道重构精度,构建该第i条传播路径对应的传输角度网格,包括:
根据该接收信号残差矩阵Y r,确定目标发射波束
Figure PCTCN2021084185-appb-000305
和目标接收波束
Figure PCTCN2021084185-appb-000306
根据该目标发射波束
Figure PCTCN2021084185-appb-000307
的离开角和该信道重构精度,构建该第i条传播路径对应的离开角网格;
根据该目标接收波束
Figure PCTCN2021084185-appb-000308
的到达角和该信道重构精度,构建该第i条传播路径对应的到达角网格。
可选地,该离开角网格包括水平离开角网格和垂直离开角网格;该发射波束训练集包括水平发射波束集s t,h和垂直发射波束集s t,v,该发射过采样参数包括该水平发射波束集s t,h的水平发射过采样参数k t,h和该垂直发射波束集s t,v的垂直发射过采样参数k t,v
根据该目标发射波束
Figure PCTCN2021084185-appb-000309
的离开角和该信道重构精度,构建该第i条传播路径对应的离开角网格,包括:
根据该信道重构精度确定该水平离开角网格的网格精度和该垂直离开角网格的网格精度;
根据该目标发射波束
Figure PCTCN2021084185-appb-000310
的水平离开角
Figure PCTCN2021084185-appb-000311
该水平发射波束集s t,h、该水平发射过采样参数k t,h和该水平离开角网格的网格精度,构建水平离开角网格;
根据该目标发射波束
Figure PCTCN2021084185-appb-000312
的垂直离开角
Figure PCTCN2021084185-appb-000313
该垂直发射波束集s t,v、该垂直发射过采样参数k t,v和该垂直离开角网格的网格精度,构建垂直离开角网格。
可选地,该到达角网格包括水平到达角网格和垂直到达角网格;该接收波束训练集包括水平接收波束集s r,h和垂直接收波束集s r,v,该接收过采样参数包括该水平接收波束集s r,h的水平接收过采样参数k r,h和该垂直接收波束集s r,v的垂直接收过采样参数k r,v
根据该目标接收波束
Figure PCTCN2021084185-appb-000314
的到达角和该信道重构精度,构建该第i条传播路径对应的到达角网格,包括:
根据该信道重构精度确定该水平到达角网格的网格精度和该垂直到达角网格的网格精度;
根据该目标接收波束
Figure PCTCN2021084185-appb-000315
的水平到达角
Figure PCTCN2021084185-appb-000316
该水平接收波束集s r,h、该水平接收过采样参数k rh和该水平到达角网格的网格精度,构建水平到达角网格;
根据该目标接收波束
Figure PCTCN2021084185-appb-000317
的垂直到达角
Figure PCTCN2021084185-appb-000318
该垂直接收波束集s r,v、该垂直接收过采样参数k r,v和该垂直到达角网格的网格精度,构建垂直到达角网格。
可选地,该角度参数包括水平离开角、垂直离开角、水平到达角和垂直到达角中的至少一种;根据该接收信号残差矩阵Y r和该传输角度网格,确定该第i条传播路径的角度参数和路径增益
Figure PCTCN2021084185-appb-000319
包括:根据该接收信号残差矩阵Y r、该第i条传播路径对应的离开角网格和该第i条传播路径对应的到达角网格,确定该第i条传播路径的水平离开角
Figure PCTCN2021084185-appb-000320
垂直离开角
Figure PCTCN2021084185-appb-000321
水平到达角
Figure PCTCN2021084185-appb-000322
垂直到达角
Figure PCTCN2021084185-appb-000323
和路径增益
Figure PCTCN2021084185-appb-000324
可选地,该处理模块1910,具体用于:当达到信道重构条件时,根据已确定的j条传播路径的路径参数确定该通信装置1900与该第二通信装置之间的信道矩阵,以重构该通信装置1900与该第二通信装置之间的信道,该已确定的j条传播路径为达到该信道重构条件时确定的所有传播路径,j为大于或等于1且小于或等于L的整数,L为该通信装置1900与该第二通信装置之间的传播路径的总数量。
可选地,该处理模块1910,还用于检测是否达到信道重构条件;
检测是否达到信道重构条件,具体包括:
获取第i-1条传播路径的路径参数后,根据第一接收信号矩阵Y1和该i-1条传播路径的第二接收信号矩阵Y2的接收信号残差矩阵Y r,获取接收信号残差能量;
根据该接收信号残差能量,检测是否达到信道重构条件;
其中,该信道重构条件包括:
Figure PCTCN2021084185-appb-000325
为该接收信号残差矩阵Y r的Frobenius范数的平方,表示该接收信号残差能量,ξ表示预设残差能量。
可选地,该处理模块1910,还用于在根据已确定的j条传播路径的路径参数确定该通信装置1900与该第二通信装置之间的信道矩阵之前,对该j条传播路径的路径参数进行优化。
可选地,第一接收信号矩阵Y1中的元素为通信装置1900测量到的参考信号的接收信号强度,第二接收信号矩阵Y2中的元素为该通信装置1900估计到的该参考信号的接收信号强度,接收信号残差矩阵Y r中的元素为接收信号残差,其中,对于该第一接收信号矩阵Y1、该第二接收信号矩阵Y2和该接收信号残差矩阵Y r中的每个矩阵,该矩阵的每列元素对应一个子载波,每行元素对应一个波束对索引号;
根据该接收信号残差矩阵Y r,确定目标发射波束
Figure PCTCN2021084185-appb-000326
和目标接收波束
Figure PCTCN2021084185-appb-000327
包括:根据该接收信号残差矩阵Y r,确定最大的接收信号残差能量对应的波束对索引号;根据该最大的接收信号残差能量对应的波束对索引号,确定该目标发射波束
Figure PCTCN2021084185-appb-000328
和目标接收波束
Figure PCTCN2021084185-appb-000329
可选地,根据该目标发射波束
Figure PCTCN2021084185-appb-000330
的水平离开角
Figure PCTCN2021084185-appb-000331
该水平发射波束集s t,h、该水平发射过采样参数k t,h和该水平离开角网格的网格精度,构建水平离开角网格,包括:根据该目标发射波束
Figure PCTCN2021084185-appb-000332
的水平离开角
Figure PCTCN2021084185-appb-000333
该水平发射波束集s t,h和该水平发射过采样参数k t,h,确定该水平离开角网格的上边界点
Figure PCTCN2021084185-appb-000334
和下边界点
Figure PCTCN2021084185-appb-000335
该上边界点
Figure PCTCN2021084185-appb-000336
对应基于该水平发射过 采样参数k t,h和该水平发射波束集s t,h确定的与该目标发射波束
Figure PCTCN2021084185-appb-000337
相邻的两个发射波束的水平离开角中的较大值,该下边界点
Figure PCTCN2021084185-appb-000338
对应该相邻的两个发射波束的水平离开角中的较小值;根据该目标发射波束
Figure PCTCN2021084185-appb-000339
的水平离开角
Figure PCTCN2021084185-appb-000340
该水平离开角网格的上边界点
Figure PCTCN2021084185-appb-000341
下边界点
Figure PCTCN2021084185-appb-000342
和该水平离开角网格的网格精度,构建水平离开角网格,该水平离开角网格是中心点为该
Figure PCTCN2021084185-appb-000343
的2B t,h+1点网格,2B t,h表示该水平离开角网格中的网格数量。
可选地,根据该目标发射波束
Figure PCTCN2021084185-appb-000344
的垂直离开角
Figure PCTCN2021084185-appb-000345
该垂直发射波束集s t,v、该垂直发射过采样参数k t,v和该垂直离开角网格的网格精度,构建垂直离开角网格,包括:根据该目标发射波束
Figure PCTCN2021084185-appb-000346
的垂直离开角
Figure PCTCN2021084185-appb-000347
该垂直发射波束集s t,v和该垂直发射过采样参数k t,v,确定该垂直离开角网格的上边界点
Figure PCTCN2021084185-appb-000348
和下边界点
Figure PCTCN2021084185-appb-000349
该上边界点
Figure PCTCN2021084185-appb-000350
对应基于该垂直发射过采样参数k t,v和该垂直发射波束集s t,v确定的与该目标发射波束
Figure PCTCN2021084185-appb-000351
相邻的两个发射波束的垂直离开角中的较大值,该下边界点
Figure PCTCN2021084185-appb-000352
对应该相邻的两个发射波束的垂直离开角中的较小值;根据该目标发射波束
Figure PCTCN2021084185-appb-000353
的垂直离开角
Figure PCTCN2021084185-appb-000354
该垂直离开角网格的上边界点
Figure PCTCN2021084185-appb-000355
下边界点
Figure PCTCN2021084185-appb-000356
和该垂直离开角网格的网格精度,构建该垂直离开角网格,该垂直离开角网格是中心点为该
Figure PCTCN2021084185-appb-000357
的2B t,v+1点网格,2B t,v表示该垂直离开角网格中的网格数量。
可选地,根据该目标接收波束
Figure PCTCN2021084185-appb-000358
的水平到达角
Figure PCTCN2021084185-appb-000359
该水平接收波束集s r,h、该水平接收过采样参数k r,h和该水平到达角网格的网格精度,构建该水平到达角网格,包括:根据该目标接收波束
Figure PCTCN2021084185-appb-000360
的水平到达角
Figure PCTCN2021084185-appb-000361
该水平接收波束集s r,h和该水平接收过采样参数k r,h,确定该水平到达角网格的上边界点
Figure PCTCN2021084185-appb-000362
和下边界点
Figure PCTCN2021084185-appb-000363
该上边界点
Figure PCTCN2021084185-appb-000364
对应基于该水平接收过采样参数k r,h和该水平接收波束集s r,h确定的与该目标接收波束
Figure PCTCN2021084185-appb-000365
相邻的两个接收波束的水平到达角中的较大值,该下边界点
Figure PCTCN2021084185-appb-000366
对应该相邻的两个接收波束的水平到达角中的较小值;根据该目标接收波束
Figure PCTCN2021084185-appb-000367
的水平到达角
Figure PCTCN2021084185-appb-000368
该水平到达角网格的上边界点
Figure PCTCN2021084185-appb-000369
下边界点
Figure PCTCN2021084185-appb-000370
和该水平到达角网格的网格精度,构建水平到达角网格,该水平到达角网格是中心点为该
Figure PCTCN2021084185-appb-000371
的2B r,h+1点网格,2B r,h表示该水平到达角网格中的网格数量。
可选地,根据该目标接收波束
Figure PCTCN2021084185-appb-000372
的垂直到达角
Figure PCTCN2021084185-appb-000373
该垂直接收波束集s r,v、该垂直接收过采样参数k r,v和该垂直到达角网格的网格精度,构建垂直到达角网格,包括:根据该目标接收波束
Figure PCTCN2021084185-appb-000374
的垂直到达角
Figure PCTCN2021084185-appb-000375
该垂直接收波束集s r,v和该垂直接收过采样参数k r,v,确定该垂直到达角网格的上边界点
Figure PCTCN2021084185-appb-000376
和下边界点
Figure PCTCN2021084185-appb-000377
该上边界点
Figure PCTCN2021084185-appb-000378
对应基于该垂直接收过采样参数k r,v和该垂直接收波束集s r,v确定的与该目标接收波束
Figure PCTCN2021084185-appb-000379
相邻的两个接收波束的 垂直到达角中的较大值,该下边界点
Figure PCTCN2021084185-appb-000380
对应该相邻的两个接收波束的垂直到达角中的较小值;根据该目标接收波束
Figure PCTCN2021084185-appb-000381
的垂直到达角
Figure PCTCN2021084185-appb-000382
该垂直到达角网格的上边界点
Figure PCTCN2021084185-appb-000383
下边界点
Figure PCTCN2021084185-appb-000384
和该垂直到达角网格的网格精度,构建垂直到达角网格,该垂直到达角网格是中心点为该
Figure PCTCN2021084185-appb-000385
的2B r,v-1点网格,2B r,v表示该垂直到达角网格中的网格数量。
可选地,根据该接收信号残差矩阵Y r、该第i条传播路径对应的离开角网格和该第i条传播路径对应的到达角网格,确定该第i条传播路径的水平离开角
Figure PCTCN2021084185-appb-000386
垂直离开角
Figure PCTCN2021084185-appb-000387
水平到达角
Figure PCTCN2021084185-appb-000388
垂直到达角
Figure PCTCN2021084185-appb-000389
和路径增益
Figure PCTCN2021084185-appb-000390
包括:根据该水平离开角网格和该垂直离开角网格确定发射波束矩阵,该发射波束矩阵中的每个列向量为一个发射波束向量;根据该水平到达角网格和该垂直到达角网格确定接收波束矩阵,该接收波束矩阵中的每个列向量为一个接收波束向量;根据该发射波束矩阵和该接收波束矩阵,确定该接收信号残差矩阵Y r在收发波束对子空间的能量分布矩阵;根据该能量分布矩阵,确定该第i条传播路径的水平离开角
Figure PCTCN2021084185-appb-000391
垂直离开角
Figure PCTCN2021084185-appb-000392
水平到达角
Figure PCTCN2021084185-appb-000393
垂直到达角
Figure PCTCN2021084185-appb-000394
和路径增益
Figure PCTCN2021084185-appb-000395
可选地,根据该水平到达角网格和该垂直到达角网格确定接收波束矩阵,包括:根据该水平离开角网格和该垂直离开角网格确定多个网格交点,每个网格交点对应一个联合发射波束,每个联合发射波束具有一个发射波束向量;根据该多个网格交点对应的联合发射波束的发射波束向量,确定发射波束矩阵;
根据该水平到达角网格和该垂直到达角网格确定接收波束矩阵,包括:根据该水平到达角网格和该垂直到达角网格确定多个网格交点,每个网格交点对应一个联合发射波束,每个联合发射波束具有一个发射波束向量;根据该多个网格交点对应的联合发射波束的波束向量,确定该接收波束矩阵。
综上所述,本申请实施例提供的通信装置,该通信装置首先根据第二通信装置的信道重构要求构建该通信装置与该第二通信装置之间的信道,之后基于构建的信道对待发送数据进行预编码,而后向该第二通信装置传输预编码得到的数据。由于该通信装置根据该第二通信装置的信道重构要求构建该通信装置与该第二通信装置之间的信道,因此该通信装置构建信道的灵活性较高,有助于提高无线通信系统的资源利用率。
本申请实施例提供的数据传输方法所涉及的信道重构方案,根据信道重构时长、信道重构精度和最大路径时延等重构要求信息自适应调整信道重构策略(例如过采样参数的设置,传输参数网格精度的设置),能够在波束训练时长和传输参数网格复杂度上取得一个权衡,且由于在指向性波束的方向上构建传输参数网格,能够大大降低传输参数网格的穷举复杂度,该信道重构方案构建信道的复杂度较低,且构建信道的准确性较高,能够适用于毫米波通信系统。相比于基于压缩感知算法重构信道的方案,本申请实施例所涉及的信道重构方案采用DFT码本进行波束训练,能够获得beamforming增益。相比于基于MUSIC算法重构信道的方案,本申请实施例所涉及的信道重构方案无需获取每个天线元件上的接收信号的协方差矩阵,能够适用于数模混合的天线架构。
请参考图20,其示出了本申请实施例提供的一种通信装置2000的逻辑结构示意图。该通信装置2000可以是前述实施例中的第二通信装置。参见图20,该通信装置2000可以包括但不限于:接收模块2010和处理模块2020。
该接收模块2010,用于接收第一通信装置传输的第一数据,该第一数据是该第一通信装置基于构建的信道对该第一通信装置的待发送数据进行预编码得到的数据,该信道是该第一通信装置根据该第一通信装置与该通信装置2000之间的至少一条传播路径的路径参数构建的,该至少一条传播路径的路径参数是该第一通信装置根据该通信装置2000的重构要求信息获取的路径参数,该重构要求信息指示该通信装置2000的信道重构要求;
该处理模块2020,用于根据该第一数据恢复出该第一通信装置的该待发送数据。
可选地,该接收模块2010,还用于在接收该第一通信装置传输的第一数据之前,接收该第一通信装置发送的该通信装置2000的发射波束训练集的发射过采样参数;
该通信装置2000包括:发送模块2030,用于基于该发射过采样参数和该发射波束训练集向该第一通信装置发送参考信号。
可选地,该接收模块2010,还用于在基于该发射过采样参数和该发射波束训练集向该第一通信装置发送参考信号之前,接收该第一通信装置发送的资源指示信息,该资源指示信息指示该通信装置2000发送该参考信号的时频资源;
相应地,该发送模块2030,具体用于基于该发射过采样参数和该发射波束训练集,通过该资源指示信息指示的时频资源向该第一通信装置发送参考信号。
综上所述,本申请实施例提供的通信装置,该通信装置首先接收第一通信装置传输的第一数据,然后根据该第一数据恢复出该第一通信装置的待发送数据;其中,该第一数据是该第一通信装置基于构建的信道对该待发送数据进行预编码得到的数据,该信道是该第一通信装置根据该第一通信装置与该通信装置之间的至少一条传播路径的路径参数构建的,该至少一条传播路径的路径参数是该第一通信装置根据该通信装置的重构要求信息获取的路径参数,该重构要求信息指示该通信装置的信道重构要求。由于该第一通信装置根据该通信装置的信道重构要求构建该第一通信装置与该通信装置之间的信道,因此该第一通信装置构建信道的灵活性较高,有助于提高无线通信系统的资源利用率。
请参考图21,其示出了本申请实施例提供的一种通信装置2100的硬件结构示意图。该通信装置2100可以为上述实施例中第一通信装置或第二通信装置,该第一通信装置和该第二通信装置中的其中一个是网络设备,另一个终端设备。参见图21,该通信装置2100包括处理器2102、收发器2104、多根天线2106,存储器2108、通信接口2110和总线2112。处理器2102、收发器2104、存储器2108和通信接口2110通过总线2112彼此通信连接,多根天线2106与收发器2104相连。本领域技术人员容易理解,图21所示的处理器2102、收发器2104、存储器2108和通信接口2110之间的连接方式仅仅是示例性的,在实际实现过程中,处理器2102、收发器2104、存储器2108和通信接口2110也可以采用除了总线2112之外的其他连接方式彼此通信连接,本申请实施例对此不作限定。
其中,存储器2108可以用于存储计算机程序21081,该计算机程序21081可以包括指令和数据。该存储器2108可以是各种类型的存储介质,例如随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、非易失性RAM(non-volatile RAM,NVRAM)、可编程ROM(programmable ROM,PROM)、可擦除PROM(erasable PROM,EPROM)、电可擦除PROM(electrically erasable PROM,EEPROM)、闪存、光存储器和寄存器等。并且,该存储器2108可以包括硬盘和/或内存。
其中,处理器2102可以是通用处理器,通用处理器可以是通过读取并执行存储器(例如存储器2108)中存储的计算机程序21081来执行特定步骤和/或操作的处理器,通用处理器在执行上述步骤和/或操作的过程中可能用到存储在存储器(例如存储器2108)中的数据。通用处理器可以是,例如但不限于,中央处理器(central processing unit,CPU)。此外,处理器2102也可以是专用处理器,专用处理器可以是专门设计的用于执行特定步骤和/或操作的处理器,该专用处理器可以是,例如但不限于,数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)和现场可编程门阵列(field-programmable gate array,FPGA)等。处理器2102还可以是多个处理器的组合,例如多核处理器。处理器2102可以包括至少一个电路,以执行上述实施例提供的数据传输方法的全部或部分步骤。
其中,收发器2104用于收发信号。可选地,收发器2104其通过多根天线2106之中的至少一根天线来收发信号。通信接口2110可以包括输入/输出(input/output,I/O)接口、物理接口和逻辑接口等用于实现通信装置2100内部的器件互连的接口,以及用于实现通信装置2100与其他通信装置互连的接口。物理接口可以是千兆的以太接口(gigabit Ethernet,GE),其可以用于实现通信装置2100与其他通信装置互连,逻辑接口是通信装置2100内部的接口,其可以用于实现通信装置2100内部的器件互连。容易理解,通信接口2110可以用于通信装置2100与其他通信装置通信,例如,通信接口2110用于通信装置2100与其他通信装置之间信息的发送和接收。可以理解的是,收发器2104也可以属于该通信装置2100的通信接口。
其中,总线2112可以是任何类型的,用于实现处理器2102、收发器2104、存储器2108和通信接口2110互连的通信总线,例如系统总线。
在具体实现过程中,处理器2102可以用于进行,例如但不限于,基带相关处理,收发器2104可以用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器2102可以进一步划分为模拟基带处理器和数字基带处理器,其中模拟基带处理器可以与收发器2104集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(system on chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本申请实施例对上述器件的具体实现形式不作限定。
图21所示的通信装置2100仅仅是示例性的,在实现过程中,通信装置2100还可以包括其他组件,本文不再一一列举。该图21所示的通信装置2100可以通过执行上述实施例提供的数据传输方法的全部或部分步骤来进行数据传输。
本申请实施例提供了一种无线通信系统,该无线通信系统可以包括如图19所示的第一通信装置1900和如图20所示的第二通信装置2000,或者,该无线通信系统包括至少一个如图21所示的通信装置2100。例如,该无线通信系统可以如图3所示。
其中,该第一通信装置1900和该第二通信装置2000中的一个可以是终端设备,另一个可以是网络设备。例如,该第一通信装置1900是网络设备(例如基站),该第二通信装置2000是终端设备(例如UE)。示例地,该无线通信系统为毫米波通信系统,该第一通信装置1900 可以是毫米波基站,该第二通信装置2000可以是毫米波终端。
本申请实施例还提供了一种装置,可用于实现上述实施例中第一通信装置或第二通信装置的功能,该装置可以是通信装置或者通信装置中的芯片。该通信装置包括:
至少一个输入输出接口和逻辑电路。输入输出接口可以是输入输出电路。逻辑电路可以是信号处理器、芯片,或其他可以实现本申请方法的集成电路。
其中,至少一个输入输出接口用于信号或数据的输入或输出。举例来说,当该装置为上述实施例中的第一通信装置时,输入输出接口用于输出发射过采样参数、资源指示信息以及输入参考信号等等;当该装置为上述实施例中第二通信装置时,输入输出接口用于接收发射过采样参数、资源指示信息以及输出参考信号。
其中,逻辑电路用于执行本申请实施例提供的任意一种方法的部分或全部步骤。逻辑电路可以实现上述装置1900中的处理模块1910、装置2000中的处理模块2020以及装置2100中的处理器2102所实现的功能。举例来说,当该装置为上述实施例中的第一通信装置时,用于执行上述方法实施例中的第一通信装置的各种步骤,例如逻辑电路用于获取第二通信装置的重构要求信息,根据第二通信装置的重构要求信息获取第一通信装置与第二通信装置中的至少一条传播路径的路径参数,根据第一通信装置与第二通信装置中的该至少一条传播路径的路径参数构建第一通信装置与第二通信装置之间的信道等等;当该装置为上述实施例中的第二通信装置时,用于执行上述方法实施例中的第二通信装置的各种步骤,例如逻辑电路用于根据第一数据恢复出第一通信装置的待发送数据等等。
本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质内存储有计算机程序,该计算机程序被处理器执行时使得计算机实现如上述方法实施例提供的数据传输方法方法的全部或部分步骤。
本申请实施例提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行如上述方法实施例提供的数据传输方法方法的全部或部分步骤。
本申请实施例提供了一种芯片,该芯片包括可编程逻辑电路和/或程序指令,当该芯片运行时用于实现如上述方法实施例提供的数据传输方法方法的全部或部分步骤。
应当理解的是,本文中的“至少一个”指一个或多个,“多个”指两个或两个以上。“至少两个”指两个或两个以上,在本申请中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,为了便于清楚描述,在本申请中,采用了“第一”、“第二”、“第三”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”、“第三”等字样并不对数量和执行次序进行限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现,所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产 生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机的可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者包含一个或多个可用介质集成的服务器、数据中心等数据存储装置。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质,或者半导体介质(例如固态硬盘)等。
本申请实施例提供的方法实施例和装置实施例等不同类型的实施例均可以相互参考。在本申请中出现的对步骤进行的命名或者编号,并不意味着必须按照命名或者编号所指示的时间/逻辑先后顺序执行方法流程中的步骤,已经命名或者编号的流程步骤可以根据要实现的技术目的变更执行次序,只要能达到相同或者相类似的技术效果即可。
在本申请提供的相应实施例中,应该理解到,所揭露的装置等可以通过其它的构成方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元描述的部件可以是或者也可以不是物理单元,既可以位于一个地方,或者也可以分布到多个网络设备(例如用户设备)上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述,仅为本申请的示例性实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (38)

  1. 一种数据传输方法,其特征在于,应用于无线通信系统中的第一通信装置,所述无线通信系统包括第二通信装置和所述第一通信装置,所述方法包括:
    根据所述第二通信装置的重构要求信息,获取所述第一通信装置与所述第二通信装置之间的至少一条传播路径的路径参数,所述重构要求信息指示所述第二通信装置的信道重构要求;
    根据所述第一通信装置与所述第二通信装置之间的所述至少一条传播路径的路径参数,构建所述第一通信装置与所述第二通信装置之间的信道;
    向所述第二通信装置传输第一数据,所述第一数据是基于构建的所述信道对待发送数据进行预编码得到的数据。
  2. 根据权利要求1所述的方法,其特征在于,
    所述重构要求信息包括信道重构时长;
    所述根据所述第二通信装置的重构要求信息,获取所述第一通信装置与所述第二通信装置之间的至少一条传播路径的路径参数,包括:
    向所述第二通信装置发送所述第二通信装置的发射波束训练集的发射过采样参数,所述第二通信装置用于基于所述发射过采样参数和所述发射波束训练集向所述第一通信装置发送参考信号,所述发射过采样参数根据所述信道重构时长确定;
    基于所述第一通信装置的接收波束训练集和所述接收波束训练集的接收过采样参数测量所述参考信号,得到所述第一通信装置与所述第二通信装置之间的信道的第一接收信号矩阵,所述接收过采样参数根据所述信道重构时长确定;
    根据所述第一接收信号矩阵和已确定的i-1条传播路径的第二接收信号矩阵,确定所述第一通信装置与所述第二通信装置之间的第i条传播路径的路径参数,i为大于或等于1且小于或等于L的整数,L为所述第一通信装置与所述第二通信装置之间的传播路径的总数量。
  3. 根据权利要求2所述的方法,其特征在于,
    在基于所述第一通信装置的接收波束训练集和所述接收波束训练集的接收过采样参数测量所述参考信号之前,所述方法还包括:
    向所述第二通信装置发送资源指示信息,所述资源指示信息指示所述第二通信装置发送所述参考信号的时频资源。
  4. 根据权利要求2或3所述的方法,其特征在于,
    所述根据所述第一接收信号矩阵和已确定的i-1条传播路径的第二接收信号矩阵,确定所述第一通信装置与所述第二通信装置之间的第i条传播路径的路径参数,包括:
    根据所述第一接收信号矩阵和所述第二接收信号矩阵的接收信号残差矩阵,构建所述第i条传播路径对应的传输参数网格;
    根据所述接收信号残差矩阵和所述传输参数网格,确定所述第i条传播路径的路径参数。
  5. 根据权利要求4所述的方法,其特征在于,
    所述传输参数网格包括传输角度网格和传输时延网格中的至少一种;
    所述重构要求信息还包括信道重构精度和最大路径时延中的至少一种;
    所述根据所述第一接收信号矩阵和所述第二接收信号矩阵的接收信号残差矩阵,构建所述第i条传播路径对应的传输参数网格,包括:
    根据所述接收信号残差矩阵和所述信道重构精度,构建所述第i条传播路径对应的所述传输角度网格;和/或,
    根据所述最大路径时延,构建所述第i条传播路径对应的所述传输时延网格。
  6. 根据权利要求5所述的方法,其特征在于,
    所述路径参数包括角度参数、路径增益和路径时延中的至少一种;
    所述根据所述接收信号残差矩阵和所述传输参数网格,确定所述第i条传播路径的路径参数,包括:
    根据所述接收信号残差矩阵和所述传输角度网格,确定所述第i条传播路径的角度参数和路径增益;和/或,
    根据所述接收信号残差矩阵和所述传输时延网格,确定所述第i条传播路径的路径时延。
  7. 根据权利要求5或6所述的方法,其特征在于,
    所述传输角度网格包括离开角网格和到达角网格;
    所述根据所述接收信号残差矩阵和所述信道重构精度,构建所述第i条传播路径对应的所述传输角度网格,包括:
    根据所述接收信号残差矩阵,确定目标发射波束和目标接收波束;
    根据所述目标发射波束的离开角和所述信道重构精度,构建所述第i条传播路径对应的离开角网格;
    根据所述目标接收波束的到达角和所述信道重构精度,构建所述第i条传播路径对应的到达角网格。
  8. 根据权利要求7所述的方法,其特征在于,
    所述离开角网格包括水平离开角网格和垂直离开角网格;所述发射波束训练集包括水平发射波束集和垂直发射波束集,所述发射过采样参数包括所述水平发射波束集的水平发射过采样参数和所述垂直发射波束集的垂直发射过采样参数;
    所述根据所述目标发射波束的离开角和所述信道重构精度,构建所述第i条传播路径对应的离开角网格,包括:
    根据所述信道重构精度确定所述水平离开角网格的网格精度和所述垂直离开角网格的网格精度;
    根据所述目标发射波束的水平离开角、所述水平发射波束集、所述水平发射过采样参数和所述水平离开角网格的网格精度,构建所述水平离开角网格;
    根据所述目标发射波束的垂直离开角、所述垂直发射波束集、所述垂直发射过采样参数和所述垂直离开角网格的网格精度,构建所述垂直离开角网格。
  9. 根据权利要求7所述的方法,其特征在于,
    所述到达角网格包括水平到达角网格和垂直到达角网格;所述接收波束训练集包括水平接收波束集和垂直接收波束集,所述接收过采样参数包括所述水平接收波束集的水平接收过采样参数和所述垂直接收波束集的垂直接收过采样参数;
    所述根据所述目标接收波束的到达角和所述信道重构精度,构建所述第i条传播路径对应的到达角网格,包括:
    根据所述信道重构精度确定所述水平到达角网格的网格精度和所述垂直到达角网格的网格精度;
    根据所述目标接收波束的水平到达角、所述水平接收波束集、所述水平接收过采样参数和所述水平到达角网格的网格精度,构建所述水平到达角网格;
    根据所述目标接收波束的垂直到达角、所述垂直接收波束集、所述垂直接收过采样参数和所述垂直到达角网格的网格精度,构建所述垂直到达角网格。
  10. 根据权利要求7至9任一项所述的方法,其特征在于,
    所述角度参数包括水平离开角、垂直离开角、水平到达角和垂直到达角中的至少一种;
    所述根据所述接收信号残差矩阵和所述传输角度网格,确定所述第i条传播路径的角度参数和路径增益,包括:
    根据所述接收信号残差矩阵、所述第i条传播路径对应的所述离开角网格和所述第i条传播路径对应的所述到达角网格,确定所述第i条传播路径的水平离开角、垂直离开角、水平到达角、垂直到达角和路径增益。
  11. 根据权利要求2至10任一项所述的方法,其特征在于,
    所述根据所述第一通信装置与所述第二通信装置之间的所述至少一条传播路径的路径参数,构建所述第一通信装置与所述第二通信装置之间的信道,包括:
    当达到信道重构条件时,根据已确定的j条传播路径的路径参数确定所述第一通信装置与所述第二通信装置之间的信道矩阵,以构建所述第一通信装置与所述第二通信装置之间的信道,所述已确定的j条传播路径为达到所述信道重构条件时确定的所有传播路径,j为大于或等于1且小于或等于L的整数,L为所述第一通信装置与所述第二通信装置之间的传播路径的总数量。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    检测是否达到所述信道重构条件,具体包括:
    获取第i-1条传播路径的路径参数后,根据所述第一接收信号矩阵和所述i-1条传播路径的所述第二接收信号矩阵的接收信号残差矩阵,获取接收信号残差能量;
    根据所述接收信号残差能量,检测是否达到信道重构条件;
    其中,所述信道重构条件包括:
    Figure PCTCN2021084185-appb-100001
    为所述接收信号残差矩阵的Frobenius范数的平方,表示所述接收信号残差能量,ξ表示预设残差能量。
  13. 一种数据传输方法,其特征在于,应用于无线通信系统中的第二通信装置,所述无线通信系统包括第一通信装置和所述第二通信装置,所述方法包括:
    接收所述第一通信装置传输的第一数据,所述第一数据是所述第一通信装置基于构建的信道对所述第一通信装置的待发送数据进行预编码得到的数据,所述信道是所述第一通信装置根据所述第一通信装置与所述第二通信装置之间的至少一条传播路径的路径参数构建的,所述至少一条传播路径的路径参数是所述第一通信装置根据所述第二通信装置的重构要求信息获取的路径参数,所述重构要求信息指示所述第二通信装置的信道重构要求;
    根据所述第一数据恢复出所述第一通信装置的所述待发送数据。
  14. 根据权利要求13所述的方法,其特征在于,
    在接收所述第一通信装置传输的第一数据之前,所述方法还包括:
    接收所述第一通信装置发送的所述第二通信装置的发射波束训练集的发射过采样参数;
    基于所述发射过采样参数和所述发射波束训练集向所述第一通信装置发送参考信号。
  15. 根据权利要求14所述的方法,其特征在于,
    在基于所述发射过采样参数和所述发射波束训练集向所述第一通信装置发送参考信号之前,所述方法还包括:
    接收所述第一通信装置发送的资源指示信息,所述资源指示信息指示所述第二通信装置发送所述参考信号的时频资源;
    所述基于所述发射过采样参数和所述发射波束训练集向所述第一通信装置发送参考信号,包括:
    基于所述发射过采样参数和所述发射波束训练集,通过所述资源指示信息指示的时频资源向所述第一通信装置发送参考信号。
  16. 一种通信装置,其特征在于,所述通信装置包括:处理模块和发送模块;
    所述处理模块,用于根据第二通信装置的重构要求信息,获取所述通信装置与所述第二通信装置之间的至少一条传播路径的路径参数,所述重构要求信息指示所述第二通信装置的信道重构要求;根据所述通信装置与所述第二通信装置之间的所述至少一条传播路径的路径参数,构建所述通信装置与所述第二通信装置之间的信道;
    所述发送模块,用于向所述第二通信装置传输第一数据,所述第一数据是基于构建的所述信道对待发送数据进行预编码得到的数据。
  17. 根据权利要求16所述的通信装置,其特征在于,
    所述重构要求信息包括信道重构时长;所述处理模块,具体用于:
    向所述第二通信装置发送所述第二通信装置的发射波束训练集的发射过采样参数,所述第二通信装置用于基于所述发射过采样参数和所述发射波束训练集向所述通信装置发送参考信号,所述发射过采样参数根据所述信道重构时长确定;
    基于所述通信装置的接收波束训练集和所述接收波束训练集的接收过采样参数测量所述 参考信号,得到所述通信装置与所述第二通信装置之间的信道的第一接收信号矩阵,所述接收过采样参数根据所述信道重构时长确定;
    根据所述第一接收信号矩阵和已确定的i-1条传播路径的第二接收信号矩阵,确定所述通信装置与所述第二通信装置之间的第i条传播路径的路径参数,i为大于或等于1且小于或等于L的整数,L为所述通信装置与所述第二通信装置之间的传播路径的总数量。
  18. 根据权利要求17所述的通信装置,其特征在于,
    所述发送模块,还用于在基于所述通信装置的接收波束训练集和所述接收波束训练集的接收过采样参数测量所述参考信号之前,向所述第二通信装置发送资源指示信息,所述资源指示信息指示所述第二通信装置发送所述参考信号的时频资源。
  19. 根据权利要求17或18所述的通信装置,其特征在于,
    所述根据所述第一接收信号矩阵和已确定的i-1条传播路径的第二接收信号矩阵,确定所述通信装置与所述第二通信装置之间的第i条传播路径的路径参数,包括:
    根据所述第一接收信号矩阵和所述第二接收信号矩阵的接收信号残差矩阵,构建所述第i条传播路径对应的传输参数网格;
    根据所述接收信号残差矩阵和所述传输参数网格,确定所述第i条传播路径的路径参数。
  20. 根据权利要求19所述的通信装置,其特征在于,
    所述传输参数网格包括传输角度网格和传输时延网格中的至少一种;
    所述重构要求信息还包括信道重构精度和最大路径时延中的至少一种;
    所述根据所述第一接收信号矩阵和所述第二接收信号矩阵的接收信号残差矩阵,构建所述第i条传播路径对应的传输参数网格,包括:
    根据所述接收信号残差矩阵和所述信道重构精度,构建所述第i条传播路径对应的所述传输角度网格;和/或,
    根据所述最大路径时延,构建所述第i条传播路径对应的所述传输时延网格。
  21. 根据权利要求20所述的通信装置,其特征在于,
    所述路径参数包括角度参数、路径增益和路径时延中的至少一种;
    所述根据所述接收信号残差矩阵和所述传输参数网格,确定所述第i条传播路径的路径参数,包括:
    根据所述接收信号残差矩阵和所述传输角度网格,确定所述第i条传播路径的角度参数和路径增益;和/或,
    根据所述接收信号残差矩阵和所述传输时延网格,确定所述第i条传播路径的路径时延。
  22. 根据权利要求20或21所述的通信装置,其特征在于,
    所述传输角度网格包括离开角网格和到达角网格;
    所述根据所述接收信号残差矩阵和所述信道重构精度,构建所述第i条传播路径对应的所述传输角度网格,包括:
    根据所述接收信号残差矩阵,确定目标发射波束和目标接收波束;
    根据所述目标发射波束的离开角和所述信道重构精度,构建所述第i条传播路径对应的离开角网格;
    根据所述目标接收波束的到达角和所述信道重构精度,构建所述第i条传播路径对应的到达角网格。
  23. 根据权利要求22所述的通信装置,其特征在于,
    所述离开角网格包括水平离开角网格和垂直离开角网格;所述发射波束训练集包括水平发射波束集和垂直发射波束集,所述发射过采样参数包括所述水平发射波束集的水平发射过采样参数和所述垂直发射波束集的垂直发射过采样参数;
    所述根据所述目标发射波束的离开角和所述信道重构精度,构建所述第i条传播路径对应的离开角网格,包括:
    根据所述信道重构精度确定所述水平离开角网格的网格精度和所述垂直离开角网格的网格精度;
    根据所述目标发射波束的水平离开角、所述水平发射波束集、所述水平发射过采样参数和所述水平离开角网格的网格精度,构建所述水平离开角网格;
    根据所述目标发射波束的垂直离开角、所述垂直发射波束集、所述垂直发射过采样参数和所述垂直离开角网格的网格精度,构建所述垂直离开角网格。
  24. 根据权利要求22所述的通信装置,其特征在于,
    所述到达角网格包括水平到达角网格和垂直到达角网格;所述接收波束训练集包括水平接收波束集和垂直接收波束集,所述接收过采样参数包括所述水平接收波束集的水平接收过采样参数和所述垂直接收波束集的垂直接收过采样参数;
    所述根据所述目标接收波束的到达角和所述信道重构精度,构建所述第i条传播路径对应的到达角网格,包括:
    根据所述信道重构精度确定所述水平到达角网格的网格精度和所述垂直到达角网格的网格精度;
    根据所述目标接收波束的水平到达角、所述水平接收波束集、所述水平接收过采样参数和所述水平到达角网格的网格精度,构建所述水平到达角网格;
    根据所述目标接收波束的垂直到达角、所述垂直接收波束集、所述垂直接收过采样参数和所述垂直到达角网格的网格精度,构建所述垂直到达角网格。
  25. 根据权利要求22至24任一项所述的通信装置,其特征在于,
    所述角度参数包括水平离开角、垂直离开角、水平到达角和垂直到达角中的至少一种;
    所述根据所述接收信号残差矩阵和所述传输角度网格,确定所述第i条传播路径的角度参数和路径增益,包括:
    根据所述接收信号残差矩阵、所述第i条传播路径对应的所述离开角网格和所述第i条传播路径对应的所述到达角网格,确定所述第i条传播路径的水平离开角、垂直离开角、水平到达角、垂直到达角和路径增益。
  26. 根据权利要求17至25任一项所述的通信装置,其特征在于,
    所述处理模块,具体用于:当达到信道重构条件时,根据已确定的j条传播路径的路径参数确定所述通信装置与所述第二通信装置之间的信道矩阵,以构建所述通信装置与所述第二通信装置之间的信道,所述已确定的j条传播路径为达到所述信道重构条件时确定的所有传播路径,j为大于或等于1且小于或等于L的整数,L为所述通信装置与所述第二通信装置之间的传播路径的总数量。
  27. 根据权利要求26所述的通信装置,其特征在于,
    所述处理模块,还用于检测是否达到所述信道重构条件;
    所述检测是否达到所述信道重构条件具体包括:
    获取第i-1条传播路径的路径参数后,根据所述第一接收信号矩阵和所述i-1条传播路径的所述第二接收信号矩阵的接收信号残差矩阵,获取接收信号残差能量;
    根据所述接收信号残差能量,检测是否达到信道重构条件;
    其中,所述信道重构条件包括:
    Figure PCTCN2021084185-appb-100002
    为所述接收信号残差矩阵的Frobenius范数的平方,表示所述接收信号残差能量,ξ表示预设残差能量。
  28. 一种通信装置,其特征在于,所述通信装置包括:接收模块和处理模块;
    所述接收模块,用于接收第一通信装置传输的第一数据,所述第一数据是所述第一通信装置基于构建的信道对所述第一通信装置的待发送数据进行预编码得到的数据,所述信道是所述第一通信装置根据所述第一通信装置与所述通信装置之间的至少一条传播路径的路径参数构建的,所述至少一条传播路径的路径参数是所述第一通信装置根据所述通信装置的重构要求信息获取的路径参数,所述重构要求信息指示所述通信装置的信道重构要求;
    所述处理模块,用于根据所述第一数据恢复出所述第一通信装置的所述待发送数据。
  29. 根据权利要求18所述的装置,其特征在于,
    所述接收模块,还用于在接收所述第一通信装置传输的第一数据之前,接收所述第一通信装置发送的所述通信装置的发射波束训练集的发射过采样参数;
    所述通信装置包括:发送模块,用于基于所述发射过采样参数和所述发射波束训练集向所述第一通信装置发送参考信号。
  30. 根据权利要求29所述的装置,其特征在于,
    所述接收模块,还用于在基于所述发射过采样参数和所述发射波束训练集向所述第一通信装置发送参考信号之前,接收所述第一通信装置发送的资源指示信息,所述资源指示信息指示所述通信装置发送所述参考信号的时频资源;
    所述发送模块,具体用于基于所述发射过采样参数和所述发射波束训练集,通过所述资源指示信息指示的时频资源向所述第一通信装置发送参考信号。
  31. 一种通信装置,其特征在于,包括处理器,所述处理器用于执行存储器中存储的计算机程序,以使得所述通信装置执行如权利要求1至12任一项所述的数据传输方法,或者,执行如权利要求13至15任一项所述的数据传输方法。
  32. 根据权利要求31所述的通信装置,其特征在于,所述通信装置还包括所述存储器。
  33. 一种无线通信系统,其特征在于,包括如权利要求16至27任一项所述的通信装置和权利要求28至30任一项所述的通信装置;或者,包括至少一个如权利要求31或32所述的通信装置。
  34. 一种通信装置,其特征在于,包括输入输出接口和逻辑电路;
    所述逻辑电路,用于执行如权利要求1至12任一项所述的方法构建所述通信装置与第二通信装置之间的信道;
    所述输入输出接口,用于输出第一数据,所述第一数据是基于构建的所述信道对待发送数据进行预编码得到的数据。
  35. 一种通信装置,其特征在于,包括输入输出接口和逻辑电路;
    所述输入输出接口,用于获取第一数据;
    所述逻辑电路,用于执行如权利要求13至15任一项所述的方法根据所述第一数据恢复出第一通信装置的待发送数据。
  36. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时,使得
    如权利要求1至12任一项所述的数据传输方法被执行;或者,
    如权利要求13至15任一项所述的数据传输方法被执行。
  37. 一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得权利要求1至12任一项所述的方法被执行;或者使得权利要求13至15任一项所述的方法被执行。
  38. 一种计算机程序,当其在计算机上运行时,使得权利要求1至12任一项所述的方法被执行;或者使得权利要求13至15任一项所述的方法被执行。
PCT/CN2021/084185 2020-08-21 2021-03-30 数据传输方法及装置、无线通信系统、存储介质 WO2022037074A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21857176.8A EP4191893A4 (en) 2020-08-21 2021-03-30 DATA TRANSMISSION METHOD AND APPARATUS, WIRELESS COMMUNICATION SYSTEM AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010852543.1 2020-08-21
CN202010852543.1A CN114079491A (zh) 2020-08-21 2020-08-21 数据传输方法及装置、无线通信系统、存储介质

Publications (1)

Publication Number Publication Date
WO2022037074A1 true WO2022037074A1 (zh) 2022-02-24

Family

ID=80282586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084185 WO2022037074A1 (zh) 2020-08-21 2021-03-30 数据传输方法及装置、无线通信系统、存储介质

Country Status (3)

Country Link
EP (1) EP4191893A4 (zh)
CN (1) CN114079491A (zh)
WO (1) WO2022037074A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117478573A (zh) * 2022-07-22 2024-01-30 维沃移动通信有限公司 感知信号的路径确定方法、装置、通信设备、系统及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039604A1 (en) * 2014-09-12 2016-03-17 Samsung Electronics Co., Ltd. Method and apparatus for channel state information based on antenna mapping and subsampling
CN109787924A (zh) * 2019-03-13 2019-05-21 重庆邮电大学 一种基于压缩感知的LoRa信道估计方法
CN110519189A (zh) * 2019-08-30 2019-11-29 东南大学 高度移动场景下基于压缩感知的毫米波信道估计方法
CN111356171A (zh) * 2018-12-21 2020-06-30 华为技术有限公司 一种信道状态信息csi上报的配置方法和通信装置
CN111490950A (zh) * 2019-01-28 2020-08-04 成都华为技术有限公司 信道构建方法及通信设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106470052B (zh) * 2015-08-14 2019-10-25 财团法人工业技术研究院 动态波束形成方法和使用所述方法的基站和用户设备
CN112514277B (zh) * 2018-03-16 2022-05-17 华为技术有限公司 用于多径角度估计的接收器和发送器
EP3672096A1 (en) * 2018-12-22 2020-06-24 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Methods and apparatuses for feedback reporting in a wireless communications network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039604A1 (en) * 2014-09-12 2016-03-17 Samsung Electronics Co., Ltd. Method and apparatus for channel state information based on antenna mapping and subsampling
CN111356171A (zh) * 2018-12-21 2020-06-30 华为技术有限公司 一种信道状态信息csi上报的配置方法和通信装置
CN111490950A (zh) * 2019-01-28 2020-08-04 成都华为技术有限公司 信道构建方法及通信设备
CN109787924A (zh) * 2019-03-13 2019-05-21 重庆邮电大学 一种基于压缩感知的LoRa信道估计方法
CN110519189A (zh) * 2019-08-30 2019-11-29 东南大学 高度移动场景下基于压缩感知的毫米波信道估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4191893A4

Also Published As

Publication number Publication date
CN114079491A (zh) 2022-02-22
EP4191893A1 (en) 2023-06-07
EP4191893A4 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
US10230440B2 (en) Communication method and apparatus using beamforming in a wireless communication system
US11711121B2 (en) Wireless communication method and wireless communication device
CN107078769B (zh) 用于使用多个频率的波束选择的系统和方法
US9414371B2 (en) Hierarchical channel sounding and channel state information feedback in massive MIMO systems
WO2017020688A1 (zh) 波束参考信号的发送方法、波束选择方法、基站及用户终端
US9912393B2 (en) Radio frequency beamforming basis function feedback
KR20180098592A (ko) 다중-입력 및 다중-출력(mimo) 무선 네트워크들에 대한 희소 상관 매트릭스의 피드백
CN112217550B (zh) 预编码处理方法和装置
US20140334564A1 (en) Method and system for providing low-complexity hybrid precoding in wireless communication systems
US10587435B2 (en) Technique for radio channel estimation
WO2019047827A9 (zh) 一种指示及确定预编码矩阵的方法和设备
WO2022021443A1 (zh) 一种预编码方法及装置
US10455591B2 (en) Apparatuses, methods, computer programs, and computer program products for interference avoidance
CN114205005A (zh) 基于轨道角动量的发送、接收方法及装置
WO2022037074A1 (zh) 数据传输方法及装置、无线通信系统、存储介质
US11005541B2 (en) Method for transmitting feedback information and terminal therefor
WO2023165458A1 (zh) 信道状态信息的反馈方法和通信装置
WO2023160247A1 (zh) 下行传输的方法及装置
KR20230048248A (ko) 송신 상태 잠금 방법 및 장치
WO2024067251A1 (zh) 一种通信方法及相关设备
WO2023082775A1 (zh) 参考信号的传输方法和装置
WO2023284659A1 (zh) 信道信息获取方法和通信装置
WO2021227932A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021244376A1 (zh) 通信方法及装置
WO2022204970A1 (zh) 一种参考信号的传输方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021857176

Country of ref document: EP

Effective date: 20230303

NENP Non-entry into the national phase

Ref country code: DE