CN110892771B - 波束故障恢复请求 - Google Patents

波束故障恢复请求 Download PDF

Info

Publication number
CN110892771B
CN110892771B CN201880045820.9A CN201880045820A CN110892771B CN 110892771 B CN110892771 B CN 110892771B CN 201880045820 A CN201880045820 A CN 201880045820A CN 110892771 B CN110892771 B CN 110892771B
Authority
CN
China
Prior art keywords
bfrq
beam failure
pucch
bfrp
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880045820.9A
Other languages
English (en)
Other versions
CN110892771A (zh
Inventor
夏鹏飞
权荣训
刘斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN110892771A publication Critical patent/CN110892771A/zh
Application granted granted Critical
Publication of CN110892771B publication Critical patent/CN110892771B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/29Control channels or signalling for resource management between an access point and the access point controlling device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及用于恢复用户设备中的波束故障的技术,包括:检测所述用户设备与基站之间的波束故障事件;在检测到所述波束故障之后,向所述基站发送第一波束故障恢复请求(first beam failure recovery request,BFRQ),以及在第一响应窗内搜索波束故障恢复响应(beam failure recovery response,BFRP)。

Description

波束故障恢复请求
优先权要求
本发明要求2017年11月15日递交的发明名称为“波束故障恢复请求”的第15/814,372号美国非临时专利申请案的在先申请优先权,该在先申请又要求2017年8月10日递交的发明名称为“波束故障恢复请求的第62/543,765号美国临时专利申请案的在先申请优先权,这两个专利申请的全部内容均以引入的方式并入本文本中。
技术领域
本发明大体上涉及无线通信网络,尤其涉及用户设备与基站之间的波束故障恢复。
背景技术
随着移动宽带通信的容量需求逐年急剧增加,无线通信系统处理移动流量的能力也在不断提高。在第五代(fifth generation,5G)技术等下一代系统中,毫米波(millimeter-wave,mm-wave)通信等具有潜在的每秒千兆数据速率的高级通信成为提高总体容量和传输速度的候选技术。基站(base station,BS)和移动台(mobile station,MS)都需要高定向波束成形天线,以补偿毫米波频段的高衰减并扩大其传输范围。
发射(transmitting,Tx)波束和接收(receiving,Rx)波束之间的位置不对准可能会大大损失接收功率,尤其是对于使用窄波束的系统,并且会导致波束故障。为了避免这种波束故障,必须使毫米波通信系统中的波束对准,以从所有可能的波束对中找出最佳波束对,从而获得最大波束成形效率。不过在发生波束故障的情况下,采用上报和恢复机制来报告和恢复故障。在3GPP TSG RAN WG1第89次会议期间,一致约定支持使用以物理随机接入信道(Physical Random Access Channel,PRACH)和物理上行控制信道(Physical UplinkControl Channel,PUCCH)为基础的基于非竞争的信道进行波束故障恢复请求传输。PRACH表示由终端传输的长期演进(Long Term Evolution,LTE)上行信道,传输的目的是建立初始同步,而PUCCH表示LTE上行控制信道,包括信道质量指示(Channel Quality Indicator,CQI)信息。
发明内容
根据本发明一方面,存在一种恢复用户设备中的波束故障的方法,包括:检测所述用户设备和基站之间的波束故障事件;在检测到所述波束故障事件之后向所述基站发送第一波束故障恢复请求(beam failure recovery request,BFRQ);以及在第一响应窗内搜索波束故障恢复响应(beam failure recovery response,BFRP)。
可选地,在任一前述方面中,在所述用户设备的物理层发送所述BFRQ。
可选地,在任一前述方面中,使用物理上行信道(physical uplink channel,PUCCH)或波束故障恢复的随机接入信道(random access channel,PRACH)中的一个来发送所述第一BFRQ。
可选地,在任一前述方面中,当使用所述PUCCH来发送所述BFRQ时,所述第一响应时间窗为PUCCH响应窗;当使用所述波束故障恢复的随机接入信道(beam failure randomaccess channel,PRACH)来发送所述BFRQ时,所述第一响应时间窗为波束故障随机接入信道响应窗。
可选地,在任一前述方面中,所述第一响应时间窗的参数为响应窗起始时间位置、响应窗结束时间位置或响应窗持续时间中的至少一个。
可选地,在任一前述方面中,通过无线资源控制(radio resource control,RRC)消息或下行控制信息(downlink control information,DCI)消息中的至少一个将所述第一响应时间窗的配置发送给所述用户设备。
可选地,在任一前述方面中,当PUCCH-BFRQ机会在PRACH-BFRQ机会之前到达时,使用所述PUCCH来发送所述第一BFRQ。
可选地,在任一前述方面中,当PUCCH-BFRQ机会在PRACH-BFRQ机会之后到达时,使用所述PUCCH来发送所述第一BFRQ。
可选地,在任一前述方面中,PUCCH-BFRQ在第一时间到达,而PRACH-BFRQ在第二时间到达,以及当预期PUCCH-BFRQ机会响应在所述第二时间的PRACH-BFRQ机会之前时,在所述第一时间发送所述PUCCH-BFRQ,除非所述第一时间和响应时间之和超过所述第二时间。
可选地,在任一前述方面中,所述方法还包括:针对同一波束故障事件向所述基站发送第二BFRQ;以及向所述基站指示所述第一BFRQ和所述第二BFRQ对应于所述同一波束故障事件。
可选地,在任一前述方面中,所述指示包括以下动作中的一个:将所述第二BFRQ标记为时间或顺序上第二,将指向所述第一BFRQ的指示所述第一BFRQ和所述第二BFRQ对应于所述同一波束故障事件的指针放置在所述第二BFRQ中,以及将波束故障事件ID放置在具有同一波束故障事件ID的所述第一BFRQ和所述第二BFRQ中。
可选地,在任一前述方面中,所述方法还包括:从所述基站接收第一波束故障恢复响应(beam failure recovery response,BFRP)和第二BFRP,其中所述BFRP包括以下中的一种:所述第二BFRP中的记为时间或顺序上第二的标记,所述第二BFRP中指向所述第一BFRP的指示所述第一BFRP和所述第二BFRP对应于所述同一波束故障事件的指针,以及具有同一波束故障事件ID的所述第一BFRP和所述第二BFRP中的波束故障事件ID。
可选地,在任一前述方面中,所述第二BFRQ与所述第一BFRQ位于不同信道或载波频率上。
根据本发明另一个实施例,存在一种恢复用户设备中的波束故障的设备,包括:含有指令的非瞬时性内存存储器;以及与所述存储器进行通信的一个或多个处理器,其中所述一个或多个处理器执行所述指令以:检测所述用户设备与基站之间的波束故障事件;在检测到所述波束故障事件之后向所述基站发送第一波束故障恢复请求(beam failurerecovery request,BFRQ);以及在第一响应时间窗内搜索波束故障恢复响应(beamfailure recovery response,BFRP)。
根据本发明又一方面,存在一种存储用于恢复用户设备中的波束故障的计算机指令的非瞬时性计算机可读介质,所述计算机指令在由一个或多个处理器执行时使得所述一个或多个处理器执行以下操作:检测所述用户设备与基站之间的波束故障事件;在检测到所述波束故障事件之后向所述基站发送第一波束故障恢复请求(beam failure recoveryrequest,BFRQ);以及在第一响应窗内搜索波束故障恢复响应(beam failure recoveryresponse,BFRP)。
本发明内容简单地介绍了下文在具体实施方式中进一步描述的一系列概念。本发明内容并非旨在识别所要求保护的主题的关键特征或必要特征,也非旨在帮助确定所要求保护的主题的范围。所要求保护的主题不限于解决背景技术中所述的任意或所有缺点的实施方式。
附图说明
本发明各方面通过示例进行说明并且不限于附图,相同的附图标记表示元件。
图1示出了用于传送数据的无线网络。
图2示出了根据示例性实施例的具有发射波束和接收波束的基站。
图3示出了根据图2的物理信道和在物理信道上传输信号。
图4A和图4B为基站与用户设备之间的波束故障的示例。
图4C示出了具有m个发射天线和n个接收天线的多入多出(multiple inputmultiple output,MIMO)系统。
图5A至图5C为选择信道的流程图和多个波束故障恢复请求的到达时间的示例。
图5D为示出了待配置的用户设备的调度请求机会的示例性图。
图6A和图6B示出了发送多个波束故障请求和响应的时序图。
图7A和图7B示出了根据所公开实施例的流程图。
图8A示出了根据本发明的可以实现各种方法和教示的示例性用户设备。
图8B示出了根据本发明的可以实现各种方法和教示的示例性基站。
图9为能够用于实现各种实施例的网络设备的方框图。
具体实施方式
本发明涉及恢复用户设备与基站之间的波束故障的技术。
用户设备和基站使用下行波束对和上行波束对来建立连接。通常情况下,例如,由于被阻挡或用户设备旋转或移位,用户设备与基站之间的连接中断,导致波束故障。为了解决这种故障,波束故障恢复机制可以帮助提高高频链路性能。具体而言,公开了一种基于类PRACH信道和PUCCH的波束故障恢复请求(beam failure recovery request,BFRQ)和波束故障恢复响应(beam failure recovery response,BFRQ)方法。所公开的机制根据期望的BFRQ来确定应该使用类PRACH信道还是使用PUCCH来发送BFRQ。
应当理解,本发明实施例可通过许多不同形式来实施,而且所请求保护的范围不应解释为限于本文所陈述的实施例。相反,提供这些实施例使得本发明变得透彻和完整,并向本领域技术人员充分传达发明性实施例概念。事实上,本发明旨在覆盖包括在由随附权利要求书限定的本发明的范围和精神内的替代物、修改和等同物。此外,在以下本发明实施例的详细描述中,陈述许多具体细节以便提供彻底理解。然而,本领域普通技术人员很清楚,可以在没有这些具体细节的情况下实践本发明实施例。
图1示出了用于传送数据的无线网络。通信系统100包括,例如用户设备110A至110C、无线接入网(radio access network,RAN)120A和120B、核心网130、公共交换电话网络(public switched telephone network,PSTN)140、互联网150以及其它网络160。其它或替代网络包括私有和公共数据分组网,包括公司内网。虽然图中示出了某些数量的这些组件或元件,但是系统100中可以包括任意数量的这些组件或元件。
在一个实施例中,无线网络可以是第五代(fifth generation,5G)网络,包括至少一个采用正交频分复用(orthogonal frequency-division multiplexing,OFDM)和/或非OFDM以及短于1ms(例如100毫秒或200毫秒)的传输时间间隔(transmission timeinterval,TTI)的5G基站,以便与通信设备进行通信。一般而言,基站还可以用来指eNB和5GBS(gNB)中的任一个。另外,网络还可以包括网络服务器,用于处理通过至少一个eNB或gNB从通信设备接收到的信息。
系统100使得多个无线用户能够传输和接收数据和其它内容。系统100可以实现一种或多种信道接入方法,例如但不限于码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequencydivision multiple access,FDMA)、正交FDMA(orthogonal FDMA,OFDMA)或单载波FDMA(single-carrier FDMA,SC-FDMA)。
配置用户设备(user equipment,UE)110A至110C在系统100中工作和/或通信。例如,用户设备110A至110C用于传输和/或接收无线信号或有线信号。用户设备110A至110C均代表任何合适的终端用户设备并且可以包括如下设备(或可以称为):用户设备(userequipment/device)、无线传输/接收单元(wireless transmit/receive unit,WTRU)、移动台、固定或移动用户单元、寻呼机、蜂窝电话、个人数字助理(personal digitalassistant,PDA)、智能手机、笔记本电脑、计算机、触摸板、无线传感器或消费电子设备。
在所描述的实施例中,RAN 120A和120B分别包括一个或多个基站170A、170B(统称为基站170)。基站170分别用于与UE 110A、110B、110C中的一个或多个进行无线连接,使得能够接入到核心网130、PSTN 140、互联网150和/或其它网络160。例如,基站(basestation,BS)170可以包括若干熟知设备中的一个或多个,例如基站收发信台(basetransceiver station,BTS)、NodeB(NodeB)、演进型基站(evolved NodeB,eNB)、下一代(第五代)(fifth generation,5G)基站(next generation NodeB,gNB)、家庭NodeB、家庭eNodeB、站点控制器、接入点(access point,AP)、无线路由器、服务器、路由器、交换机或有线网络或无线网络下的其它处理实体。
在一个实施例中,基站170A构成RAN 120A的一部分,RAN 120A可以包括其它基站、元件和/或设备。同样地,基站170B构成RAN 120B的一部分,RAN 120B可以包括其它基站、元件和/或设备。基站170分别工作,以在特定地理区或区域内传输和/或接收无线信号,该地理区或区域有时称为“小区”。在一些实施例中,可以采用多入多出(multiple-inputmultiple-output,MIMO)技术,为每个小区提供多个收发器。
基站170使用无线通信链路通过一个或多个空口(未示出)与用户设备110至110C中的一个或多个进行通信。空口可以采用任何合适的无线接入技术。
预计系统100可以使用多信道接入功能,包括基站170和用户设备110A至110C用于实施长期演进(Long Term Evolution,LTE)无线通信标准、高级LTE(LTE Advanced,LTE-A)和/或LTE广播(LTE Broadcast,LTE-B)的方案等。在其它实施例中,基站170和用户设备110A至110C用于实施UMTS、HSPA或HSPA+标准和协议。当然,也可以采用其它多址方案和无线协议。
RAN 120A和120B与核心网130进行通信,以便为用户设备110A至110C提供语音、数据、应用、基于IP的语音传输(Voice over Internet Protocol,VoIP)或其它服务。应当理解,RAN 120A和120B和/或核心网130可以与一个或多个其它RAN(未示出)进行直接或间接通信。核心网130还可以充当接入其它网络(例如PSTN 140、互联网150和其它网络160)的网关。另外,用户设备110A至110C中的一些或全部可以包括使用不同的无线技术和/或协议通过不同的无线链路与不同的无线网络进行通信的功能。
RAN 120A和120B还可以包括毫米波接入点(access point,AP)和/或微波AP。AP可以是基站170的一部分,也可以位于远离基站170的位置。AP可以包括但不限于连接点(毫米波CP)或能够进行毫米波通信的基站170(例如毫米波基站)。毫米波AP可以在6GHz到100GHz等频率范围内传输和接收信号,但不需要在整个范围内都工作。本文所使用的术语基站是指基站和/或无线接入点。
虽然图1示出了通信系统的一个示例,但是可以对图1进行各种更改。例如,通信系统100可以包括任意数量的用户设备、基站、网络或任何合适配置下的其它组件。还应当理解,术语用户设备可以指任何类型的与蜂窝通信系统或移动通信系统中的无线网络节点进行通信的无线设备。用户设备的非限制性示例包括目标设备、设备到设备(device-to-device,D2D)用户设备、机器类用户设备或能够进行机对机(machine-to-machine,M2M)通信的用户设备、笔记本电脑、PDA、iPad、平板电脑、移动终端、智能手机、笔记本电脑嵌入式设备(laptop embedded equipped,LEE)、笔记本电脑安装式设备(laptop mountedequipment,LME)和USB数据卡。
图2示出了根据示例性实施例的具有发射波束和接收波束的基站。基站202管理划分为一个或多个扇区作为业务覆盖区域的小区204,并且使用波束成形方案来形成多个发射/接收(transmit/receive,Tx/Rx)波束BM1至BM7。波束成形通常是指使用多个天线通过适当地加权各个天线信号的幅度和相位来控制波面的方向。波束成形方案包括但不限于,数字波束成形(例如发射(Transmit,Tx)快速傅里叶逆变换前(pre-Inverse Fast FourierTransform,pre-IFFT)波束成形/接收(Receive,Rx)快速傅里叶变换后(post-FastFourier Transform,post-FFT)波束成形)、模拟波束成形(例如发射IFFT后波束成形/接收FFT前波束成形),或两者的组合。基站202通过同时或先后扫描波束成形信号来传输这些波束成形信号,先后扫描是指,例如,从波束BM1开始扫描,到BM7结束。
用户设备(user equipment,UE),例如用户设备110A至110C(图1),位于基站202的小区内,可以用于在不支持接收波束成形的情况下全方位地接收信号,在支持接收波束成形时每次使用一种波束成形模式来接收信号,或者在支持接收波束成形时同时使用多种波束成形模式在不同方向上接收信号。
如果用户设备110A至110C不支持接收波束成形,则用户设备110A至110C测量每个发射波束的参考信号(reference signal,RS)的信道质量并向基站202上报测量结果。基站202从多个发射波束中为用户设备110A至110C选择最佳波束。如果用户设备110A至110C能够从基站202接收多个发射波束或者能够支持多个基站发射-用户设备接收的波束对,则基站202可以在考虑分集传输到重复传输或同时传输的情况下选择一个波束。
图3示出了根据图2的物理信道和在物理信道上传输信号。初始小区搜索302涉及获取与gNB 202等基站的同步。具体地,用户设备将其时间同步到gNB 202,并通过从gNB202接收主同步信道(Primary Synchronization Channel,P-SCH)和辅同步信道(Secondary Synchronization Channel,S-SCH)来获取小区标识(Identifier,ID)和其它信息。随后,用户设备110A至110C可以通过从gNB 202接收物理广播信道(PhysicalBroadcast Channel,PBCH)来获取在小区中广播的信息。在初始小区搜索期间,用户设备110A至110C可以通过接收下行(downlink,DL)参考信号(downlink reference Signal,DLRS)来监测下行信道状态。
在初始小区搜索之后,用户设备110A至110C可以通过接收物理下行控制信道(Physical Downlink Control Channel,PDCCH)以及基于PDCCH中包含的信息来接收物理下行共享信道(Physical Downlink Shared Channel,PDSCH),从而在304处获取详细的系统信息。如果用户设备110A至110C首先接入gNB 202或没有用于向gNB 202传输信号的无线资源,则用户设备110A至110C可以在306处执行与gNB 202的随机接入过程。在随机接入过程306期间,在完成上述过程之后,用户设备110A至110C可以从gNB 202接收PDCCH和/或PDSCH并向gNB 202传输物理上行共享信道(Physical Uplink Shared Channel,PUSCH)和/或PUCCH,这就是308处的通用DL和UL信号传输流程。具体地,用户设备110A至110C在PDCCH上接收下行控制信息(Downlink Control Information,DCI)。
用户设备110A至110C在上行(uplink,UL)信道上向gNB 202传输的或者在DL信道上从gNB 202接收的控制信息包括DL/UL应答/否定应答(ACKnowledgment/NegativeACKnowledgment,ACK/NACK)信号、信道质量指示(Channel Quality Indicator,CQI)、预编码矩阵索引(Precoding Matrix Index,PMI)、秩指示(Rank Indicator,RI)等。CQI、PMI、RI等控制信息可以在PUSCH和/或PUCCH上传输。图4A和图4B示出了基站与用户设备之间的波束故障的示例。如图所示,基站402与用户设备404通信,其中基站402和用户设备404通过DL波束对和UL波束对进行通信。在一个实施例中,DL波束对发生故障(图4A)。在另一个实施例中,DL波束对/UL波束对发生故障(图4B)。在与基站402建立通信或波束对链路之前,用户设备404通常执行小区获取和同步。小区获取步骤通常涉及从基站402接收同步信号。在高频波段,可以对同步信号进行波束成形(否则,可以接收同步信号时的距离远小于可以接收波束成形后的数据信道时的距离)。如果对同步信号进行波束成形,则只有波束所覆盖的窄角内的用户设备404能够接收同步信号。为了确保用户设备404收同步信号,基站402可以对具有波束所覆盖的窄角的同步信号进行“波束扫描”。波束扫描是指旋转波束的方向以覆盖所有方向,使得用户设备404可以在波束扫描范围内对波束进行检测。为了接收同步信号,用户设备404可能还需要旋转其搜索同步信号所在的方向。旋转使得基站402和用户设备404的(可能是相位阵列式的)天线相互对准。
如果用户设备404正在移动,则小区获取和同步变得更加复杂,因为同步信号波束的到达方向持续变化。在这些情况下,用户设备404可能尝试定位多个基站402以识别适合于服务的多个小区。然而,识别一组基站的扫描流程会意味着小区获取时长显著增加。
在更高频率(例如微波频谱和毫米波频谱)处,波束成形传输是解决更多路径损失的重要特征。可以对用户设备特定DL和UL数据传输进行波束成形,并且也可以对DL同步和控制信道以及UL随机接入信道等公共信道进行波束成形。
由于基站402处和用户设备404处的天线配置(图4C)支持波束成形,所以基站402和用户设备404中每一个的多个传输和接收方向上可能存在多个波束。例如,用户设备404可以存在任意数量的波束接收方向,基站402可以存在任意数量的波束传输方向。
在图4A的实施例中,示出了单个或单向传输和接收波束对,而在图4B中,示出了多方向或全向传输和接收波束对。无论哪种情况,系统都可以在各种接收和传输方向中确定传输和接收使用的“最佳”波束对(例如,信号最强的波束、DL/UL速度最快的波束,等等)。至此,在特定接收方向从基站402接收的信号可以确定为具有向基站402进行传输的对应传输方向。
(DL和UL波束中的)波束对传输和接收使用多个接入技术:DL的正交频分多址接入(orthogonal frequency division multiple access,OFDMA)、UL的单载波频分多址(single-carrier frequency division multiple access,SC-FDMA)。LTE和5G等下一代系统并没有使用专用数据信道。相反,基站402与用户设备404之间的DL和UL通信都使用共享传输信道资源。这些共享传输信道DL-SCH和UL-SCH分别映射到DL OFDM子帧上的物理下行共享信道(physical downlink shared channel,PDSCH)和UL SC-FDMA子帧上的物理上行共享信道(physical uplink shared channel,PUSCH)。
OFDM子帧和SC-FDMA子帧分别包括物理下行控制信道(physical downlinkcontrol channel,PDCCH)和物理上行控制信道(physical uplink control channel,PUCCH)。PDCCH用于将用户设备特定DL控制信息(DL control information,DCI)从基站402传送给用户设备404。同样地,PUCCH用于将UL控制信息(UL control information,UCI)从用户设备404携带到基站402,例如信道质量指示(channel quality indication,CQI)报告、ACK/NACK响应、调度请求(scheduling request,SR)。
在建立通信链路或波束对链路(beam pair link,BPL)之后的某一时间点,其中一个波束对可能发生故障(波束故障在图中由穿过相应波束的“X”表示)。本文所述的波束故障可能是由于多种因素,例如天线位置未对准、信号强度等。如图4A的实施例所示,DL波束已经发生故障,而UL波束仍然起作用。在图4B的实施例中,DL波束和UL波束都发生故障。
为了使系统从这种波束故障中恢复,用户设备(user equipment,UE)404向基站(gNB)402发送波束故障恢复请求(beam failure recovery request,BFRQ)。在一个实施例中,在只有DL波束发生故障时(图4A),用户设备404才可以使用(最初分配给UCI的)活动PUCCH来上报波束故障并请求恢复基站402,正如在3GPP TSG RAN WG1第89次会议上约定的那样。在另一个实施例中,当DL波束和UL波束都发生故障时,用户设备404也可以尝试使用PUCCH来发送BFRQ。由于UL波束和DL波束都发生了故障,所以波束故障恢复在这种情况下不太可能成功。无论哪种情况,如果要恢复波束故障,则用户设备404发送的BFRQ都需要来自基站402的响应消息(BFRQ响应)。不过,用户设备404不知道基站402将使用哪个DL波束来传输BFRQ响应。术语波束故障恢复可能有其它名称,例如波束/链路故障恢复/重配置。此外,在一个实施例中,BFRQ操作通常由用户设备404的物理层功能来执行,其中物理层操作通常由用户设备404的高层功能来指示。为了使基站402发送BFRQ响应,用户设备404首先确定基站402可能使用哪个(哪些)候选波束来发送响应。候选波束可理解为用户设备404和基站402传输/接收的任意波束,除发生故障的波束(检测到发生故障的波束)之外。在一个实施例中,基于接收信号强度或接收信号功率来确定候选波束。为了确定候选波束,用户设备402使用基站402的发射(DL)波束与接收(UL)波束之间的空间准共址(spatial quasi co-located,SQCL’ed)信息。如果用来传送一个天线端口上的符号的无线信道的大规模属性可以从用来传送另一天线端口上的符号的无线信道中推导出,则可以说这两个天线端口是空间准共址的。大规模属性可以包括,例如时延扩展、多普勒扩展、多普勒频偏、平均增益和平均时延。
在一个实施例中,UE会监测与基站402的用于接收BFRQ的UL接收波束为空间准共址的基站402的DL波束。具体地,在假设对应PDCCH解调参考信号(demodulation referencesignal,DMRS)与用户设备404识别的候选波束的RS是空间准共址的情况下,用户设备404监测DL波束的PDCCH区。为了做出这个决定,用户设备404可以(1)提供有直接来自基站402的有源DL/UL波束对之间的空间准共址信息,或者(2)利用DL波束对与UL波束对之间的波束对应关系信息。波束对应关系是指UL波束与DL波束之间的互易性。例如,如果基站402或用户设备404能够基于接收波束来确定要使用的发射波束,则可以说具有波束对应关系。
在不容易获得波束对应关系信息的情况下(例如,在毫米波操作或微波操作的多波束架构中),空间准共址信息可以直接从基站402通过波束配置信令来传送,例如无线资源控制(Radio Resource Control,RRC)、媒体接入控制(Medium Access Control,MAC)控制元素(Control Element,CE)或DL控制信息(DL control information,DCI)。
在可获得波束对应关系的情况下,用户设备404可以确定活动波束对的空间准共址状态。例如,当基站402可获得波束对应关系信息时,用户设备的发射波束由基站402的CSI-RS资源指示来指示,从而使用户设备能够确定空间准共址的DL波束对和UL波束对。
虽然不是本发明的主题,但是在一个实施例中,如果在发生波束故障之前使用的UL波束对不存在空间准共址的DL波束对,则用户设备404可以采用类PRACH(例如,来自PRACH的前导序列具有不同参数)BFRQ方案。
图4C示出了具有m个发射天线和n个接收天线的多入多出(multiple inputmultiple output,MIMO)系统。图中描述的MIMO系统表示可以在图4A和图4B中描述的系统中使用的发射(transmission,TX)天线和接收(reception,RX)天线的一个非限制性实施例。如图所示,MIMO系统包括m个发射天线和n个接收天线。因此,接收器接收传输矩阵H乘以输入信号向量x得到的信号y,用等式y=H×x表示,其中
Figure BDA0002360198760000081
传输矩阵H包含信道脉冲响应hnm,涉及发射天线m与接收天线n之间的信道。信道矩阵的秩限定了H中的线性无关的行或列的数量,并指示可以同时传输多少个独立的数据流(层)。为了提高数据速率,可以采用空间复用。通过本技术,将数据划分为多个单独的流,然后通过相同的资源同时传输这些流。传输包括接收器也知道的参考信号,使得接收器可以对每个发射天线的信号执行信道估计。然后,接收器可以通过反馈信道向发射器上报信道状态,使得在信道条件发生变化时能够做出改变。
图5A示出了选择请求信道的流程图,图5B示出了多个波束故障恢复请求的示例性到达时间。如3GPP R1-1709309所述,就波束故障恢复(beam failure recovery,BFR)达成了以下协议。
为了检测波束故障,UE(例如UE 404)监测参考信号(波束故障检测RS)以确定是否满足波束故障触发条件(例如,波束信号强度已经下降到阈值以下)。在一个实施例中,波束故障检测RS包括用于波束管理的周期性CSI-RS,其中,如果波束管理还使用服务小区内的SS块,则可以考虑该SS块。
为了使UE 404上报波束故障检测,UE 404监测波束识别RS以找到新的候选波束。例如,当通过网络对UE 404进行配置时,UE 404监测周期性CSI-RS以检测波束故障,或者当使用服务小区内的SS块来检测波束故障时,UE 404监测服务小区内的周期性CSI-RS和SS块。
UE 404在检测到波束故障之后,执行波束故障恢复请求(beam failure recoveryrequest,BFRQ)传输。BFRQ包含的信息中包括至少以下内容:识别UE 404和新gNB发射波束信息的显式/隐式信息,识别UE 404和确认是否存在新候选波束的显式/隐式信息。例如,BFRQ可以包括gNB 402能够用来识别UE 404的身份和新识别波束的字段(显式方式)。在另一示例中,BFRQ可以包括gNB 402能够用来识别UE 404的身份和新识别波束的前导序列(隐式方式)。在后一种情况下,UE 404和gNB 402需要约定前导序列与UE 404的身份/新识别波束之间的关联关系。在一个实施例中,传输BFRQ的DL波束可以是PRACH、PUCCH或波束恢复随机接入信道中的一个。在另一个实施例中,BFRQ资源/信号可以用于调度请求。
PRACH是UE 404出于连接请求目的而使用的上行信道,携带RACH传输信道数据,而波束恢复随机接入信道是一种类PRACH结构,其中来自PRACH的前导序列使用不同的参数。在另一个实施例中,波束恢复随机接入信道可以是PRACH。在不失一般性的情况下,下面将使用PRACH表示波束恢复随机接入信道。当UE没有任何应用数据或无线资源控制(radioresource control,RRC)信令时,使用PUCCH来携带上行控制信息(uplink controlinformation,UCI)。PUCCH控制信令信道包括HARQ ACK/NACK、信道质量指示(channelquality indicato,CQI)、MIMO反馈–秩指示(Rank Indicator,RI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、上行传输调度请求和用于PUCCH调制的BPSK或QPSK。
在执行BFRQ传输之后,UE 404监测控制信道搜索空间以接收gNB 402对UE的BFRQ的响应(BFRP)。
基于上面论述的约定波束故障请求和恢复机制,PRACH和PUCCH信道都可以在波束故障恢复中使用。为了提高通信效率,UE 404(或gNB 402)应在传输BFRQ和BFRP时确定要使用这两种信道中的哪一种。在下面的示例和非限制性实施例中,针对两种场景进行了处理:(1)UE先前已经使用PRACH来传输BFRQ,并且PUCCH资源在PRACH-BFRP之前到达,(2)UE先前已经使用PUCCH来传输BFRQ,并且PRACH资源在PUCCH-BFRP之前到达。
参考图5A,UE 404确定使用PUCCH还是PRACH来发送/传输BFRQ。例如,在502处,UE404确定预期先到达的是PUCCH-BRFQ机会还是PRACH-BRFQ机会。如果UE 404确定PUCCH-BRFQ机会先到达,则在504处,UE 404使用PUCCH来发送BFRQ。否则,如果UE 404确定PRACH-BFRQ机会先到达,则在506处,UE 404使用PRACH来发送BFRQ。下面参考图5C和下面的示例来描述PUCCH-BRFQ机会和PRACH-BRFQ机会。
一般而言,应当理解,相比于PRACH(由于其随机接入信道,PRACH更为可靠),PUCCH是一种可靠性低的信道,因为其仍然受上行方向的波束故障的影响。因此,在一个实施例中,在可用PRACH代替PUCCH,应使用PRACH,除非PUCCH能够更快地解决波束故障恢复,如下面参照各种示例所述。
在图5B中的示例中,出于论述目的,假设PUCCH-BRFQ机在时间t1到达,比时间t2的预期PRACH-BFRQ机会早。当UE 404在t1提出PUCCH-BFRQ时,UE 404在(t1+TW0)的响应时间窗内监测PUCCH-BFRP所用的信道,其中TW0代表窗口持续时间。通常,时间窗可以由时间窗起始时间位置和/或时间窗结束时间位置和/或时间窗持续时间来指定。注意的是,以上消息(起始时间位置和/或结束时间位置和/或时间窗持续时间)的详细说明可以通过RRC消息或DCI消息或这两个消息的组合从gNB 402携带到UE 404。在一个实施例中,时间起始位置可能与传输BFRQ的时刻相同。另外,应当理解,起始时间位置、结束时间位置和/或时间窗持续时间可以使用诸如时隙、迷你时隙、毫秒、OFDM符号周期之类的各种单位。因此,如果UE404期望在t2的PRACH-BFRQ机会之前接收PUCCH-BRRP,则UE 404在t1执行PUCCH-BFRQ。否则,UE 404在t1不执行PUCCH-BRRQ。相反,即使t1(PUCCH-BRFQ机会)比t2(PRACH-BFRQ机会)早且t1+TW0比t2晚(即,即使响应在PRACH之后到达),UE 404也在t2执行PRACH-BFRQ。
在图5C的示例中,出于论述目的,假设PUCCH-BRFQ机会在t1到达,在t2的PRACH-BFRQ机会之后。在这些情况下,应使用t2的PRACH-BFRQ机会来发送PRACH-BFRQ。
图5D为示出了待配置的用户设备的调度请求机会的示例性图。调度请求机会是了解何时有机会传输PUCCH和PRACH传输的前导。UE 404可以使用调度请求在某个时频资源处请求调度,使得UE 404能够使用调度的资源执行某个通信任务。
在蜂窝无线系统中,基站(例如gNB)(在PDCCH上)发送位于PDSCH和PUSCH上并且分配给UE的时频资源(物理资源块)。这种调度协议支持高级多天线技术,如同DL共享数据信道的预编码传输和MIMO操作。对于UE有UL数据要发送的情况,UE会向gNB发送调度请求(scheduling request,SR),以便获得PUSCH资源分配的UL授权。
UE能够通过两种不同的方式来发送SR。如果UE与gNB不处于RRC连接状态,则UE使用随机接入;如果UE与gNB处于RRC连接状态,则UE能够使用随机接入流程或者周期性SR资源。如果配置了周期性SR资源,则UE使用PUCCH上的专用于该特定UE的一个或多个周期性SR资源。这些专用SR资源中的每一个都可以认为是UE的SR机会。
PUCCH上的UE的SR机会的间隔半静态地固定在1毫秒(millisecond,ms)到80ms之间。在图中,UE配置有给出SR机会之间的间隔的SR周期。为具有时延关键服务的UE配置较短间隔,因此有更频繁的机会,而最初指定了较长间隔,目的是在网络保持大量在RRC连接状态下具有相对较低活动等级的UE时能够节省PUCCH资源。另一方面,当UE需要获取时延关键信令或数据使用的PUSCH资源时,将SR机会之间的较长间隔转换为较长时延。
图6A示出了发送多个波束故障请求的时序图。传统上,每个BFR事件不允许存在一个以上的BFRQ。也就是说,在传统系统中,UE 404对于同一事件不会同时发送PUCCH-BFRQ和PRACH-BFRQ。
在所描绘的实施例中,对于单个波束故障(BFR)事件,UE 404传输一个以上的BFRQ(例如PUCCH-BFRQ、PRACH-BFRQ)。由于UE 404可以传输一个以上的BFRQ,所以可以使用不同信道(例如PUCCH和PRACH)来发送BFRQ(和接收BFRP)。为了使gNB 402传输BFRP以响应各个BFRQ,BFRQ应与事件相关联,从而使gNB 402能够对每个BFRQ进行分类并且在不重复的情况下返回对适当BFRQ的响应(BFRP)。因此,gNB 402应确定如何处理响应(BFRP),使得gNB 402针对每个BFR事件向UE 404返回单个BFRP。
在一个实施例中,gNB 402可以实施一种算法来确定多个BFRQ(PRACH-BFRQ和PUCCH-BFRQ)是否对应于同一事件,以便gNB 402可以提供对该事件的单个响应。例如,如果多个请求在某个时间窗内到达,则gNB 402可以认为它们对应于同一事件。在另一个实施例中,UE 404可以在BFRQ中指示(即提供信息)PUCCH-BFRQ和PRACH-BFRQ与同一事件有关,如图6A和图6B中描述的示例所论述。
在图6A中的示例中,先发送PUCCH-BFRQ,然后发送PRACH-BFRQ。具体而言,在t1发送PUCCH-BFRQ之后,并且在PUCCH-BFRQ从gNB 402到达UE 404之前,UE 404有PRACH-BFRQ机会并使用PRACH-BFRQ#1来发送第二BFRQ(与图5B中的只发送其中一个BFRQ的示例不同,在本示例两个BFRQ都发送)。在这些情况下,UE 404通知(如下文解释)gNB 402第二BFRQ(PRACH-BFRQ)与第一BFRQ(PUCCH-BFRQ)共享同一BFR事件。通知gNB 402两个BFRQ都与同一事件有关,避免了gNB 402将两个BFRQ误认为是同一UE 404的独立事件。
在一个实施例中,UE 404可通过在发送BFRQ时将第二BFR事件标记为时间或顺序上第二来通知gNB 402,使得gNB 402确定第二BFRQ(PRACH-BFRQ)不是第一请求。
在另一个实施例中,UE 404可通过将指向第一BFRQ(PUCCH-BFRQ)的指针放置在第二BFRQ(PRACH-BFRQ)中来通知gNB 402,该指针指示PUCCH-BFRQ和PRACH-BFRQ对应于同一BFR事件。
在又一个实施例中,UE 404可通过将BFR事件ID分别放置在第一和第二BFRQ(PUCCH-BFRQ和PRACH-BFRQ)中来通知gNB 402,使得具有同一BFR事件ID的所有BFRQ对应于同一BFR事件。
图6B示出了发送多个波束故障响应的时序图。在所描绘的示例中,为了响应UE404的多个BFRQ,gNB 402将向UE 404发送PRACH-BFRP和PUCCH-BFRP。
在gNB 402响应UE 404的多个BFRQ的情况下,gNB 402针对每个BFRQ(每个信道与一个BFRQ对应)发送一个BFRP。例如,gNB 402可以为了响应UE 404的PUCCH-BFRQ而发送PUCCH-BFRP,为了响应UE 404的PRACH-BFRQ而发送PRACH-BFRP。类似于UE 404向gNB 402通知同一BFR事件,gNB可以关联两个BFRP(PUCCH-BFRP和PRACH-BFRP),使得UE 404能够确定这两个BFRP对应于同一事件。
在一个实施例中,gNB 402将第二BFRP标记为时间和顺序上第二。在另一个实施例中,gNB 402将指向第一BFRP的指针放置在第二BFRP中。在又一个实施例中,gNB 402将BFR事件ID分别放置在两个BFRP中,使得UE 404确定这两个BFRP对应于同一事件。
应当理解,在上文示例中,UE 404可以先发送PRACH-BFRQ,然后发送PUCCH-BFRQ,并且本发明不限于所描述的实施例。
在又一个实施例中,gNB 402可以设置为使用算法等来响应单个BFRQ。例如,gNB402可以通过以下方式来响应BFRQ:(1)始终发送PRACH-BFRP,(2)始终发送PUCCH-BFRP,(3)始终发送首先到达的BFRP,或(4)在另一BFRP的位置上发送BFRP。
如图6B的示例所示,为了响应两个BFRQ而发送单个BFRP。在该示例中,UE 404发送两个BFRQ,即,时间t1的PUCCH-BFRQ和时间t2的PRACH-BFRQ。然后,UE 404等待来自gNB 402的单个BFRP,即,时间t3的PUCCH-BFRP或时间t4的PRACH-BFRP。
gNB 402基于上述算法响应UE 404的两个BFRQ。例如,UE 404在t1发送PUCCH-BFRQ,在t2发送PRACH-BFRQ。然后,UE 404在t3等待PUCCH-BFRP,在t4等待PRACH-BFRP。作为响应,gNB发出单个BFRP,如下所示:gNB在时间t4发出PRACH-BFRP(始终响应PRACH-BFRP),gNB在时间t3发出PUCCH-BFRP(始终响应PUCCH-BFRP),gNB在时间t3发出PUCCH-BFRP(始终响应首先到达的BFRP),gNB在时间t3发出PRACH-BFRP(在另一BFRP的位置上的BFRP)。
图7A和图7B示出了根据所公开实施例的流程图。在本文描述的实施例中,由用户设备实施各个过程。然而,应当理解,可以采用任一系统组件,例如图1、图2、图4C、图8A、图8B和/或9中描述的基站或任一组件,来实施各个过程。
参考图7A,在702处,用户设备(例如UE 110)检测UE 110与基站(例如gNB 202)之间的波束故障事件。例如,波束故障事件可以被定义为在UE 110与gNB 202之间发生的波束故障(即,当UE和gNB之间建立的通信链路由于位置未对准等原因而发生故障时)。在604处,在检测到波束故障事件之后,UE 110向gNB 202发送第一波束故障恢复请求(beam failurerecovery request,BFRQ)(即UE 110重建与gNB 202的通信的请求),然后在706处,在第一响应时间窗内搜索波束故障恢复响应(beam failure recovery response,BFRP)(即gNB202对开始重建与UE 110的波束的响应)。在一个实施例中,使用PUCCH和波束故障恢复的PRACH中的一个来发送第一BFRQ。在另一个实施例中,当使用PUCCH发送BFRQ时,第一响应窗为PUCCH响应窗;当使用波束故障恢复的波束故障随机接入信道(beam failure randomaccess channel,PRACH)发送BFRQ时,第一响应窗为PRACH响应窗。
参见图7B,在708处,UE 110针对同一波束故障事件向gNB 202发送来自UE 110的第二BFRQ,在710处,该同一波束故障事件指示第一和第二BFRQ对应于同一波束故障事件。此外,该指示可以包括以下动作之一:将第二BFRQ标记为时间或顺序上第二(710A),将指示第一和第二BFRQ对应于同一波束故障事件的指针放置在第二BFRQ中(710B),将波束故障事件ID放置在具有同一故障波束事件ID的第一BFRQ和第二BFRQ中(710C)。在又一个实施例(未示出)中,从基站接收的第一BFRP和第二BFRP可以包括第二BFRP中记为时间或顺序上第二的标记、第二BFRP中指向第一BFRP的指示第一BFRP和第二BFRP对应于同一波束故障事件的指针、具有同一波束故障事件ID的第一BFRP和第二BFRP中的波束故障事件ID。
图8A示出了根据本发明的可以实现各种方法和教示的示例性用户设备。如图所示,UE 800包括至少一个处理器804。处理器804执行UE 800的各种处理操作。例如,处理器804可以执行信号编码、数据处理、功率控制、输入/输出处理或者任何其它使UE 800能够在系统100(图1)中工作的功能。处理器804可以包括用于执行一个或多个操作的任何适当的处理设备或计算设备。例如,处理器804可以包括微处理器、微控制器、数字信号处理器、现场可编程门阵列或专用集成电路。
UE 800还包括至少一个收发器802。收发器802用于调制数据或其它内容以通过至少一个天线810进行传输。收发器802还用于解调通过至少一个天线810接收的数据或其它内容。每个收发器802可以包括任何适当的结构,用于生成信号进行无线传输和/或处理无线接收的信号。每个天线810均包括任何适当的结构,用于传输和/或接收无线信号。应当理解,UE 800中可以使用一个或多个收发器802,UE 800中可以使用一个或多个天线810。虽然收发器802示为单个功能单元,但是还可以使用至少一个发射器和至少一个单独接收器来实现收发器802。
UE 800还包括一个或多个输入/输出设备808。输入/输出设备808有助于与用户进行交互。每个输入/输出设备808包括任何适当的结构,用于为用户提供信息或从用户接收信息,例如扬声器、麦克风、小键盘、键盘、显示器或触摸屏。
另外,UE 800包括至少一个存储器806。存储器806存储UE 700使用、生成或收集的指令和数据。例如,存储器806可以存储处理器804执行的软件指令或固件指令以及用于减少或消除传入信号中的干扰的数据。每个存储器806均包括任何适当的易失性和/或非易失性存储和检索设备。可使用任何适当类型的存储器,例如随机存取存储器(random accessmemory,RAM)、只读存储器(read only memory,ROM)、硬盘、光盘、用户识别模块(subscriber identity module,SIM)卡、记忆棒、安全数码(secure digital,SD)存储卡,等等。
图8B示出了根据本发明的可以实现各种方法和教示的示例性基站。如图所示,基站850包括至少一个处理器858、至少一个发射器852、至少一个接收器854、一个或多个天线860和至少一个存储器856。处理器858执行基站850的各种处理操作,例如信号编码、数据处理、功率控制、输入/输出处理或任何其它功能。每个处理器858均包括用于执行一个或多个操作的任何适当的处理设备或计算设备。例如,每个处理器858均可以包括微处理器、微控制器、数字信号处理器、现场可编程门阵列或专用集成电路。
每个发射器852均包括任何适当的结构,用于生成信号以无线传输到一个或多个UE或其它设备。每个发射器854均包括任何适当的结构,用于处理从一个或多个UE或其它设备无线接收的信号。虽然至少一个发射器852和至少一个接收器854示为单独的组件,但它们可以组合成收发器。每个天线860均包括任何适当的结构,用于传输和/或接收无线信号。虽然常见天线860在这里示为分别耦合到发射器852和接收器854,但一个或多个天线860可以耦合到发射器852,一个或多个单独的天线860可以耦合到接收器854。每个存储器856均包括任何适当的易失性和/或非易失性存储和检索设备。
图9为能够用于实现各种实施例的网络设备的框图。特定网络设备可利用所有示出的组件或仅这些组件的子集,且设备之间的集成程度可能不同。此外,网络设备900可包含组件的多个实例,例如多个处理单元、处理器、存储器、发射器、接收器,等等。网络设备900可以包括配备一个或多个输入/输出设备的处理单元901,例如网络接口、存储接口,等等。处理单元901可以包括连接到总线970的中央处理器(central processing unit,CPU)910、存储器920、大容量存储设备930和I/O接口960。总线970可以为任何类型的若干总线架构中的一个或多个,包括存储总线或者存储控制器、外设总线,等等。
CPU 910可以包括任何类型的电子数据处理器。存储器920可以包括任意类型的系统存储器,例如静态随机存取存储器(static random access memory,SRAM)、动态随机存取存储器(dynamic random access memory,DRAM)、同步DRAM(synchronous DRAM,SDRAM)、只读存储器(read-only memory,ROM)或其组合,等等。在一个实施例中,存储器820可以包含在开机时使用的ROM以及在执行程序时使用的存储程序和数据的DRAM。在各种实施例中,存储器920是非瞬时的。在一个实施例中,存储器920包括:检测模块921A,检测用户设备与基站之间的波束故障事件;发送模块921B,在检测到波束故障之后向基站发送第一波束故障恢复请求(beam failure recovery request,BFRQ),其中使用物理上行信道(physicaluplink channel,PUCCH)和波束故障随机接入信道(beam failure random accesschannel,PRACH)中的一个来发送第一BFRQ;指示模块921C,向基站指示第一和第二BFRQ对应于同一波束故障事件;传输模块921D,传输波束;以及接收模块921E,接收波束。
大容量存储器设备930可包括任何类型的存储设备,该存储设备用于存储数据、程序和其它信息并使这些数据、程序和其它信息能够通过总线970访问。例如,大容量存储器设备930可以包括固态磁盘、硬盘驱动器、磁盘驱动器、光盘驱动器等中的一个或多个。
处理单元901还包括一个或多个网络接口950,网络接口950可以包括以太网电缆等有线链路,和/或到接入节点或者一个或多个网络980的无线链路。网络接口950允许处理单元901通过网络980与远程单元进行通信。例如,网络接口950可以通过一个或多个发射器/发射天线以及一个或多个接收器/接收天线来提供无线通信。在一个实施例中,处理单元901耦合到局域网或广域网上以进行数据处理以及与远程设备进行通信,这些远程设备包括例如其它处理单元、互联网、远程存储设施,等等。
应当理解,本主题可以通过多种不同的形式来体现,且不应解释为限于本文所提出的实施例。相反,提供这些实施例使得本主题将变得透彻和完整,并将向本领域技术人员充分传达本发明。事实上,本主题旨在覆盖包括在由随附权利要求书限定的主题的精神和范围内的替代物、修改和等同物。此外,在以下本主题的详细描述中,阐述了许多具体细节以便提供对本主题的透彻理解。然而,本领域普通技术人员很清楚,可以在没有这些具体细节的情况下实践本主题。
本文结合根据本发明实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图来描述本发明各方面。将理解,流程图和/或框图中的每个框以及流程图和/或框图中的框组合可以通过计算机程序指令来实现。这些计算机程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置中的处理器以生成机器,这样,这些通过计算机中的处理器或其它可编程指令执行装置执行的指令创建用于实现流程图和/或框图的一个或多个框中指定的功能/动作的机制。
非瞬时性计算机可读介质包括所有类型的计算机可读介质,包括磁性存储介质、光存储介质、固态存储介质,但具体不包括信号。应当理解,软件可以安装在计算机中并与计算机一起出售。可选地,可以获取软件并加载到设备中,包括通过磁盘介质或从网络或分发系统中获取软件,例如,包括从属于软件开发者的服务器或从不属于软件开发者但为其所用的服务器中获取软件。例如,软件可以存储在服务器上,以通过互联网进行分发。
本文中使用的术语仅仅是出于描述特定方面的目的,并非旨在限制本发明。除非上下文清楚说明,否则本文所使用的单数形式"一"和"所述"包括其复数形式。应当进一步理解,本说明书中使用的术语"包括"用于说明存在所述特征、整数、步骤、操作、元件和/或组件,但并不排除存在或增加一个或多个其它特征、整数、步骤、操作、元件、组件和/或它们形成的组。
本发明的描述仅出于说明和描述目的而提出,并非旨在详尽无遗或以任何所公开的形式限制本发明。在不偏离本发明的范围和精神的前提下,多种修改和变体对本领域技术人员而言是显而易见的。为了更好地解释本发明的原理和实际应用,并且使本领域普通技术人员能够理解如适合所设想的特定用途的、具有各种修改的本发明,选择和描述本发明各个方面。
出于本文档的目的,与公开的技术相关联的每个过程均可以由一个或多个计算设备连续地执行。过程中的每个步骤均可以由与在其它步骤中使用的相同或不同的计算设备执行,并且每个步骤不必由单个计算设备执行。
虽然已经以特定于结构特征和/或方法动作的语言描述了主题,但是应当理解,所附权利要求书中定义的主题不必局限于上面描述的具体特征或动作。相反,上文描述的具体特征和动作被公开为实现权利要求的示例性形式。

Claims (27)

1.一种用于恢复用户设备中的波束故障的方法,其特征在于,包括:
检测所述用户设备与基站之间的波束故障事件;
在检测到所述波束故障事件之后,向所述基站发送第一波束故障恢复请求(beamfailure recovery request,BFRQ);
在第一响应时间窗内搜索波束故障恢复响应(beam failure recovery response,BFRP);
在所述第一响应时间窗内,针对同一波束故障事件向所述基站发送第二BFRQ;以及
向所述基站指示所述第一BFRQ和所述第二BFRQ对应于所述同一波束故障事件。
2.根据权利要求1所述的方法,其特征在于,在所述用户设备的物理层发送所述第一BFRQ或所述第二BFRQ。
3.根据权利要求1所述的方法,其特征在于,使用物理上行信道(physical uplinkchannel,PUCCH)或进行波束故障恢复的波束故障随机接入信道(beam failure randomaccess channel,PRACH)中的一个来发送所述第一BFRQ。
4.根据权利要求3所述的方法,其特征在于,当使用所述PUCCH来发送所述第一BFRQ时,所述第一响应时间窗为PUCCH响应窗;当使用所述进行波束故障恢复的波束故障随机接入信道(beam failure random access channel,PRACH)来发送所述第一BFRQ时,所述第一响应时间窗为PRACH响应窗。
5.根据权利要求1所述的方法,其特征在于,所述第一响应时间窗的参数包括响应窗起始时间位置、响应窗结束时间位置或响应窗持续时间中的至少一个。
6.根据权利要求5所述的方法,其特征在于,通过无线资源控制(radio resourcecontrol,RRC)消息或下行控制信息(downlink control information,DCI)消息中的至少一个将所述第一响应时间窗的所述参数发送给所述用户设备。
7.根据权利要求3所述的方法,其特征在于,当PUCCH-BFRQ机会在PRACH-BFRQ机会之前到达时,使用所述PUCCH来发送所述第一BFRQ。
8.根据权利要求3所述的方法,其特征在于,当PUCCH-BFRQ机会在PRACH-BFRQ机会之后到达时,使用所述PUCCH来发送所述第一BFRQ。
9.根据权利要求3所述的方法,其特征在于:
PUCCH-BFRQ在第一时间到达,而PRACH-BFRQ在第二时间到达,以及
当预期PUCCH-BFRQ机会响应在所述第二时间的PRACH-BFRQ机会之前时,在所述第一时间发送所述PUCCH-BFRQ,除非所述第一时间和响应时间之和超过所述第二时间。
10.根据权利要求1所述的方法,其特征在于,所述指示包括以下动作中的一个:
将所述第二BFRQ标记为时间或顺序上第二,
将指向所述第一BFRQ的指示所述第一BFRQ和所述第二BFRQ对应于所述同一波束故障事件的指针放置在所述第二BFRQ中,以及
将波束故障事件ID放置在具有同一波束故障事件ID的所述第一BFRQ和所述第二BFRQ中。
11.根据权利要求1所述的方法,其特征在于,还包括:
从所述基站接收第一波束故障恢复响应(beam failure recovery response,BFRP)和第二BFRP,其中所述BFRP包括以下中的一种:
所述第二BFRP中的记为时间或顺序上第二的标记,
所述第二BFRP中指向所述第一BFRP的指示所述第一BFRP和所述第二BFRP对应于所述同一波束故障事件的指针,以及
具有同一波束故障事件ID的所述第一BFRP和所述第二BFRP中的波束故障事件ID。
12.根据权利要求1所述的方法,其特征在于,所述第二BFRQ与所述第一BFRQ位于不同信道或载波频率上。
13.一种恢复用户设备中的波束故障的设备,其特征在于,包括:
含有指令的非瞬时性内存存储器;以及
与所述存储器进行通信的一个或多个处理器,其中所述一个或多个处理器执行所述指令以:
检测所述用户设备与基站之间的波束故障事件;
在检测到所述波束故障事件之后向所述基站发送第一波束故障恢复请求(beamfailure recovery request,BFRQ);
在第一响应时间窗内搜索波束故障恢复响应(beam failure recovery response,BFRP);
在所述第一响应时间窗内,针对同一波束故障事件向所述基站发送第二BFRQ;以及
向所述基站指示所述第一BFRQ和所述第二BFRQ对应于所述同一波束故障事件。
14.根据权利要求13所述的设备,其特征在于,所述用户设备的物理层功能基于所述用户设备的高层指令来发送所述第一BFRQ或所述第二BFRQ。
15.根据权利要求13所述的设备,其特征在于,使用物理上行信道(physical uplinkchannel,PUCCH)或波束故障恢复的波束故障随机接入信道(beam failure random accesschannel,PRACH)中的一个来发送所述第一BFRQ。
16.根据权利要求15所述的设备,其特征在于,当使用所述PUCCH来发送所述第一BFRQ时,所述第一响应时间窗为PUCCH响应窗;当使用所述波束故障恢复的波束故障随机接入信道(beam failure random access channel,PRACH)来发送所述第一BFRQ时,所述第一响应时间窗为PRACH响应窗。
17.根据权利要求13所述的设备,其特征在于,所述第一响应时间窗的参数包括响应窗起始时间位置、响应窗结束时间位置或响应窗持续时间中的至少一个。
18.根据权利要求17所述的设备,其特征在于,通过无线资源控制(radio resourcecontrol,RRC)消息或下行控制信息(downlink control information,DCI)消息中的至少一个将所述第一响应时间窗的所述参数发送给所述用户设备。
19.根据权利要求15所述的设备,其特征在于,当PUCCH-BFRQ机会在PRACH-BFRQ机会之前到达时,使用所述PUCCH来发送所述第一BFRQ。
20.根据权利要求15所述的设备,其特征在于,当PUCCH-BFRQ机会在PRACH-BFRQ机会之后到达时,使用所述PUCCH来发送所述第一BFRQ。
21.根据权利要求15所述的设备,其特征在于:
PUCCH-BFRQ在第一时间到达,而PRACH-BFRQ在第二时间到达,以及
当预期PUCCH-BFRQ机会响应在所述第二时间的PRACH-BFRQ机会之前时,在所述第一时间发送所述PUCCH-BFRQ,除非所述第一时间和响应时间之和超过所述第二时间。
22.根据权利要求13所述的设备,其特征在于,所述指示包括以下动作中的一个:
将所述第二BFRQ标记为时间或顺序上第二,
将指向所述第一BFRQ的指示所述第一BFRQ和所述第二BFRQ对应于所述同一波束故障事件的指针放置在所述第二BFRQ中,以及
将波束故障事件ID放置在具有同一波束故障事件ID的所述第一BFRQ和所述第二BFRQ中。
23.根据权利要求13所述的设备,其特征在于,还包括:
从所述基站接收第一波束故障恢复响应(beam failure recovery response,BFRP)和第二BFRP,其中所述BFRP包括以下中的一种:
所述第二BFRP中的记为时间或顺序上第二的标记,
所述第二BFRP中指向所述第一BFRP的指示所述第一BFRP和所述第二BFRP对应于所述同一波束故障事件的指针,以及
具有同一波束故障事件ID的所述第一BFRP和所述第二BFRP中的波束故障事件ID。
24.根据权利要求13所述的设备,其特征在于,所述第二BFRQ与所述第一BFRQ位于不同信道上。
25.一种存储用于恢复用户设备中的波束故障的计算机指令的非瞬时性计算机可读介质,其特征在于,所述计算机指令在由一个或多个处理器执行时使得所述一个或多个处理器执行以下操作:
检测所述用户设备与基站之间的波束故障事件;
在检测到所述波束故障事件之后向所述基站发送第一波束故障恢复请求(beamfailure recovery request,BFRQ);
在第一响应时间窗内搜索波束故障恢复响应(beam failure recovery response,BFRP);
在所述第一响应时间窗内,针对同一波束故障事件向所述基站发送第二BFRQ;以及
向所述基站指示所述第一BFRQ和所述第二BFRQ对应于所述同一波束故障事件。
26.根据权利要求25所述的非瞬时性计算机可读介质,其特征在于,使用物理上行信道(physical uplink channel,PUCCH)或波束故障恢复的波束故障随机接入信道(randomaccess channel,PRACH)中的一个来发送所述第一BFRQ。
27.根据权利要求26所述的非瞬时性计算机可读介质,其特征在于,当使用所述PUCCH来发送所述第一BFRQ时,所述第一响应时间窗为PUCCH响应窗;当使用所述波束故障恢复的波束故障随机接入信道(beam failure random access channel,PRACH)来发送所述第一BFRQ时,所述第一响应时间窗为PRACH响应窗。
CN201880045820.9A 2017-08-10 2018-07-31 波束故障恢复请求 Active CN110892771B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762543765P 2017-08-10 2017-08-10
US62/543,765 2017-08-10
US15/814,372 US10779350B2 (en) 2017-08-10 2017-11-15 Beam failure recovery request
US15/814,372 2017-11-15
PCT/CN2018/097786 WO2019029398A1 (en) 2017-08-10 2018-07-31 REQUEST FOR RESUMPTION AFTER BEAM FAILURE

Publications (2)

Publication Number Publication Date
CN110892771A CN110892771A (zh) 2020-03-17
CN110892771B true CN110892771B (zh) 2022-05-10

Family

ID=65272692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880045820.9A Active CN110892771B (zh) 2017-08-10 2018-07-31 波束故障恢复请求

Country Status (6)

Country Link
US (1) US10779350B2 (zh)
EP (1) EP3646483B1 (zh)
JP (1) JP6947481B2 (zh)
KR (1) KR102371169B1 (zh)
CN (1) CN110892771B (zh)
WO (1) WO2019029398A1 (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3602827A1 (en) * 2017-03-24 2020-02-05 Intel IP Corporation Beam recovery frame structure and recovery request for communication systems
EP3602808A1 (en) 2017-03-24 2020-02-05 Telefonaktiebolaget LM Ericsson (publ) Systems and methods for determining transmitter and receiver configurations for a wireless device
CN108923896B (zh) 2017-04-19 2021-03-26 上海朗帛通信技术有限公司 一种被用于寻呼的用户设备、基站中的方法和装置
US10855359B2 (en) 2017-08-10 2020-12-01 Comcast Cable Communications, Llc Priority of beam failure recovery request and uplink channels
US11950287B2 (en) 2017-08-10 2024-04-02 Comcast Cable Communications, Llc Resource configuration of beam failure recovery request transmission
US10887939B2 (en) 2017-08-10 2021-01-05 Comcast Cable Communications, Llc Transmission power control for beam failure recovery requests
US11337265B2 (en) 2017-08-10 2022-05-17 Comcast Cable Communications, Llc Beam failure recovery request transmission
US10880761B2 (en) * 2017-09-11 2020-12-29 Qualcomm Incorporated System and method for selecting resources to transmit a beam failure recovery request
US10784943B2 (en) 2017-10-23 2020-09-22 Apple, Inc. Beam failure recovery operation
US11153800B2 (en) * 2017-11-17 2021-10-19 Asustek Computer Inc. Method and apparatus for User Equipment (UE) monitoring behavior for beam recovery in a wireless communication system
EP4164318A1 (en) * 2017-11-24 2023-04-12 FG Innovation Company Limited Apparatus and method for beam failure recovery in a wireless communication system
US11206596B2 (en) * 2017-11-27 2021-12-21 Asustek Computer Inc. Method and apparatus for reducing interruption of beaming recovery procedure in a wireless communication system
US11212860B2 (en) * 2017-11-29 2021-12-28 Qualcomm Incorporated Determining beam candidates for transmitting beam failure recovery signal
US11956827B2 (en) * 2018-01-05 2024-04-09 Samsung Electronics Co., Ltd. Apparatus and method of beam recovery on secondary cell
CN110035502B (zh) * 2018-01-11 2021-06-08 华为技术有限公司 通信方法、通信设备和网络设备
KR102463553B1 (ko) * 2018-01-12 2022-11-04 삼성전자 주식회사 차세대 통신 시스템에서 빔 정보 보고 방법 및 장치
EP3528398A1 (en) * 2018-02-15 2019-08-21 Comcast Cable Communications LLC Beam failure report
US11539575B2 (en) * 2018-03-12 2022-12-27 Electronics And Telecommunications Research Institute Method and apparatus for beam failure recovery in communication system
CN110475337B (zh) * 2018-05-11 2020-11-06 成都华为技术有限公司 通信方法及装置
CN109076365A (zh) * 2018-07-20 2018-12-21 北京小米移动软件有限公司 波束故障恢复请求发送方法、响应方法、装置及存储介质
KR20210030492A (ko) 2018-08-07 2021-03-17 삼성전자주식회사 저장된 시스템 정보를 검증하는 방법 및 장치
JP6961071B2 (ja) * 2018-08-22 2021-11-05 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. 無線通信システムにおいてアップリンク送信を行う方法及びそのための装置
US11201661B2 (en) 2018-10-24 2021-12-14 Qualcomm Incorporated Beam failure recovery with supplementary uplink
US12088387B2 (en) * 2019-02-14 2024-09-10 Apple Inc. Secondary cell beam failure recovery operation in new radio (NR)
US11122081B2 (en) 2019-02-21 2021-09-14 Bank Of America Corporation Preventing unauthorized access to information resources by deploying and utilizing multi-path data relay systems and sectional transmission techniques
CN113455040B (zh) * 2019-02-21 2024-03-29 株式会社Ntt都科摩 用户装置
WO2020176895A1 (en) * 2019-02-28 2020-09-03 Qualcomm Incorporated Apparatus and methods for early termination of beam failure detection for a multi-panel ue
WO2020223649A1 (en) 2019-05-02 2020-11-05 Apple Inc. System and method for beam failure recovery request
CN113906688A (zh) * 2019-05-29 2022-01-07 苹果公司 用于波束故障恢复和其他信号的pucch的复用
CN114145066A (zh) * 2019-08-01 2022-03-04 鸿颖创新有限公司 辅小区波束故障恢复请求信息的传输方法及相关设备
US11533219B2 (en) * 2019-09-19 2022-12-20 Qualcomm Incorporated Prioritizing procedures for transmission of a beam failure recovery request via a secondary cell used for carrier aggregation
CN114073146A (zh) * 2019-09-30 2022-02-18 华为技术有限公司 一种发送波束失败恢复请求的方法及装置
US10813157B1 (en) 2019-10-04 2020-10-20 Qualcomm Incorporated Beam failure recovery and related timing determination techniques
CN112788754B (zh) * 2019-11-07 2022-08-02 维沃移动通信有限公司 信息传输方法及设备
US11589394B2 (en) * 2020-02-13 2023-02-21 Qualcomm Incorporated Managing beam failure recovery random access
US11711130B2 (en) * 2020-05-20 2023-07-25 Qualcomm Incorporated Enhanced measurement and report configuration for full-duplex operation
KR102562526B1 (ko) * 2020-09-29 2023-08-02 엘지전자 주식회사 무선 통신 시스템에서 빔 실패 복구 방법 및 장치
US20220132517A1 (en) * 2020-10-23 2022-04-28 Samsung Electronics Co., Ltd. Method and apparatus for partial beam failure recovery in a wireless communications system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105359428A (zh) * 2013-11-29 2016-02-24 华为技术有限公司 预编码向量的确定方法、预编码处理方法及基站
WO2017024516A1 (en) * 2015-08-11 2017-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Recovery from beam failure
CN106804043A (zh) * 2015-11-26 2017-06-06 华为技术有限公司 一种上行接入的方法、用户设备和基站

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7177644B2 (en) 2003-02-12 2007-02-13 Nortel Networks Limited Distributed multi-beam wireless system
JP4913222B2 (ja) 2010-02-12 2012-04-11 シャープ株式会社 無線通信システム、移動局装置、無線通信方法および集積回路
US9049698B2 (en) * 2012-01-18 2015-06-02 Mediatek Inc. Method of enhanced connection recovery and cell selection
KR101995798B1 (ko) 2012-07-03 2019-07-03 삼성전자주식회사 빔포밍을 사용하는 통신 시스템의 랜덤 억세스 장치 및 방법
WO2014019131A1 (zh) 2012-07-31 2014-02-06 华为技术有限公司 链路失败的恢复方法及装置
US20150024505A1 (en) 2013-07-17 2015-01-22 Saudi Arabian Oil Company Apparatus for evaluating carbonate solubility
US9843465B2 (en) 2014-11-26 2017-12-12 Avago Technologies General Ip (Singapore) Pte. Ltd. Distributed dynamic configuration of a scalable radio frequency communication system
KR101810633B1 (ko) 2014-12-19 2017-12-19 한국전자통신연구원 셀룰러 이동통신시스템에서의 시스템 운용 방법 및 장치
WO2017123060A1 (en) * 2016-01-14 2017-07-20 Samsung Electronics Co., Ltd. System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system
CN108781374B (zh) 2016-02-29 2021-09-21 三菱电机株式会社 波束发送接收方法、基站、终端和无线通信系统
US10615862B2 (en) 2016-04-13 2020-04-07 Qualcomm Incorporated System and method for beam adjustment request
US10154514B2 (en) 2016-10-18 2018-12-11 Qualcomm Incorporated Scheduling request transmission for directional beam access
US11140706B2 (en) 2017-02-01 2021-10-05 Qualcomm Incorporated Data transmissions during base station beamsweep
US10454755B2 (en) * 2017-03-22 2019-10-22 Qualcomm Incorporated Beam failure identification and recovery techniques
US10931514B2 (en) 2017-03-31 2021-02-23 Futurewei Technologies, Inc. System and method for communications beam recovery
US11134492B2 (en) * 2017-04-12 2021-09-28 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery in next generation wireless systems
US10813097B2 (en) 2017-06-14 2020-10-20 Qualcomm Incorporated System and method for transmitting beam failure recovery request
CN109152054A (zh) 2017-06-16 2019-01-04 华硕电脑股份有限公司 无线通信系统中用于非授权频谱的波束管理的方法和设备
US10893540B2 (en) 2017-07-28 2021-01-12 Qualcomm Incorporated Random access channel procedures with multiple carriers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105359428A (zh) * 2013-11-29 2016-02-24 华为技术有限公司 预编码向量的确定方法、预编码处理方法及基站
WO2017024516A1 (en) * 2015-08-11 2017-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Recovery from beam failure
CN106804043A (zh) * 2015-11-26 2017-06-06 华为技术有限公司 一种上行接入的方法、用户设备和基站

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
R1-1707245 "Beam recovery based on NR-PDCCH and NR-PDSCH";vivo;《3GPP TSG RAN WG1 Meeting #89》;20170506;第3页第1-29行 *
R1-1710400 "Beam failure recovery procedure";vivo;《3GPP TSG RAN WG1 Meeting NR Ad-Hoc#2》;20170617;第1页 *
R1-1710596 "Discussion of beam recovery procedure";Lenovo等;《3GPP TSG RAN WG1 NR Ad-Hoc#2 》;20170617;第1-2节 *

Also Published As

Publication number Publication date
WO2019029398A1 (en) 2019-02-14
JP2020529759A (ja) 2020-10-08
KR102371169B1 (ko) 2022-03-04
KR20200031142A (ko) 2020-03-23
EP3646483A4 (en) 2020-07-29
US10779350B2 (en) 2020-09-15
EP3646483A1 (en) 2020-05-06
EP3646483B1 (en) 2023-01-11
JP6947481B2 (ja) 2021-10-13
CN110892771A (zh) 2020-03-17
US20190053294A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
CN110892771B (zh) 波束故障恢复请求
CN110771055B (zh) 用于响应波束故障恢复请求的方法
CN111052840B (zh) 波束故障恢复装置和方法
US11722361B2 (en) Beam failure recovery
CN111066366B (zh) 波束故障恢复装置和方法
US10868653B2 (en) Upload control signaling for new radio
US20220030617A1 (en) Transmission of control information using more than one beam pair link
CN110546929B (zh) 传输信道状态信息参考信号(csi-rs)的方法和装置及计算机可读存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant