WO2021244376A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2021244376A1
WO2021244376A1 PCT/CN2021/096181 CN2021096181W WO2021244376A1 WO 2021244376 A1 WO2021244376 A1 WO 2021244376A1 CN 2021096181 W CN2021096181 W CN 2021096181W WO 2021244376 A1 WO2021244376 A1 WO 2021244376A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
channel
index
spatial
indexes
Prior art date
Application number
PCT/CN2021/096181
Other languages
English (en)
French (fr)
Inventor
徐剑标
何高宁
卢建民
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21817207.0A priority Critical patent/EP4152633A4/en
Priority to BR112022024786A priority patent/BR112022024786A2/pt
Publication of WO2021244376A1 publication Critical patent/WO2021244376A1/zh
Priority to US18/073,608 priority patent/US20230098191A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • Massive-Multiple-input multiple-output is an important technical means for wireless communication systems to improve system capacity and spectrum efficiency.
  • the basic principle is that network equipment is based on channel state information. CSI), using methods such as singular value decompostion (SVD) to determine the effective transmission space of the channel.
  • CSI channel state information
  • SMD singular value decompostion
  • In the transmission space there are multiple parallel sub-channels that are orthogonal or close to each other.
  • the process of obtaining CSI by a network device may include: the network device sends a pilot signal to the terminal, the terminal obtains the CSI estimation value according to the received pilot signal, and selects a precoding vector in the codebook according to the CSI estimation value , The index of the precoding vector is fed back to the network device, and the network device determines the CSI reconstruction value according to the index of the precoding vector, and the CSI reconstruction value is the CSI closest to the true value of the CSI that the network device can obtain.
  • the existing codebook technology is generally based on a plane wave propagation model, which mainly reflects the spatial angle information of the channel.
  • the CSI reconstruction value and the true value of the CSI will have a large deviation, which will reduce the space division multiplexing gain and array gain of Massive-MIMO.
  • the embodiments of the present application provide a communication method and device, which are used to improve the space division multiplexing gain and array gain of Massive-MIMO.
  • a communication method including: a first communication device determines a first index indicating a first precoding vector, and sends the first index to a second communication device.
  • the first precoding vector includes the spatial angle information and spatial depth information of the channel between the first communication device and the second communication device.
  • the dimension determines the channel, so that the precoding vector corresponding to the index fed back by the first communication device can match the characteristics of the spherical wave channel, that is, the CSI recoding obtained by the second communication device according to the precoding vector corresponding to the index fed back by the first communication device
  • the structure value is closer to the true value of CSI, thereby maximizing the space division multiplexing gain and array gain under ELAA.
  • the codebook to which the first precoding vector belongs includes K*M precoding vectors, each precoding vector is an N-dimensional vector, and K is the spatial depth of the channel corresponding to the codebook.
  • the number of quantization levels M is the number of quantization levels of the spatial angle of the channel corresponding to the codebook
  • N is the number of antenna ports of the second communication device
  • K, M, and N are all integers greater than 0.
  • the codebook to which the first precoding vector belongs guides the antenna port group of the second communication device by using the quantization level set of the spatial depth of the channel and the quantization level set of the spatial angle of the channel.
  • the vector is sampled.
  • the antenna port group steering vector is determined according to the spatial depth of the channel, the spatial angle of the channel, and the related parameters of the antenna port group of the second communication device.
  • the related parameters of the antenna port group include the distance between antenna ports and the number of antenna ports. , One or more of the spatial arrangement of antenna ports. This possible implementation provides a method for determining the steering vector of the antenna port group.
  • the quantization level set of the spatial depth of the channel is determined according to the prior statistical information of the channel and the number of allowed quantization bits.
  • the prior statistical information includes: the maximum value of the spatial depth of the channel and the number of quantization bits allowed to be used.
  • the first communication device determining the first index includes: the first communication device matches the codebook with the obtained CSI estimation value, and determines that the index corresponding to the precoding vector that meets the matching degree requirement is the first index.
  • One index is the first index.
  • the first communication device determining the first index includes: the first communication device matches the codebook according to the acquired CSI estimation value and the noise statistical covariance matrix, and determines the prediction that meets the matching degree requirement.
  • the index corresponding to the code vector is the first index.
  • the first communication device When the first communication device receives with multiple antennas, the first communication device usually has interference from other users (such as inter-cell interference between neighboring stations). At this time, its noise is generally spatially colored noise, which will cause the spatial angle and space of the channel The depth is shifted.
  • the noise statistical covariance matrix the obtained codebook index can reflect the equivalent spatial angle and spatial depth of the shift after being affected by colored noise, so that the corresponding precoding vector can match the channel characteristics to the greatest extent. Get the maximum precoding gain and sum rate.
  • the first index includes L sub-indexes, L represents the number of space division multiplexing layers of the first communication device, and L is an integer greater than 1, and the first communication device determines the first index, including: A communication device matches the codebook with the obtained CSI estimation value, and determines that the index corresponding to the L precoding vectors that meets the matching degree requirement is the first index.
  • This possible implementation provides yet another method for determining the first index.
  • the first index includes L sub-indexes, L represents the number of space division multiplexing layers of the first communication device, and L is an integer greater than 1, and the first communication device determines the first index, including: A communication device matches the codebook according to the acquired CSI estimation value and the noise statistical covariance matrix, and determines that the index corresponding to the L precoding vectors that meet the matching degree requirement is the first index.
  • the first communication device receives with multiple antennas, the first communication device usually has interference from other users (such as inter-cell interference between neighboring stations). At this time, its noise is generally spatially colored noise, which will cause the spatial angle and space of the channel The depth is shifted.
  • the obtained codebook index can reflect the equivalent spatial angle and spatial depth of the shift after being affected by colored noise, so that the corresponding precoding vector can match the channel characteristics to the greatest extent. Get the maximum precoding gain and sum rate.
  • a communication method including: a second communication device receives a first index indicating a first precoding vector from a first communication device, and determines the first precoding vector according to the first index, and according to the first precoding vector
  • the encoding vector pre-encodes the data.
  • the first precoding vector includes the spatial angle information and spatial depth information of the channel between the first communication device and the second communication device. By introducing the spatial depth information into the precoding vector, the spatial angle and the spatial depth can be determined from both the spatial angle and the spatial depth.
  • the dimension determines the channel, so that the precoding vector corresponding to the index fed back by the first communication device can match the characteristics of the spherical wave channel, that is, the CSI recoding obtained by the second communication device according to the precoding vector corresponding to the index fed back by the first communication device
  • the structure value is closer to the true value of CSI, thereby maximizing the space division multiplexing gain and array gain under ELAA.
  • the method further includes: the second communication device receives indexes from S-1 first communication devices other than the first communication device, where S is an integer greater than 1; In the case where the spatial angle components of the precoding vectors corresponding to the S1 indexes are the same but the spatial depth components are different, the second communication device performs the S1 first communication device according to the spatial depth components of the precoding vectors corresponding to the S1 indexes Multiplexed transmission, S1 indexes are part or all of the S indexes, S indexes are the indexes received by the second communication device from the first communication device and S-1 first communication devices, and S1 is the first communication
  • the device is the first communication device that reports S1 indexes, and S1 is an integer greater than 1 and less than or equal to S; when the precoding vectors corresponding to the S2 indexes of the S indexes have different spatial angle components and different spatial depth components , The second communication device performs multiplex transmission of S2 first communication devices according to the spatial depth component and/or the
  • the second communication device can distinguish the channels between different first communication devices based on these indexes.
  • the difference in spatial depth, and the multiplexed transmission of data according to the difference in spatial depth that is, the second communication device can allocate data streams of different layers according to different spatial depth components, thereby improving SU-MIMO or MU-MIMO space division multiplexing
  • Q Q is an integer greater than 1
  • users that cannot be distinguished and multiplexed from a spatial perspective can be distinguished and multiplexed in the spatial depth to achieve Q times the capacity promote.
  • the method further includes: the second communication device respectively receives indexes from S-1 first communication devices other than the first communication device, where S is an integer greater than 1; among the S indexes
  • the second communication device performs multiplex transmission of S3 first communication devices according to the spatial depth components of the precoding vectors corresponding to the S3 indexes, and the S3 indexes Are part or all of the S indexes
  • the S indexes are the indexes received by the second communication device from the first communication device and the S-1 first communication devices
  • the S3 first communication devices are those that report the S3 indexes
  • S3 is an integer greater than 1 and less than or equal to S.
  • the second communication device can distinguish the channels between different first communication devices based on these indexes.
  • the difference in spatial depth, and the multiplexed transmission of data according to the difference in spatial depth that is, the second communication device can allocate data streams of different layers according to different spatial depth components, thereby improving SU-MIMO or MU-MIMO space division multiplexing
  • Q Q is an integer greater than 1
  • users that cannot be distinguished and multiplexed from a spatial perspective can be distinguished and multiplexed in the spatial depth to achieve Q times the capacity promote.
  • the codebook to which the first precoding vector belongs includes K*M precoding vectors, each precoding vector is an N-dimensional vector, and K is the spatial depth of the channel corresponding to the codebook.
  • the number of quantization levels M is the number of quantization levels of the spatial angle of the channel corresponding to the codebook
  • N is the number of antenna ports of the second communication device
  • K, M, and N are all integers greater than 0.
  • the codebook to which the first precoding vector belongs guides the antenna port group of the second communication device by using the quantization level set of the spatial depth of the channel and the quantization level set of the spatial angle of the channel.
  • the vector is sampled.
  • the antenna port group steering vector is determined according to the spatial depth of the channel, the spatial angle of the channel, and the related parameters of the antenna port group of the second communication device.
  • the related parameters of the antenna port group include the distance between antenna ports and the number of antenna ports. , One or more of the spatial arrangement of antenna ports. This possible implementation provides a method for determining the steering vector of the antenna port group.
  • the quantization level set of the spatial depth of the channel is determined according to the prior statistical information of the channel and the number of allowed quantization bits.
  • the prior statistical information includes: the maximum value of the spatial depth of the channel and the number of quantization bits allowed to be used.
  • the index corresponding to the precoding vector that meets the matching degree requirement in the codebook is the first index
  • the precoding vector that meets the matching degree requirement is determined by the CSI estimation value determined by the first communication device and the codebook.
  • the matching is determined, or the precoding vector that meets the matching degree requirement is determined by matching the codebook with the CSI estimation value and the noise statistical covariance matrix determined by the first communication device.
  • This possible implementation provides two methods for determining the first index.
  • the first communication device receives with multiple antennas, the first communication device usually has interference from other users (such as inter-cell interference between neighboring stations). At this time, its noise is generally spatially colored noise, which will cause the spatial angle and space of the channel The depth is shifted.
  • the obtained codebook index can reflect the equivalent spatial angle and spatial depth of the shift after being affected by colored noise, so that the corresponding precoding vector can match the channel characteristics to the greatest extent. Get the maximum precoding gain and sum rate.
  • the first index includes L sub-indexes, the index corresponding to the L precoding vectors that meet the matching degree requirements in the codebook is the first index, and the L precoding vectors that meet the matching degree requirements pass the first index.
  • the CSI estimation value determined by a communication device is matched and determined with the codebook, or the L precoding vectors that meet the matching degree requirement are matched and determined with the codebook through the CSI estimation value and the noise statistical covariance matrix determined by the first communication device.
  • This possible implementation provides two methods for determining the first index.
  • the first communication device receives with multiple antennas, the first communication device usually has interference from other users (such as inter-cell interference between neighboring stations).
  • the noise is generally spatially colored noise, which will cause the spatial angle and space of the channel
  • the depth is shifted.
  • the obtained codebook index can reflect the equivalent spatial angle and spatial depth of the shift after being affected by colored noise, so that the corresponding precoding vector can match the channel characteristics to the greatest extent. Get the maximum precoding gain and sum rate.
  • a communication device which includes a module or unit for executing any of the methods provided in the first aspect.
  • it includes: a processing unit and a communication unit; the processing unit is configured to determine a first index, the first index indicates a first precoding vector, and the first precoding vector includes the communication device and the second communication Spatial angle information and spatial depth information of the channel between the devices; the communication unit is configured to send the first index to the second communication device.
  • the codebook to which the first precoding vector belongs includes K*M precoding vectors, each precoding vector is an N-dimensional vector, and K is all corresponding to the codebook.
  • the number of quantization levels of the spatial depth of the channel M is the number of quantization levels of the spatial angle of the channel corresponding to the codebook
  • N is the number of antenna ports of the second communication device
  • K, M, and N Both are integers greater than 0.
  • the codebook to which the first precoding vector belongs uses the quantization level set of the spatial depth of the channel and the quantization level set of the spatial angle of the channel to compare the first precoding vector.
  • the antenna port group steering vector of the communication device is sampled.
  • the antenna port group steering vector is determined according to the spatial depth of the channel, the spatial angle of the channel, and related parameters of the antenna port group of the second communication device, and the antenna port group
  • the related parameters include one or more of the antenna port spacing, the number of antenna ports, and the spatial arrangement of the antenna ports.
  • the quantization level set of the spatial depth of the channel is determined according to the prior statistical information of the channel and the number of allowed quantization bits, and the prior statistical information includes: The maximum value of the spatial depth and the minimum value of the spatial depth of the channel, or the mean value of the spatial depth of the channel and the variance of the spatial depth of the channel, or the probability distribution function of the spatial depth of the channel.
  • the processing unit is specifically configured to: match the obtained CSI estimation value with the codebook, and determine that the index corresponding to the precoding vector that meets the matching degree requirement is the first index .
  • the processing unit is specifically configured to: match the codebook according to the obtained CSI estimation value and the noise statistical covariance matrix, and determine that the index corresponding to the precoding vector that meets the matching degree requirement is The first index.
  • the first index includes L sub-indexes, L represents the number of space division multiplexing layers of the communication device, and L is an integer greater than 1, and the processing unit is specifically configured to: The obtained CSI estimation value is matched with the codebook, and the index corresponding to the L precoding vectors that meets the matching degree requirement is determined as the first index.
  • the first index includes L sub-indexes, L represents the number of space division multiplexing layers of the communication device, and L is an integer greater than 1, and the processing unit is specifically configured to: The obtained CSI estimation value and the noise statistical covariance matrix are matched with the codebook, and the index corresponding to the L precoding vectors meeting the matching degree requirement is determined as the first index.
  • a communication device including a module or unit for executing any of the methods provided in the second aspect.
  • it includes: a communication unit and a processing unit; the communication unit is configured to receive a first index from a first communication device, the first index indicating a first precoding vector, and the first precoding vector includes the first The spatial angle information and spatial depth information of a channel between a communication device and the communication device; the processing unit is configured to determine the first precoding vector according to the first index, and according to the first precoding The vector pre-codes the data.
  • the communication unit is further configured to respectively receive indexes from S-1 first communication devices other than the first communication device, where S is an integer greater than 1; the processing The unit is also used to perform processing based on the spatial depth component of the precoding vector corresponding to the S1 index when the spatial angle components of the precoding vectors corresponding to the S1 indexes of the S indexes are the same but the spatial depth components are different S1 multiplexed transmission of the first communication device, the S1 indexes are some or all of the S indexes, and the S indexes are the communication devices from the first communication device and the S -1 index received by the first communication device, the S1 first communication device is the first communication device that reported the S1 index, and S1 is an integer greater than 1 and less than or equal to S; the processing unit further uses When the spatial angle components of the precoding vectors corresponding to the S2 indexes in the S indexes are different, and the spatial depth components are different, according to the spatial depth components and/or spatial angles of the pre
  • the communication unit is further configured to respectively receive indexes from S-1 first communication devices other than the first communication device, where S is an integer greater than 1; the processing The unit is further configured to perform S3 first communication devices according to the spatial depth components of the precoding vectors corresponding to the S3 indexes when the spatial depth components of the precoding vectors corresponding to the S3 indexes of the S indexes are different
  • the S3 indexes are some or all of the S indexes, and the S indexes are the second communication device's information from the first communication device and the S-1 An index received by a communication device, the S3 first communication devices are the first communication devices reporting the S3 indexes, and S3 is an integer greater than 1 and less than or equal to S.
  • the codebook to which the first precoding vector belongs includes K*M precoding vectors, each precoding vector is an N-dimensional vector, and K is all corresponding to the codebook.
  • the number of quantization levels of the spatial depth of the channel M is the number of quantization levels of the spatial angle of the channel corresponding to the codebook
  • N is the number of antenna ports of the communication device
  • K, M, and N are all An integer greater than 0.
  • the codebook to which the first precoding vector belongs uses the quantization level set of the spatial depth of the channel and the quantization level set of the spatial angle of the channel to communicate with each other.
  • the steering vector of the antenna port group of the device is sampled.
  • the antenna port group steering vector is determined according to the spatial depth of the channel, the spatial angle of the channel, and the antenna port group related parameters of the communication device, and the antenna port group related parameters Including one or more of antenna port spacing, number of antenna ports, and spatial arrangement of antenna ports.
  • the quantization level set of the spatial depth of the channel is determined according to the prior statistical information of the channel and the number of allowed quantization bits, and the prior statistical information includes: The maximum value of the spatial depth and the minimum value of the spatial depth of the channel, or the mean value of the spatial depth of the channel and the variance of the spatial depth of the channel, or the probability distribution function of the spatial depth of the channel.
  • the index corresponding to the precoding vector meeting the matching degree requirement in the codebook is the first index
  • the precoding vector meeting the matching degree requirement is determined by the first communication device
  • the CSI estimated value of, and the codebook are matched and determined, or the precoding vector that meets the matching degree requirement is matched with the codebook through the CSI estimated value and the noise statistical covariance matrix determined by the first communication device Sure.
  • the first index includes L sub-indexes
  • the index corresponding to the L precoding vectors in the codebook that meets the matching degree requirement is the first index
  • the matching degree requirement is The L precoding vectors are determined by matching the codebook with the CSI estimation value determined by the first communication device, or the L precoding vectors that meet the matching requirements are determined by the first communication device
  • the CSI estimation value and the noise statistical covariance matrix are matched and determined with the codebook.
  • a communication device including a processor.
  • the processor is connected to the memory, and the memory is used to store computer-executed instructions, and the processor executes the computer-executed instructions stored in the memory, so as to implement any one of the methods provided in the first aspect.
  • the memory and the processor may be integrated together, or may be independent devices. In the latter case, the memory may be located in the communication device or outside the communication device.
  • the processor includes a logic circuit, and also includes at least one of an input interface and an output interface.
  • the output interface is used to execute the sending action in the corresponding method
  • the input interface is used to execute the receiving action in the corresponding method.
  • the communication device further includes a communication interface and a communication bus, and the processor, the memory, and the communication interface are connected through the communication bus.
  • the communication interface is used to perform the sending and receiving actions in the corresponding method.
  • the communication interface may also be called a transceiver.
  • the communication interface includes at least one of a transmitter and a receiver. In this case, the transmitter is used to perform the sending action in the corresponding method, and the receiver is used to perform the receiving action in the corresponding method.
  • the communication device exists in the form of a chip product.
  • a communication device including a processor.
  • the processor is connected to the memory, and the memory is used to store computer-executed instructions, and the processor executes the computer-executed instructions stored in the memory, so as to implement any one of the methods provided in the second aspect.
  • the memory and the processor may be integrated together, or may be independent devices. In the latter case, the memory may be located in the communication device or outside the communication device.
  • the processor includes a logic circuit, and also includes at least one of an input interface and an output interface.
  • the output interface is used to execute the sending action in the corresponding method
  • the input interface is used to execute the receiving action in the corresponding method.
  • the communication device further includes a communication interface and a communication bus, and the processor, the memory, and the communication interface are connected through the communication bus.
  • the communication interface is used to perform the sending and receiving actions in the corresponding method.
  • the communication interface may also be called a transceiver.
  • the communication interface includes at least one of a transmitter and a receiver. In this case, the transmitter is used to perform the sending action in the corresponding method, and the receiver is used to perform the receiving action in the corresponding method.
  • the communication device exists in the form of a chip product.
  • a communication device including a processor and an interface circuit, where the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or from the communication device.
  • the signal of the processor is sent to another communication device other than the communication device, and the processor is used to implement any one of the methods provided in the first aspect through a logic circuit or an execution code instruction.
  • a communication device including a processor and an interface circuit, the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or from the The signal of the processor is sent to another communication device other than the communication device, and the processor is used to implement any one of the methods provided in the second aspect through a logic circuit or an execution code instruction.
  • a communication system including the communication device according to any one of the third, fifth, and seventh aspects of the claims, and the fourth, sixth, and eighth aspects of the claims.
  • a computer-readable storage medium including computer-executable instructions, which when the computer-executable instructions run on a computer, cause the computer to execute any one of the methods provided in the first aspect or the second aspect.
  • a computer program product including computer-executable instructions, which when the computer-executable instructions run on a computer, cause the computer to execute any one of the methods provided in the first aspect or the second aspect.
  • Figure 1 is a flow chart of a method for obtaining CSI reconstruction values
  • Figure 2 is a schematic diagram of a network architecture provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of an antenna array provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of the variation of the Rayleigh distance with the aperture of the antenna array provided by an embodiment of the application;
  • FIG. 5 is a schematic diagram of a plane wave provided by an embodiment of the application.
  • Fig. 6 is a schematic diagram of a spherical wave provided by an embodiment of the application.
  • FIG. 7 is a flowchart of a method for obtaining a CSI reconstruction value according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of quantification of a spatial angle provided by an embodiment of this application.
  • FIG. 9 is a flowchart of a communication method provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of quantification of spatial angle and spatial depth provided by an embodiment of this application.
  • FIG. 11 is a flowchart of another method for obtaining a CSI reconstruction value provided by an embodiment of this application.
  • FIG. 12 is a flowchart of another communication method provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of the composition of a communication device provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of the hardware structure of a communication device provided by an embodiment of the application.
  • FIG. 15 is a schematic diagram of the hardware structure of another communication device provided by an embodiment of the application.
  • This application can be applied to narrowband-internet of things (NB-IoT), global system for mobile communications (GSM), enhanced data rate for GSM evolution , EDGE), wideband code division multiple access (WCDMA), code division multiple access (CDMA2000), time division-synchronization code division multiple access access, TD-SCDMA), fourth generation (4th Generation, 4G) systems, various systems based on 4G system evolution, fifth generation (5th Generation, 5G) systems, various systems based on 5G system evolution, satellite communication systems Wait for the wireless communication system.
  • the 4G system may also be called an evolved packet system (EPS).
  • the core network of the 4G system may be called an evolved packet core (EPC), and the access network may be called a long term evolution (LTE).
  • EPC evolved packet core
  • LTE long term evolution
  • the core network of the 5G system may be called 5GC (5G core), and the access network may be called new radio (NR).
  • 5G core 5GC
  • NR new radio
  • the application scenarios applicable to this application include but are not limited to enhanced mobile broadband (eMBB), ultra-reliable and low latency communications (URLLC), and massive machine type communication, eMTC) and so on.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low latency communications
  • eMTC massive machine type communication
  • this application relates to network equipment and terminals, and the network equipment and terminals can perform wireless communication.
  • the network equipment in the embodiments of the present application may be equipment used on the access network side to support terminal access to the communication system, for example, various forms of macro base stations and micro base stations (also referred to as small stations).
  • it may be a node B (node B) in a third generation (3rd generation, 3G) system, an evolved node B (eNB) in a 4G system, and a next generation node B (next generation nodeB) in a 5G system.
  • gNB transmission reception point (transmission reception point, TRP), relay node (relay node), access point (access point, AP), and so on.
  • the base station may include a baseband unit (BBU) and a remote radio unit (RRU).
  • BBU and RRU can be placed in different places, for example: RRU is remote, placed in a high-traffic area, BBU placed in the central computer room.
  • the BBU and RRU can also be placed in the same computer room.
  • the BBU and RRU may also be different components under one rack.
  • the network equipment may be called a base station, base station equipment, node or access network equipment, etc.
  • the terminal in the embodiment of this application may be a device that provides voice or data connectivity to users, and may also be referred to as user equipment (UE), mobile station (mobile station), subscriber unit (subscriber unit), station (station), terminal equipment (terminal equipment, TE), etc.
  • UE user equipment
  • mobile station mobile station
  • subscriber unit subscriber unit
  • station station
  • terminal equipment terminal equipment
  • TE terminal equipment
  • the terminal can be a cellular phone, a personal digital assistant (PDA), a wireless modem (modem), a handheld device, a laptop computer, or a cordless phone.
  • PDA personal digital assistant
  • modem wireless modem
  • Wireless local loop (wireless local loop, WLL) station tablet computer (pad), smart phone (smartphone), customer premise equipment (customer premise equipment, CPE), in-vehicle equipment, wearable equipment, wireless data card, tablet type Computers, machine type communication (MTC) terminals, computing devices, or other processing devices connected to wireless modems.
  • WLL wireless local loop
  • CPE customer premise equipment
  • MTC machine type communication
  • devices that can access the communication system, communicate with the network side of the communication system, or communicate with other objects through the communication system can all be the terminals in the embodiments of the present application, such as intelligent transportation. Terminals and cars in smart homes, household equipment in smart homes, power meter reading equipment in smart grids, voltage monitoring equipment, environmental monitoring equipment, video monitoring equipment in smart security networks, cash registers, etc.
  • the directivity of a single antenna is limited.
  • two or more single antennas working at the same frequency are fed and arranged in space according to certain requirements to form an antenna array, also called antenna Array.
  • the antenna radiating elements that make up the antenna array are called antenna elements or antenna elements.
  • the antenna array can strengthen and improve the directivity and intensity of the radiation field.
  • the spatial arrangement of the antenna array can be called a front.
  • the spatial arrangement of the antenna array can be linear (in this case, the antenna array can be referred to as a linear array), circular and rectangular.
  • the spatial arrangement of the antenna array can also be other, which will not be listed one by one.
  • the distance between the two antenna elements with the furthest distance in the spatial arrangement of the antenna array may be referred to as the aperture of the antenna array.
  • the distance between two adjacent antenna elements in the spatial arrangement of the antenna array may be referred to as the distance between the two antenna elements.
  • the antenna array may also be called an antenna port group.
  • the antenna port group is composed of one or more antenna ports, and one antenna port corresponds to one antenna element. That is to say, the antenna array and the antenna port group in the following can be replaced with each other, and the antenna element and the antenna port can be replaced with each other.
  • a plane wave refers to an electromagnetic wave whose electromagnetic wave front is a plane
  • a spherical wave refers to an electromagnetic wave whose electromagnetic wave front is a spherical surface.
  • the electromagnetic wave front refers to the curved surface formed by each point where the electromagnetic wave phase is equal.
  • electromagnetic waves propagate outwards in a spherically diffused manner, so they can be called spherical waves.
  • the propagation distance is far, the local curvature of the spherical surface is very small, which can be regarded as a plane wave.
  • the Rayleigh distance can be used to determine whether the electromagnetic wave is a plane wave or a spherical wave.
  • the electromagnetic wave larger than the Rayleigh distance in space can be considered as a plane wave, and the electromagnetic wave smaller than the Rayleigh distance in space can be considered as a spherical wave.
  • L represents the aperture of the antenna array
  • represents the carrier wavelength
  • R represents the Rayleigh distance.
  • the above formula shows that the Rayleigh distance increases with the square of the antenna array aperture.
  • Figure 4 shows the quantitative results of the increase in the Rayleigh distance with the antenna array aperture at 1.8 gigahertz (GHz) and 2.6 GHz carrier frequencies under a possible situation.
  • the horizontal axis is the antenna array aperture and the vertical axis is Rayleigh distance.
  • the terminal In a wireless communication system, if the terminal is far enough away from the network device (for example, greater than 850 m), then referring to FIG. 5, the channel between the terminal and the network device satisfies the plane wave assumption. If the terminal is not far away from the network device (for example, less than or equal to 850 m), then referring to Figure 6, the channel between the terminal and the network device satisfies the spherical wave and no longer satisfies the plane wave assumption.
  • the spatial angle refers to the angle formed by the reference tangent plane of the antenna array and a coordinate point in free space.
  • Space depth refers to the linear distance between the array reference point and a coordinate point in free space.
  • the antenna array reference section refers to the section corresponding to the array reference point.
  • the array reference point refers to a certain fixed point in the array (for example, the first antenna in the array, the last antenna in the array). Referring to Figures 5 and 6, taking the array reference point as the receiving antenna N as an example, the spatial depth is d in the figure. Figures 5 and 6 also illustrate the position of the antenna array reference section.
  • the steering vector is the vector composed of the N phase amplitude values corresponding to the N antenna elements when the electromagnetic wave propagates to the N (N is an integer greater than 0) antenna elements in the antenna array. It can also be called the array steering vector or antenna array Guidance vector.
  • the antenna port group steering vector in this application refers to the steering vector containing spatial depth information.
  • a special example is the spherical waveguide direction vector (that is, the spherical wave propagates to the N antenna elements in the antenna array.
  • Corresponding vector composed of N phase amplitude values but not limited to the spherical waveguide vector.
  • Quantization refers to the discretization of continuous values, that is, a set of prescribed levels is used to represent the continuous value with the closest level value.
  • the set of these level values can be called the quantized level set.
  • Each of these level values The number can be called the number of quantization levels.
  • the precoding vector in the existing codebook only includes spatial angle information.
  • the method for the network device to obtain the CSI reconstruction value (also referred to as the precoding weight) may refer to FIG. 7.
  • the spatial angle information can be quantized. If the quantization level of the spatial angle is M (M is an integer greater than 0), the network device can pass the spatial angle information The data of at most M terminals are multiplexed and transmitted. In this application, m is an integer greater than 0 and less than or equal to M.
  • an existing codebook (denoted as C) is composed of N-dimensional orthogonal discrete Fourier transform (DFT) basis vectors, as shown in the following formula:
  • N the number of antenna elements
  • q m the m-th DFT basis vector in C.
  • the existing codebook technology is essentially the quantization and approximation of the steering vector under the plane wave assumption, which mainly reflects the channel space angle information.
  • Massive-MIMO continues to evolve to extremely large aperture array (ELAA)
  • ELAA extremely large aperture array
  • the number of antenna elements and antenna array aperture continue to increase.
  • this application provides a communication method, by introducing spatial depth information when determining the codebook, so that the CSI reconstruction value can match the characteristics of the spherical wave channel, thereby maximizing the space division multiplexing gain and array under ELAA Gain.
  • a H in the formula below in this application means “the complex conjugate device of matrix A”
  • means “determinant of positive definite Hermitian matrix A”
  • a -1 means “inverse of matrix A”
  • ⁇ A ⁇ means "modulus value of vector A”
  • I means identity matrix
  • * means "multiply by”.
  • A can be replaced with the parameters in the corresponding formula below.
  • the method includes:
  • the first communication device determines a first index, where the first index indicates a first precoding vector, and the first precoding vector includes spatial angle information and/or spatial depth information of a channel between the first communication device and the second communication device .
  • the method provided in this application can be applied to an uplink communication system.
  • the first communication device can be a terminal
  • the second communication device can be a network device, or can be applied to a downlink communication system.
  • the first communication device can be a network.
  • the device, the second communication device may be a terminal.
  • the first precoding vector is any precoding vector in the codebook.
  • Each precoding vector in the codebook corresponds to an index.
  • the codebook to which the first precoding vector belongs is obtained by sampling the antenna port group steering vector of the second communication device by using the quantization level set of the spatial depth of the channel and the quantization level set of the spatial angle of the channel.
  • the antenna port group steering vector is determined according to the spatial depth of the channel, the spatial angle of the channel, and the related parameters of the antenna port group of the second communication device.
  • the related parameters of the antenna port group include antenna port spacing (that is, antenna element spacing), antenna port One or more of the number (that is, the number of antenna elements) and the spatial arrangement of antenna ports (that is, the spatial arrangement of antenna elements).
  • the quantization level set of the spatial depth of the channel is determined according to the prior statistical information of the channel and the number of allowed quantization bits.
  • the prior statistical information includes: the maximum value of the spatial depth of the channel and the minimum value of the spatial depth of the channel , Or, the variance between the mean value of the channel's spatial depth and the channel's spatial depth, or the probability distribution function of the channel's spatial depth.
  • FIG. 10 For a schematic diagram of quantizing the spatial depth of the channel and the spatial angle of the channel, refer to FIG. 10.
  • the codebook includes K*M precoding vectors, each precoding vector is an N-dimensional vector, K is the number of quantization levels of the spatial depth of the channel, and M is the number of quantization levels of the spatial angle of the channel , N is the number of antennas (the number of physical antennas or the number of antenna ports or the number of antenna elements) of the second communication device, and K, M, and N are all integers greater than 0.
  • each precoding vector in the codebook includes a spatial depth component and a spatial angle component
  • the spatial depth component is used to indicate spatial depth information
  • the spatial angle component is used to indicate spatial angle information.
  • the index corresponding to a precoding vector can be composed of two parts: the index used to indicate the spatial depth information (or spatial depth component) and the index (or spatial angle component) of the spatial angle information, that is to say, the index corresponding to the precoding vector can be It is a two-dimensional index, of course, it can also be a one-dimensional index, which is not limited in this application.
  • Step 901 may be implemented when the first communication device receives the pilot signal, performs channel estimation according to the pilot signal, obtains the CSI estimation value, and determines the first index in the codebook according to the CSI estimation value.
  • the process of determining the first index in the codebook according to the CSI estimation value may be referred to as CSI quantization.
  • step 901 may be specifically implemented in any one of the following manners 1 to 4.
  • the first communication device matches the codebook with the obtained CSI estimation value, and determines that the index corresponding to the precoding vector that meets the matching degree requirement is the first index.
  • Method 1 Single-User MIMO (SU-MIMO), the first communication device is a single antenna device, and the first communication device has only one layer of data stream (that is, the rank of the first communication device (Rank) is 1); Or, for SU-MIMO, the first communication device is a multi-antenna device, and the first communication device has only one layer of data stream.
  • SU-MIMO Single-User MIMO
  • the first communication device is a single antenna device, and the first communication device has only one layer of data stream (that is, the rank of the first communication device (Rank) is 1);
  • the first communication device is a multi-antenna device, and the first communication device has only one layer of data stream.
  • the precoding vector that meets the matching degree requirement may be one or more precoding vectors with the highest matching degree, or one or more precoding vectors with a matching degree greater than a threshold, or One or more precoding vectors that meet other matching requirements are not limited in this application.
  • the first communication device may feed back one index or multiple indexes. If it is the former, the first index is one index, and if it is the latter, the first index includes multiple indexes.
  • the first communication device may also feed back a corresponding coefficient for each index in the first index.
  • the specific implementation is similar to that in the prior art, and is no longer Go into details.
  • the first communication device matches the codebook according to the acquired CSI estimation value and the noise statistical covariance matrix, and determines that the index corresponding to the precoding vector that meets the matching degree requirement is the first index.
  • the applicable scenario of the second method SU-MIMO, the first communication device is a multi-antenna device, and the first communication device has only one layer of data stream.
  • the first communication device may feed back one index or multiple indexes. If it is the former, the first index is one index, and if it is the latter, the first index includes multiple indexes.
  • the first communication device may also feed back a corresponding coefficient for each index in the first index.
  • the specific implementation is similar to that in the prior art, and is no longer Go into details.
  • the noise statistical covariance matrix in this application may be an additive noise statistical covariance matrix.
  • the first communication device when the first communication device receives multiple antennas, the first communication device usually has interference from other users (such as inter-cell interference between neighboring stations), and its noise is generally spatially colored noise. Colored noise will cause the channel's spatial angle and spatial depth to shift.
  • the codebook index obtained can reflect the equivalent spatial angle and spatial depth of the shift after being affected by the colored noise, so that the corresponding The precoding vector can match the channel characteristics to the greatest extent, and obtain the maximum precoding gain and sum rate.
  • the first communication device matches the codebook according to the obtained CSI estimation value, and determines that the index corresponding to the L precoding vectors that meets the matching degree requirement is the first index.
  • the first index includes L sub-indexes, L represents the number of space division multiplexing layers of the first communication device, and L is an integer greater than 1.
  • the applicable scenario of the third method SU-MIMO, the first communication device is a multi-antenna device, and the first communication device has multiple layers of data streams (that is, the Rank of the first communication device is greater than 1).
  • the first communication device matches the codebook according to the acquired CSI estimation value and the noise statistical covariance matrix, and determines the index corresponding to the L precoding vectors that meet the matching degree requirement as the first index.
  • the first index includes L sub-indexes, L represents the number of space division multiplexing layers of the first communication device, and L is an integer greater than 1.
  • mode four is the same as mode three.
  • the method for matching the CSI estimated value with the precoding vector in the codebook can be determined according to specific system performance indicators, including but not limited to "correlation matching between the CSI estimated value and the CSI codebook vector" , “Maximize matching with rate” and other methods.
  • the first communication device sends the first index to the second communication device.
  • the second communication device receives the first index from the first communication device.
  • the first index may be carried in a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the second communication device determines a first precoding vector according to the first index.
  • the second communication device precodes the data according to the first precoding vector.
  • step 904 it may include: the second communication device performs CSI reconstruction according to the first precoding vector to obtain a CSI reconstruction value, and precoding the data according to the CSI reconstruction value.
  • the data here may be data in a SU-MIMO scenario, or may be data in a multi-user MIMO (Multi-User, MU-MIMO) scenario.
  • Multi-User, MU-MIMO multi-user MIMO
  • the second communication device is a network device
  • the first precoding vector is the CSI reconstruction value.
  • the network device needs to perform CSI reconstruction on the precoding vector corresponding to the index received from multiple terminals to determine the CSI reconstruction value , Precoding the data using the CSI reconstruction value.
  • multiple first communication devices can be multiplexed and transmitted, which specifically includes:
  • the second communication device receives indexes from S-1 first communication devices other than the first communication device, and S is an integer greater than 1.
  • step 12 When the spatial angle components of the precoding vectors corresponding to the S1 indexes of the S indexes are the same but the spatial depth components are different, step 12) is executed, and the space of the precoding vector corresponding to the S2 indexes of the S indexes When the angle components are different and the spatial depth components are different, step 13) is executed.
  • the spatial angle component of the precoding vector is not distinguished, and if the spatial depth components of the precoding vector corresponding to the S3 indexes of the S indexes are different, step 14) is directly executed.
  • the second communication device performs multiplex transmission of S1 first communication devices according to the spatial depth component of the precoding vector corresponding to the S1 indexes.
  • the S1 indexes are part or all of the S indexes, and the S indexes are the first
  • the second communication device performs multiplex transmission of S2 first communication devices according to the spatial depth component and/or spatial angle component of the precoding vector corresponding to the S2 indexes, and the S2 indexes are part or all of the S indexes.
  • S indexes are the indexes received by the second communication device from the first communication device and S-1 first communication devices
  • S2 first communication devices are the first communication devices reporting S2 indexes
  • S2 is greater than 1 and less than An integer equal to S.
  • the second communication device performs S3 processing of the first communication device according to the spatial depth components of the precoding vectors corresponding to the S3 indexes.
  • S3 indexes are part or all of the S indexes
  • S indexes are the indexes received by the second communication device from the first communication device and S-1 first communication devices
  • S3 is the first communication
  • the device is the first communication device that reports S3 indexes
  • S3 is an integer greater than 1 and less than or equal to S.
  • multiple first communication devices can be paired and screened according to the overlap of the CSI reconstruction values of the S first communication devices.
  • the spatial angle components can be the same but the spatial angle components
  • Multiple first communication devices with different depth components can be paired, or multiple first communication devices with different spatial angle components but the same spatial depth component can be paired, or multiple first communication devices with different spatial angle components and different spatial depth components can be paired
  • the first communication device performs pairing.
  • the paired multiple first communication devices can perform multiplexing transmission.
  • the multi-layer data stream of the single first communication device can be multiplexed and transmitted according to the spatial depth component.
  • the first index includes multiple The index specifically includes: when the spatial depth components of the precoding vectors corresponding to the multiple indexes in the first index are different, the second communication device according to the spatial depths of the precoding vectors corresponding to the multiple indexes in the first index The components are multiplexed and transmitted by the multi-layer data stream of the first communication device.
  • the data when data is multiplexed and transmitted according to the spatial depth component, the data can be intra-user multi-stream in SU-MIMO or inter-user multi-stream in MU-MIMO.
  • the channel by introducing spatial depth information when determining the codebook, the channel can be determined from the two dimensions of the spatial angle and the spatial depth, so that the precoding vector corresponding to the index fed back by the first communication device can match the spherical wave.
  • Channel characteristics that is, the CSI reconstruction value obtained by the second communication device according to the precoding vector corresponding to the index fed back by the first communication device is closer to the true CSI value, thereby maximizing the space division multiplexing gain and array under ELAA Gain.
  • the second communication device can distinguish the difference in the spatial depth of the channel from the different first communication devices based on these indexes.
  • the data is multiplexed and transmitted according to the difference in spatial depth, that is, the second communication device can allocate data streams of different layers according to different spatial depth components, thereby increasing the total number of layers and systems of SU-MIMO or MU-MIMO space division multiplexing capacity.
  • Q is an integer greater than 1
  • users that cannot be distinguished and multiplexed from a spatial perspective can be distinguished and multiplexed in the spatial depth to achieve Q times the capacity promote.
  • the method of constructing a codebook may include:
  • Step 1 Obtain prior statistical information related to the spatial depth of the channel.
  • the prior statistical information includes, but is not limited to: the maximum value of the channel's spatial depth and the minimum value of the channel's spatial depth, or the mean value of the channel's spatial depth and the variance of the channel's spatial depth, or the channel The probability distribution function of the depth of the space (accurate or approximate).
  • the a priori statistical information can be determined according to methods such as the active range of the terminal in the cell, the coverage radius of the cell, the path loss model, or the actual channel measurement.
  • the maximum value of the spatial depth of the channel may be the coverage radius of the cell.
  • Step 2 Determine the quantization level set of the spatial depth of the channel according to the prior statistical information of the channel and the number of quantization bits allowed to be used.
  • the allowable number of quantization bits is the allowable number of bits used when the spatial depth information is fed back.
  • the number of quantization bits allowed to be used may be preset or predefined, or determined through negotiation between the first communication device and the second communication device, or stipulated by agreement, and is not limited in this application.
  • the quantization level set of the spatial depth of the channel is determined by methods such as uniform quantization and Lloyd quantization according to the prior statistical information of the channel and the number of allowed quantization bits.
  • the prior statistical information includes the maximum value of the channel's spatial depth (denoted as d max ) and the minimum value of the channel's spatial depth (denoted as d min ).
  • the quantization level set of spatial depth can be: Among them, k ⁇ [1, K], d k represents the k-th quantization level value, k is an integer, and N d represents the number of quantization bits allowed to be used, Represents the total number of quantization levels.
  • the spatial depth is equally divided into K parts.
  • the quantization level set of spatial depth can be: Among them, k ⁇ [1, K], ⁇ is the correction factor, which can be set according to experience or simulation value.
  • the prior statistical information includes the probability distribution function of the spatial depth of the channel.
  • the third step Determine the quantization level set of the spatial angle of the channel.
  • the [0, 2 ⁇ ] angle interval can be uniformly quantized.
  • the quantization level set of the spatial angle can be recorded as m ⁇ [1, M], Represents the number of quantization levels for the allowable space angle, and M is the total number of quantization levels for the space angle.
  • Step 4 Determine the steering vector of the antenna port group.
  • the N-dimensional antenna port group steering vector can be expressed as formula 1:
  • represents the distance between the elements
  • N represents the number of antenna elements
  • d represents the spatial depth
  • represents the carrier wavelength
  • Step 5 Use the channel spatial depth quantization level set and the channel spatial angle quantization level set to sample the antenna port group steering vector to obtain a codebook containing channel spatial depth information and channel spatial angle information.
  • codebook (denoted as C) can be expressed as formula 2:
  • n is an integer greater than or equal to 0 and less than N.
  • q m,k means that the spatial depth component in the codebook is d k , and the spatial angle component is The precoding vector.
  • the size of the codebook is K*M.
  • Each precoding vector is an N-dimensional vector. Referring to Figure 10, the codebook has a sector-shaped lattice quantization feature, and each precoding vector corresponds to a d k and a
  • the codebook can be constructed based on the approximation or simplified calculation formula of the steering vector function of the antenna port group
  • the formula 1 in the fourth step above includes the calculation of the root sign.
  • the formula 1 can be approximated in two stages, and the approximation is as follows:
  • formula 2 can be constructed as follows:
  • the codebook determined by the above method can be stored in the first communication device and the second communication device for subsequent use.
  • the implementation process of the terminal mainly includes channel estimation, CSI quantization, and feedback of the first index. See FIG. 12, which specifically includes:
  • a terminal receives a pilot signal from a network device, performs channel estimation according to the received pilot signal, and obtains a CSI estimation value of the channel.
  • the estimated value of CSI can be denoted as It is an N R ⁇ N matrix, where N R is the number of receiving antennas of the terminal, and N R is an integer greater than 0.
  • N R is the number of receiving antennas of the terminal
  • N R is an integer greater than 0.
  • the terminal performs CSI quantization.
  • the terminal performs matching with the codebook according to the CSI estimated value, and determines that the index corresponding to the precoding vector that meets the matching degree requirement is the first index.
  • the terminal matches each precoding vector in the codebook according to the CSI estimation value, and determines one or more indexes with the highest matching degree as the first index.
  • an example of a matching method based on the correlation between the CSI estimation value and the codebook is as follows:
  • q m,k means that the spatial depth component in the codebook is d k , and the spatial angle component is The precoding vector.
  • the modulus value. That is, the first index, and the first precoding vector corresponding to the first index is
  • the statistical covariance matrix of noise is a unit matrix. Therefore, the statistical covariance matrix of noise may not be considered.
  • the terminal When the terminal receives multiple antennas, the terminal usually has interference from other users (such as inter-cell interference between neighboring stations). At this time, its noise is generally spatially colored noise, that is, the statistical covariance matrix of the noise is no longer a unit matrix, but Different spatial feature directions show strong and weak differences, that is, noise has spatial directionality.
  • formula 3 When formula 3 is used to determine the first index, performance loss will be introduced.
  • the terminal when the terminal is receiving with multiple antennas, if the number of space division multiplexing layers is L>1, the first index includes L sub-indexes. In this case, the codebook index can be searched with the rate maximization matching method to be considered. Ensure that the gain of the array is maximized.
  • R zz terminal receiver represents the N R ⁇ N R the covariance matrix of noise statistics, by the conventional technique the estimated pilot measurement, Represents the inverse of the matrix R zz , I represents the identity matrix, Express The determinant.
  • the noise statistical covariance matrix in this application may be an additive noise statistical covariance matrix.
  • the first index can also be determined according to formula 4 above.
  • the terminal may determine L sub-indexes according to an iterative method, that is, when determining the l+1th sub-index, the autocorrelation matrix corresponding to the precoding vector corresponding to the first l sub-index is added to R zz as an interference item, and then Calculate the l+1th sub-index according to formula 4.
  • l is an integer greater than or equal to 0 and less than L.
  • the codebook index obtained can reflect the equivalent spatial angle and spatial depth of the shift after being affected by colored noise, so that the corresponding The precoding vector can match the channel characteristics to the greatest extent, and obtain the maximum precoding gain and sum rate.
  • the terminal sends the first index to the network device.
  • the terminal may send the first index to the network device in a signaling manner through an uplink channel.
  • the implementation process of the network equipment mainly includes receiving the first index, CSI reconstruction, and using the CSI reconstruction value obtained by the CSI reconstruction to perform SU-MIMO or MU-MIMO precoding. See Figure 12, which specifically includes:
  • the network device receives the first index from the terminal.
  • the network device determines a precoding vector corresponding to the first index (that is, the first precoding vector) according to the first index.
  • the network device may determine the first precoding vector in the codebook according to the first index.
  • the network device performs CSI reconstruction, and determines a CSI reconstruction value.
  • the network device may use the first precoding vector as the CSI reconstruction value.
  • the network device uses the CSI reconstruction value to perform SU-MIMO or MU-MIMO precoding.
  • the precoded data can be expressed as: Among them, w represents the CSI reconstruction value, which is an N-dimensional column vector. x represents a single stream data symbol, Represents the pre-encoded vector.
  • ZF Zero-Forcing
  • N ⁇ represents the total number of space division multiplexing user (i.e., terminal number)
  • H represents a N ⁇ row vectors of the equivalent channel by N ⁇ ⁇ N dimensional matrix of rows of stitching, each row vector is a terminal CSI estimated value
  • W represents the N ⁇ N ⁇ ZF CSI reconstruction value corresponding to H
  • x n represents the single stream data symbol of the nth user, Represents the pre-encoded vector.
  • the codebook may also include polarization information.
  • polarization information please refer to the prior art and will not be repeated.
  • each network element for example, the first communication device and the second communication device, includes at least one of a hardware structure and a software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of this application.
  • the embodiments of the present application can divide the functional units of the first communication device and the second communication device according to the foregoing method examples.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated into one.
  • Processing unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 13 shows a possible structural diagram of the communication device (denoted as the communication device 130) involved in the foregoing embodiment.
  • the communication device 130 includes a processing unit 1301 and a communication unit 1302. , May also include a storage unit 1303.
  • the schematic structural diagram shown in FIG. 13 may be used to illustrate the structures of the first communication device and the second communication device involved in the foregoing embodiment.
  • the processing unit 1301 is used to control and manage the actions of the first communication device, for example, the processing unit 1301 is used to execute 901 and 902 in FIG. 9, 1201 to 1203 in FIG. 12 (at this time, the first communication device is a terminal), and/or actions performed by the first communication device in other processes described in the embodiments of the present application.
  • the processing unit 1301 may communicate with other network entities through the communication unit 1302, for example, communicate with the second communication device shown in FIG. 9.
  • the storage unit 1303 is used to store the program code and data of the first communication device.
  • the communication device 130 may be a device (for example, a terminal) or a chip in the device.
  • the processing unit 1301 is used to control and manage the actions of the second communication device, for example, the processing unit 1301 is used to execute 902 to 904 in FIG. 9, 1204 to 1207 in FIG. 12 (at this time, the second communication device is a network device), and/or actions performed by the second communication device in other processes described in the embodiments of the present application .
  • the processing unit 1301 may communicate with other network entities through the communication unit 1302, for example, communicate with the first communication device shown in FIG. 9.
  • the storage unit 1303 is used to store the program code and data of the second communication device.
  • the communication device 130 may be a device (for example, a network device), or may be a chip in the device.
  • the processing unit 1301 may be a processor or a controller, and the communication unit 1302 may be a communication interface, a transceiver, a transceiver, a transceiver circuit, a transceiver, and the like.
  • the communication interface is a general term and may include one or more interfaces.
  • the storage unit 1303 may be a memory.
  • the processing unit 1301 may be a processor or a controller, and the communication unit 1302 may be an input interface and/or an output interface, a pin or a circuit, or the like.
  • the storage unit 1303 may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit outside the chip in the device (for example, read-only memory (ROM), random access memory). Memory (random access memory, RAM), etc.).
  • ROM read-only memory
  • RAM random access memory
  • the communication unit may also be referred to as a transceiver unit.
  • the antenna and control circuit with the transceiver function in the communication device 130 can be regarded as the communication unit 1302 of the communication device 130, and the processor with processing function can be regarded as the processing unit 1301 of the communication device 130.
  • the device for implementing the receiving function in the communication unit 1302 may be regarded as a receiving unit, which is used to perform the receiving steps in the embodiment of the present application, and the receiving unit may be a receiver, a receiver, a receiving circuit, and the like.
  • the device for implementing the sending function in the communication unit 1302 can be regarded as a sending unit, the sending unit is used to perform the sending steps in the embodiment of the present application, and the sending unit can be a sender, a sender, a sending circuit, and the like.
  • the integrated unit in FIG. 13 is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage
  • the medium includes several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • Storage media for storing computer software products include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • the unit in FIG. 13 may also be referred to as a module, for example, the processing unit may be referred to as a processing module.
  • the embodiment of the present application also provides a schematic diagram of the hardware structure of a communication device.
  • the communication device includes a processor 1401 and, optionally, a memory 1402 connected to the processor 1401.
  • the processor 1401 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • the processor 1401 may also include multiple CPUs, and the processor 1401 may be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the memory 1402 may be ROM or other types of static storage devices that can store static information and instructions, RAM, or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • read-only memory EEPROM
  • compact disc read-only memory, CD-ROM
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • magnetic disks A storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, and the embodiment of the present application does not impose any limitation on this.
  • the memory 1402 may exist independently, or may be integrated with the processor 1401. Wherein, the memory 1402 may contain computer program code.
  • the processor 1401 is configured to execute the computer program code stored in the memory 1402, so as to implement the method provided in the embodiment of the present application.
  • the communication device further includes a transceiver 1403.
  • the processor 1401, the memory 1402, and the transceiver 1403 are connected by a bus.
  • the transceiver 1403 is used to communicate with other devices or a communication network.
  • the transceiver 1403 may include a transmitter and a receiver.
  • the device used for implementing the receiving function in the transceiver 1403 can be regarded as a receiver, and the receiver is used to perform the receiving steps in the embodiment of the present application.
  • the device used to implement the sending function in the transceiver 1403 can be regarded as a transmitter, and the transmitter is used to perform the sending steps in the embodiment of the present application.
  • FIG. 14 may be used to illustrate the structures of the first communication device and the second communication device involved in the foregoing embodiment.
  • the processor 1401 is used to control and manage the actions of the first communication device.
  • the processor 1401 is used to support The first communication device executes 901 and 902 in FIG. 9, 1201 to 1203 in FIG. 12 (at this time, the first communication device is a terminal), and/or the first communication in other processes described in the embodiment of the present application The action performed by the device.
  • the processor 1401 may communicate with other network entities through the transceiver 1403, for example, communicate with the second communication device shown in FIG. 9.
  • the memory 1402 is used to store the program code and data of the first communication device.
  • the processor 1401 is used to control and manage the actions of the second communication device.
  • the processor 1401 is used to support
  • the second communication device executes 902 to 904 in FIG. 9, 1204 to 1207 in FIG. 12 (at this time, the second communication device is a network device), and/or the second of the other processes described in the embodiment of the present application Action performed by the communication device.
  • the processor 1401 may communicate with other network entities through the transceiver 1403, for example, communicate with the first communication device shown in FIG. 9.
  • the memory 1402 is used to store the program code and data of the second communication device.
  • the processor 1401 includes a logic circuit and at least one of an input interface and an output interface. Among them, the output interface is used to execute the sending action in the corresponding method, and the input interface is used to execute the receiving action in the corresponding method.
  • FIG. 15 may be used to illustrate the structures of the first communication device and the second communication device involved in the foregoing embodiment.
  • the processor 1401 is used to control and manage the actions of the first communication device.
  • the processor 1401 is used to support The first communication device executes 901 and 902 in FIG. 9, 1201 to 1203 in FIG. 12 (at this time, the first communication device is a terminal), and/or the first communication in other processes described in the embodiment of the present application The action performed by the device.
  • the processor 1401 may communicate with other network entities through at least one of the input interface and the output interface, for example, communicate with the second communication device shown in FIG. 9.
  • the memory 1402 is used to store the program code and data of the first communication device.
  • the processor 1401 is used to control and manage the actions of the second communication device.
  • the processor 1401 is used to support
  • the second communication device executes 902 to 904 in FIG. 9, 1204 to 1207 in FIG. 12 (at this time, the second communication device is a network device), and/or the second of the other processes described in the embodiment of the present application Action performed by the communication device.
  • the processor 1401 may communicate with other network entities through at least one of the input interface and the output interface, for example, communicate with the first communication device shown in FIG. 9.
  • the memory 1402 is used to store the program code and data of the second communication device.
  • each step in the method provided in this embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the embodiments of the present application also provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute any of the above-mentioned methods.
  • the embodiment of the present application also provides a computer program product containing instructions, which when running on a computer, causes the computer to execute any of the above-mentioned methods.
  • the embodiment of the present application also provides a communication device, including: a processor and an interface circuit, the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send the signals from the processor to the processor
  • the processor is used to implement any of the foregoing methods through logic circuits or execution code instructions.
  • An embodiment of the present application also provides a communication system, including: a first communication device and a second communication device.
  • the computer can be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions may be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or may include one or more data storage devices such as a server or a data center that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法及装置,涉及通信技术领域。该方法中,第一通信装置确定指示第一预编码向量的第一索引,并向第二通信装置发送第一索引,第二通信装置从第一通信装置接收第一索引,并根据第一索引确定第一预编码向量,根据第一预编码向量对数据进行预编码。其中,第一预编码向量包括第一通信装置与第二通信装置之间的信道的空间角度信息和空间深度信息,通过在预编码向量中引入空间深度信息,可以从空间角度和空间深度两个维度确定信道,从而使得第二通信装置根据第一通信装置反馈的索引对应的预编码向量获取的CSI重构值与CSI真值更加接近,从而最大化ELAA下的空分复用增益和阵列增益。

Description

通信方法及装置
本申请要求于2020年06月03日提交中国国家知识产权局、申请号为202010496328.2、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
大规模(Massive)-多输入多输出(multiple-input multiple-output,MIMO)是无线通信系统提升系统容量及频谱效率的重要技术手段,其基本原理是网络设备根据信道状态信息(channel state information,CSI),利用奇异值分解(singular value decompostion,SVD)等方法确定信道的有效传输空间,在该传输空间中存在多个相互正交或接近正交的并行子信道,通过在这些并行子信道中发送多个独立的数据流来获取容量成倍增加的空分复用增益。因此,该技术获取空分复用增益的一个关键条件是网络设备能够得到足够精确的CSI。
目前,参见图1,网络设备获取CSI的过程可以包括:网络设备向终端发送导频信号,终端根据接收到的导频信号获取CSI估计值,根据CSI估计值在码本中选择一个预编码向量,将预编码向量的索引反馈给网络设备,网络设备根据该预编码向量的索引确定CSI重构值,该CSI重构值即网络设备可以获取的最接近CSI真值的CSI。
现有码本技术一般基于平面波传播模型,其主要反映信道的空间角度信息。当信道不再满足平面波传播模型时,CSI重构值与CSI真值会产生较大偏差,进而降低Massive-MIMO的空分复用增益和阵列增益等。
发明内容
本申请实施例提供了一种通信方法及装置,用于提高Massive-MIMO的空分复用增益和阵列增益等。
为达到上述目的,本申请实施例提供如下技术方案:
第一方面,提供了一种通信方法,包括:第一通信装置确定指示第一预编码向量的第一索引,并向第二通信装置发送第一索引。其中,第一预编码向量包括第一通信装置与第二通信装置之间的信道的空间角度信息和空间深度信息,通过在预编码向量中引入空间深度信息,可以从空间角度和空间深度两个维度确定信道,从而使得第一通信装置反馈的索引对应的预编码向量能够匹配球面波信道特征,也就是说,第二通信装置根据第一通信装置反馈的索引对应的预编码向量获取的CSI重构值与CSI真值更加接近,从而最大化ELAA下的空分复用增益和阵列增益。
在一种可能的实现方式中,第一预编码向量所属的码本包括K*M个预编码向量,每个预编码向量为一个N维的向量,K为码本对应的信道的空间深度的量化电平数,M为码本对应的信道的空间角度的量化电平数,N为第二通信装置的天线端口个数,K、M和N均为大于0的整数。该种可能的实现方式,提供了一种包含空间深度信息和空间角度信息 的码本的可能的形式。
在一种可能的实现方式中,第一预编码向量所属的码本通过采用信道的空间深度的量化电平集合和信道的空间角度的量化电平集合,对第二通信装置的天线端口组导向向量进行采样得到。该种可能的实现方式,提供了一种包含空间深度信息和空间角度信息的码本的确定方法。
在一种可能的实现方式中,天线端口组导向向量根据信道的空间深度、信道的空间角度以及第二通信装置的天线端口组相关参数确定,天线端口组相关参数包括天线端口间距、天线端口数、天线端口的空间排列中的一个或多个。该种可能的实现方式,提供了一种天线端口组导向向量的确定方法。
在一种可能的实现方式中,信道的空间深度的量化电平集合根据信道的先验统计信息和容许使用的量化比特数确定,先验统计信息包括:信道的空间深度的最大值和信道的空间深度的最小值,或者,信道的空间深度的均值和信道的空间深度的方差,或者,信道的空间深度的概率分布函数。该种可能的实现方式,提供了一种信道的空间深度的量化电平集合的确定方法。
在一种可能的实现方式中,第一通信装置确定第一索引,包括:第一通信装置根据获取的CSI估计值与码本进行匹配,确定符合匹配度要求的预编码向量对应的索引为第一索引。该种可能的实现方式,提供了一种第一索引的确定方法。
在一种可能的实现方式中,第一通信装置确定第一索引,包括:第一通信装置根据获取的CSI估计值和噪声统计协方差矩阵,与码本进行匹配,确定符合匹配度要求的预编码向量对应的索引为第一索引。当第一通信装置多天线接收时,第一通信装置通常存在来自其他用户的干扰(比如邻站小区间干扰),此时其噪声一般为空间有色噪声,有色噪声会导致信道的空间角度和空间深度发生偏移,通过噪声统计协方差矩阵,所获得的码本的索引能够反映受有色噪声影响后偏移的等效空间角度与空间深度,使得对应的预编码向量能够最大程度匹配信道特征,获取最大的预编码增益及和速率。
在一种可能的实现方式中,第一索引包括L个子索引,L表示第一通信装置的空分复用层数,L为大于1的整数,第一通信装置确定第一索引,包括:第一通信装置根据获取的CSI估计值与码本进行匹配,确定符合匹配度要求的L个预编码向量对应的索引为第一索引。该种可能的实现方式,提供了又一种第一索引的确定方法。
在一种可能的实现方式中,第一索引包括L个子索引,L表示第一通信装置的空分复用层数,L为大于1的整数,第一通信装置确定第一索引,包括:第一通信装置根据获取的CSI估计值和噪声统计协方差矩阵,与码本进行匹配,确定符合匹配度要求的L个预编码向量对应的索引为第一索引。当第一通信装置多天线接收时,第一通信装置通常存在来自其他用户的干扰(比如邻站小区间干扰),此时其噪声一般为空间有色噪声,有色噪声会导致信道的空间角度和空间深度发生偏移,通过噪声统计协方差矩阵,所获得的码本的索引能够反映受有色噪声影响后偏移的等效空间角度与空间深度,使得对应的预编码向量能够最大程度匹配信道特征,获取最大的预编码增益及和速率。
第二方面,提供了一种通信方法,包括:第二通信装置从第一通信装置接收指示第一预编码向量的第一索引,并根据第一索引确定第一预编码向量,根据第一预编码向量对数据进行预编码。其中,第一预编码向量包括第一通信装置与第二通信装置之间的信道的空 间角度信息和空间深度信息,通过在预编码向量中引入空间深度信息,可以从空间角度和空间深度两个维度确定信道,从而使得第一通信装置反馈的索引对应的预编码向量能够匹配球面波信道特征,也就是说,第二通信装置根据第一通信装置反馈的索引对应的预编码向量获取的CSI重构值与CSI真值更加接近,从而最大化ELAA下的空分复用增益和阵列增益。
在一种可能的实现方式中,该方法还包括:第二通信装置从除第一通信装置之外的S-1个第一通信装置分别接收索引,S为大于1的整数;在S个索引中的S1个索引对应的预编码向量的空间角度分量相同、但空间深度分量不同的情况下,第二通信装置根据S1个索引对应的预编码向量的空间深度分量进行S1个第一通信装置的复用传输,S1个索引为S个索引中的部分或全部索引,S个索引为第二通信装置从第一通信装置和S-1个第一通信装置接收到的索引,S1个第一通信装置为上报S1个索引的第一通信装置,S1为大于1小于等于S的整数;在S个索引中的S2个索引对应的预编码向量的空间角度分量不同、且空间深度分量不同的情况下,第二通信装置根据S2个索引对应的预编码向量的空间深度分量和/或空间角度分量进行S2个第一通信装置的复用传输,S2个索引为S个索引中的部分或全部索引,S个索引为第二通信装置从第一通信装置和S-1个第一通信装置接收到的索引,S2个第一通信装置为上报S2个索引的第一通信装置,S2为大于1小于等于S的整数。该种可能的实现方式,在不同的第一通信装置发送的索引对应的预编码向量的空间深度分量不同的情况下,第二通信装置基于这些索引可以分辨与不同第一通信装置之间信道的空间深度的差异,并根据空间深度的差异进行数据的复用传输,即第二通信装置可以根据不同的空间深度分量分配不同层的数据流,从而提升SU-MIMO或MU-MIMO空分复用总层数及系统容量。比如,对于用户密集分布的重载业务场景,可以对通过空间角度无法分辨和复用的Q(Q为大于1的整数)个用户,在空间深度上进行分辨和复用,从而实现Q倍容量提升。
在一种可能的实现方式中,方法还包括:第二通信装置从除第一通信装置之外的S-1个第一通信装置分别接收索引,S为大于1的整数;在S个索引中的S3个索引对应的预编码向量的空间深度分量不同的情况下,第二通信装置根据S3个索引对应的预编码向量的空间深度分量进行S3个第一通信装置的复用传输,S3个索引为S个索引中的部分或全部索引,S个索引为第二通信装置从第一通信装置和S-1个第一通信装置接收到的索引,S3个第一通信装置为上报S3个索引的第一通信装置,S3为大于1小于等于S的整数。该种可能的实现方式,在不同的第一通信装置发送的索引对应的预编码向量的空间深度分量不同的情况下,第二通信装置基于这些索引可以分辨与不同第一通信装置之间信道的空间深度的差异,并根据空间深度的差异进行数据的复用传输,即第二通信装置可以根据不同的空间深度分量分配不同层的数据流,从而提升SU-MIMO或MU-MIMO空分复用总层数及系统容量。比如,对于用户密集分布的重载业务场景,可以对通过空间角度无法分辨和复用的Q(Q为大于1的整数)个用户,在空间深度上进行分辨和复用,从而实现Q倍容量提升。
在一种可能的实现方式中,第一预编码向量所属的码本包括K*M个预编码向量,每个预编码向量为一个N维的向量,K为码本对应的信道的空间深度的量化电平数,M为码本对应的信道的空间角度的量化电平数,N为第二通信装置的天线端口个数,K、M和N 均为大于0的整数。该种可能的实现方式,提供了一种包含空间深度信息和空间角度信息的码本的可能的形式。
在一种可能的实现方式中,第一预编码向量所属的码本通过采用信道的空间深度的量化电平集合和信道的空间角度的量化电平集合,对第二通信装置的天线端口组导向向量进行采样得到。该种可能的实现方式,提供了一种包含空间深度信息和空间角度信息的码本的确定方法。
在一种可能的实现方式中,天线端口组导向向量根据信道的空间深度、信道的空间角度以及第二通信装置的天线端口组相关参数确定,天线端口组相关参数包括天线端口间距、天线端口数、天线端口的空间排列中的一个或多个。该种可能的实现方式,提供了一种天线端口组导向向量的确定方法。
在一种可能的实现方式中,信道的空间深度的量化电平集合根据信道的先验统计信息和容许使用的量化比特数确定,先验统计信息包括:信道的空间深度的最大值和信道的空间深度的最小值,或者,信道的空间深度的均值和信道的空间深度的方差,或者,信道的空间深度的概率分布函数。该种可能的实现方式,提供了一种信道的空间深度的量化电平集合的确定方法。
在一种可能的实现方式中,码本中符合匹配度要求的预编码向量对应的索引为第一索引,符合匹配度要求的预编码向量通过第一通信装置确定的CSI估计值与码本进行匹配确定,或者,符合匹配度要求的预编码向量通过第一通信装置确定的CSI估计值和噪声统计协方差矩阵与码本进行匹配确定。该种可能的实现方式,提供了两种第一索引的确定方法。当第一通信装置多天线接收时,第一通信装置通常存在来自其他用户的干扰(比如邻站小区间干扰),此时其噪声一般为空间有色噪声,有色噪声会导致信道的空间角度和空间深度发生偏移,通过噪声统计协方差矩阵,所获得的码本的索引能够反映受有色噪声影响后偏移的等效空间角度与空间深度,使得对应的预编码向量能够最大程度匹配信道特征,获取最大的预编码增益及和速率。
在一种可能的实现方式中,第一索引包括L个子索引,码本中符合匹配度要求的L个预编码向量对应的索引为第一索引,符合匹配度要求的L个预编码向量通过第一通信装置确定的CSI估计值与码本进行匹配确定,或者,符合匹配度要求的L个预编码向量通过第一通信装置确定的CSI估计值和噪声统计协方差矩阵与码本进行匹配确定。该种可能的实现方式,提供了两种第一索引的确定方法。当第一通信装置多天线接收时,第一通信装置通常存在来自其他用户的干扰(比如邻站小区间干扰),此时其噪声一般为空间有色噪声,有色噪声会导致信道的空间角度和空间深度发生偏移,通过噪声统计协方差矩阵,所获得的码本的索引能够反映受有色噪声影响后偏移的等效空间角度与空间深度,使得对应的预编码向量能够最大程度匹配信道特征,获取最大的预编码增益及和速率。
第三方面,提供了一种通信装置,包括用于执行上述第一方面提供的任一种方法的模块或单元。例如,包括:处理单元和通信单元;所述处理单元,用于确定第一索引,所述第一索引指示第一预编码向量,所述第一预编码向量包括所述通信装置与第二通信装置之间的信道的空间角度信息和空间深度信息;所述通信单元,用于向所述第二通信装置发送所述第一索引。
在一种可能的实现方式中,所述第一预编码向量所属的码本包括K*M个预编码向量, 每个预编码向量为一个N维的向量,K为所述码本对应的所述信道的空间深度的量化电平数,M为所述码本对应的所述信道的空间角度的量化电平数,N为所述第二通信装置的天线端口个数,K、M和N均为大于0的整数。
在一种可能的实现方式中,所述第一预编码向量所属的码本通过采用所述信道的空间深度的量化电平集合和所述信道的空间角度的量化电平集合,对所述第二通信装置的天线端口组导向向量进行采样得到。
在一种可能的实现方式中,所述天线端口组导向向量根据所述信道的空间深度、所述信道的空间角度以及所述第二通信装置的天线端口组相关参数确定,所述天线端口组相关参数包括天线端口间距、天线端口数、天线端口的空间排列中的一个或多个。
在一种可能的实现方式中,所述信道的空间深度的量化电平集合根据所述信道的先验统计信息和容许使用的量化比特数确定,所述先验统计信息包括:所述信道的空间深度的最大值和所述信道的空间深度的最小值,或者,所述信道的空间深度的均值和所述信道的空间深度的方差,或者,所述信道的空间深度的概率分布函数。
在一种可能的实现方式中,所述处理单元,具体用于:根据获取的CSI估计值与所述码本进行匹配,确定符合匹配度要求的预编码向量对应的索引为所述第一索引。
在一种可能的实现方式中,所述处理单元,具体用于:根据获取的CSI估计值和噪声统计协方差矩阵,与码本进行匹配,确定符合匹配度要求的预编码向量对应的索引为所述第一索引。
在一种可能的实现方式中,所述第一索引包括L个子索引,L表示所述通信装置的空分复用层数,L为大于1的整数,所述处理单元,具体用于:根据获取的CSI估计值与所述码本进行匹配,确定符合匹配度要求的L个预编码向量对应的索引为所述第一索引。
在一种可能的实现方式中,所述第一索引包括L个子索引,L表示所述通信装置的空分复用层数,L为大于1的整数,所述处理单元,具体用于:根据获取的CSI估计值和噪声统计协方差矩阵,与码本进行匹配,确定符合匹配度要求的L个预编码向量对应的索引为所述第一索引。
第四方面,提供了一种通信装置,包括用于执行上述第二方面提供的任一种方法的模块或单元。例如,包括:通信单元和处理单元;所述通信单元,用于从第一通信装置接收第一索引,所述第一索引指示第一预编码向量,所述第一预编码向量包括所述第一通信装置与所述通信装置之间的信道的空间角度信息和空间深度信息;所述处理单元,用于根据所述第一索引确定所述第一预编码向量,根据所述第一预编码向量对数据进行预编码。
在一种可能的实现方式中,所述通信单元,还用于从除所述第一通信装置之外的S-1个第一通信装置分别接收索引,S为大于1的整数;所述处理单元,还用于在S个索引中的S1个索引对应的预编码向量的空间角度分量相同、但空间深度分量不同的情况下,根据所述S1个索引对应的预编码向量的空间深度分量进行S1个第一通信装置的复用传输,所述S1个索引为所述S个索引中的部分或全部索引,所述S个索引为所述通信装置从所述第一通信装置和所述S-1个第一通信装置接收到的索引,所述S1个第一通信装置为上报所述S1个索引的第一通信装置,S1为大于1小于等于S的整数;所述处理单元,还用于在S个索引中的S2个索引对应的预编码向量的空间角度分量不同、且空间深度分量不同的情况下,根据所述S2个索引对应的预编码向量的空间深度分量和/或空间角度分量进行 S2个第一通信装置的复用传输,所述S2个索引为所述S个索引中的部分或全部索引,所述S个索引为所述通信装置从所述第一通信装置和所述S-1个第一通信装置接收到的索引,所述S2个第一通信装置为上报所述S2个索引的第一通信装置,S2为大于1小于等于S的整数。
在一种可能的实现方式中,所述通信单元,还用于从除所述第一通信装置之外的S-1个第一通信装置分别接收索引,S为大于1的整数;所述处理单元,还用于在S个索引中的S3个索引对应的预编码向量的空间深度分量不同的情况下,根据所述S3个索引对应的预编码向量的空间深度分量进行S3个第一通信装置的复用传输,所述S3个索引为所述S个索引中的部分或全部索引,所述S个索引为所述第二通信装置从所述第一通信装置和所述S-1个第一通信装置接收到的索引,所述S3个第一通信装置为上报所述S3个索引的第一通信装置,S3为大于1小于等于S的整数。
在一种可能的实现方式中,所述第一预编码向量所属的码本包括K*M个预编码向量,每个预编码向量为一个N维的向量,K为所述码本对应的所述信道的空间深度的量化电平数,M为所述码本对应的所述信道的空间角度的量化电平数,N为所述通信装置的天线端口个数,K、M和N均为大于0的整数。
在一种可能的实现方式中,所述第一预编码向量所属的码本通过采用所述信道的空间深度的量化电平集合和所述信道的空间角度的量化电平集合,对所述通信装置的天线端口组导向向量进行采样得到。
在一种可能的实现方式中,所述天线端口组导向向量根据所述信道的空间深度、所述信道的空间角度以及所述通信装置的天线端口组相关参数确定,所述天线端口组相关参数包括天线端口间距、天线端口数、天线端口的空间排列中的一个或多个。
在一种可能的实现方式中,所述信道的空间深度的量化电平集合根据所述信道的先验统计信息和容许使用的量化比特数确定,所述先验统计信息包括:所述信道的空间深度的最大值和所述信道的空间深度的最小值,或者,所述信道的空间深度的均值和所述信道的空间深度的方差,或者,所述信道的空间深度的概率分布函数。
在一种可能的实现方式中,所述码本中符合匹配度要求的预编码向量对应的索引为所述第一索引,所述符合匹配度要求的预编码向量通过所述第一通信装置确定的CSI估计值与所述码本进行匹配确定,或者,所述符合匹配度要求的预编码向量通过所述第一通信装置确定的CSI估计值和噪声统计协方差矩阵与所述码本进行匹配确定。
在一种可能的实现方式中,所述第一索引包括L个子索引,所述码本中符合匹配度要求的L个预编码向量对应的索引为所述第一索引,所述符合匹配度要求的L个预编码向量通过所述第一通信装置确定的CSI估计值与所述码本进行匹配确定,或者,所述符合匹配度要求的L个预编码向量通过所述第一通信装置确定的CSI估计值和噪声统计协方差矩阵与所述码本进行匹配确定。
第五方面,提供了一种通信装置,包括:处理器。处理器与存储器连接,存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,从而实现第一方面提供的任意一种方法。示例性的,存储器和处理器可以集成在一起,也可以为独立的器件。若为后者,存储器可以位于通信装置内,也可以位于通信装置外。
在一种可能的实现方式中,处理器包括逻辑电路,还包括输入接口和输出接口中的至 少一个。示例性的,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
在一种可能的实现方式中,通信装置还包括通信接口和通信总线,处理器、存储器和通信接口通过通信总线连接。通信接口用于执行相应方法中的收发的动作。通信接口也可以称为收发器。可选的,通信接口包括发送器和接收器中的至少一种,该情况下,发送器用于执行相应方法中的发送的动作,接收器用于执行相应方法中的接收的动作。
在一种可能的实现方式中,通信装置以芯片的产品形态存在。
第六方面,提供了一种通信装置,包括:处理器。处理器与存储器连接,存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,从而实现第二方面提供的任意一种方法。示例性的,存储器和处理器可以集成在一起,也可以为独立的器件。若为后者,存储器可以位于通信装置内,也可以位于通信装置外。
在一种可能的实现方式中,处理器包括逻辑电路,还包括输入接口和输出接口中的至少一个。示例性的,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
在一种可能的实现方式中,通信装置还包括通信接口和通信总线,处理器、存储器和通信接口通过通信总线连接。通信接口用于执行相应方法中的收发的动作。通信接口也可以称为收发器。可选的,通信接口包括发送器和接收器中的至少一种,该情况下,发送器用于执行相应方法中的发送的动作,接收器用于执行相应方法中的接收的动作。
在一种可能的实现方式中,通信装置以芯片的产品形态存在。
第七方面,提供了一种通信装置,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现第一方面提供的任意一种方法。
第八方面,提供了一种通信装置,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现第二方面提供的任意一种方法。
第九方面,提供了一种通信系统,包括如权利要求第三方面、第五方面、第七方面中任一项所述的通信装置,和如权利要求第四方面、第六方面、第八方面中任一项所述的通信装置。
第十方面,提供了一种计算机可读存储介质,包括计算机执行指令,当所述计算机执行指令在计算机上运行时,使得所述计算机执行第一方面或第二方面提供的任意一种方法。
第十一方面,提供了一种计算机程序产品,包括计算机执行指令,当所述计算机执行指令在计算机上运行时,使得所述计算机执行第一方面或第二方面提供的任意一种方法。
第三方面至第十一方面中的任一种实现方式所带来的技术效果可参见第一方面和第二方面中对应实现方式所带来的技术效果,此处不再赘述。
需要说明的是,在方案不矛盾的前提下,上述各个方面中的方案均可以结合。
附图说明
图1为一种获取CSI重构值的方法流程图;
图2为本申请实施例提供的网络架构示意图;
图3为本申请实施例提供的天线阵列示意图;
图4为本申请实施例提供的一种Rayleigh距随天线阵列孔径的变化示意图;
图5为本申请实施例提供的一种平面波示意图;
图6为本申请实施例提供的一种球面波示意图;
图7为本申请实施例提供的一种获取CSI重构值的方法流程图;
图8为本申请实施例提供的一种空间角度的量化示意图;
图9为本申请实施例提供的一种通信方法的流程图;
图10为本申请实施例提供的一种空间角度和空间深度的量化示意图;
图11为本申请实施例提供的又一种获取CSI重构值的方法流程图;
图12为本申请实施例提供的又一种通信方法的流程图;
图13为本申请实施例提供的一种通信装置的组成示意图;
图14为本申请实施例提供的一种通信装置的硬件结构示意图;
图15为本申请实施例提供的又一种通信装置的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。
本申请可以应用于窄带物联网系统(narrow band-internet of things,NB-IoT)、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for GSM evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA)、第四代(4th Generation,4G)系统、基于4G系统演进的各种系统、第五代(5th Generation,5G)系统、基于5G系统演进的各种系统、卫星通信系统等无线通信系统中。其中,4G系统也可以称为演进分组系统(evolved packet system,EPS)。4G系统的核心网可以称为演进分组核心网(evolved packet core,EPC),接入网可以称为长期演进(long term evolution,LTE)。5G系统的核心网可以称为5GC(5G core),接入网可以称为新无线(new radio,NR)。本申请适用的应用场景包括但不限于增强移动宽带(enhanced mobile broadband,eMBB),高可靠和低延迟通信(ultra-reliable and low latency communications,URLLC)和大规模机器类型通信(massive machine type communication,eMTC)等。
参见图2,本申请涉及网络设备和终端,网络设备和终端可以进行无线通信。
本申请实施例中的网络设备可以是接入网侧用于支持终端接入通信系统的设备,例如,各种形式的宏基站,微基站(也称为小站)。具体的,可以是第三代(3rd generation,3G)系统中的节点B(node B)、4G系统中的演进型基站(evolved nodeB,eNB)、5G系统中的下一代基站(next generation nodeB,gNB)、发送接收点(transmission reception point, TRP)、中继节点(relay node)、接入点(access point,AP)等等。其中,基站可以包含基带单元(baseband unit,BBU)和远端射频单元(remote radio unit,RRU)。BBU和RRU可以放置在不同的地方,例如:RRU拉远,放置于高话务量的区域,BBU放置于中心机房。BBU和RRU也可以放置在同一机房。BBU和RRU也可以为一个机架下的不同部件。网络设备可以称为基站、基站设备、节点或者接入网设备等。
本申请实施例中的终端可以是一种向用户提供语音或者数据连通性的设备,也可以称为用户设备(user equipment,UE),移动台(mobile station),用户单元(subscriber unit),站台(station),终端设备(terminal equipment,TE)等。例如,终端可以为蜂窝电话(cellular phone),个人数字助理(personal digital assistant,PDA),无线调制解调器(modem),手持设备(handheld),膝上型电脑(laptop computer),无绳电话(cordless phone),无线本地环路(wireless local loop,WLL)台,平板电脑(pad),智能手机(smartphone),用户驻地设备(customer premise equipment,CPE),车载设备,可穿戴设备,无线数据卡,平板型电脑,机器类型通信(machine type communication,MTC)终端,计算设备或连接到无线调制解调器的其它处理设备。随着无线通信技术的发展,可以接入通信系统、可以与通信系统的网络侧进行通信,或者通过通信系统与其它物体进行通信的设备都可以是本申请实施例中的终端,譬如,智能交通中的终端和汽车、智能家居中的家用设备、智能电网中的电力抄表仪器、电压监测仪器、环境监测仪器、智能安全网络中的视频监控仪器、收款机等等。
为了使得本申请实施例更加的清楚,以下对本申请涉及的部分概念作简单介绍。
1、天线阵列
单一天线的方向性是有限的,为了适合各种场合的应用,将工作在同一频率的两个或两个以上的单个天线,按照一定的要求进行馈电和空间排列构成天线阵列,也叫天线阵。构成天线阵列的天线辐射单元称为天线阵元或天线阵子。天线阵列可以加强和改善辐射场的方向性和强度。
其中,天线阵列的空间排列可以称为阵面。参见图3,天线阵列的空间排列可以为直线型(此时天线阵列可以称为直线阵)、圆形和矩形。天线阵列的空间排列还可以为其他,不再一一列举。
天线阵列的空间排列中的距离最远的两个天线阵子之间的距离可以称为天线阵列的孔径。天线阵列的空间排列中的相邻两个天线阵子之间的距离可以称为这两个天线阵子之间的间距。
天线阵列也可以称为天线端口组,天线端口组由一个或多个天线端口组成,一个天线端口与一个天线阵子对应。也就是说,下文中的天线阵列和天线端口组之间可以相互替换,天线阵子和天线端口之间可以相互替换。
2、平面波、球面波
平面波是指电磁波阵面为平面的电磁波,球面波是指电磁波阵面为球面的电磁波。其中,电磁波阵面是指电磁波相位相等的每一点所形成的曲面。
可以理解的是,在均匀介质中,电磁波呈球面扩散的方式向外传播,所以可以称为球面波。但是,当传播距离很远后,球面的局部的曲率很小,可以看做平面波。
目前,一般可以通过Rayleigh距确定电磁波为平面波还是球面波,大于Rayleigh 距的空间传播距离的电磁波可以认为是平面波,而小于Rayleigh距的空间传播距离的电磁波可以认为是球面波。
Rayleigh距具体计算式可表示成:R=2L 2λ -1。其中,L表示天线阵列孔径,λ表示载波波长,R表示Rayleigh距。上式表明,Rayleigh距随天线阵列孔径平方增加。例如,图4给出了一种可能的情况下,1.8吉兆赫兹(GHz)与2.6GHz载频下Rayleigh距随天线阵列孔径增加的定量结果,图4中横轴为天线阵列孔径,纵轴为Rayleigh距。由图可知,2.6GHz载频下,当天线阵列孔径为7米(m)时,Rayleigh距接近850m,也即在850m的空间传播距离范围内,信道不再满足平面波假设。
在无线通信系统中,若终端距离网络设备足够远(例如,大于850m),那么参见图5,终端与网络设备之间的信道满足平面波假设。若终端距离网络设备不够远(例如,小于或等于850m),那么参见图6,终端和网络设备之间的信道满足球面波,不再满足平面波假设。
3、空间角度信息、空间深度信息
空间角度是指天线阵列参考切面与自由空间中某一坐标点形成的夹角。空间深度是指阵列参考点与自由空间中某一坐标点之间的直线距离。其中,天线阵列参考切面是指阵列参考点对应的切面。阵列参考点是指阵面中的某一固定点(例如,阵列中的第一根天线、阵列中的最后一根天线)。参见图5和图6,以阵列参考点为接收天线N为例,空间深度则为图中的d,图5和图6中还对天线阵列参考切面的位置进行了示意。
4、导向向量
导向向量为电磁波传播到天线阵列中的N(N为大于0的整数)个天线阵子时,N个天线阵子所对应的N个相位幅度值组成的向量,也可以称为阵列导向向量或天线阵列导向向量。
需要说明的是,本申请中的天线端口组导向向量是指包含空间深度信息的导向向量,一种特殊的示例为球面波导向向量(也即球面波传播到天线阵列中的N个天线阵子所对应的N个相位幅度值组成的向量),但不仅限于球面波导向向量。
5、量化电平集合
量化是指连续值进行离散化,即用一组规定的电平,把连续值用最接近的电平值表示,这些电平值的集合可以称为量化电平集合,这些电平值的个数可以称为量化电平数。
根据上述对平面波和球面波的理解,若终端距离网络设备足够远,那么参见图5,终端与网络设备之间的信道满足平面波假设,现有码本的设计均认为终端与网络设备之间的信道满足平面波假设,因此,现有码本中的预编码向量中仅包括空间角度信息。该情况下,网络设备获取CSI重构值(也可以称为预编码权值)的方法可参见图7。进一步的,参见图8,在构造码本的过程中,可以对空间角度信息进行量化,若空间角度的量化电平数为M(M为大于0的整数),则网络设备可以通过空间角度信息对最多M个终端的数据进行复用传输。本申请中,m为大于0小于等于M的整数。
示例性的,现有的一种码本(记为C)由N维正交的离散傅里叶变换(discrete fourier transform,DFT)基向量组成,如下式所示:
Figure PCTCN2021096181-appb-000001
其中,N表示天线阵子数,q m表示C中的第m个DFT基向量。
现有的码本在设计时,均认为终端与网络设备之间的信道满足平面波假设,也就是说,现有码本技术实质是平面波假设下对导向向量的量化与近似,主要反映信道空间角度信息。随着Massive-MIMO向超大孔径阵列(extremely large aperture array,ELAA)持续演进,天线阵子数及天线阵列孔径不断增加,根据R=2L 2λ -1可知,信道体现球面波特征,不再满足平面波假设,现有码本的设计将导致所得CSI重构值与CSI真值产生较大偏差,进而降低Massive-MIMO的空分复用增益和阵列增益等。
为了解决该问题,本申请提供了一种通信方法,通过在确定码本时引入空间深度信息,使得CSI重构值能够匹配球面波信道特征,从而最大化ELAA下的空分复用增益和阵列增益。本申请下文公式中的“A H”表示“矩阵A的复共轭装置”,“|A|”表示“正定Hermitian阵A的行列式”,“A -1”表示“矩阵A的逆”,“‖A‖”表示“向量A的模值”,“I”表示单位矩阵,“*”表示“乘以”。其中,A可以替换为下文中的相应公式中的参数。
参见图9,该方法包括:
901、第一通信装置确定第一索引,第一索引指示第一预编码向量,第一预编码向量包括第一通信装置与第二通信装置之间的信道的空间角度信息和/或空间深度信息。
本申请提供的方法可以应用于上行通信系统,此时,第一通信装置可以为终端,第二通信装置可以为网络设备,也可以应用于下行通信系统,此时,第一通信装置可以为网络设备,第二通信装置可以为终端。
其中,第一预编码向量为码本中的任意一个预编码向量。码本中的每个预编码向量对应一个索引。
可选的,第一预编码向量所属的码本通过采用信道的空间深度的量化电平集合和信道的空间角度的量化电平集合,对第二通信装置的天线端口组导向向量进行采样得到。
可选的,天线端口组导向向量根据信道的空间深度、信道的空间角度以及第二通信装置的天线端口组相关参数确定,天线端口组相关参数包括天线端口间距(即天线阵子间距)、天线端口数(即天线阵子数)、天线端口的空间排列(即天线阵子的空间排列)中的一个或多个。
可选的,信道的空间深度的量化电平集合根据信道的先验统计信息和容许使用的量化比特数确定,先验统计信息包括:信道的空间深度的最大值和信道的空间深度的最小值,或者,信道的空间深度的均值和信道的空间深度的方差,或者,信道的空间深度的概率分布函数。
其中,经过对信道的空间深度和信道的空间角度进行量化的示意图可以参见图10。
可选的,码本包括K*M个预编码向量,每个预编码向量为一个N维的向量,K为信道的空间深度的量化电平数,M为信道的空间角度的量化电平数,N为第二通信装置的天线个数(物理天线个数或天线端口个数或天线阵子个数),K、M和N均为大于0的整数。
其中,码本中的每个预编码向量均包括一个空间深度分量和空间角度分量,空间深度分量用于指示空间深度信息,空间角度分量用于指示空间角度信息。一个预编码向量对应的索引可以由用于指示空间深度信息(或空间深度分量)的索引和空间角度信息的索引(或空间角度分量)两部分组成,也就是说,预编码向量对应的索引可以为一个二维索引,当然也可以为一维索引,本申请不作限制。
步骤901在实现时可以包括:第一通信装置接收导频信号,根据导频信号进行信道估计,获取CSI估计值,根据CSI估计值在码本中确定第一索引。其中,根据CSI估计值在码本中确定第一索引的过程可以称为CSI量化。
可选的,步骤901具体可以通过以下方式一至方式四中的任意一种方式实现。
方式一、第一通信装置根据获取的CSI估计值与码本进行匹配,确定符合匹配度要求的预编码向量对应的索引为第一索引。
方式一适用的场景:单用户MIMO(Single-User MIMO,SU-MIMO),第一通信装置为单天线装置,第一通信装置只有一层数据流(即第一通信装置的秩(Rank)为1);或者,SU-MIMO,第一通信装置为多天线装置,第一通信装置只有一层数据流。
其中,在方式一至方式四中,满足匹配度要求的预编码向量可以为匹配度最高的一个或多个预编码向量,也可以为匹配度大于一个阈值的一个或多个预编码向量,还可以为满足其他匹配度要求的一个或多个预编码向量,本申请不作限制。
方式一中,第一通信装置可以反馈一个索引,也可以反馈多个索引,若为前者,第一索引为一个索引,若为后者,第一索引包括多个索引。
在方式一中,可选的,若第一索引包括多个索引,则第一通信装置还可以为第一索引中的每个索引反馈一个对应的系数,具体实现与现有技术类似,不再赘述。
方式二、第一通信装置根据获取的CSI估计值和噪声统计协方差矩阵,与码本进行匹配,确定符合匹配度要求的预编码向量对应的索引为第一索引。
方式二适用的场景:SU-MIMO,第一通信装置为多天线装置,第一通信装置只有一层数据流。
方式二中,第一通信装置可以反馈一个索引,也可以反馈多个索引,若为前者,第一索引为一个索引,若为后者,第一索引包括多个索引。
在方式二中,可选的,若第一索引包括多个索引,则第一通信装置还可以为第一索引中的每个索引反馈一个对应的系数,具体实现与现有技术类似,不再赘述。
本申请中的噪声统计协方差矩阵可以为加性噪声统计协方差矩阵。在方式二以及下文中的方式四中,当第一通信装置多天线接收时,第一通信装置通常存在来自其他用户的干扰(比如邻站小区间干扰),此时其噪声一般为空间有色噪声,有色噪声会导致信道的空间角度和空间深度发生偏移,通过噪声统计协方差矩阵,所获得的码本的索引能够反映受有色噪声影响后偏移的等效空间角度与空间深度,使得对应的预编码向量能够最大程度匹配信道特征,获取最大的预编码增益及和速率。
方式三、第一通信装置根据获取的CSI估计值,与码本进行匹配,确定符合匹配度要求的L个预编码向量对应的索引为第一索引。
该情况下,第一索引包括L个子索引,L表示第一通信装置的空分复用层数,L为大于1的整数。
方式三适用的场景:SU-MIMO,第一通信装置为多天线装置,第一通信装置有多层数据流(即第一通信装置的Rank大于1)。
方式四、第一通信装置根据获取的CSI估计值和噪声统计协方差矩阵,与码本进行匹配,确定符合匹配度要求的L个预编码向量对应的索引为第一索引。其中,第一索引包括L个子索引,L表示第一通信装置的空分复用层数,L为大于1的整数。
方式四适用的场景与方式三相同。
上述方式一至方式四中,CSI估计值与码本中的预编码向量进行匹配的方法可根据特定系统性能指标进行确定,包括但不限于“CSI估计值与CSI码本向量间的相关性匹配”、“和 速率最大化匹配”等方法。
902、第一通信装置向第二通信装置发送第一索引。相应的,第二通信装置从第一通信装置接收第一索引。
其中,若第一通信装置为终端,则第一索引可以携带在物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH)中。
903、第二通信装置根据第一索引确定第一预编码向量。
904、第二通信装置根据第一预编码向量对数据进行预编码。
步骤904在具体实现时可以包括:第二通信装置根据第一预编码向量进行CSI重构,得到CSI重构值,根据CSI重构值对数据进行预编码。其中,此处的数据可以为SU-MIMO场景下的数据,也可以为多用户MIMO(Multi-User,MU-MIMO)场景下的数据。
其中,步骤904在具体实现时,若第二通信装置为网络设备,针对SU-MIMO场景,第一预编码向量即CSI重构值。针对MU-MIMO场景,会有多个终端,由于每个终端都会上报一个索引,因此,网络设备需要对从多个终端接收到的索引对应的预编码向量进行CSI重构,确定CSI重构值,采用CSI重构值对数据进行预编码。
若有多个第一通信装置(即MU-MIMO场景下),可选的,可以对多个第一通信装置进行复用传输,具体包括:
11)第二通信装置从除第一通信装置之外的S-1个第一通信装置分别接收索引,S为大于1的整数。
在S个索引中的S1个索引对应的预编码向量的空间角度分量相同、但空间深度分量不同的情况下,执行步骤12),在S个索引中的S2个索引对应的预编码向量的空间角度分量不同、且空间深度分量不同的情况下,执行步骤13)。或者,不区分预编码向量的空间角度分量,在S个索引中的S3个索引对应的预编码向量的空间深度分量不同的情况下,直接执行步骤14)。
12)第二通信装置根据S1个索引对应的预编码向量的空间深度分量进行S1个第一通信装置的复用传输,S1个索引为S个索引中的部分或全部索引,S个索引为第二通信装置从第一通信装置和S-1个第一通信装置接收到的索引,S1个第一通信装置为上报S1个索引的第一通信装置,S1为大于1小于等于S的整数。
13)第二通信装置根据S2个索引对应的预编码向量的空间深度分量和/或空间角度分量进行S2个第一通信装置的复用传输,S2个索引为S个索引中的部分或全部索引,S个索引为第二通信装置从第一通信装置和S-1个第一通信装置接收到的索引,S2个第一通信装置为上报S2个索引的第一通信装置,S2为大于1小于等于S的整数。
14)在S个索引中的S3个索引对应的预编码向量的空间深度分量不同的情况下,第二通信装置根据S3个索引对应的预编码向量的空间深度分量进行S3个第一通信装置的复用传输,S3个索引为S个索引中的部分或全部索引,S个索引为第二通信装置从第一通信装置和S-1个第一通信装置接收到的索引,S3个第一通信装置为上报S3个索引的第一通信装置,S3为大于1小于等于S的整数。
需要说明的是,在对多个终端进行复用传输之前,首先可以根据S个第一通信装置的CSI重构值重叠度进行多第一通信装置配对筛选,比如可以将空间角度分量相同但空间深 度分量不同的多个第一通信装置进行配对,也可以将空间角度分量不同但空间深度分量相同的多个第一通信装置进行配对,还可以将空间角度分量不同且空间深度分量不同的多个第一通信装置进行配对。被配对的多个第一通信装置可以进行复用传输。
若有单个第一通信装置(即SU-MIMO场景下),可选的,可以根据空间深度分量对单个第一通信装置的多层数据流进行复用传输,此时,第一索引中包括多个索引,具体包括:在第一索引中的多个索引对应的预编码向量的空间深度分量不同的情况下,第二通信装置根据第一索引中的多个索引对应的预编码向量的空间深度分量进行第一通信装置的多层数据流的复用传输。
也就是说,根据空间深度分量对数据进行复用传输时,该数据可以是SU-MIMO中的用户内多流,也可以是MU-MIMO中的用户间多流。
本申请实施例提供的方法,通过在确定码本时引入空间深度信息,可以从空间角度和空间深度两个维度确定信道,从而使得第一通信装置反馈的索引对应的预编码向量能够匹配球面波信道特征,也就是说,第二通信装置根据第一通信装置反馈的索引对应的预编码向量获取的CSI重构值与CSI真值更加接近,从而最大化ELAA下的空分复用增益和阵列增益。
另外,在不同的第一通信装置发送的索引对应的预编码向量的空间深度分量不同的情况下,第二通信装置基于这些索引可以分辨与不同第一通信装置之间信道的空间深度的差异,并根据空间深度的差异进行数据的复用传输,即第二通信装置可以根据不同的空间深度分量分配不同层的数据流,从而提升SU-MIMO或MU-MIMO空分复用总层数及系统容量。比如,对于用户密集分布的重载业务场景,可以对通过空间角度无法分辨和复用的Q(Q为大于1的整数)个用户,在空间深度上进行分辨和复用,从而实现Q倍容量提升。
上述图9所示的方法的整体的实现流程也可以参见图11。
上述实施例中,构造码本的方法可以包括:
第一步:获取与信道的空间深度相关的先验统计信息。
其中,先验统计信息包括但不限于:信道的空间深度的最大值和信道的空间深度的最小值,或者,信道的空间深度的均值和所述信道的空间深度的方差,或者,所述信道的空间深度的概率分布函数(准确的或近似的)。
其中,先验统计信息可以根据终端在小区的活动范围、小区的覆盖半径、路损模型或信道实测等方法确定。示例性的,信道的空间深度的最大值可以为小区的覆盖半径。
第二步:根据信道的先验统计信息和容许使用的量化比特数确定信道的空间深度的量化电平集合。
其中,容许使用的量化比特数即反馈空间深度信息时允许使用的比特数。容许使用的量化比特数可以为预设的或预定义的或第一通信装置和第二通信装置协商确定的或协议规定的,本申请不作限制。
具体的,根据信道的先验统计信息和容许使用的量化比特数利用均匀量化、Lloyd量化等方法确定信道的空间深度的量化电平集合。
以下对不同情况下第二步的实现作示例性说明。
情况1、先验统计信息包括信道的空间深度的最大值(记为d max)和信道的空间深度的最小值(记为d min)。
在情况1下,若采用均匀量化,则空间深度的量化电平集合可以为:
Figure PCTCN2021096181-appb-000002
Figure PCTCN2021096181-appb-000003
其中,k∈[1,K],
Figure PCTCN2021096181-appb-000004
d k表示第k个量化电平值,k为整数,N d表示容许使用的量化比特数,
Figure PCTCN2021096181-appb-000005
表示总的量化电平数。
可以理解的是,通过对空间深度进行量化将空间深度平均分为了K份。
情况2、信道的空间深度的均值(记为μ d)和所述信道的空间深度的方差(记为
Figure PCTCN2021096181-appb-000006
)。
在情况2下,若采用均匀量化,则空间深度的量化电平集合可以为:
Figure PCTCN2021096181-appb-000007
其中,k∈[1,K],
Figure PCTCN2021096181-appb-000008
β为修正因子,可以根据经验或仿真值进行设定。
情况3、先验统计信息包括所述信道的空间深度的概率分布函数。
在情况3下,若采用Lloyd量化,以空间深度概率分布函数p(x)和量化电平数
Figure PCTCN2021096181-appb-000009
为输入参数,可得到量化电平集合的输出结果{d k},其中,k∈[1,K],
Figure PCTCN2021096181-appb-000010
第三步:确定信道的空间角度的量化电平集合。
示例性的,可以对[0,2π]角度区间做均匀量化。空间角度的量化电平集合可以记做
Figure PCTCN2021096181-appb-000011
m∈[1,M],
Figure PCTCN2021096181-appb-000012
表示容许使用的空间角度的量化电平数,M为对空间角度的总的量化电平数。
其中,确定信道的空间角度的量化电平集合的方法为本领域技术人员所熟知的,不再赘述。
第四步:确定天线端口组导向向量。
以天线阵列为等天线阵子间距的直线阵为例,N维天线端口组导向向量可以表示为公式1:
Figure PCTCN2021096181-appb-000013
其中,Δ表示阵子间距,N表示天线阵子数,
Figure PCTCN2021096181-appb-000014
表示空间角度,d表示空间深度,λ表示载波波长。
第五步:采用信道的空间深度的量化电平集合和信道的空间角度的量化电平集合对天线端口组导向向量进行采样,得到包含信道的空间深度信息和信道的空间角度信息的码本。
其中,该码本(记为C)可以表示为公式2:
Figure PCTCN2021096181-appb-000015
其中,
Figure PCTCN2021096181-appb-000016
其中,向量
Figure PCTCN2021096181-appb-000017
中的第n个元素为:
Figure PCTCN2021096181-appb-000018
n为大于等于0小于N的整数。
其中,q m,k表示码本中的空间深度分量为d k,空间角度分量为
Figure PCTCN2021096181-appb-000019
的预编码向量。码本的大小为K*M。每个预编码向量为一个N维的向量。参见图10,码本具有扇形格状量化特征,每个预编码向量对应一个d k和一个
Figure PCTCN2021096181-appb-000020
为降低上述码本构造的复杂度以及第一通信装置的预编码向量搜索复杂度、第二通信装置的预编码复杂度,可基于天线端口组导向向量函数的近似或简化计算式来构造码本,例如,上述第四步中的公式1中包括开根号的运算,为了简化,可以将公式1进行2阶级数近似,近似后为:
Figure PCTCN2021096181-appb-000021
相应的,公式2可按如下简化方法构造得到:
Figure PCTCN2021096181-appb-000022
采用上述方法确定的码本可以存储在第一通信装置和第二通信装置中,以便后续使用。
以下以第一通信装置为终端,第二通信装置为网络设备为例,对基于上述码本下,网络设备和终端的实现过程作示例性说明。
终端的实现流程主要包括信道估计、CSI量化以及第一索引的反馈,参见图12,具体包括:
1201、终端从网络设备接收导频信号,并根据接收到的导频信号进行信道估计,获取信道的CSI估计值。
其中,CSI估计值可以记为
Figure PCTCN2021096181-appb-000023
为一个N R×N的矩阵,其中,N R为终端的接收天线个数,N R为大于0的整数。当N R等于1时,
Figure PCTCN2021096181-appb-000024
可以记为
Figure PCTCN2021096181-appb-000025
1202、终端进行CSI量化。
具体的,终端根据CSI估计值,与码本进行匹配,确定符合匹配度要求的预编码向量对应的索引为第一索引。
例如,终端根据CSI估计值,与码本中的每个预编码向量进行匹配,确定匹配度最高的一个或多个索引作为第一索引。
当终端单天线接收时,基于CSI估计值与码本相关性的匹配方法示例如下:
Figure PCTCN2021096181-appb-000026
其中,
Figure PCTCN2021096181-appb-000027
表示多天线网络设备与单天线终端之间的信道的CSI估计值,为一个N维的行向量。q m,k表示码本中的空间深度分量为d k,空间角度分量为
Figure PCTCN2021096181-appb-000028
的预编码向量。
Figure PCTCN2021096181-appb-000029
表示
Figure PCTCN2021096181-appb-000030
的模值。
Figure PCTCN2021096181-appb-000031
即第一索引,第一索引对应的第一预编码向量为
Figure PCTCN2021096181-appb-000032
当终端单天线接收时,噪声的统计协方差矩阵为单位阵,因此,可以不考虑噪声的统计协方差矩阵。
当终端多天线接收时,终端通常存在来自其他用户的干扰(比如邻站小区间干扰), 此时其噪声一般为空间有色噪声,也即噪声的统计协方差矩阵不再为单位阵,而是在不同的空间特征方向体现出强弱差异性,也即噪声存在空间方向性,采用公式3确定第一索引时,会引入性能损失。此外,终端为多天线接收时,若空分复用层数L>1,第一索引包括L个子索引,这种情况下,可考虑和速率最大化的匹配方法进行码本索引的检索,从而保证阵列增益最大化。
L=1时具体方法如下:
Figure PCTCN2021096181-appb-000033
其中,R zz表示终端接收机的N R×N R噪声统计协方差矩阵,可由传统的导频测量技术估计得到,
Figure PCTCN2021096181-appb-000034
表示矩阵R zz的逆,I表示单位矩阵,
Figure PCTCN2021096181-appb-000035
表示
Figure PCTCN2021096181-appb-000036
的行列式。其余参数的含义可参见上文。其中,本申请中的噪声统计协方差矩阵可以为加性噪声统计协方差矩阵。
L>1时,也可以根据上述公式4确定第一索引。具体的,终端可以按照迭代方法确定L个子索引,也就是在确定第l+1个子索引时,将前l个子索引对应的预编码向量对应的自相关矩阵作为干扰项加入到R zz中,再根据公式4计算第l+1个子索引。其中,l为大于等于0小于L的整数。
由于有色噪声会导致信道的空间角度和空间深度发生偏移,通过噪声统计协方差矩阵,所获得的码本的索引能够反映受有色噪声影响后偏移的等效空间角度与空间深度,使得对应的预编码向量能够最大程度匹配信道特征,获取最大的预编码增益及和速率。
1203、终端将第一索引发送给网络设备。
具体的,终端可以通过上行信道以信令方式发送第一索引给网络设备。
网络设备的实现流程主要包括接收第一索引、CSI重构、并采用CSI重构得到的CSI重构值进行SU-MIMO或MU-MIMO预编码,参见图12,具体包括:
1204、网络设备从终端接收第一索引。
1205、网络设备根据第一索引确定第一索引对应的预编码向量(即第一预编码向量)。
步骤1205在具体实现时,网络设备可以根据第一索引在码本中确定第一预编码向量。
1206、网络设备进行CSI重构,确定CSI重构值。
以网络设备多天线、终端单天线为例,网络设备可以将第一预编码向量作为CSI重构值。此时,
Figure PCTCN2021096181-appb-000037
表示多天线网络设备和单天线终端之间的信道的CSI重构值,为一个N维的行向量。
Figure PCTCN2021096181-appb-000038
为第一预编码向量。
1207、网络设备采用CSI重构值,进行SU-MIMO或MU-MIMO预编码。
以SU-MIMO、且终端单天线为例,预编码后的数据可以表示为:
Figure PCTCN2021096181-appb-000039
其中,w表示CSI重构值,为一个N维列向量。x表示单流数据符号,
Figure PCTCN2021096181-appb-000040
表示预编码后的向量。
以MU-MIMO、且终端单天线为例,迫零(Zero-Forcing,ZF)预编码后的数据可以表示为:
Figure PCTCN2021096181-appb-000041
其中,N μ表示总的空分复用用户数(即终端个数),H表示N μ个行向量按行拼接的 N μ×N维的等效信道矩阵,每一个行向量为一个终端的CSI估计值,W表示与H对应的N×N μ的ZF CSI重构值,x n表示第n个用户的单流数据符号,
Figure PCTCN2021096181-appb-000042
表示预编码后的向量。
需要说明的是,码本中除了空间深度信息和空间角度信息之外,还可以包括极化信息,关于极化信息的内容可参见现有技术,不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,各个网元,例如,第一通信装置和第二通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和软件模块中的至少一个。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一通信装置和第二通信装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图13示出了上述实施例中所涉及的通信装置(记为通信装置130)的一种可能的结构示意图,该通信装置130包括处理单元1301和通信单元1302,还可以包括存储单元1303。图13所示的结构示意图可以用于示意上述实施例中所涉及的第一通信装置和第二通信装置的结构。
当图13所示的结构示意图用于示意上述实施例中所涉及的第一通信装置的结构时,处理单元1301用于对第一通信装置的动作进行控制管理,例如,处理单元1301用于执行图9中的901和902,图12中的1201至1203(此时,第一通信装置为终端),和/或本申请实施例中所描述的其他过程中的第一通信装置执行的动作。处理单元1301可以通过通信单元1302与其他网络实体通信,例如,与图9中示出的第二通信装置通信。存储单元1303用于存储第一通信装置的程序代码和数据。
当图13所示的结构示意图用于示意上述实施例中所涉及的第一通信装置的结构时,通信装置130可以是一个设备(例如,终端),也可以是该设备内的芯片。
当图13所示的结构示意图用于示意上述实施例中所涉及的第二通信装置的结构时,处理单元1301用于对第二通信装置的动作进行控制管理,例如,处理单元1301用于执行图9中的902至904,图12中的1204至1207(此时,第二通信装置为网络设备),和/或本申请实施例中所描述的其他过程中的第二通信装置执行的动作。处理单元1301可以通过通信单元1302与其他网络实体通信,例如,与图9中示出的第一通信装置通信。存储单元1303用于存储第二通信装置的程序代码和数据。
当图13所示的结构示意图用于示意上述实施例中所涉及的第二通信装置的结构时,通信装置130可以是一个设备(例如,网络设备),也可以是该设备内的芯片。
其中,当通信装置130为一个设备时,处理单元1301可以是处理器或控制器,通信单元1302可以是通信接口、收发器、收发机、收发电路、收发装置等。其中,通信接口是统称,可以包括一个或多个接口。存储单元1303可以是存储器。当通信装置130为设 备内的芯片时,处理单元1301可以是处理器或控制器,通信单元1302可以是输入接口和/或输出接口、管脚或电路等。存储单元1303可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是设备内的位于该芯片外部的存储单元(例如,只读存储器(read-onlymemory,ROM)、随机存取存储器(random access memory,RAM)等)。
其中,通信单元也可以称为收发单元。通信装置130中的具有收发功能的天线和控制电路可以视为通信装置130的通信单元1302,具有处理功能的处理器可以视为通信装置130的处理单元1301。可选的,通信单元1302中用于实现接收功能的器件可以视为接收单元,接收单元用于执行本申请实施例中的接收的步骤,接收单元可以为接收机、接收器、接收电路等。通信单元1302中用于实现发送功能的器件可以视为发送单元,发送单元用于执行本申请实施例中的发送的步骤,发送单元可以为发送机、发送器、发送电路等。
图13中的集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。存储计算机软件产品的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
图13中的单元也可以称为模块,例如,处理单元可以称为处理模块。
本申请实施例还提供了一种通信装置的硬件结构示意图,参见图14或图15,该通信装置包括处理器1401,可选的,还包括与处理器1401连接的存储器1402。
处理器1401可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器1401也可以包括多个CPU,并且处理器1401可以是一个单核(single-CPU)处理器,也可以是多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器1402可以是ROM或可存储静态信息和指令的其他类型的静态存储设备、RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器1402可以是独立存在,也可以和处理器1401集成在一起。其中,存储器1402中可以包含计算机程序代码。处理器1401用于执行存储器1402中存储的计算机程序代码,从而实现本申请实施例提供的方法。
在第一种可能的实现方式中,参见图14,通信装置还包括收发器1403。处理器1401、存储器1402和收发器1403通过总线相连接。收发器1403用于与其他设备或通信网络通信。可选的,收发器1403可以包括发射机和接收机。收发器1403中用于实现接收功能的器件可以视为接收机,接收机用于执行本申请实施例中的接收的步骤。收发器1403中用 于实现发送功能的器件可以视为发射机,发射机用于执行本申请实施例中的发送的步骤。
基于第一种可能的实现方式,图14所示的结构示意图可以用于示意上述实施例中所涉及的第一通信装置和第二通信装置的结构。
当图14所示的结构示意图用于示意上述实施例中所涉及的第一通信装置的结构时,处理器1401用于对第一通信装置的动作进行控制管理,例如,处理器1401用于支持第一通信装置执行图9中的901和902,图12中的1201至1203(此时,第一通信装置为终端),和/或本申请实施例中所描述的其他过程中的第一通信装置执行的动作。处理器1401可以通过收发器1403与其他网络实体通信,例如,与图9中示出的第二通信装置通信。存储器1402用于存储第一通信装置的程序代码和数据。
当图14所示的结构示意图用于示意上述实施例中所涉及的第二通信装置的结构时,处理器1401用于对第二通信装置的动作进行控制管理,例如,处理器1401用于支持第二通信装置执行图9中的902至904,图12中的1204至1207(此时,第二通信装置为网络设备),和/或本申请实施例中所描述的其他过程中的第二通信装置执行的动作。处理器1401可以通过收发器1403与其他网络实体通信,例如,与图9中示出的第一通信装置通信。存储器1402用于存储第二通信装置的程序代码和数据。
在第二种可能的实现方式中,处理器1401包括逻辑电路以及输入接口和输出接口中的至少一个。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
基于第二种可能的实现方式,参见图15,图15所示的结构示意图可以用于示意上述实施例中所涉及的第一通信装置和第二通信装置的结构。
当图15所示的结构示意图用于示意上述实施例中所涉及的第一通信装置的结构时,处理器1401用于对第一通信装置的动作进行控制管理,例如,处理器1401用于支持第一通信装置执行图9中的901和902,图12中的1201至1203(此时,第一通信装置为终端),和/或本申请实施例中所描述的其他过程中的第一通信装置执行的动作。处理器1401可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与图9中示出的第二通信装置通信。存储器1402用于存储第一通信装置的程序代码和数据。
当图15所示的结构示意图用于示意上述实施例中所涉及的第二通信装置的结构时,处理器1401用于对第二通信装置的动作进行控制管理,例如,处理器1401用于支持第二通信装置执行图9中的902至904,图12中的1204至1207(此时,第二通信装置为网络设备),和/或本申请实施例中所描述的其他过程中的第二通信装置执行的动作。处理器1401可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与图9中示出的第一通信装置通信。存储器1402用于存储第二通信装置的程序代码和数据。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种通信装置,包括:处理器和接口电路,接口电路用于接收来自通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给通信装置之外的其它通信装置,处理器通过逻辑电路或执行代码指令用于实现上述任一方法。
本申请实施例还提供了一种通信系统,包括:第一通信装置和第二通信装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (43)

  1. 一种通信方法,其特征在于,包括:
    第一通信装置确定第一索引,所述第一索引指示第一预编码向量,所述第一预编码向量包括所述第一通信装置与第二通信装置之间的信道的空间角度信息和空间深度信息;
    所述第一通信装置向所述第二通信装置发送所述第一索引。
  2. 根据权利要求1所述的方法,其特征在于,所述第一预编码向量所属的码本包括K*M个预编码向量,每个预编码向量为一个N维的向量,K为所述码本对应的所述信道的空间深度的量化电平数,M为所述码本对应的所述信道的空间角度的量化电平数,N为所述第二通信装置的天线端口个数,K、M和N均为大于0的整数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一预编码向量所属的码本通过采用所述信道的空间深度的量化电平集合和所述信道的空间角度的量化电平集合,对所述第二通信装置的天线端口组导向向量进行采样得到。
  4. 根据权利要求3所述的方法,其特征在于,所述天线端口组导向向量根据所述信道的空间深度、所述信道的空间角度以及所述第二通信装置的天线端口组相关参数确定,所述天线端口组相关参数包括天线端口间距、天线端口数、天线端口的空间排列中的一个或多个。
  5. 根据权利要求3或4所述的方法,其特征在于,所述信道的空间深度的量化电平集合根据所述信道的先验统计信息和容许使用的量化比特数确定,所述先验统计信息包括:所述信道的空间深度的最大值和所述信道的空间深度的最小值,或者,所述信道的空间深度的均值和所述信道的空间深度的方差,或者,所述信道的空间深度的概率分布函数。
  6. 根据权利要求2-5任一项所述的方法,其特征在于,所述第一通信装置确定第一索引,包括:
    所述第一通信装置根据获取的信道状态信息CSI估计值与所述码本进行匹配,确定符合匹配度要求的预编码向量对应的索引为所述第一索引。
  7. 根据权利要求2-5任一项所述的方法,其特征在于,所述第一通信装置确定第一索引,包括:
    所述第一通信装置根据获取的CSI估计值和噪声统计协方差矩阵,与码本进行匹配,确定符合匹配度要求的预编码向量对应的索引为所述第一索引。
  8. 根据权利要求2-5任一项所述的方法,其特征在于,所述第一索引包括L个子索引,L表示所述第一通信装置的空分复用层数,L为大于1的整数,所述第一通信装置确定第一索引,包括:
    所述第一通信装置根据获取的CSI估计值与所述码本进行匹配,确定符合匹配度要求的L个预编码向量对应的索引为所述第一索引。
  9. 根据权利要求2-5任一项所述的方法,其特征在于,所述第一索引包括L个子索引,L表示所述第一通信装置的空分复用层数,L为大于1的整数,所述第一通信装置确定第一索引,包括:
    所述第一通信装置根据获取的CSI估计值和噪声统计协方差矩阵,与码本进行匹配,确定符合匹配度要求的L个预编码向量对应的索引为所述第一索引。
  10. 一种通信方法,其特征在于,包括:
    第二通信装置从第一通信装置接收第一索引,所述第一索引指示第一预编码向量,所述第一预编码向量包括所述第一通信装置与所述第二通信装置之间的信道的空间角度信息和空间深度信息;
    所述第二通信装置根据所述第一索引确定所述第一预编码向量;
    所述第二通信装置根据所述第一预编码向量对数据进行预编码。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置从除所述第一通信装置之外的S-1个第一通信装置分别接收索引,S为大于1的整数;
    在S个索引中的S1个索引对应的预编码向量的空间角度分量相同、但空间深度分量不同的情况下,所述第二通信装置根据所述S1个索引对应的预编码向量的空间深度分量进行S1个第一通信装置的复用传输,所述S1个索引为所述S个索引中的部分或全部索引,所述S个索引为所述第二通信装置从所述第一通信装置和所述S-1个第一通信装置接收到的索引,所述S1个第一通信装置为上报所述S1个索引的第一通信装置,S1为大于1小于等于S的整数;
    在S个索引中的S2个索引对应的预编码向量的空间角度分量不同、且空间深度分量不同的情况下,所述第二通信装置根据所述S2个索引对应的预编码向量的空间深度分量和/或空间角度分量进行S2个第一通信装置的复用传输,所述S2个索引为所述S个索引中的部分或全部索引,所述S个索引为所述第二通信装置从所述第一通信装置和所述S-1个第一通信装置接收到的索引,所述S2个第一通信装置为上报所述S2个索引的第一通信装置,S2为大于1小于等于S的整数。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一预编码向量所属的码本包括K*M个预编码向量,每个预编码向量为一个N维的向量,K为所述码本对应的所述信道的空间深度的量化电平数,M为所述码本对应的所述信道的空间角度的量化电平数,N为所述第二通信装置的天线端口个数,K、M和N均为大于0的整数。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述第一预编码向量所属的码本通过采用所述信道的空间深度的量化电平集合和所述信道的空间角度的量化电平集合,对所述第二通信装置的天线端口组导向向量进行采样得到。
  14. 根据权利要求13所述的方法,其特征在于,所述天线端口组导向向量根据所述信道的空间深度、所述信道的空间角度以及所述第二通信装置的天线端口组相关参数确定,所述天线端口组相关参数包括天线端口间距、天线端口数、天线端口的空间排列中的一个或多个。
  15. 根据权利要求13或14所述的方法,其特征在于,所述信道的空间深度的量化电平集合根据所述信道的先验统计信息和容许使用的量化比特数确定,所述先验统计信息包括:所述信道的空间深度的最大值和所述信道的空间深度的最小值,或者,所述信道的空间深度的均值和所述信道的空间深度的方差,或者,所述信道的空间深度的概率分布函数。
  16. 根据权利要求12-15任一项所述的方法,其特征在于,所述码本中符合匹配度要求的预编码向量对应的索引为所述第一索引,所述符合匹配度要求的预编码向量通过所述第一通信装置确定的信道状态信息CSI估计值与所述码本进行匹配确定,或者,所述符合匹配度要求的预编码向量通过所述第一通信装置确定的CSI估计值和噪声统计协方差矩阵与 所述码本进行匹配确定。
  17. 根据权利要求12-15任一项所述的方法,其特征在于,所述第一索引包括L个子索引,所述码本中符合匹配度要求的L个预编码向量对应的索引为所述第一索引,所述符合匹配度要求的L个预编码向量通过所述第一通信装置确定的CSI估计值与所述码本进行匹配确定,或者,所述符合匹配度要求的L个预编码向量通过所述第一通信装置确定的CSI估计值和噪声统计协方差矩阵与所述码本进行匹配确定。
  18. 一种通信装置,其特征在于,包括用于执行如权利要求1至9中任一项所述方法的模块。
  19. 一种通信装置,其特征在于,包括用于执行如权利要求10至17中任一项所述方法的模块。
  20. 一种通信装置,其特征在于,包括:处理单元和通信单元;
    所述处理单元,用于确定第一索引,所述第一索引指示第一预编码向量,所述第一预编码向量包括所述通信装置与第二通信装置之间的信道的空间角度信息和空间深度信息;
    所述通信单元,用于向所述第二通信装置发送所述第一索引。
  21. 根据权利要求20所述的通信装置,其特征在于,所述第一预编码向量所属的码本包括K*M个预编码向量,每个预编码向量为一个N维的向量,K为所述码本对应的所述信道的空间深度的量化电平数,M为所述码本对应的所述信道的空间角度的量化电平数,N为所述第二通信装置的天线端口个数,K、M和N均为大于0的整数。
  22. 根据权利要求20或21所述的通信装置,其特征在于,所述第一预编码向量所属的码本通过采用所述信道的空间深度的量化电平集合和所述信道的空间角度的量化电平集合,对所述第二通信装置的天线端口组导向向量进行采样得到。
  23. 根据权利要求22所述的通信装置,其特征在于,所述天线端口组导向向量根据所述信道的空间深度、所述信道的空间角度以及所述第二通信装置的天线端口组相关参数确定,所述天线端口组相关参数包括天线端口间距、天线端口数、天线端口的空间排列中的一个或多个。
  24. 根据权利要求22或23所述的通信装置,其特征在于,所述信道的空间深度的量化电平集合根据所述信道的先验统计信息和容许使用的量化比特数确定,所述先验统计信息包括:所述信道的空间深度的最大值和所述信道的空间深度的最小值,或者,所述信道的空间深度的均值和所述信道的空间深度的方差,或者,所述信道的空间深度的概率分布函数。
  25. 根据权利要求21-24任一项所述的通信装置,其特征在于,所述处理单元,具体用于:
    根据获取的CSI估计值与所述码本进行匹配,确定符合匹配度要求的预编码向量对应的索引为所述第一索引。
  26. 根据权利要求21-24任一项所述的通信装置,其特征在于,所述处理单元,具体用于:
    根据获取的CSI估计值和噪声统计协方差矩阵,与码本进行匹配,确定符合匹配度要求的预编码向量对应的索引为所述第一索引。
  27. 根据权利要求21-24任一项所述的通信装置,其特征在于,所述第一索引包括L个 子索引,L表示所述通信装置的空分复用层数,L为大于1的整数,所述处理单元,具体用于:
    根据获取的CSI估计值与所述码本进行匹配,确定符合匹配度要求的L个预编码向量对应的索引为所述第一索引。
  28. 根据权利要求21-24任一项所述的通信装置,其特征在于,所述第一索引包括L个子索引,L表示所述通信装置的空分复用层数,L为大于1的整数,所述处理单元,具体用于:
    根据获取的CSI估计值和噪声统计协方差矩阵,与码本进行匹配,确定符合匹配度要求的L个预编码向量对应的索引为所述第一索引。
  29. 一种通信装置,其特征在于,包括:通信单元和处理单元;
    所述通信单元,用于从第一通信装置接收第一索引,所述第一索引指示第一预编码向量,所述第一预编码向量包括所述第一通信装置与所述通信装置之间的信道的空间角度信息和空间深度信息;
    所述处理单元,用于根据所述第一索引确定所述第一预编码向量,根据所述第一预编码向量对数据进行预编码。
  30. 根据权利要求29所述的通信装置,其特征在于,
    所述通信单元,还用于从除所述第一通信装置之外的S-1个第一通信装置分别接收索引,S为大于1的整数;
    所述处理单元,还用于在S个索引中的S1个索引对应的预编码向量的空间角度分量相同、但空间深度分量不同的情况下,根据所述S1个索引对应的预编码向量的空间深度分量进行S1个第一通信装置的复用传输,所述S1个索引为所述S个索引中的部分或全部索引,所述S个索引为所述通信装置从所述第一通信装置和所述S-1个第一通信装置接收到的索引,所述S1个第一通信装置为上报所述S1个索引的第一通信装置,S1为大于1小于等于S的整数;
    所述处理单元,还用于在S个索引中的S2个索引对应的预编码向量的空间角度分量不同、且空间深度分量不同的情况下,根据所述S2个索引对应的预编码向量的空间深度分量和/或空间角度分量进行S2个第一通信装置的复用传输,所述S2个索引为所述S个索引中的部分或全部索引,所述S个索引为所述通信装置从所述第一通信装置和所述S-1个第一通信装置接收到的索引,所述S2个第一通信装置为上报所述S2个索引的第一通信装置,S2为大于1小于等于S的整数。
  31. 根据权利要求29或30所述的通信装置,其特征在于,所述第一预编码向量所属的码本包括K*M个预编码向量,每个预编码向量为一个N维的向量,K为所述码本对应的所述信道的空间深度的量化电平数,M为所述码本对应的所述信道的空间角度的量化电平数,N为所述通信装置的天线端口个数,K、M和N均为大于0的整数。
  32. 根据权利要求29-31任一项所述的通信装置,其特征在于,所述第一预编码向量所属的码本通过采用所述信道的空间深度的量化电平集合和所述信道的空间角度的量化电平集合,对所述通信装置的天线端口组导向向量进行采样得到。
  33. 根据权利要求32所述的通信装置,其特征在于,所述天线端口组导向向量根据所述信道的空间深度、所述信道的空间角度以及所述通信装置的天线端口组相关参数确定, 所述天线端口组相关参数包括天线端口间距、天线端口数、天线端口的空间排列中的一个或多个。
  34. 根据权利要求32或33所述的通信装置,其特征在于,所述信道的空间深度的量化电平集合根据所述信道的先验统计信息和容许使用的量化比特数确定,所述先验统计信息包括:所述信道的空间深度的最大值和所述信道的空间深度的最小值,或者,所述信道的空间深度的均值和所述信道的空间深度的方差,或者,所述信道的空间深度的概率分布函数。
  35. 根据权利要求31-34任一项所述的通信装置,其特征在于,所述码本中符合匹配度要求的预编码向量对应的索引为所述第一索引,所述符合匹配度要求的预编码向量通过所述第一通信装置确定的CSI估计值与所述码本进行匹配确定,或者,所述符合匹配度要求的预编码向量通过所述第一通信装置确定的CSI估计值和噪声统计协方差矩阵与所述码本进行匹配确定。
  36. 根据权利要求31-34任一项所述的通信装置,其特征在于,所述第一索引包括L个子索引,所述码本中符合匹配度要求的L个预编码向量对应的索引为所述第一索引,所述符合匹配度要求的L个预编码向量通过所述第一通信装置确定的CSI估计值与所述码本进行匹配确定,或者,所述符合匹配度要求的L个预编码向量通过所述第一通信装置确定的CSI估计值和噪声统计协方差矩阵与所述码本进行匹配确定。
  37. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于实现如权利要求1至9中任一项所述的方法。
  38. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于实现如权利要求10至17中任一项所述的方法。
  39. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至9中任一项所述的方法。
  40. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求10至17中任一项所述的方法。
  41. 一种通信系统,其特征在于,包括如权利要求18、20~28、37中任一项所述的通信装置,和如权利要求19、29~36、38中任一项所述的通信装置。
  42. 一种计算机可读存储介质,其特征在于,包括计算机执行指令,当所述计算机执行指令在计算机上运行时,使得如权利要求1至9中任一项,或者,如权利要求10至17中任一项所述的方法被执行。
  43. 一种计算机程序产品,其特征在于,包括计算机执行指令,当所述计算机执行指令在计算机上运行时,使得如权利要求1至9中任一项,或者,如权利要求10至17中任一项所述的方法被执行。
PCT/CN2021/096181 2020-06-03 2021-05-26 通信方法及装置 WO2021244376A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21817207.0A EP4152633A4 (en) 2020-06-03 2021-05-26 COMMUNICATION METHOD AND APPARATUS
BR112022024786A BR112022024786A2 (pt) 2020-06-03 2021-05-26 Método e aparelho de comunicação
US18/073,608 US20230098191A1 (en) 2020-06-03 2022-12-02 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010496328.2 2020-06-03
CN202010496328.2A CN113765549B (zh) 2020-06-03 2020-06-03 通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/073,608 Continuation US20230098191A1 (en) 2020-06-03 2022-12-02 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021244376A1 true WO2021244376A1 (zh) 2021-12-09

Family

ID=78783311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096181 WO2021244376A1 (zh) 2020-06-03 2021-05-26 通信方法及装置

Country Status (5)

Country Link
US (1) US20230098191A1 (zh)
EP (1) EP4152633A4 (zh)
CN (1) CN113765549B (zh)
BR (1) BR112022024786A2 (zh)
WO (1) WO2021244376A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014106561A1 (fr) * 2013-01-04 2014-07-10 Ercom Engineering Reseaux Communications Procede et systeme de test de stations de base d'un reseau de telecommunications mobiles
CN106685582A (zh) * 2015-11-06 2017-05-17 中兴通讯股份有限公司 Csi的反馈、码本配置信令的配置方法及装置
CN109150256A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 通信方法、通信装置和系统
US20190020386A1 (en) * 2016-01-12 2019-01-17 Lg Electronics Inc. Method for transmitting and receiving channel state information in multi-antenna wireless communication system, and apparatus therefor
CN108012583B (zh) * 2015-05-21 2020-05-08 华为技术有限公司 传输信号的方法和设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8320432B1 (en) * 2009-04-27 2012-11-27 Indian Institute of Science at Bangalore Device and method for precoding vectors in a communication system
KR101591403B1 (ko) * 2009-04-30 2016-02-03 인텔렉추얼디스커버리 주식회사 프리코딩 행렬 결정 방법 및 장치
CN102299759B (zh) * 2010-06-24 2013-12-04 上海贝尔股份有限公司 用于获取预编码矩阵的方法以及装置
US9306646B2 (en) * 2013-01-02 2016-04-05 Lg Electronics Inc. Method and apparatus for receiving downlink radio signal
CN110380768A (zh) * 2014-01-09 2019-10-25 华为技术有限公司 预编码矩阵集合确定方法、参数指示信息发送方法及装置
CN104202276B (zh) * 2014-07-16 2018-06-01 中兴通讯股份有限公司 信道信息的量化反馈、数据的预编码方法及装置
US9893777B2 (en) * 2014-11-17 2018-02-13 Samsung Electronics Co., Ltd. Method and apparatus for precoding channel state information reference signal
CN107395259B (zh) * 2016-05-13 2020-04-21 华为技术有限公司 一种二级预编码方法及装置
BR112018074689A2 (pt) * 2016-09-29 2019-03-12 Huawei Technologies Co., Ltd. método e aparelho para transmitir informações de estado de canal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014106561A1 (fr) * 2013-01-04 2014-07-10 Ercom Engineering Reseaux Communications Procede et systeme de test de stations de base d'un reseau de telecommunications mobiles
CN108012583B (zh) * 2015-05-21 2020-05-08 华为技术有限公司 传输信号的方法和设备
CN106685582A (zh) * 2015-11-06 2017-05-17 中兴通讯股份有限公司 Csi的反馈、码本配置信令的配置方法及装置
US20190020386A1 (en) * 2016-01-12 2019-01-17 Lg Electronics Inc. Method for transmitting and receiving channel state information in multi-antenna wireless communication system, and apparatus therefor
CN109150256A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 通信方法、通信装置和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI; HISILICON: "Discussion on DMRS-based open loop transmission scheme for DL data channel,", 3GPP TSG RAN WG1 MEETING #88,, vol. RAN WG1, 6 February 2017 (2017-02-06), Athens, Greece, pages 1 - 5, XP051220550 *

Also Published As

Publication number Publication date
US20230098191A1 (en) 2023-03-30
EP4152633A1 (en) 2023-03-22
BR112022024786A2 (pt) 2023-03-07
CN113765549B (zh) 2023-04-07
CN113765549A (zh) 2021-12-07
EP4152633A4 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
CN112751592B (zh) 上报信道状态信息的方法和通信装置
CN112217550B (zh) 预编码处理方法和装置
US20230097583A1 (en) Apparatus and method for data communication based on intelligent reflecting surface in wireless communication system
KR102122465B1 (ko) 안테나 별 전력 제약을 가지는 다중 안테나 전송을 위한 장치 및 방법
US11146317B2 (en) Precoding matrix indication method, precoding matrix determining method, and device
CN112311431B (zh) 一种空频合并系数的指示方法及装置
CN111800172B (zh) 一种通信方法及装置
WO2021238576A1 (zh) 一种通信方法、装置及系统
CN115053465B (zh) 一种信息传输方法及装置
US11374642B2 (en) Method for enabling analog precoding and analog combining
CN111865376B (zh) 一种通信方法及装置
CN113992309A (zh) 获取信道参数的方法及装置
WO2021081847A1 (zh) 一种信道测量方法和通信装置
CN108282204B (zh) 通信方法、装置及系统
WO2023160247A1 (zh) 下行传输的方法及装置
WO2021244376A1 (zh) 通信方法及装置
EP4191893A1 (en) Data transmission method and device, wireless communication system, and storage medium
WO2021073543A1 (en) Channel state information reporting method, base station, and user equipment
CN116743217A (zh) 信道状态信息的反馈方法和通信装置
WO2021159537A1 (zh) 一种信道状态信息反馈方法及通信装置
CN111756416B (zh) 一种通信方法及装置
CN112398516A (zh) 一种码本子集限制的方法和通信装置
Liu et al. High reliable channel estimation for lens antenna with hybrid structure
WO2020207254A1 (zh) 一种通信方法及装置
CN117498902A (zh) 一种信息传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817207

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022024786

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021817207

Country of ref document: EP

Effective date: 20221214

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022024786

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221204