WO2023284659A1 - 信道信息获取方法和通信装置 - Google Patents

信道信息获取方法和通信装置 Download PDF

Info

Publication number
WO2023284659A1
WO2023284659A1 PCT/CN2022/104806 CN2022104806W WO2023284659A1 WO 2023284659 A1 WO2023284659 A1 WO 2023284659A1 CN 2022104806 W CN2022104806 W CN 2022104806W WO 2023284659 A1 WO2023284659 A1 WO 2023284659A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna unit
unit groups
network device
information
Prior art date
Application number
PCT/CN2022/104806
Other languages
English (en)
French (fr)
Inventor
刘凤威
陈雷
罗晓宇
向高
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020247004366A priority Critical patent/KR20240029094A/ko
Priority to EP22841295.3A priority patent/EP4362530A1/en
Publication of WO2023284659A1 publication Critical patent/WO2023284659A1/zh
Priority to US18/410,726 priority patent/US20240146372A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/328Reference signal received power [RSRP]; Reference signal received quality [RSRQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0682Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using phase diversity (e.g. phase sweeping)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the present application relates to the communication field, and more specifically, relates to a channel information acquisition method and a communication device.
  • both network equipment and terminal equipment can use (analog) beamforming technology to achieve beam-based communication, which can greatly improve the transmission capacity of uplink and downlink signals.
  • beams are directional, beam alignment is required before data transmission between terminal devices and network devices. Beam alignment between end devices and network devices can be achieved through a beam management process. For example, the terminal device determines the sending beam of the network device and the receiving beam of the terminal device itself by measuring the downlink signal sent by the network device.
  • terminal devices need to perform frequent downlink measurements to achieve beam alignment, and network devices need to send a large number of downlink signals for terminal devices to perform measurements, resulting in high resource overhead and power consumption. Frequent measurements can also cause serious power consumption and thermal issues.
  • the present application provides a method for acquiring channel information and a communication device, which can improve the accuracy of acquiring channel information.
  • a method for acquiring channel information is provided.
  • the method can be executed by a network device or a module (such as a chip) configured on (or used for) the network device.
  • the method is executed by the network device as an example for description below.
  • the method includes: the network device sends a reference signal to the terminal device through a plurality of antenna unit groups, at least two antenna unit groups in the plurality of antenna unit groups belong to one antenna port; the network device receives first information from the terminal device , the first information is used to indicate channel information corresponding to the multiple antenna unit groups.
  • the network device groups the antenna units (such as antenna elements) of the antenna port, and transmits the reference signal at the granularity of the antenna unit group, so that the network device can obtain high-precision channel information, that is, channel information corresponding to a set of antenna units with a smaller granularity can be obtained.
  • the downlink transmission beam (or called the downlink analog transmission beam) can be determined.
  • this method can reduce resource overhead and obtain high-precision The channel information improves the accuracy of the acquired channel information.
  • the channel information corresponding to the multiple antenna unit groups includes phase weighting information corresponding to at least one antenna unit group in the multiple antenna unit groups, and the phase weighting information is used in The network device controls the phase shift of the phase shifter of the at least one antenna element group.
  • the terminal device determines the phase weighting information recommended for the network device to use, and notifies the network device, so that the network device can determine the transmission beam based on the phase weighting information.
  • resource overhead can be reduced by trying to transmit each beam and determining a transmission beam among them.
  • the multiple antenna unit groups belong to one antenna port, or one antenna unit group among the multiple antenna unit groups belongs to one antenna port.
  • the plurality of antenna unit groups belong to one antenna port, and the network device sends a reference signal to the terminal device through the plurality of antenna unit groups, including: the network device uses the Multiple antenna unit groups transmit reference signals to the terminal device at multiple time units.
  • the network device can use multiple time units in a time-division multiplexing manner to implement multiple antenna unit groups to send reference signals respectively.
  • the network device sends reference signals to the terminal device at multiple time units through the multiple antenna unit groups, including: the network device transmits reference signals at the multiple time units In one time unit, the reference signal is sent to the terminal device through one antenna unit group in the plurality of antenna unit groups, wherein different time units in the plurality of time units use different antenna unit groups for sending the reference signal.
  • the network device sends reference signals to the terminal device at multiple time units through the multiple antenna unit groups, including: the network device transmits reference signals at the multiple time units Each time unit in the multiple antenna unit groups sends a reference signal to the terminal device, and the phase weighted sequences corresponding to different antenna unit groups in the multiple antenna unit groups are orthogonal to each other, and one element in the phase weighted sequence is the phase weight value corresponding to one antenna element group in one time unit.
  • the network device adopts time division multiplexing combined with code division multiplexing to implement multiple antenna unit groups to send reference signals respectively, which can further reduce time overhead and resource overhead.
  • the time difference between two adjacent time units among the multiple time units is less than a threshold, or the time difference between two adjacent time units among the multiple time units continuous in time.
  • the channel information corresponding to the multiple antenna unit groups includes precoding matrix index PMI corresponding to multiple antenna ports, and the multiple antenna ports include the multiple antenna unit groups Group.
  • the terminal device can not only determine the corresponding phase weighting information according to the reference signals sent by the multiple antenna unit groups, but also determine the PMIs corresponding to the multiple antenna ports. It can reduce resource overhead and time overhead caused by separate beam training process and digital precoding information acquisition process.
  • the method further includes: the network device sending configuration information to the terminal device, where the configuration information is used to indicate the antenna unit contained in at least one antenna port of the network device Group.
  • the network device can notify the terminal device of the corresponding relationship between the antenna port and the antenna unit group through the configuration information, so that the terminal device and the network device reach a consensus.
  • the method further includes: the network device receiving second information from the terminal device, where the second information includes the following item of the plurality of antenna unit groups or multiple pieces of information: signal-to-interference-noise ratio SINR, reference signal received power RSRP, channel quality indicator CQI and/or rank indicator RI.
  • SINR signal-to-interference-noise ratio
  • RSRP reference signal received power
  • CQI channel quality indicator
  • RI rank indicator
  • a method for acquiring channel information is provided.
  • the method can be executed by a terminal device or a module (such as a chip) configured on (or used for) the terminal device.
  • the method is executed by the terminal device as an example for description below.
  • the method includes: a terminal device receives a plurality of reference signals from a network device; the terminal device determines channel information corresponding to a plurality of antenna unit groups of the network device according to the plurality of reference signals, and at least two of the plurality of antenna unit groups antenna unit groups belong to one antenna port; the terminal device sends first information to the network device, where the first information is used to indicate channel information corresponding to the multiple antenna unit groups.
  • the channel information corresponding to the multiple antenna unit groups includes precoding matrix index PMI corresponding to multiple antenna ports, and the multiple antenna ports include the multiple antenna unit groups Group.
  • the multiple antenna unit groups belong to one antenna port, or one antenna unit group among the multiple antenna unit groups belongs to one antenna port.
  • the multiple antenna unit groups belong to one antenna port
  • the terminal device receives multiple reference signals from the network device, including: The plurality of reference signals are received from the network device.
  • the terminal device receives the multiple reference signals from the network device at multiple time units, including: the terminal device receives at one time unit among the multiple time units receiving a reference signal sent by a network device through one antenna unit group in the plurality of antenna unit groups, wherein the reference signals received in different time units in the plurality of time units are from different antenna unit groups in the plurality of antenna unit groups .
  • the terminal device receives reference signals sent by the network device through multiple antenna unit groups in multiple time units, including: the terminal device receives in multiple time units Each time unit of receives the plurality of reference signals.
  • the terminal device determines channel information corresponding to multiple antenna unit groups of the network device according to the multiple reference signals, including: the terminal device determines, according to the multiple reference signals The signal, the number of the multiple antenna unit groups, and the weighted sequences corresponding to the multiple antenna unit groups determine channel information corresponding to the multiple antenna unit groups.
  • the channel information of the multiple antenna unit groups includes weighted combination information corresponding to the multiple antenna unit groups, and the weighted combination information is the weighted combination information corresponding to the multiple antenna unit groups
  • the phase weighting information of the multiple antenna unit groups is combined with the PMI corresponding to the weighting information, wherein the phase weighting information is used by the network device to control the phase shift of the phase shifter of the at least one antenna unit group.
  • the method further includes: the terminal device receiving configuration information from the network device, where the configuration information is used to indicate the antenna included in at least one antenna port of the network device unit group.
  • the method further includes: the terminal device sending second information to the network device, where the second information includes one or more of the following of the multiple antenna unit groups Item information: signal to interference and noise ratio SINR, reference signal received power RSRP, channel quality indicator CQI and/or rank indicator RI.
  • Item information signal to interference and noise ratio SINR, reference signal received power RSRP, channel quality indicator CQI and/or rank indicator RI.
  • a method for acquiring channel information is provided.
  • the method can be executed by a network device or a module (such as a chip) configured on (or used for) the network device.
  • the method is executed by the network device as an example for description below.
  • the method includes: the network device sends a reference signal to the terminal device through multiple antenna ports, and the beam directions of the reference signals sent by the multiple antenna ports are the same; the network device receives first information from the terminal device, and the first information is used to indicate The phase weight information corresponding to the plurality of antenna ports, where the phase weight information is used to control the phase shift of the phase shifter corresponding to the antenna ports.
  • the network device sending a reference signal to the terminal device through multiple antenna ports includes: the network device sending a reference signal on one reference signal resource through the multiple antenna ports Signal.
  • the network device sending the reference signal to the terminal device through multiple antenna ports includes: the network device sending on multiple reference signal resources through the multiple antenna ports For the reference signal, at least two antenna ports among the plurality of antenna ports use different reference signal resources for sending the reference signal.
  • the method further includes: the network device sending configuration information to the terminal device, where the configuration information is used to indicate the reference signals sent on the multiple reference signal resources The beam direction is the same.
  • the method further includes: the network device receiving second information from the terminal device, where the second information includes one or more of the following of the plurality of antenna ports Item information: signal to interference and noise ratio SINR, reference signal received power RSRP, channel quality indicator CQI and/or rank indicator RI.
  • SINR signal to interference and noise ratio
  • RSRP reference signal received power
  • CQI channel quality indicator
  • RI rank indicator
  • a method for acquiring channel information is provided.
  • the method can be executed by a terminal device or a module (such as a chip) configured in (or used for) the terminal device.
  • the method is executed by the terminal device as an example for description below.
  • the method includes: a terminal device receives a plurality of reference signals from a network device; the terminal device determines phase weighting information corresponding to a plurality of antenna ports of the network device according to the plurality of reference signals, and the phase weighting information is used to control the antenna port the phase shift of the phase shifter; the terminal device sends first information to the network device, where the first information is used to indicate phase weighting information corresponding to multiple antenna ports of the network device.
  • the terminal device receiving multiple reference signals from the network device includes: the terminal device receiving multiple reference signals from the network device on one reference signal resource , the one reference signal resource is a reference signal resource corresponding to multiple antenna ports.
  • the terminal device receiving multiple reference signals from the network device includes: the terminal device receiving multiple reference signals from the network device on multiple reference signal resources signals, at least two of the multiple reference signals are carried on different reference signal resources.
  • the method further includes: the terminal device receives configuration information from the network device, where the configuration information is used to indicate the reference signal sent on the plurality of reference signal resources The beam directions of the signals are the same.
  • the method further includes: the terminal device sends second information to the network device, where the second information includes the following one or more items of the multiple antenna ports Information: signal to interference and noise ratio SINR, reference signal received power RSRP, channel quality indicator CQI and/or rank indicator RI.
  • SINR signal to interference and noise ratio
  • RSRP reference signal received power
  • CQI channel quality indicator
  • RI rank indicator
  • a communication device including:
  • the transceiver unit is configured to send a reference signal to the terminal device through a plurality of antenna unit groups, at least two antenna unit groups in the plurality of antenna unit groups belong to one antenna port; the transceiver unit is also used to receive the first signal from the terminal device One piece of information, the first information is used to indicate the channel information corresponding to the multiple antenna unit groups; the processing unit is configured to determine the channel information corresponding to the multiple antenna unit groups according to the first information.
  • the channel information corresponding to the plurality of antenna unit groups includes phase weighting information corresponding to at least one antenna unit group in the plurality of antenna unit groups, and the phase weighting information is used in The network device controls the phase shift of the phase shifter of the at least one antenna element group.
  • the multiple antenna unit groups belong to one antenna port, or one antenna unit group among the multiple antenna unit groups belongs to one antenna port.
  • the multiple antenna unit groups belong to one antenna port, and the transceiver unit is specifically configured to transmit to the terminal device at multiple time units through the multiple antenna unit groups reference signal.
  • the transceiver unit is specifically configured to transmit to the terminal device through one antenna unit group in the plurality of antenna unit groups in one time unit of the plurality of time units
  • the reference signal is sent, wherein the groups of antenna units used to send the reference signal in different time units in the multiple time units are different.
  • the transceiver unit is specifically configured to send a reference signal to the terminal device through the plurality of antenna unit groups in each time unit of the plurality of time units, the The phase weighting sequences corresponding to different antenna element groups in the plurality of antenna element groups are orthogonal to each other, and one element in one phase weighting sequence is a phase weight value corresponding to one antenna element group in one time unit.
  • the time difference between two adjacent time units among the multiple time units is less than a threshold, or the time difference between two adjacent time units among the multiple time units continuous in time.
  • the channel information corresponding to the multiple antenna unit groups includes precoding matrix index PMI corresponding to multiple antenna ports, and the multiple antenna ports include the multiple antenna unit groups Group.
  • the transceiving unit is further configured to send configuration information to the terminal device, where the configuration information is used to indicate the antenna unit groups contained in at least one antenna port of the network device.
  • the transceiver unit is further configured to receive second information from the terminal device, where the second information includes one or more of the following of the multiple antenna unit groups Item information: signal to interference and noise ratio SINR, reference signal received power RSRP, channel quality indicator CQI and/or rank indicator RI.
  • Item information signal to interference and noise ratio SINR, reference signal received power RSRP, channel quality indicator CQI and/or rank indicator RI.
  • a communication device including: a transceiver unit, configured to receive multiple reference signals from a network device; a processing unit, configured to determine multiple antenna unit groups of the network device according to the multiple reference signals Corresponding channel information, at least two antenna unit groups of the plurality of antenna unit groups belong to one antenna port; the transceiver unit is also used to send first information to the network device, and the first information is used to indicate that the plurality of antenna unit groups Channel information corresponding to the group.
  • the channel information of the multiple antenna unit groups includes precoding matrix indexes PMI corresponding to multiple antenna ports, and the multiple antenna ports include the multiple antenna unit groups .
  • the multiple antenna unit groups belong to one antenna port, or one antenna unit group among the multiple antenna unit groups belongs to one antenna port.
  • the multiple antenna unit groups belong to one antenna port, and the transceiver unit is specifically configured to receive the multiple reference signals from the network device in multiple time units.
  • the transceiver unit is specifically configured to receive, in one time unit among the multiple time units, an Reference signals, wherein the reference signals received at different time units in the plurality of time units come from different antenna unit groups of the plurality of antenna unit groups.
  • the transceiving unit is specifically configured to receive the multiple reference signals in each time unit of the multiple time units.
  • the processing unit is specifically configured to determine according to the multiple reference signals, the number of the multiple antenna element groups, and the weighted sequences corresponding to the multiple antenna element groups Channel information of the plurality of antenna unit groups.
  • the channel information of the plurality of antenna unit groups includes digital weight information of antenna ports, and the digital weight information is used for the network device to which the plurality of antenna unit groups belong Digital signal processing is performed on the signal to be transmitted at the antenna port.
  • the channel information of the multiple antenna unit groups includes weighted combination information corresponding to the multiple antenna unit groups, and the weighted combination information is the weighted combination information corresponding to the multiple antenna unit groups
  • the phase weighting information of the multiple antenna unit groups is combined with the PMI corresponding to the weighting information, wherein the phase weighting information is used by the network device to control the phase shift of the phase shifter of the at least one antenna unit group.
  • the transceiving unit is specifically configured to receive configuration information from the network device, where the configuration information is used to indicate that at least one antenna port of the network device includes Antenna unit set.
  • the transceiver unit is further configured to send second information to the network device, where the second information includes one or more of the following information of the plurality of antenna unit groups : Signal to Interference and Noise Ratio SINR, Reference Signal Received Power RSRP, Channel Quality Indicator CQI and/or Rank Indicator RI.
  • a communication device including: a transceiver unit, configured to send a reference signal to a terminal device through multiple antenna ports, where the multiple antenna ports send the reference signal in the same beam direction; the transceiver unit is also used to receiving first information from the terminal device, where the first information is used to indicate phase weighting information corresponding to the multiple antenna ports, where the phase weighting information is used to control phase shifts of phase shifters corresponding to the antenna ports; the processing unit uses The method is to determine phase weighting information corresponding to multiple antenna ports according to the first information.
  • the transceiving unit is specifically configured to send a reference signal on one reference signal resource through the multiple antenna ports.
  • the transceiver unit is specifically configured to send reference signals on multiple reference signal resources through the multiple antenna ports, and at least two antennas in the multiple antenna ports Reference signal resources for sending reference signals by ports are different.
  • the method further includes: the transceiving unit is specifically configured to send configuration information to the terminal device, where the configuration information is used to instruct to transmit on the multiple reference signal resources The beam directions of the reference signals are the same.
  • the method further includes: the network device receives second information from the terminal device, where the second information includes one or more of the following of the plurality of antenna ports Item information: signal to interference and noise ratio SINR, reference signal received power RSRP, channel quality indicator CQI and/or rank indicator RI.
  • SINR signal to interference and noise ratio
  • RSRP reference signal received power
  • CQI channel quality indicator
  • RI rank indicator
  • a communication device including: a transceiver unit, configured to receive a plurality of reference signals from a network device; a processing unit, configured to determine, according to the plurality of reference signals, that a plurality of antenna ports of the network device correspond to The phase weight information of the phase weight information is used to control the phase shift of the phase shifter of the antenna port; the transceiver unit is also used to send the first information to the network device, and the first information is used to indicate multiple Phase weighting information corresponding to the antenna port.
  • the transceiver unit is specifically configured to receive multiple reference signals from the network device on one reference signal resource, and the one reference signal resource corresponds to multiple antenna ports reference signal resources.
  • the transceiver unit is specifically configured to receive multiple reference signals from the network device on multiple reference signal resources, at least two of the multiple reference signals Reference signals are carried on different reference signal resources.
  • the transceiver unit is further configured to receive configuration information from the network device, where the configuration information is used to indicate the number of reference signals sent on the multiple reference signal resources.
  • the beam directions are the same.
  • the transceiver unit is further configured to send second information to the network device, where the second information includes one or more of the following information about the plurality of antenna ports: Signal to interference and noise ratio SINR, reference signal received power RSRP, channel quality indicator CQI and/or rank indicator RI.
  • SINR Signal to interference and noise ratio
  • RSRP reference signal received power
  • CQI channel quality indicator
  • RI rank indicator
  • a communication device including a processor.
  • the processor may implement the method in any possible implementation manner of the first aspect to the fourth aspect and any one of the first aspect to the fourth aspect.
  • the communication device further includes a memory, and the processor is coupled to the memory, and can be used to execute instructions in the memory, so as to realize any possibility in the first aspect to the fourth aspect and the first aspect to the fourth aspect. method in the implementation.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, a pin, a circuit, a bus, a module or other types of communication interfaces, without limitation.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device may be a chip
  • the communication interface may be an input/output interface
  • the processor may be a logic circuit
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any possible implementation manner of the first aspect to the fourth aspect and the first aspect to the fourth aspect .
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop and various logic circuits, etc. .
  • the input signal received by the input circuit may be received and input by, for example but not limited to, the receiver
  • the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • a computer program product includes: a computer program (also referred to as code, or an instruction), when the computer program is executed, the computer executes the above-mentioned first to fourth aspects. aspect and the method in any possible implementation manner of the first aspect to the fourth aspect.
  • a computer-readable storage medium stores a computer program (also referred to as code, or instruction) when it is run on a computer, so that the computer executes the above-mentioned first aspect to the fourth aspect and the method in any possible implementation manner of the first aspect to the fourth aspect.
  • a computer program also referred to as code, or instruction
  • a communication system including the aforementioned at least one network device and at least one terminal device.
  • FIG. 1 is a schematic architecture of a communication system applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of multiple antenna ports of a network device provided by the present application.
  • FIG. 3 is a schematic diagram of the antenna array of the network device provided by the present application including 4 sub-arrays;
  • FIG. 4 is a schematic diagram of the antenna array of the network device provided by the present application including two sub-arrays;
  • Fig. 5 is a schematic diagram of the beam training process provided by the present application.
  • Fig. 6 is a schematic flowchart of the method for obtaining channel information provided by the present application.
  • FIG. 7 is a schematic diagram of grouping antenna units in an antenna port provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram in which each antenna port is an antenna unit group according to an embodiment of the present application.
  • Fig. 9 and Fig. 9a are schematic diagrams in which each antenna port is divided into two antenna unit groups according to the embodiment of the present application;
  • Fig. 10, Fig. 10a, and Fig. 10b are schematic diagrams in which each antenna port is divided into four antenna unit groups according to the embodiment of the present application;
  • FIG. 11 is a schematic diagram of the corresponding relationship between antenna ports and virtual ports provided by the embodiment of the present application.
  • FIG. 12 is a schematic diagram of a channel information acquisition method provided by an embodiment of the present application.
  • FIG. 13 is another schematic diagram of the channel information acquisition method provided by the embodiment of the present application.
  • FIG. 14 is another schematic diagram of the channel information acquisition method provided by the embodiment of the present application.
  • FIG. 15 is another schematic flow chart of the channel information acquisition method provided by the embodiment of the present application.
  • FIG. 16 is a schematic diagram of sending N reference signals at different times using different antenna arrays provided by the embodiment of the present application.
  • FIG. 17 is a schematic diagram of sending M reference signals at different times using different antenna arrays provided by the embodiment of the present application.
  • Fig. 18 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, for example: long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex) , TDD), the fifth generation (5th generation, 5G) communication system, the future communication system (such as the sixth generation (6th generation, 6G) communication system), or a system where multiple communication systems are integrated, etc., the embodiments of the present application do not Do limited.
  • 5G can also be called new radio (new radio, NR).
  • Fig. 1 is a schematic diagram of a communication system applicable to the embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1 .
  • the communication system 100 may further include at least one terminal device, such as the terminal device 120 shown in FIG. 1 .
  • the network device 110 and the terminal device 120 may communicate through a wireless link.
  • the communication between the network device and the terminal device includes: the network device sends a downlink signal to the terminal device, and/or the terminal device sends an uplink signal to the network device.
  • the signal may also be replaced by information or data.
  • the network device may have an analog beamforming (analog beamforming, ABF) or hybrid beamforming (hybrid beamforming, HBF) architecture or function. But the present application is not limited thereto.
  • ABF analog beamforming
  • HBF hybrid beamforming
  • the network device may include multiple antenna ports, and the antenna ports may also be called ports, digital ports, CSI-RS ports, or CSI-RS antenna ports, etc., which are not limited in this application.
  • Each antenna port of the network device corresponds to a digital processing channel for outputting a signal stream processed by the digital processing channel.
  • the digital processing channel corresponding to one antenna port is connected to multiple antenna elements, and it can be understood that one antenna port includes multiple antenna elements connected to the data processing channel corresponding to the antenna port.
  • Each antenna element can be connected to a phase shifter (or the phase shifter can also be called a phase shifter), and the digital processing channels corresponding to different antenna ports can be connected to different or the same array element sets.
  • the digital processing channels corresponding to different antenna ports may be connected to different antenna sub-arrays (a sub-array includes at least one antenna element) and/or different antenna polarization directions.
  • An antenna sub-array is a portion of an antenna array of a network device.
  • the antenna array of the network device can be divided into multiple sub-arrays, and each sub-array is connected to digital processing channels corresponding to two antenna ports, corresponding to different antenna polarization directions.
  • FIG 3 is a schematic diagram of the antenna array of the network device including four sub-arrays, as shown in Figure 3, each sub-array is connected to two antenna ports, specifically, the first polarization direction and the second pole of each sub-array Each antenna port is connected to one antenna port in each direction, and the network device may include eight antenna ports, and each antenna port is used to output a signal stream output by a digital processing channel.
  • FIG 4 is a schematic diagram of the antenna array of the network device including two sub-arrays, as shown in Figure 4, each sub-array is connected to two antenna ports, specifically, the first polarization direction and the second pole of each sub-array Each antenna port is connected to one antenna port in each direction, and the network device may include four antenna ports, and each antenna port is used to output a signal stream output by a digital processing channel.
  • mMTC may include one or more of the following communications: communications in industrial wireless sensor networks (industrial wireless sensor network, IWSN), communications in video surveillance (video surveillance) scenarios, and communications in wearable devices Wait.
  • the terminal device involved in this embodiment of the present application may also be referred to as a terminal.
  • a terminal may be a device with a wireless transceiver function. Terminals can be deployed on land, including indoors, outdoors, hand-held, and/or vehicle-mounted; they can also be deployed on water (such as ships, etc.); and they can also be deployed in the air (such as on aircraft, balloons, and satellites, etc.).
  • the terminal device may be user equipment (user equipment, UE). UEs include handheld devices, vehicle-mounted devices, wearable devices, or computing devices with wireless communication capabilities. Exemplarily, the UE may be a mobile phone (mobile phone), a tablet computer or a computer with a wireless transceiver function.
  • the terminal device can also be a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, a smart A wireless terminal in a power grid, a wireless terminal in a smart city (smart city), and/or a wireless terminal in a smart home (smart home), etc.
  • VR virtual reality
  • AR augmented reality
  • a wireless terminal in industrial control a wireless terminal in unmanned driving
  • a wireless terminal in telemedicine a smart A wireless terminal in a power grid
  • a wireless terminal in a smart city smart city
  • smart home smart home
  • the network device involved in the embodiment of the present application includes a base station (base station, BS), which may be a device deployed in a wireless access network and capable of performing wireless communication with a terminal device.
  • a base station may come in various forms, such as a macro base station, a micro base station, a relay station, or an access point.
  • the base station involved in this embodiment of the present application may be a base station in a 5G system, a base station in an LTE system, or a base station in another system, without limitation.
  • the base station in the 5G system can also be called a transmission reception point (transmission reception point, TRP) or a next-generation node B (generation Node B, gNB or gNodeB).
  • TRP transmission reception point
  • gNB next-generation node B
  • the base station may be an integrated base station, or may be a base station separated into multiple network elements, without limitation.
  • the base station is a base station in which a centralized unit (CU) and a distributed unit (DU) are separated, that is, the base station includes a CU and a DU.
  • CU centralized unit
  • DU distributed unit
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations, and any embodiment or design described as “exemplary” or “for example” should not be interpreted It is more preferred or more advantageous than other embodiments or design solutions.
  • the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner for easy understanding.
  • At least one (species) can also be described as one (species) or multiple (species), multiple (species) can be two (species), three (species), four (species) ) or more (species), this application does not limit.
  • a beam is a communication resource.
  • the beams can be wide beams, or narrow beams, or other types of beams.
  • the beam forming technology may be a beam forming technology or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology. Different beams can be considered as different spatial resources.
  • Communication devices may transmit the same information or different information through different beams.
  • the communication device may regard multiple beams having the same or similar characteristics as one beam.
  • a beam can be realized by one or more antenna ports, and is used for communication equipment to transmit data channels, control channels, and sounding signals, etc.
  • the transmitting beam may refer to the distribution of signal strength formed in different directions in space after the signal is transmitted by the antenna
  • the receiving beam may refer to the distribution in which the antenna array strengthens or weakens the reception of wireless signals in different directions in space.
  • one or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the downlink beam can be reflected by the quasi co-located (QCL) relationship of the antenna port (antenna port).
  • QCL quasi co-located
  • the signals of two same beams have a spatial Rx parameter
  • the QCL relationship of the protocol that is, the QCL-Type D: ⁇ Spatial Rx parameter ⁇ in the protocol;
  • the uplink beam can be reflected by the spatial relation information.
  • the beam can be represented by the identification information of various signals, such as the resource (identifier, ID) of the CSI-RS, the time domain index of the synchronization signal (synchronization signal, SS)/physical broadcast channel (physical broadcast channel, PBCH) block SSB, and the detection
  • the resource ID of the signal sounding reference signal, SRS
  • the resource ID of the tracking signal tracking reference signal, TRS
  • the terminal equipment and the base station can perform beam management through the channel state information-reference signal (CSI-RS), so as to realize the alignment of transmitting and receiving beams.
  • Beam management includes beam training. The following is an example to describe the beam training process based on CSI-RS.
  • the base station can determine a suitable downlink transmission beam through beam training, and the base station can configure N CSI-RS resources for the terminal device.
  • the base station can use different beams to send CSI-RS on the N CSI-RS resources.
  • the terminal device measures the N CSI-RS resources and obtains the measurement results (for example, layer 1 reference signal receiving power (layer 1-reference signal receiving power, L1-RSRP) or layer 1 signal-to-interference-noise ratio (layer 1- signal to interference plus noise ratio, L1-SINR).
  • the terminal can report multiple CSI-RS resource identifiers and corresponding (reference signal receiving power, RSRP), so that the base station can determine the appropriate downlink transmission beam and/or Corresponding uplink receiving beam.
  • the terminal device needs to determine the optimal receiving beam through beam scanning.
  • the terminal may use different receiving beams to receive specific CSI-RS resources, so as to determine the optimal receiving beam corresponding to the specific sending beam of the base station.
  • the terminal equipment selects and maintains its receiving beam by itself.
  • the base station and the terminal equipment execute the above-mentioned beam training process to determine the downlink sending beam and/or the uplink receiving beam.
  • the base station determines the downlink transmit beam, that is, determines the analog weights of the multiple phase shifters corresponding to the array elements of the antenna port.
  • the beams trained by the above beam training procedure may be referred to as simulated beams.
  • phase shifters corresponding to different digital ports can select the same or different analog weights.
  • Figure 5 shows a simple example of the beam training process.
  • the base station uses 32 beams to send CSI-RS, while the terminal device uses 4 beams to receive the CSI-RS from the base station. After 128 (32 times 4) measurements, the terminal device can determine the optimal transceiver beam pair , that is, the optimal transmit beam of the base station and the optimal receive beam of the terminal equipment.
  • the base station obtains downlink transmission beam information
  • the terminal device obtains downlink reception beam information.
  • the base station may send the CSI-RS using the sending beam obtained in the beam training process.
  • the CSI-RS is used to acquire CSI (CSI-RS for CSI acquisition).
  • the terminal device receives the CSI-RS by using the receiving beam obtained through the beam training process, acquires corresponding CSI based on the received CSI-RS, and feeds it back to the base station.
  • the CSI fed back by the terminal device to the base station may include but not limited to one or more items of CQI, RI, and PMI.
  • the base station determines the downlink transmission beam through the above beam training process, and after obtaining the analog weight corresponding to the downlink transmission beam, it needs to further determine the precoding scheme of the digital port. Then the base station can obtain the CSI through the CSI obtaining process, and determine the precoding scheme of the digital port.
  • a typical precoding determination process is as follows (assuming a CSI-RS-based channel measurement and feedback mechanism):
  • the base station sends the CSI-RS through N antenna ports, where the N antenna ports correspond to N digital processing channels.
  • the analog beam corresponding to each antenna port or digital processing channel can be determined by the above beam management process;
  • the terminal device measures the downlink channel based on the received CSI-RS from the base station, and acquires CSI information for downlink transmission.
  • the CSI information may include but not limited to PMI information, RI information, CQI information, etc.;
  • the terminal device reports the CSI information to the base station
  • the base station determines a precoding scheme according to the CSI information, for example, determines a precoding matrix for sending data, maps the data of v streams to N digital processing channels, and sends them out from the antenna array through the antenna port.
  • the current beam management process and the CSI acquisition process are carried out independently. Both processes need to send downlink CSI-RS, and the resource overhead of CSI-RS is relatively large. Grouping, which transmits reference signals at the granularity of antenna unit groups, so that network devices can obtain high-precision channel information with a small reference signal resource overhead, that is, they can obtain channel information corresponding to smaller granularity antenna unit sets . Based on the high-precision channel information, the downlink transmission beam (or called the downlink analog transmission beam) can be determined. Compared with the way of beam training to obtain the downlink transmission beam, this method can reduce resource overhead and obtain high-precision channel information.
  • FIG. 6 is a schematic flowchart of a method 600 for acquiring channel information provided by an embodiment of the present application.
  • the channel measurement method may include but not limited to the following steps:
  • the network device sends a reference signal to the terminal device through multiple antenna unit groups, where at least two antenna unit groups in the multiple antenna unit groups belong to one antenna port.
  • the network device can group multiple antenna units included in one antenna port of the network device, and the network device sends reference signals through the multiple antenna unit groups grouped by the antenna port, so that the terminal device can obtain more accurate channel information.
  • the network device includes 2 antenna ports, and the terminal device includes 2 receiving antennas.
  • the network device can send a reference signal to the terminal device through two antenna ports, and the terminal device can obtain a 2 ⁇ 2 channel matrix based on the received reference signal.
  • the antenna units included in each antenna port of the network device are grouped, as shown in (b) in FIG. 7 , the antenna units included in each antenna port of the network device are divided into two antenna unit groups.
  • the network device sends a reference signal to the terminal device through the four antenna unit groups, and the terminal device can obtain a 2 ⁇ 4 channel matrix based on the received reference signal. It can be realized that the terminal equipment obtains higher-precision channel information.
  • the antenna unit group includes at least one antenna unit, the antenna unit may be an antenna element, and the antenna unit group may be called a virtual port, but the present application is not limited thereto.
  • each virtual port corresponds to an array component or sub-array component, which means that each virtual port includes a part of antenna elements of an array or sub-array.
  • one antenna port may contain one antenna unit group, that is, the antenna elements contained in one antenna port are one antenna unit group.
  • the two polarization directions correspond to two antenna ports respectively, that is, the first polarization direction corresponds to one antenna port, and the second polarization direction corresponds to the other antenna port.
  • the network device can notify the terminal device that the antenna elements contained in one antenna port are an antenna unit group, that is, the antenna array includes antenna unit group 1 and group 2 as shown in the figure, but the application is not limited thereto.
  • one antenna port may include two antenna element groups.
  • the antenna array of the network equipment shown in Figure 9 contains 32 array elements, and each polarization direction corresponds to an antenna port, wherein, as shown in Figure 9, the vertical two columns of antenna elements contained in one antenna port can be divided into one Antenna unit groups, that is, two longitudinal columns in the same polarization direction can be divided into one antenna unit group, and each antenna port includes two antenna unit groups, such as an antenna port corresponding to the first polarization direction includes antenna unit groups 1, In group 3, one antenna port corresponding to the second polarization direction includes antenna unit groups 2 and 4.
  • each antenna port includes two antenna element groups, for example, one antenna port corresponding to the first polarization direction includes antenna element group 1 and group 3, and one antenna port corresponding to the second polarization direction includes antenna element group 2 and group 4.
  • one antenna port may include four antenna element groups.
  • two polarization directions correspond to two antenna ports, and the antenna elements can be grouped in columns of antenna elements as shown in Figure 10, wherein one of the antenna elements in each column
  • the antenna unit of the polarization direction is an antenna unit group included in the antenna port corresponding to the polarization direction.
  • the antenna units may be grouped in units of columns of antenna units, wherein an antenna unit in a polarization direction in each row is an antenna unit group contained in an antenna port corresponding to the polarization direction.
  • antenna units with the same polarization direction intersecting two rows and two columns of antenna units form a group.
  • the dotted-line boxes in FIG. 10 , FIG. 10 a , and FIG. 10 b contain two antenna unit groups, where four antenna units in one polarization direction form one group.
  • the network device may send configuration information to the terminal device, where the configuration information is used to indicate the antenna element groups contained in at least one antenna port of the network device.
  • the configuration information is used to indicate the correspondence between antenna ports and antenna unit groups, or in other words, the configuration information is used to indicate grouping information of antenna units included in at least one antenna port.
  • the terminal device receives the configuration information from the network device, and determines the corresponding relationship between the antenna port of the network device and the antenna unit group based on the configuration information.
  • the terminal device may determine the correspondence between the antenna port and the antenna unit group according to the port number corresponding to the reference signal resource.
  • the reference signal is CSI-RS
  • the network device includes 4 antenna ports
  • the network device configures a CSI-RS resource corresponding to 8 ports for the terminal device through the configuration information
  • the terminal device determines that the 8 ports corresponding to the CSI-RS resource are Virtual ports (that is, antenna unit groups), each antenna port includes 2 virtual ports, and the numbers correspond to each other in sequence.
  • the terminal device can determine that among the 4 antenna ports of the network device, antenna port 1 includes virtual port 1 , 2; Antenna port 2 includes virtual ports 3, 4; Antenna port 3 includes virtual ports 5, 6; Antenna port 4 includes virtual ports 7, 8. But the present application is not limited thereto.
  • the ports on which network devices configure CSI-RS resources are numbered starting from 3000.
  • the numbers of the antenna ports of the CSI-RS resource can be respectively ⁇ 3000, 3001, 3002, 3003 ⁇ .
  • the network device can configure the number of the antenna unit group included in each antenna port of the CSI-RS resource (that is, the number of the virtual port) as shown in Table 1.
  • the numbers of the two antenna unit groups included in the antenna port 3000 are 3000- 1.
  • the numbers of the two antenna unit groups included in the antenna port 3001 are respectively 3001-1 and 3001-2, and the numbers of the two antenna unit groups included in the antenna port 3002 are respectively 3002-1 and 3002-2, the antenna port The numbers of the two antenna unit groups included in 3003 are respectively 3003-1 and 3003-2, but the application is not limited thereto.
  • the numbers of the two antenna unit groups included in the antenna port 3000 are 300001 and 300002 respectively, the numbers of the two antenna unit groups included in the antenna port 3001 are respectively 300101 and 300102, and the two antenna unit groups included in the antenna port 3002 are The numbers of the antenna unit groups are 300201 and 300202 respectively, and the numbers of the two antenna unit groups included in the antenna port 3003 are 300301 and 300302 respectively.
  • antenna unit groups are only for illustration, and other ways may also be used to identify the antenna unit groups included in the antenna port, which is not limited in this application.
  • the following describes how a network device sends a reference signal to a terminal device through multiple antenna unit groups, including but not limited to the following implementation manners.
  • each antenna port may send a reference signal to the terminal device in one of the following manners.
  • the network device can use multiple time units to transmit the reference signal to the terminal device through multiple antenna unit groups of one antenna port. That is to say, the network device sends reference signals to the terminal device at multiple time units through multiple antenna unit groups of one antenna port.
  • the network device sends a reference signal to the terminal device through one antenna unit group in the plurality of time units in one time unit of the plurality of time units, wherein different times in the plurality of time units
  • the groups of antenna elements that transmit reference signals are different for each unit.
  • one antenna port of a network device includes two antenna unit groups, antenna unit group 1 and antenna unit group 2 .
  • the network device can send a reference signal to the terminal device through the antenna unit group 1 in the first time unit.
  • the network device can turn off the switch of the antenna unit group 2, connect the switch of the antenna unit group 1, and send the reference signal through the antenna unit group 1. signal, but the application is not limited thereto.
  • the network device can send a reference signal to the terminal device through the antenna unit group 2 in the second time unit, for example, the network device can turn off the switch of the antenna unit group 1, connect the switch of the antenna unit group 2, and send the reference signal through the antenna unit group 2. signal, but the application is not limited thereto.
  • the terminal device may receive the reference signal from the network device at the first time unit and the second time unit. According to the two received reference signals, the terminal device can respectively determine the channel information corresponding to the channel between the antenna unit group 1 of the network device and the terminal device, and the channel information corresponding to the channel between the antenna unit group 2 of the network device and the terminal device. channel information.
  • the manner in which the network device sends the reference signal through multiple antenna unit groups of one antenna port may be called time-division multiplexing (time-division multiplexing, TDM).
  • the channel information in this application may be channel state information CSI.
  • one antenna port of the network device includes two antenna unit groups 1 and 2 .
  • the network device may send the reference signal to the terminal device through the antenna unit group 1 in the first time unit, and send the reference signal to other directions through the antenna unit group 2 .
  • antenna unit groups 1 and 2 may send reference signals in different directions, and may form a spatial orthogonality, so that the terminal device can only receive the reference signal sent by antenna port group 1 in the first time unit, but cannot receive the reference signal sent by antenna unit group 1.
  • 2 Sent reference signal The network device may send the reference signal to the terminal device through the antenna unit group 2 in the second time unit, and send the reference signal to other directions through the antenna unit group 2 .
  • the terminal device can only receive the reference signal sent by the antenna port group 2 in the second time unit, but cannot receive the reference signal sent by the antenna unit group 1 .
  • the way in which the network device transmits reference signals through multiple antenna unit groups of one antenna port can be called time-division multiplexing (TDM) mode, or time-division (time-division, TD) and space division (spatial -division, SD) combined multiplexing.
  • TDM time-division multiplexing
  • TD time-division
  • SD spatial -division
  • the network device sends a reference signal to the terminal device through the multiple antenna unit groups in each time unit of the multiple time units, and the orthogonal weights corresponding to different antenna unit groups in the multiple antenna unit groups
  • the sequences are orthogonal to each other, and an element in an orthogonal weighted sequence is a phase weighting coefficient adopted by an antenna unit group in a time unit.
  • one antenna port of a network device includes two antenna unit groups, antenna unit group 1 and antenna unit group 2 .
  • the transmission signals of the antenna unit group 1 and the antenna unit group 2 in the first time unit can be denoted as W1 ⁇ x[1] and W2 x[1].
  • the signal received by the terminal device is the superposition of the two received signals from antenna unit group 1 and antenna unit group 2, as shown in formula (1).
  • the network device sends the reference signal x[2] to the terminal device through the antenna unit group 1 and the antenna unit group 2 in the second time unit, where the phase weighted sequence corresponding to the antenna unit group 1 in the second time unit is W 1 , and the antenna unit
  • the phase weighted sequence corresponding to group 2 is -W 2
  • the signal received by the terminal device is the superposition of the two received signals from antenna unit group 1 and antenna unit group 2:
  • both x[1] and x[2] are known reference signals, and x[1] and x[2] may be the same or different. Combining the above equations (1) and (2) to eliminate x, an initial channel estimate can be obtained.
  • the terminal equipment solves the time-domain CDM, and the channels h1 ⁇ w1 and h1 ⁇ w2 can be estimated as follows.
  • the terminal device Since the terminal device needs to estimate the beamformed channels h 1 ⁇ W 1 and h 2 ⁇ W 2 from the antenna unit group 1 and the antenna unit group 2 to the receiving antennas, the terminal device does not need to estimate h 1 and h 2 separately.
  • the terminal device may use W 1 and W 2 as part of channel information obtained from channel measurement. Then the terminal device can consider that the signal sent by the network device in the first time unit and the second time unit is:
  • the transmitted reference signal of antenna unit group 1 in two time units is [x[1], x[2]], and the transmitted reference signal of antenna unit group 2 is [x[1], -x[2] ]], therefore, the orthogonal weight sequence corresponding to antenna element group 1 is [1,1], and the orthogonal weight sequence corresponding to antenna element group 2 is [1,-1].
  • the orthogonal weighted sequence corresponding to antenna element group 1 and the orthogonal weighted sequence corresponding to antenna element group 2 are orthogonal to each other.
  • the orthogonal weighted sequence corresponding to the antenna element group may be called a CDM sequence or an orthogonal cover code (orthogonal over code, OCC). But the present application is not limited thereto.
  • the number of antenna unit groups included in one antenna port is 2, and the implementation of orthogonalization of different antenna unit groups using OCC sequences is described, that is, the orthogonal weighted sequence group (or orthogonal code) is [1, 1] and [1,-1].
  • the network device can transmit reference signals through the N antenna unit groups in N time units, and the transmission of the nth time unit A signal can be written as:
  • nth element of the orthogonal weighted sequence of the kth antenna unit group can be denoted as a k [n].
  • the orthogonal sequence groups (or called orthogonal codes) corresponding to the 4 antenna unit groups can be [1,1,1,1], [1,- 1,1,-1], [1,1,-1,-1], and [1,-1,-1,1].
  • orthogonal codes or called orthogonal codes
  • the present application is not limited thereto, and other sequences can also be used to realize orthogonalization between different antenna unit groups.
  • DFT discrete Fourier transform
  • a time difference between two adjacent time units in the multiple time units is smaller than a threshold, or two adjacent time units in the multiple time units are continuous in time.
  • a time unit may be an orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbol, symbol or symbol group.
  • the network device receives first information from the terminal device, where the first information is used to indicate channel information corresponding to the multiple antenna unit groups.
  • the terminal device may send the first information to the network device, so as to feed back the channel information corresponding to the multiple antenna unit groups to the network device.
  • the channel information corresponding to the plurality of antenna unit groups includes phase weighting information corresponding to at least one antenna unit group in the plurality of antenna unit groups, and the phase weighting information is used by the network device to control the at least one antenna unit group The phase shift of the phase shifter.
  • the terminal device may report the M-dimensional phase weighted sequence corresponding to the M antenna unit groups. If the network device includes N antenna ports, and each antenna port includes M antenna unit groups, after the terminal device receives reference signals from the N ⁇ M antenna unit groups of the N antenna ports, the terminal device can report the An M-dimensional phase weighted sequence corresponding to each of the N antenna ports.
  • the terminal device can determine the M-dimensional phase weighted sequence corresponding to the M antenna element groups of the nth digital port, and the M-dimensional phase weighted sequence can be recorded as p n :
  • one element in the phase weighted sequence p n is a phase weighted value corresponding to an antenna unit group, and one phase weighted value is a phase weighted value corresponding to broadband or full bandwidth, that is, the terminal device reports to the network device
  • the frequency domain granularity of the phase weighting value is broadband or full bandwidth, that is, the terminal device reports the unique phase weighting value corresponding to a certain frequency domain range (the certain frequency domain range can be called broadband or full bandwidth) to the network device.
  • the range may be a bandwidth occupied by the CSI-RS corresponding to the phase weight value, or a bandwidth part (bandwidth part, BWP) bandwidth, or a carrier bandwidth.
  • the phase weighting information corresponding to at least one antenna element group included in the first information may include the M-dimensional phase weighting sequence corresponding to an antenna port, or may include identification information corresponding to the M-dimensional phase weighting sequence.
  • the protocol may specify a candidate set, which includes multiple candidate phase weighting sequences or phase weighting values.
  • the terminal device may determine the phase weighted sequence or phase weighted value corresponding to the M-dimensional phase weighted sequence in the candidate set according to the M-dimensional phase weighted sequence, and the first information includes the phase weighted sequence corresponding to the M-dimensional phase weighted sequence
  • the identification information or the identification information of the phase weight value is notified to the network device.
  • the network device may determine the M-dimensional phase weighted sequence corresponding to the antenna port in the candidate set based on the identification information.
  • the channel information of the multiple antenna unit groups includes precoding matrix indexes PMI corresponding to multiple antenna ports, where the multiple antenna ports include the multiple antenna unit groups.
  • the terminal device Based on the reference signals from the N antenna ports of the network device (which may be reference signals from multiple antenna unit groups of the N antenna ports), the terminal device can determine that the channels corresponding to the N antenna ports can support v data streams transmission.
  • the terminal device may report an N.v-dimensional precoding matrix, or may be called digital weighting information, to the network device, for the network device to perform digital signal processing on the data stream.
  • the precoding matrix determined by the terminal device based on channel information can be denoted as q:
  • the terminal device may determine the PMI of the precoding matrix in the precoding matrix set.
  • the first information includes the PMI.
  • the terminal device may report the phase weighting information and the PMI respectively.
  • the phase weighting information can be carried in the same message or in different messages.
  • the terminal device reports two levels of weight information to the network device, wherein one level is phase weighting information, and the other level is digital weighting information.
  • one level is phase weighting information
  • the other level is digital weighting information.
  • the terminal device may combine the phase weighting sequence and digital weight information, and feed back combined weight information to the network device, where the combined weight information may include the combined weight of each antenna unit group.
  • the combined weight information can be expressed as:
  • the terminal device may also send second information to the network device, where the second information includes one or more of the following information corresponding to the plurality of antenna ports:
  • SINR Signal to interference plus noise ratio
  • RSRP reference signal received power
  • L1-SINR layer 1 signal to interference and noise ratio
  • L1-RSRP layer 1 reference signal received power L1-RSRP
  • CQI channel quality indication
  • rank indicator rank indicator
  • the terminal device may also obtain one or more items of the above information based on measuring the reference signals from the multiple antenna ports, and feed it back to the network device, so that the network device performs data transmission with reference to the above information.
  • the first information is associated with the second information, or the second information is based on the foregoing first information.
  • the network device can receive the second information from the terminal device.
  • both the foregoing first information and the second information may be sent by the terminal device to the network device as CSI.
  • the first information and the second information may be carried in the same CSI report, or may be carried in different CSI reports, which is not limited in this application.
  • the same CSI report may be a CSI report carried on an uplink channel (such as a physical uplink control channel (physical uplink control channel, PUCCH) or a physical uplink shared channel (physical uplink shared channel, PUSCH)).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • Different CSI reports may be CSI reports carried on different uplink channels or uplink channels in different time units. But the present application is not limited thereto.
  • the network device can send a reference signal to the terminal device through multiple antenna unit groups at the antenna port, so that the terminal device can obtain higher-precision channel information and improve the accuracy of channel information feedback. And the terminal device can determine appropriate phase weighting information based on the obtained higher-precision channel information, and feed it back to the network device. The network device can control the phase of the phase shifter based on the phase weighting information to determine the downlink transmission beam.
  • the solution provided by the present application can avoid using a large number of resources for beam training to determine a transmission beam, reduce resource overhead, and improve resource utilization.
  • FIG. 15 is a schematic flow chart of a method for acquiring channel information provided in Embodiment 2 of the present application.
  • the network device sends reference signals to the terminal device through N antenna ports, and the beam directions of the reference signals sent by the multiple antenna ports are the same.
  • the terminal device receives multiple reference signals from the network device.
  • the N antenna ports may use one of frequency division multiplexing (frequency division multiplexing, FDM) mode, TDM mode, TD-CDM mode or frequency domain code division multiplexing (FD-CDM) mode to send
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • TD-CDM time domain code division multiplexing
  • FD-CDM frequency domain code division multiplexing
  • the N antenna ports may correspond to one CSI-RS resource.
  • the N antenna ports may correspond to one CSI-RS resource. It may be understood that the network device transmits the CSI-RS through the corresponding N antenna ports on the one CSI-RS resource.
  • the N antenna ports correspond to multiple CSI-RS resources.
  • the network device sends the CSI-RS on at least one resource among the multiple CSI-RS resources through at least one antenna port among the N antenna ports.
  • the network device uses N antenna ports in total to send the CSI-RS on the multiple CSI-RS resources.
  • the N antenna ports correspond to N CSI-RS resources
  • each CSI-RS resource in the N CSI-RS resources corresponds to one antenna port.
  • the network device may send the reference signal on one CSI-RS resource among the N CSI-RS resources through one antenna port among the N antenna ports.
  • the network device configures the terminal device to measure the CSI-RS resources corresponding to the N antenna ports.
  • the network device can indicate that the multiple CSI-RS resources have the same transmission beam direction.
  • the network device may indicate that the multiple CSI-RS resources have the same QCL type D relationship, or that the multiple CSI-RS resources belong to a resource set, and the network device indicates that the CSI-RS resources in the CSI-RS set have the same QCL type D relationship.
  • the RS resource has a repetition relationship.
  • the configuration parameter repetition in the configuration information of the resource set is set to "on", that is, the resource repetition is configured to be on, indicating the beam of the transmission beam of the CSI-RS resource in the resource set same direction.
  • the network device receives first information from the terminal device, where the first information is used to indicate phase weighting information corresponding to multiple antenna ports of the network device, and the phase weighting information is used to control a phase shift of a phase shifter of the antenna port.
  • the terminal device determines phase weighting information corresponding to multiple antenna ports of the network device according to the received multiple reference signals, and sends first information to the network device, where the first information is used to indicate that the multiple antenna ports correspond to The phase weighting information of .
  • N antenna ports correspond to N CSI-RS resources.
  • the N CSI-RS resources are resources in N time units, and the network device transmits CSI-RS on the N CSI-RS resources through N antenna ports in the N time units.
  • the N time units sequentially measure the N CSI-RS resources to obtain channel information of antenna ports corresponding to each of the N CSI-RS resources, that is, obtain channel information corresponding to the N antenna ports.
  • the N time units may be N consecutive time domain symbols.
  • N consecutive OFDM symbols For example, N consecutive OFDM symbols.
  • the terminal device can determine the phase weight value corresponding to each of the N antenna ports according to the measured channel information corresponding to the N antenna ports, and obtain the phase weight sequence corresponding to the N antenna ports, which can be recorded as:
  • the phase weighted sequence includes N elements, wherein one element is a phase weight corresponding to an antenna port determined by the terminal device, and the phase weighted sequence may also be called an N-dimensional combination weight sequence corresponding to the N antenna ports .
  • the first information sent by the terminal device to the network device includes the phase weighted sequence corresponding to the N antenna ports, or the terminal device selects the phase weighted sequence corresponding to the N antenna ports in the predefined phase weighted sequence candidate set Corresponding identification information is determined, where the first information includes the identification information.
  • the present application is not limited thereto.
  • the network device may use different antenna arrays (or called antenna arrays) to send N reference signals to the terminal device on the N reference resources at different times, and the beams for sending the N reference signals have The same or close direction (or referred to as pointing).
  • antenna arrays or called antenna arrays
  • the network device may include two antenna arrays, one antenna array corresponds to one antenna port, and the network device sends a reference signal 1 to the terminal device at the reference signal resource 1 through an antenna array in the first time unit, that is, the antenna
  • the reference signal 1 is sent in both polarization directions of the array, and the two polarization directions form a beam to send the reference signal;
  • the reference signal 2 is sent to the terminal device in the reference signal resource 2 through another antenna array , the network device transmits the reference signal 1 in the same or similar direction as the beam that transmits the reference signal 2 .
  • the network device may use a broadened beam (non-DFT beam) to send the reference signal.
  • the terminal device may perform receive beam training in the multiple time units through the N antenna ports.
  • the terminal device can perform its own receiving beam training in the multiple time units through the antenna ports of the N CSI-RSs to determine that the terminal device communicates with the network device
  • the receiving beam can reduce time overhead and resource overhead.
  • N antenna ports correspond to M CSI-RS resources.
  • each CSI-RS resource in the M CSI-RS resources includes two antenna ports, the first antenna port and the second antenna port, and the network device sends the M CSI-RS resources in M time units.
  • RS resource, in one time unit of the M time units, the CSI-RS is sent to the terminal device through two antenna ports of one CSI-RS resource.
  • the terminal device determines the phase weighted sequence corresponding to the M first antenna ports and the M second antenna ports, or called a combination weight sequence, and reports it to the network device.
  • the phase weighted sequence corresponding to M antenna ports can be written as:
  • the terminal device may report to the network device the phase weighted sequences corresponding to the M first antenna ports and the phase weighted sequences corresponding to the M second antenna ports, or the terminal device may report to the network device A combined weighted sequence is reported, where the combined weighted sequence is a combined sequence of phase weighted sequences corresponding to M first antenna ports and phase weighted sequences corresponding to M second antenna ports.
  • the first information sent by the terminal device to the network device includes the phase weighting sequence corresponding to the M first antenna ports and the phase weighting sequence corresponding to the M second antenna ports, or the first information includes the combined weighting sequence Alternatively, the first information includes identification information, where the identification information is used to identify the phase weighted sequences corresponding to the M first antenna ports and the phase weighted sequences corresponding to the M second antenna ports, or to identify the combined weighted sequence. But the present application is not limited thereto.
  • the network device may use different antenna arrays (or called antenna arrays) to transmit M reference signals on the M reference signal resources at different times, and the beams for transmitting the M reference signal resources have the same or near pointing.
  • antenna arrays or called antenna arrays
  • the network device may include two antenna arrays, two polarization directions of one antenna array correspond to two antenna ports, and the two antenna arrays include four antenna ports in total.
  • the network device may send the reference signal 1 to the terminal device on the reference signal resource 1 through an antenna array in the first time unit, and antenna ports in two polarization directions of the antenna array correspond to two antenna ports of the reference signal resource 1 .
  • the network device sends the reference signal 2 to the terminal device on the reference signal resource 2 through another antenna array in the second time unit.
  • Directions of beams sent by the network device to the M reference signal resources are the same or similar.
  • the network device sends the foregoing reference signal by using a broadened beam (non-DFT beam).
  • the terminal device may also send second information to the network device, where the second information includes one or more pieces of the following information about the multiple antenna ports:
  • Signal to Interference and Noise Ratio SINR Reference Signal Received Power RSRP, Layer 1 Signal to Interference and Noise Ratio L1-SINR, Layer 1 Reference Signal Received Power L1-RSRP, Channel Quality Indicator CQI and/or Rank Indicator RI.
  • the second information includes channel state information corresponding to the above N antenna ports, for example, L1-RSRP information corresponding to the N antenna ports.
  • the second information is associated with the phase weighting sequence reported by the terminal, or the second information is based on the phase weighting sequence reported by the terminal.
  • the reported L1-RSRP is associated with the reported phase weighted sequence, or the reported L1-RSRP is based on the reported phase weighted sequence.
  • the network device can use the widened beam to send the above reference signal, therefore, the resource overhead caused by sending the reference signal to the terminal device through multiple beams can be reduced, and the network device obtains the phase weighted sequence fed back by the terminal device.
  • the phase weight value of the narrow beam that the network device serves for the terminal device can be determined, and the serving beam can be quickly determined while reducing the resource overhead of beam training.
  • each network element may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • Fig. 18 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communications device 1800 may include a processing unit 1810 and a transceiver unit 1820 .
  • the communication device 1800 may correspond to the terminal device in the above method embodiments, or a chip configured in (or used in) the terminal device, or other devices capable of implementing the method of the terminal device, modules, circuits or units etc.
  • the transceiver unit is configured to receive a plurality of reference signals from the network device; the processing unit is configured to determine channel information corresponding to a plurality of antenna unit groups of the network device according to the plurality of reference signals, and at least one of the plurality of antenna unit groups Two antenna unit groups belong to one antenna port; the transceiver unit is further configured to send first information to the network device, where the first information is used to indicate channel information corresponding to the plurality of antenna unit groups.
  • the channel information of the multiple antenna unit groups includes precoding matrix indexes PMI corresponding to multiple antenna ports, where the multiple antenna ports include the multiple antenna unit groups.
  • the multiple antenna unit groups belong to one antenna port, or one antenna unit group among the multiple antenna unit groups belongs to one antenna port.
  • the multiple antenna unit groups belong to one antenna port, and the transceiver unit is specifically configured to receive the multiple reference signals from the network device in multiple time units.
  • the transceiving unit is specifically configured to receive a reference signal sent from the network device through one of the multiple antenna unit groups at one of the multiple time units, wherein the multiple time units of The reference signals received at different time units come from different antenna unit groups of the plurality of antenna unit groups.
  • the transceiving unit is specifically configured to receive the multiple reference signals in each time unit of the multiple time units.
  • the processing unit is specifically configured to determine channel information of the multiple antenna unit groups according to the multiple reference signals, the number of the multiple antenna unit groups, and the weighted sequences corresponding to the multiple antenna unit groups.
  • the channel information of the plurality of antenna unit groups includes digital weight information of antenna ports, and the digital weight information is used by the network device to perform digital signal processing on the signals to be transmitted of the antenna ports to which the plurality of antenna unit groups belong.
  • the channel information of the multiple antenna unit groups includes weighted combination information corresponding to the multiple antenna unit groups, and the weighted combination information is that the phase weight information corresponding to the multiple antenna unit groups corresponds to the multiple antenna unit groups
  • the transceiving unit is further configured to receive configuration information from the network device, where the configuration information is used to indicate the antenna unit group contained in at least one antenna port of the network device.
  • the transceiver unit is further configured to send second information to the network device, where the second information includes one or more of the following information of the plurality of antenna unit groups: signal-to-interference and noise ratio SINR, reference signal received power RSRP , channel quality indicator CQI and/or rank indicator RI.
  • SINR signal-to-interference and noise ratio
  • RSRP reference signal received power
  • CQI channel quality indicator
  • RI rank indicator
  • the communication device 1800 may correspond to the terminal device in the methods 600 and 1500 according to the embodiments of the present application, and the communication device 1800 may include a terminal device for executing the methods 600 and 1500 in FIG. 6 and FIG. 15 The unit of the method.
  • each unit in the communication device 1800 and the above-mentioned other operations and/or functions are for realizing the corresponding processes of the methods 600 and 1500 in FIG. 6 and FIG. 15 respectively.
  • the communication device 1800 may further include a processing unit 1810, and the processing unit 1810 may be configured to process instructions or data to implement corresponding operations.
  • the transceiver unit 1820 in the communication device 1800 may be an input/output interface or circuit of the chip, and the processing in the communication device 1800 Unit 1810 may be a processor in a chip.
  • the communication device 1800 may further include a storage unit 1830, which may be used to store instructions or data, and the processing unit 1810 may execute the instructions or data stored in the storage unit, so that the communication device realizes corresponding operations .
  • a storage unit 1830 which may be used to store instructions or data
  • the processing unit 1810 may execute the instructions or data stored in the storage unit, so that the communication device realizes corresponding operations .
  • the transceiver unit 1820 in the communication device 1800 can be implemented through a communication interface (such as a transceiver or an input/output interface), for example, it can correspond to the transceiver 1910 in the terminal device 1900 shown in FIG. 19 .
  • the processing unit 1810 in the communication apparatus 1800 may be implemented by at least one processor, for example, may correspond to the processor 1920 in the terminal device 1900 shown in FIG. 19 .
  • the processing unit 1810 in the communication device 1800 may also be implemented by at least one logic circuit.
  • the storage unit 1830 in the communication device 1800 may correspond to the memory in the terminal device 1900 shown in FIG. 19 .
  • the communication device 1800 may correspond to the network device in the above method embodiment, for example, a chip configured (or used) in the network device, or other methods capable of realizing the network device device, module, circuit or unit etc.
  • the transceiver unit is configured to send a reference signal to the terminal device through a plurality of antenna unit groups, at least two antenna unit groups in the plurality of antenna unit groups belong to one antenna port; the transceiver unit is also used to receive the first signal from the terminal device One piece of information, the first information is used to indicate the channel information corresponding to the multiple antenna unit groups; the processing unit is configured to determine the channel information corresponding to the multiple antenna unit groups according to the first information.
  • the channel information corresponding to the plurality of antenna unit groups includes phase weighting information corresponding to at least one antenna unit group in the plurality of antenna unit groups, and the phase weighting information is used by the network device to control the at least one antenna unit group The phase shift of the phase shifter.
  • the multiple antenna unit groups belong to one antenna port, or one antenna unit group among the multiple antenna unit groups belongs to one antenna port.
  • the multiple antenna unit groups belong to one antenna port, and the transceiver unit is specifically configured to send reference signals to the terminal device in multiple time units through the multiple antenna unit groups.
  • the transceiver unit is specifically configured to send a reference signal to the terminal device through one antenna unit group in the plurality of antenna unit groups in one time unit of the plurality of time units, wherein, in the plurality of time units Different antenna unit groups for sending reference signals in different time units.
  • the transceiver unit is specifically configured to send a reference signal to the terminal device through the plurality of antenna unit groups in each time unit of the plurality of time units, where different antenna unit groups in the plurality of antenna unit groups correspond to
  • the phase weighting sequences are orthogonal to each other, and one element in one phase weighting sequence is a phase weighting value corresponding to one antenna unit group in one time unit.
  • a time difference between two adjacent time units in the multiple time units is smaller than a threshold, or two adjacent time units in the multiple time units are continuous in time.
  • the channel information corresponding to the multiple antenna unit groups includes a precoding matrix index PMI corresponding to multiple antenna ports, where the multiple antenna ports include the multiple antenna unit groups.
  • the transceiving unit is further configured to send configuration information to the terminal device, where the configuration information is used to indicate the antenna unit groups contained in at least one antenna port of the network device.
  • the transceiver unit is further configured to receive second information from the terminal device, where the second information includes one or more of the following information of the plurality of antenna unit groups: signal-to-interference and noise ratio SINR, reference signal reception Power RSRP, channel quality indicator CQI and/or rank indicator RI.
  • SINR signal-to-interference and noise ratio
  • RSRP reference signal reception Power
  • CQI channel quality indicator
  • rank indicator RI rank indicator
  • the communication device 1800 may correspond to the network device in the method 600, 1500 according to the embodiment of the present application, and the communication device 1800 may include the network device for executing the method 600, 1500 in Fig. 6 and Fig. 15 The unit of the method. Moreover, each unit in the communication device 1800 and the above-mentioned other operations and/or functions are for realizing the corresponding processes of the methods 600 and 1500 in FIG. 6 and FIG. 15 respectively.
  • the communication device 1800 may further include a processing unit 1810, and the processing unit 1810 may be configured to process instructions or data to implement corresponding operations.
  • the transceiver unit 1820 in the communication device 1800 may be an input/output interface or circuit of the chip, and the processing in the communication device 1800 Unit 1810 may be a processor in a chip.
  • the communication device 1800 may further include a storage unit 1830, which may be used to store instructions or data, and the processing unit 1810 may execute the instructions or data stored in the storage unit, so that the communication device realizes corresponding operations .
  • a storage unit 1830 which may be used to store instructions or data
  • the processing unit 1810 may execute the instructions or data stored in the storage unit, so that the communication device realizes corresponding operations .
  • the transceiver unit 1820 in the communication device 1800 can be realized through a communication interface (such as a transceiver or an input/output interface), for example, it can correspond to the network device shown in FIG. 20 Transceiver 2010 in 2000.
  • the processing unit 1810 in the communication device 1800 can be implemented by at least one processor, for example, it can correspond to the processor 2020 in the network device 2000 shown in FIG. circuit implementation.
  • FIG. 19 is a schematic structural diagram of a terminal device 1900 provided by an embodiment of the present application.
  • the terminal device 1900 may be applied to the system shown in FIG. 1 to perform functions of the terminal device in the foregoing method embodiments.
  • the terminal device 1900 includes a processor 1920 and a transceiver 1910 .
  • the terminal device 1900 further includes a memory.
  • the processor 1920, the transceiver 1910 and the memory may communicate with each other through an internal connection path, and transmit control and/or data signals.
  • the memory is used to store computer programs, and the processor 1920 is used to execute the computer programs in the memory to control the transceiver 1910 to send and receive signals.
  • the processor 1920 and the memory may be combined into a processing device, and the processor 1920 is configured to execute the program codes stored in the memory to realize the above functions.
  • the memory may also be integrated in the processor 1920, or be independent of the processor 1920.
  • the processor 1920 may correspond to the processing unit in FIG. 18 .
  • the above-mentioned transceiver 1910 may correspond to the transceiver unit in FIG. 18 .
  • the transceiver 1910 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 1900 shown in FIG. 19 can implement processes involving the terminal device in the method embodiments shown in FIG. 6 and FIG. 15 .
  • the operations and/or functions of the various modules in the terminal device 1900 are respectively for implementing the corresponding processes in the above method embodiments.
  • the above-mentioned processor 1920 can be used to execute the actions implemented by the terminal device described in the foregoing method embodiments, and the transceiver 1910 can be used to execute the actions described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the transceiver 1910 can be used to execute the actions described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the terminal device 1900 may further include a power supply, configured to provide power to various devices or circuits in the terminal device.
  • the terminal equipment 1900 may also include input and output devices, such as including one or more of an input unit, a display unit, an audio circuit, a camera, and a sensor.
  • the circuitry may also include speakers, microphones, and the like.
  • FIG. 6 and FIG. 15 are schematic structural diagrams of network devices provided by the embodiments of the present application.
  • the network device 2000 can be applied to the system shown in FIG. 1 to perform the functions of the network devices in the foregoing method embodiments.
  • the network device 2000 includes a processor 2020 and a transceiver 2010 .
  • the network device 2000 further includes a memory.
  • the processor 2020, the transceiver 2010 and the memory may communicate with each other through an internal connection path, and transmit control and/or data signals.
  • the memory is used to store computer programs, and the processor 2020 is used to execute the computer programs in the memory to control the transceiver 2010 to send and receive signals.
  • the processor 2020 and the memory may be combined into a processing device, and the processor 2020 is configured to execute the program codes stored in the memory to realize the above functions.
  • the memory may also be integrated in the processor 2020, or be independent of the processor 2020.
  • the processor 2020 may correspond to the processing unit in FIG. 18 .
  • the above-mentioned transceiver 2010 may correspond to the transceiver unit in FIG. 18 .
  • the transceiver 2010 may include a receiver (or called a receiver, a receiving circuit) and a transmitter (or called a transmitter, a transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the network device 2000 shown in FIG. 6 and FIG. 15 can implement various processes related to the network device in the method embodiments shown in FIG. 6 and FIG. 15 .
  • the operations and/or functions of the various modules in the network device 2000 are respectively intended to implement the corresponding processes in the foregoing method embodiments.
  • the network device 2000 shown in FIG. 6 and FIG. 15 may be an eNB or gNB.
  • the network device includes network devices such as CU, DU, and AAU.
  • the CU may be specifically divided into CU-CP and CU-UP. The present application does not limit the specific architecture of the network device.
  • the network device 2000 shown in FIG. 6 and FIG. 15 may be a CU node or a CU-CP node.
  • the above-mentioned processor 2020 can be used to execute the actions internally implemented by the network device described in the previous method embodiments, and the transceiver 2010 can be used to execute the actions described in the previous method embodiments sent by the network device to the terminal device or received from the terminal device. action.
  • the transceiver 2010 can be used to execute the actions described in the previous method embodiments sent by the network device to the terminal device or received from the terminal device. action.
  • the embodiment of the present application also provides a processing device, including a processor and a (communication) interface; the processor is configured to execute the method in any one of the above method embodiments.
  • the above processing device may be one or more chips.
  • the processing device may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system chip (system on chip, SoC). It can be a central processor unit (CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • microcontroller micro controller unit
  • PLD programmable logic device
  • the present application also provides a computer program product, the computer program product comprising: computer program code, when the computer program code is executed by one or more processors, the The device executes the methods in the embodiments shown in FIG. 6 and FIG. 15 .
  • the technical solutions provided by the embodiments of the present application may be fully or partially implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present invention will be generated in whole or in part.
  • the computer may be a general computer, a dedicated computer, a computer network, a network device, a terminal device, a core network device, a machine learning device or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD)), or a semiconductor medium.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores program code, and when the program code is run by one or more processors, the processing includes the The device of the device executes the method in the embodiment shown in FIG. 6 and FIG. 15 .
  • the present application further provides a system, which includes the aforementioned one or more network devices.
  • the system may further include the aforementioned one or more terminal devices.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请提供了一种信道信息获取方法和通信装置。该方法包括:网络设备通过多个天线单元组向终端设备发送参考信号,该多个天线单元组中的至少两个天线单元组属于一个天线端口;该网络设备接收来自该终端设备的第一信息,该第一信息用于指示该多个天线单元组对应的信道信息。以期提高获取的信道信息的准确性。

Description

信道信息获取方法和通信装置
本申请要求于2021年07月12日提交中国国家知识产权局、申请号为202110784799.8、申请名称为“信道信息获取方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种信道信息获取方法和通信装置。
背景技术
在移动通信系统中,为了在更高频段实现更好的传输性能,网络设备与终端设备均可以采用(模拟)波束成型技术实现基于波束的通信,能够大幅提高上下行信号的传输能力。由于波束具有方向性,终端设备和网络设备之间在进行数据传输之前需要进行波束对准。终端设备和网络设备之间的波束对准可以通过波束管理流程实现。例如,终端设备通过测量网络设备所发送的下行信号确定网络设备发送波束以及终端设备自身的接收波束。
然而,在波束管理过程中,终端设备需要进行频繁的下行测量用于实现波束对准,并且网络设备需要发送大量的下行信号用于终端设备执行测量,资源开销和功率消耗较大,终端设备的频繁测量也可能导致严重的功耗和发热问题。
发明内容
本申请提供了一种信道信息获取方法和通信装置,能够提高获取信道信息的准确性。
第一方面,提供了一种信道信息获取方法,该方法可以由网络设备或配置于(或用于)网络设备的模块(如芯片)执行,以下以该方法由网络设备执行为例进行说明。
该方法包括:网络设备通过多个天线单元组向终端设备发送参考信号,该多个天线单元组中的至少两个天线单元组属于一个天线端口;该网络设备接收来自该终端设备的第一信息,该第一信息用于指示该多个天线单元组对应的信道信息。
根据上述方案,网络设备对天线端口的天线单元(如天线阵元)进行分组,以天线单元组为粒度传输参考信号,使得网络设备能够在较小参考信号资源开销的情况下,获取到高精度的信道信息,即能够获取到更小粒度的天线单元集合对应的信道信息。基于该高精度的信道信息能够确定下行发送波束(或称为下行模拟发送波束),这种方式相较于波束训练的方式获取下行发送波束的方式,能够减小资源开销,获取到高精度的信道信息,提高了获取的信道信息的准确度。
结合第一方面,在第一方面的某些实现方式中,该多个天线单元组对应的信道信息包括该多个天线单元组中至少一个天线单元组对应的相位加权信息,该相位加权信息用于该网络设备控制该至少一个天线单元组的移相器的相移。
根据上述方案,由终端设备基于获取到的天线单元组对应的信道信息,确定建议网络设备使用的相位加权信息,并通知网络设备,使得网络设备能够基于相位加权信息确定发送波束,相较于波束训练的方式中通过尝试发送每个波束在其中确定一种发送波束的方式,能够减小资源开销。
结合第一方面,在第一方面的某些实现方式中,该多个天线单元组属于一个天线端口,或者,该多个天线单元组中一个天线单元组属于一个天线端口。
结合第一方面,在第一方面的某些实现方式中,该多个天线单元组属于一个天线端口,该网络设备通过多个天线单元组向终端设备发送参考信号,包括:该网络设备通过该多个天线单元组在多个时间单元向该终端设备发送参考信号。
根据上述方案,网络设备采用时分复用的方式利用多个时间单元可以实现多个天线单元组分别发送参考信号。
结合第一方面,在第一方面的某些实现方式中,该网络设备通过该多个天线单元组在多个时间单元向该终端设备发送参考信号,包括:该网络设备在该多个时间单元中的一个时间单元通过该多个天线单元组中的一个天线单元组向该终端设备发送参考信号,其中,该多个时间单元中的不同时间单元发送参考信号的天线单元组不同。
结合第一方面,在第一方面的某些实现方式中,该网络设备通过该多个天线单元组在多个时间单元向该终端设备发送参考信号,包括:该网络设备在该多个时间单元中的每个时间单元通过该多个天线单元组向该终端设备发送参考信号,该多个天线单元组中不同天线单元组对应的相位加权序列相互正交,一个该相位加权序列中的一个元素为一个天线单元组在一个时间单元对应的相位加权值。
根据上述方案,网络设备采用时分复用结合码分复用的方式实现多个天线单元组分别发送参考信号,能够进一步减小时间开销和资源开销。
结合第一方面,在第一方面的某些实现方式中,该多个时间单元中的相邻两个时间单元之间的时间差小于阈值,或者该多个时间单元中的相邻两个时间单元在时间上连续。
结合第一方面,在第一方面的某些实现方式中,该多个天线单元组对应的信道信息包括多个天线端口对应的预编码矩阵索引PMI,该多个天线端口包括该多个天线单元组。
根据上述方案,终端设备根据该多个天线单元组发送的参考信号不仅能够确定相应的相位加权信息,还能够确定多个天线端口对应的PMI。能够降低波束训练过程与数字预编码信息的获取过程分开进行带来的资源开销和时间开销。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该网络设备向该终端设备发送配置信息,该配置信息用于指示该网络设备的至少一个天线端口包含的天线单元组。
根据上述方案,网络设备可以通过配置信息通知终端设备天线端口与天线单元组的对应关系,使得终端设备与网络设备达成共识。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该网络设备接收来自该终端设备的第二信息,该第二信息包括该多个天线单元组该的以下一项或多项信息:信号干扰噪声比SINR、参考信号接收功率RSRP、信道质量指示CQI和/或秩指示RI。
第二方面,提供了一种信道信息获取方法,该方法可以由终端设备或配置于(或用于)终端设备的模块(如芯片)执行,以下以该方法由终端设备执行为例进行说明。
该方法包括:终端设备接收来自网络设备的多个参考信号;该终端设备根据该多个参考信号,确定该网络设备的多个天线单元组对应的信道信息,该多个天线单元组的至少两个天线单元组属于一个天线端口;该终端设备向该网络设备发送第一信息,该第一信息用于指示该多个天线单元组对应的信道信息。
结合第二方面,在第二方面的某些实现方式中,该多个天线单元组对应的信道信息包 括多个天线端口对应的预编码矩阵索引PMI,该多个天线端口包括该多个天线单元组。
结合第二方面,在第二方面的某些实现方式中,该多个天线单元组属于一个天线端口,或者,该多个天线单元组中一个天线单元组属于一个天线端口。
结合第二方面,在第二方面的某些实现方式中,该多个天线单元组属于一个天线端口,该终端设备接收来自网络设备的多个参考信号,包括:该终端设备在多个时间单元接收来自该网络设备的该多个参考信号。
结合第二方面,在第二方面的某些实现方式中,该终端设备在多个时间单元接收来自网络设备的该多个参考信号,包括:该终端设备在多个时间单元中的一个时间单元接收来自网络设备通过多个天线单元组中的一个天线单元组发送的参考信号,其中,该多个时间单元中的不同时间单元接收到的参考信号来自该多个天线单元组的不同天线单元组。
结合第二方面,在第二方面的某些实现方式中,该终端设备在多个时间单元接收来自网络设备通过多个天线单元组发送的参考信号,包括:该终端设备在多个时间单元中的每个时间单元接收该多个参考信号。
结合第二方面,在第二方面的某些实现方式中,该终端设备根据该多个参考信号确定该网络设备的多个天线单元组对应的信道信息,包括:该终端设备根据该多个参考信号、该多个天线单元组的数量以及该多个天线单元组对应的加权序列,确定该多个天线单元组对应的信道信息。
结合第二方面,在第二方面的某些实现方式中,该多个天线单元组的信道信息包括该多个天线单元组对应的加权合并信息,该加权合并信息为该多个天线单元组对应的相位加权信息与该多个天线单元组对应的PMI合并后的加权信息,其中,该相位加权信息用于该网络设备控制该至少一个天线单元组的移相器的相移。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该终端设备接收来自该网络设备的配置信息,该配置信息用于指示该网络设备的至少一个天线端口包含的天线单元组。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该终端设备向该网络设备发送第二信息,该第二信息包括该多个天线单元组的以下一项或多项信息:信号干扰噪声比SINR、参考信号接收功率RSRP、信道质量指示CQI和/或秩指示RI。
第三方面,提供了一种信道信息获取方法,该方法可以由网络设备或配置于(或用于)网络设备的模块(如芯片)执行,以下以该方法由网络设备执行为例进行说明。
该方法包括:网络设备通过多个天线端口向终端设备发送参考信号,该多个天线端口发送参考信号的波束方向相同;网络设备接收来自该终端设备的第一信息,该第一信息用于指示该多个天线端口对应的相位加权信息,该相位加权信息用于控制天线端口对应的移相器的相移。
结合第三方面,在第三方面的某些实现方式中,该网络设备通过多个天线端口向终端设备发送参考信号,包括:该网络设备通过该多个天线端口在一个参考信号资源上发送参考信号。
结合第三方面,在第三方面的某些实现方式中,该网络设备通过多个天线端口向终端设备发送参考信号,包括:该网络设备通过该多个天线端口在多个参考信号资源上发送参考信号,该多个天线端口中的至少两个天线端口发送参考信号的参考信号资源不同。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该网络设备向该终端 设备发送配置信息,该配置信息用于指示在该多个参考信号资源上发送的参考信号的波束方向相同。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该网络设备接收来自该终端设备的第二信息,该第二信息包括该多个天线端口的以下一项或多项信息:信号干扰噪声比SINR、参考信号接收功率RSRP、信道质量指示CQI和/或秩指示RI。
第四方面,提供了一种信道信息获取方法,该方法可以由终端设备或配置于(或用于)终端设备的模块(如芯片)执行,以下以该方法由终端设备执行为例进行说明。
该方法包括:终端设备接收来自网络设备的多个参考信号;该终端设备根据该多个参考信号,确定该网络设备的多个天线端口对应的相位加权信息,该相位加权信息用于控制天线端口的移相器的相移;该终端设备向该网络设备发送第一信息,该第一信息用于指示该网络设备的多个天线端口对应的相位加权信息。
结合第四方面,在第四方面的某些实现方式中,该终端设备接收来自网络设备的多个参考信号,包括:该终端设备在一个参考信号资源上接收来自该网络设备的多个参考信号,该一个参考信号资源为多个天线端口对应的参考信号资源。
结合第四方面,在第四方面的某些实现方式中,该终端设备接收来自网络设备的多个参考信号,包括:该终端设备在多个参考信号资源上接收来自该网络设备的多个参考信号,该多个参考信号中的至少两个参考信号承载在不同的参考信号资源上。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:该终端设备接收来自该网络设备的配置信息,该配置信息用于指示在该多个参考信号资源上发送的参考信号的波束方向相同。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:该终端设备向该网络设备发送第二信息,该第二信息包括该多个天线端口的以下一项或多项信息:信号干扰噪声比SINR、参考信号接收功率RSRP、信道质量指示CQI和/或秩指示RI。
第五方面,提供了一种通信装置,包括:
收发单元,用于通过多个天线单元组向终端设备发送参考信号,该多个天线单元组中的至少两个天线单元组属于一个天线端口;该收发单元还用于接收来自该终端设备的第一信息,该第一信息用于指示该多个天线单元组对应的信道信息;处理单元,用于根据第一信息,确定该多个天线单元组对应的信道信息。
结合第五方面,在第五方面的某些实现方式中,该多个天线单元组对应的信道信息包括该多个天线单元组中至少一个天线单元组对应的相位加权信息,该相位加权信息用于该网络设备控制该至少一个天线单元组的移相器的相移。
结合第五方面,在第五方面的某些实现方式中,该多个天线单元组属于一个天线端口,或者,该多个天线单元组中一个天线单元组属于一个天线端口。
结合第五方面,在第五方面的某些实现方式中,该多个天线单元组属于一个天线端口,该收发单元具体用于通过该多个天线单元组在多个时间单元向该终端设备发送参考信号。
结合第五方面,在第五方面的某些实现方式中,该收发单元具体用于在该多个时间单元中的一个时间单元通过该多个天线单元组中的一个天线单元组向该终端设备发送参考信号,其中,该多个时间单元中的不同时间单元发送参考信号的天线单元组不同。
结合第五方面,在第五方面的某些实现方式中,该收发单元具体用于在该多个时间单元中的每个时间单元通过该多个天线单元组向该终端设备发送参考信号,该多个天线单元 组中不同天线单元组对应的相位加权序列相互正交,一个该相位加权序列中的一个元素为一个天线单元组在一个时间单元对应的相位加权值。
结合第五方面,在第五方面的某些实现方式中,该多个时间单元中的相邻两个时间单元之间的时间差小于阈值,或者该多个时间单元中的相邻两个时间单元在时间上连续。
结合第五方面,在第五方面的某些实现方式中,该多个天线单元组对应的信道信息包括多个天线端口对应的预编码矩阵索引PMI,该多个天线端口包括该多个天线单元组。
结合第五方面,在第五方面的某些实现方式中,该收发单元还用于向该终端设备发送配置信息,该配置信息用于指示该网络设备的至少一个天线端口包含的天线单元组。
结合第五方面,在第五方面的某些实现方式中,该收发单元还用于接收来自该终端设备的第二信息,该第二信息包括该多个天线单元组该的以下一项或多项信息:信号干扰噪声比SINR、参考信号接收功率RSRP、信道质量指示CQI和/或秩指示RI。
第六方面,提供了一种通信装置,包括:收发单元,用于接收来自网络设备的多个参考信号;处理单元,用于根据该多个参考信号,确定该网络设备的多个天线单元组对应的信道信息,该多个天线单元组的至少两个天线单元组属于一个天线端口;该收发单元还用于向该网络设备发送第一信息,该第一信息用于指示该多个天线单元组对应的信道信息。
结合第六方面,在第六方面的某些实现方式中,该多个天线单元组的信道信息包括多个天线端口对应的预编码矩阵索引PMI,该多个天线端口包括该多个天线单元组。
结合第六方面,在第六方面的某些实现方式中,该多个天线单元组属于一个天线端口,或者,该多个天线单元组中一个天线单元组属于一个天线端口。
结合第六方面,在第六方面的某些实现方式中,该多个天线单元组属于一个天线端口,该收发单元具体用于在多个时间单元接收来自该网络设备的该多个参考信号。
结合第六方面,在第六方面的某些实现方式中,该收发单元具体用于在多个时间单元中的一个时间单元接收来自网络设备通过多个天线单元组中的一个天线单元组发送的参考信号,其中,该多个时间单元中的不同时间单元接收到的参考信号来自该多个天线单元组的不同天线单元组。
结合第六方面,在第六方面的某些实现方式中,该收发单元具体用于在多个时间单元中的每个时间单元接收该多个参考信号。
结合第六方面,在第六方面的某些实现方式中,该处理单元具体用于根据该多个参考信号、该多个天线单元组的数量以及该多个天线单元组对应的加权序列,确定该多个天线单元组的信道信息。
结合第六方面,在第六方面的某些实现方式中,该多个天线单元组的信道信息包括天线端口的数字加权信息,该数字加权信息用于该网络设备对该多个天线单元组所属的天线端口的待发送信号进行数字信号处理。
结合第六方面,在第六方面的某些实现方式中,该多个天线单元组的信道信息包括该多个天线单元组对应的加权合并信息,该加权合并信息为该多个天线单元组对应的相位加权信息与该多个天线单元组对应的PMI合并后的加权信息,其中,该相位加权信息用于该网络设备控制该至少一个天线单元组的移相器的相移。
结合第六方面,在第六方面的某些实现方式中,该收发单元具体用于还用于接收来自该网络设备的配置信息,该配置信息用于指示该网络设备的至少一个天线端口包含的天线单元组。
结合第六方面,在第六方面的某些实现方式中,该收发单元还用于向该网络设备发送第二信息,该第二信息包括该多个天线单元组的以下一项或多项信息:信号干扰噪声比SINR、参考信号接收功率RSRP、信道质量指示CQI和/或秩指示RI。
第七方面,提供了一种通信装置,包括:收发单元,用于通过多个天线端口向终端设备发送参考信号,该多个天线端口发送该参考信号的波束方向相同;该收发单元还用于接收来自该终端设备的第一信息,该第一信息用于指示该多个天线端口对应的相位加权信息,该相位加权信息用于控制天线端口对应的移相器的相移;处理单元,用于根据该第一信息确定多个天线端口对应的相位加权信息。
结合第七方面,在第七方面的某些实现方式中,该收发单元具体用于通过该多个天线端口在一个参考信号资源上发送参考信号。
结合第七方面,在第七方面的某些实现方式中,该收发单元具体用于通过该多个天线端口在多个参考信号资源上发送参考信号,该多个天线端口中的至少两个天线端口发送参考信号的参考信号资源不同。
结合第七方面,在第七方面的某些实现方式中,该方法还包括:该收发单元具体用于向该终端设备发送配置信息,该配置信息用于指示在该多个参考信号资源上发送的参考信号的波束方向相同。
结合第七方面,在第七方面的某些实现方式中,该方法还包括:该网络设备接收来自该终端设备的第二信息,该第二信息包括该多个天线端口的以下一项或多项信息:信号干扰噪声比SINR、参考信号接收功率RSRP、信道质量指示CQI和/或秩指示RI。
第八方面,提供了一种通信装置,包括:收发单元,用于接收来自网络设备的多个参考信号;处理单元,用于根据该多个参考信号,确定该网络设备的多个天线端口对应的相位加权信息,该相位加权信息用于控制天线端口的移相器的相移;该收发单元还用于向该网络设备发送第一信息,该第一信息用于指示该网络设备的多个天线端口对应的相位加权信息。
结合第八方面,在第八方面的某些实现方式中,该收发单元具体用于在一个参考信号资源上接收来自该网络设备的多个参考信号,该一个参考信号资源为多个天线端口对应的参考信号资源。
结合第八方面,在第八方面的某些实现方式中,该收发单元具体用于在多个参考信号资源上接收来自该网络设备的多个参考信号,该多个参考信号中的至少两个参考信号承载在不同的参考信号资源上。
结合第八方面,在第八方面的某些实现方式中,该收发单元还用于接收来自该网络设备的配置信息,该配置信息用于指示在该多个参考信号资源上发送的参考信号的波束方向相同。
结合第八方面,在第八方面的某些实现方式中,该收发单元还用于向该网络设备发送第二信息,该第二信息包括该多个天线端口的以下一项或多项信息:信号干扰噪声比SINR、参考信号接收功率RSRP、信道质量指示CQI和/或秩指示RI。
第九方面,提供了一种通信装置,包括处理器。该处理器可以实现上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
可选地,该通信装置还包括存储器,该处理器与该存储器耦合,可用于执行存储器中的指令,以实现上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式 中的方法。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。本申请实施例中,通信接口可以是收发器、管脚、电路、总线、模块或其它类型的通信接口,不予限制。
在一种实现方式中,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置可以是芯片,该通信接口可以是输入/输出接口,该处理器可以是逻辑电路。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第十方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十一方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
第十二方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
第十三方面,提供了一种通信系统,包括前述的至少一个网络设备和至少一个终端设备。
附图说明
图1是适用于本申请实施例的通信系统的一个示意性架构;
图2是本申请提供的网络设备的多个天线端口的示意图;
图3是本申请提供的网络设备的天线阵列包括4个子阵的示意图;
图4是本申请提供的网络设备的天线阵列包括2个子阵的示意图;
图5是本申请提供的波束训练过程的示意图;
图6是本申请提供的信道信息获取方法的一个示意性流程图;
图7是本申请实施例提供的天线端口中的天线单元分组的示意图;
图8是本申请实施例提供的每个天线端口为一个天线单元组地示意图;
图9、图9a是本申请实施例提供的每个天线端口分为两个天线单元组地示意图;
图10、图10a、图10b是本申请实施例提供的每个天线端口分为四个天线单元组地示意图;
图11是本申请实施例提供的天线端口与虚拟端口对应关系的示意图;
图12是本申请实施例提供的信道信息获取方法的一个示意图;
图13是本申请实施例提供的信道信息获取方法的另一个示意图;
图14是本申请实施例提供的信道信息获取方法的又一个示意图;
图15是本申请实施例提供的信道信息获取方法的另一个示意性流程图;
图16是本申请实施例提供的采用不同的天线阵列在不同时刻发送N个参考信号的示意图;
图17是本申请实施例提供的采用不同的天线阵列在不同时刻发送M个参考信号的示意图;
图18是本申请实施例提供的通信装置的示意性框图;
图19是本申请实施例提供的终端设备的结构示意图;
图20是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)通信系统、未来的通信系统(如第六代(6th generation,6G)通信系统)、或者多种通信系统融合的系统等,本申请实施例不做限定。其中,5G还可以称为新无线(new radio,NR)。
图1是适用于本申请实施例的通信系统的一个示意图。
如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110。该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110和终端设备120可以通过无线链路进行通信。
在本申请实施例中,网络设备和终端设备间的通信包括:网络设备向终端设备发送下行信号,和/或终端设备向网络设备发送上行信号。其中,信号还可以被替换为信息或数据等。
在本申请实施例中,网络设备可以具有模拟波束成型(analog beamforming,ABF)或混合波束成型(hybrid beamforming,HBF)的架构或功能。但本申请不限于此。
如图2所示,网络设备可以包括多个天线端口,天线端口还可以称为端口、数字端口、CSI-RS端口或CSI-RS天线端口等,本申请对此不做限定。网络设备的每个天线端口对应一个数字处理通道,用于输出经过该数字处理通道处理后的信号流。一个天线端口对应的数字处理通道与多个天线阵元相连接,可以理解为一个天线端口包括该天线端口对应的数据处理通道连接的多个天线阵元。每个天线阵元可以连接一个相移器(或着相移器也可以称为移相器),不同的天线端口对应的数字处理通道可连接不同或相同的阵元集合。在具体实施中,不同的天线端口对应的数字处理通道可连接不同的天线子阵(一个子阵包括至少一个天线阵元)和/或不同的天线极化方向。天线子阵为网络设备的天线阵列的一部分。网络设备的天线阵列可分为多个子阵,每个子阵连接两个天线端口对应的数字处理通道,对应于不同的天线极化方向。
图3为网络设备的天线阵列包括4个子阵的示意图,如图3所示,每个子阵与两个天线端口相连接,具体地,可以是每个子阵的第一极化方向和第二极化方向分别连接一个天线端口,网络设备可以包括8个天线端口,每个天线端口用于输出一个数字处理通道输出的信号流。图4为网络设备的天线阵列包括2个子阵的示意图,如图4所示,每个子阵与两个天线端口相连接,具体地,可以是每个子阵的第一极化方向和第二极化方向分别连接 一个天线端口,网络设备可以包括4个天线端口,每个天线端口用于输出一个数字处理通道输出的信号流。
本申请实施例提供的技术方案可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:eMBB通信、URLLC、机器类型通信(machine type communication,MTC)、mMTC、设备到设备(device-to-device,D2D)通信、车辆外联(vehicle to everything,V2X)通信、车辆到车辆(vehicle to vehicle,V2V)通信、车到互联网(vehicle to network,V2N)、车到基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)、和物联网(internet of things,IoT)等。可选地,mMTC可以包括以下通信中的一种或多种:工业无线传感器网络(industrial wireless sens or network,IWSN)的通信、视频监控(video surveillance)场景中的通信、和可穿戴设备的通信等。
本申请实施例涉及到的终端设备还可以称为终端。终端可以是一种具有无线收发功能的设备。终端可以被部署在陆地上,包括室内、室外、手持、和/或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE)。UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、和/或智慧家庭(smart home)中的无线终端等等。
本申请实施例涉及到的网络设备包括基站(base station,BS),可以是一种部署在无线接入网中能够和终端设备进行无线通信的设备。基站可能有多种形式,比如宏基站、微基站、中继站或接入点等。本申请实施例涉及到的基站可以是5G系统中的基站、LTE系统中的基站或其它系统中的基站,不做限制。其中,5G系统中的基站还可以称为发送接收点(transmission reception point,TRP)或下一代节点B(generation Node B,gNB或gNodeB)。其中,基站可以是一体化的基站,也可以是分离成多个网元的基站,不予限制。例如,基站是集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)分离的基站,即基站包括CU和DU。
在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。为了便于描述本申请实施例的技术方案,在本申请实施例中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
在本申请实施例中,至少一个(种)还可以描述为一个(种)或多个(种),多个(种)可以是两个(种)、三个(种)、四个(种)或者更多个(种),本申请不做限制。
为了更好地理解本申请实施例,下面对本文中涉及到的术语做简单说明。
一、波束(beam):波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以认为是不同的空间资源。通信设备可以通过不同的波束发送相同的信息或者不同的信息。可选地,通信设备可以将具有相同或者相似特征的多个波束视为是一个波束。
一个波束可以由一个或多个天线端口实现,用于通信设备传输数据信道、控制信道和探测信号等。例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指天线阵列对无线信号在空间不同方向上进行加强或削弱接收的分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。在目前的NR协议中,下行波束可以通过天线端口(antenna port)准共址(quasi co-located,QCL)关系体现,具体地,两个相同波束的信号具有关于空域接收参数(spatial Rx parameter)的QCL关系,即协议中的QCL-Type D:{Spatial Rx parameter};上行波束可以通过空间关系信息(spatial relation information)体现。波束可以通过各种信号的标识信息表示,例如CSI-RS的资源(identifier,ID),同步信号(synchronization signal,SS)/物理广播信道(physical broadcast channel,PBCH)块SSB的时域索引,探测信号(sounding reference signal,SRS)的资源ID,跟踪信号(tracking reference signal,TRS)的资源ID等。
二、波束管理
终端设备和基站可通过信道状态信息参考信号(channel state information-reference signal,CSI-RS)进行波束管理,实现收发波束对准。波束管理包括波束训练,下面以下行为例,对基于CSI-RS的波束训练过程进行说明。
基站可以通过波束训练确定合适的下行发送波束、基站可以为终端设备配置N个CSI-RS资源,在波束训练过程中基站可以采用不同的波束在该N个CSI-RS资源发送CSI-RS。终端设备对这N个CSI-RS资源进行测量,并获取测量结果(例如,层1参考信号接收功率(layer 1-reference signal receiving power,L1-RSRP)或层1信号干扰噪声比(layer 1-signal to interference plus noise ratio,L1-SINR)。根据测量结果,终端可上报多个CSI-RS资源标识以及对应的(reference signal receiving power,RSRP),使得基站可以确定恰当的下行发送波束和/或对应的上行接收波束。
终端设备需要通过波束扫描确定最优收波束。示例性地,终端可采用不同的接收波束接收特定CSI-RS资源,从而确定对应于基站特定发送波束的最优收波束。一般情况下,终端设备自行选择并维护其接收波束。
基站与终端设备在进行下行数据传输之前,执行上述波束训练流程,确定下行发送波束和/或上行接收波束。基站确定下行发送波束,即是确定天线端口的阵元对应的多个移相器的模拟权值。上述波束训练流程训练的波束可以称为模拟波束。
当基站的数字端口数目大于1时,不同数字端口对应的多个移相器可选择相同或不同的模拟权值。
图5为波束训练过程的一个简单示例。基站采用32个波束发送CSI-RS,而终端设备采用4个波束进行接收来自基站的CSI-RS,终端设备在进行了128(32乘以4)次测量后,可以确定最优的收发波束对,即基站的最优发送波束和终端设备的最优接收波束。
三、信道状态信息(channel state information,CSI)获取流程
以基于CSI-RS的下行CSI获取流程为例。基站与终端设备完成波束训练过程后,基站获取到下行发送波束信息,终端设备获取到下行接收波束信息。基站可以采用波束训练过程得到的发送波束发送CSI-RS。应理解,该CSI-RS用于获取CSI(CSI-RS for CSI acquisition)。相应地,终端设备采用波束训练过程得到的接收波束结接收该CSI-RS,基于接收到的该CSI-RS获取相应的CSI,并反馈至基站。终端设备向基站反馈的CSI包括可以包括但不限于CQI、RI、PMI中的一个项或多项。
也就是说,基站通过上述波束训练过程,确定下行发送波束,获取该下行发送波束对应的模拟权值后,需要进一步确定数字端口的预编码方案。则基站可以通过CSI获取流程,获取CSI,确定数字端口的预编码方案。当基站具有N个数字通道时,典型的预编码确定过程如下(假设基于CSI-RS的信道测量与反馈机制):
-基站通过N个天线端口发送CSI-RS,该N个天线端口对应于N个数字处理通道。其中,每个天线端口或数字处理通道对应的模拟波束可由上述波束管理流程确定;
-终端设备基于接收到的来自基站的CSI-RS测量下行信道,并获取下行传输的CSI信息。其中,CSI信息可以包括但不限于PMI信息,RI信息,CQI信息等;
-终端设备将CSI信息上报至基站;
-基站根据该CSI信息,确定预编码方案,例如,确定发送数据的预编码矩阵,将v个流的数据映射至N个数字处理通道,并经由天线端口从天线阵列发送出去。
综上,目前波束管理流程与CSI获取流程独立进行,两个过程均需要发送下行CSI-RS,且CSI-RS资源开销较大,本申请提出对天线端口的天线单元(如天线阵元)进行分组,以天线单元组为粒度传输参考信号,使得网络设备能够在较小参考信号资源开销的情况下,获取到高精度的信道信息,即能够获取到更小粒度的天线单元集合对应的信道信息。基于该高精度的信道信息能够确定下行发送波束(或称为下行模拟发送波束),这种方式相较于波束训练的方式获取下行发送波束的方式,能够减小资源开销,获取到高精度的信道信息。
下面结合附图对本申请实施例提供的信道信息获取方法进行说明。
图6为本申请实施例提供的信道信息获取方法600的一个示意性流程图。该信道测量方法可以包括但不限于以下步骤:
S601,网络设备通过多个天线单元组向终端设备发送参考信号,该多个天线单元组中的至少两个天线单元组属于一个天线端口。
网络设备可以对网络设备的一个天线端口包括的多个天线单元进行分组,网络设备通过天线端口分组后的多个天线单元组发送参考信号,可以使终端设备获取到更精确的信道信息。
例如图7,网络设备包括2个天线端口,终端设备包括2个接收天线。网络设备可以通过2个天线端口向终端设备发送参考信号,终端设备可以基于接收到的参考信号,获取到2×2的信道矩阵。然而,若对网络设备的每个天线端口包含的天线单元进行分组,如图7中的(b)所示,网络设备的每个天线端口包含的天线单元被分为两个天线单元组。网络设备通过4个天线单元组向终端设备发送参考信号,终端设备可以基于接收到的参考信号,获取2×4的信道矩阵。能够实现终端设备获取到更高精度的信道信息。
其中,天线单元组包括至少一个天线单元,天线单元可以是天线阵元,天线单元组可以称为虚拟端口,但本申请不限于此。或者说,每个虚拟端口对应于一个阵列分量或子阵 分量,表示每个虚拟端口包括了一个阵列或子阵的部分天线阵元。
可选地,一个天线端口可以包含一个天线单元组,即一个天线端口包含的天线阵元为一个天线单元组。
例如,图8所示的网络设备的包含32个阵元的天线阵列,两个极化方向分别对应于两个天线端口,即第一极化方向对应一个天线端口,第二极化方向对应另一个天线端口,网络设备可以通知终端设备一个天线端口包含的天线阵元为一个天线单元组,即该天线阵列包括如图所示的天线单元组1、组2,但不申请不限于此。
可选地,一个天线端口可以包括两个天线单元组。
例如,图9所示的网络设备的包含32个阵元的天线阵列,每个极化方向对应一个天线端口,其中,如图9所示一个天线端口包含的纵向两列天线单元可以划分为一个天线单元组,即同一极化方向的纵向两列可以划分为一个天线单元组,则每个天线端口包括2个天线单元组,如第一极化方向对应的一个天线端口包括天线单元组1、组3,第二极化方向对应的一个天线端口包括天线单元组2、组4。
再例如图9a所示,包含32个阵元的天线阵列,一个天线端口包含的横向两列天线单元可以划分为一个天线单元组,即同一极化方向的纵向两列可以划分为一个天线单元组,则每个天线端口包括2个天线单元组,如第一极化方向对应的一个天线端口包括天线单元组1、组3,第二极化方向对应的一个天线端口包括天线单元组2、组4。
可选地,一个天线端口可以包括四个天线单元组。
例如,网络设备的包含32个阵元的天线阵列,两个极化方向对应两个天线端口,可以如图10所示以天线单元的列为单位进行天线单元分组,其中,每一列中的一个极化方向的天线单元为该极化方向对应的天线端口包含的一个天线单元组。或者可以如图10a所示以天线单元的列为单位进行天线单元分组,其中,每一行中的一个极化方向的天线单元为该极化方向对应的天线端口包含的一个天线单元组。再或者,可以如图10b所示,两行与两列天线单元相交的同一极化方向的天线单元为一组。需要说明的是,图10、图10a、图10b中虚线框中包含两个天线单元组,其中一个极化方向的4个天线单元为一组。
可选地,网络设备可以向终端设备发送配置信息,该配置信息用于指示网络设备的至少一个天线端口包含的天线单元组。或者说,该配置信息用于指示天线端口与天线单元组的对应关系,或者说,该配置信息用于指示至少一个天线端口包含的天线单元的分组信息。
相应地,终端设备接收来自网络设备的该配置信息,并基于该配置信息确定网络设备的天线端口与天线单元组的对应关系。
可选地,终端设备可以根据参考信号资源对应的端口编号,确定天线端口与天线单元组的对应关系。
例如,参考信号为CSI-RS,网络设备包括4个天线端口,网络设备通过配置信息为终端设备配置一个8端口对应的CSI-RS资源,终端设备确定该CSI-RS资源对应的8个端口为虚拟端口(即天线单元组),每个天线端口包括2个虚拟端口,且编号依次对应,如图11所示,终端设备可以确定网络设备的4个天线端口中,天线端口1包括虚拟端口1、2;天线端口2包括虚拟端口3、4;天线端口3包括虚拟端口5、6;天线端口4包括虚拟端口7、8。但本申请不限于此。
再例如,网络设备配置CSI-RS资源的端口从3000开始编号,示例性的,当一个CSI-RS资源包括4个天线端口时,该CSI-RS资源的天线端口的编号可以分别为{3000,3001, 3002,3003}。网络设备可以配置该CSI-RS资源的每个天线端口包括的天线单元组的编号(即虚拟端口的编号)如表1所示,天线端口3000包括的两个天线单元组的编号分别为3000-1、3000-2,天线端口3001包括的两个天线单元组编号分别为3001-1、3001-2,天线端口3002包括的两个天线单元组编号分别为3002-1、3002-2,天线端口3003包括的两个天线单元组编号分别为3003-1、3003-2,但本申请不限于此。
表1
Figure PCTCN2022104806-appb-000001
或者可以如表2所示,天线端口3000包括的两个天线单元组的编号分别为300001、300002,天线端口3001包括的两个天线单元组编号分别为300101、300102,天线端口3002包括的两个天线单元组编号分别为300201、300202,天线端口3003包括的两个天线单元组编号分别为300301、300302。
应理解,上述天线单元组的编号方式仅为示意,还可以采用其他方式标识天线端口包含的天线单元组,本申请对此不做限定。
表2
Figure PCTCN2022104806-appb-000002
下面介绍如何网络设备如何通过多个天线单元组向终端设备发送参考信号,包括但不限于以下实施方式。
需要说明的是,在以下实施方式中,以多个天线单元组属于一个天线端口为例,对网络设备通过多个天线单元组发送参考信号的实施方式进行说明。网络设备包括多个天线端口时,每个天线端口可以采用以下一种方式向终端设备发送参考信号。
网络设备可以利用多个时间单元实现通过一个天线端口的多个天线单元组向终端设备发送参考信号。也就是说,网络设备通过一个天线端口的多个天线单元组在多个时间单元向所述终端设备发送参考信号。
一种实施方式中,网络设备在多个时间单元中的一个时间单元通过该多个天线单元组中的一个天线单元组向该终端设备发送参考信号,其中,该多个时间单元中的不同时间单元发送参考信号的天线单元组不同。
例如图12所示,网络设备的一个天线端口包括天线单元组1和天线单元组2两个天 线单元组。网络设备可以在第一时间单元中通过天线单元组1向终端设备发送参考信号,比如,网络设备可以断开天线单元组2的开关,连通天线单元组1的开关,通过天线单元组1发送参考信号,但本申请不限于此。网络设备可以在第二时间单元中通过天线单元组2向终端设备发送参考信号,比如,网络设备可以断开天线单元组1的开关,连通天线单元组2的开关,通过天线单元组2发送参考信号,但本申请不限于此。相应地,终端设备可以在第一时间单元和第二时间单元接收来自网络设备的参考信号。终端设备根据接收到的两个参考信号,可以分别确定网络设备的天线单元组1至终端设备之间的信道对应的信道信息,以及网络设备的天线单元组2至终端设备之间的信道对应的信道信息。
该示例中网络设备通过一个天线端口的多个天线单元组发送参考信号的方式可以称为时分复用(time-division multiplexing,TDM)。
作为示例非限定,本申请中信道信息可以是信道状态信息CSI。
再例如图13所示,网络设备的一个天线端口包括天线单元组1和天线单元组2两个天线单元组。网络设备可以在第一时间单元中通过天线单元组1向该终端设备发送参考信号,并通过天线单元组2向与其他方向发送参考信号。比如,可以天线单元组1、2发送参考信号的方向不同,可以形成空间正交,使得该终端设备在第一时间单元仅能够接收到天线端口组1发送的参考信号,无法接收到天线单元组2发送的参考信号。网络设备可以在第二时间单元中通过天线单元组2向该终端设备发送参考信号,并通过天线单元组2向与其他方向发送参考信号。使得该终端设备在第二时间单元仅能够接收到天线端口组2发送的参考信号,无法接收到天线单元组1发送的参考信号。
该示例中网络设备通过一个天线端口的多个天线单元组发送参考信号的方式可以称为时分复用(time-division multiplexing,TDM)方式,或时分(time-division,TD)与空分(spatial-division,SD)组合的复用方式。
另一种实施方式中,网络设备在多个时间单元中的每个时间单元通过该多个天线单元组向终端设备发送参考信号,该多个天线单元组中不同天线单元组对应的正交加权序列相互正交,一个正交加权序列中的一个元素为一个天线单元组在一个时间单元采用的相位加权系数。
该方式可以称为时分复用与码分复用(code-division mutiplexing,CDM)组合的方式,即TD-CDM方式。例如图14所示,网络设备的一个天线端口包括天线单元组1和天线单元组2两个天线单元组。网络设备在第一时间单元通过天线单元组1和天线单元组2向终端设备发送参考信号,其中,在第一时间单元天线单元组1对应的相位加权序列为W 1=[w 11,w 12,…] T,天线单元组2对应的相位加权序列为W 2=[w 21,w 22,…] T,天线单元组1在对应的相位加权序列的维度(即相位加权序列包含的元素个数)与天线单元组包含的阵元的个数相等。
假设该天线单元组1和天线单元组2所属的天线端口发送的参考信号表示为x[1],则天线单元组1和天线单元组2在第一时间单元的发送信号可以分别记为W1·x[1]和W2·x[1]。若终端设备通过单天线或单通道接收来自网络设备的信号,则天线端口组1和天线端口组2至终端设备的信道可以分别表示为h 1=[h 11,h 12,…]和h 2=[h 21,h 22,…]。天线单元组1和天线单元组2至终端设备的接收信号分别为:y1[1]=h 1·W 1·x和y2[2]=h 2·W 2·x。终端设备接收到的信号是来自天线单元组1和天线单元组2的两个接收信号的叠加,如式(1)。
y[1]=y1[1]+y2[1]=h 1·W 1·x[1]+h 2·W 2·x[1]   (1)
网络设备在第二时间单元通过天线单元组1和天线单元组2向终端设备发送参考信号x[2],其中,在第二时间单元天线单元组1对应的相位加权序列为W 1,天线单元组2对应的相位加权序列为-W 2,终端设备接收到的信号是来自天线单元组1和天线单元组2的两个接收信号的叠加:
y[2]=y1[2]+y2[2]=h 1·W 1·x[2]-h 2·W 2·x[2]   (2)
其中,x[1]和x[2]均为已知的参考信号,x[1]和x[2]可以相同或不相同。结合上述式(1)、(2)消去x,可以得到初始信道估计。
h[1]=h 1·W 1+h 2·W 2
h[2]=h 1·W 1-h 2·W 2
终端设备解时域CDM,可以估计到信道h1·w1和h1·w2如下。
h[1]+h[2]=2·h 1·W 1
h[1]-h[2]=2·h 2·W 2
由于终端设备需要估计的是天线单元组1和天线单元组2至接收天线的波束成型后信道h 1·W 1和h 2·W 2,因此,终端设备不需要单独估计h 1和h 2。终端设备可以将W 1和W 2作为信道测量得到的信道信息的一部分。则终端设备可认为网络设备在第一时间单元和第二时间单元的发送信号为:
z[1]=x[1]+x[1]
z[2]=x[2]-x[2]
由上述推理可知,在两个时间单元天线单元组1的发送参考信号为[x[1],x[2]],天线单元组2的发送参考信号为[x[1],-x[2]],因此,天线单元组1对应的正交加权序列为[1,1],天线单元组2对应的正交加权序列为[1,-1]。天线单元组1对应的正交加权序列与天线单元组2对应的正交加权序列相互正交。
天线单元组对应的正交加权序列可以称为CDM序列或正交覆盖码(orthogonal over code,OCC)。但本申请不限于此。
上述示例中,以一个天线端口包括的天线单元组的数目为2,实现不同天线单元组采用OCC序列实现正交化进行了说明,即正交加权序列组(或正交码)为[1,1]与[1,-1]。
上述方案可以扩展至更多天线单元组,当一个天线端口包括N个天线单元组时,网络设备在可以在N个时间单元通过该N个天线单元组发送参考信号,则第n时间单元的发送信号可以记为:
z[n]=a 1[n]·x[n]+…+a k[n]·x[n]+…+a N[n]·x[n],
则第k天线单元组的正交加权序列的第n个元素可以记为a k[n]。
例如,一个天线端口包括4个天线单元组,则该4个天线单元组对应的正交序列组(或称为正交码)可以分别为[1,1,1,1]、[1,-1,1,-1],[1,1,-1,-1]和[1,-1,-1,1]。但本申请不限于此,不同天线单元组之间也可以采用其它的序列实现正交化,例如,可以采用离散傅里叶变换(discrete fourier transform,DFT)序列,则一个天线端口包括N个天线单元组时,第n个天线单元组的正交序列的第k项可以为:exp(-j*2*pi*k*n/N)或exp(j*2*pi*k*n/N),k=0,..,N-1,n=0,..,N-1。
可选地,该多个时间单元中的相邻两个时间单元之间的时间差小于阈值,或者该多个时间单元中的相邻两个时间单元在时间上连续。作为示例非限定,时间单元可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,符号或符号组。
S602,网络设备接收来自终端设备的第一信息,该第一信息用于指示该多个天线单元组对应的信道信息。
终端设备在S601中获取到多个天线单元组对应的信道信息后,可以向网络设备发送第一信息,以向网络设备反馈该多个天线单元组对应的信道信息。
可选地,该多个天线单元组对应的信道信息包括该多个天线单元组中至少一个天线单元组对应的相位加权信息,该相位加权信息用于该网络设备控制该至少一个天线单元组的移相器的相移。
对于网络设备的一个天线端口包括的M个天线单元组,终端设备接收到来自该M个天线单元组的参考信号后,可以上报该M个天线单元组对应的M维相位加权序列。若网络设备包括N个天线端口,且每个天线端口包括M个天线单元组,终端设备在接收到来自该N个天线端口的N·M个天线单元组的参考信号后,终端设备可以上报该N个天线端口中的每个天线端口对应的M维相位加权序列。
终端设备基于参考信号,可以确定第n个数字端口的M个天线单元组对应的M维相位加权序列,该M维相位加权序列可以记为p n:
Figure PCTCN2022104806-appb-000003
可选地,该相位加权序列p n中的一个元素为一个天线单元组对应的相位加权值,一个相位加权值为宽带或全带宽对应的相位加权值,也就是说,终端设备向网络设备上报相位加权值的频域粒度为宽带或全带宽,即终端设备向网络设备上报一定频域范围(该一定频域范围可以称为宽带或全带宽)对应的唯一的相位加权值,该一定频域范围可以是该相位加权值对应的CSI-RS占用的带宽,或者带宽部分(bandwidth part,BWP)的带宽,或者载波带宽。
可选地,该第一信息中包括的至少一个天线单元组对应的相位加权信息可以包括一个天线端口对应的该M维相位加权序列,或者,可以包括该M维相位加权序列对应的标识信息。
例如,协议可以规定候选集合,该候选集合中包括多个候选相位加权序列或相位加权值。终端设备可以根据该M维相位加权序列,在候选集合中确定与该M维相位加权序列对应的相位加权序列或相位加权值,通过第一信息包括该M维相位加权序列对应的相位加权序列的标识信息或相位加权值的标识信息通知网络设备。网络设备接收到该第一信息后,可以基于标识信息在候选集合中确定该天线端口对应的M维相位加权序列。
可选地,该多个天线单元组的信道信息包括多个天线端口对应的预编码矩阵索引PMI,该多个天线端口包括该多个天线单元组。
终端设备基于来自网络设备的N个天线端口的参考信号(可以是来自该N个天线端口的多个天线单元组的参考信号),可以确定该N个天线端口对应的信道可以支持v个数据流的传输。终端设备可以向网络设备上报N·v维的预编码矩阵,或者可以称为数字加权信息,用于网络设备对数据流进行数字信号处理。终端设备基于信道信息确定的预编码矩阵可以记作q:
Figure PCTCN2022104806-appb-000004
终端设备确定该多个天线单元组的信道信息包括该多个天线端口对应的预编码矩阵q后,可以在预编码矩阵集合中确定该预编码矩阵的PMI。该第一信息包括该PMI。
一种实施方式中,终端设备可以分别上报相位加权信息和PMI。该相位加权信息可以承载在同一消息中,也可以承载在不同消息中。
或者说,终端设备向网络设备上报两级权值信息,其中一级为相位加权信息,另一级数字加权信息。但本申请对此不做限定。
另一种实施方式中,终端设备可以合并相位加权序列和数字加权信息,向网络设备反馈合并权值信息,该合并权值信息可以包括每个天线单元组的合并权值。该合并权值信息可以表示为:
Figure PCTCN2022104806-appb-000005
终端设备还可以向该网络设备发送第二信息,该第二信息包括该多个天线端口对应的以下一项或多项信息:
信号干扰噪声比(signal to interference plus noise ratio,SINR)、参考信号接收功率RSRP、层1信号干扰噪声比L1-SINR、层1参考信号接收功率L1-RSRP、信道质量指示(channel quality indication,CQI)和/或秩指示(rank indicator,RI)。
例如,终端设备还可以基于测量来自该多个天线端口的参考信号得到上述信息中的一项或多项,并反馈给网络设备,以便网络设备参考上述信息进行数据传输。
在一种可能的实现方式中,该第一信息和该第二信息相关联,或者说该第二信息基于上述第一信息。
相应地,网络设备可以接收来自终端设备的第二信息。
可选地,上述第一信息和第二信息均可以作为CSI由终端设备发送给网络设备。该第一信息和第二信息可以承载在同一CSI报告中,也可以承载在不同CSI报告中,本申请对此不做限定。
同一CSI报告可以是承载在一个上行信道(如物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH))的CSI报告。不同CSI报告可以是承载在不同上行信道或不同时间单元中的上行信道的CSI报告。但本申请不限于此。
根据上述方案,网络设备可以通过天线端口的多个天线单元组向终端设备发送参考信号,使得终端设备能够获取更高精度的信道信息,提供信道信息反馈的准确度。以及终端设备可以基于获取到的更高精度的信道信息,确定合适的相位加权信息,反馈给网络设备,网络设备可以基于相位加权信息,控制移相器的相位,确定下行发送波束。本申请提供的方案,能够避免采用大量的资源进行波束训练以确定发送波束,减小资源开销,提高了资源利用率。
实施例二
图15是本申请实施例二提供的信道信息获取方法的一个示意性流程图。
S1501,网络设备通过N个天线端口向终端设备发送参考信号,该多个天线端口发送的参考信号的波束方向相同。
相应地,终端设备接收来自网络设备的多个参考信号。
可选地,该N个天线端口可以采用频分复用(frequency division multiplexing,FDM)方式、TDM方式、TD-CDM方式或频域码分复用(FD-CDM)方式中的一种方式向终端设备发送参考信号。
在一种可能的实现中,这N个天线端口可以对应一个CSI-RS资源。
这N个天线端口可以对应一个CSI-RS资源可以理解为网络设备在该一个CSI-RS资源上通过对应的该N个天线端口发送CSI-RS。
在另一种可能的实现中,这N个天线端口对应多个CSI-RS资源。
也就是说,网络设备通过该N个天线端口中的至少一个天线端口在该多个CSI-RS资源中的至少一个资源上发送CSI-RS。或者说网络设备在该多个CSI-RS资源上发送CSI-RS共利用了N个天线端口。
例如,该N个天线端口对应N个CSI-RS资源,该N个CSI-RS资源中的每个CSI-RS资源对应一个天线端口。其中,网络设备可以通过该N个天线端口中的一个天线端口在该N个CSI-RS资源中的一个CSI-RS资源上发送参考信号。
网络设备配置终端设备对该N个天线端口对应的CSI-RS资源进行测量,当N个天线端口对应不同的CSI-RS资源时,网络设备可以指示这多个CSI-RS资源具有相同的发送波束方向。
示例性地,网络设备可以指示这多个CSI-RS资源具有相同的QCL type D关系,或者,这多个CSI-RS资源属于一个资源集合,并且网络设备指示该CSI-RS集合内的CSI-RS资源具有重复关系,例如,该资源集合的配置信息中的配置参数repetition被设置为“on”,即资源重复被配置为开启状态,表示该资源集合中的CSI-RS资源的发送波束的波束方向相同。
S1502,网络设备接收来自终端设备的第一信息,该第一信息用于指示网络设备的多个天线端口对应的相位加权信息,该相位加权信息用于控制天线端口的移相器的相移。
终端设备在S1502中根据接收到的多个参考信号,确定网络设备的多个天线端口对应的相位加权信息,并向网络设备发送第一信息,该第一信息用于指示该多个天线端口对应的相位加权信息。
下面分别对网络设备的N个天线端口对应于N个CSI-RS资源、N个天线端口对应于M个CSI-RS资源这两种情况进行说明。
情况1,N个天线端口对应于N个CSI-RS资源。
该N个CSI-RS资源分别为N个时间单元中的资源,网络设备在该N个时间单元通过N个天线端口在该N个CSI-RS资源上发送CSI-RS,相应地,终端设备在该N个时间单元依次测量该N个CSI-RS资源,得到该N个CSI-RS资源中每个CSI-RS资源对应的天线端口的信道信息,即得到该N个天线端口对应的信道信息。
可选地,该N个时间单元可以是N个连续的时域符号。例如,N个连续的OFDM符号。
终端设备可以根据测量得到的N个天线端口对应的信道信息,确定该N个天线端口中每个天线端口对应的相位加权值,并得到这N个天线端口对应的相位加权序列,可记为:
Figure PCTCN2022104806-appb-000006
其中,该相位加权序列包括N个元素,其中,一个元素为终端设备确定的一个天线端口对应的相位权值,该相位加权序列也可以称为该N个天线端口对应的N维合并权值序列。
终端设备向网络设备发送的该第一信息中包括该N个天线端口对应的相位加权序列,或者,终端设备根据该N个天线端口对应的相位加权序列,在预定义的相位加权序列候选集合中确定相应的标识信息,该第一信息包括该标识信息。但本申请不限于此。
在具体实施中,网络设备可以采用不同的天线阵列(或者称为天线面阵)在不同时刻在该N个参考资源上向终端设备发送N个参考信号,并且发送该N个参考信号的波束具有相同或接近的方向(或称为指向)。
例如图16所示,网络设备可以包括两个天线阵列,一个天线阵列对应一个天线端口,网络设备在第一时间单元通过一个天线阵列在参考信号资源1向终端设备发送参考信号1,即该天线阵列的两个极化方向均发送该参考信号1,该两个极化方向形成一个波束发送该参考信号;在第二时间单元通过另一个天线阵列在参考信号资源2向终端设备发送参考信号2,该网络设备发送参考信号1的波束的方向与发送参考信号2的波束的方向相同或相近。可选地,网络设备可以采用展宽波束(非DFT波束)发送参考信号。
可选地,终端设备可以通过该N个天线端口在该多个时间单元进行接收波束训练。
由于网络设备采用相同的波束方向发送多个CSI-RS,终端设备可通过这N个CSI-RS的天线端口在该多个时间单元进行自身的接收波束训练,以确定终端设备与网络设备进行通信的接收波束,能够减小时间开销以及资源开销。
情况2,N个天线端口对应于M个CSI-RS资源。
以N=2M为例,即M个CSI-RS资源中的每个CSI-RS资源包含第一天线端口和第二天线端口两个天线端口,网络设备通过M个时间单元发送该M个CSI-RS资源,在该M个时间单元中的一个时间单元通过一个CSI-RS资源的两个天线端口向终端设备发送CSI-RS。
终端设备确定M个第一天线端口和M个第二天线端口对应的相位加权序列,或者称为合并权值序列,并上报至网络设备。M个天线端口对应的相位加权序列可以记作:
Figure PCTCN2022104806-appb-000007
其中,i=0表示M个第一天线端口对应的相位加权序列,i=1表示M个第二天线端口对应的相位加权序列。
在一种可能的实现方式中,终端设备可以向网络设备分别上报的M个第一天线端口对应的相位加权序列和M个第二天线端口对应的相位加权序列,或者,终端设备可以向网络设备上报合并加权序列,该合并加权序列为M个第一天线端口对应的相位加权序列和M个第二天线端口对应的相位加权序列合并后的序列。
终端设备向网络设备发送的该第一信息中包括该M个第一天线端口对应的相位加权序列和该M个第二天线端口对应的相位加权序列,或者,该第一信息包括该合并加权序列,再或者,该第一信息包括标识信息,该标识信息用于标识M个第一天线端口对应的相位加权序列和M个第二天线端口对应的相位加权序列或用于标识合并加权序列。但本申请不限于此。
在具体实施中,网络设备可以采用不同的天线阵列(或者称为天线面阵)在不同时刻在该M个参考信号资源上发送M个参考信号,并且发送该M个参考信号资源的波束具有相同或接近的指向。
例如图17所示,网络设备可以包括两个天线阵列,一个天线阵列的两个极化方向对应两个天线端口,该两个天线阵列共包括4个天线端口。网络设备可以在第一时间单元通过一个天线阵列在参考信号资源1上向终端设备发送参考信号1,该天线阵列的两个极化方向的天线端口对应该参考信号资源1的两个天线端口。网络设备在第二时间单元通过另一个天线阵列在参考信号资源2上向终端设备发送参考信号2。网络设备发送该M个参考信号资源的波束的方向相同或相近。可选地,网络设备采用展宽波束(非DFT波束)发送上述参考信号。
可选地,在上述两种情况中,终端设备还可以向该网络设备发送第二信息,该第二信息包括该多个天线端口的以下一项或多项信息:
信号干扰噪声比SINR、参考信号接收功率RSRP、层1信号干扰噪声比L1-SINR、层1参考信号接收功率L1-RSRP、信道质量指示CQI和/或秩指示RI。
可选地,该第二信息包括上述N个天线端口对应的信道状态信息,例如,该N个天线端口对应的L1-RSRP信息。
可选地,该第二信息与终端上报的相位加权序列关联,或者该第二信息基于终端上报的相位加权序列。例如,上报的L1-RSRP为与上报的相位加权序列关联,或者上报的L1-RSRP基于上报的相位加权序列。
根据上述方案,网络设备可采用展宽波束发送上述参考信号,因此,可以降低通过多个波束向终端设备发送参考信号带来的资源开销,而网络设备在获取到终端设备反馈的相位加权序列后,可以确定网络设备为终端设备服务的窄波束的相位加权值,可以在减小波束训练的资源开销的情况下,可以快速确定服务波束。
以上,结合图2至图17详细说明了本申请实施例提供的方法。以下说明本申请实施例提供的装置。为了实现上述本申请实施例提供的方法中的各功能,各网元可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图18是本申请实施例提供的通信装置的示意性框图。如图18所示,该通信装置1800可以包括处理单元1810,收发单元1820。
在一种可能的设计中,该通信装置1800可对应于上文方法实施例中的终端设备,或者配置于(或用于)终端设备中的芯片,或者其他能够实现终端设备的方法的装置、模块、电路或单元等。
收发单元,用于接收来自网络设备的多个参考信号;处理单元,用于根据该多个参考信号,确定该网络设备的多个天线单元组对应的信道信息,该多个天线单元组的至少两个天线单元组属于一个天线端口;该收发单元还用于向该网络设备发送第一信息,该第一信息用于指示该多个天线单元组对应的信道信息。
可选地,该多个天线单元组的信道信息包括多个天线端口对应的预编码矩阵索引PMI,该多个天线端口包括该多个天线单元组。
可选地,该多个天线单元组属于一个天线端口,或者,该多个天线单元组中一个天线单元组属于一个天线端口。
可选地,该多个天线单元组属于一个天线端口,该收发单元具体用于在多个时间单元接收来自该网络设备的该多个参考信号。
可选地,该收发单元具体用于在多个时间单元中的一个时间单元接收来自网络设备通过多个天线单元组中的一个天线单元组发送的参考信号,其中,该多个时间单元中的不同时间单元接收到的参考信号来自该多个天线单元组的不同天线单元组。
可选地,该收发单元具体用于在多个时间单元中的每个时间单元接收该多个参考信号。
可选地,该处理单元具体用于根据该多个参考信号、该多个天线单元组的数量以及该多个天线单元组对应的加权序列,确定该多个天线单元组的信道信息。
可选地,该多个天线单元组的信道信息包括天线端口的数字加权信息,该数字加权信息用于该网络设备对该多个天线单元组所属的天线端口的待发送信号进行数字信号处理。
可选地,该多个天线单元组的信道信息包括该多个天线单元组对应的加权合并信息,该加权合并信息为该多个天线单元组对应的相位加权信息与该多个天线单元组对应的PMI合并后的加权信息,其中,该相位加权信息用于该网络设备控制该至少一个天线单元组的移相器的相移。
可选地,该收发单元具体用于还用于接收来自该网络设备的配置信息,该配置信息用于指示该网络设备的至少一个天线端口包含的天线单元组。
可选地,该收发单元还用于向该网络设备发送第二信息,该第二信息包括该多个天线单元组的以下一项或多项信息:信号干扰噪声比SINR、参考信号接收功率RSRP、信道质量指示CQI和/或秩指示RI。应理解,该通信装置1800可对应于根据本申请实施例的方法600、1500中的终端设备,该通信装置1800可以包括用于执行图6、图15中的方法600、1500中终端设备执行的方法的单元。并且,该通信装置1800中的各单元和上述其他操作和/或功能分别为了实现图6、图15中的方法600、1500的相应流程。
可选地,通信装置1800还可以包括处理单元1810,该处理单元1810可以用于处理指令或者数据,以实现相应的操作。
还应理解,该通信装置1800为配置于(或用于)终端设备中的芯片时,该通信装置1800中的收发单元1820可以为芯片的输入/输出接口或电路,该通信装置1800中的处理单元1810可以为芯片中的处理器。
可选地,通信装置1800还可以包括存储单元1830,该存储单元1830可以用于存储指令或者数据,处理单元1810可以执行该存储单元中存储的指令或者数据,以使该通信装置实现相应的操作。
应理解,该通信装置1800中的收发单元1820为可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图19中示出的终端设备1900中的收发器1910。该通信装置1800中的处理单元1810可通过至少一个处理器实现,例如可对应于图19中示出的终端设备1900中的处理器1920。该通信装置1800中的处理单元1810还可以通过至少一个逻辑电路实现。该通信装置1800中的存储单元1830可对应于图19中示出的终端设备1900中的存储器。
还应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在另一种可能的设计中,该通信装置1800可对应于上文方法实施例中的网络设备,例如,或者配置于(或用于)网络设备中的芯片,或者其他能够实现网络设备的方法的装 置、模块、电路或单元等。
收发单元,用于通过多个天线单元组向终端设备发送参考信号,该多个天线单元组中的至少两个天线单元组属于一个天线端口;该收发单元还用于接收来自该终端设备的第一信息,该第一信息用于指示该多个天线单元组对应的信道信息;处理单元,用于根据第一信息,确定该多个天线单元组对应的信道信息。
可选地,该多个天线单元组对应的信道信息包括该多个天线单元组中至少一个天线单元组对应的相位加权信息,该相位加权信息用于该网络设备控制该至少一个天线单元组的移相器的相移。
可选地,该多个天线单元组属于一个天线端口,或者,该多个天线单元组中一个天线单元组属于一个天线端口。
可选地,该多个天线单元组属于一个天线端口,该收发单元具体用于通过该多个天线单元组在多个时间单元向该终端设备发送参考信号。
可选地,该收发单元具体用于在该多个时间单元中的一个时间单元通过该多个天线单元组中的一个天线单元组向该终端设备发送参考信号,其中,该多个时间单元中的不同时间单元发送参考信号的天线单元组不同。
可选地,该收发单元具体用于在该多个时间单元中的每个时间单元通过该多个天线单元组向该终端设备发送参考信号,该多个天线单元组中不同天线单元组对应的相位加权序列相互正交,一个该相位加权序列中的一个元素为一个天线单元组在一个时间单元对应的相位加权值。
可选地,该多个时间单元中的相邻两个时间单元之间的时间差小于阈值,或者该多个时间单元中的相邻两个时间单元在时间上连续。
可选地,该多个天线单元组对应的信道信息包括多个天线端口对应的预编码矩阵索引PMI,该多个天线端口包括该多个天线单元组。
可选地,该收发单元还用于向该终端设备发送配置信息,该配置信息用于指示该网络设备的至少一个天线端口包含的天线单元组。
可选地,该收发单元还用于接收来自该终端设备的第二信息,该第二信息包括该多个天线单元组该的以下一项或多项信息:信号干扰噪声比SINR、参考信号接收功率RSRP、信道质量指示CQI和/或秩指示RI。
应理解,该通信装置1800可对应于根据本申请实施例的方法600、1500中的网络设备,该通信装置1800可以包括用于执行图6、图15中的方法600、1500中网络设备执行的方法的单元。并且,该通信装置1800中的各单元和上述其他操作和/或功能分别为了实现图6、图15中的方法600、1500的相应流程。
可选地,通信装置1800还可以包括处理单元1810,该处理单元1810可以用于处理指令或者数据,以实现相应的操作。
还应理解,该通信装置1800为配置于(或用于)网络设备中的芯片时,该通信装置1800中的收发单元1820可以为芯片的输入/输出接口或电路,该通信装置1800中的处理单元1810可以为芯片中的处理器。
可选地,通信装置1800还可以包括存储单元1830,该存储单元1830可以用于存储指令或者数据,处理单元1810可以执行该存储单元中存储的指令或者数据,以使该通信装置实现相应的操作。
应理解,该通信装置1800为网络设备时,该通信装置1800中的收发单元1820为可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图20中示出的网络设备2000中的收发器2010。该通信装置1800中的处理单元1810可通过至少一个处理器实现,例如可对应于图20中示出的网络设备2000中的处理器2020,该通信装置1800中的处理单元1810可通过至少一个逻辑电路实现。
还应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
图19是本申请实施例提供的终端设备1900的结构示意图。该终端设备1900可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备1900包括处理器1920和收发器1910。可选地,该终端设备1900还包括存储器。其中,处理器1920、收发器1910和存储器之间可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器用于存储计算机程序,该处理器1920用于执行该存储器中的该计算机程序,以控制该收发器1910收发信号。
上述处理器1920可以和存储器可以合成一个处理装置,处理器1920用于执行存储器中存储的程序代码来实现上述功能。具体实现时,该存储器也可以集成在处理器1920中,或者独立于处理器1920。该处理器1920可以与图18中的处理单元对应。
上述收发器1910可以与图18中的收发单元对应。收发器1910可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图19所示的终端设备1900能够实现图6、图15所示方法实施例中涉及终端设备的过程。终端设备1900中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器1920可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器1910可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备1900还可以包括电源,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备1900还可以包括输入输出装置,如包括输入单元、显示单元、音频电路、摄像头和传感器等中的一个或多个,所述音频电路还可以包括扬声器、麦克风等。
图6、图15是本申请实施例提供的网络设备的结构示意图,该网络设备2000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图6、图15所示,该网络设备2000包括处理器2020和收发器2010。可选地,该网络设备2000还包括存储器。其中,处理器2020、收发器2010和存储器之间可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器用于存储计算机程序,该处理器2020用于执行该存储器中的该计算机程序,以控制该收发器2010收发信号。
上述处理器2020可以和存储器可以合成一个处理装置,处理器2020用于执行存储器中存储的程序代码来实现上述功能。具体实现时,该存储器也可以集成在处理器2020中,或者独立于处理器2020。该处理器2020可以与图18中的处理单元对应。
上述收发器2010可以与图18中的收发单元对应。收发器2010可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图6、图15所示的网络设备2000能够实现图6、图15所示方法实施例中涉及网络设备的各个过程。网络设备2000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
应理解,图6、图15所示出的网络设备2000可以是eNB或gNB,可选地,网络设备包含CU、DU和AAU的网络设备等,可选地,CU可以具体分为CU-CP和CU-UP。本申请对于网络设备的具体架构不作限定。
应理解,图6、图15所示出的网络设备2000可以是CU节点或CU-CP节点。
上述处理器2020可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而收发器2010可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和(通信)接口;所述处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码由一个或多个处理器执行时,使得包括该处理器的装置执行图6、图15所示实施例中的方法。
本申请实施例提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备、核心网设备、机器学习设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可 读存储介质存储有程序代码,当该程序代码由一个或多个处理器运行时,使得包括该处理器的装置执行图6、图15所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个网络设备。还系统还可以进一步包括前述的一个或多个终端设备。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种信道信息获取方法,其特征在于,包括:
    网络设备通过多个天线单元组向终端设备发送参考信号,所述多个天线单元组中的至少两个天线单元组属于一个天线端口;
    所述网络设备接收来自所述终端设备的第一信息,所述第一信息用于指示所述多个天线单元组对应的信道信息。
  2. 根据权利要求1所述的方法,其特征在于,所述多个天线单元组对应的信道信息包括所述多个天线单元组中至少一个天线单元组对应的相位加权信息,所述相位加权信息用于所述网络设备控制所述至少一个天线单元组的移相器的相移。
  3. 根据权利要求1或2所述的方法,其特征在于,所述多个天线单元组属于一个天线端口,或者,所述多个天线单元组中一个天线单元组属于一个天线端口。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述多个天线单元组属于一个天线端口,所述网络设备通过多个天线单元组向终端设备发送参考信号,包括:
    所述网络设备通过所述多个天线单元组在多个时间单元向所述终端设备发送参考信号。
  5. 根据权利要求4所述的方法,其特征在于,所述网络设备通过所述多个天线单元组在多个时间单元向所述终端设备发送参考信号,包括:
    所述网络设备在所述多个时间单元中的一个时间单元通过所述多个天线单元组中的一个天线单元组向所述终端设备发送参考信号,其中,所述多个时间单元中的不同时间单元发送参考信号的天线单元组不同。
  6. 根据权利要求4所述的方法,其特征在于,所述网络设备通过所述多个天线单元组在多个时间单元向所述终端设备发送参考信号,包括:
    所述网络设备在所述多个时间单元中的每个时间单元通过所述多个天线单元组向所述终端设备发送参考信号,所述多个天线单元组中不同天线单元组对应的加权序列相互正交,一个所述加权序列中的一个元素为一个天线单元组在一个时间单元对应的相位加权值。
  7. 根据权利要求4至6中任一项所述的方法,其特征在于,所述多个时间单元中的相邻两个时间单元之间的时间差小于阈值,或者所述多个时间单元中的相邻两个时间单元在时间上连续。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述多个天线单元组对应的信道信息包括多个天线端口对应的预编码矩阵索引PMI,所述多个天线端口包括所述多个天线单元组。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送配置信息,所述配置信息用于指示所述网络设备的至少一个天线端口包含的天线单元组。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的第二信息,所述第二信息包括所述多个天线单元组的以下一项或多项信息:
    信号干扰噪声比SINR、参考信号接收功率RSRP、信道质量指示CQI和/或秩指示RI。
  11. 一种信道测量方法,其特征在于,包括:
    终端设备接收来自网络设备的多个参考信号;
    所述终端设备根据所述多个参考信号,确定所述网络设备的多个天线单元组对应的信道信息,所述多个天线单元组的至少两个天线单元组属于一个天线端口;
    所述终端设备向所述网络设备发送第一信息,所述第一信息用于指示所述多个天线单元组对应的信道信息。
  12. 根据权利要求11所述的方法,其特征在于,所述多个天线单元组对应的信道信息包括多个天线端口对应的预编码矩阵索引PMI,所述多个天线端口包括所述多个天线单元组。
  13. 根据权利要求11或12所述的方法,其特征在于,所述多个天线单元组属于一个天线端口,或者,所述多个天线单元组中一个天线单元组属于一个天线端口。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述多个天线单元组属于一个天线端口;
    所述终端设备接收来自网络设备的多个参考信号,包括:
    所述终端设备在多个时间单元接收来自所述网络设备的所述多个参考信号。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述终端设备根据所述多个参考信号确定所述网络设备的多个天线单元组对应的信道信息,包括:
    所述终端设备根据所述多个参考信号、所述多个天线单元组的数量以及所述多个天线单元组对应的加权序列,确定所述多个天线单元组对应的信道信息。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述多个天线单元组对应的信道信息包括所述多个天线单元组对应的加权合并信息,所述加权合并信息为所述多个天线单元组对应的相位加权信息与所述多个天线单元组对应的PMI合并后的加权信息,
    其中,所述相位加权信息用于所述网络设备控制所述至少一个天线单元组的移相器的相移。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的配置信息,所述配置信息用于指示所述网络设备的至少一个天线端口包含的天线单元组。
  18. 根据权利要求11至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第二信息,所述第二信息包括所述多个天线单元组的以下一项或多项信息:
    信号干扰噪声比SINR、参考信号接收功率RSRP、信道质量指示CQI和/或秩指示RI。
  19. 一种信道信息获取装置,其特征在于,包括:
    收发单元,用于通过多个天线单元组向终端设备发送参考信号,所述多个天线单元组中的至少两个天线单元组属于一个天线端口;
    所述收发单元,用于接收来自所述终端设备的第一信息,所述第一信息用于指示所述多个天线单元组对应的信道信息;
    处理单元,用于根据第一信息,确定所述多个天线单元组对应的信道信息。
  20. 根据权利要求19所述的装置,其特征在于,所述多个天线单元组对应的信道信息包括所述多个天线单元组中至少一个天线单元组对应的相位加权信息,所述相位加权信息用于网络设备控制所述至少一个天线单元组的移相器的相移。
  21. 根据权利要求19或20所述的装置,其特征在于,所述多个天线单元组属于一个天线端口,或者,所述多个天线单元组中一个天线单元组属于一个天线端口。
  22. 根据权利要求19至21中任一项所述的装置,其特征在于,所述多个天线单元组属于一个天线端口,所述收发单元还用于通过所述多个天线单元组在多个时间单元向所述终端设备发送参考信号。
  23. 根据权利要求22所述的装置,其特征在于,所述收发单元具体用于在所述多个时间单元中的一个时间单元通过所述多个天线单元组中的一个天线单元组向所述终端设备发送参考信号,其中,所述多个时间单元中的不同时间单元发送参考信号的天线单元组不同。
  24. 根据权利要求22所述的装置,其特征在于,所述收发单元具体用于在所述多个时间单元中的每个时间单元通过所述多个天线单元组向所述终端设备发送参考信号,所述多个天线单元组中不同天线单元组对应的加权序列相互正交,一个所述加权序列中的一个元素为一个天线单元组在一个时间单元对应的相位加权值。
  25. 根据权利要求22至24中任一项所述的装置,其特征在于,所述多个时间单元中的相邻两个时间单元之间的时间差小于阈值,或者所述多个时间单元中的相邻两个时间单元在时间上连续。
  26. 根据权利要求19至25中任一项所述的装置,其特征在于,所述多个天线单元组对应的信道信息包括多个天线端口对应的预编码矩阵索引PMI,所述多个天线端口包括所述多个天线单元组。
  27. 根据权利要求19至26中任一项所述的装置,其特征在于,
    所述收发单元还用于向所述终端设备发送配置信息,所述配置信息用于指示网络设备的至少一个天线端口包含的天线单元组。
  28. 根据权利要求19至27中任一项所述的装置,其特征在于,
    所述收发单元还用于接收来自所述终端设备的第二信息,所述第二信息包括所述多个天线单元组的以下一项或多项信息:
    信号干扰噪声比SINR、参考信号接收功率RSRP、信道质量指示CQI和/或秩指示RI。
  29. 一种信道测量装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的多个参考信号;
    处理单元,用于根据所述多个参考信号,确定所述网络设备的多个天线单元组对应的信道信息,所述多个天线单元组的至少两个天线单元组属于一个天线端口;
    所述收发单元还用于向所述网络设备发送第一信息,所述第一信息用于指示所述多个天线单元组对应的信道信息。
  30. 根据权利要求29所述的装置,其特征在于,所述多个天线单元组对应的信道信息包括多个天线端口对应的预编码矩阵索引PMI,所述多个天线端口包括所述多个天线单元组。
  31. 根据权利要求29或30所述的装置,其特征在于,所述多个天线单元组属于一个天线端口,或者,所述多个天线单元组中一个天线单元组属于一个天线端口。
  32. 根据权利要求29至31中任一项所述的装置,其特征在于,所述多个天线单元组属于一个天线端口;
    所述收发单元具体用于在多个时间单元接收来自所述网络设备的所述多个参考信号。
  33. 根据权利要求29至32中任一项所述的装置,其特征在于,所述处理单元具体用于根据所述多个参考信号、所述多个天线单元组的数量以及所述多个天线单元组对应的加权序列,确定所述多个天线单元组对应的信道信息。
  34. 根据权利要求29至33中任一项所述的装置,其特征在于,所述多个天线单元组对应的信道信息包括所述多个天线单元组对应的加权合并信息,所述加权合并信息为所述多个天线单元组对应的相位加权信息与所述多个天线单元组对应的PMI合并后的加权信息,
    其中,所述相位加权信息用于所述网络设备控制所述至少一个天线单元组的移相器的相移。
  35. 根据权利要求29至34中任一项所述的装置,其特征在于,所述收发单元还用于接收来自所述网络设备的配置信息,所述配置信息用于指示所述网络设备的至少一个天线端口包含的天线单元组。
  36. 根据权利要求29至35中任一项所述的装置,其特征在于,所述收发单元还用于向所述网络设备发送第二信息,所述第二信息包括所述多个天线单元组的以下一项或多项信息:
    信号干扰噪声比SINR、参考信号接收功率RSRP、信道质量指示CQI和/或秩指示RI。
  37. 一种通信装置,其特征在于,包括至少一个处理器,与存储器耦合;
    所述存储器用于存储程序或指令;
    所述至少一个处理器用于执行所述程序或指令,以使所述装置实现如权利要求1至18中任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至18中任一项所述的方法。
  39. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至18中任一项所述的方法。
PCT/CN2022/104806 2021-07-12 2022-07-11 信道信息获取方法和通信装置 WO2023284659A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247004366A KR20240029094A (ko) 2021-07-12 2022-07-11 채널 정보 획득 방법 및 통신 장치
EP22841295.3A EP4362530A1 (en) 2021-07-12 2022-07-11 Channel information obtaining method and communication apparatus
US18/410,726 US20240146372A1 (en) 2021-07-12 2024-01-11 Channel information obtaining method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110784799.8A CN115623497A (zh) 2021-07-12 2021-07-12 信道信息获取方法和通信装置
CN202110784799.8 2021-07-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/410,726 Continuation US20240146372A1 (en) 2021-07-12 2024-01-11 Channel information obtaining method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2023284659A1 true WO2023284659A1 (zh) 2023-01-19

Family

ID=84854679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104806 WO2023284659A1 (zh) 2021-07-12 2022-07-11 信道信息获取方法和通信装置

Country Status (5)

Country Link
US (1) US20240146372A1 (zh)
EP (1) EP4362530A1 (zh)
KR (1) KR20240029094A (zh)
CN (1) CN115623497A (zh)
WO (1) WO2023284659A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101454996A (zh) * 2006-05-29 2009-06-10 京瓷株式会社 基站设备、控制基站设备的方法、接收设备、自适应算法控制方法、无线通信设备和无线通信方法
US20150341100A1 (en) * 2014-05-23 2015-11-26 Samsung Electronics Co., Ltd. Channel state information feedback method and apparatus for 2-dimensional massive mimo communication system
CN106559121A (zh) * 2015-09-25 2017-04-05 华为技术有限公司 一种多天线信道测量方法和装置
CN110945793A (zh) * 2017-06-16 2020-03-31 瑞典爱立信有限公司 用于无线通信系统中的参考信号的信道状态信息
CN112867049A (zh) * 2019-11-12 2021-05-28 维沃移动通信有限公司 一种测量配置方法、装置及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101454996A (zh) * 2006-05-29 2009-06-10 京瓷株式会社 基站设备、控制基站设备的方法、接收设备、自适应算法控制方法、无线通信设备和无线通信方法
US20150341100A1 (en) * 2014-05-23 2015-11-26 Samsung Electronics Co., Ltd. Channel state information feedback method and apparatus for 2-dimensional massive mimo communication system
CN106559121A (zh) * 2015-09-25 2017-04-05 华为技术有限公司 一种多天线信道测量方法和装置
CN110945793A (zh) * 2017-06-16 2020-03-31 瑞典爱立信有限公司 用于无线通信系统中的参考信号的信道状态信息
CN112867049A (zh) * 2019-11-12 2021-05-28 维沃移动通信有限公司 一种测量配置方法、装置及系统

Also Published As

Publication number Publication date
EP4362530A1 (en) 2024-05-01
CN115623497A (zh) 2023-01-17
KR20240029094A (ko) 2024-03-05
US20240146372A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
US11711121B2 (en) Wireless communication method and wireless communication device
JP6108250B2 (ja) チャネル状態情報を報告および受信する方法およびデバイス
EP3522427A1 (en) Method and device for representing quasi co-location parameter configuration, and transmitting and receiving apparatus
EP3520228B1 (en) Reference signal with beamforming training and channel estimation
US11658849B2 (en) Methods for indicating and determination large-scale channel parameter, base station and terminal device
KR101414665B1 (ko) 부분 채널 상태 정보를 이용한 다층 빔포밍
WO2018137486A1 (zh) 一种码本反馈方法和装置
CN111342873A (zh) 一种信道测量方法和通信装置
TW201838440A (zh) 一種獲取、回饋發送波束資訊的方法及裝置
TWI635737B (zh) 一種導頻信號的發送、接收處理方法及裝置
WO2021163941A1 (zh) 一种波束对训练方法及通信装置
WO2022117046A1 (zh) 一种通信方法、装置、芯片、存储介质及程序产品
WO2021056588A1 (zh) 一种配置预编码的方法及装置
US20230283337A1 (en) Beam Training Method and Apparatus
WO2024027394A1 (zh) 一种通信方法及装置
WO2023284659A1 (zh) 信道信息获取方法和通信装置
JP2023553432A (ja) チャネル情報フィードバック方法及び通信装置
WO2023024943A1 (zh) 一种通信方法以及装置
WO2024026796A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2017107067A1 (zh) 参考信号发送和信道测量的方法、发送设备和终端设备
WO2024109633A1 (zh) 信道状态信息发送方法、信道状态信息接收方法和装置
WO2023206047A1 (zh) 信道状态信息csi上报方法和装置
WO2023088114A1 (zh) 波束恢复方法、波束失败检测方法以及相关装置
WO2017166200A1 (zh) 一种数据传输方法和装置
CN117395790A (zh) 数据传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841295

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024501481

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022841295

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20247004366

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247004366

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2022841295

Country of ref document: EP

Effective date: 20240124

NENP Non-entry into the national phase

Ref country code: DE