WO2017020688A1 - 波束参考信号的发送方法、波束选择方法、基站及用户终端 - Google Patents

波束参考信号的发送方法、波束选择方法、基站及用户终端 Download PDF

Info

Publication number
WO2017020688A1
WO2017020688A1 PCT/CN2016/089766 CN2016089766W WO2017020688A1 WO 2017020688 A1 WO2017020688 A1 WO 2017020688A1 CN 2016089766 W CN2016089766 W CN 2016089766W WO 2017020688 A1 WO2017020688 A1 WO 2017020688A1
Authority
WO
WIPO (PCT)
Prior art keywords
brs
information
candidate
signals
signal
Prior art date
Application number
PCT/CN2016/089766
Other languages
English (en)
French (fr)
Inventor
侯晓林
郤伟
那崇宁
蒋惠玲
加山英俊
Original Assignee
株式会社Ntt都科摩
都科摩(北京)通信技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩, 都科摩(北京)通信技术研究中心有限公司 filed Critical 株式会社Ntt都科摩
Priority to JP2018503757A priority Critical patent/JP6546692B2/ja
Priority to CN201680040746.2A priority patent/CN107925461B/zh
Publication of WO2017020688A1 publication Critical patent/WO2017020688A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present invention relates to a wireless communication technology, and in particular, to a beam reference signal (BAM) transmission method, a beam selection method, a base station, and a user equipment (User Equipment, UE).
  • BAM beam reference signal
  • UE User Equipment
  • Massive Multiple Input Multiple Output (Massive MIMO) technology has become one of the key technologies and research hotspots of 5G.
  • MIMO technology has been widely used in various fields such as Long Term Evolution (LTE) and Wireless-Fidelity (WIFI).
  • LTE Long Term Evolution
  • WIFI Wireless-Fidelity
  • Massive MIMO technology can be implemented by some inexpensive low-power antenna components, providing a broad prospect for mobile communication in high frequency bands, which can double the efficiency of wireless spectrum, enhance network coverage and system capacity. Help operators maximize the use of existing sites and spectrum resources.
  • AAS Active Antenna System
  • SINR signal to interference and noise ratio
  • embodiments of the present invention provide a beam reference signal (BRS) transmission method and a beam selection method.
  • BRS beam reference signal
  • the method for transmitting a BRS includes: pre-storing the correspondence between the BRS information and the beam index; and for each candidate beam, according to the beam information of the candidate beam and the BRS information corresponding to the beam index of the candidate beam Generating a BRS signal corresponding to the candidate beam; and transmitting a BRS signal corresponding to each candidate beam to the UE, respectively.
  • the BRS information includes: a base sequence structure and a location of a time-frequency resource for transmitting BRS information; and the beam information is a correspondence between a beam index and a beamforming parameter.
  • the generating the BRS signal corresponding to the candidate beam includes: determining beam information of the candidate beam; determining BRS information corresponding to the candidate beam according to a correspondence between the previously stored BRS information and the beam index;
  • the base sequence structure in the BRS information generates a base sequence; determines a sequence of reference signals corresponding to the candidate beam according to the base sequence; performs beamforming on the sequence of the reference signal according to the beamforming parameter in the determined beam information And obtaining a BRS sequence corresponding to the candidate beam; and performing resource mapping on the obtained BRS sequence according to the determined location of the time-frequency resource of the BRS signal in the BRS information, to obtain a BRS signal corresponding to the candidate beam.
  • the above BRS information further includes: a cyclic shift (CS) value of the base sequence;
  • Determining, according to the base sequence, a sequence of reference signals of the candidate beam includes:
  • the above method further includes: notifying, by using downlink signaling, a parameter including a CS operation and a CS operation in the BRS information of the UE.
  • the beamforming includes any of analog beamforming, digital beamforming, and hybrid beamforming; and/or,
  • the resource is mapped to a block mapping mode or a comb mapping mode.
  • the beam selection method includes: transmitting, by the base station configured by the system, a time-frequency resource position of the BRS, extracting a BRS signal corresponding to each candidate beam from the received signal, and performing BRS signals corresponding to the extracted candidate beams. Processing, obtaining quality parameters of BRS signals corresponding to each candidate beam; selecting N BRS signals from the extracted BRS signals according to quality parameters of BRS signals corresponding to the candidate beams, where N is a natural number; determining the selected N BRS information corresponding to the BRS signal, and determining N beam indexes corresponding to the selected N BRS signals according to the relationship between the pre-configured BRS information and the beam index; and feeding back the determined N beam indexes to the base station.
  • the quality parameter of the BRS signal is the channel quality information (CSI) of the BRS signal;
  • the processing of the extracted BRS signal corresponding to each candidate beam includes: performing channel estimation on the extracted BRS signal to obtain CSI of the BRS signal;
  • Selecting N BRS signals from the extracted BRS signals includes selecting N BRS signals having the largest amplitude from the extracted BRS signals.
  • the quality parameter of the BRS signal is the reference signal received power (RSRP) of the BRS signal;
  • the processing of the BRS signal corresponding to each extracted candidate beam includes: performing power measurement on the extracted BRS signal to obtain an RSRP of the BRS signal;
  • Selecting N BRS signals from the extracted BRS signals includes: extracting the extracted BRS signals Select the N BRS signals with the highest power.
  • RSRP reference signal received power
  • the feeding back the determined N beam indexes to the base station includes: encoding the N beam indexes to obtain a binary sequence, and then feeding the binary sequence to the base station by using a beam bitmap.
  • the configuration unit pre-stores beam information of each candidate beam and a correspondence between the BRS information and the beam index;
  • a BRS signal generating unit configured, for each candidate beam, to generate a BRS signal corresponding to the candidate beam according to beam information corresponding to the candidate beam and BRS information corresponding to a beam index of the candidate beam;
  • the transmitting unit respectively transmits the BRS signal corresponding to each candidate beam to the user terminal UE.
  • the above BRS signal generating unit includes:
  • An information determining module configured to determine beam information of the candidate beam, and determine BRS information corresponding to the candidate beam according to a correspondence between the pre-stored BRS information and the beam index;
  • a base sequence generating module configured to generate a base sequence according to the base sequence structure in the determined BRS information
  • a sequence determining module of the reference signal configured to determine a sequence of the reference signal according to the base sequence
  • a beamforming module configured to perform beamforming on a sequence of reference signals according to a beamforming parameter in the determined beam information, to obtain a BRS sequence corresponding to the candidate beam;
  • the resource mapping module is configured to perform resource mapping on the generated BRS sequence according to the determined location of the time-frequency resource of the BRS signal in the BRS information, to obtain a BRS signal corresponding to the candidate beam.
  • the BRS information further includes: cyclically shifting a CS value
  • the sequence determining module of the reference signal is configured to perform phase rotation on the base sequence according to a CS value in the BRS information to obtain a sequence of reference signals corresponding to the candidate beam.
  • the foregoing base station further includes: a notification unit, configured to notify, by using downlink signaling, a parameter including a CS operation and a CS operation in the BRS information of the UE.
  • a receiving unit configured to: send, by the base station configured by the system, a time-frequency resource location of the BRS signal, and extract, from the received signal, a BRS signal corresponding to each candidate beam;
  • a signal quality detecting unit configured to process the extracted BRS signals corresponding to the candidate beams to obtain quality parameters of the BRS signals corresponding to the candidate beams
  • a beam selecting unit configured to select N BRS signals from the extracted BRS signals according to quality parameters of the BRS signals corresponding to the candidate beams, determine BRS information corresponding to the selected N BRS signals, and according to the pre-configured BRS information And determining, by the relationship between the beam index and the beam index, the N beam indexes corresponding to the selected N BRS signals; and the feedback unit, configured to feed back the determined N beam indexes to the base station.
  • FIG. 1 is a flowchart of a method for transmitting a beam reference signal according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for generating a BRS signal corresponding to each candidate beam according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a beam selection method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an internal structure of a base station according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an internal structure of a BRS signal generating unit according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an internal structure of a UE according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an internal structure of a base station according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an internal structure of a UE according to an embodiment of the present invention.
  • the base station can generate a larger number of narrower beams when beamforming. Since these beams are better in directivity, the SINR at the UE can be greatly improved, thereby improving the data throughput of the UE.
  • the base station In order to help the UE select a better quality beam from the plurality of candidate beams and complete the effective beamforming, the base station first needs to send a Beamformed Reference Signal (BRS) carrying the beam-related information to the UE for the UE to perform the beam. select.
  • BRS Beamformed Reference Signal
  • each candidate beam sets an index for each candidate beam, called a Beam Index.
  • the beam index and the candidate beam are in one-to-one correspondence.
  • a set of beamforming parameters can uniquely determine a beam, and therefore each candidate beam is also in one-to-one correspondence with a set of beamforming parameters.
  • the correspondence between the beam index of one candidate beam and the beamforming parameter of the candidate beam is referred to as beam information of the candidate beam.
  • each base station should pre-store beam information for each candidate beam.
  • the beam information of the candidate beam may be configured on the base station side in advance at the initial configuration of the system.
  • the base station needs to send some signals to the UE for measurement and selection through each candidate beam.
  • the beam index of each candidate beam is specifically passed through with each candidate.
  • the BRS information corresponding to the beam is carried and sent to the UE.
  • the foregoing BRS information refers to information related to content and transmission mode carried by the BRS itself, and includes at least a configuration of a base sequence carried by the BRS itself, a location of a time-frequency resource occupied when the BRS signal is transmitted, and the like.
  • the BRS information may further include a Cyclic Shift (CS) value of the base sequence carried by itself.
  • the base sequence is a base sequence, and a sequence of a plurality of different reference signals can be obtained by performing different cyclic shifts on the base sequence.
  • each BRS information is uniquely corresponding to one beam index.
  • the base station side and the UE side should pre-store the correspondence between the BRS information and the beam index.
  • the base station side you can perform related configuration when the system is initially configured.
  • the related configuration may be performed during the initial configuration of the system, or the corresponding relationship between the BRS information and the beam index may be sent to the UE by the base station through quasi-static signaling after the system is started.
  • the UE stores the correspondence after receiving the correspondence between the BRS information and the beam index.
  • the BRS information may include the configuration of the base sequence carried by itself, the CS value of the CS operation of the base sequence, and the location of the time-frequency resource occupied when the BRS is transmitted.
  • the 64 BRS information will correspond to the beam index of the 64 candidate beams, one by one.
  • BRS information corresponding to different candidate beams is different in order to carry beam indexes of different candidate beams. That is, if the base sequence structure in the BRS information is the same and the CS operation is not performed on the base sequence, the BRS sequences corresponding to the different candidate beams should be mapped to different time-frequency resources (ie, orthogonal time-frequency resources). For example, in this case, if 64 beam indexes need to be carried, a total of 64 orthogonal time-frequency resources are required. In this case, the overhead of the BRS is proportional to the number of candidate beams.
  • the BRS information further includes different configurations of the base sequence and/or parameters such as the CS value of the base sequence
  • the BRS sequence can be transmitted using different base sequences or using different cyclic shifts for the same base sequence.
  • different BRS sequences can occupy the same time-frequency resource, so that the BRS overhead can be reduced.
  • the BRS sequences corresponding to the 64 candidate beams can be simultaneously carried by only one time-frequency resource. BRS overhead will be greatly reduced.
  • parallel reception of the BRS sequence can be implemented on the UE side, which effectively reduces the time of beam selection and reduces the delay.
  • an embodiment of the present invention provides a base station transmitting a beam reference signal.
  • the specific implementation process is shown in Figure 1. It mainly includes the following steps:
  • step 101 the correspondence between the BRS information and the beam index is stored in advance.
  • Step 102 For each candidate beam, generate a BRS signal corresponding to the candidate beam according to the beam information of the candidate beam and the BRS information corresponding to the beam index of the candidate beam.
  • Step 103 Send a BRS signal corresponding to each candidate beam to the UE.
  • FIG. 2 shows a method of generating a BRS signal corresponding to each candidate beam in accordance with an embodiment of the present invention.
  • the base station will perform the operations shown in Figure 2.
  • the method mainly includes:
  • Step 1021 Determine beam information of the candidate beam.
  • the beam information is specifically a correspondence between a beam index and a beamforming parameter.
  • Step 1022 Determine BRS information corresponding to the candidate beam according to the correspondence between the BRS information and the beam index stored in advance.
  • the BRS information includes: a configuration of a base sequence carried by the BRS itself and a location of a time-frequency resource occupied when the BRS is transmitted.
  • the BRS information may also include a CS value for CS operation of the base sequence.
  • the base station further needs to notify the UE that the CS operation is included in the BRS information by using downlink signaling, that is, the UE is notified to further detect the CS operation of the base sequence in the beam selection process. .
  • the base station also needs to notify the UE CS of the parameters of operation by downlink signaling, such as the maximum CS number or the actual CS number, so that the UE performs CS detection.
  • Step 1023 Generate a base sequence according to the base sequence structure in the determined BRS information.
  • the base sequences in the BRSs corresponding to the respective candidate beams are the same, the base sequences generated by the base station for each candidate beam are the same; If the base sequences in the BRSs of the candidate beams are different, the base sequence generated by the base station for each candidate beam is different. If the base sequences in the BRSs corresponding to the candidate beams are the same or different, the base station is different for each candidate.
  • the base sequences of the beamforming are partially identical and partially different.
  • Step 1024 Determine a sequence of reference signals of candidate beams according to the base sequence.
  • the base sequence is phase-rotated according to the CS value to obtain a sequence of reference signals corresponding to the candidate beam. If the determined BRS information does not include the CS value, the step will not be performed, and in step 1023, the base sequence is directly used as the sequence of the reference signal corresponding to the candidate beam.
  • the generated base sequence is phase-rotated according to the CS value.
  • the specific operation method can refer to the following formula (1):
  • x k represents the kth sample of the base sequence of a candidate beam
  • y k represents the kth sample of the sequence of reference signals corresponding to the candidate beam
  • n s represents the CS value of the CS operation, ie, cyclic shift The number of samples of the bit
  • N represents the FFT size of the OFDM modulation.
  • Step 1025 Perform beamforming on the sequence of the reference signal according to the beamforming parameter in the determined beam information, to obtain a BRS sequence corresponding to the candidate beam.
  • the base station may perform beamforming on the sequence of the reference signal by beamforming such as analog beamforming, digital beamforming, and hybrid beamforming.
  • Step 1026 Perform resource mapping on the generated BRS sequence according to the determined location of the time-frequency resource of the BRS signal in the BRS information, to obtain a BRS signal corresponding to the candidate beam.
  • the base station can send the beam reference signal carrying the beam index to the UE through each beam for the UE to perform beam selection. Choose.
  • the base station when performing resource mapping of the BRS sequence, may adopt a block mapping method (continuous BRS) or a comb mapping method (Comb-type BRS).
  • a block mapping method continuous BRS
  • Comb-type BRS comb mapping method
  • the base station needs to notify the UE of the Comb Interval and the Frequency Offset through the downlink signaling, so that the UE can detect the BRS signal.
  • FIG. 3 shows a method for performing beam selection by a UE according to an embodiment of the present invention. As shown in FIG. 3, the method mainly includes:
  • Step 301 The UE sends the time-frequency resource location of the BRS signal to the base station configured by the system, and extracts the BRS signal corresponding to each candidate beam from the received signal.
  • the base station and the UE configure the above information. That is, the base station knows in advance which time-frequency resources to transmit the BRS signals of the candidate beams, and the UE also knows in advance which time-frequency resources the base station will transmit the BRS signals of the candidate beams. Therefore, in this step, the UE may extract the BRS signal corresponding to each candidate beam from the received signal.
  • Step 302 The UE processes the extracted BRS signals corresponding to the candidate beams to obtain quality parameters of the BRS signals corresponding to the candidate beams.
  • the quality parameter of the BRS signal may be Channel State Information (CSI) of the BRS signal or Reference Signal Receiving Power (RSRP) of the BRS signal.
  • CSI Channel State Information
  • RSRP Reference Signal Receiving Power
  • the UE performs channel estimation according to the extracted BRS signal, thereby obtaining CSI of the BRS signal; if the quality parameter of the BRS signal is the BRS signal RSRP, in this step, the UE will perform received power measurement to obtain the RSRP of the BRS.
  • the UE After the BRS signal is extracted from the received signal, the UE obtains the BRS sequence. Since the UE knows in advance the set of base sequences available to the base station, the actual base sequence carried in the BRS sequence may be determined by detection. Next, the UE may multiply the extracted BRS sequence by the conjugate of the determined base sequence, and then transform the processed BRS sequence into the time domain using an inverse fast Fourier transform (IFFT), which has different CSs. The time domain channel impulse responses of the BRS sequences are separated from each other, and thus, the UE can obtain CSI or RSRP of multiple BRS sequences in parallel at one time.
  • IFFT inverse fast Fourier transform
  • the base station side can implement parallel beam selection on the UE side by introducing a CS operation on the base sequence, thereby reducing BRS overhead and reducing beam selection.
  • the purpose of the extension is to implement parallel beam selection on the UE side by introducing a CS operation on the base sequence, thereby reducing BRS overhead and reducing beam selection.
  • Step 303 The UE selects N BRS signals from the extracted BRS signals according to quality parameters of BRS signals corresponding to the candidate beams.
  • N is a natural number, which is the number of candidate beams that the UE can select in advance.
  • the specific value of N can be set empirically.
  • the UE will select the N BRS signals with the largest amplitude; if the quality parameter of the BRS signal is the RSRP of the BRS signal, then in this step The UE will select the N BRS signals with the highest power.
  • Step 304 The UE determines BRS information corresponding to the selected N BRS signals.
  • the UE After selecting the N BRS signals, the UE can obtain at least the following information by processing the signals in the foregoing steps: a base sequence carried by the BRS signal, a CS value for performing CS operation on the base sequence, and a time frequency of transmitting the BRS signal. Resources, etc.
  • the above information is the BRS information corresponding to the BRS signal.
  • the UE knows in advance which time-frequency resources the base station will transmit the BRS signals of the candidate beams, and therefore, the time-frequency resource information in the BRS information corresponding to each candidate beam is Can be determined.
  • the UE knows in advance The set of the base sequence and the set of CS values that are available to the base station, the UE can determine the base sequence and the CS value corresponding to the BRS signal by detecting the received BRS signal, thereby determining the BRS information corresponding to each BRS signal.
  • Step 305 The UE determines N beam indexes corresponding to the selected N BRS signals according to the BRS information corresponding to the N BRS signals and the relationship between the BRS information and the beam index.
  • the UE stores the correspondence between the BRS information and the beam index in advance. Therefore, after selecting the B BRS signals and determining the BRS information corresponding to the N BRS signals, the UE may further use the BRS information and the beam stored by the UE. The correspondence of the indices determines the beam index corresponding to the N BRS information.
  • Step 306 The UE feeds back the determined N beam indexes to the base station.
  • the UE may directly feed back the determined N beam indexes to the base station through uplink signaling.
  • the UE may also first encode the N beam indexes to obtain a binary sequence, and then feed the binary sequence to the base station by means of a beam bitmap.
  • the advantage of the feedback beam indexing method in the manner of bitmap is that the signaling overhead is small. Especially in the case of a large N, the signaling overhead of using the bitmap method is much reduced.
  • the base station may determine a beamforming parameter of the selected beam of the UE according to the beam index fed back by the UE. Then, when transmitting data to the UE, the data to be sent to the UE may be beamformed according to the beamforming parameter of the beam selected by the UE, and the beam with good signal quality selected by the UE is formed, thereby effectively performing data transmission.
  • an embodiment of the present invention further provides a base station, whose internal structure is as shown in FIG. 4, and mainly includes:
  • the configuration unit 401 pre-stores beam information of each candidate beam and a correspondence between the BRS information and the beam index;
  • the BRS signal generating unit 402 is configured to generate, for each candidate beam, a BRS signal corresponding to the candidate beam according to the beam information of the candidate beam and the BRS information corresponding to the beam index of the candidate beam;
  • the transmitting unit 403 respectively transmits the BRS signal corresponding to each candidate beam to the UE.
  • the internal structure of the BRS signal generating unit 402 is as shown in FIG. 5, and mainly includes:
  • the information determining module 4021 is configured to determine beam information of the candidate beam and determine BRS information corresponding to the candidate beam according to a correspondence between the BRS information and the beam index stored in advance;
  • the base sequence generating module 4022 is configured to generate a base sequence according to the base sequence structure in the determined BRS information.
  • a sequence determining module 4023 configured to determine, according to the base sequence, a sequence of reference signals corresponding to the candidate beam
  • the beamforming module 4024 is configured to perform beamforming on the sequence of the reference signal according to the beamforming parameter in the determined beam information, to obtain a BRS sequence corresponding to the candidate beam;
  • the resource mapping module 4025 is configured to perform resource mapping on the generated BRS sequence according to the determined location of the time-frequency resource of the BRS signal in the BRS information, to obtain a BRS signal corresponding to the candidate beam.
  • the base station further includes a notification unit, configured to notify, by using downlink signaling, a parameter including a CS operation and a CS operation in the BRS information, such as a maximum CS number or The actual number of CSs, etc., for the UE to perform CS detection.
  • a notification unit configured to notify, by using downlink signaling, a parameter including a CS operation and a CS operation in the BRS information, such as a maximum CS number or The actual number of CSs, etc., for the UE to perform CS detection.
  • the BRS information further includes: cyclically shifting the CS value
  • the sequence determining module 4023 of the reference signal is configured to perform phase rotation on the base sequence according to the CS value in the BRS information to obtain a sequence of reference signals corresponding to the candidate beam.
  • an embodiment of the present invention further provides a UE that performs the foregoing method, and the internal structure thereof is as shown in FIG.
  • the receiving unit 601 is configured to: at a time-frequency resource location of the BRS signal sent by the base station configured by the system, extract a BRS signal corresponding to each candidate beam from the received signal.
  • the signal quality detecting unit 602 is configured to process the extracted BRS signals corresponding to the candidate beams to obtain quality parameters of the BRS signals corresponding to the candidate beams.
  • the beam selection unit 603 is configured to select N BRS signals from the extracted BRS signals according to the quality parameters of the BRS signals corresponding to the candidate beams, determine BRS information corresponding to the selected N BRS signals, and according to the pre-configured BRS. The relationship between the information and the beam index determines the N beam indexes corresponding to the selected N BRS signals.
  • the feedback unit 604 is configured to feed back the determined N beam indexes to the base station.
  • step 306 For the specific implementation method of the foregoing feedback unit, refer to step 306 above, and details are not described herein again.
  • the base station may determine a beamforming parameter of the selected beam of the UE according to the beam index fed back by the UE. Then, when transmitting data to the UE, the data to be sent to the UE may be beamformed according to the beamforming parameter of the beam selected by the UE, and the beam with good signal quality selected by the UE is formed, thereby effectively performing data transmission.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station includes one or more processors 701, memory 702, and one or more instruction units 703 stored on memory 702 for execution by one or more processors 701.
  • the instruction unit 703 may include a configuration unit 401, a BRS signal generation unit 402, and a transmission unit 403. These virtual units include instructions for implementing the respective functions such that when the processor 701 and the memory 702 communicate, read and execute the instructions, the base station can implement the corresponding functions.
  • FIG. 8 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • the UE includes one or more processors 801, memory 802, and one or more instruction units 803 stored on memory 802 for execution by one or more processors 801.
  • the instruction unit 803 may include a receiving unit 601, a signal quality detecting unit 602, a beam selecting unit 603, and a feedback unit 604.
  • These virtual units include instructions for implementing the respective functions such that when the processor 801 and the memory 802 communicate, read and execute the instructions, the UE can implement the corresponding functions.
  • the base station can implement effective beamforming by using the process of transmitting the beam reference signal on the base station side and the beam selection process on the UE side, and fully utilizing the AAS and the large-scale MIMO technology.
  • the directional beam is good, so that the SINR and data throughput at the target UE are greatly improved.
  • the embodiment of the present invention expands the number of beam indexes that can be carried by using a combination of different base sequences, different CS values, and different time-frequency resource positions, and the manner of transmitting BRS signals by simply using orthogonal time-frequency resources. Compared, the cost of BRS can be greatly reduced, and the delay of beam selection can be reduced to achieve fast beamforming.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了波束参考信号(BRS)的发送方法、波束选择方法以及执行上述方法的基站和用户终端(UE)。其中,BRS的发送方法包括:预先存储BRS信息和波束索引的对应关系;针对每个候选波束,根据该候选波束的波束信息以及与该候选波束的波束索引对应的BRS信息生成与该候选波束对应的BRS信号;以及分别将与各个候选波束对应的BRS信号发送给用户终端UE。通过上述方案,基站可将承载波束索引的BRS发送到UE,供UE进行波束选择。

Description

波束参考信号的发送方法、波束选择方法、基站及用户终端
本申请要求于2015年7月31日提交中国专利局、申请号为201510462905.5、申请名称为“波束参考信号的发送方法、波束选择方法、基站及用户终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术,特别涉及波束参考信号(Beamformed Reference Signal,BRS)的发送方法、波束选择方法、基站以及用户终端(User Equipment,UE)。
发明背景
当前,随着第四代移动通信(4G)进入规模商用阶段,未来的第五代移动通信(5G)已成为全球研发的热点。
大规模多输入多输出(Massive MIMO)技术已经成为5G的关键技术以及研究热点之一。目前,MIMO技术已经广泛应用于长期演进系统(LTE)、无线保真(Wireless-Fidelity,WIFI)等各个领域。理论上,天线越多,系统的频谱效率和传输可靠性就越高。大规模MIMO技术可以由一些并不昂贵的低功耗的天线组件来实现,为在高频段上进行移动通信提供了广阔的前景,它可以成倍提升无线频谱效率,增强网络覆盖和系统容量,帮助运营商最大限度利用已有站址和频谱资源。此外,有源天线系统(AAS)的引入一方面使基站能在三维空间中控制信号的空间分布特性,另一方面将支持天线阵列向二维方向发展,推动大规模MIMO技术的发展,大幅提升系统性能。在实际应用中,特别是在高频频段,结合AAS和大规模MIMO技术的基站在波束赋形时可以产生更多且宽 度更窄的波束,从而可以大幅提高目标UE处的信号干扰噪声比(SINR)以及数据吞吐量。
如此,在使用大规模MIMO以及AAS技术的情况下,UE如何从众多候选波束中选择质量较好的波束已经成为实现波束赋形需要解决的关键问题。
发明内容
为了解决上述问题,本发明的实施例提供了波束参考信号(BRS)的发送方法以及波束选择方法。
本发明实施例所述的BRS发送方法包括:预先存储BRS信息和波束索引的对应关系;针对每个候选波束,根据所述候选波束的波束信息以及与所述候选波束的波束索引对应的BRS信息生成与所述候选波束对应的BRS信号;以及分别将与各个候选波束对应的BRS信号发送给UE。
其中,BRS信息包括:基序列构造和传输BRS信息的时频资源的位置;所述波束信息为波束索引与波束赋形参数的对应关系。
其中,生成与所述候选波束对应的BRS信号包括:确定所述候选波束的波束信息;根据预先存储的BRS信息和波束索引的对应关系,确定与所述候选波束对应的BRS信息;根据确定的BRS信息中的基序列构造生成基序列;根据所述基序列确定与该候选波束对应的参考信号的序列;根据确定的波束信息中的波束赋形参数对所述参考信号的序列进行波束赋形,得到与候选波束对应的BRS序列;以及根据确定的BRS信息中的传输BRS信号的时频资源的位置将得到的BRS序列进行资源映射,得到对应所述候选波束的BRS信号。
上述BRS信息进一步包括:基序列的循环移位(CS)值;
所述根据所述基序列确定所述候选波束的参考信号的序列包括:
根据BRS信息中的CS值对生成的基序列进行相位旋转得到与所述候选波束对应的参考信号。
上述方法进一步包括:通过下行的信令通知UE BRS信息中包括CS操作以及CS操作的参数。
所述波束赋形包括模拟波束赋形、数字波束赋形以及混合波束赋形中的任一项;和/或,
所述资源映射为块状映射方式或梳状映射方式。
本发明实施例所述的波束选择方法包括:在系统配置的基站发送BRS的时频资源位置,从接收的信号中提取各个候选波束对应的BRS信号;对提取的各个候选波束对应的BRS信号进行处理,得到各个候选波束所对应BRS信号的质量参数;根据各个候选波束所对应BRS信号的质量参数从所提取的BRS信号中选择N个BRS信号,其中,N为自然数;确定所选择的N个BRS信号对应的BRS信息,并根据预先配置的BRS信息与波束索引之间的关系,确定上述所选择的N个BRS信号对应的N个波束索引;以及将确定的N个波束索引反馈给基站。
上述BRS信号的质量参数为BRS信号的信道质量信息(CSI);上述对提取的各个候选波束对应的BRS信号进行处理包括:将提取的BRS信号进行信道估计,得到BRS信号的CSI;以及所述从所提取的BRS信号中选择N个BRS信号包括:从所提取的BRS信号中选择幅度最大的N个BRS信号。
上述BRS信号的质量参数为BRS信号的参考信号接收功率(RSRP);上述对提取的各个候选波束对应的BRS信号进行处理包括:将提取的BRS信号进行功率测量,得到BRS信号的RSRP;以及所述从所提取的BRS信号中选择N个BRS信号包括:从所提取的BRS信号 中选择功率最大的N个BRS信号。
上述将确定的N个波束索引反馈给基站包括:对N个波束索引进行编码,得到一个二进制序列,再通过波束位图的方式将所述二进制序列反馈给基站。
本发明实施例所述的基站包括:
配置单元,预先存储各个候选波束的波束信息以及BRS信息和波束索引的对应关系;
BRS信号生成单元,针对每个候选波束,用于根据与该候选波束的波束信息以及与该候选波束的波束索引对应的BRS信息生成与该候选波束对应的BRS信号;以及
发送单元,分别将与各个候选波束对应的BRS信号发送给用户终端UE。
上述BRS信号生成单元包括:
信息确定模块,用于确定该候选波束的波束信息以及根据预先存储的BRS信息和波束索引的对应关系,确定与该候选波束对应的BRS信息;
基序列生成模块,用于根据确定的BRS信息中的基序列构造生成基序列;
参考信号的序列确定模块,用于根据所述基序列确定参考信号的序列;
波束赋形模块,用于根据确定的波束信息中的波束赋形参数对参考信号的序列进行波束赋形,得到该候选波束对应的BRS序列;
资源映射模块,用于根据确定的BRS信息中的传输BRS信号的时频资源的位置将生成的BRS序列进行资源映射,得到对应该候选波束的BRS信号。
所述BRS信息进一步包括:循环移位CS值;
所述参考信号的序列确定模块用于,根据BRS信息中的CS值对所述基序列进行相位旋转,得到与所述候选波束对应的参考信号的序列。
上述基站进一步包括:通知单元,用于通过下行的信令通知UE BRS信息中包括CS操作以及CS操作的参数。
本发明实施例所述的UE包括:
接收单元,用于在系统配置的基站发送BRS信号的时频资源位置,从接收的信号中提取各个候选波束对应的BRS信号;
信号质量检测单元,用于对提取的各个候选波束对应的BRS信号进行处理,得到各个候选波束所对应BRS信号的质量参数;
波束选择单元,用于根据各个候选波束所对应BRS信号的质量参数从所提取的BRS信号中选择N个BRS信号,确定所选择的N个BRS信号对应的BRS信息,并根据预先配置的BRS信息与波束索引之间的关系,确定上述所选择的N个BRS信号对应的N个波束索引;以及反馈单元,用于将确定的N个波束索引反馈给基站。
附图简要说明
图1为本发明实施例所述的波束参考信号的发送方法流程图;
图2为本发明实施例所述的生成与每个候选波束对应的BRS信号的方法流程图;
图3为本发明实施例所述的波束选择方法流程图;
图4为本发明实施例所述的基站的内部结构示意图;
图5为本发明实施例所述的BRS信号生成单元的内部结构示意图;以及
图6为本发明实施例所述的UE的内部结构示意图;
图7为本发明实施例所述的基站的内部结构示意图;
图8为本发明实施例所述的UE的内部结构示意图。
实施本发明的方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如前所述,通过结合AAS以及大规模MIMO技术,基站在波束赋形时可以产生数量更多、宽度更窄的波束。由于这些波束方向性更好,可以大大提高UE处的SINR,从而提高UE的数据吞吐量。而为了帮助UE从众多候选波束中选择质量较好的波束,完成有效的波束赋形,基站首先需要发送承载各个波束相关信息的波束参考信号(Beamformed Reference Signal,BRS)给UE,供UE进行波束选择。为此,本发明的实施例提供了波束参考信号的发送方法。
首先,为了标识各个候选波束,系统为每个候选波束设置了一个索引,称为波束索引(Beam Index)。其中,波束索引和候选波束是一一对应的。一组波束赋形参数可以唯一确定一个波束,因此,每个候选波束还和一组波束赋形参数是一一对应的。在本发明的实施例中,将一个候选波束的波束索引与该候选波束的波束赋形参数之间的对应关系称为该候选波束的波束信息。为了完成波束赋形,每个基站都应该预先存储有每个候选波束的波束信息。例如,可以在系统初始配置时预先在基站侧配置候选波束的波束信息。
此外,如前所述,为了帮助UE进行波束选择,基站需要通过每个候选波束发一些信号给UE供其进行测量和选择。为了实现这一目标,在本发明的实施例中,每个候选波束的波束索引具体是通过与每个候选 波束对应的BRS信息来承载并发送给UE的。具体而言,上述BRS信息是指与BRS自身承载的内容以及发送方式有关的信息,至少包括BRS自身承载的基序列的构造以及在发送该BRS信号时所占用的时频资源的位置等等。更进一步,为了扩展BRS信息可以承载的波束索引的数量,上述BRS信息还可以包括自身所承载基序列的循环移位(Cyclic Shift,CS)值。其中,基序列为一基础序列,通过对该基序列进行不同的循环移位可以得到多个不同的参考信号的序列。
为了承载每个候选波束的波束索引,需要预先定义BRS信息与波束索引之间的一一对应关系,即保证每种BRS信息唯一对应一个波束索引。为了进行波束选择,基站侧和UE侧都应当预先存储上述BRS信息与波束索引的对应关系。对于基站侧,可以在系统初始配置时进行相关配置。对于UE侧,也可以在系统初始配置时进行相关配置,或者还可以在系统启动运行后,由基站通过准静态的信令将BRS信息与波束索引的对应关系发送给UE。UE在收到BRS信息与波束索引的对应关系后存储这一对应关系。
下面将通过举例详细说明在不同情况下BRS信息与波束索引的对应关系。
如前所述,BRS信息可以包括自身承载的基序列的构造、对该基序列进行CS操作的CS值以及在发送该BRS时所占用的时频资源的位置。如此,在建立BRS信息与波束索引的对应关系时,不同的基序列、不同CS值以及不同时频资源位置的组合将分别对应于不同的波束索引。例如,假设当前使用的基序列有2个,CS值有4个,可用于传输BRS的不同的时频资源有8个,则可共有2×4×8=64个BRS信息。这64个BRS信息将分别一一对应于64个候选波束的波束索引。假设当前使用的基序列只有1个,但CS值有4个,可用于传输BRS的不同的时频资源有 8个,则可共有4×8=32个BRS信息。这32个BRS信息将分别一一对应于32个候选波束的波束索引。
若BRS信息仅包括基序列的构造以及在发送该BRS时所占用的时频资源,而不包括对基序列进行CS操作的CS值,也即不对基序列进行CS操作。则在建立BRS信息与波束信息的对应关系时,不同的基序列以及不同时频资源的组合将分别对应于不同的波束索引。例如,假设当前使用的基序列有2个,而且没有循环移位,可以用于传输BRS的时频资源有8个。则在这种情况下只有2×8=16个BRS信息,仅可以分别一一对应于16个候选波束的波束索引。
从上述对应关系可以看出,为了承载不同候选波束的波束索引,对应不同候选波束的BRS信息是不同的。也即,如果BRS信息中基序列构造相同且不对基序列进行CS操作,则不同候选波束对应的BRS序列应当被映射到不同的时频资源(即正交的时频资源)上。例如,在这种情况下,如果需要承载64个波束索引,则共需要64个正交的时频资源。在这种情况下,BRS的开销就与候选波束的数量成正比。而在本发明的实施例中,由于BRS信息中还包括基序列的不同构造和/或对基序列的CS值等参数,因此在本发明的实施例中,除了正交的时频资源外还可以使用不同的基序列或针对相同基序列采用不同循环移位来发送BRS序列。在这种情况下,不同的BRS序列可以占用相同的时频资源,从而可以达到减少BRS开销的目的。例如,在这种情况下,如果共有8个基序列可以选择,且供选择的CS值也有8个,则可以只用1个时频资源就可以同时承载这64个候选波束对应的BRS序列,BRS开销将大大减少。同时,在UE侧还可以实现BRS序列的并行接收,有效减少波束选择的时间,减少时延。
基于上述配置,本发明的实施例给出了一种基站发送波束参考信号 的方法,具体实现流程如图1所示,主要包括如下步骤:
步骤101,预先存储BRS信息和波束索引的对应关系。
步骤102,针对每个候选波束,根据该候选波束的波束信息以及与该候选波束的波束索引对应的BRS信息生成与该候选波束对应的BRS信号。
步骤103,分别将与各个候选波束对应的BRS信号发送给UE。
下面将进一步结合附图详细说明上述步骤102的实现方法。图2显示了根据本发明实施例的生成与每个候选波束对应的BRS信号的方法。针对每个候选波束,基站都将执行如图2所示的操作。如图2所示,该方法主要包括:
步骤1021,确定该候选波束的波束信息。
如前所述,波束信息具体为波束索引与波束赋形参数的对应关系。
步骤1022,根据预先存储的BRS信息和波束索引的对应关系,确定与该候选波束对应的BRS信息。
如前所述BRS信息包括:BRS自身承载的基序列的构造以及在发送该BRS时所占用的时频资源的位置。BRS信息还可以包括对基序列进行CS操作的CS值。
若上述BRS信息中包括对基序列进行CS操作的CS值,则基站还需要通过下行的信令通知UE BRS信息中包括CS操作,即通知UE在波束选择过程中需要进一步检测基序列的CS操作。同时,基站还需要通过下行信令通知UE CS操作的参数,例如最大的CS数量或实际的CS数量,以便UE进行CS检测。
步骤1023,根据确定的BRS信息中的基序列构造生成基序列。
具体而言,在本步骤中,若对应各个候选波束的BRS中的基序列都相同,则基站针对各个候选波束生成的基序列都是相同的;若对应各个 候选波束的BRS中的基序列都不相同,则基站针对各个候选波束生成的基序列都是不同的;若对应各个候选波束的BRS中的基序列有相同的也有不同的,则基站针对各个候选波束生成的基序列则是部分相同而部分不同。
步骤1024,根据基序列确定候选波束的参考信号的序列。
具体包括,若确定的BRS信息中包含CS值,则根据该CS值对基序列进行相位旋转得到与该候选波束对应的参考信号的序列。若确定的BRS信息中不包含CS值,则将不用执行该步骤,在步骤1023直接将基序列作为与该候选波束对应的参考信号的序列。
具体而言,在本步骤中,如果确定的BRS信息包含CS值,则根据该CS值对生成的基序列进行相位旋转。具体的操作方式可以参考如下公式(1):
Figure PCTCN2016089766-appb-000001
其中,xk代表某个候选波束的基序列的第k个样值;yk代表该候选波束对应的参考信号的序列的第k个样值;ns代表CS操作的CS值,即循环移位的样值数;N代表OFDM调制的FFT大小。
步骤1025,根据确定的波束信息中的波束赋形参数对参考信号的序列进行波束赋形,得到该候选波束对应的BRS序列。
具体而言,在本步骤中,基站可以通过模拟波束赋形、数字波束赋形以及混合波束赋形等波束赋形方式对参考信号的序列进行波束赋形。
步骤1026,根据确定的BRS信息中传输BRS信号的时频资源的位置将生成的BRS序列进行资源映射,得到对应该候选波束的BRS信号。
由此可以看出,通过上述波束参考信号发送方法,基站即可将承载波束索引的波束参考信号通过各个波束发送到UE,供UE进行波束选 择。
在本发明的实施例中,在进行BRS序列的资源映射时,基站可以采用块状映射方式(连续BRS)或梳状映射方式(Comb-type BRS)。在采用梳状映射方式时,基站还需要通过下行信令通知UE梳状间隔(Comb Interval)以及频率偏置(Frequency Offset),供UE进行BRS信号的检测。
接下来再结合图3,详细说明UE侧进行波束选择的方法。
图3显示了本发明实施例所述的UE进行波束选择的方法。如图3所示,该方法主要包括:
步骤301,UE在系统配置的基站发送BRS信号的时频资源位置,从接收的信号中提取各个候选波束对应的BRS信号。
由于系统在初始配置时将预先确定基站发送BRS信号的时频资源的位置,且基站和UE会配置上述信息。也即,基站预先知道在哪些时频资源上发送各个候选波束的BRS信号,UE也预先知道基站会在哪些时频资源上发送各个候选波束的BRS信号。因此,在本步骤中,UE可以从接收的信号中提取各个候选波束对应的BRS信号。
步骤302,UE对提取的各个候选波束对应的BRS信号进行处理,得到各个候选波束所对应BRS信号的质量参数。
在本步骤中,上述BRS信号的质量参数可以是BRS信号的信道状态信息(Channel State Information,CSI)或BRS信号的参考接收功率(Reference Signal Receiving Power,RSRP)。
具体而言,若BRS信号的质量参数是BRS信号的CSI,则在本步骤中,UE将根据提取的BRS信号进行信道估计,从而得到BRS信号的CSI;若BRS信号的质量参数是BRS信号的RSRP,则在本步骤中,UE将进行接收功率测量,从而得到BRS的RSRP。
在UE从接收信号中提取出BRS信号后,获得BRS序列,由于UE预先知道基站可用的基序列的集合,因此,可以先通过检测确定该BRS序列中承载的实际的基序列。接下来,UE可以将提取出的BRS序列先乘以已确定的基序列的共轭,然后使用快速傅里叶反变换(IFFT)将处理后的BRS序列变换到时域,此时具有不同CS的BRS序列的时域信道冲激响应是彼此分开的,因而,UE可以一次并行获得多个BRS序列的CSI或RSRP。由上述BRS序列的检测过程可以看出,在本发明的实施例中,基站侧通过对基序列引入CS操作,可以在UE侧实现并行的波束选择,从而达到减小BRS开销以及降低波束选择时延的目的。
步骤303,UE根据各个候选波束所对应BRS信号的质量参数从所提取的BRS信号中选择N个BRS信号。
在本步骤中,上述N为自然数,是预先配置的UE可以选择的候选波束的数量。在实际应用中,N的具体数值可以根据经验设定。
具体而言,若BRS信号的质量参数是BRS信号的CSI,则在本步骤中,UE将从中选择幅度最大的N个BRS信号;若BRS信号的质量参数是BRS信号的RSRP,则在本步骤中,UE将从中选择功率最大的N个BRS信号。
步骤304,UE确定所选择的N个BRS信号对应的BRS信息。
UE在选择N个BRS信号后通过对上述步骤中对信号进行处理的过程至少可以得到如下信息:BRS信号承载的基序列、对该基序列进行CS操作的CS值以及发送该BRS信号的时频资源等。如前所述,上述信息为BRS信号对应的BRS信息。
具体而言,如前所述,UE会预先知道基站会在哪些时频资源上发送各个候选波束的BRS信号,因此,对应各个候选波束的BRS信息中的时频资源信息,对UE来讲是可以确定的。此外,如前所述,UE预先知 道基站可用的基序列的集合以及CS值的集合,因此,UE可以通过检测接收的BRS信号可以确定该BRS信号实际对应的基序列以及CS值,从而分别确定每个BRS信号对应的BRS信息。
步骤305,UE根据N个BRS信号对应的BRS信息以及预先配置的BRS信息与波束索引之间的关系,确定上述所选择的N个BRS信号对应的N个波束索引。
如前所述,UE预先存储有BRS信息与波束索引的对应关系,因此UE在选择了N个BRS信号并确定这N个BRS信号对应的BRS信息后,可以进一步通过自身存储的BRS信息与波束索引的对应关系确定与这N个BRS信息对应的波束索引。
步骤306,UE将确定的N个波束索引反馈给基站。
在本步骤中,UE可以直接将确定的N个波束索引通过上行信令反馈给基站。UE也可以先对N个波束索引进行编码,得到一个二进制序列,再通过波束位图(bitmap)的方式将这个二进制序列反馈给基站。通过bitmap的方式反馈波束索引方式的好处在于,信令的开销小。特别是在N较大的情况下,采用bitmap的方式的信令开销会减少很多。
在UE将所选择的波束索引反馈给基站后,基站就可以根据UE所反馈的波束索引确定UE所选择波束的波束赋形参数。然后,在向该UE发送数据时,就可以根据UE所选择波束的波束赋形参数对待发送给该UE的数据进行波束赋形,形成UE所选择的信号质量较好的波束,从而进行有效的数据传输。
对应上述发送波束参考信号的方法,本发明的实施例还提供了一种基站,其内部结构如图4所示,主要包括:
配置单元401,预先存储各个候选波束的波束信息以及BRS信息和波束索引的对应关系;
BRS信号生成单元402,针对每个候选波束,用于根据与该候选波束的波束信息以及与该候选波束的波束索引对应的BRS信息生成与该候选波束对应的BRS信号;以及
发送单元403,分别将与各个候选波束对应的BRS信号发送给UE。
其中,BRS信号生成单元402的内部结构如图5所示,主要包括:
信息确定模块4021,用于确定该候选波束的波束信息以及根据预先存储的BRS信息和波束索引的对应关系,确定与该候选波束对应的BRS信息;
基序列生成模块4022,用于根据确定的BRS信息中的基序列构造生成基序列;
参考信号的序列确定模块4023,用于根据所述基序列确定与所述候选波束对应的参考信号的序列;
波束赋形模块4024,用于根据确定的波束信息中的波束赋形参数对参考信号的序列进行波束赋形,得到该候选波束对应的BRS序列;
资源映射模块4025,用于根据确定的BRS信息中的传输BRS信号的时频资源的位置将生成的BRS序列进行资源映射,得到对应该候选波束的BRS信号。
若BRS信息中包括对基序列进行CS操作的CS值,则上述基站还将包括通知单元,用于通过下行的信令通知BRS信息中包括CS操作以及CS操作的参数,例如最大的CS数量或实际的CS数量等,以便UE进行CS检测。
在一实施例中,BRS信息进一步包括:循环移位CS值;
相应地,参考信号的序列确定模块4023,用于根据BRS信息中的CS值对基序列进行相位旋转,得到与该候选波束对应的参考信号的序列。
对应上述波束选择的方法,本发明的实施例还提供了执行上述方法的UE,其内部结构如图6所示,主要包括:
接收单元601,用于在系统配置的基站发送BRS信号的时频资源位置,从接收的信号中提取各个候选波束对应的BRS信号。
信号质量检测单元602,用于对提取的各个候选波束对应的BRS信号进行处理,得到各个候选波束所对应BRS信号的质量参数。
上述信号质量检测单元602的具体实现方法可以参考上述步骤302的具体操作,在此不再赘述。
波束选择单元603,用于根据各个候选波束所对应BRS信号的质量参数从所提取的BRS信号中选择N个BRS信号,确定所选择的N个BRS信号对应的BRS信息,并根据预先配置的BRS信息与波束索引之间的关系,确定上述所选择的N个BRS信号对应的N个波束索引。
上述波束选择单元603的具体实现方法请参考上述步骤303~305的具体操作,在此不再赘述。
反馈单元604,用于将确定的N个波束索引反馈给基站。
上述反馈单元的具体实现方法请参考上述步骤306,在此不再赘述。
在UE将所选择的波束索引反馈给基站后,基站就可以根据UE所反馈的波束索引确定UE所选择波束的波束赋形参数。然后,在向该UE发送数据时,就可以根据UE所选择波束的波束赋形参数对待发送给该UE的数据进行波束赋形,形成UE所选择的信号质量较好的波束,从而进行有效的数据传输。
图7为本发明一实施例提供的基站的结构示意图。如图7所示,该基站包括一个或多个处理器701、存储器702以及存储在存储器702上用来由一个或多个处理器701来执行的一个或多个指令单元703。指令单元703可以包括配置单元401、BRS信号生成单元402和发送单元403。 这些虚拟单元包括了用于实现各自功能的指令,这样当处理器701和存储器702进行通信,读取并执行指令时,基站可以实现相应的功能。
图8为本发明一实施例提供的UE的结构示意图。如图8所示,该UE包括一个或多个处理器801、存储器802以及存储在存储器802上用来由一个或多个处理器801来执行的一个或多个指令单元803。指令单元803可以包括接收单元601、信号质量检测单元602、波束选择单元603和反馈单元604。这些虚拟单元包括了用于实现各自功能的指令,这样当处理器801和存储器802进行通信,读取并执行指令时,UE可以实现相应的功能。
由上述方案可以看出,通过上述基站侧的波束参考信号的发送过程以及UE侧的波束的选择过程,基站可以实现有效的波束赋形,充分利用AAS以及大规模MIMO技术所带来的数量多且方向性好的波束,从而大幅提高目标UE处的SINR以及数据吞吐量。同时,本发明的实施例通过使用不同的基序列、不同CS值以及不同时频资源位置等组合来扩展可以承载的波束索引的数量,与单纯通过正交时频资源来传输BRS信号的方式相比,可以大大降低BRS的开销,同时减少波束选择的时延,实现快速的波束赋形。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (15)

  1. 一种波束参考信号BRS的发送方法,其特征在于,包括:
    预先存储BRS信息和波束索引的对应关系;
    针对每个候选波束,根据所述候选波束的波束信息以及与所述候选波束的波束索引对应的BRS信息生成与所述候选波束对应的BRS信号;以及
    分别将与各个候选波束对应的BRS信号发送给用户终端UE。
  2. 根据权利要求1所述的方法,其特征在于,所述BRS信息包括:基序列构造和传输BRS信号的时频资源的位置;以及
    所述波束信息为波束索引与波束赋形参数的对应关系。
  3. 根据权利要求2所述的方法,其特征在于,所述生成与所述候选波束对应的BRS信号包括:
    确定所述候选波束的波束信息;
    根据预先存储的BRS信息和波束索引的对应关系,确定与所述候选波束对应的BRS信息;
    根据确定的BRS信息中的基序列构造生成基序列;
    根据所述基序列确定所述候选波束的参考信号的序列;
    根据确定的波束信息中的波束赋形参数对所述候选波束的参考信号的序列进行波束赋形,得到与所述候选波束对应的BRS序列;以及
    根据确定的BRS信息中的传输BRS信号的时频资源的位置将得到的BRS序列进行资源映射,得到与所述候选波束对应的BRS信号。
  4. 根据权利要求3所述的方法,其特征在于,所述BRS信息进一步包括:循环移位CS值;
    所述根据所述基序列确定所述候选波束的参考信号的序列包括:
    根据确定的BRS信息中的CS值对生成的基序列进行相位旋转,得到与所述候选波束对应的参考信号的序列。
  5. 根据权利要求4所述的方法,其特征在于,进一步包括:
    通过下行的信令通知UE BRS信息中包括CS操作以及CS操作的参数。
  6. 根据权利要求3所述的方法,其特征在于,所述波束赋形包括模拟波束赋形、数字波束赋形以及混合波束赋形中的任一项;和/或,
    所述资源映射为块状映射方式或梳状映射方式。
  7. 一种波束选择方法,其特征在于,包括:
    在系统配置的基站发送波束参考信号BRS的时频资源位置,从接收的信号中提取各个候选波束对应的BRS信号;
    对提取的各个候选波束对应的BRS信号进行处理,得到各个候选波束所对应BRS信号的质量参数;
    根据各个候选波束所对应BRS信号的质量参数从所提取的BRS信号中选择N个BRS信号,其中,N为自然数;
    确定所选择的N个BRS信号对应的BRS信息,并根据预先配置的BRS信息与波束索引之间的关系,确定上述所选择的N个BRS信号对应的N个波束索引;以及
    将确定的N个波束索引反馈给基站。
  8. 根据权利要求7所述的方法,其特征在于,所述BRS信号的质量参数为BRS信号的信道状态信息CSI;
    所述对提取的各个候选波束对应的BRS信号进行处理包括:将提取的BRS信号进行信道估计,得到BRS信号的CSI;以及
    所述从所提取的BRS信号中选择N个BRS信号包括:从所提取的BRS信号中选择幅度最大的N个BRS信号。
  9. 根据权利要求7所述的方法,其特征在于,所述BRS信号的质量参数为BRS信号的参考信号接收功率RSRP;
    所述对提取的各个候选波束对应的BRS信号进行处理包括:将提取的BRS信号进行功率测量,得到BRS信号的RSRP;以及
    所述从所提取的BRS信号中选择N个BRS信号包括:从所提取的BRS信号中选择功率最大的N个BRS信号。
  10. 根据权利要求7所述的方法,其特征在于,所述将确定的N个波束索引反馈给基站包括:对N个波束索引进行编码,得到一个二进制序列,再通过波束位图bitmap的方式将所述二进制序列反馈给基站。
  11. 一种基站,其特征在于,包括:
    配置单元,预先存储各个候选波束的波束信息以及波束参考信号BRS信息和波束索引的对应关系;
    BRS信号生成单元,针对每个候选波束,用于根据与所述候选波束的波束信息以及与所述候选波束的波束索引对应的BRS信息生成与所述候选波束对应的BRS信号;以及
    发送单元,分别将与各个候选波束对应的BRS信号发送给用户终端UE。
  12. 根据权利要求11所述的基站,其特征在于,所述BRS信号生成单元包括:
    信息确定模块,用于确定所述候选波束的波束信息以及根据预先存储的BRS信息和波束索引的对应关系,确定与所述候选波束对应的BRS信息;
    基序列生成模块,用于根据确定的BRS信息中的基序列构造生成基序列;
    参考信号的序列确定模块,用于根据所述基序列确定与所述候选波 束对应的参考信号的序列;
    波束赋形模块,用于根据确定的波束信息中的波束赋形参数对与所述候选波束对应的参考信号的序列进行波束赋形,得到与所述候选波束对应的BRS序列;以及
    资源映射模块,用于根据确定的BRS信息中的传输BRS信号的时频资源的位置将生成的BRS序列进行资源映射,得到对应所述候选波束的BRS信号。
  13. 根据权利要求12所述的基站,其特征在于,所述BRS信息进一步包括:循环移位CS值;
    所述参考信号的序列确定模块用于,根据BRS信息中的CS值对所述基序列进行相位旋转,得到与所述候选波束对应的参考信号的序列。
  14. 根据权利要求13所述的基站,其特征在于,进一步包括:
    通知单元,用于通过下行的信令通知UE BRS信息中包括CS操作以及CS操作的参数。
  15. 一种用户终端UE,其特征在于,包括:
    接收单元,用于在系统配置的基站发送波束参考信号BRS信号的时频资源位置,从接收的信号中提取各个候选波束对应的BRS信号;
    信号质量检测单元,用于对提取的各个候选波束对应的BRS信号进行处理,得到各个候选波束所对应BRS信号的质量参数;
    波束选择单元,用于根据各个候选波束所对应BRS信号的质量参数从所提取的BRS信号中选择N个BRS信号,确定所选择的N个BRS信号对应的BRS信息,并根据预先配置的BRS信息与波束索引之间的关系,确定上述所选择的N个BRS信号对应的N个波束索引;以及
    反馈单元,用于将确定的N个波束索引反馈给基站。
PCT/CN2016/089766 2015-07-31 2016-07-12 波束参考信号的发送方法、波束选择方法、基站及用户终端 WO2017020688A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018503757A JP6546692B2 (ja) 2015-07-31 2016-07-12 ビーム参照信号の送信方法、ビーム選択方法、基地局、およびユーザ端末
CN201680040746.2A CN107925461B (zh) 2015-07-31 2016-07-12 波束参考信号的发送方法、波束选择方法、基站及用户终端

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510462905.5A CN106412942A (zh) 2015-07-31 2015-07-31 波束参考信号的发送方法、波束选择方法、基站及用户终端
CN201510462905.5 2015-07-31

Publications (1)

Publication Number Publication Date
WO2017020688A1 true WO2017020688A1 (zh) 2017-02-09

Family

ID=57942400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089766 WO2017020688A1 (zh) 2015-07-31 2016-07-12 波束参考信号的发送方法、波束选择方法、基站及用户终端

Country Status (3)

Country Link
JP (1) JP6546692B2 (zh)
CN (2) CN106412942A (zh)
WO (1) WO2017020688A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106888042A (zh) * 2017-03-01 2017-06-23 北京小米移动软件有限公司 基于波束赋形的波束选取方法及装置、基站和终端
US10148402B2 (en) 2017-01-06 2018-12-04 Asustek Computer Inc. Method and apparatus for beam management in a wireless communication system
US10477553B2 (en) 2017-10-31 2019-11-12 Qualcomm Incorporated Aggressive beam selection during handover procedure
CN110679197A (zh) * 2017-03-23 2020-01-10 株式会社Ntt都科摩 用户终端以及无线通信方法
CN113329509A (zh) * 2017-03-24 2021-08-31 北京紫光展锐通信技术有限公司 一种波束恢复方法及装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10277296B2 (en) * 2017-02-16 2019-04-30 Hongkong Applied Science And Technology Research Institute Co., Ltd. Method and apparatus for channel state information (CSI) reporting in a massive MIMO communications system
CN107980209B (zh) * 2017-02-16 2021-06-25 香港应用科技研究院有限公司 大规模mimo通信系统中报告信道状态信息(csi)的方法和装置
CN108632841B (zh) * 2017-03-24 2021-12-03 华为技术有限公司 一种信息传输方法和装置
WO2018171694A1 (zh) * 2017-03-24 2018-09-27 华为技术有限公司 一种信息传输方法和装置
CN115987354A (zh) * 2017-03-30 2023-04-18 上海朗帛通信技术有限公司 一种用户设备、基站中的被用于多天线传输的方法和装置
CN109150273B (zh) * 2017-06-28 2022-06-10 捷开通讯(深圳)有限公司 波束管理方法及装置
EP3523885A1 (en) * 2017-07-04 2019-08-14 Telefonaktiebolaget LM Ericsson (PUBL) Ue rx beam switching during ue beam training
US20200136717A1 (en) * 2017-07-07 2020-04-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and Apparatus for Receiving Beamforming
CN109302720B (zh) * 2017-07-25 2021-03-23 华为技术有限公司 一种选择波束的方法及设备
EP3665927A4 (en) * 2017-08-11 2021-05-05 Apple Inc. DEVICE AND METHOD FOR BEAM REPORTING, BEAM DISPLAY AND PLANNING DATA TRANSFER DURING BEAM MANAGEMENT
WO2019091545A1 (en) * 2017-11-07 2019-05-16 Huawei Technologies Co., Ltd. Method and devices for beam recovery in a wireless network
CN108111286B (zh) 2017-11-17 2022-04-19 中兴通讯股份有限公司 信息发送、接收方法及装置、存储介质、处理器
CN110401501A (zh) * 2018-04-24 2019-11-01 索尼公司 用于无线通信系统的电子设备、方法和存储介质
WO2020029293A1 (zh) * 2018-08-10 2020-02-13 株式会社Ntt都科摩 无线通信方法、用户设备和基站
CN112994761B (zh) * 2019-12-12 2022-06-07 大唐移动通信设备有限公司 一种波束确定方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812546A (zh) * 2012-11-07 2014-05-21 华为技术有限公司 一种基于天线阵列的参考信号映射方法、装置及系统
CN104184561A (zh) * 2014-01-13 2014-12-03 中兴通讯股份有限公司 预编码导频处理方法、装置、基站及终端
WO2015060645A1 (ko) * 2013-10-22 2015-04-30 삼성전자 주식회사 무선 자원 할당 방법 및 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4107494B2 (ja) * 2002-09-20 2008-06-25 三菱電機株式会社 無線通信システム
EP2045944A1 (en) * 2006-07-24 2009-04-08 Panasonic Corporation Reception device, transmission device, and communication method
US8755755B2 (en) * 2007-03-30 2014-06-17 Panasonic Corporation Radio communication system, radio communication apparatus, and radio communication method
CN102378383B (zh) * 2010-08-09 2014-04-02 华为技术有限公司 发送与接收探测参考信号的方法、基站和用户设备
JP2012222722A (ja) * 2011-04-13 2012-11-12 Sharp Corp 無線通信システム、移動局装置および基地局装置
KR20130018079A (ko) * 2011-08-10 2013-02-20 삼성전자주식회사 무선 통신 시스템에서 빔 고정 장치 및 방법
JP6238305B2 (ja) * 2011-09-16 2017-11-29 サムスン エレクトロニクス カンパニー リミテッド 無線通信システムにおけるビーム割り当て装置及び方法
WO2015029604A1 (ja) * 2013-09-02 2015-03-05 ソニー株式会社 通信制御装置、通信制御方法及び端末装置
CN104734758A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种同步波束成形信号的发送、接收方法、基站和终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812546A (zh) * 2012-11-07 2014-05-21 华为技术有限公司 一种基于天线阵列的参考信号映射方法、装置及系统
WO2015060645A1 (ko) * 2013-10-22 2015-04-30 삼성전자 주식회사 무선 자원 할당 방법 및 장치
CN104184561A (zh) * 2014-01-13 2014-12-03 中兴通讯股份有限公司 预编码导频处理方法、装置、基站及终端

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10148402B2 (en) 2017-01-06 2018-12-04 Asustek Computer Inc. Method and apparatus for beam management in a wireless communication system
CN106888042A (zh) * 2017-03-01 2017-06-23 北京小米移动软件有限公司 基于波束赋形的波束选取方法及装置、基站和终端
CN110679197A (zh) * 2017-03-23 2020-01-10 株式会社Ntt都科摩 用户终端以及无线通信方法
JPWO2018173232A1 (ja) * 2017-03-23 2020-01-23 株式会社Nttドコモ ユーザ端末及び無線通信方法
US11039454B2 (en) 2017-03-23 2021-06-15 Ntt Docomo, Inc. User terminal and radio communication method
CN110679197B (zh) * 2017-03-23 2023-05-23 株式会社Ntt都科摩 用户终端以及无线通信方法
CN113329509A (zh) * 2017-03-24 2021-08-31 北京紫光展锐通信技术有限公司 一种波束恢复方法及装置
CN113329509B (zh) * 2017-03-24 2022-08-23 北京紫光展锐通信技术有限公司 一种波束恢复方法及装置
US10477553B2 (en) 2017-10-31 2019-11-12 Qualcomm Incorporated Aggressive beam selection during handover procedure

Also Published As

Publication number Publication date
JP2018527802A (ja) 2018-09-20
CN106412942A (zh) 2017-02-15
CN107925461B (zh) 2020-12-18
CN107925461A (zh) 2018-04-17
JP6546692B2 (ja) 2019-07-17

Similar Documents

Publication Publication Date Title
WO2017020688A1 (zh) 波束参考信号的发送方法、波束选择方法、基站及用户终端
CN110892771B (zh) 波束故障恢复请求
US10461994B2 (en) Method for response to beam failure recovery request
JP6681692B2 (ja) 混合ビームフォーミング技術における共通信号伝送方法および装置
US10827364B2 (en) Phased array antenna system for fast beam searching
CN110768698B (zh) 信号处理的方法和装置
EP3406104A1 (en) Guard period between subframe portions of same link direction in wireless networks
WO2018028291A1 (zh) 一种波束赋形训练方法、终端和基站
WO2016047373A1 (ja) 基地局装置、端末装置、および通信方法
EP3535907A1 (en) Signaling of measurement signals based on a tree structure
JP6151074B2 (ja) 通信システムおよび通信制御方法
US20190140714A1 (en) Aperture constraint for new radio uplink multiple-input multiple-output
WO2018059095A1 (zh) 一种波束扫描方法及相关设备
CN112567640B (zh) 极化信息共享的方法和通信设备
WO2018199819A1 (en) Apparatuses, methods, computer programs, and computer program products for interference avoidance
US11784853B2 (en) Channel measurement method and communication apparatus
WO2022037074A1 (zh) 数据传输方法及装置、无线通信系统、存储介质
WO2016047372A1 (ja) 基地局装置、端末装置、および通信方法
CN109120321B (zh) 一种波束赋形的方法、装置、基站及计算机可读存储介质
CN110912600B (zh) 一种通信方法、装置、设备及存储介质
KR20230071765A (ko) 통신 시스템에서 신호 송수신 방법 및 장치
CN117121389A (zh) 用于使用可重配置智能表面在发射器设备和无线发射-接收单元之间发射无线电信号的方法及对应设备
WO2016184777A1 (en) Use of basis functions for transmission of broadcast control information in a wireless network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018503757

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832176

Country of ref document: EP

Kind code of ref document: A1