WO2017107067A1 - 参考信号发送和信道测量的方法、发送设备和终端设备 - Google Patents

参考信号发送和信道测量的方法、发送设备和终端设备 Download PDF

Info

Publication number
WO2017107067A1
WO2017107067A1 PCT/CN2015/098318 CN2015098318W WO2017107067A1 WO 2017107067 A1 WO2017107067 A1 WO 2017107067A1 CN 2015098318 W CN2015098318 W CN 2015098318W WO 2017107067 A1 WO2017107067 A1 WO 2017107067A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
configuration
level
signal resource
level reference
Prior art date
Application number
PCT/CN2015/098318
Other languages
English (en)
French (fr)
Inventor
刘建琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580085399.0A priority Critical patent/CN108370517A/zh
Priority to PCT/CN2015/098318 priority patent/WO2017107067A1/zh
Publication of WO2017107067A1 publication Critical patent/WO2017107067A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to the field of communications, and more particularly to a method of reference signal transmission, a method of channel measurement, a transmitting device, and a terminal device.
  • MIMO Multiple Input Multiple Output
  • LTE long term evolution
  • DM-RS demodulation reference signal
  • the DM-RS based multi-stream transmission is the main transmission mode of the LTE Advanced Evolution (LTE-A) system and subsequent systems.
  • the DM-RS-based multi-stream transmission process is: a channel state information reference signal configured by a user equipment (UE) according to a base station (such as an evolved base station, an eNB or an e-NodeB).
  • CSI-RS performing channel measurement, where the measurement result includes a transmission rank, a precoding matrix corresponding to the transmission rank, and at least one of a channel quality indicator (CQI) corresponding to the transmission rank and the precoding matrix;
  • CQI channel quality indicator
  • the UE feeds back the measurement result to the eNB.
  • the eNB performs downlink scheduling according to the measurement result fed back by the UE, and sends a Physical Downlink Shared Channel (PDSCH) to the UE through the DM-RS according to the scheduling result.
  • PDSCH Physical Downlink Shared Channel
  • multi-stream transmission based on DM-RS is a two-dimensional beamforming, that is, the transmitting antennas are horizontally placed, and only horizontal beams can be generated.
  • two-dimensional antenna configuration is being studied, that is, the antenna is placed in two horizontal and vertical dimensions at the same time, so that beamforming in the horizontal and vertical directions can be simultaneously performed, which is called a three-dimensional beam assignment. shape.
  • a beamforming degree of freedom in the vertical direction is added, so that more UEs can be multiplexed on the same time-frequency resource, and different UEs pass vertical and/or Shaped beams in the horizontal direction are distinguished to improve resource utilization or spectral efficiency.
  • the total number of antenna ports in the two-dimensional antenna configuration currently discussed can be up to 512. As the size of the antenna array increases, the corresponding overhead of transmitting measurement reference signals will also increase exponentially.
  • CSI-RS configuration and CSI measurement are composed of two levels, and CSI-RS resources in the first-level CSI-RS configuration correspond to A set of antenna ports of the antenna array, such as a subarray, the UE obtains a first level CSI measurement based on measurements of the first level CSI-RS.
  • the second level CSI-RS resource is determined according to the first level CSI measurement result.
  • the UE obtains the second-level CSI measurement result based on the measurement of the second-level CSI-RS resource.
  • the total CSI measurement result of the antenna array is obtained based on the first-stage CSI measurement result and the second-stage CSI measurement result.
  • the first-stage CSI measurement results are also different, such as in the two-dimensional antenna configuration of 8H8V (8H8V represents 8 antenna ports in the horizontal direction and 8 antenna ports in the vertical direction).
  • the sub-array of the first-level CSI measurement is selected as 4H2V (two antenna ports in the horizontal direction and four antenna ports in the vertical direction) and 8H1V (eight antenna ports in the horizontal direction and one antenna port in the vertical direction), because the two seed arrays correspond to The number of horizontal and vertical antenna ports is different, and the channel propagation characteristics in the horizontal direction and the vertical direction are different.
  • the first-stage CSI measurement results obtained under the two sub-arrays are also different, and the total CSI measurement results corresponding to the antenna array are different.
  • the first-level CSI measurement and its corresponding sub-array are cell-specific and fixed. When the UE is in different locations or the channel conditions brought by the UE movement change, the CSI measurement is not flexible enough. .
  • the embodiment of the invention provides a method for transmitting a reference signal, a method for measuring a channel, a transmitting device and a user equipment, which can improve the flexibility of selection of the first-level reference signal resource configuration and the flexibility of the channel measurement.
  • a method for transmitting a reference signal including:
  • each of the first-level reference signal resource configurations in the N first-level reference signal resource configurations corresponds to one antenna port set configuration, and any two first The antenna port set configuration corresponding to the level reference signal resource configuration is different, and any one of the antenna port set configurations includes the first dimension antenna port number corresponding to the antenna port set, the second dimension antenna port number, and the antenna included in the antenna port set.
  • each of the first-level reference signal resource configurations includes time-frequency resource location information, and the time-frequency resource location information is an antenna port corresponding to each of the first-level reference signal resource configurations Time-frequency resource location information corresponding to the antenna port included in the set, where N is an integer greater than one;
  • the first-level CSI measurement Is a CSI measurement performed according to the first reference signal.
  • the method for transmitting a reference signal in the embodiment of the present invention by sending a plurality of first-level reference signal resource configurations to the terminal device, transmitting a reference signal to the terminal device according to each first-level reference signal resource configuration, and acquiring a plurality of first-level
  • the first-level reference signal resource configuration finally used in the reference signal resource configuration improves the selection flexibility of the first-level reference signal resource configuration with respect to the fixed manner of the first-level reference signal resource configuration.
  • the acquiring information about the first configuration in the configuration of the N first-level reference signal resources includes:
  • the first feedback information includes the identification information of the first configuration, or
  • the first feedback information includes the identifier information of the first configuration and a result of the first-level CSI measurement corresponding to the first configuration.
  • the N first-level reference signal resource configurations correspond to M CSI processes
  • the first feedback information is determined according to a result of the first-level CSI measurement obtained by the M CSI processes, where M is a positive integer less than or equal to N.
  • the acquiring information about the first configuration in the configuration of the N first-level reference signal resources includes:
  • the second feedback information includes the identification information of the first configuration, or
  • the second feedback information includes identification information of the second configuration, and the second configuration is the first Configure the corresponding second-level reference signal resource configuration, or
  • the second feedback information includes the identification information of the first configuration and the result of the second-level CSI measurement corresponding to the first configuration, or
  • the second feedback information includes the identification information of the second configuration and a result of the second-level CSI measurement corresponding to the second configuration, where the second-level CSI measurement is a CSI measurement according to the second reference signal. .
  • the first first reference signal resource configuration and the second corresponding to each first level reference signal resource configuration corresponds to the same CSI process.
  • the second feedback information is determined according to a result of the second-level CSI measurement obtained by the M CSI processes, where M is a positive integer less than or equal to N.
  • the first reference signal is sent to the terminal device according to the configuration of each of the first level reference signal resources Previously, the method further includes:
  • the first level reference signal resource configuration is corresponding to As a result of a first level CSI measurement, at least two of the first level reference signal resource configurations of the N first level reference signal resource configurations correspond to results of different first level CSI measurements.
  • the each of the first level reference signals The resource configuration sends the first reference signal to the terminal device, including:
  • the transmitting device may send N first-level reference signal resource configurations to the terminal device aperiodically or long-periodically.
  • the sending device may send N first-level reference signal resource configurations to the terminal device by using high-layer signaling.
  • a method of channel measurement comprising:
  • each first-level reference signal resource configuration in the N first-level reference signal resource configurations is configured to correspond to one antenna In the port set configuration, the antenna port set configuration corresponding to any two first-level reference signal resource configurations is different, and any one of the antenna port set configurations includes the first-dimensional antenna port number corresponding to the antenna port set, and the second-dimensional antenna port number and At least two of the number of antenna ports included in the set of antenna ports, each of the first level reference signal resource configurations includes time-frequency resource location information, and the time-frequency resource location information is each of the first The time-frequency resource location information corresponding to the antenna port included in the antenna port set corresponding to the level reference signal resource configuration, where N is an integer greater than one;
  • the method for channel measurement in the embodiment of the present invention by receiving a plurality of first-level reference signal resource configurations sent by the sending device, and performing first-level CSI measurement for each first-level reference signal resource configuration, may be multiple first
  • the first-level reference signal resource configuration is selected in the level reference signal resource configuration, which improves the flexibility of channel measurement.
  • the method further includes:
  • the first feedback information includes identifier information of the first configuration in the N first-level reference signal resource configurations, or
  • the first feedback information includes the identifier information of the first configuration and a result of the first-level CSI measurement corresponding to the first configuration.
  • the N first-level reference signal resource configurations correspond to M CSI processes
  • the method further includes:
  • the method further includes:
  • a second level CSI measurement is performed based on the second reference signal.
  • the method further includes:
  • the second feedback information includes identification information of the first configuration in the N first-level reference signal resource configurations, or
  • the second feedback information includes identifier information of the second configuration, where the second configuration is a second-level reference signal resource configuration corresponding to the first configuration, or
  • the second feedback information includes the identification information of the first configuration and the result of the second-level CSI measurement corresponding to the first configuration, or
  • the second feedback information includes the identification information of the second configuration and the result of the second-level CSI measurement corresponding to the second configuration.
  • the first first reference signal resource configuration and the second corresponding to each first level reference signal resource configuration corresponds to the same CSI process;
  • the method further includes:
  • the transmitting device is configured according to each of the first level reference signal resource configurations Before the first level reference signal resource is configured to send the first reference signal, the method further includes:
  • Receiving a notification message of the M CSI processes sent by the sending device.
  • the first level reference signal resource configuration is corresponding to As a result of a first level CSI measurement, at least two of the first level reference signal resource configurations of the N first level reference signal resource configurations correspond to results of different first level CSI measurements.
  • a transmitting device comprising a module that performs the method of the first aspect.
  • a terminal device comprising a module for performing the method of the second aspect.
  • a transmitting device in a fifth aspect, includes a processor, a memory, and a pass Letter interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the instructions when executed by the processor, cause the processor to perform the method of the first aspect.
  • a terminal device in a sixth aspect, includes a processor, a memory, and a communication interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the instructions when executed by the processor, cause the processor to perform the method of the second aspect.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for transmitting reference signals according to an embodiment of the present invention.
  • FIG. 3a is a schematic diagram of transmitting a reference signal by time division in an embodiment of the present invention.
  • FIG. 3b is a schematic diagram of transmitting a reference signal by frequency division in an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a method of channel measurement according to an embodiment of the present invention.
  • Figure 5 is a schematic block diagram of a transmitting device of an embodiment of the invention.
  • Figure 6 is a schematic block diagram of a terminal device of an embodiment of the invention.
  • FIG. 7 is a schematic structural diagram of a transmitting device according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a terminal device according to another embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • a base station 101 and terminal devices such as a terminal device 111, a terminal device 112, and a terminal device 113, communicate by MIMO technology.
  • the antenna of the base station 101 can be configured in a two-dimensional antenna, and the transmission adopts three-dimensional beamforming.
  • the CSI measurement can employ a mechanism of multi-level CSI measurement, that is, a mechanism of two-stage or more CSI measurement.
  • a terminal device may be referred to as a user equipment (UE), a terminal, a mobile station (MS), a mobile terminal, etc., and the terminal device
  • the radio access network (RAN) can communicate with one or more core networks.
  • the terminal device can be a mobile phone (or "cell phone"), a computer with a mobile terminal, etc., for example,
  • the terminal device can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges voice and/or data with the wireless access network.
  • the sending device may be a base station, or may be another device that sends data to the terminal device, such as a small cell, a relay station, or the like, which is not limited in the embodiment of the present invention.
  • the base station may be an evolved base station (Evolved Node B, eNB or e-NodeB) in LTE or LTE-A, or may be a base station in other communication systems, which is not limited in the embodiment of the present invention.
  • eNB evolved Node B
  • e-NodeB evolved base station
  • LTE or LTE-A Long Term Evolution-Adv
  • the following embodiments will be described by taking a base station eNB and a terminal device as an example.
  • antenna port set may also be referred to as “antenna port array”, “antenna array” or “sub-array” in some scenarios, which is not limited in the embodiment of the present invention.
  • the first-level CSI measurement corresponds to one antenna port set, for example, one sub-array in the transmitting device antenna port array.
  • the terminal device obtains the first-level CSI measurement result based on the first-level CSI measurement.
  • the base station obtains an antenna port set configuration corresponding to the second-level CSI measurement according to the first-level CSI measurement result.
  • the terminal device obtains the second-level CSI measurement result based on the second-level CSI measurement.
  • the CSI measurement result corresponding to the entire antenna array of the transmitting device can be obtained based on the first-level CSI measurement result and the second-level CSI measurement result.
  • the corresponding antenna port array structure is assumed to be 8H8V (8H8V represents 8 antenna ports in the horizontal direction and 8 antenna ports in the vertical direction), and a two-stage CSI measurement method can be used.
  • the number of antenna ports included in the antenna port set configured by the first-level reference signal resource may be 8.
  • the antenna port set corresponding to the eight ports in the first-level reference signal resource configuration is configured with 8H1V (8 antenna ports in the horizontal direction and 1 antenna port in the vertical direction), and 4H2V (4 antenna ports in the horizontal direction and 2 antenna ports in the vertical direction) ), 2H4V (two antenna ports in the horizontal direction and two antenna ports in the vertical direction), 1H8V (one antenna port in the horizontal direction and eight antenna ports in the vertical direction).
  • the sending device has more total antenna port numbers, for example, when the total number of antenna ports is 512, three or more levels of CSI measurement methods are adopted at this time, wherein the reference signal resource configuration of the latter stage CSI measurement may be based on The result of the previous stage CSI measurement determines that the corresponding antenna port of each level of CSI measurement
  • the number may be any value less than or equal to the total number of antenna ports, for example, the number of typical antenna ports supported by the current LTE system, such as 1, 2, 4, and 8, or 3, 5, 6, 7, and 9. 10 other arbitrary number of antenna ports.
  • the first-level reference signal resource configuration and the corresponding CSI measurement result directly affect the CSI measurement result corresponding to the subsequent second stage, the third stage or even the entire antenna array.
  • first level and second level are relative, that is, “first level” represents the previous level, and “second level” represents the latter level, It should be limited to the absolute first and second levels in multiple levels.
  • first level and second level in the embodiment of the present invention may be the first level and the second level of the three levels, respectively, or may be three levels respectively.
  • the second and third levels may be the first level and the second level of the three levels, respectively, or may be three levels respectively.
  • Different terminal devices in a small area may have changes in channel characteristics due to different geographical locations or movement of terminal devices.
  • the terminal equipment can be randomly and evenly distributed in the buildings of 1-8 floors except for being located on the outdoor ground.
  • the terminal equipment in the high building has both levels.
  • Vertical two-dimensional position resolution so its first-level reference signal resource configuration is preferably in the form of an antenna port set of 4H2V or 2H4V, and for an outdoor terminal device on the ground, due to the height of its vertical dimension Therefore, its first-level reference signal resource configuration is preferably in the form of an antenna port set such as 8H1V.
  • FIG. 2 shows a schematic flow chart of a method 100 of reference signal transmission in accordance with an embodiment of the present invention.
  • the method 100 is performed by a transmitting device, such as a base station.
  • the method 100 includes:
  • each of the first-level reference signal resource configurations in the N first-level reference signal resource configurations corresponds to one antenna port set configuration, and any two The antenna port set configuration corresponding to the first level reference signal resource configuration is different, and any one of the antenna port set configurations includes a first dimension antenna port number corresponding to the antenna port set, and the second dimension antenna port number and the antenna port set are included At least two of the number of antenna ports, each of the first-level reference signal resource configurations includes time-frequency resource location information, and the time-frequency resource location information is configured for each of the first-level reference signal resources.
  • the first-level reference signal resource configuration corresponds to one antenna port set configuration.
  • the antenna port set configuration may include at least two of a first dimension antenna port number corresponding to the antenna port set, a second dimension antenna port number, and an antenna port number included in the antenna port set.
  • the first dimension and the second dimension may be a horizontal dimension and a vertical dimension, respectively.
  • the antenna port set may specifically be a sub-array, and the antenna port set configuration may specifically be in the form of xHyV.
  • the reference signal resource configuration includes time-frequency resource location information.
  • the time-frequency resource location information included in the first-level reference signal resource configuration is time-frequency resource location information corresponding to the antenna port included in the antenna port set corresponding to the first-level reference signal resource configuration, where the antenna port corresponds to
  • the time-frequency resource location refers to the location of the time-frequency resource used by the antenna port to transmit the reference signal.
  • the time-frequency resource location information included in the second-level reference signal resource configuration is the time-frequency resource location information corresponding to the antenna port included in the antenna port set corresponding to the second-level reference signal resource configuration, where
  • the antenna port set corresponding to the second-level reference signal resource configuration may be specifically determined according to the antenna port set corresponding to the first-level reference signal resource configuration and the result of the first-level CSI measurement.
  • the sending device configures multiple first-level reference signal resources, and sends multiple first-level reference signal resource configurations to the terminal device, and triggers the terminal device to perform first-level CSI measurement for multiple first reference signals.
  • the sending device acquires information of the first configuration in the N first-level reference signal resource configurations according to the result of the first-level CSI measurement. In this way, the first-level reference signal resource configuration is no longer cell-specific, but can be flexibly selected, thereby improving the flexibility of channel measurement.
  • the method for transmitting a reference signal in the embodiment of the present invention sends a reference signal to the terminal device according to each first-level reference signal resource configuration by transmitting a plurality of first-level reference signal resource configurations to the terminal device, and acquires multiple The first-level reference signal resource configuration finally used in the primary reference signal resource configuration improves the selection flexibility of the first-level reference signal resource configuration with respect to the fixed manner of the first-level reference signal resource configuration.
  • the number of antenna ports of the antenna port set configured by the first-level reference signal resource in the same antenna array scale may be multiple, such as the first-level reference signal in the array scale of 64 antenna ports.
  • the number of antenna ports of the antenna port set of the resource configuration may be 1, 2, 4, 8, 16, etc., and may optionally be any other value such as 3, 5, 6, 7, 9, and 10.
  • the antenna port set configuration is represented by xHyV, indicating x antenna ports in the horizontal direction and y antenna ports in the vertical direction.
  • the antenna port set configuration corresponding to the first-level reference signal resource configuration includes 4H2V, 2H4V, 8H1V, 1H8V, etc., that is, there may be multiple first-level reference signal resource configurations.
  • the transmitting device sends N first-level reference signal resource configurations to the terminal device.
  • the triggering terminal device performs measurement for the plurality of first reference signals by transmitting N first-level reference signal resource configurations.
  • the antenna port set configurations may be 4H2V, 2H4V, 8H1V, and 1H8V.
  • the transmitting device may send N first-level reference signal resource configurations to the terminal device in a non-periodical or long-period manner. That is to say, the transmitting device can trigger the terminal device to perform measurement for the plurality of first reference signals aperiodically or long-periodically. For example, for the long-cycle mode, the transmitting device can trigger according to the set long period; for the non-periodic mode, the transmitting device can trigger as needed.
  • the sending device sends the N first reference signals corresponding to the N first-level reference signal resource configurations to the terminal device in a non-period or long-period period.
  • the sending device may send, by using the high layer signaling, the N first level reference signal resource configurations to the terminal device. That is to say, the transmitting device can trigger the terminal device to perform measurement on the plurality of first reference signals by using the high layer signaling.
  • the sending device sends a first reference signal to the terminal device according to each first-level reference signal resource configuration.
  • the transmitting device sends the first reference signal to the terminal device according to each of the first level reference signal resource configurations of the first level reference signal resources.
  • the terminal device performs the first-level CSI measurement according to the first reference signal.
  • the transmitting device sends the first reference signal through the antenna port corresponding to the antenna port set configuration of 4H2V, 2H4V, 8H1V, and 1H8V, respectively.
  • the sending device may send the first reference signal to the terminal device according to the N first-level reference signal resource configurations in a time division manner and/or a frequency division manner.
  • Figure 3a is a schematic diagram of a reference signal transmitted by time division.
  • the antenna port set is specifically a sub-array, and the antenna ports of different sub-arrays may be partially the same or completely different.
  • the primary reference signal resource configuration is sent.
  • the reference signal is transmitted through the antenna port corresponding to the 4H2V at the first time, and the reference signal or the like is transmitted through the antenna port corresponding to the 2H4V at the second time.
  • the frequency domain locations of different first-level reference signal resource configurations may be the same.
  • Figure 3b is a schematic diagram of transmitting a reference signal by frequency division.
  • a plurality of first reference signals are sent to the terminal device in a comb-like frequency division manner over the entire system bandwidth.
  • RB resource block
  • the time domain locations of different first level reference signal resource configurations may be the same.
  • the sending device acquires information of the first configuration in the N first-level reference signal resource configurations.
  • the sending device may obtain the information of the first configuration only according to the first-level CSI measurement, or obtain the information of the first configuration according to the multi-level CSI measurement, which are separately described below.
  • the information about acquiring the first configuration in the configuration of the N first-level reference signal resources includes:
  • the first feedback information includes the identification information of the first configuration, or
  • the first feedback information includes the identifier information of the first configuration and a result of the first-level CSI measurement corresponding to the first configuration.
  • the first configuration is determined.
  • the first configuration may be one of N first-level reference signal resource configurations, for example, may be an optimal configuration, where the optimal configuration corresponds to an optimal first-level CSI measurement result.
  • the terminal device sends the identifier information of the first configuration to the sending device, or the terminal device sends the identifier information of the first configuration and the result of the first-level CSI measurement corresponding to the first configuration to the sending device.
  • the terminal device may send the first configured identification information to the sending device, and may also send the first configured identification information and the first-level CSI measurement result corresponding to the first configuration to the sending device.
  • the transmitting device may generate a second level reference signal resource configuration based on the result.
  • the terminal device may obtain a first-level CSI measurement result according to the M CSI processes. And determining, by the first configuration, the identifier information of the first configuration, or the identifier information of the first configuration, and the result of the first-level CSI measurement corresponding to the first configuration, where M is less than or equal to N.
  • M is less than or equal to N.
  • the terminal device may determine the first configuration according to the M initial CSI processes configured by the N first-level reference signal resources.
  • the sending device may first send a notification message of the M CSI processes to the terminal device. After receiving the notification message, the terminal device performs measurement of the M CSI processes to determine the first configuration.
  • the transmitting device may configure the terminal device to configure the number of CSI processes associated with the CSI result reporting M (M is a positive integer less than or equal to N) when the terminal device is configured to perform measurement on the N first reference signals, without triggering.
  • M is a positive integer less than or equal to N
  • the number of CSI processes associated with the CSI result reporting for the terminal device is 1.
  • the notification message of the M CSI processes includes at least: a reference signal resource configuration associated with the M processes.
  • M is less than N
  • at least one CSI process associates at least two reference signal resource configurations. That is, at least one CSI process associates the results of at least two reference signal measurements, for example, an optimal value or an average value of the two results may be taken.
  • the M CSI processes correspond to M CSI measurement results.
  • the terminal device reports based on the M CSI measurement results.
  • the information about acquiring the first configuration in the configuration of the N first-level reference signal resources includes:
  • the second feedback information includes the identification information of the first configuration, or
  • the second feedback information includes identifier information of the second configuration, where the second configuration is a second-level reference signal resource configuration corresponding to the first configuration, or
  • the second feedback information includes the identification information of the first configuration and the result of the second-level CSI measurement corresponding to the first configuration, or
  • the second feedback information includes the identification information of the second configuration and a result of the second-level CSI measurement corresponding to the second configuration, where the second-level CSI measurement is a CSI measurement according to the second reference signal. .
  • the terminal device After performing the first-level CSI measurement according to the plurality of first reference signals, the terminal device sends the result of the first-level CSI measurement corresponding to each first-level reference signal resource configuration to the sending device.
  • the first level CSI measurement result may include an optimal precoding matrix, and the reported form of the precoding matrix may be a precoding matrix index.
  • each first-level reference signal resource configuration corresponds to a result of one first-level CSI measurement, and at least two first-level reference signals in the N first-level reference signal resource configurations
  • the resource configuration corresponds to the results of different first-level CSI measurements.
  • the result of the first level CSI measurement may include at least one of a precoding matrix index, a rank indication, a channel quality indicator, and a precoding matrix type indication.
  • each antenna port set configuration corresponds to one codebook set, for example, 4H2V corresponds to one codebook set 1, and 2H4V corresponds to another codebook set 2.
  • the terminal device can perform selection of the optimal codebook corresponding to the antenna port set and report the result according to the antenna port set configuration.
  • the antenna port set configuration corresponding to the first-level reference signal resource configuration includes 4H2V, 2H4V, 8H1V, 1H8V, etc., and assumes CSI based on the first-level reference signal resource configuration.
  • the rank is constant to 1, and the antenna port set corresponding to the second-level reference signal resource configuration is configured with 2H4V, 4H2V, 1H8V, and 8H1V.
  • the rank of the CSI measurement result of the first-level reference signal resource configuration is greater than 1, the number of antenna ports in the antenna port set configuration corresponding to the second-level reference signal resource configuration increases as the rank increases, such as when the rank is equal to 2
  • the number of antenna ports in the antenna port set configuration corresponding to the second-level reference signal resource configuration is 16, and the specific antenna port set configuration may optionally include 4H4V, 8H2V, 2H8V, and the like.
  • the sending device sends the second reference signal to the terminal device according to the second level reference signal resource configuration.
  • the terminal device performs second-level CSI measurement according to the second reference signal.
  • the terminal device determines the first configuration, or the second configuration corresponding to the first configuration.
  • the terminal device sets the identification information of the first configuration, or the identification information of the second configuration, or the label of the first configuration.
  • the information and the result of the second-level CSI measurement corresponding to the first configuration, or the identification information of the second configuration and the result of the second-level CSI measurement corresponding to the second configuration are sent to the sending device.
  • the terminal device may determine, according to a result of the second-level CSI measurement obtained by the M CSI processes, the second feedback information, that is, the identifier information of the first configuration, or the identifier information of the second configuration, or The identifier information of the first configuration and the result of the second-level CSI measurement corresponding to the first configuration, or the identifier information of the second configuration and the result of the second-level CSI measurement corresponding to the second configuration, where M is A positive integer that is less than or equal to N, wherein each of the first-level reference signal resource configurations and the second-level reference signal resource configuration corresponding to each of the first-level reference signal resource configurations correspond to the same CSI process. That is, the terminal device may obtain the second configuration or the first configuration according to the M first CSI processes corresponding to the N first-level reference signal resource configurations and the corresponding second-level reference signal resources.
  • the sending device may first send a notification message of the M CSI processes to the terminal device. After receiving the notification message, the terminal device performs measurement of the M CSI processes to determine the foregoing configuration.
  • the transmitting device may configure the number of CSI processes associated with the CSI measurement result reporting for the terminal device when the terminal device is configured to measure the configuration of the multiple first-level reference signal resources, and configure the terminal device once when there is no trigger.
  • the number of CSI processes associated with the CSI measurement result is reported as 1.
  • the notification messages of the M CSI processes include at least: information about configuration of reference signal resources associated with the M processes.
  • M is less than N
  • at least one CSI process associates at least two first-level reference signal resource configurations or at least two Secondary reference signal resource configuration.
  • the M CSI processes correspond to M CSI measurement results.
  • the terminal device reports based on the M CSI measurement results.
  • the terminal device may send the result of the CSI measurement by using a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • a physical uplink control channel PUCCH
  • PUSCH physical uplink shared channel
  • the embodiment of the present invention can implement one-time reporting of the CSI measurement results corresponding to the configuration of the first-level reference signal resources, thereby saving the transmission power of the terminal device and reducing the interference to the neighboring cells.
  • another method for reducing the reference signal resource overhead may be precoding the reference signal (equivalent to virtualizing and reducing the port of the reference signal resource), and the terminal device performs the precoding based reference signal.
  • the reference signal antenna port can be reduced in dimension by precoding the reference signal. For example, the number of reference signal antenna ports before precoding is 16, and the pair is passed.
  • the reference signal of the 16 antenna port is virtualized by different precoding matrices to obtain reference signal resources of a plurality of precoded smaller antenna ports (such as 4-port or 8-port).
  • the precoding of the reference signal may be in the form of a Discrete Fourier Transform (DFT) matrix, or any other form outside the DFT matrix.
  • DFT Discrete Fourier Transform
  • the resources of different precoded reference signals correspond to different precoding matrices.
  • the terminal device Based on the measurement of the plurality of precoded reference signals, the terminal device selects resources of the at least one optimal precoded reference signal and reports the resources to the base station.
  • the number of resources of the optimal pre-coded reference signal is notified to the terminal device by the base station by using Radio Resource Control (RRC) dedicated signaling or Downlink Control Information (DCI) signaling.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the number of resources of the optimal precoded reference signal may be sent to the terminal device along with the scheduling grant information of the terminal device.
  • the base station may also divide all pre-coded reference signal resources in the cell into pre-defined multiple resource clusters, and each resource cluster is composed of multiple pre-coded reference signal resources, such as all pre-coded reference signals in the assumed cell.
  • the number of resources is N, and the N resources are divided into pre-defined M resource clusters.
  • one or more resources may overlap between any two adjacent resource clusters.
  • the terminal device selects an optimal one or more resource clusters based on the channel quality measurement of the M resource clusters, and reports the identifier information of the selected optimal resource cluster to the base station along with the first precoding matrix index, and the base station is based on the terminal.
  • the device selects and reports the resources in the optimal resource cluster for the terminal device to configure a plurality of pre-coded reference signal resources specific to the terminal device, and the terminal device performs measurement based on the pre-coded reference signal resources specific to the plurality of terminal devices.
  • the optimal one or more reference signal resources are selected, and the identifier information of the selected resource is reported to the base station along with the second precoding matrix index.
  • the first precoding matrix index is a precoding index number reported by the long period, and may be an index number of W1 in the dual codebook structure.
  • the second precoding matrix index is a precoding index number reported in a short period, such as an index number of W2 in the dual codebook structure.
  • the configuration of the plurality of precoded reference signal resource clusters is long-period or aperiodic, and the configuration of the plurality of pre-coded reference signal resources in the optimal resource cluster is short-period.
  • the terminal identifier-specific optimal pre-coded resource identification information is determined by two-level resource selection and reporting. The resource identification information selected by the first-level is reported to the base station along with a long-period CSI information, and the second-level selected resource is used. The identification information is reported to the base station along with a short period of CSI information.
  • FIG. 4 shows a schematic flow diagram of a method 400 of channel measurement in accordance with an embodiment of the present invention.
  • the method 400 is performed by a terminal device. As shown in FIG. 4, the method 400 includes:
  • each first-level reference signal resource configuration in the N first-level reference signal resource configurations corresponds to one antenna port set configuration, and any two The antenna port set configuration corresponding to the first level reference signal resource configuration is different, and any one of the antenna port set configurations includes the first dimension antenna port number corresponding to the antenna port set, the second dimension antenna port number, and the antenna port set set. At least two of the number of the included antenna ports, each of the first-level reference signal resource configurations includes time-frequency resource location information, and the time-frequency resource location information is configured for each of the first-level reference signal resources. Time-frequency resource location information corresponding to the antenna port included in the antenna port set, where N is an integer greater than one;
  • the interaction between the sending device and the terminal device described by the sending device and the related features, functions, and the like are related to the description of the terminal device side, and the specific method of the channel measurement method 400 in the embodiment of the present invention is specific.
  • the description of the method 100 for the reference signal transmission in the foregoing embodiment of the present invention is omitted.
  • the method for channel measurement in the embodiment of the present invention by receiving a plurality of first-level reference signal resource configurations sent by the sending device, and performing first-level CSI measurement for each first-level reference signal resource configuration, may be multiple first
  • the first-level reference signal resource configuration is selected in the level reference signal resource configuration, which improves the flexibility of channel measurement.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be directed to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • FIG. 5 shows a schematic block diagram of a transmitting device 500 in accordance with an embodiment of the present invention.
  • the transmitting device 500 can be a base station.
  • the sending device 500 includes:
  • the sending module 510 is configured to send, to the terminal device, N first-level reference signal resource configurations, where each of the first-level reference signal resource configurations in the N first-level reference signal resource configurations corresponds to one antenna port set configuration
  • the antenna port set configuration corresponding to any two first-level reference signal resource configurations is different, and any one of the antenna port set configurations includes a first-dimensional antenna port number corresponding to the antenna port set, a second-dimensional antenna port number, and the antenna At least two of the number of antenna ports included in the port set, each of the first level reference signal resource configurations includes time-frequency resource location information, and the time-frequency resource location information is each of the first-level reference signals
  • the time-frequency resource location information corresponding to the antenna port included in the antenna port set corresponding to the resource configuration, N is an integer greater than 1, and the first reference signal is sent to the terminal device according to each of the first-level reference signal resource configurations ;
  • the processing module 520 is configured to obtain information about a first configuration in the configuration of the N first-level reference signal resources, where the information of the first configuration is obtained according to a result of CSI measurement of the first-level channel state information.
  • the first stage CSI measurement is a CSI measurement performed according to the first reference signal.
  • the sending device of the embodiment of the present invention sends a plurality of first-level reference signal resource configurations to the terminal device, and sends a reference signal to the terminal device according to each first-level reference signal resource configuration, and acquires multiple first-level reference signals.
  • the first-level reference signal resource configuration finally used in the resource configuration improves the selection flexibility of the first-level reference signal resource configuration with respect to the fixed manner of the first-level reference signal resource configuration.
  • the sending device 500 further includes a receiving module 530.
  • the processing module 520 is specifically configured to receive the first feedback information that is sent by the terminal device by using the receiving module 530, where the first feedback information includes the identifier information of the first configuration, or the first feedback.
  • the information includes the identification information of the first configuration and the result of the first-level CSI measurement corresponding to the first configuration.
  • the N first-level reference signal resource configurations correspond to M CSI processes.
  • the first feedback information is determined according to a result of the first-level CSI measurement obtained by the M CSI processes, where M is a positive integer less than or equal to N.
  • the processing module 520 is specifically configured to:
  • the second feedback information includes the identification information of the first configuration, or
  • the second feedback information includes identifier information of the second configuration, where the second configuration is a second-level reference signal resource configuration corresponding to the first configuration, or
  • the second feedback information includes the identification information of the first configuration and the result of the second-level CSI measurement corresponding to the first configuration, or
  • the second feedback information includes the identification information of the second configuration and a result of the second-level CSI measurement corresponding to the second configuration, where the second-level CSI measurement is a CSI measurement according to the second reference signal. .
  • the first level reference signal resource configuration and the second level reference signal resource configuration corresponding to each of the first level reference signal resource configurations correspond to the same CSI process
  • the second feedback information is determined according to a result of the second-level CSI measurement obtained by the M CSI processes, where M is a positive integer less than or equal to N.
  • the sending module 510 is further configured to send the notification message of the M CSI processes to the terminal device.
  • each of the first level reference signal resource configurations corresponds to a result of a first level CSI measurement, and at least two of the N first level reference signal resource configurations are configured.
  • the reference signal resource configuration corresponds to the results of different first-level CSI measurements.
  • the sending module 510 is specifically configured to send, according to the N first-level reference signal resource configurations, to the terminal device by using a time division manner and/or a frequency division manner. First reference signal.
  • the sending module 510 is specifically configured to send the information of the N first-level reference signal resource configurations to the terminal device in a non-periodical or long-period manner.
  • the transmitting device 500 of the embodiment of the present invention may correspond to the sending device in the method embodiment of the present invention, and the foregoing operations and/or functions of the respective modules in the sending device 500 are respectively implemented in order to implement the corresponding processes of the foregoing methods. , will not repeat them here.
  • the sending module 510, the processing module 520, and the receiving module 530 It can be implemented by a transmitter, a processor, and a receiver, respectively.
  • FIG. 6 shows a schematic block diagram of a terminal device 600 in accordance with an embodiment of the present invention.
  • the terminal device 600 includes:
  • the receiving module 610 is configured to receive information about N first-level reference signal resource configurations sent by the sending device, where each first-level reference signal resource configuration in the N first-level reference signal resource configurations is configured to correspond to one antenna.
  • the antenna port set configuration corresponding to any two first-level reference signal resource configurations is different, and any one of the antenna port set configurations includes the first-dimensional antenna port number corresponding to the antenna port set, and the second-dimensional antenna port number and At least two of the number of antenna ports included in the set of antenna ports, each of the first level reference signal resource configurations includes time-frequency resource location information, and the time-frequency resource location information is each of the first The time-frequency resource location information corresponding to the antenna port included in the antenna port set corresponding to the level reference signal resource configuration, N is an integer greater than 1, and receiving the transmitting device according to each of the first-level reference signal resource configurations Decoding a first reference signal sent by each first-level reference signal resource configuration;
  • the processing module 620 is configured to perform first-level channel state information CSI measurement according to the first reference signal.
  • the terminal device of the embodiment of the present invention receives a plurality of first-level reference signal resource configurations sent by the sending device, and performs first-level CSI measurement for each first-level reference signal resource configuration, which may be referenced from multiple first-level references.
  • the first-level reference signal resource configuration is selected in the signal resource configuration, which improves the flexibility of channel measurement.
  • the terminal device further includes:
  • the sending module 630 is configured to send the first feedback information to the sending device, where
  • the first feedback information includes identifier information of the first configuration in the N first-level reference signal resource configurations, or
  • the first feedback information includes the identifier information of the first configuration and a result of the first-level CSI measurement corresponding to the first configuration.
  • the N first-level reference signal resource configurations correspond to M CSI processes
  • the processing module 620 is further configured to determine, according to a result of the first-level CSI measurement obtained by the M CSI processes, the first feedback information, where M is a positive integer less than or equal to N.
  • the terminal device 600 further includes:
  • the sending module 630 is configured to send the first level reference signal resource to the sending device. Configuring a result of the corresponding first-level CSI measurement, where the result of the first-level CSI measurement corresponding to each first-level reference signal resource configuration is used by the sending device to determine that each of the first-level reference signal resource configurations corresponds to Second level reference signal resource configuration;
  • the receiving module 610 is further configured to receive, according to the second-level reference signal resource configuration corresponding to each of the first-level reference signal resource configurations, the second corresponding to the first-level reference signal resource configuration of the sending device.
  • Level reference signal resource configuration sends a second reference signal;
  • the processing module 620 is further configured to perform second-level CSI measurement according to the second reference signal.
  • the sending module 630 is further configured to send second feedback information to the sending device, where
  • the second feedback information includes identification information of the first configuration in the N first-level reference signal resource configurations, or
  • the second feedback information includes identifier information of the second configuration, where the second configuration is a second-level reference signal resource configuration corresponding to the first configuration, or
  • the second feedback information includes the identification information of the first configuration and the result of the second-level CSI measurement corresponding to the first configuration, or
  • the second feedback information includes the identification information of the second configuration and the result of the second-level CSI measurement corresponding to the second configuration.
  • the first level reference signal resource configuration and the second level reference signal resource configuration corresponding to each of the first level reference signal resource configurations correspond to the same CSI process
  • the processing module 620 is further configured to determine, according to a result of the second-level CSI measurement obtained by the M CSI processes, the second feedback information, where M is a positive integer less than or equal to N.
  • the receiving module 610 is further configured to receive the notification message of the M CSI processes sent by the sending device.
  • each of the first level reference signal resource configurations corresponds to a result of a first level CSI measurement, and at least two of the N first level reference signal resource configurations are configured.
  • the reference signal resource configuration corresponds to the results of different first-level CSI measurements.
  • the terminal device 600 of the embodiment of the present invention may correspond to the terminal device in the method embodiment of the present invention, and the foregoing operations and/or functions of the respective modules in the terminal device 600 are respectively implemented in order to implement the corresponding processes of the foregoing methods. , will not repeat them here.
  • the receiving module 610, the processing module 620, and the sending module 630 It can be implemented by a transmitter, a processor, and a receiver, respectively.
  • FIG. 7 shows a structure of a transmitting device according to still another embodiment of the present invention, including at least one processor 702 (for example, a CPU), at least one network interface 705 or other communication interface, and a memory 706.
  • the processor 702 is configured to execute executable modules, such as computer programs, stored in the memory 706.
  • the memory 706 may include a high speed random access memory (RAM), and may also include a non-volatile memory such as at least one disk memory.
  • a communication connection with at least one other network element is achieved by at least one network interface 705 (which may be wired or wireless).
  • memory 706 stores program 7061
  • processor 702 executes program 7061 for performing the method 100 of reference signal transmission of the aforementioned embodiments of the present invention.
  • FIG. 8 shows a structure of a terminal device according to still another embodiment of the present invention, including at least one processor 802 (for example, a CPU), at least one network interface 805 or other communication interface, and a memory 806.
  • the processor 802 is configured to execute executable modules, such as computer programs, stored in the memory 806.
  • the memory 806 may include a high speed random access memory (RAM: Random Access Memory), and may also include a non-volatile memory such as at least one disk memory.
  • a communication connection with at least one other network element is achieved by at least one network interface 805 (which may be wired or wireless).
  • memory 806 stores a program 8061 that executes program 8061 for performing the method 400 of channel measurement of the aforementioned embodiments of the present invention.
  • the term "and/or” is merely an association relationship describing an associated object, indicating that there may be three relationships.
  • a and/or B may indicate that A exists separately, and A and B exist simultaneously, and B cases exist alone.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本发明公开了一种参考信号发送的方法、信道测量的方法、发送设备和终端设备。该参考信号发送的方法包括:向终端设备发送N个第一级参考信号资源配置;按照每个第一级参考信号资源配置向所述终端设备发送第一参考信号;获取所述N个第一级参考信号资源配置中的第一配置的信息。本发明实施例能够提高第一级参考信号资源配置的选择灵活度。

Description

参考信号发送和信道测量的方法、发送设备和终端设备 技术领域
本发明涉及通信领域,并且更具体地,涉及参考信号发送的方法、信道测量的方法、发送设备和终端设备。
背景技术
多天线多入多出(Multiple Input Multiple Output,MIMO)技术已经被广泛地应用在无线通信系统中来提高系统容量和保证小区的覆盖。例如长期演进(long term evolution,LTE)系统的下行采用了基于多天线的发送分集、开环/闭环的空分复用和基于解调参考信号(demodulation reference signal,DM-RS)的多流传输。基于DM-RS的多流传输是LTE高级演进(LTE-Advanced,LTE-A)系统以及后续系统的主要传输模式。基于DM-RS的多流传输的流程是:用户设备(User Equipment,UE)首先根据基站(如演进基站evolved Node B,eNB或e-NodeB)配置的信道状态信息参考信号(channel state information reference signal,CSI-RS)进行信道测量,测量结果包括传输秩,传输秩所对应的预编码矩阵以及所述传输秩和预编码矩阵对应的信道质量指示(Channel Quality Indicator,CQI)中的至少一个;然后UE把测量结果反馈给eNB;eNB再根据UE反馈的测量结果进行下行调度,并根据调度结果把物理下行共享信道(Physical Downlink Shared Channel,PDSCH)通过DM-RS发送给UE。目前,基于DM-RS的多流传输都是二维的波束赋形,即发送天线都是水平放置,只能产生水平方向的波束。
为了进一步提高多天线系统的性能,正在研究二维的天线配置,即天线同时放在水平和垂直两个维度上,从而可以同时进行水平和垂直方向上的波束赋形,被称为三维波束赋形。这样,相对于目前的二维波束赋形,增加了一个在垂直方向上的波束赋形自由度,那么在同样的时频资源上可以复用更多的UE,不同的UE通过垂直和/或水平方向上的赋形波束来区分,提高资源的利用率或谱效率。
当前讨论的二维天线配置的天线端口总数最大可达到512。随着天线阵列规模的增大,对应的发送测量参考信号的开销也将成倍增长。
为了减少发送测量参考信号,如CSI-RS的开销,一种两级信道状态信 息(channel state information,CSI)测量机制被采用,其中两级CSI测量具体指的是:CSI-RS的配置和CSI测量由两级组成,第一级CSI-RS配置中的CSI-RS资源对应天线阵列的一个天线端口集合,例如子阵,UE基于对第一级CSI-RS的测量得到第一级CSI测量结果。根据所述第一级CSI测量结果确定第二级CSI-RS资源。UE基于对第二级CSI-RS资源的测量得到第二级CSI测量结果。基于第一级CSI测量结果和第二级CSI测量结果得到天线阵列总的CSI测量结果。
第一级CSI测量对应的子阵不同时,第一级CSI测量结果也不同,如在8H8V(8H8V代表了水平方向8个天线端口,垂直方向8个天线端口)的二维天线配置下,当第一级CSI测量的子阵选取为4H2V(水平方向4个天线端口垂直方向2个天线端口)和8H1V(水平方向8个天线端口垂直方向1个天线端口)时,由于这两种子阵对应的水平,垂直天线端口数不同,而水平方向和垂直方向的信道传播特征不同,因此两种子阵下得到的第一级CSI测量结果也不同,进而天线阵列对应的总CSI测量结果不同。现有技术中第一级CSI测量及其对应的子阵是小区特定的且是固定不变的,当UE处于不同的位置或UE移动带来的信道条件变化时,上述CSI测量的灵活度不够。
发明内容
本发明实施例提供了一种参考信号发送的方法、信道测量的方法、发送设备和用户设备,能够提高第一级参考信号资源配置的选择灵活度和信道测量的灵活度。
第一方面,提供了一种参考信号发送的方法,包括:
向终端设备发送N个第一级参考信号资源配置,其中,所述N个第一级参考信号资源配置中的每个第一级参考信号资源配置对应一个天线端口集合配置,任意两个第一级参考信号资源配置对应的天线端口集合配置是不同的,任意一个天线端口集合配置包括天线端口集合对应的第一维度天线端口数,第二维度天线端口数和所述天线端口集合所包含的天线端口个数中的至少两个,所述每个第一级参考信号资源配置包括时频资源位置信息,所述时频资源位置信息为所述每个第一级参考信号资源配置对应的天线端口集合所包含的天线端口对应的时频资源位置信息,N为大于1的整数;
按照所述每个第一级参考信号资源配置向所述终端设备发送第一参考信号;
获取所述N个第一级参考信号资源配置中的第一配置的信息,其中所述第一配置的信息是根据第一级信道状态信息CSI测量的结果得到的,所述第一级CSI测量为根据所述第一参考信号进行的CSI测量。
本发明实施例的参考信号发送的方法,通过向终端设备发送多个第一级参考信号资源配置,按照每一个第一级参考信号资源配置向终端设备发送参考信号,并获取多个第一级参考信号资源配置中最终使用的第一级参考信号资源配置,相对于第一级参考信号资源配置固定不变的方式,提高了第一级参考信号资源配置的选择灵活度。
结合第一方面,在第一种可能的实现方式中,所述获取所述N个第一级参考信号资源配置中的第一配置的信息包括:
接收所述终端设备发送的第一反馈信息,
其中,所述第一反馈信息包括所述第一配置的标识信息,或
所述第一反馈信息包括所述第一配置的标识信息和所述第一配置对应的第一级CSI测量的结果。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述N个第一级参考信号资源配置对应M个CSI进程,
所述第一反馈信息是根据所述M个CSI进程得到的第一级CSI测量的结果确定的,M为小于或等于N的正整数。
结合第一方面,在第三种可能的实现方式中,所述获取所述N个第一级参考信号资源配置中的第一配置的信息包括:
接收所述终端设备发送的所述每个第一级参考信号资源配置对应的第一级CSI测量的结果;
根据所述每个第一级参考信号资源配置对应的第一级CSI测量的结果,确定所述每个第一级参考信号资源配置对应的第二级参考信号资源配置;
按照所述每个第一级参考信号资源配置对应的第二级参考信号资源配置向所述终端设备发送第二参考信号;
接收所述终端设备发送的第二反馈信息,
其中,所述第二反馈信息包括所述第一配置的标识信息,或
所述第二反馈信息包括第二配置的标识信息,所述第二配置为所述第一 配置对应的第二级参考信号资源配置,或
所述第二反馈信息包括所述第一配置的标识信息和所述第一配置对应的第二级CSI测量的结果,或
所述第二反馈信息包括所述第二配置的标识信息和所述第二配置对应的第二级CSI测量的结果,所述第二级CSI测量为根据所述第二参考信号进行的CSI测量。
结合第一方面的第三种可能的实现方式,在第四种可能的实现方式中,所述每个第一级参考信号资源配置和所述每个第一级参考信号资源配置对应的第二级参考信号资源配置对应同一个CSI进程,
所述第二反馈信息是根据M个CSI进程得到的第二级CSI测量的结果确定的,M为小于或等于N的正整数。
结合第一方面的第二或四种可能的实现方式,在第五种可能的实现方式中,在所述按照所述每个第一级参考信号资源配置向所述终端设备发送第一参考信号之前,所述方法还包括:
向所述终端设备发送所述M个CSI进程的通知消息。
结合第一方面或第一方面的第一至五种可能的实现方式中的任一种可能的实现方式,在第六种可能的实现方式中,所述每个第一级参考信号资源配置对应一个第一级CSI测量的结果,所述N个第一级参考信号资源配置中至少两个第一级参考信号资源配置对应不同的第一级CSI测量的结果。
结合第一方面或第一方面的第一至六种可能的实现方式中的任一种可能的实现方式,在第七种可能的实现方式中,所述按照所述每个第一级参考信号资源配置向所述终端设备发送第一参考信号,包括:
通过时分方式和/或频分方式,按照所述N个第一级参考信号资源配置向所述终端设备发送所述第一参考信号。
在一些可能的实现方式中,发送设备可以非周期或长周期地向终端设备发送N个第一级参考信号资源配置。
在一些可能的实现方式中,发送设备可以通过高层信令向终端设备发送N个第一级参考信号资源配置。
第二方面,提供了一种信道测量的方法,包括:
接收发送设备发送的N个第一级参考信号资源配置,其中,所述N个第一级参考信号资源配置中的每个第一级参考信号资源配置对应一个天线 端口集合配置,任意两个第一级参考信号资源配置对应的天线端口集合配置是不同的,任意一个天线端口集合配置包括天线端口集合对应的第一维度天线端口数,第二维度天线端口数和所述天线端口集合所包含的天线端口个数中的至少两个,所述每个第一级参考信号资源配置包括时频资源位置信息,所述时频资源位置信息为所述每个第一级参考信号资源配置对应的天线端口集合所包含的天线端口对应的时频资源位置信息,N为大于1的整数;
根据所述每个第一级参考信号资源配置接收所述发送设备按照所述每个第一级参考信号资源配置发送的第一参考信号;
根据所述第一参考信号进行第一级信道状态信息CSI测量。
本发明实施例的信道测量的方法,通过接收发送设备发送的多个第一级参考信号资源配置,并针对每一个第一级参考信号资源配置进行第一级CSI测量,可以从多个第一级参考信号资源配置中选择第一级参考信号资源配置,提高了信道测量的灵活度。
结合第二方面,在第一种可能的实现方式中,所述方法还包括:
向所述发送设备发送第一反馈信息,
其中,所述第一反馈信息包括所述N个第一级参考信号资源配置中的第一配置的标识信息,或
所述第一反馈信息包括所述第一配置的标识信息和所述第一配置对应的第一级CSI测量的结果。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述N个第一级参考信号资源配置对应M个CSI进程;
所述方法还包括:
根据所述M个CSI进程得到的第一级CSI测量的结果,确定所述第一反馈信息,M为小于或等于N的正整数。
结合第二方面,在第三种可能的实现方式中,所述方法还包括:
向所述发送设备发送所述每个第一级参考信号资源配置对应的第一级CSI测量的结果,所述每个第一级参考信号资源配置对应的第一级CSI测量的结果用于所述发送设备确定所述每个第一级参考信号资源配置对应的第二级参考信号资源配置;
根据所述每个第一级参考信号资源配置对应的第二级参考信号资源配置接收所述发送设备按照所述每个第一级参考信号资源配置对应的第二级 参考信号资源配置发送的第二参考信号;
根据所述第二参考信号进行第二级CSI测量。
结合第二方面的第三种可能的实现方式,在第四种可能的实现方式中,所述方法还包括:
向所述发送设备发送第二反馈信息,
其中,所述第二反馈信息包括所述N个第一级参考信号资源配置中的第一配置的标识信息,或
所述第二反馈信息包括第二配置的标识信息,所述第二配置为所述第一配置对应的第二级参考信号资源配置,或
所述第二反馈信息包括所述第一配置的标识信息和所述第一配置对应的第二级CSI测量的结果,或
所述第二反馈信息包括所述第二配置的标识信息和所述第二配置对应的第二级CSI测量的结果。
结合第二方面的第四种可能的实现方式,在第五种可能的实现方式中,所述每个第一级参考信号资源配置和所述每个第一级参考信号资源配置对应的第二级参考信号资源配置对应同一个CSI进程;
所述方法还包括:
根据M个CSI进程得到的第二级CSI测量的结果,确定所述第二反馈信息,M为小于或等于N的正整数。
结合第二方面的第二或五种可能的实现方式,在第六种可能的实现方式中,在所述根据所述每个第一级参考信号资源配置接收所述发送设备按照所述每个第一级参考信号资源配置发送的第一参考信号之前,所述方法还包括:
接收所述发送设备发送的所述M个CSI进程的通知消息。
结合第二方面或第二方面的第一至六种可能的实现方式中的任一种可能的实现方式,在第七种可能的实现方式中,所述每个第一级参考信号资源配置对应一个第一级CSI测量的结果,所述N个第一级参考信号资源配置中至少两个第一级参考信号资源配置对应不同的第一级CSI测量的结果。
第三方面,提供了一种发送设备,包括执行第一方面的方法的模块。
第四方面,提供了一种终端设备,包括执行第二方面的方法的模块。
第五方面,提供了一种发送设备。该发送设备包括处理器、存储器和通 信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该指令在被处理器执行时,使处理器执行第一方面的方法。
第六方面,提供了一种终端设备。该用户设备包括处理器、存储器和通信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该指令在被处理器执行时,使处理器执行第二方面的方法。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的应用场景的示意图。
图2是本发明一个实施例的参考信号发送的方法的示意性流程图。
图3a是本发明一个实施例的通过时分方式发送参考信号的示意图。
图3b是本发明一个实施例的通过频分方式发送参考信号的示意图。
图4是本发明一个实施例的信道测量的方法的示意性流程图。
图5是发明一个实施例的发送设备的示意性框图。
图6是发明一个实施例的终端设备的示意性框图。
图7是发明另一实施例的发送设备的结构示意图。
图8是发明另一实施例的终端设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
需要说明的是,本发明各实施例中的内容可以相互结合。
图1是本发明实施例的应用场景的示意图。在图1中,基站101和终端设备,例如终端设备111、终端设备112和终端设备113,通过MIMO技术进行通信。基站101的天线可以采用二维天线配置,传输采用三维波束赋形。CSI测量可以采用多级CSI测量的机制,即两级或更多级CSI测量的机制。
在本发明实施例中,终端设备(terminal device)可以称为用户设备(User Equipment,UE)、终端(terminal)、移动台(Mobile Station,MS)、移动终端(mobile terminal)等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝电话”)、具有移动终端的计算机等,例如,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。
在本发明实施例中,发送设备可以是基站,也可以是其他向终端设备发送数据的设备,如,小站(Small Cell),中继站等,本发明实施例并不限定。基站可以是LTE或LTE-A中的演进型基站(Evolved Node B,eNB或e-NodeB),也可以是其他通信系统中的基站,本发明实施例并不限定。但为描述方便,下述实施例将以基站eNB和终端设备为例进行说明。
应理解,在本发明实施例中,术语“天线端口集合”在一些场景中也可以称为“天线端口阵列”、“天线阵列”或“子阵”,本发明实施例并不限定。
多级CSI测量,即两级或更多级CSI测量中,第一级CSI测量对应一个天线端口集合,例如发送设备天线端口阵列中的一个子阵。以两级CSI测量为例,终端设备基于第一级CSI测量得到第一级CSI测量结果。基站根据第一级CSI测量结果得到第二级CSI测量对应的天线端口集合配置。终端设备基于第二级CSI测量得到第二级CSI测量结果。基于第一级CSI测量结果和第二级CSI测量结果可得到发送设备的整个天线阵列对应的CSI测量结果。
例如,当总天线端口数为64时,假定对应的天线端口阵列结构为8H8V(8H8V代表了水平方向8个天线端口,垂直方向8个天线端口),此时可采用两级CSI测量方法,其中,第一级参考信号资源配置的天线端口集合所包含的天线端口数可以为8。这里第一级参考信号资源配置中的8个端口对应的天线端口集合配置有8H1V(水平方向8个天线端口垂直方向1个天线端口),4H2V(水平方向4个天线端口垂直方向2个天线端口),2H4V(水平方向2个天线端口垂直方向4个天线端口),1H8V(水平方向1个天线端口垂直方向8个天线端口)等多种。
当发送设备有更多的总天线端口数,如总天线端口数为512时,此时三级甚至更多级的CSI测量方法被采用,其中,后一级CSI测量的参考信号资源配置可以根据前一级CSI测量的结果确定,每级CSI测量对应的天线端口 数可以为小于或等于总天线端口数的任意值,例如,可以为当前LTE系统支持的1,2,4,8等典型的天线端口数,也可以为3,5,6,7,9,10等其他任意的天线端口数。在至少两级的CSI测量方法中,第一级参考信号资源配置及对应的CSI测量结果直接影响后续第二级,第三级甚至整个天线阵列对应的CSI测量结果。
应理解,在本发明实施例中,“第一级”和“第二级”是相对而言的,即,“第一级”表示前一级,“第二级”表示后一级,不应限制为是多级中的绝对的第一级和第二级。例如,当有三级测量时,在本发明实施例中的“第一级”和“第二级”可以分别是该三级中的第一级和第二级,还可以分别是三级中的第二级和第三级。
小区内的不同终端设备由于所处地理位置的不同,或终端设备移动,会带来信道特征的变化。例如,发送设备的天线在10米的高度时,终端设备除了可位于室外地面上外,其还可以随机均匀分布在1-8层的楼宇内,处于高楼内的终端设备由于其同时兼有水平,垂直两维的位置分辨率,因此其第一级参考信号资源配置优选地可采用4H2V或2H4V这种天线端口集合形式,而对于处在地面上的室外终端设备,由于其垂直维的高度固定,因此其第一级参考信号资源配置优选地可采用8H1V这种天线端口集合形式。
图2示出了根据本发明实施例的参考信号发送的方法100的示意性流程图。该方法100由发送设备(例如基站)执行。如图2所示,该方法100包括:
S110,向终端设备发送N个第一级参考信号资源配置,其中,所述N个第一级参考信号资源配置中的每个第一级参考信号资源配置对应一个天线端口集合配置,任意两个第一级参考信号资源配置对应的天线端口集合配置是不同的,任意一个天线端口集合配置包括天线端口集合对应的第一维度天线端口数,第二维度天线端口数和所述天线端口集合所包含的天线端口个数中的至少两个,所述每个第一级参考信号资源配置包括时频资源位置信息,所述时频资源位置信息为所述每个第一级参考信号资源配置对应的天线端口集合所包含的天线端口对应的时频资源位置信息,N为大于1的整数;
S120,按照所述每个第一级参考信号资源配置向所述终端设备发送第一参考信号;
S130,获取所述N个第一级参考信号资源配置中的第一配置的信息,其 中所述第一配置的信息是根据第一级CSI测量的结果得到的,所述第一级CSI测量为根据所述第一参考信号进行的CSI测量。
在本发明实施例中,第一级参考信号资源配置对应一个天线端口集合配置。该天线端口集合配置可以包括天线端口集合对应的第一维度天线端口数,第二维度天线端口数和天线端口集合所包含的天线端口数中的至少两个。可选地,第一维度和第二维度可以分别为水平维度和垂直维度。例如,天线端口集合具体可以为子阵,天线端口集合配置具体可以采用xHyV的形式。
在本发明实施例中,参考信号资源配置包括时频资源位置信息。具体地,第一级参考信号资源配置包括的时频资源位置信息为该第一级参考信号资源配置对应的天线端口集合所包含的天线端口对应的时频资源位置信息,其中,天线端口对应的时频资源位置是指该天线端口用于传输参考信号的时频资源的位置。类似地,下文中的第二级参考信号资源配置包括的时频资源位置信息为该第二级参考信号资源配置对应的天线端口集合所包含的天线端口对应的时频资源位置信息,其中,该第二级参考信号资源配置对应的天线端口集合具体可以根据第一级参考信号资源配置对应的天线端口集合和第一级CSI测量的结果确定。
发送设备配置多个第一级参考信号资源,将多个第一级参考信号资源配置发送给终端设备,触发终端设备针对多个第一参考信号进行第一级CSI测量。发送设备根据第一级CSI测量的结果获取N个第一级参考信号资源配置中的第一配置的信息。这样,第一级参考信号资源配置不再是小区特定的,而是可以灵活地选择,从而能够提高信道测量的灵活度。
因此,本发明实施例的参考信号发送的方法,通过向终端设备发送多个第一级参考信号资源配置,按照每一个第一级参考信号资源配置向终端设备发送参考信号,并获取多个第一级参考信号资源配置中最终使用的第一级参考信号资源配置,相对于第一级参考信号资源配置固定不变的方式,提高了第一级参考信号资源配置的选择灵活度。
在本发明实施例中,同一种天线阵列规模下的第一级参考信号资源配置的天线端口集合的天线端口个数可以有多种,如64个天线端口的阵列规模下的第一级参考信号资源配置的天线端口集合的天线端口个数可以为1,2,4,8,16等,可选地也可以是3,5,6,7,9,10等其他任意值。
在本发明实施例中,用xHyV表示天线端口集合配置,表示水平方向x个天线端口,垂直方向y个天线端口。以总共64个天线端口的天线规模为例,第一级参考信号资源配置对应的天线端口集合配置包括4H2V,2H4V,8H1V,1H8V等多种,即可以有多个第一级参考信号资源配置。
在S110中,发送设备向终端设备发送N个第一级参考信号资源配置。
通过发送N个第一级参考信号资源配置触发终端设备针对多个第一参考信号进行测量。
以总共64个天线端口的天线规模为例,可以有4个第一级参考信号资源配置,相应的天线端口集合配置可以为4H2V,2H4V,8H1V和1H8V。
可选地,发送设备可以非周期或长周期地向终端设备发送N个第一级参考信号资源配置。也就是说,发送设备可以非周期或长周期地触发终端设备针对多个第一参考信号进行测量。例如,对于长周期方式,发送设备可以按照设定的长周期进行触发;对于非周期方式,发送设备可以根据需要进行触发。相应地,发送设备非周期或长周期地向终端设备发送N个第一级参考信号资源配置对应的N个第一参考信号。
可选地,发送设备可以通过高层信令向终端设备发送N个第一级参考信号资源配置。也就是说,发送设备可以通过高层信令触发终端设备针对多个第一参考信号进行测量。
在S120中,发送设备按照每个第一级参考信号资源配置向该终端设备发送第一参考信号。
发送设备按照N个第一级参考信号资源配置中的每一个第一级参考信号资源配置向终端设备发送第一参考信号。终端设备根据该第一参考信号进行第一级CSI测量。
例如,发送设备分别通过4H2V,2H4V,8H1V和1H8V的天线端口集合配置对应的天线端口发送第一参考信号。
可选地,发送设备可以通过时分方式和/或频分方式,按照N个第一级参考信号资源配置向终端设备发送该第一参考信号。
图3a是通过时分方式发送参考信号的示意图。图3a和下面的图3b中,天线端口集合具体为子阵,不同子阵的天线端口可以部分相同,也可以完全不同。
如图3a所示,当通过时分方式发送时,不同的发射时刻采用不同的第 一级参考信号资源配置进行发送。例如,在第一时刻通过4H2V对应的天线端口发送参考信号,在第二时刻通过2H4V对应的天线端口发送参考信号等。在这种方式下,不同第一级参考信号资源配置的频域位置可以相同。
图3b是通过频分方式发送参考信号的示意图。
如图3b所示,当通过频分方式发送时,多个第一参考信号在整个系统带宽上采用梳齿状的频分方式发送给终端设备。如当第一级参考信号资源配置数目为m时,整个系统带宽以1个资源块(Resource Block,RB)为粒度交叉等间隔地分成m份,如第j份(j=1,2,…,m)资源对应的整个系统带宽上的RB分布为m*i+j,i=0,1,…,n/m-1,其中n为整个系统带宽对应的RB总数。在这种方式下,不同第一级参考信号资源配置的时域位置可以相同。
在S130中,发送设备获取N个第一级参考信号资源配置中的第一配置的信息。
在本发明实施例中,发送设备可以是只根据第一级CSI测量获取第一配置的信息,也可以是根据多级CSI测量获取第一配置的信息,下面分别进行说明。
在本发明一个实施例中,可选地,获取所述N个第一级参考信号资源配置中的第一配置的信息包括:
接收所述终端设备发送的第一反馈信息,
其中,所述第一反馈信息包括所述第一配置的标识信息,或
所述第一反馈信息包括所述第一配置的标识信息和所述第一配置对应的第一级CSI测量的结果。
具体而言,终端设备根据多个第一参考信号分别进行第一级CSI测量后,确定第一配置。可选地,该第一配置可以为N个第一级参考信号资源配置中的一个配置,例如,可以是最优配置,该最优配置对应最优的第一级CSI测量的结果。终端设备将第一配置的标识信息发送给发送设备,或者,终端设备将第一配置的标识信息和该第一配置对应的第一级CSI测量的结果发送给发送设备。也就是说,终端设备可以只向发送设备发送第一配置的标识信息,也可以向发送设备发送第一配置的标识信息和该第一配置对应的第一级CSI测量的结果。在发送第一级CSI测量的结果的情况下,发送设备可以基于该结果生成第二级参考信号资源配置。
可选地,终端设备可以根据M个CSI进程得到的第一级CSI测量的结 果,确定第一反馈信息,即所述第一配置的标识信息,或所述第一配置的标识信息和所述第一配置对应的第一级CSI测量的结果,M为小于或等于N的正整数,其中,N个第一级参考信号资源配置对应M个CSI进程。也就是说,终端设备可以根据N个第一级参考信号资源配置对应的M个CSI进程确定该第一配置。
可选地,发送设备可以先向终端设备发送M个CSI进程的通知消息。终端设备接收到该通知消息后,进行M个CSI进程的测量,确定该第一配置。
例如,发送设备可以在触发终端设备针对N个第一参考信号进行测量时,为终端设备配置一次CSI结果上报所关联的CSI进程数目M(M为小于或等于N的正整数),而没有触发时,为终端设备配置一次CSI结果上报所关联的CSI进程数目为1。
M个CSI进程的通知消息中至少包括:M个进程关联的参考信号资源配置,当M小于N时,至少一个CSI进程关联了至少两个参考信号资源配置。即至少一个CSI进程关联至少两个参考信号测量的结果,例如,可以取两个结果的最优值或平均值等。M个CSI进程对应M个CSI测量结果。终端设备基于该M个CSI测量结果进行上报。
在本发明另一个实施例中,可选地,获取所述N个第一级参考信号资源配置中的第一配置的信息包括:
接收所述终端设备发送的所述每个第一级参考信号资源配置对应的第一级CSI测量的结果;
根据所述每个第一级参考信号资源配置对应的第一级CSI测量的结果,确定所述每个第一级参考信号资源配置对应的第二级参考信号资源配置;
按照所述每个第一级参考信号资源配置对应的第二级参考信号资源配置向所述终端设备发送第二参考信号;
接收所述终端设备发送的第二反馈信息,
其中,所述第二反馈信息包括所述第一配置的标识信息,或
所述第二反馈信息包括第二配置的标识信息,所述第二配置为所述第一配置对应的第二级参考信号资源配置,或
所述第二反馈信息包括所述第一配置的标识信息和所述第一配置对应的第二级CSI测量的结果,或
所述第二反馈信息包括所述第二配置的标识信息和所述第二配置对应的第二级CSI测量的结果,所述第二级CSI测量为根据所述第二参考信号进行的CSI测量。
具体而言,终端设备根据多个第一参考信号分别进行第一级CSI测量后,将每个第一级参考信号资源配置对应的第一级CSI测量的结果发送给发送设备。第一级CSI测量结果可以包括一个最优预编码矩阵,预编码矩阵的上报形式可以为预编码矩阵索引。
在本发明各种实施例中,可选地,每个第一级参考信号资源配置对应一个第一级CSI测量的结果,N个第一级参考信号资源配置中至少两个第一级参考信号资源配置对应不同的第一级CSI测量的结果。
可选地,第一级CSI测量的结果可以包括预编码矩阵索引、秩指示、信道质量指示和预编码矩阵类型指示中的至少一个。
可选地,每种天线端口集合配置对应一个码本集,例如4H2V对应一个码本集1,2H4V对应另一个码本集2。终端设备可根据天线端口集合配置进行天线端口集合相应的最优码本的选择和结果的上报。
发送设备接收到每个第一级参考信号资源配置对应的第一级CSI测量的结果后,根据每个第一级参考信号资源配置对应的第一级CSI测量的结果,确定每个第一级参考信号资源配置对应的第二级参考信号资源配置。以总共64个天线端口的天线规模为例,其中,第一级参考信号资源配置对应的天线端口集合配置包括4H2V,2H4V,8H1V,1H8V等多种,假定基于第一级参考信号资源配置的CSI测量结果中秩(rank)恒定为1,第二级参考信号资源配置对应的天线端口集合配置有2H4V,4H2V,1H8V和8H1V等几种。当第一级参考信号资源配置的CSI测量结果中秩大于1时,第二级参考信号资源配置对应的天线端口集合配置中的天线端口个数随着秩的增加而增加,如当秩等于2时,第二级参考信号资源配置对应的天线端口集合配置中的天线端口个数为16,具体的天线端口集合配置可选地有4H4V,8H2V,2H8V等几种。
发送设备按照第二级参考信号资源配置向终端设备发送第二参考信号。终端设备根据该第二参考信号进行第二级CSI测量。终端设备根据第二参考信号进行第二级CSI测量后,确定第一配置,或第一配置对应的第二配置。终端设备将第一配置的标识信息,或第二配置的标识信息,或第一配置的标 识信息和第一配置对应的第二级CSI测量的结果,或第二配置的标识信息和第二配置对应的第二级CSI测量的结果发送给发送设备。
可选地,终端设备可以根据M个CSI进程得到的第二级CSI测量的结果,确定第二反馈信息,即所述第一配置的标识信息,或所述第二配置的标识信息,或所述第一配置的标识信息和所述第一配置对应的第二级CSI测量的结果,或所述第二配置的标识信息和所述第二配置对应的第二级CSI测量的结果,M为小于或等于N的正整数,其中,每个第一级参考信号资源配置和该每个第一级参考信号资源配置对应的第二级参考信号资源配置对应同一个CSI进程。也就是说,终端设备可以根据N个第一级参考信号资源配置和相应的第二级参考信号资源配置对应的M个CSI进程得到该第二配置或该第一配置。
可选地,发送设备可以先向终端设备发送M个CSI进程的通知消息。终端设备接收到该通知消息后,进行M个CSI进程的测量,确定上述配置。
例如,发送设备可以在触发终端设备针对多个第一级参考信号资源配置进行测量时,为终端设备配置一次CSI测量结果上报所关联的CSI进程数目M,而没有触发时,为终端设备配置一次CSI测量结果上报所关联的CSI进程数目1。
M个CSI进程的通知消息中至少包括:M个进程关联的参考信号资源配置的信息,当M小于N时,至少一个CSI进程关联了至少两个第一级参考信号资源配置或至少两个第二级参考信号资源配置。M个CSI进程对应M个CSI测量结果。终端设备基于该M个CSI测量结果进行上报。
在本发明实施例中,可选地,终端设备可以通过物理上行控制信道(Physical Uplink Control Channel,PUCCH)或物理上行共享信道(Physical Uplink Shared Channel,PUSCH)发送CSI测量的结果。
本发明实施例可以实现多个第一级参考信号资源配置对应的CSI测量结果的一次上报,从而能够节省终端设备的发射功率,同时也降低对邻区的干扰。
可选地,另一种降低参考信号资源开销的方法可以是对参考信号进行预编码(等价于对参考信号资源的端口进行虚拟化和降维),终端设备基于预编码后的参考信号进行信道质量测量,通过对参考信号进行预编码可实现参考信号天线端口的降维,如预编码前的参考信号天线端口数为16,通过对 16天线端口的参考信号进行不同预编码矩阵的虚拟化可得到多个预编码后的较小天线端口(如4端口或8端口)的参考信号资源。
可选地,对参考信号的预编码可以是离散傅里叶变换(Discrete Fourier Transform,DFT)矩阵的形式,或DFT矩阵外的任意其他形式。不同预编码后的参考信号的资源对应不同的预编码矩阵。基于对多个预编码后的参考信号的测量,终端设备选择至少一个最优的预编码后的参考信号的资源并上报给基站。其中最优的预编码后的参考信号的资源的数目由基站通过无线资源控制(Radio Resource Control,RRC)专用信令或下行控制信息(Downlink Control Information,DCI)信令通知给终端设备。
可选地,所述最优的预编码后的参考信号的资源的数目可伴随终端设备的调度授权(grant)信息一起发送给终端设备。基站也可将小区内所有预编码后的参考信号资源分成预定义的多个资源簇,每个资源簇由多个预编码后的参考信号资源组成,如假定小区内所有预编码后的参考信号资源数目为N,所述N个资源被分成预定义的M个资源簇,可选地,任意相邻的两个资源簇之间可以有重叠的一个或多个资源。终端设备基于对M个资源簇的信道质量测量选择最优的一个或多个资源簇,并将所述选择的最优资源簇的标识信息伴随第一预编码矩阵索引上报给基站,基站基于终端设备选择和上报的最优资源簇中的资源为终端设备配置终端设备特定的多个预编码后的参考信号资源,终端设备基于对多个终端设备特定的预编码后的参考信号资源的测量再次选取最优的一个或多个参考信号资源,并将所述选择的资源的标识信息伴随第二预编码矩阵索引上报给基站。
其中,第一预编码矩阵索引为长周期上报的预编码索引号,如可以为双码本结构中的W1的索引号。而第二预编码矩阵索引为短周期上报的预编码索引号,如可以为双码本结构中的W2的索引号。多个预编码后的参考信号资源簇的配置是长周期或非周期的,而最优资源簇内的多个预编码后的参考信号资源的配置是短周期的。终端设备特定的最优预编码后的资源标识信息由两级的资源选择和上报来确定,第一级选择的资源标识信息伴随一个长周期的CSI信息上报给基站,而第二级选择的资源标识信息伴随一个短周期的CSI信息上报给基站。
应理解,本发明实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
以上从发送设备的角度详细描述了根据本发明实施例的参考信号发送的方法,下面将从终端设备的角度描述根据本发明实施例的信道测量的方法。
图4示出了根据本发明实施例的信道测量的方法400的示意性流程图。该方法400由终端设备执行。如图4所示,该方法400包括:
S410,接收发送设备发送的N个第一级参考信号资源配置,其中,所述N个第一级参考信号资源配置中的每个第一级参考信号资源配置对应一个天线端口集合配置,任意两个第一级参考信号资源配置对应的天线端口集合配置是不同的,任意一个天线端口集合配置包括天线端口集合对应的第一维度天线端口数,第二维度天线端口数和所述天线端口集合所包含的天线端口个数中的至少两个,所述每个第一级参考信号资源配置包括时频资源位置信息,所述时频资源位置信息为所述每个第一级参考信号资源配置对应的天线端口集合所包含的天线端口对应的时频资源位置信息,N为大于1的整数;
S420,根据所述每个第一级参考信号资源配置接收所述发送设备按照所述每个第一级参考信号资源配置发送的第一参考信号;
S430,根据所述第一参考信号进行第一级CSI测量。
应理解,在本发明实施例中,发送设备侧描述的发送设备和终端设备之间的交互及相关特性、功能等与终端设备侧的描述相应,本发明实施例的信道测量的方法400的具体描述可以参见前述本发明实施例的参考信号发送的方法100的相应描述,为了简洁,在此不再赘述。
本发明实施例的信道测量的方法,通过接收发送设备发送的多个第一级参考信号资源配置,并针对每一个第一级参考信号资源配置进行第一级CSI测量,可以从多个第一级参考信号资源配置中选择第一级参考信号资源配置,提高了信道测量的灵活度。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上文详细描述了根据本发明实施例的参考信号发送和信道测量的方法,下面将描述根据本发明实施例的发送设备和终端设备。
图5示出了根据本发明实施例的发送设备500的示意性框图。该发送设备500可以是基站。如图5所示,该发送设备500包括:
发送模块510,用于向终端设备发送N个第一级参考信号资源配置,其中,所述N个第一级参考信号资源配置中的每个第一级参考信号资源配置对应一个天线端口集合配置,任意两个第一级参考信号资源配置对应的天线端口集合配置是不同的,任意一个天线端口集合配置包括天线端口集合对应的第一维度天线端口数,第二维度天线端口数和所述天线端口集合所包含的天线端口个数中的至少两个,所述每个第一级参考信号资源配置包括时频资源位置信息,所述时频资源位置信息为所述每个第一级参考信号资源配置对应的天线端口集合所包含的天线端口对应的时频资源位置信息,N为大于1的整数;以及按照所述每个第一级参考信号资源配置向所述终端设备发送第一参考信号;
处理模块520,用于获取所述N个第一级参考信号资源配置中的第一配置的信息,其中所述第一配置的信息是根据第一级信道状态信息CSI测量的结果得到的,所述第一级CSI测量为根据所述第一参考信号进行的CSI测量。
本发明实施例的发送设备,通过向终端设备发送多个第一级参考信号资源配置,并按照每一个第一级参考信号资源配置向终端设备发送参考信号,并获取多个第一级参考信号资源配置中最终使用的第一级参考信号资源配置,相对于第一级参考信号资源配置固定不变的方式,提高了第一级参考信号资源配置的选择灵活度。
在本发明实施例中,可选地,所述发送设备500还包括接收模块530。
所述处理模块520具体用于通过所述接收模块530接收所述终端设备发送的第一反馈信息,其中,所述第一反馈信息包括所述第一配置的标识信息,或所述第一反馈信息包括所述第一配置的标识信息和所述第一配置对应的第一级CSI测量的结果。
在本发明实施例中,可选地,所述N个第一级参考信号资源配置对应M个CSI进程,
所述第一反馈信息是根据所述M个CSI进程得到的第一级CSI测量的结果确定的,M为小于或等于N的正整数。
在本发明实施例中,可选地,所述处理模块520具体用于:
通过所述接收模块530接收所述终端设备发送的所述每个第一级参考信号资源配置对应的第一级CSI测量的结果;
根据所述每个第一级参考信号资源配置对应的第一级CSI测量的结果, 确定所述每个第一级参考信号资源配置对应的第二级参考信号资源配置;
按照所述每个第一级参考信号资源配置对应的第二级参考信号资源配置通过所述发送模块510向所述终端设备发送第二参考信号;
通过所述接收模块530接收所述终端设备发送的第二反馈信息,
其中,所述第二反馈信息包括所述第一配置的标识信息,或
所述第二反馈信息包括第二配置的标识信息,所述第二配置为所述第一配置对应的第二级参考信号资源配置,或
所述第二反馈信息包括所述第一配置的标识信息和所述第一配置对应的第二级CSI测量的结果,或
所述第二反馈信息包括所述第二配置的标识信息和所述第二配置对应的第二级CSI测量的结果,所述第二级CSI测量为根据所述第二参考信号进行的CSI测量。
在本发明实施例中,可选地,所述每个第一级参考信号资源配置和所述每个第一级参考信号资源配置对应的第二级参考信号资源配置对应同一个CSI进程,
所述第二反馈信息是根据M个CSI进程得到的第二级CSI测量的结果确定的,M为小于或等于N的正整数。
在本发明实施例中,可选地,所述发送模块510还用于向所述终端设备发送所述M个CSI进程的通知消息。
在本发明实施例中,可选地,所述每个第一级参考信号资源配置对应一个第一级CSI测量的结果,所述N个第一级参考信号资源配置中至少两个第一级参考信号资源配置对应不同的第一级CSI测量的结果。
在本发明实施例中,可选地,所述发送模块510具体用于,通过时分方式和/或频分方式,按照所述N个第一级参考信号资源配置向所述终端设备发送所述第一参考信号。
在本发明实施例中,可选地,该发送模块510具体用于非周期或长周期地向该终端设备发送该N个第一级参考信号资源配置的信息。
本发明实施例的发送设备500可对应于本发明方法实施例中的发送设备,并且发送设备500中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
在本发明实施例中,上述发送模块510、处理模块520和接收模块530 可以分别由发送器、处理器和接收器实现。
图6示出了根据本发明实施例的终端设备600的示意性框图。如图6所示,该终端设备600包括:
接收模块610,用于接收发送设备发送的N个第一级参考信号资源配置的信息,其中,所述N个第一级参考信号资源配置中的每个第一级参考信号资源配置对应一个天线端口集合配置,任意两个第一级参考信号资源配置对应的天线端口集合配置是不同的,任意一个天线端口集合配置包括天线端口集合对应的第一维度天线端口数,第二维度天线端口数和所述天线端口集合所包含的天线端口个数中的至少两个,所述每个第一级参考信号资源配置包括时频资源位置信息,所述时频资源位置信息为所述每个第一级参考信号资源配置对应的天线端口集合所包含的天线端口对应的时频资源位置信息,N为大于1的整数;以及根据所述每个第一级参考信号资源配置接收所述发送设备按照所述每个第一级参考信号资源配置发送的第一参考信号;
处理模块620,用于根据所述第一参考信号进行第一级信道状态信息CSI测量。
本发明实施例的终端设备,通过接收发送设备发送的多个第一级参考信号资源配置,并针对每一个第一级参考信号资源配置进行第一级CSI测量,可以从多个第一级参考信号资源配置中选择第一级参考信号资源配置,提高了信道测量的灵活度。
在本发明实施例中,可选地,该终端设备还包括:
发送模块630,用于向所述发送设备发送第一反馈信息,
其中,所述第一反馈信息包括所述N个第一级参考信号资源配置中的第一配置的标识信息,或
所述第一反馈信息包括所述第一配置的标识信息和所述第一配置对应的第一级CSI测量的结果。
在本发明实施例中,可选地,所述N个第一级参考信号资源配置对应M个CSI进程;
所述处理模块620还用于,根据所述M个CSI进程得到的第一级CSI测量的结果,确定所述第一反馈信息,M为小于或等于N的正整数。
在本发明实施例中,可选地,该终端设备600还包括:
发送模块630,用于向所述发送设备发送所述每个第一级参考信号资源 配置对应的第一级CSI测量的结果,所述每个第一级参考信号资源配置对应的第一级CSI测量的结果用于所述发送设备确定所述每个第一级参考信号资源配置对应的第二级参考信号资源配置;
所述接收模块610还用于根据所述每个第一级参考信号资源配置对应的第二级参考信号资源配置接收所述发送设备按照所述每个第一级参考信号资源配置对应的第二级参考信号资源配置发送的第二参考信号;
所述处理模块620还用于根据所述第二参考信号进行第二级CSI测量。
在本发明实施例中,可选地,所述发送模块630还用于,向所述发送设备发送第二反馈信息,
其中,所述第二反馈信息包括所述N个第一级参考信号资源配置中的第一配置的标识信息,或
所述第二反馈信息包括第二配置的标识信息,所述第二配置为所述第一配置对应的第二级参考信号资源配置,或
所述第二反馈信息包括所述第一配置的标识信息和所述第一配置对应的第二级CSI测量的结果,或
所述第二反馈信息包括所述第二配置的标识信息和所述第二配置对应的第二级CSI测量的结果。
在本发明实施例中,可选地,所述每个第一级参考信号资源配置和所述每个第一级参考信号资源配置对应的第二级参考信号资源配置对应同一个CSI进程;
所述处理模块620还用于,根据M个CSI进程得到的第二级CSI测量的结果,确定所述第二反馈信息,M为小于或等于N的正整数。
在本发明实施例中,可选地,该接收模块610还用于接收该发送设备发送的该M个CSI进程的通知消息。
在本发明实施例中,可选地,所述每个第一级参考信号资源配置对应一个第一级CSI测量的结果,所述N个第一级参考信号资源配置中至少两个第一级参考信号资源配置对应不同的第一级CSI测量的结果。
本发明实施例的终端设备600可对应于本发明方法实施例中的终端设备,并且终端设备600中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
在本发明实施例中,上述接收模块610、处理模块620和发送模块630 可以分别由发送器、处理器和接收器实现。
图7示出了本发明的又一实施例提供的发送设备的结构,包括至少一个处理器702(例如CPU),至少一个网络接口705或者其他通信接口,和存储器706。处理器702用于执行存储器706中存储的可执行模块,例如计算机程序。存储器706可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个网络接口705(可以是有线或者无线)实现与至少一个其他网元之间的通信连接。
在一些实施方式中,存储器706存储了程序7061,处理器702执行程序7061,用于执行前述本发明实施例的参考信号发送的方法100。
图8示出了本发明的又一实施例提供的终端设备的结构,包括至少一个处理器802(例如CPU),至少一个网络接口805或者其他通信接口,和存储器806。处理器802用于执行存储器806中存储的可执行模块,例如计算机程序。存储器806可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个网络接口805(可以是有线或者无线)实现与至少一个其他网元之间的通信连接。
在一些实施方式中,存储器806存储了程序8061,处理器802执行程序8061,用于执行前述本发明实施例的信道测量的方法400。
应理解,在本发明实施例中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述 描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (32)

  1. 一种参考信号发送的方法,其特征在于,包括:
    向终端设备发送N个第一级参考信号资源配置,其中,所述N个第一级参考信号资源配置中的每个第一级参考信号资源配置对应一个天线端口集合配置,任意两个第一级参考信号资源配置对应的天线端口集合配置是不同的,任意一个天线端口集合配置包括天线端口集合对应的第一维度天线端口数,第二维度天线端口数和所述天线端口集合所包含的天线端口个数中的至少两个,所述每个第一级参考信号资源配置包括时频资源位置信息,所述时频资源位置信息为所述每个第一级参考信号资源配置对应的天线端口集合所包含的天线端口对应的时频资源位置信息,N为大于1的整数;
    按照所述每个第一级参考信号资源配置向所述终端设备发送第一参考信号;
    获取所述N个第一级参考信号资源配置中的第一配置的信息,其中,所述第一配置的信息是根据第一级信道状态信息CSI测量的结果得到的,所述第一级CSI测量为根据所述第一参考信号进行的CSI测量。
  2. 根据权利要求1所述的方法,其特征在于,所述获取所述N个第一级参考信号资源配置中的第一配置的信息包括:
    接收所述终端设备发送的第一反馈信息,
    其中,所述第一反馈信息包括所述第一配置的标识信息,或
    所述第一反馈信息包括所述第一配置的标识信息和所述第一配置对应的第一级CSI测量的结果。
  3. 根据权利要求2所述的方法,其特征在于,所述N个第一级参考信号资源配置对应M个CSI进程,
    所述第一反馈信息是根据所述M个CSI进程得到的第一级CSI测量的结果确定的,M为小于或等于N的正整数。
  4. 根据权利要求1所述的方法,其特征在于,所述获取所述N个第一级参考信号资源配置中的第一配置的信息包括:
    接收所述终端设备发送的所述每个第一级参考信号资源配置对应的第一级CSI测量的结果;
    根据所述每个第一级参考信号资源配置对应的第一级CSI测量的结果,确定所述每个第一级参考信号资源配置对应的第二级参考信号资源配置;
    按照所述每个第一级参考信号资源配置对应的第二级参考信号资源配置向所述终端设备发送第二参考信号;
    接收所述终端设备发送的第二反馈信息,
    其中,所述第二反馈信息包括所述第一配置的标识信息,或
    所述第二反馈信息包括第二配置的标识信息,所述第二配置为所述第一配置对应的第二级参考信号资源配置,或
    所述第二反馈信息包括所述第一配置的标识信息和所述第一配置对应的第二级CSI测量的结果,或
    所述第二反馈信息包括所述第二配置的标识信息和所述第二配置对应的第二级CSI测量的结果,所述第二级CSI测量为根据所述第二参考信号进行的CSI测量。
  5. 根据权利要求4所述的方法,其特征在于,所述每个第一级参考信号资源配置和所述每个第一级参考信号资源配置对应的第二级参考信号资源配置对应同一个CSI进程,
    所述第二反馈信息是根据M个CSI进程得到的第二级CSI测量的结果确定的,M为小于或等于N的正整数。
  6. 根据权利要求3或5所述的方法,其特征在于,在所述按照所述每个第一级参考信号资源配置向所述终端设备发送第一参考信号之前,所述方法还包括:
    向所述终端设备发送所述M个CSI进程的通知消息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述每个第一级参考信号资源配置对应一个第一级CSI测量的结果,所述N个第一级参考信号资源配置中至少两个第一级参考信号资源配置对应不同的第一级CSI测量的结果。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述按照所述每个第一级参考信号资源配置向所述终端设备发送第一参考信号,包括:
    通过时分方式和/或频分方式,按照所述N个第一级参考信号资源配置向所述终端设备发送所述第一参考信号。
  9. 一种信道测量的方法,其特征在于,包括:
    接收发送设备发送的N个第一级参考信号资源配置,其中,所述N个 第一级参考信号资源配置中的每个第一级参考信号资源配置对应一个天线端口集合配置,任意两个第一级参考信号资源配置对应的天线端口集合配置是不同的,任意一个天线端口集合配置包括天线端口集合对应的第一维度天线端口数,第二维度天线端口数和所述天线端口集合所包含的天线端口个数中的至少两个,所述每个第一级参考信号资源配置包括时频资源位置信息,所述时频资源位置信息为所述每个第一级参考信号资源配置对应的天线端口集合所包含的天线端口对应的时频资源位置信息,N为大于1的整数;
    根据所述每个第一级参考信号资源配置接收所述发送设备按照所述每个第一级参考信号资源配置发送的第一参考信号;
    根据所述第一参考信号进行第一级信道状态信息CSI测量。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    向所述发送设备发送第一反馈信息,
    其中,所述第一反馈信息包括所述N个第一级参考信号资源配置中的第一配置的标识信息,或
    所述第一反馈信息包括所述第一配置的标识信息和所述第一配置对应的第一级CSI测量的结果。
  11. 根据权利要求10所述的方法,其特征在于,所述N个第一级参考信号资源配置对应M个CSI进程;
    所述方法还包括:
    根据所述M个CSI进程得到的第一级CSI测量的结果,确定所述第一反馈信息,M为小于或等于N的正整数。
  12. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    向所述发送设备发送所述每个第一级参考信号资源配置对应的第一级CSI测量的结果,所述每个第一级参考信号资源配置对应的第一级CSI测量的结果用于所述发送设备确定所述每个第一级参考信号资源配置对应的第二级参考信号资源配置;
    根据所述每个第一级参考信号资源配置对应的第二级参考信号资源配置接收所述发送设备按照所述每个第一级参考信号资源配置对应的第二级参考信号资源配置发送的第二参考信号;
    根据所述第二参考信号进行第二级CSI测量。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    向所述发送设备发送第二反馈信息,
    其中,所述第二反馈信息包括所述N个第一级参考信号资源配置中的第一配置的标识信息,或
    所述第二反馈信息包括第二配置的标识信息,所述第二配置为所述第一配置对应的第二级参考信号资源配置,或
    所述第二反馈信息包括所述第一配置的标识信息和所述第一配置对应的第二级CSI测量的结果,或
    所述第二反馈信息包括所述第二配置的标识信息和所述第二配置对应的第二级CSI测量的结果。
  14. 根据权利要求13所述的方法,其特征在于,所述每个第一级参考信号资源配置和所述每个第一级参考信号资源配置对应的第二级参考信号资源配置对应同一个CSI进程;
    所述方法还包括:
    根据M个CSI进程得到的第二级CSI测量的结果,确定所述第二反馈信息,M为小于或等于N的正整数。
  15. 根据权利要求11或14所述的方法,其特征在于,在所述根据所述每个第一级参考信号资源配置接收所述发送设备按照所述每个第一级参考信号资源配置发送的第一参考信号之前,所述方法还包括:
    接收所述发送设备发送的所述M个CSI进程的通知消息。
  16. 根据权利要求9至15中任一项所述的方法,其特征在于,所述每个第一级参考信号资源配置对应一个第一级CSI测量的结果,所述N个第一级参考信号资源配置中至少两个第一级参考信号资源配置对应不同的第一级CSI测量的结果。
  17. 一种发送设备,其特征在于,包括:
    发送器,用于向终端设备发送N个第一级参考信号资源配置,其中,所述N个第一级参考信号资源配置中的每个第一级参考信号资源配置对应一个天线端口集合配置,任意两个第一级参考信号资源配置对应的天线端口集合配置是不同的,任意一个天线端口集合配置包括天线端口集合对应的第一维度天线端口数,第二维度天线端口数和所述天线端口集合所包含的天线端口个数中的至少两个,所述每个第一级参考信号资源配置包括时频资源位置信息,所述时频资源位置信息为所述每个第一级参考信号资源配置对应的天 线端口集合所包含的天线端口对应的时频资源位置信息,N为大于1的整数;以及按照所述每个第一级参考信号资源配置向所述终端设备发送第一参考信号;
    处理器,用于获取所述N个第一级参考信号资源配置中的第一配置的信息,其中所述第一配置的信息是根据第一级信道状态信息CSI测量的结果得到的,所述第一级CSI测量为根据所述第一参考信号进行的CSI测量。
  18. 根据权利要求17所述的发送设备,其特征在于,所述发送设备还包括接收器;
    所述处理器具体用于通过所述接收器接收所述终端设备发送的第一反馈信息,其中,所述第一反馈信息包括所述第一配置的标识信息,或所述第一反馈信息包括所述第一配置的标识信息和所述第一配置对应的第一级CSI测量的结果。
  19. 根据权利要求18所述的发送设备,其特征在于,所述N个第一级参考信号资源配置对应M个CSI进程,
    所述第一反馈信息是根据所述M个CSI进程得到的第一级CSI测量的结果确定的,M为小于或等于N的正整数。
  20. 根据权利要求17所述的发送设备,其特征在于,所述发送设备还包括接收器;
    所述处理器具体用于:
    通过所述接收器接收所述终端设备发送的所述每个第一级参考信号资源配置对应的第一级CSI测量的结果;
    根据所述每个第一级参考信号资源配置对应的第一级CSI测量的结果,确定所述每个第一级参考信号资源配置对应的第二级参考信号资源配置;
    按照所述每个第一级参考信号资源配置对应的第二级参考信号资源配置通过所述发送器向所述终端设备发送第二参考信号;
    通过所述接收器接收所述终端设备发送的第二反馈信息,
    其中,所述第二反馈信息包括所述第一配置的标识信息,或
    所述第二反馈信息包括第二配置的标识信息,所述第二配置为所述第一配置对应的第二级参考信号资源配置,或
    所述第二反馈信息包括所述第一配置的标识信息和所述第一配置对应的第二级CSI测量的结果,或
    所述第二反馈信息包括所述第二配置的标识信息和所述第二配置对应的第二级CSI测量的结果,所述第二级CSI测量为根据所述第二参考信号进行的CSI测量。
  21. 根据权利要求20所述的发送设备,其特征在于,所述每个第一级参考信号资源配置和所述每个第一级参考信号资源配置对应的第二级参考信号资源配置对应同一个CSI进程,
    所述第二反馈信息是根据M个CSI进程得到的第二级CSI测量的结果确定的,M为小于或等于N的正整数。
  22. 根据权利要求19或21所述的发送设备,其特征在于,所述发送器还用于向所述终端设备发送所述M个CSI进程的通知消息。
  23. 根据权利要求17至22中任一项所述的发送设备,其特征在于,所述每个第一级参考信号资源配置对应一个第一级CSI测量的结果,所述N个第一级参考信号资源配置中至少两个第一级参考信号资源配置对应不同的第一级CSI测量的结果。
  24. 根据权利要求17至23中任一项所述的发送设备,其特征在于,所述发送器具体用于,通过时分方式和/或频分方式,按照所述N个第一级参考信号资源配置向所述终端设备发送所述第一参考信号。
  25. 一种终端设备,其特征在于,包括:
    接收器,用于接收发送设备发送的N个第一级参考信号资源配置的信息,其中,所述N个第一级参考信号资源配置中的每个第一级参考信号资源配置对应一个天线端口集合配置,任意两个第一级参考信号资源配置对应的天线端口集合配置是不同的,任意一个天线端口集合配置包括天线端口集合对应的第一维度天线端口数,第二维度天线端口数和所述天线端口集合所包含的天线端口个数中的至少两个,所述每个第一级参考信号资源配置包括时频资源位置信息,所述时频资源位置信息为所述每个第一级参考信号资源配置对应的天线端口集合所包含的天线端口对应的时频资源位置信息,N为大于1的整数;以及根据所述每个第一级参考信号资源配置接收所述发送设备按照所述每个第一级参考信号资源配置发送的第一参考信号;
    处理器,用于根据所述第一参考信号进行第一级信道状态信息CSI测量。
  26. 根据权利要求25所述的终端设备,其特征在于,所述终端设备还 包括:
    发送器,用于向所述发送设备发送第一反馈信息,
    其中,所述第一反馈信息包括所述N个第一级参考信号资源配置中的第一配置的标识信息,或
    所述第一反馈信息包括所述第一配置的标识信息和所述第一配置对应的第一级CSI测量的结果。
  27. 根据权利要求26所述的终端设备,其特征在于,所述N个第一级参考信号资源配置对应M个CSI进程;
    所述处理器还用于,根据所述M个CSI进程得到的第一级CSI测量的结果,确定所述第一反馈信息,M为小于或等于N的正整数。
  28. 根据权利要求25所述的终端设备,其特征在于,所述终端设备还包括:
    发送器,用于向所述发送设备发送所述每个第一级参考信号资源配置对应的第一级CSI测量的结果,所述每个第一级参考信号资源配置对应的第一级CSI测量的结果用于所述发送设备确定所述每个第一级参考信号资源配置对应的第二级参考信号资源配置;
    所述接收器还用于根据所述每个第一级参考信号资源配置对应的第二级参考信号资源配置接收所述发送设备按照所述每个第一级参考信号资源配置对应的第二级参考信号资源配置发送的第二参考信号;
    所述处理器还用于根据所述第二参考信号进行第二级CSI测量。
  29. 根据权利要求28所述的终端设备,其特征在于,所述发送器还用于,
    向所述发送设备发送第二反馈信息,
    其中,所述第二反馈信息包括所述N个第一级参考信号资源配置中的第一配置的标识信息,或
    所述第二反馈信息包括第二配置的标识信息,所述第二配置为所述第一配置对应的第二级参考信号资源配置,或
    所述第二反馈信息包括所述第一配置的标识信息和所述第一配置对应的第二级CSI测量的结果,或
    所述第二反馈信息包括所述第二配置的标识信息和所述第二配置对应的第二级CSI测量的结果。
  30. 根据权利要求29所述的终端设备,其特征在于,所述每个第一级参考信号资源配置和所述每个第一级参考信号资源配置对应的第二级参考信号资源配置对应同一个CSI进程;
    所述处理器还用于,
    根据M个CSI进程得到的第二级CSI测量的结果,确定所述第二反馈信息,M为小于或等于N的正整数。
  31. 根据权利要求27或30所述的终端设备,其特征在于,所述接收器还用于接收所述发送设备发送的所述M个CSI进程的通知消息。
  32. 根据权利要求25至31中任一项所述的终端设备,其特征在于,所述每个第一级参考信号资源配置对应一个第一级CSI测量的结果,所述N个第一级参考信号资源配置中至少两个第一级参考信号资源配置对应不同的第一级CSI测量的结果。
PCT/CN2015/098318 2015-12-22 2015-12-22 参考信号发送和信道测量的方法、发送设备和终端设备 WO2017107067A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580085399.0A CN108370517A (zh) 2015-12-22 2015-12-22 参考信号发送和信道测量的方法、发送设备和终端设备
PCT/CN2015/098318 WO2017107067A1 (zh) 2015-12-22 2015-12-22 参考信号发送和信道测量的方法、发送设备和终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/098318 WO2017107067A1 (zh) 2015-12-22 2015-12-22 参考信号发送和信道测量的方法、发送设备和终端设备

Publications (1)

Publication Number Publication Date
WO2017107067A1 true WO2017107067A1 (zh) 2017-06-29

Family

ID=59088637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098318 WO2017107067A1 (zh) 2015-12-22 2015-12-22 参考信号发送和信道测量的方法、发送设备和终端设备

Country Status (2)

Country Link
CN (1) CN108370517A (zh)
WO (1) WO2017107067A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112243575A (zh) * 2020-09-16 2021-01-19 北京小米移动软件有限公司 信息通知方法、信息接收方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103053196A (zh) * 2011-08-11 2013-04-17 联发科技股份有限公司 协同多点传输的节点关联方法
CN103840907A (zh) * 2012-11-20 2014-06-04 电信科学技术研究院 一种传输导频信号和信号测量的方法、系统及设备
US20140286182A1 (en) * 2013-03-21 2014-09-25 Texas Instruments Incorporated Reference Signal for 3D MIMO in Wireless Communication Systems
CN104735691A (zh) * 2013-12-20 2015-06-24 北京三星通信技术研究有限公司 信道状态信息汇报的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103053196A (zh) * 2011-08-11 2013-04-17 联发科技股份有限公司 协同多点传输的节点关联方法
CN103840907A (zh) * 2012-11-20 2014-06-04 电信科学技术研究院 一种传输导频信号和信号测量的方法、系统及设备
US20140286182A1 (en) * 2013-03-21 2014-09-25 Texas Instruments Incorporated Reference Signal for 3D MIMO in Wireless Communication Systems
CN104735691A (zh) * 2013-12-20 2015-06-24 北京三星通信技术研究有限公司 信道状态信息汇报的方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112243575A (zh) * 2020-09-16 2021-01-19 北京小米移动软件有限公司 信息通知方法、信息接收方法、装置、设备及存储介质
CN112243575B (zh) * 2020-09-16 2023-07-18 北京小米移动软件有限公司 信息通知方法、信息接收方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN108370517A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
EP3275092B1 (en) Systems and methods for selecting beam-reference signals for channel-state information reference-signal transmission
US10735064B2 (en) Method for determining precoding matrix indicator, user equipment, and base station
US10205499B2 (en) Systems and methods for adapting a codebook for use with multiple antenna configurations
CN107148790B (zh) 用于波束成形信道状态参考信号的系统和方法
JP6594443B2 (ja) 基地局及びプリコーディングマトリックス決定方法
TWI580210B (zh) Method, system and equipment for channel status information measurement
JP6776127B2 (ja) Mimoのための周期および非周期チャネル状態情報(csi)報告
JP6388348B2 (ja) パイロット信号伝送方法、基地局、およびユーザ装置
WO2015124072A1 (zh) 信道状态信息测量方法和装置、以及信号传输方法和装置
EP3565140B1 (en) Channel state information feedback method, user equipment, and base station
WO2017020730A1 (zh) 一种反馈和接收信道状态信息csi的方法及装置
JP2016520266A (ja) プリコーディング行列インジケータを決定するための方法、ユーザ機器、及び、基地局
TW201838440A (zh) 一種獲取、回饋發送波束資訊的方法及裝置
RU2720213C1 (ru) Сигнализация сигналов измерения на основании древовидной структуры
WO2020063743A1 (zh) Csi的上报方法、装置、终端及网络侧设备
WO2016082224A1 (zh) 一种资源配置的方法、用户设备及基站
TW201628364A (zh) 一種導頻信號的發送、接收處理方法及裝置
WO2017193404A1 (zh) 信道状态信息的上报方法、读取方法及相关设备
JP2023528626A (ja) プリコーディングされたチャネル状態情報参照信号(csi-rs)構成のための動的チャネル状態情報参照信号(csi-rs)リソースマッピング構成
WO2016134537A1 (zh) 一种信道质量测量方法、装置及系统
WO2017107067A1 (zh) 参考信号发送和信道测量的方法、发送设备和终端设备
EP3847762B1 (en) Port to antenna mapping design in virtualized active antenna system (aas)
CN117676873A (zh) 上行资源指示方法及通信装置
JP2023543164A (ja) タイプiiポート選択コードブック用の角度遅延領域におけるcsi-rsビームフォーミングの方法
CN117478182A (zh) 信道状态信息的上报方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911066

Country of ref document: EP

Kind code of ref document: A1