WO2021238576A1 - 一种通信方法、装置及系统 - Google Patents

一种通信方法、装置及系统 Download PDF

Info

Publication number
WO2021238576A1
WO2021238576A1 PCT/CN2021/091203 CN2021091203W WO2021238576A1 WO 2021238576 A1 WO2021238576 A1 WO 2021238576A1 CN 2021091203 W CN2021091203 W CN 2021091203W WO 2021238576 A1 WO2021238576 A1 WO 2021238576A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
compensation values
dft
base
sets
Prior art date
Application number
PCT/CN2021/091203
Other languages
English (en)
French (fr)
Inventor
蔡世杰
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021238576A1 publication Critical patent/WO2021238576A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a communication method, device and system.
  • Quadrifilar Helical Antenna QHA
  • QHA Quadrifilar Helical Antenna
  • This application provides a communication method, device and system to ensure correct communication between terminal equipment and network equipment.
  • the present application provides a communication method.
  • the method includes: a terminal device determines that at least one column vector in a first basis matrix is a spatial basis vector; the terminal device sends channel state information CSI to a network device, and the CSI Include the index indication of the spatial basis vector corresponding to the spatial basis vector; wherein, the first basis matrix is determined according to at least one of the second basis matrix and the first matrix, and the second basis matrix is determined according to the first DFT N 1 -K 1 row of the matrix, the first DFT matrix is a matrix of N 1 rows*N 1 columns, N 1 is an integer greater than 1, K 1 is a positive integer less than N 1, and the first DFT matrix The matrix is obtained based on the second matrix and/or the third matrix.
  • Each column vector of the second matrix contains one or more sets of phase compensation values
  • each column vector of the third matrix contains one or more sets of phase compensation values. Group amplitude compensation value.
  • the orthogonal DFT base matrix in the prior art is not suitable for large-scale antenna arrays (for example, Q-MIMO, Q+X) with "amplitude deviation phenomenon", "phase hopping phenomenon” or "array irregularity".
  • the embodiment of this application proposes a construction scheme of a space base based on compensation of non-ideal factors.
  • the orthogonal DFT base matrix in the prior art is modified to make it suitable for the existence of "irregular arrays".
  • “Amplitude deviation phenomenon”, “phase jump phenomenon” the space compression of the irregular antenna array, which helps to ensure the correct communication between terminal equipment and network equipment.
  • the second base matrix is obtained according to rows N 1 -K 1 of the first DFT matrix, including: the second base matrix is N 1 -of the first DFT matrix K 1 row; or, the second base matrix is the Kronecker product of the N 1 -K 1 row of the first DFT matrix and the second DFT matrix N 2 -K 2 row, or the second DFT matrix Crowe N 2 -K 2 rows and the first N 1 -K 1 DFT matrix Kronecker product line, or from the first DFT matrix of N 1 -K 1 and the second row of the DFT matrix
  • the Neck product, or the Kronecker product of the second DFT matrix and the N 1 -K 1 row of the first DFT matrix the second DFT matrix is a matrix of N 2 rows * N 2 columns, N 2 K 2 is an integer greater than 1, and K 2 is a positive integer less than N 2.
  • the first base matrix is determined according to at least one of the second base matrix and the first matrix, including: the first base matrix is an orthogonal DFT base matrix and the first base matrix A matrix dot product, where the first matrix is the second matrix, or the third matrix, or the dot product of the second matrix and the third matrix; or, the first base matrix Is the second base matrix; or, the first base matrix is the dot product of the second base matrix and the first matrix, and the first matrix is the second matrix or the first matrix A three matrix, or a dot product of the second matrix and the third matrix.
  • the terminal device receives part or all of the parameters corresponding to the first base matrix from the network device; or, the terminal device constructs the first base matrix and sends The network device sends part or all of the parameters corresponding to the first base matrix.
  • the first base matrix may be constructed by the terminal device and/or the network device may construct the first base matrix, and then the terminal device may send part or all of the parameters of the first base matrix to the network device, and/or the network device may send to the terminal device Send some or all of the parameters of the first base matrix.
  • This scheme is more flexible to implement.
  • the terminal device receives one or more of the following information from the network device:
  • At least one of the one or more sets of phase compensation values included in each column vector of the second matrix At least one of the one or more sets of phase compensation values included in each column vector of the second matrix
  • the first position of at least one phase compensation value in the one or more sets of phase compensation values in the column vector of the second matrix, and each group of phase compensation values in the one or more sets of phase compensation values corresponds to one or more of the first positions;
  • At least one set of amplitude compensation values in the one or more sets of amplitude compensation values is at the second position in the column vector of the third matrix, and each set of amplitude in the one or more sets of amplitude compensation values The compensation value corresponds to one or more of the second positions;
  • the network device can send some or all of the parameters involved in the process of selecting one or more spatial basis vectors from the first basis matrix to the terminal device, so that the terminal device can be based on the received Parameter information, select the spatial basis vector from the first basis matrix.
  • the program is simple and easy to implement.
  • the terminal device sends one or more of the following information to the network device:
  • At least one of the one or more sets of phase compensation values included in each column vector of the second matrix At least one of the one or more sets of phase compensation values included in each column vector of the second matrix
  • the first position of at least one phase compensation value in the one or more sets of phase compensation values in the column vector of the second matrix, and each group of phase compensation values in the one or more sets of phase compensation values corresponds to one or more of the first positions;
  • At least one set of amplitude compensation values in the one or more sets of amplitude compensation values is at the second position in the column vector of the third matrix, and each set of amplitude in the one or more sets of amplitude compensation values The compensation value corresponds to one or more of the second positions;
  • the terminal device can report some or all of the parameters involved in the process of selecting one or more spatial basis vectors from the first base matrix to the network device, so that the network device can learn about the terminal device The specific form of the selected airspace basis vector.
  • the program is simple and easy to implement.
  • the first position includes one or more starting positions of each group of phase compensation values in the column vector of the second matrix, and/or each group The element interval of the phase compensation value in the column vector;
  • the second position includes one or more starting positions of each group of amplitude compensation values in the column vector of the third matrix, and/or The element interval of each group of amplitude compensation values in the column vector.
  • the corresponding solutions can be selected according to the actual situation, which is more flexible in implementation.
  • phase compensation value in any of the foregoing implementation methods may be a real number.
  • the amplitude compensation value in any of the foregoing implementation methods may be a complex number modulo 1.
  • the present application provides a communication method.
  • the method includes: a network device receives channel state information CSI from a terminal device, where the CSI includes a spatial basis vector index indication corresponding to a spatial basis vector, and the spatial basis vector includes a first At least one column vector in the base matrix, the first base matrix is determined based on at least one of the second base matrix and the first matrix, and the second base matrix is based on the N 1 -K 1 of the first DFT matrix
  • the first DFT matrix is a matrix of N 1 rows * N 1 columns, N 1 is an integer greater than 1, K 1 is a positive integer less than N 1 , and the first matrix is based on the second matrix and / Or obtained from the third matrix, each column vector of the second matrix includes one or more sets of phase compensation values, and each column vector of the third matrix includes one or more sets of amplitude compensation values;
  • the network device determines the downlink channel state information according to the CSI.
  • the orthogonal DFT base matrix in the prior art is not suitable for large-scale antenna arrays (for example, Q-MIMO, Q+X) with "amplitude deviation phenomenon", "phase hopping phenomenon” or "array irregularity".
  • the embodiment of this application proposes a construction scheme of a space base based on compensation of non-ideal factors.
  • the orthogonal DFT base matrix in the prior art is modified to make it suitable for the existence of "irregular arrays".
  • “Amplitude deviation phenomenon”, “phase jump phenomenon” the space compression of the irregular antenna array, which helps to ensure the correct communication between terminal equipment and network equipment.
  • the second base matrix is obtained according to rows N 1 -K 1 of the first DFT matrix, including: the second base matrix is N 1 -of the first DFT matrix K 1 row; or, the second base matrix is the Kronecker product of the N 1 -K 1 row of the first DFT matrix and the second DFT matrix N 2 -K 2 row, or the second DFT matrix Crowe N 2 -K 2 rows and the first N 1 -K 1 DFT matrix Kronecker product line, or from the first DFT matrix of N 1 -K 1 and the second row of the DFT matrix
  • the Neck product, or the Kronecker product of the second DFT matrix and the N 1 -K 1 row of the first DFT matrix the second DFT matrix is a matrix of N 2 rows * N 2 columns, N 2 K 2 is an integer greater than 1, and K 2 is a positive integer less than N 2.
  • the first base matrix is determined according to at least one of the second base matrix and the first matrix, including: the first base matrix is an orthogonal DFT base matrix and the first base matrix A matrix dot product, where the first matrix is the second matrix, or the third matrix, or the dot product of the second matrix and the third matrix; or, the first base matrix Is the second base matrix; or, the first base matrix is the dot product of the second base matrix and the first matrix, and the first matrix is the second matrix or the first matrix A three matrix, or a dot product of the second matrix and the third matrix.
  • the network device receives some or all of the parameters corresponding to the first base matrix from the terminal device; or, the network device constructs the first base matrix and sends The terminal device sends some or all of the parameters corresponding to the first base matrix.
  • the first base matrix may be constructed by the terminal device and/or the network device may construct the first base matrix, and then the terminal device may send part or all of the parameters of the first base matrix to the network device, and/or the network device may send to the terminal device Send some or all of the parameters of the first base matrix.
  • This scheme is more flexible to implement.
  • the network device receives one or more of the following information from the terminal device:
  • At least one of the one or more sets of phase compensation values included in each column vector of the second matrix At least one of the one or more sets of phase compensation values included in each column vector of the second matrix
  • At least one of the one or more sets of phase compensation values is at the first position in the column vector of the second matrix, and each set of phases in the one or more sets of phase compensation values The compensation value corresponds to one or more of the first positions;
  • At least one set of amplitude compensation values in the one or more sets of amplitude compensation values is at the second position in the column vector of the third matrix, and each set of amplitude in the one or more sets of amplitude compensation values The compensation value corresponds to one or more of the second positions;
  • the terminal device can report some or all of the parameters involved in the process of selecting one or more spatial basis vectors from the first base matrix to the network device, so that the network device can learn about the terminal device The specific form of the selected airspace basis vector.
  • the program is simple and easy to implement.
  • the network device sends one or more of the following information to the terminal device:
  • At least one of the one or more sets of phase compensation values included in each column vector of the second matrix At least one of the one or more sets of phase compensation values included in each column vector of the second matrix
  • At least one of the one or more sets of phase compensation values is at the first position in the column vector of the second matrix, and each set of phases in the one or more sets of phase compensation values The compensation value corresponds to one or more of the first positions;
  • At least one set of amplitude compensation values in the one or more sets of amplitude compensation values is at the second position in the column vector of the third matrix, and each set of amplitude in the one or more sets of amplitude compensation values The compensation value corresponds to one or more of the second positions;
  • the network device can send some or all of the parameters involved in the process of selecting one or more spatial basis vectors from the first basis matrix to the terminal device, so that the terminal device can be based on the received Parameter information, select the spatial basis vector from the first basis matrix.
  • the program is simple and easy to implement.
  • the first position includes one or more starting positions of each group of phase compensation values in the column vector of the second matrix, and/or each group The element interval of the phase compensation value in the column vector;
  • the second position includes one or more starting positions of each group of amplitude compensation values in the column vector of the third matrix, and/or The element interval of each group of amplitude compensation values in the column vector.
  • phase compensation value in any of the foregoing implementation methods may be a real number.
  • the amplitude compensation value in any of the foregoing implementation methods may be a complex number modulo 1.
  • this application provides a communication device, which may be a terminal device or a chip for the terminal device.
  • the device has the function of realizing the foregoing first aspect or any implementation method of the first aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the present application provides a communication device, which may be a network device or a chip for the network device.
  • the device has the function of realizing the foregoing second aspect or any implementation method of the second aspect. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the present application provides a communication device, including: a processor and a memory; the memory is used to store computer execution instructions, and when the device is running, the processor executes the computer execution instructions stored in the memory to make the The device executes the methods described in the above aspects.
  • the present application provides a communication device, including: including units or means for performing each step of the foregoing aspects.
  • the present application provides a communication device including a processor and an interface circuit, where the processor is configured to communicate with other devices through the interface circuit and execute the methods described in the foregoing aspects.
  • the processor includes one or more.
  • the present application provides a communication device including a processor, configured to be connected to a memory, and configured to call a program stored in the memory to execute the methods described in the foregoing aspects.
  • the memory can be located inside the device or outside the device.
  • the processor includes one or more.
  • the present application also provides a computer-readable storage medium having instructions stored in the computer-readable storage medium, which when run on a computer, cause a processor to execute the methods described in the foregoing aspects.
  • the present application also provides a computer program product including instructions, which when run on a computer, cause the computer to execute the methods described in the foregoing aspects.
  • the present application also provides a chip system, including a processor, configured to execute the methods described in the foregoing aspects.
  • the present application also provides a communication system, including: a terminal device for executing any of the methods in the first aspect above, and a network device for executing any of the methods in the second aspect above.
  • Figure 1 is a schematic diagram of a possible network architecture provided by this application.
  • Figure 2 is an equivalent schematic diagram of a four-arm helical antenna unit and a dual-polarized antenna
  • Figure 3 is the amplitude direction diagram with amplitude deflection phenomenon
  • Figure 4 is a phase pattern with phase jump phenomenon
  • Figure 5 is an example diagram of the "Q+X" array mode
  • FIG. 6 is a schematic diagram of a communication method provided by an embodiment of this application.
  • Figure 7 is the amplitude direction diagram without amplitude head deviation
  • Figure 8 is a phase pattern without phase jump phenomenon
  • FIG. 9 is a communication device provided by an embodiment of this application.
  • FIG. 10 is a terminal device provided by an embodiment of this application.
  • FIG. 11 is a network device provided by an embodiment of this application.
  • a schematic diagram of a possible network architecture to which this application is applicable includes a network device and at least one terminal device.
  • the network equipment and terminal equipment can work on a new radio (NR) communication system, and the terminal equipment can communicate with the network equipment through the NR communication system.
  • NR new radio
  • the network device and terminal device can also work on other communication systems, and the embodiment of the present application does not limit it.
  • the terminal device can be a wireless terminal device that can receive network device scheduling and instruction information.
  • the wireless terminal device can be a device that provides voice and/or data connectivity to the user, or a handheld device with wireless connection function, or connected to a wireless modem Other processing equipment.
  • a wireless terminal device can communicate with one or more core networks or the Internet via a wireless access network (e.g., radio access network, RAN).
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular" phone). , Mobile phones), computers, and data cards, for example, may be portable, pocket-sized, handheld, built-in computer, or vehicle-mounted mobile devices, which exchange language and/or data with the wireless access network.
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station (MS), remote station (remote station), access point ( access point, AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), subscriber station (SS), user terminal equipment (customer premises equipment, CPE), terminal (terminal), user equipment (user equipment, UE), mobile terminal (mobile terminal, MT), etc.
  • Wireless terminal devices can also be wearable devices and next-generation communication systems, for example, terminal devices in 5G networks or terminal devices in public land mobile network (PLMN) networks that will evolve in the future, and in NR communication systems. Terminal equipment, etc.
  • a network device is an entity used to transmit or receive signals on the network side, such as a generation NodeB (gNodeB).
  • the network device may be a device used to communicate with mobile devices.
  • the network equipment can be an AP in a wireless local area network (WLAN), a base transceiver in a global system for mobile communication (GSM) or a code division multiple access (CDMA).
  • station, BTS it can also be a base station (NodeB, NB) in wideband code division multiple access (WCDMA), or an evolutional base station (evolutional base station) in long term evolution (LTE).
  • WLAN wireless local area network
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • station, BTS it can also be a base station (NodeB, NB) in wideband code division multiple access (WCDMA), or an evolutional base station (evolutional base station) in long term evolution (LTE).
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • Node B, eNB or eNodeB Node B, eNB or eNodeB), or relay station or access point, or in-vehicle equipment, wearable equipment, and network equipment in the future 5G network or the network in the future evolved public land mobile network (PLMN) network Equipment, or gNodeB in the NR system, etc.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be a network equipment. (E.g. base station)
  • the corresponding cell the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, Micro cell, and Pico cell (Pico cell), femto cell (Femto cell), etc., these small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • the network device may be another device that provides wireless communication functions for the terminal device.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device. For ease of description, in the embodiments of the present application, a device that provides a wireless communication function for a terminal device is referred to as a network device.
  • the sending device (such as network equipment) can process the signal to be sent by using a precoding matrix that matches the channel resource when the channel state is known, so that the pre-coded signal to be sent
  • the signal is adapted to the channel, so that the complexity of the receiving device to eliminate the influence between channels is reduced. Therefore, through the precoding processing of the signal to be transmitted, the quality of the received signal (for example, the signal to interference plus noise ratio (SINR), etc.) can be improved. Therefore, the use of precoding technology can realize the transmission on the same time-frequency resource between the sending device and multiple receiving devices, that is, the realization of multiple user multiple input multiple output (MU-MIMO).
  • MU-MIMO multiple user multiple input multiple output
  • the sending device may also perform precoding in other ways. For example, when channel information (such as but not limited to a channel matrix) cannot be obtained, precoding is performed using a preset precoding matrix or a weighting processing method. For the sake of brevity, its specific content will not be repeated in this article.
  • Precoding Matrix Index can be used to indicate the precoding matrix.
  • the channel matrix may be determined by the terminal equipment through channel estimation or other methods or based on channel reciprocity.
  • the specific method for the terminal device to determine the precoding matrix is not limited to the above, and the specific implementation manner can refer to the prior art. For brevity, it will not be listed here.
  • the precoding matrix can be obtained by performing singular value decomposition (SVD) on the channel matrix or the covariance matrix of the channel matrix, or it can also be obtained by performing eigenvalue decomposition (eigenvalue decomposition) on the covariance matrix of the channel matrix. decomposition, EVD).
  • SVD singular value decomposition
  • eigenvalue decomposition eigenvalue decomposition
  • EVD decomposition
  • the network device can determine the space-domain basis vector, the frequency-domain basis vector, and the space-frequency combination coefficient of the space-frequency vector pair used to construct the precoding vector based on the feedback of the terminal device, and then determine The precoding matrix corresponding to each frequency domain unit.
  • the precoding matrix can be directly used for downlink data transmission; it can also undergo some beamforming methods, such as zero forcing (ZF), regularized zero-forcing (RZF), and minimum mean square error (minimum). mean-squared error, MMSE), maximizing signal-to-leakage-and-noise (SLNR), etc., to obtain the final precoding matrix for downlink data transmission.
  • ZF zero forcing
  • RZF regularized zero-forcing
  • minimum minimum mean square error
  • MMSE minimum mean square error
  • MMSE minimum mean square error
  • MMSE minimum mean-squared error
  • SLNR signal-to-leakage-and-noise
  • the precoding matrix determined by the terminal device can be understood as the precoding matrix to be fed back.
  • the terminal device can indicate the precoding matrix to be fed back through the PMI, so that the network device can recover the precoding matrix based on the PMI.
  • the precoding matrix recovered by the network device based on the PMI may be the same or similar to the foregoing precoding matrix to be fed back.
  • the higher the similarity between the precoding matrix determined by the network device according to the PMI and the precoding matrix determined by the terminal device the better the precoding matrix determined by the network device for data transmission can match the channel status. Therefore, the signal reception quality can be improved.
  • a precoding matrix may include one or more vectors, such as column vectors. A precoding matrix can be used to determine one or more precoding vectors.
  • the precoding matrix is the precoding vector.
  • the precoding vector may refer to the component of the precoding matrix on one spatial layer.
  • the precoding vector may refer to the component of the precoding matrix in one polarization direction.
  • the precoding vector may refer to the component of the precoding matrix in one spatial layer and one polarization direction.
  • the precoding vector may also be determined by the vector in the precoding matrix, for example, the vector in the precoding matrix is obtained after mathematical transformation. This application does not limit the mathematical transformation relationship between the precoding matrix and the precoding vector.
  • Antenna port can be referred to as port. It can be understood as a transmitting antenna recognized by the receiving device, or a transmitting antenna that can be distinguished in space. For each virtual antenna, one antenna port can be pre-configured. Each virtual antenna can be a weighted combination of multiple physical antennas. Each antenna port can correspond to a reference signal. Therefore, each antenna port can be called a reference signal. Ports, for example, CSI-RS ports, sounding reference signal (sounding reference signal, SRS) ports, etc. In the embodiment of the present application, the antenna port may refer to a transceiver unit (transceiver unit, TxRU).
  • TxRU transceiver unit
  • Spatial domain vector Or called beam vector, spatial beam basis vector or spatial domain vector.
  • Each element in the spatial basis vector can represent the weight of each antenna port. Based on the weight of each antenna port represented by each element in the spatial basis vector, the signals of each antenna port are linearly superimposed to form an area with a strong signal in a certain direction in space.
  • the length of the spatial basis vector may be the number of transmitting antenna ports in a polarization direction N s , N s ⁇ 1, and be an integer.
  • the spatial basis vector may be, for example, a column vector or a row vector with a length of N s. This application does not limit this.
  • the spatial basis vector is taken from a discrete Fourier transform (Discrete Fourier Transform, DFT) matrix.
  • DFT discrete Fourier Transform
  • Each column vector in the DFT matrix can be called a DFT vector.
  • the spatial basis vector can be a DFT vector.
  • the spatial basis vector may be, for example, a DFT vector defined in a type II (type II) codebook in the NR protocol TS 38.214 version 15 (release 15, R15).
  • Airspace basis vector set It can include a variety of airspace basis vectors of different lengths to correspond to different numbers of antenna ports.
  • the length of the airspace basis vector is N s
  • the length of each airspace basis vector in the airspace basis vector set to which the airspace basis vector reported by the terminal device belongs is N s .
  • the set of spatial basis vectors may include N s spatial basis vectors, and the N s spatial basis vectors may be orthogonal to each other.
  • the N s spatial basis vectors can be denoted as The N s spatial basis vectors can construct a matrix U s , If each spatial basis vector in the spatial basis vector set is taken from a 2D-DFT matrix, then Where D N is an N ⁇ N orthogonal DFT matrix, and the element in the mth row and nth column is In another possible design, the set of spatial basis vectors can be expanded to O s ⁇ N s spatial basis vectors by an oversampling factor O s.
  • the set of airspace basis vectors may include O s subsets, and each subset may include N s airspace basis vectors.
  • the N s spatial basis vectors in each subset can be orthogonal to each other.
  • Each spatial basis vector in the set of spatial basis vectors can be taken from an oversampled 2D-DFT matrix.
  • the oversampling factor O s is a positive integer.
  • O s O 1 ⁇ O 2
  • O 1 may be an oversampling factor in the horizontal direction
  • O 2 may be an oversampling factor in the vertical direction.
  • O 1 ⁇ 1, O 2 ⁇ 1, O 1 and O 2 are not 1 at the same time, and both are integers.
  • the N s spatial basis vectors in the o s (0 ⁇ o s ⁇ O s -1 and o s is an integer) subset in the set of spatial basis vectors can be respectively denoted as Then the matrix can be constructed based on the N s spatial basis vectors in the o sth subset
  • Frequency domain unit a unit of frequency domain resources, which can represent different frequency domain resource granularities.
  • the frequency domain unit may include, but is not limited to, for example, subband (subband), resource block (resource block, RB), subcarrier, resource block group (resource block group, RBG), or precoding resource block group (precoding resource block group, PRG) etc.
  • the frequency domain length of the unit can also be RB.
  • the precoding matrix corresponding to the frequency domain unit may refer to a precoding matrix determined based on channel measurement and feedback on the reference signal on the frequency domain unit.
  • the precoding matrix corresponding to the frequency domain unit can be used to precode the data subsequently transmitted through the frequency domain unit.
  • the precoding matrix or precoding vector corresponding to the frequency domain unit may also be referred to simply as the precoding matrix or precoding vector of the frequency domain unit.
  • Frequency domain basis vector also known as frequency domain vector, a vector that can be used to represent the changing law of a channel in the frequency domain.
  • Each frequency domain basis vector can represent a change rule. Since the signal is transmitted through the wireless channel, it can reach the receiving antenna through multiple paths from the transmitting antenna. Multipath time delay causes frequency selective fading, which is the change of frequency domain channel. Therefore, different frequency-domain basis vectors can be used to represent the changing law of the channel in the frequency domain caused by the delay on different transmission paths.
  • the length of the frequency domain basis vector may be determined by the number of frequency domain units to be reported pre-configured in the report bandwidth, may also be determined by the length of the report bandwidth, or may be a protocol predefined value. This application does not limit the length of the frequency domain base vector.
  • the reporting bandwidth may refer to, for example, the CSI reporting bandwidth (csi-ReportingBand) carried in the CSI reporting pre-configuration in high-level signaling (such as radio resource control (Radio Resource Control, RRC) messages).
  • the length of the frequency domain basis vector u f can be denoted as N f , and N f is a positive integer.
  • the frequency-domain basis vector may be, for example, a column vector or a row vector with a length of N f. This application does not limit this.
  • All spatial base vectors corresponding to each spatial layer may use the same frequency domain base vector, and the same frequency domain base vector used by the spatial base vector corresponding to each spatial layer is called the frequency domain base vector corresponding to the spatial layer.
  • candidate frequency-domain basis vector set also known as frequency-domain basis vector set, frequency-domain vector set: it can include a variety of frequency-domain basis vectors of different lengths.
  • the length of the frequency domain basis vector is N f
  • the length of each frequency domain basis vector in the candidate frequency domain basis vector set to which the frequency domain basis vector reported by the terminal device belongs is N f .
  • the candidate frequency domain basis vector set may include N f frequency domain basis vectors.
  • the N f frequency-domain basis vectors may be orthogonal to each other.
  • Each frequency-domain basis vector in the set of candidate frequency-domain basis vectors can be taken from a DFT matrix or an IDFT matrix (that is, a conjugate transpose matrix of the DFT matrix).
  • the N f frequency-domain basis vectors can be denoted as The N f frequency-domain basis vectors can construct a matrix U f ,
  • the frequency-domain base candidate vectors set by the over-sampling factor may be extended to O f O f ⁇ N f frequency-domain basis vectors.
  • the candidate frequency domain basis vector set may include O f subsets, and each subset may include N f frequency domain basis vectors.
  • the N f frequency-domain basis vectors in each subset may be orthogonal to each other.
  • Each frequency-domain basis vector in the set of candidate frequency-domain basis vectors can be taken from an oversampled DFT matrix or a conjugate transpose matrix of an oversampled DFT matrix.
  • the oversampling factor O f is a positive integer.
  • the N f frequency-domain basis vectors in the o f (0 ⁇ o f ⁇ O f -1 and o s is an integer) subset in the set of candidate frequency-domain basis vectors can be respectively denoted as Then the matrix can be constructed based on the N s beam vectors in the o fth subset
  • each frequency domain basis vector in the candidate frequency domain basis vector set can be taken from the DFT matrix or the oversampled DFT matrix, or from the conjugate transpose matrix of the DFT matrix or the conjugate transpose matrix of the oversampled DFT matrix.
  • Each column vector in the set of candidate frequency domain basis vectors may be referred to as a DFT vector or an oversampled DFT vector.
  • the frequency domain basis vector can be a DFT vector or an oversampled DFT vector.
  • the space-frequency precoding matrix can be understood as a matrix composed of the precoding matrix corresponding to each frequency domain unit (the precoding matrix corresponding to each frequency domain unit performs matrix Splicing) is used to determine an intermediate quantity of the precoding matrix corresponding to each frequency domain unit.
  • the space-frequency precoding matrix may be determined by the precoding matrix or the channel matrix corresponding to each frequency domain unit.
  • the space frequency precoding matrix can be denoted as H, Where w 1 to Are N f column vectors corresponding to N f frequency domain units, each column vector may be a target precoding matrix corresponding to each frequency domain unit, and the length of each column vector may be N s .
  • the N f column vectors respectively correspond to the target precoding vectors of the N f frequency domain units. That is, the space-frequency matrix can be regarded as a joint matrix formed by combining the target precoding vectors corresponding to N f frequency domain units.
  • Dual-domain compression It can include compression in the two dimensions of space-domain compression and frequency-domain compression.
  • Spatial compression may specifically refer to selecting one or more spatial base vectors from the set of spatial base vectors as the vector for constructing the precoding vector.
  • Frequency-domain compression may refer to selecting one or more frequency-domain basis vectors from a set of frequency-domain basis vectors as a vector for constructing a precoding vector.
  • a matrix constructed by a space-domain basis vector and a frequency-domain basis vector may be referred to as a space-frequency component matrix, for example.
  • the selected one or more space-domain basis vectors and one or more frequency-domain basis vectors can construct one or more space-frequency component matrices.
  • the weighted sum of the one or more space-frequency component matrices can be used to construct a space-frequency precoding matrix corresponding to one spatial layer.
  • the space-frequency precoding matrix can be approximated as a weighted sum of the space-frequency component matrix constructed from the selected one or more space-domain basis vectors and one or more frequency-domain basis vectors.
  • the precoding vector corresponding to each frequency domain unit on the spatial layer can be determined.
  • the selected one or more spatial basis vectors may constitute a spatial basis matrix W 1 (also referred to as a spatial beam basis matrix), where each column vector in W 1 corresponds to a selected spatial basis vector.
  • the selected one or more frequency-domain basis vectors can form a frequency-domain basis matrix W 3 , where each column vector in W 3 corresponds to a selected frequency-domain basis vector.
  • the space-frequency precoding matrix H can be expressed as the result of linear merging of the selected one or more space-domain basis vectors and the selected one or more frequency-domain basis vectors,
  • W 1 can be expressed as
  • each spatial basis vector selects the same M frequency domain basis vectors, then
  • the dimension of is M ⁇ N f , and each column vector in W 3 corresponds to a frequency-domain basis vector.
  • the frequency-domain basis vector corresponding to each spatial-domain basis vector is the M frequency-domain basis vectors in W 3. It is a matrix of space-frequency combining coefficients with a dimension of 2L ⁇ M.
  • the i-th row in corresponds to the i-th spatial basis vector among the 2L spatial basis vectors
  • the j-th column in corresponds to the j-th frequency-domain basis vector among the M frequency-domain basis vectors.
  • the space-frequency combination coefficient vector corresponding to the i-th space-domain basis vector is the space-frequency combination coefficient matrix
  • the i-th row vector in, the space-frequency combination coefficient corresponding to the i-th space-domain basis vector is the space-frequency combination coefficient matrix The element contained in the i-th row vector in.
  • each of the L spatial basis vectors may also correspond to a different frequency domain basis vector.
  • the space-frequency combination coefficient contained in is the space-frequency combination coefficient corresponding to the i-th space-domain basis vector.
  • each row vector in W 3 corresponds to a selected frequency domain basis vector.
  • the terminal device can feed back the selected one or more space-domain basis vectors and one or more frequency-domain basis vectors to the network device during feedback. It is necessary to feed back the space-frequency combination coefficients (including amplitude and phase, for example) of the subbands respectively based on each frequency domain unit (for example, subband). Therefore, the feedback overhead can be greatly reduced.
  • the frequency domain base vector can represent the change law of the channel in the frequency
  • the change of the channel in the frequency domain can be simulated by the linear superposition of one or more frequency domain base vectors. Therefore, a high feedback accuracy can still be maintained, so that the precoding matrix recovered by the network device based on the feedback of the terminal device can still better adapt to the channel.
  • Space-frequency combination coefficients are also called combination coefficients and are used to express the weight of a vector pair composed of a space-domain basis vector and a frequency-domain basis vector used to construct a space-frequency precoding matrix.
  • the space-frequency combination coefficients have a one-to-one correspondence with a vector pair composed of a space-domain basis vector and a frequency-domain basis vector.
  • each space-frequency combination coefficient has a space-domain basis vector and a frequency-domain basis vector. correspond.
  • the space-frequency combination coefficient matrix The element in the i-th row and j-th column is the space-frequency combination coefficient corresponding to the vector pair formed by the i-th space-domain basis vector and the j-th frequency-domain basis vector.
  • the terminal device may only report the space-frequency combination coefficient matrix A subset of 2LM space-frequency combination coefficients contained in.
  • Each space-frequency combination coefficient can include amplitude and phase.
  • a is the amplitude and ⁇ is the phase.
  • the amplitude value and the phase value can be independently quantized.
  • the quantification method for amplitude includes the following steps:
  • the terminal device reports the index of the space-frequency combination coefficient with the largest amplitude value, and the indication information indicating the index of the space-frequency combination coefficient with the largest amplitude value may include Bits.
  • the quantized reference amplitude value is 1.
  • the amplitude of the space-frequency combination coefficient with the largest amplitude in the polarization direction can be used as the quantized reference amplitude value of the polarization direction.
  • the quantized reference amplitude value is quantized using 4 bits and reported, and the candidate quantized reference amplitude values include
  • the candidate difference amplitude values include The difference amplitude value represents the difference value relative to the quantized reference amplitude value corresponding to the polarization direction. If the quantized reference amplitude value corresponding to the polarization direction of a space-frequency combination coefficient is A, the quantized difference value of the space-frequency combination coefficient If the amplitude value is B, the quantized amplitude value of the space-frequency combination coefficient is A*B.
  • phase of each normalized space-frequency combination coefficient is quantized by 3 bits (8PSK) or 4 bits (16PSK).
  • the amplitude (or amplitude) of some space-frequency combination coefficients may be zero or close to zero, and the corresponding quantized value may be zero.
  • the space-frequency combination coefficient whose amplitude is quantized by the quantization value of zero can be referred to as the space-frequency combination coefficient whose amplitude is zero.
  • some space-frequency combination coefficients have larger amplitudes, and their corresponding quantized values are not zero.
  • the space-frequency combination coefficient whose amplitude is quantized by a non-zero quantization value can be referred to as a space-frequency combination coefficient with a non-zero amplitude.
  • the multiple space-frequency combination coefficients are composed of one or more space-frequency combination coefficients with a non-zero amplitude and one or more space-frequency combination coefficients with a zero amplitude.
  • the space-frequency combination coefficient can be indicated by the quantized value, the index of the quantized value, or the non-quantized value. This application does not limit the way of indicating the space-frequency combination coefficient, as long as the peer knows the null The frequency combination coefficient is sufficient.
  • the information used to indicate the space-frequency combining coefficient is referred to as the quantization information of the space-frequency combining coefficient.
  • the quantization information can be, for example, a quantization value, an index, or any other information that can be used to indicate a space-frequency combination coefficient.
  • Spatial layer In MIMO, a spatial layer can be seen as a data stream that can be independently transmitted. In order to improve the utilization of spectrum resources and the data transmission capacity of the communication system, network equipment can transmit data to terminal equipment through multiple spatial layers.
  • the number of spatial layers is also the rank of the channel matrix.
  • the terminal device can determine the number of spatial layers according to the channel matrix obtained by channel estimation.
  • the precoding matrix can be determined according to the channel matrix.
  • the precoding matrix can be determined by performing SVD on the channel matrix or the covariance matrix of the channel matrix. In the SVD process, different spatial layers can be distinguished according to the size of the feature value.
  • the precoding vector determined by the eigenvector corresponding to the largest eigenvalue can be associated with the first spatial layer
  • the precoding vector determined by the eigenvector corresponding to the smallest eigenvalue can be associated with the Rth space.
  • Layer correspondence That is, the eigenvalues corresponding to the first spatial layer to the Rth spatial layer decrease sequentially. In simple terms, the intensity of the R space layers decreases from the first space layer to the Rth space layer.
  • Channel state information (CSI) report In a wireless communication system, the information used to describe the channel attributes of the communication link reported by the receiving end (such as a terminal device) to the sending end (such as a network device).
  • the CSI report may include, but is not limited to, precoding matrix indicator (PMI), rank indicator (RI), channel quality indicator (CQI), channel state information reference signal (channel state information reference signal, CSI-RS resource indicator (CSI) -RS resource indicator (CRI) and layer indicator (layer indicator, LI), etc.
  • PMI precoding matrix indicator
  • RI rank indicator
  • CQI channel quality indicator
  • CSI-RS resource indicator channel state information reference signal
  • CSI-RS resource indicator (CSI) -RS resource indicator (CRI) and layer indicator (layer indicator, LI), etc.
  • CSI may include those listed above
  • One or more items may also include other information used to characterize CSI besides the above list, which is not limited in this application.
  • the terminal device may report one or more CSI reports in a time unit (such as a slot), and each CSI report may correspond to a configuration condition for CSI reporting.
  • the configuration condition of the CSI report may be determined by, for example, CSI reporting configuration (CSI reporting setting).
  • the CSI report configuration can be used to indicate the time domain behavior, bandwidth, format corresponding to the report quantity, etc. of the CSI report. Among them, the time domain behavior includes, for example, periodic, semi-persistent, and aperiodic.
  • the terminal device can generate a CSI report based on a CSI report configuration.
  • the terminal device reporting one or more CSI reports within one time unit may be referred to as one CSI report.
  • the terminal device When the terminal device generates the CSI report, it can divide the content of the CSI report into two parts.
  • the CSI report may include a first part and a second part.
  • the first part and the second part can be independently coded.
  • the size of the payload (payload) of the first part may be predefined, and the size of the payload of the second part may be determined according to the information carried in the first part.
  • the network device may decode the first part according to the predefined payload size of the first part to obtain the information carried in the first part.
  • the network device may determine the payload size of the second part according to the information obtained from the first part, and then decode the second part to obtain the information carried in the second part.
  • first part and the second part are similar to part 1 (part 1) and part 2 (part 2) of the CSI defined in the NR protocol TS38.214 version 15 (release 15, R15).
  • LTE long-term evolution
  • NR New Radio
  • SFBC Space Frequency Block Code
  • SFBC Space Frequency Block Code
  • the transmission mode of multi-layer parallel transmission is adopted to provide a higher data transmission rate.
  • precoding technology can be used to improve the signal transmission quality or rate.
  • TDD Time Division Duplexing
  • Network devices cannot use uplink channels to obtain downlink CSI.
  • Network devices generally obtain CSI through feedback from terminal devices. There are two ways: 1) Implicit feedback, that is, the terminal device feeds back the precoding matrix. The existing LTE and NR systems use this feedback method; 2) Explicit feedback, that is, the terminal device feeds back the channel matrix. If the future communication system Supporting Dirty Paper Coding (DPC) to achieve better precoding performance requires explicit feedback.
  • DPC Dirty Paper Coding
  • the space to be compressed is a "transmitting antenna-receiving antenna-frequency" three-dimensional signal space; in implicit feedback, the space to be compressed is a "transmitting antenna-layer-frequency" three-dimensional signal space. Since the explicit feedback and implicit feedback have the same spatial structure of the signal to be compressed, they both perform two-dimensional compression on the "transmit antenna-frequency”. Therefore, the embodiments of the present application are applicable to both explicit feedback and implicit feedback.
  • H is a space-frequency precoding matrix
  • H is the result of linear merging of the selected one or more space-domain basis vectors and the selected one or more frequency-domain basis vectors.
  • W 1 is a spatial basis matrix composed of one or more selected spatial basis vectors. If dual polarization directions are used, L spatial basis vectors are selected for each polarization direction, and the dimension of W 1 is 2N s ⁇ 2L. In a possible implementation, the same L spatial basis vectors are used for the two polarization directions At this time, W 1 can be expressed as
  • Represents the selected i-th spatial basis vector, i 0,1,...,L-1.
  • the rotated 2D-DFT basis matrix can be expressed as:
  • D N is an N ⁇ N orthogonal DFT matrix
  • the element in the mth row and nth column is Represents the N ⁇ N rotation matrix.
  • the rotation factor q is uniformly distributed, then Correspondingly, the matrix formed by the product of the rotation matrix and the DFT orthogonal matrix satisfies
  • W 3 is a frequency domain basis vector matrix composed of one or more frequency domain basis vectors selected.
  • the selected frequency domain basis vector can be selected from a predefined DFT basis matrix or a rotated DFT basis matrix (dimension N f ⁇ N f ).
  • the network device configures the number M of frequency domain basis vectors contained in W 3 corresponding to each spatial layer, where the value of M is related to the number of frequency domain units N f, The value of p can be ⁇ 1/2,1/4 ⁇ . If each spatial basis vector on a spatial layer corresponds to the same M frequency domain basis vectors, then The dimension of is M ⁇ N f , and each column vector in W 3 corresponds to a frequency-domain basis vector. At this time, the frequency-domain basis vector corresponding to each spatial-domain basis vector is the M frequency-domain basis vectors in W 3.
  • the i-th row in corresponds to the i-th spatial basis vector among the 2L spatial basis vectors
  • the j-th column in corresponds to the j-th frequency-domain basis vector among the M frequency-domain basis vectors.
  • the space-frequency combination coefficient corresponding to the i-th space-domain basis vector is the space-frequency combination coefficient matrix
  • the i-th row vector in, the space-frequency combination coefficient corresponding to the i-th space-domain basis vector is the space-frequency combination coefficient matrix The element contained in the i-th row vector in.
  • each of the L spatial basis vectors may also correspond to a different frequency domain basis vector.
  • Is the space-frequency combination coefficient matrix of 1*M i corresponding to the i-th space-domain basis vector The space-frequency combination coefficient contained in is the space-frequency combination coefficient corresponding to the i-th space-domain basis vector.
  • Total includes A combination factor. If the number of frequency-domain basis vectors corresponding to each spatial basis vector is M, then A total of 2*L*M combination coefficients are included.
  • the terminal device After determining the space-domain basis vector, frequency-domain basis vector, and space-frequency combination coefficients of the space-frequency vector pair, the terminal device feeds back the space-domain basis vector, frequency-domain basis vector, and space-frequency combination coefficient of the space-frequency vector pair to the network device, so that the network
  • the device may construct a precoding matrix based on the space-domain basis vector, the frequency-domain basis vector, and the space-frequency combination coefficients of the space-frequency vector pair.
  • each antenna element of the new antenna structure can be equivalent to multiple sets of dual-polarized antennas on the antenna panel. Therefore, the new antenna structure can increase the antenna element density and increase the number of equivalent antenna elements compared with traditional transmission polarization antennas, etc.
  • the aperture of the effective antenna is increased.
  • the embodiment of the present application takes the novel antenna structure as a four-arm helical antenna as an example for description.
  • the new antenna structure can also be other antenna structures, such as a six-arm helical antenna, an eight-arm helical antenna, and so on.
  • FIG. 2 it is an equivalent schematic diagram of a four-arm helical antenna unit and a dual-polarized antenna.
  • QHA units two horizontal four-arm helical antenna units
  • each QHA unit is composed of four antenna elements.
  • the polarization directions of the two antenna elements on the diagonal of a QHA unit are the same, which can be equivalent to two spatially separated polarized antennas with the same polarization direction.
  • the interval between the equivalent antennas is determined by the corresponding two antennas in QHA.
  • the pattern of each antenna element is determined.
  • the polarization directions of the antenna element 1 and the antenna element 3 of the QHA unit 1 are the same, and the polarization directions of the antenna element 2 and the antenna element 4 are the same.
  • QHA unit 1 is equivalent to the first group of dual-polarized antennas and the third group of dual-polarized antennas shown in Figure 2, and the antenna element 1 and antenna element 3 of QHA unit 1 are equivalent to the first group of dual-polarized antennas
  • the antenna element 2 and the antenna element 4 of the QHA unit 1 are equivalent to the first group of dual polarized antennas and the third group of dual polarized antennas in the other The antenna element in the polarization direction.
  • the polarization directions of the antenna element 1 and the antenna element 3 of the QHA unit 2 are the same, and the polarization directions of the antenna element 2 and the antenna element 4 are the same.
  • QHA unit 2 is equivalent to the second group of dual-polarized antennas and the fourth group of dual-polarized antennas shown in Figure 2, and the antenna element 1 and antenna element 3 of QHA unit 2 are equivalent to the second group of dual-polarized antennas
  • the antenna element 2 and antenna element 4 of QHA unit 2 are equivalent to the second group of dual-polarized antenna and the fourth group of dual-polarized antenna in the other The antenna element in the polarization direction.
  • QHA units can also be used to form an antenna array, or an array of "Q+X" can be used to form an antenna array.
  • Q+X refers to the combination of QHA units and dual-polarized antennas.
  • QHA When using QHA, it is expected that the amplitude pattern and phase pattern of each antenna element of QHA are designed to approximate the amplitude pattern and phase pattern of two groups of traditional dual-polarized antennas at different positions.
  • QHA antennas generally have a certain degree of "amplitude deviation” and “phase jump phenomenon", which results in QHA not ideally approaching traditional dual-polarized antennas.
  • the solid ellipse represents the amplitude pattern of one of the two antenna elements with the same polarization direction in the QHA unit
  • the dashed ellipse represents the other one of the two antenna elements with the same polarization direction in the QHA unit
  • the amplitude pattern of the antenna element Due to the limitation of the antenna design process, the solid line ellipse and the dotted line ellipse cannot be overlapped, which indicates that the amplitude deviation occurs.
  • the meaning of the amplitude deviation phenomenon is that the amplitude patterns of the two antenna elements with the same polarization direction in the QHA unit are different.
  • the solid line represents the phase pattern of one antenna element among the two antenna elements with the same polarization direction in the QHA unit
  • the dashed line represents the other antenna element among the two antenna elements with the same polarization direction in the QHA unit Phase pattern. Due to the limitation of the antenna design process, the slope of the solid line and/or the dashed line may jump, which means that the phase jump phenomenon occurs.
  • the meaning of the phase jump phenomenon is that the phase pattern of two antenna elements with the same polarization direction in the QHA unit cannot approach the phase pattern of two spatially separated polarized antennas with the same polarization direction.
  • the antenna element spacing of the equivalent antenna array may be irregular.
  • Figure 5 it is an example of the "Q+X” array mode. It can be seen that there are both QHA units and traditional dual-polarized antennas on the same antenna panel. It can be seen from the figure of the equivalent array that the arrangement of the dual-polarized antenna is irregular. It should be noted that there is neither an equivalent dual-polarized antenna nor an actual traditional dual-polarized antenna at the position of the dual-polarized antenna in the dashed frame in Fig. 5. The position is empty, or understand The dual-polarized antenna for this location is a virtual dual-polarized antenna or a dual-polarized antenna that does not actually exist.
  • the antenna pattern has amplitude deviation, that is, the amplitude pattern of the antenna element or the equivalent antenna element is different;
  • the antenna pattern has a phase jump phenomenon, that is, the phase pattern of the antenna element or the equivalent antenna element is different;
  • the spacing of the antenna elements of the equivalent antenna array is irregular, that is, the antenna elements or the equivalent antenna elements are arranged at unequal intervals.
  • the traditional DFT base matrix is no longer suitable for channel space compression. That is, for an irregular antenna array, the traditional DFT base matrix cannot be used directly.
  • the irregular antenna array satisfies one or more of the following: the amplitude pattern of the antenna element or the equivalent antenna element is different, the phase pattern of the antenna element or the equivalent antenna element is different, the antenna element or the equivalent antenna element is different Arranged at intervals.
  • L spatial basis vectors It is selected from the rotating 2D-DFT base matrix shown in formula (3), that is, the rotating 2D-DFT base matrix is selected.
  • the traditional DFT base matrix is no longer suitable for channel space compression. That is, the terminal device will not be able to select the spatial basis vector used to form the spatial basis matrix W 1 from the rotating 2D-DFT basis matrix.
  • a possible design solution is to eliminate the above three problems by adjusting the design between the antenna elements in the QHA, so that the terminal device can still choose from the rotating DFT basis matrix to form the spatial basis matrix W
  • the embodiment of the present application adopts another solution to eliminate one or more of the above three problems.
  • the solution of the embodiment of the present application corrects the orthogonal DFT base matrix, so as to make the corrected base matrix suitable for Q-MIMO or Q+X-MIMO. That is, according to the magnitude of the amplitude deviation head, and/or the magnitude of the phase jump, and/or the irregular arrangement form, the orthogonal DFT base matrix is adjusted accordingly to obtain the modified base matrix. Subsequently, the terminal device selects one or more spatial base vectors from the modified base matrix to form a spatial base matrix W 1 . It should be noted that as long as any one of the above 1) to 3) problems can be solved, the embodiments of the present application have corresponding technical effects.
  • the embodiments of the present application only take the new type of antenna as a four-arm helical antenna as an example for description. In actual applications, it is also applicable to other new types of antennas, or combinations of other new types of antennas and ordinary dual-polarized antennas, or ordinary dual-polarized antennas. A scene where polarized antennas are arranged irregularly.
  • the method includes the following steps:
  • Step 601 The terminal device determines that at least one column vector in the first base matrix is a spatial base vector.
  • the terminal device selects one or more column vectors of the first base matrix as the spatial base vector.
  • the first base matrix is determined based on at least one of the second base matrix and the first matrix
  • the second base matrix is obtained based on rows N 1 -K 1 of the first DFT matrix
  • the first DFT matrix is N 1 A matrix with rows*N and 1 column
  • N 1 is an integer greater than 1
  • K 1 is a positive integer less than N 1
  • the first matrix is obtained from the second matrix and/or the third matrix
  • each column of the second matrix The vector contains one or more sets of phase compensation values
  • each column vector of the third matrix contains one or more sets of amplitude compensation values.
  • the phase compensation value may be a real number, and the amplitude compensation value may be a complex number modulo 1.
  • Step 602 The terminal device sends a CSI to the network device, where the CSI includes a spatial base vector index indication corresponding to the spatial base vector.
  • the network device can receive the CSI.
  • Step 603 The network device determines the downlink channel state information according to the CSI.
  • the downlink channel state information here may be the downlink channel, the precoding matrix corresponding to the downlink data, the downlink CQI, the better configuration parameter corresponding to the downlink channel measurement, and the better uplink resource corresponding to the downlink channel measurement feedback.
  • the orthogonal DFT base matrix in the prior art is not suitable for large-scale antenna arrays (for example, Q-MIMO, Q+X) with "amplitude deviation phenomenon", "phase hopping phenomenon” or "array irregularity".
  • the embodiment of this application proposes a construction scheme of a space base based on compensation of non-ideal factors.
  • the orthogonal DFT base matrix in the prior art is modified to make it suitable for the existence of "irregular arrays".
  • “Amplitude deviation phenomenon”, “phase jump phenomenon” the space compression of the irregular antenna array, which helps to ensure the correct communication between terminal equipment and network equipment.
  • the foregoing embodiments of the present application are applicable to one-dimensional antenna array scenarios and two-dimensional antenna array scenarios.
  • the one-dimensional antenna array scenario refers to an application scenario in which a 1D-DFT matrix is selected as the base matrix or a matrix obtained by deformation of the 1D-DFT matrix is selected as the base matrix.
  • the two-dimensional antenna array scenario refers to an application scenario in which a 2D-DFT matrix is selected as the base matrix or a matrix deformed according to the 2D-DFT matrix is selected as the base matrix.
  • N 1 is the number of antenna ports (or antenna elements).
  • N 1 is the number of antenna ports (or antenna elements) in the horizontal direction
  • N 2 is the number of antenna ports (or antenna elements) in the vertical direction.
  • the antenna port here is the sum of the antenna elements of the dual-polarized antenna equivalent to the QHA unit, the antenna elements of the ordinary dual-polarized antenna, and the number of virtual antenna elements.
  • the size of N 1 covers the equivalent dual-polarized antenna, ordinary dual-polarized antenna and virtual dual-polarized antenna of the QHA unit.
  • the size of N 2 covers the equivalent dual-polarized antenna, ordinary dual-polarized antenna and virtual dual-polarized antenna of the QHA unit.
  • the orthogonal DFT basis matrix refers to a matrix used to provide a spatial basis vector in the prior art.
  • the orthogonal DFT base matrix is equal to the first DFT matrix
  • the first DFT matrix is a matrix with N 1 rows * N 1 columns
  • the orthogonal DFT base matrix is a matrix with N 1 rows * N 1 columns.
  • the orthogonal DFT basis matrix is the Kronecker product of the first DFT matrix and the second DFT matrix, or the Kronecker product of the second DFT matrix and the first DFT matrix.
  • the first DFT matrix is a matrix of N 1 row * N 1 column
  • the second DFT matrix is a matrix of N 2 rows * N 2 columns
  • the orthogonal DFT base matrix is a matrix of N 1 N 2 rows * N 1 N 2 columns. matrix.
  • the first base matrix refers to the large-scale antenna array (for example, Q-MIMO, Q+X) that has the above-mentioned "amplitude deviation phenomenon", “phase jump phenomenon” or “array irregularity” in the embodiments of the present application. Constructed to provide the basis matrix of the spatial basis vector. That is, the embodiment of the present application will select one or more column vectors from the first base matrix as the spatial base vector.
  • the second base matrix constructed by the embodiment of the present application is used to solve the aforementioned problem 3), that is, the problem of irregular arrays.
  • the second base matrix is equal to N 1 -K 1 rows of the first DFT matrix
  • the first DFT matrix is a matrix of N 1 rows * N 1 columns
  • K 1 is a positive integer smaller than N 1. That is, the K 1 rows of the first DFT matrix are extracted to obtain the second matrix. Taking Fig. 5 as an example, the extracted K 1 row corresponds to the position of the virtual dual-polarized antenna in Fig. 5.
  • the second base matrix is the Kronecker product of rows N 1 -K 1 of the first DFT matrix and rows N 2 -K 2 of the second DFT matrix, or is the second DFT matrix N 2 -K Kronecker product N 1 -K 1 row of the first two rows of the DFT matrix, the Kronecker product, or is N 1 -K 1 and the second row of the first DFT matrix of the DFT matrix, or from The Kronecker product of the second DFT matrix and the N 1 -K 1 row of the first DFT matrix.
  • the first DFT matrix is a matrix with N 1 rows * N 1 columns, K 1 is a positive integer smaller than N 1 , and the second DFT matrix is a matrix with N 2 rows * N 2 columns, and N 2 is an integer greater than 1, K 2 is a positive integer smaller than N 2.
  • the K 1 row extracted from the first matrix corresponds to the position of the virtual dual-polarized antenna in FIG. 5.
  • the first DFT matrix described above may be a normal DFT matrix or a rotating DFT matrix.
  • the second DFT matrix described above may be a normal DFT matrix or a rotated DFT matrix.
  • Each column vector of the second matrix contains one or more sets of phase compensation values.
  • the second matrix is constructed to solve the above-mentioned problem 2), that is, the problem of different phase patterns of antenna elements or equivalent antenna elements.
  • a group of phase compensation values includes one or more compensation values.
  • a set of compensation values may include two compensation values, which are respectively used for phase compensation of two antenna elements in the same polarization direction in a QHA unit.
  • Each column vector of the third matrix contains one or more sets of amplitude compensation values.
  • the second matrix is constructed to solve the above-mentioned problem 1), that is, the problem of different amplitude patterns of antenna elements or equivalent antenna elements.
  • a group of amplitude compensation values includes one or more compensation values.
  • a set of compensation values may include two compensation values, which are respectively used for amplitude compensation for two antenna elements in the same polarization direction in a QHA unit.
  • the rotated DFT matrix has different rotation factors, and the corresponding second and third matrices are different.
  • the first matrix is equal to the second matrix, or equal to the third matrix, or equal to the dot product of the second matrix and the third matrix.
  • can be used to represent the dot product (or dot product) between two matrices.
  • Dot product refers to the multiplication of elements at the same position between two matrices with the same dimensions, and the result of the multiplication is used as the element at that position.
  • the construction of the first base matrix includes but is not limited to:
  • the first base matrix is the dot product of the orthogonal DFT base matrix and the first matrix, and the first matrix is equal to the second matrix.
  • the first base matrix the orthogonal DFT base matrix ⁇ the second matrix.
  • the dimensions of the first base matrix, the orthogonal DFT base matrix, and the second matrix are all N 1 row * N 1 column.
  • the dimensions of the first base matrix, the orthogonal DFT base matrix, and the second matrix are all N 1 N 2 rows*N 1 N 2 columns.
  • the first base matrix constructed based on this method is only used to solve the above-mentioned problem 2), that is, the problem that the phase pattern of the antenna element or the equivalent antenna element is different.
  • Method 2 The first base matrix is the dot product of the orthogonal DFT base matrix and the first matrix, and the first matrix is equal to the third matrix.
  • the first base matrix the orthogonal DFT base matrix ⁇ the third matrix.
  • the dimensions of the first base matrix, the orthogonal DFT base matrix, and the third matrix are all N 1 row * N 1 column.
  • the dimensions of the first base matrix, the orthogonal DFT base matrix, and the third matrix are all N 1 N 2 rows*N 1 N 2 columns.
  • the first base matrix constructed based on this method is only used to solve the above-mentioned problem 1), that is, the problem that the amplitude pattern of the antenna element or the equivalent antenna element is different.
  • Method 3 The first base matrix is the dot product of the orthogonal DFT base matrix and the first matrix, and the first matrix is equal to the dot product of the second matrix and the third matrix.
  • the first base matrix orthogonal DFT base matrix ⁇ second matrix ⁇ third matrix.
  • the dimensions of the first base matrix, the orthogonal DFT base matrix, the second matrix, and the third matrix are all N 1 row * N 1 column.
  • the dimensions of the first base matrix, the orthogonal DFT base matrix, the second matrix, and the third matrix are all N 1 N 2 rows*N 1 N 2 columns.
  • the first base matrix constructed based on this method is used to solve the above-mentioned problems 1) and 2), that is, the problem of different amplitude patterns and different phase patterns of antenna elements or equivalent antenna elements.
  • Method 4 the first base matrix is equal to the second base matrix.
  • the dimensions of the first base matrix and the second base matrix are both (N 1 -K 1 ) rows * N 1 columns.
  • the dimensions of the first base matrix and the second base matrix are both (N 1 -K 1 )(N 2 -K 2 ) rows * N 1 N 2 columns, or both are (N 1- K 1 )N 2 rows*N 1 N 2 columns.
  • the first base matrix constructed based on this method is used to solve the above-mentioned problem 3), that is, the problem that the antenna elements or equivalent antenna elements are arranged at non-equal intervals.
  • the first base matrix is equal to the dot product of the second base matrix and the first matrix, and the first matrix is equal to the second matrix.
  • the first base matrix the second base matrix ⁇ the second matrix.
  • the dimensions of the first base matrix, the second base matrix, and the second matrix are all (N 1 -K 1 ) rows * N 1 columns.
  • the dimensions of the first base matrix, the second base matrix, and the second matrix are all (N 1 -K 1 )(N 2 -K 2 rows*N 1 N 2 columns, or all ( N 1 -K 1 )N 2 rows*N 1 N 2 columns.
  • the first base matrix constructed based on this method is used to solve the above-mentioned problems 2) and 3), that is, the problem of different phase patterns of antenna elements or equivalent antenna elements and the non-equal interval arrangement of antenna elements or equivalent antenna elements problem.
  • Method 6 the first base matrix is equal to the dot product of the second base matrix and the first matrix, and the first matrix is equal to the third matrix.
  • the first base matrix the second base matrix ⁇ the third matrix.
  • the dimensions of the first base matrix, the second base matrix, and the third matrix are all (N 1 -K 1 ) rows * N 1 columns.
  • the dimensions of the first base matrix, the second base matrix, and the third matrix are all (N 1 -K 1 )(N 2 -K 2 ) rows * N 1 N 2 columns, or all (N 1 -K 1 )N 2 rows*N 1 N 2 columns.
  • the first base matrix constructed based on this method is used to solve the above-mentioned problems 1) and 3), that is, the problem of different amplitude patterns of antenna elements or equivalent antenna elements and the non-equal spacing of antenna elements or equivalent antenna elements. problem.
  • the first base matrix is equal to the dot product of the second base matrix and the first matrix
  • the first matrix is equal to the dot product of the second matrix and the third matrix
  • the first base matrix the second base matrix ⁇ the second matrix ⁇ the third matrix.
  • the dimensions of the first base matrix, the second base matrix, the second matrix, and the third matrix are all (N 1 -K 1 ) rows * N 1 columns.
  • the dimensions of the first base matrix, the second base matrix, the second matrix, and the third matrix are all (N 1 -K 1 )(N 2 -K 2 ) rows*N 1 N 2 columns , Or both are (N 1 -K 1 )N 2 rows*N 1 N 2 columns.
  • the first base matrix constructed based on this method is used to solve the above-mentioned problems 1), 2) and 3), that is, the problem of different amplitude patterns of the antenna element or equivalent antenna element, and the phase direction of the antenna element or equivalent antenna element.
  • problems 1), 2) and 3 that is, the problem of different amplitude patterns of the antenna element or equivalent antenna element, and the phase direction of the antenna element or equivalent antenna element.
  • the embodiment of the present application can solve one or more of the aforementioned problems 1) to 3) through any one of the aforementioned methods 1 to 7.
  • the amplitude deviation phenomenon can be eliminated.
  • the amplitude pattern without amplitude deviation as shown in FIG. 7 can be obtained.
  • the phase jump phenomenon after performing phase compensation on the orthogonal DFT base matrix of the prior art, the phase jump phenomenon can be eliminated.
  • the phase jump phenomenon after eliminating the phase jump phenomenon, a phase pattern without phase jump phenomenon as shown in FIG. 8 can be obtained.
  • the foregoing first base matrix may be constructed by a network device, and the network device may deliver some or all of the parameters corresponding to the constructed first base matrix to the terminal device.
  • the terminal device can select one or more columns of vectors from the first base matrix to construct a spatial base and perform CSI compression feedback.
  • the frequency at which the network device issues the parameters corresponding to the first base matrix is much less than the frequency at which the terminal device performs CSI compression feedback.
  • the network device may issue the parameters corresponding to the first base matrix only once after the terminal device accesses.
  • the foregoing first base matrix may also be constructed by a terminal device, and the terminal device needs to report some or all of the parameters corresponding to the constructed first base matrix to the network device.
  • the terminal device can select one or more columns of vectors from the first base matrix to construct a spatial base and perform CSI compression feedback.
  • the frequency at which the terminal device reports the parameters corresponding to the first base matrix is much less than the frequency at which the terminal device performs CSI compression feedback.
  • the frequency at which the terminal device reports the parameter corresponding to the first base matrix is the same as the frequency at which the terminal device performs CSI compression feedback.
  • the network device sends one or more of the following information to the terminal device, and/or the terminal device sends one or more of the following information to the network device:
  • At least one set of phase compensation values in one or more sets of phase compensation values is at the first position in the column vector of the second matrix, and each set of phase compensation values in one or more sets of phase compensation values corresponds to one or more The first position; where "corresponding" here means that a set of phase compensation values can be inserted in multiple positions of a column vector.
  • At least one set of amplitude compensation values in one or more sets of amplitude compensation values is at the second position in the column vector of the third matrix, and each set of amplitude compensation values in one or more sets of amplitude compensation values corresponds to one or more A second position; where "corresponding" here means that a set of phase compensation values can be inserted in multiple positions of a column vector.
  • the first position includes one or more starting positions of each group of phase compensation values in the column vector of the second matrix, and/or the element interval of each group of phase compensation values in the column vector.
  • the second position includes one or more starting positions of each group of amplitude compensation values in the column vector of the third matrix, and/or the element interval of each group of amplitude compensation values in the column vector.
  • the corresponding first base matrix, second base matrix, first matrix, second matrix, and third matrix can be constructed according to the method described above for each polarization direction. And so on, but the element values of the matrix in different polarization directions may be different.
  • the first base matrix D the second base matrix C ⁇ the first matrix S;
  • the (i-1)*N 2 +j column of D is in, for The i-th column, for The jth column.
  • a1 and a2 are the compensation amounts of the two antenna elements on the diagonal of the same QHA unit relative to the antenna elements of the ordinary dual-polarized antenna.
  • means click (or click and multiply).
  • kron stands for Kronecker product.
  • the generation method of [a1,a2,a1,a2,1,...,1,a2,a1,a2,a1] includes the following steps 1 to 3:
  • Step 1 a configuration of a full-length sequence of L1 N 1.
  • Step 2 According to the position of the equivalent dual-polarized antenna of the QHA unit in Figure 5 on the antenna panel, fill in (a1, a2) into the above-mentioned all-one sequence L1 to obtain L2, that is, use a1, a2 to replace the all-one sequence L1 Element 1 at the corresponding position in the.
  • Step 3 Delete the element 1 (K 1 in total) corresponding to the position of the virtual dual-polarized antenna in the virtual dual-polarized antenna (the dashed box dual-polarized antenna in Figure 5) in L2, and obtain the sequence L3 with a length of N 1 -K 1.
  • the L3 is: [a1,a2,a1,a2,1,...,1,a2,a1,a2,a1].
  • a pair of (a1, a2) can be used to construct a column vector of matrix S. Since the number of columns of matrix S is N 1 N 2 , N 1 N 2 (a1, a2) pairs are required in a polarization direction, The values of a1 in different (a1, a2) pairs can be the same or different, and the values of a2 can be the same or different.
  • each network element described above includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the present invention.
  • the steps or operations implemented by the terminal device can also be implemented by components (such as chips or circuits) configured in the terminal device, corresponding to the steps or operations implemented by the network device. It can be implemented by a component (for example, a chip or a circuit) configured in a network device.
  • a device for implementing any of the above methods.
  • a device is provided that includes units (or means) for implementing each step performed by the terminal device in any of the above methods.
  • another device is also provided, including a unit (or means) for implementing each step performed by the network device in any of the above methods.
  • FIG. 9 is a schematic diagram of a communication device provided by an embodiment of this application.
  • the device is used to implement various steps performed by the corresponding terminal device or network device in the foregoing method embodiment.
  • the device 900 includes a transceiving unit 910 and a processing unit 920.
  • the communication device is used to implement the steps performed by the corresponding terminal device in the foregoing method embodiment, then:
  • the processing unit 920 is configured to determine that at least one column vector in the first base matrix is a spatial base vector; the transceiver unit 910 is configured to send channel state information CSI to a network device, where the CSI includes the spatial base corresponding to the spatial base vector Vector index indication; wherein, the first base matrix is determined according to at least one of the second base matrix and the first matrix, and the second base matrix is obtained according to rows N 1 -K 1 of the first DFT matrix
  • the first DFT matrix is a matrix with N 1 rows*N 1 columns, N 1 is an integer greater than 1, K 1 is a positive integer smaller than N 1 , and the first matrix is based on the second matrix and/or the first It is obtained by three matrices, each column vector of the second matrix includes one or more sets of phase compensation values, and each column vector of the third matrix includes one or more sets of amplitude compensation values.
  • the transceiving unit 910 is further configured to receive some or all of the parameters corresponding to the first base matrix from the network device; or, the processing unit 920 is further configured to The first base matrix is constructed; the transceiver unit 910 is further configured to send some or all of the parameters corresponding to the first base matrix to the network device.
  • the transceiver unit 910 is further configured to receive one or more of the following information from the network device:
  • At least one of the one or more sets of phase compensation values included in each column vector of the second matrix At least one of the one or more sets of phase compensation values included in each column vector of the second matrix
  • the first position of at least one phase compensation value in the one or more sets of phase compensation values in the column vector of the second matrix, and each group of phase compensation values in the one or more sets of phase compensation values corresponds to one or more of the first positions;
  • At least one set of amplitude compensation values in the one or more sets of amplitude compensation values is at the second position in the column vector of the third matrix, and each set of amplitude in the one or more sets of amplitude compensation values The compensation value corresponds to one or more of the second positions;
  • the transceiver unit 910 is further configured to send one or more of the following information to the network device:
  • At least one of the one or more sets of phase compensation values included in each column vector of the second matrix At least one of the one or more sets of phase compensation values included in each column vector of the second matrix
  • the first position of at least one phase compensation value in the one or more sets of phase compensation values in the column vector of the second matrix, and each group of phase compensation values in the one or more sets of phase compensation values corresponds to one or more of the first positions;
  • At least one set of amplitude compensation values in the one or more sets of amplitude compensation values is at the second position in the column vector of the third matrix, and each set of amplitude in the one or more sets of amplitude compensation values The compensation value corresponds to one or more of the second positions;
  • the first position includes one or more starting positions of each group of phase compensation values in the column vector of the second matrix, and/or each group The element interval of the phase compensation value in the column vector;
  • the second position includes one or more starting positions of each group of amplitude compensation values in the column vector of the third matrix, and/or The element interval of each group of amplitude compensation values in the column vector.
  • phase compensation value in any of the foregoing implementation methods may be a real number.
  • the amplitude compensation value in any of the foregoing implementation methods may be a complex number modulo 1.
  • the communication device is used to implement each step performed by the corresponding network device in the above method embodiment, then:
  • the transceiver unit 910 is configured to receive channel state information CSI from a terminal device, where the CSI includes a spatial base vector index indication corresponding to a spatial base vector, the spatial base vector includes at least one column vector in a first base matrix, and the first A base matrix is determined based on at least one of the second base matrix and the first matrix, the second base matrix is obtained based on rows N 1 -K 1 of the first DFT matrix, and the first DFT matrix is N 1 row * N 1 column matrix, N 1 is an integer greater than 1, K 1 is a positive integer less than N 1 , the first matrix is obtained based on the second matrix and/or the third matrix, the second Each column vector of the matrix contains one or more sets of phase compensation values, and each column vector of the third matrix contains one or more sets of amplitude compensation values; the processing unit 920 is configured to determine the downlink channel according to the CSI status information.
  • the processing unit 920 is configured to determine the downlink channel according to the CSI status information.
  • the transceiving unit 910 is further configured to receive some or all of the parameters corresponding to the first base matrix from the terminal device; or, the processing unit 920 also uses To construct the first base matrix; the transceiver unit 910 is further configured to send some or all of the parameters corresponding to the first base matrix to the terminal device.
  • the transceiver unit 910 is further configured to receive one or more of the following information from the terminal device:
  • At least one of the one or more sets of phase compensation values included in each column vector of the second matrix At least one of the one or more sets of phase compensation values included in each column vector of the second matrix
  • At least one of the one or more sets of phase compensation values is at the first position in the column vector of the second matrix, and each set of phases in the one or more sets of phase compensation values The compensation value corresponds to one or more of the first positions;
  • At least one set of amplitude compensation values in the one or more sets of amplitude compensation values is at the second position in the column vector of the third matrix, and each set of amplitude in the one or more sets of amplitude compensation values The compensation value corresponds to one or more of the second positions;
  • the transceiver unit 910 is further configured to send one or more of the following information to the terminal device:
  • At least one of the one or more sets of phase compensation values included in each column vector of the second matrix At least one of the one or more sets of phase compensation values included in each column vector of the second matrix
  • the first position of at least one phase compensation value in the one or more sets of phase compensation values in the column vector of the second matrix, and each group of phase compensation values in the one or more sets of phase compensation values corresponds to one or more of the first positions;
  • At least one set of amplitude compensation values in the one or more sets of amplitude compensation values is at the second position in the column vector of the third matrix, and each set of amplitude in the one or more sets of amplitude compensation values The compensation value corresponds to one or more of the second positions;
  • the first position includes one or more starting positions of each group of phase compensation values in the column vector of the second matrix, and/or each group The element interval of the phase compensation value in the column vector;
  • the second position includes one or more starting positions of each group of amplitude compensation values in the column vector of the third matrix, and/or The element interval of each group of amplitude compensation values in the column vector.
  • phase compensation value in any of the foregoing implementation methods may be a real number.
  • the amplitude compensation value in any of the foregoing implementation methods may be a complex number modulo 1.
  • each of the above-mentioned units may also be referred to as a module or a circuit, etc., and each of the above-mentioned units may be provided independently, or may be fully or partially integrated.
  • the foregoing transceiver unit 910 may also be referred to as a communication interface, and the foregoing processing unit 920 may also be referred to as a processor.
  • the aforementioned communication device 900 may further include a storage unit for storing data or instructions (also referred to as codes or programs), and each of the aforementioned units may interact or couple with the storage unit to implement corresponding methods or Function.
  • the processing unit may read data or instructions in the storage unit, so that the communication device implements the method in the foregoing embodiment.
  • each unit in the device can be all implemented in the form of software called by processing elements; they can also be all implemented in the form of hardware; part of the units can also be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separately set up processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device. Function.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above method, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple microprocessors (digital singnal processors, DSPs), or, one or more field programmable gate arrays (Field Programmable Gate Arrays, FPGAs), or a combination of at least two of these integrated circuits.
  • ASIC application specific integrated circuits
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above receiving unit is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • the terminal equipment includes: an antenna 1010, a radio frequency device 1020, and a signal processing part 1030.
  • the antenna 1010 is connected to the radio frequency device 1020.
  • the radio frequency device 1020 receives the information sent by the network device through the antenna 1010, and sends the information sent by the network device to the signal processing part 1030 for processing.
  • the signal processing part 1030 processes the information of the terminal equipment and sends it to the radio frequency device 1020.
  • the radio frequency device 1020 processes the information of the terminal equipment and sends it to the network equipment via the antenna 1010.
  • the signal processing part 1030 is used to realize the processing of each communication protocol layer of the data.
  • the signal processing part 1030 may be a subsystem of the terminal device, and the terminal device may also include other subsystems, such as a central processing subsystem, which is used to process the terminal device operating system and application layer; another example is the peripheral sub-system.
  • the system is used to realize the connection with other equipment.
  • the signal processing part 1030 may be a separately provided chip.
  • the above device may be located in the signal processing part 1030.
  • the signal processing part 1030 may include one or more processing elements 1031, for example, including a main control CPU and other integrated circuits, and including an interface circuit 1033.
  • the signal processing part 1030 may further include a storage element 1032.
  • the storage element 1032 is used to store data and programs.
  • the program used to execute the method performed by the terminal device in the above method may or may not be stored in the storage element 1032, for example, stored in a memory other than the signal processing part 1030 During use, the signal processing part 1030 loads the program into the cache for use.
  • the interface circuit 1033 is used to communicate with the device.
  • the above device may be located in the signal processing part 1030, the signal processing part 1030 may be realized by a chip, the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute each step of any method executed by the above terminal device, the interface The circuit is used to communicate with other devices.
  • the unit that implements each step in the above method can be implemented in the form of a processing element scheduler.
  • the device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to execute the above method embodiments.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program used to execute the method executed by the terminal device in the above method may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads a program from the off-chip storage element on the on-chip storage element to call and execute the method executed by the terminal device in the above method embodiment.
  • the unit of the terminal device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are provided on the signal processing part 1030, where the processing elements may be integrated circuits, for example : One or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units that implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC), and the SOC chip is used to implement the above method.
  • SOC system-on-a-chip
  • the chip can integrate at least one processing element and a storage element, and the processing element can call the stored program of the storage element to implement the method executed by the above terminal device; or, the chip can integrate at least one integrated circuit to implement the above terminal The method executed by the device; or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any method executed by the terminal device provided in the above method embodiment.
  • the processing element can execute part or all of the steps executed by the terminal device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps executed by the terminal device are executed in the manner; of course, part or all of the steps executed by the terminal device may also be executed in combination with the first manner and the second manner.
  • the processing element here is the same as the above description, and it can be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • the network equipment includes: an antenna 1110, a radio frequency device 1120, and a baseband device 1130.
  • the antenna 1110 is connected to the radio frequency device 1120.
  • the radio frequency device 1120 receives the information sent by the terminal device through the antenna 1110, and sends the information sent by the terminal device to the baseband device 1130 for processing.
  • the baseband device 1130 processes the information of the terminal device and sends it to the radio frequency device 1120
  • the radio frequency device 1120 processes the information of the terminal device and sends it to the terminal device via the antenna 1110.
  • the baseband device 1130 may include one or more processing elements 1131, for example, a main control CPU and other integrated circuits, and an interface 1133.
  • the baseband device 1130 may also include a storage element 1132, which is used to store programs and data; the interface 1133 is used to exchange information with the radio frequency device 1120, and the interface is, for example, a common public radio interface (CPRI) .
  • the above apparatus for network equipment may be located in the baseband apparatus 1130.
  • the above apparatus for network equipment may be a chip on the baseband apparatus 1130.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute the above network For each step of any method executed by the device, the interface circuit is used to communicate with other devices.
  • the unit for the network device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the network device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the network device in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the unit of the network device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are provided on the baseband device.
  • the processing elements here may be integrated circuits, for example: one Or multiple ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the network equipment that implements the various steps in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the baseband device includes the SOC chip for implementing the above method.
  • At least one processing element and a storage element can be integrated in the chip, and the processing element can call the stored program of the storage element to implement the method executed by the above network device; or, at least one integrated circuit can be integrated in the chip to implement the above network The method executed by the device; or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for a network device may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any of the methods performed by the network device provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the network device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps performed by the network device are executed in the method; of course, part or all of the steps executed by the network device above can also be executed in combination with the first method and the second method.
  • the processing element here is the same as the above description, and it can be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by general-purpose processors, digital signal processors, application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, Discrete gates or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. accomplish.
  • the aforementioned functions described in this application can be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, these functions can be stored on a computer-readable medium, or transmitted on a computer-readable medium in the form of one or more instructions or codes.
  • Computer-readable media include computer storage media and communication media that facilitate the transfer of computer programs from one place to another. The storage medium can be any available medium that can be accessed by a general-purpose or special computer.
  • Such computer-readable media may include, but are not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other device that can be used to carry or store instructions or data structures and Other program code media that can be read by general-purpose or special computers, or general-purpose or special processors.
  • any connection can be appropriately defined as a computer-readable medium, for example, if the software is from a website, server, or other remote source through a coaxial cable, fiber optic computer, twisted pair, or digital subscriber line (DSL) Or transmitted by wireless means such as infrared, wireless and microwave are also included in the definition of computer-readable media.
  • DSL digital subscriber line
  • the said disks and discs include compressed disks, laser disks, optical discs, digital versatile discs (English: Digital Versatile Disc, abbreviated as: DVD), floppy disks and Blu-ray discs.
  • Disks usually copy data with magnetism.
  • Discs usually use lasers to copy data optically.
  • the combination of the above can also be contained in a computer readable medium.
  • the functions described in this application can be implemented by hardware, software, firmware, or any combination thereof. When implemented by software, these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法、装置及系统。该方法包括:终端设备确定第一基矩阵中的至少一个列向量为空域基向量;向网络设备发送CSI,CSI包括所述空域基向量对应的空域基向量索引指示,第一基矩阵是根据第二基矩阵、第一矩阵中的至少一个确定的,第二基矩阵是根据第一DFT矩阵的N 1-K 1行得到的,第一矩阵是根据第二矩阵和/或第三矩阵得到的,第二矩阵的每个列向量包含一组或多组相位补偿值,第三矩阵的每个列向量包含一组或多组幅度补偿值。基于该方案,通过对正交DFT基矩阵进行修正,使得其适用于存在"阵列非规则"、"幅度偏头现象"、"相位跳变现象"的非规则天线阵列的空域压缩,从而有助于保障终端设备与网络设备之间的正确通信。

Description

一种通信方法、装置及系统
相关申请的交叉引用
本申请要求在2020年05月29日提交中国专利局、申请号为202010478592.3、申请名称为“一种通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法、装置及系统。
背景技术
目前,为提升天线振子密度和天线口径,提出新型天线结构,如四臂螺旋天线(Quadrifilar Helical Antenna,QHA)等。新型天线结构的每个天线单元可以等效于天线面板上的多组双极化天线,因此新型天线结构相较于传统双极化天线,可提升天线振子密度,等效天线振子数量增加,等效天线口径增大。
基于该新型天线结构,终端设备如何正确选择并上报空域基向量,以保障终端设备与网络设备之间的正确通信,目前还没有相应的解决方案。
发明内容
本申请提供一种通信方法、装置及系统,保障终端设备与网络设备之间的正确通信。
第一方面,本申请提供一种通信方法,该方法包括:终端设备确定第一基矩阵中的至少一个列向量为空域基向量;所述终端设备向网络设备发送信道状态信息CSI,所述CSI包括所述空域基向量对应的空域基向量索引指示;其中,所述第一基矩阵是根据第二基矩阵、第一矩阵中的至少一个确定的,所述第二基矩阵是根据第一DFT矩阵的N 1-K 1行得到的,所述第一DFT矩阵是N 1行*N 1列的矩阵,N 1为大于1的整数,K 1为小于N 1的正整数,所述第一矩阵是根据第二矩阵和/或第三矩阵得到的,所述第二矩阵的每个列向量包含一组或多组相位补偿值,所述第三矩阵的每个列向量包含一组或多组幅度补偿值。
针对现有技术中的正交DFT基矩阵不适用于存在“幅度偏头现象”、“相位跳变现象”或“阵列非规则”的大规模天线阵列(例如,Q-MIMO、Q+X)的信道空域压缩问题,本申请实施例提出了一种基于非理想因素补偿的空域基底的构造方案,通过对现有技术中的正交DFT基矩阵进行修正,使得其适用于存在“阵列非规则”、“幅度偏头现象”、“相位跳变现象”的非规则天线阵列的空域压缩,从而有助于保障终端设备与网络设备之间的正确通信。
在一种可能的实现方法中,所述第二基矩阵是根据第一DFT矩阵的N 1-K 1行得到的,包括:所述第二基矩阵为所述第一DFT矩阵的N 1-K 1行;或者,所述第二基矩阵为所述第 一DFT矩阵的N 1-K 1行与第二DFT矩阵N 2-K 2行的克罗内克积,或为第二DFT矩阵N 2-K 2行与所述第一DFT矩阵的N 1-K 1行的克罗内克积,或为所述第一DFT矩阵的N 1-K 1行与第二DFT矩阵的克罗内克积,或为第二DFT矩阵与所述第一DFT矩阵的N 1-K 1行的克罗内克积,所述第二DFT矩阵是N 2行*N 2列的矩阵,N 2为大于1的整数,K 2为小于N 2的正整数。
基于上述实现方案,给定了第二基矩阵的不同实现方案,适用于一维天线阵列、或二维天线阵列,并且适用于Q-MIMO、Q+X等非规则天线阵列等效于传统规则天线阵列抽掉一些行,和/或抽掉一些列的应用场景。该方案简单易实施。
在一种可能的实现方法中,所述第一基矩阵是根据第二基矩阵、第一矩阵中的至少一个确定的,包括:所述第一基矩阵为正交DFT基矩阵与所述第一矩阵点积,所述第一矩阵为所述第二矩阵、或为所述第三矩阵、或为所述第二矩阵与所述第三矩阵的点积;或者,所述第一基矩阵为所述第二基矩阵;或者,所述第一基矩阵为所述第二基矩阵与所述第一矩阵的点积,所述第一矩阵为所述第二矩阵、或为所述第三矩阵、或为所述第二矩阵与所述第三矩阵的点积。
基于上述实现方案,给出了第一基矩阵的多种构造方式,适用于解决Q-MIMO、Q+X等非规则天线阵列中的“幅度偏头现象”、“相位跳变现象”、“阵列非规则”中的一个或多个问题。该方案简单易实施。
在一种可能的实现方法中,所述终端设备从所述网络设备接收所述第一基矩阵对应的参数中的部分或全部参数;或者,所述终端设备构造所述第一基矩阵,向所述网络设备发送所述第一基矩阵对应的参数中的部分或全部参数。
基于上述实现方案,可以由终端设备构造第一基矩阵和/或网络设备构造第一基矩阵,然后终端设备向网络设备发送第一基矩阵的部分或全部参数,和/或网络设备向终端设备发送第一基矩阵的部分或全部参数。该方案实现起来较为灵活。
在一种可能的实现方法中,所述终端设备从所述网络设备接收以下信息中的一项或多项:
所述第二矩阵的每个列向量包含的所述一组或多组相位补偿值中的至少一组相位补偿值;
所述一组或多组相位补偿值中的至少一组相位补偿值在所述第二矩阵的所述列向量中的第一位置,所述一组或多组相位补偿值中的每组相位补偿值对应一个或多个所述第一位置;
所述第三矩阵的每个列向量包含的所述一组或多组幅度补偿值;
所述一组或多组幅度补偿值中的至少一组幅度补偿值在所述第三矩阵的所述列向量中的第二位置,所述一组或多组幅度补偿值中的每组幅度补偿值对应一个或多个所述第二位置;
所述第一DFT矩阵中的被抽掉的K 1行的行序号中的部分或全部行序号;
所述第一DFT矩阵中的被选择的所述N 1-K 1行的行序号中的部分或全部行序号;
所述第二DFT矩阵中的被抽掉的K 2行的行序号中的部分或全部行序号;
所述第二DFT矩阵中的被选择的所述N 2-K 2行的行序号中的部分或全部行序号。
基于上述实现方案,可以由网络设备向终端设备发送在从第一基矩阵中选择一个或多个空域基向量过程中所涉及到的参数中的部分或全部参数,从而使得终端设备可以基于接收到的参数信息,从第一基矩阵中选择空域基向量。该方案简单易实施。
在一种可能的实现方法中,所述终端设备向所述网络设备发送以下信息中的一项或多项:
所述第二矩阵的每个列向量包含的所述一组或多组相位补偿值中的至少一组相位补偿值;
所述一组或多组相位补偿值中的至少一组相位补偿值在所述第二矩阵的所述列向量中的第一位置,所述一组或多组相位补偿值中的每组相位补偿值对应一个或多个所述第一位置;
所述第三矩阵的每个列向量包含的所述一组或多组幅度补偿值;
所述一组或多组幅度补偿值中的至少一组幅度补偿值在所述第三矩阵的所述列向量中的第二位置,所述一组或多组幅度补偿值中的每组幅度补偿值对应一个或多个所述第二位置;
所述第一DFT矩阵中的被抽掉的K 1行的行序号中的部分或全部行序号;
所述第一DFT矩阵中的被选择的所述N 1-K 1行的行序号中的部分或全部行序号;
所述第二DFT矩阵中的被抽掉的K 2行的行序号中的部分或全部行序号;
所述第二DFT矩阵中的被选择的所述N 2-K 2行的行序号中的部分或全部行序号。
基于上述实现方案,可以由终端设备向网络设备上报在从第一基矩阵中选择一个或多个空域基向量过程中所涉及到的参数中的部分或全部参数,从而使得网络设备可以获知终端设备所选择的空域基向量的具体形式。该方案简单易实施。
在一种可能的实现方法中,所述第一位置包括所述每组相位补偿值在所述第二矩阵的所述列向量中的一个或多个起始位置,和/或所述每组相位补偿值在所述列向量中的元素间隔;所述第二位置包括所述每组幅度补偿值在所述第三矩阵的所述列向量中的一个或多个起始位置,和/或所述每组幅度补偿值在所述列向量中的元素间隔。
基于上述实现方案,给定了第一位置和/或第二位置的不同实现方式,可以根据实际情况选择相应方案,实现起来较为灵活。
在一种可能的实现方法中,上述任意实现方法中的相位补偿值可以为实数。
在一种可能的实现方法中,上述任意实现方法中的幅度补偿值可以为模为1的复数。
第二方面,本申请提供一种通信方法,该方法包括:网络设备从终端设备接收信道状态信息CSI,所述CSI包括空域基向量对应的空域基向量索引指示,所述空域基向量包括第一基矩阵中的至少一个列向量,所述第一基矩阵是根据第二基矩阵、第一矩阵中的至少一个确定的,所述第二基矩阵是根据第一DFT矩阵的N 1-K 1行得到的,所述第一DFT矩阵是N 1行*N 1列的矩阵,N 1为大于1的整数,K 1为小于N 1的正整数,所述第一矩阵是根据第二矩阵和/或第三矩阵得到的,所述第二矩阵的每个列向量包含一组或多组相位补偿值,所述第三矩阵的每个列向量包含一组或多组幅度补偿值;所述网络设备根据所述CSI,确定下行信道状态信息。
针对现有技术中的正交DFT基矩阵不适用于存在“幅度偏头现象”、“相位跳变现象”或“阵列非规则”的大规模天线阵列(例如,Q-MIMO、Q+X)的信道空域压缩问题,本申请实施例提出了一种基于非理想因素补偿的空域基底的构造方案,通过对现有技术中的正交 DFT基矩阵进行修正,使得其适用于存在“阵列非规则”、“幅度偏头现象”、“相位跳变现象”的非规则天线阵列的空域压缩,从而有助于保障终端设备与网络设备之间的正确通信。
在一种可能的实现方法中,所述第二基矩阵是根据第一DFT矩阵的N 1-K 1行得到的,包括:所述第二基矩阵为所述第一DFT矩阵的N 1-K 1行;或者,所述第二基矩阵为所述第一DFT矩阵的N 1-K 1行与第二DFT矩阵N 2-K 2行的克罗内克积,或为第二DFT矩阵N 2-K 2行与所述第一DFT矩阵的N 1-K 1行的克罗内克积,或为所述第一DFT矩阵的N 1-K 1行与第二DFT矩阵的克罗内克积,或为第二DFT矩阵与所述第一DFT矩阵的N 1-K 1行的克罗内克积,所述第二DFT矩阵是N 2行*N 2列的矩阵,N 2为大于1的整数,K 2为小于N 2的正整数。
基于上述实现方案,给定了第二基矩阵的不同实现方案,适用于一维天线阵列、或二维天线阵列,并且适用于Q-MIMO、Q+X等非规则天线阵列等效于传统规则天线阵列抽掉一些行,和/或抽掉一些列的应用场景。该方案简单易实施。
在一种可能的实现方法中,所述第一基矩阵是根据第二基矩阵、第一矩阵中的至少一个确定的,包括:所述第一基矩阵为正交DFT基矩阵与所述第一矩阵点积,所述第一矩阵为所述第二矩阵、或为所述第三矩阵、或为所述第二矩阵与所述第三矩阵的点积;或者,所述第一基矩阵为所述第二基矩阵;或者,所述第一基矩阵为所述第二基矩阵与所述第一矩阵的点积,所述第一矩阵为所述第二矩阵、或为所述第三矩阵、或为所述第二矩阵与所述第三矩阵的点积。
基于上述实现方案,给出了第一基矩阵的多种构造方式,适用于解决Q-MIMO、Q+X等非规则天线阵列中的“幅度偏头现象”、“相位跳变现象”、“阵列非规则”中的一个或多个问题。该方案简单易实施。
在一种可能的实现方法中,所述网络设备从所述终端设备接收所述第一基矩阵对应的参数中的部分或全部参数;或者,所述网络设备构造所述第一基矩阵,向所述终端设备发送所述第一基矩阵对应的参数中的部分或全部参数。
基于上述实现方案,可以由终端设备构造第一基矩阵和/或网络设备构造第一基矩阵,然后终端设备向网络设备发送第一基矩阵的部分或全部参数,和/或网络设备向终端设备发送第一基矩阵的部分或全部参数。该方案实现起来较为灵活。
在一种可能的实现方法中,所述网络设备从所述终端设备接收以下信息中的一项或多项:
所述第二矩阵的每个列向量包含的所述一组或多组相位补偿值中的至少一组相位补偿值;
所述一组或多组相位补偿值中的至少一组相位补偿值在所述第二矩阵的所述列向量中的第一位置,所述一组或多组相位补偿值中的每组相位补偿值对应一个或多个所述第一位置;
所述第三矩阵的每个列向量包含的所述一组或多组幅度补偿值;
所述一组或多组幅度补偿值中的至少一组幅度补偿值在所述第三矩阵的所述列向量中的第二位置,所述一组或多组幅度补偿值中的每组幅度补偿值对应一个或多个所述第二 位置;
所述第一DFT矩阵中的被抽掉的K 1行的行序号中的部分或全部行序号;
所述第一DFT矩阵中的被选择的所述N 1-K 1行的行序号中的部分或全部行序号。
所述第二DFT矩阵中的被抽掉的K 2行的行序号中的部分或全部行序号;
所述第二DFT矩阵中的被选择的所述N 2-K 2行的行序号中的部分或全部行序号。
基于上述实现方案,可以由终端设备向网络设备上报在从第一基矩阵中选择一个或多个空域基向量过程中所涉及到的参数中的部分或全部参数,从而使得网络设备可以获知终端设备所选择的空域基向量的具体形式。该方案简单易实施。
在一种可能的实现方法中,所述网络设备向所述终端设备发送以下信息中的一项或多项:
所述第二矩阵的每个列向量包含的所述一组或多组相位补偿值中的至少一组相位补偿值;
所述一组或多组相位补偿值中的至少一组相位补偿值在所述第二矩阵的所述列向量中的第一位置,所述一组或多组相位补偿值中的每组相位补偿值对应一个或多个所述第一位置;
所述第三矩阵的每个列向量包含的所述一组或多组幅度补偿值;
所述一组或多组幅度补偿值中的至少一组幅度补偿值在所述第三矩阵的所述列向量中的第二位置,所述一组或多组幅度补偿值中的每组幅度补偿值对应一个或多个所述第二位置;
所述第一DFT矩阵中的被抽掉的K 1行的行序号中的部分或全部行序号;
所述第一DFT矩阵中的被选择的所述N 1-K 1行的行序号中的部分或全部行序号;
所述第二DFT矩阵中的被抽掉的K 2行的行序号中的部分或全部行序号;
所述第二DFT矩阵中的被选择的所述N 2-K 2行的行序号中的部分或全部行序号。
基于上述实现方案,可以由网络设备向终端设备发送在从第一基矩阵中选择一个或多个空域基向量过程中所涉及到的参数中的部分或全部参数,从而使得终端设备可以基于接收到的参数信息,从第一基矩阵中选择空域基向量。该方案简单易实施。
在一种可能的实现方法中,所述第一位置包括所述每组相位补偿值在所述第二矩阵的所述列向量中的一个或多个起始位置,和/或所述每组相位补偿值在所述列向量中的元素间隔;所述第二位置包括所述每组幅度补偿值在所述第三矩阵的所述列向量中的一个或多个起始位置,和/或所述每组幅度补偿值在所述列向量中的元素间隔。
在一种可能的实现方法中,上述任意实现方法中的相位补偿值可以为实数。
在一种可能的实现方法中,上述任意实现方法中的幅度补偿值可以为模为1的复数。
第三方面,本申请提供一种通信装置,该装置可以是终端设备,还可以是用于终端设备的芯片。该装置具有实现上述第一方面、或第一方面的任意实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本申请提供一种通信装置,该装置可以是网络设备,还可以是用于网络设备的芯片。该装置具有实现上述第二方面、或第二方面的任意实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,本申请提供一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述各方面所述的方法。
第六方面,本申请提供一种通信装置,包括:包括用于执行上述各方面的各个步骤的单元或手段(means)。
第七方面,本申请提供一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行上述各方面所述的方法。该处理器包括一个或多个。
第八方面,本申请提供一种通信装置,包括处理器,用于与存储器相连,用于调用所述存储器中存储的程序,以执行上述各方面所述的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
第九方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得处理器执行上述各方面所述的方法。
第十方面,本申请还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十一方面,本申请还提供一种芯片系统,包括:处理器,用于执行上述各方面所述的方法。
第十二方面,本申请还提供一种通信系统,包括:用于执行上述第一方面任意所述的方法的终端设备,和用于执行上述第二方面任意所述的方法的网络设备。
附图说明
图1为本申请提供的一种可能的网络架构示意图;
图2为四臂螺旋天线单元与双极化天线的等效示意图;
图3为带幅度偏头现象的幅度方向图;
图4为带相位跳变现象的相位方向图;
图5为“Q+X”组阵方式的一个示例图;
图6为本申请实施例提供的一种通信方法示意图;
图7为无幅度偏头现象的幅度方向图;
图8为无相位跳变现象的相位方向图;
图9为本申请实施例提供的一种通信装置;
图10为本申请实施例提供的一种终端设备;
图11为本申请实施例提供的一种网络设备。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其 中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
如图1所示,为本申请所适用的一种可能的网络架构示意图,包括网络设备和至少一个终端设备。该网络设备和终端设备可以工作在新无线(new radio,NR)通信系统上,终端设备可以通过NR通信系统与网络设备通信。该网络设备和终端设备也可以在其它通信系统上工作,本申请实施例不做限制。
终端设备可以是能够接收网络设备调度和指示信息的无线终端设备,无线终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端设备可以经无线接入网(如,radio access network,RAN)与一个或多个核心网或者互联网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话,手机(mobile phone))、计算机和数据卡,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、平板电脑(Pad)、带无线收发功能的电脑等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile station,MS)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户站(subscriber station,SS)、用户端设备(customer premises equipment,CPE)、终端(terminal)、用户设备(user equipment,UE)、移动终端(mobile terminal,MT)等。无线终端设备也可以是可穿戴设备以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备,NR通信系统中的终端设备等。
网络设备是网络侧中一种用于发射或接收信号的实体,如新一代基站(generation Node B,gNodeB)。网络设备可以是用于与移动设备通信的设备。网络设备可以是无线局域网(wireless local area networks,WLAN)中的AP,全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(long term evolution,LTE)中的演进型基站(evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的网络设备,或NR系统中的gNodeB等。另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。此外,在其它可能的情况下,网络设备可以是其它为终端设备提供无线通信功能的装置。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请实施例中,为终端设备提供无线通信功能的装置称为网络设备。
为了便于理解本申请实施例,下面先对本申请实施例中涉及的术语做简单说明。
1、预编码(Precoding)技术:发送设备(如网络设备)可以在已知信道状态的情况下,借助与信道资源相匹配的预编码矩阵来对待发送信号进行处理,使得经过预编码的待发送信号与信道相适配,从而使得接收设备消除信道间影响的复杂度降低。因此,通过对待发送信号的预编码处理,接收信号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等)得以提升。因此,采用预编码技术,可以实现发送设备与多个接收设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。应注意,有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请实施例的保护范围。在具体实现过程中,发送设备还可以通过其他方式进行预编码。例如,在无法获知信道信息(例如但不限于信道矩阵)的情况下,采用预先设置的预编码矩阵或者加权处理方式进行预编码等。为了简洁,其具体内容本文不再赘述。
2、预编码矩阵索引(Precoding Matrix Index,PMI):可用于指示预编码矩阵。其中,该预编码矩阵例如可以是终端设备基于各个频域单元(如,一个频域单元的频域宽度可以是资源块RB,或子带,或频域子带的R倍,R<=1,R的取值可以为1或1/2)的信道矩阵确定的预编码矩阵。该信道矩阵可以是终端设备通过信道估计等方式或者基于信道互易性确定。但应理解,终端设备确定预编码矩阵的具体方法并不限于上文所述,具体实现方式可参考现有技术,为了简洁,这里不再一一列举。
例如,预编码矩阵可以通过对信道矩阵或信道矩阵的协方差矩阵进行奇异值分解(singular value decomposition,SVD)的方式获得,或者,也可以通过对信道矩阵的协方差矩阵进行特征值分解(eigenvalue decomposition,EVD)的方式获得。应理解,上文中列举的预编码矩阵的确定方式仅为示例,不应对本申请构成任何限定。预编码矩阵的确定方式可以参考现有技术,为了简洁,这里不再一一列举。
需要说明的是,由本申请实施例提供的方法,网络设备可以基于终端设备的反馈确定用于构建预编码向量的空域基向量、频域基向量以及空频向量对的空频合并系数,进而确定与各频域单元对应的预编码矩阵。该预编码矩阵可以直接用于下行数据传输;也可以经过一些波束成形方法,例如包括迫零(zero forcing,ZF)、正则化迫零(regularized zero-forcing,RZF)、最小均方误差(minimum mean-squared error,MMSE)、最大化信漏噪比(signal-to-leakage-and-noise,SLNR)等,以得到最终用于下行数据传输的预编码矩阵。本申请对此不作限定。在未作出特别说明的情况下,下文中所涉及的预编码矩阵均可以是指基于本申请提供的方法所确定的预编码矩阵。
可以理解的是,终端设备所确定的预编码矩阵可以理解为待反馈的预编码矩阵。终端设备可以通过PMI指示待反馈的预编码矩阵,以便于网络设备基于PMI恢复出该预编码矩阵。可以理解,网络设备基于PMI恢复出的预编码矩阵可以与上述待反馈的预编码矩阵相同或相近。
在下行信道测量中,网络设备根据PMI确定出的预编码矩阵与终端设备所确定的预编码矩阵的近似度越高,其确定出的用于数据传输的预编码矩阵也就越能够与信道状态相适配,因此也就能够提高信号的接收质量。
3、预编码向量:一个预编码矩阵可以包括一个或多个向量,如列向量。一个预编码 矩阵可以用于确定一个或多个预编码向量。
当空间层数为1且发射天线的极化方向数也为1时,预编码矩阵就是预编码向量。当空间层数为多个且发射天线的极化方向数为1时,预编码向量可以是指预编码矩阵在一个空间层上的分量。当空间层数为1且发射天线的极化方向数为多个时,预编码向量可以是指预编码矩阵在一个极化方向上的分量。当空间层数为多个且发射天线的极化方向数也为多个时,预编码向量可以是指预编码矩阵在一个空间层、一个极化方向上的分量。
应理解,预编码向量也可以由预编码矩阵中的向量确定,如,对预编码矩阵中的向量进行数学变换后得到。本申请对于预编码矩阵与预编码向量之间的数学变换关系不作限定。
4、天线端口:可简称端口。可以理解为被接收设备所识别的发射天线,或者在空间上可以区分的发射天线。针对每个虚拟天线可以预配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合,每个天线端口可以与一个参考信号对应,因此,每个天线端口可以称为一个参考信号的端口,例如,CSI-RS端口、探测参考信号(sounding reference signal,SRS)端口等。在本申请实施例中,天线端口可以是指收发单元(transceiver unit,TxRU)。
5、空域基向量(spatial domain vector):或者称波束向量,空域波束基向量或空域向量。空域基向量中的各个元素可以表示各个天线端口的权重。基于空域基向量中各个元素所表示的各个天线端口的权重,将各个天线端口的信号做线性叠加,可以在空间某一方向上形成信号较强的区域。
空域基向量的长度可以为一个极化方向上的发射天线端口数N s,N s≥1,且为整数。空域基向量例如可以为长度为N s的列向量或行向量。本申请对此不作限定。
可选地,空域基向量取自离散傅里叶变换(Discrete Fourier Transform,DFT)矩阵。该DFT矩阵中的每个列向量可以称为一个DFT向量。换句话说,空域基向量可以为DFT向量。该空域基向量例如可以是NR协议TS 38.214版本15(release 15,R15)中类型II(type II)码本中定义的DFT向量。
6、空域基向量集合:可以包括多种不同长度的空域基向量,以与不同的天线端口数对应。在本申请实施例中,空域基向量的长度为N s,故终端设备所上报的空域基向量所属的空域基向量集合中的各空域基向量的长度均为N s
在一种可能的设计中,该空域基向量集合可以包括N s个空域基向量,该N s个空域基向量之间可以两两相互正交。该空域基向量集合中的每个空域基向量可以取自二维(2dimension,2D)-DFT矩阵。其中,2D可以表示两个不同的方向,如,水平方向和垂直方向。若水平方向和垂直方向的天线端口数量分别为N 1和N 2,那么N s=N 1N 2
该N s个空域基向量例如可以记作
Figure PCTCN2021091203-appb-000001
该N s个空域基向量可以构建矩阵U s
Figure PCTCN2021091203-appb-000002
若空域基向量集合中的每个空域基向量取自2D-DFT矩阵,则
Figure PCTCN2021091203-appb-000003
其中D N为N×N的正交DFT矩阵,第m行第n列的元素为
Figure PCTCN2021091203-appb-000004
在另一种可能的设计中,该空域基向量集合可以通过过采样因子O s扩展为O s×N s个空域基向量。此情况下,该空域基向量集合可以包括O s个子集,每个子集可以包括N s个空域基向量。每个子集中的N s个空域基向量之间可以两两相互正交。该 空域基向量集合中的每个空域基向量可以取自过采样2D-DFT矩阵。其中,过采样因子O s为正整数。具体地,O s=O 1×O 2,O 1可以是水平方向的过采样因子,O 2可以是垂直方向的过采样因子。O 1≥1,O 2≥1,O 1、O 2不同时为1,且均为整数。
该空域基向量集合中的第o s(0≤o s≤O s-1且o s为整数)个子集中的N s个空域基向量例如可以分别记作
Figure PCTCN2021091203-appb-000005
则基于该第o s个子集中的N s个空域基向量可以构造矩阵
Figure PCTCN2021091203-appb-000006
7、频域单元:频域资源的单位,可表示不同的频域资源粒度。频域单元例如可以包括但不限于,子带(subband)、资源块(resource block,RB)、子载波、资源块组(resource block group,RBG)或预编码资源块组(precoding resource block group,PRG)等。此外,一个频域单元的频域长度还可以是信道质量指示(Channel Quality Indication,CQI)子带的R倍,R<=1,R的取值可以为1或1/2,或一个频域单元的频域长度还可以为RB。
在本申请实施例中,与频域单元对应的预编码矩阵可以是指基于该频域单元上的参考信号进行信道测量和反馈而确定的预编码矩阵。与频域单元对应的预编码矩阵可用于对后续通过该频域单元传输的数据做预编码。下文中,与频域单元对应的预编码矩阵或预编码向量也可以简称为该频域单元的预编码矩阵或预编码向量。
8、频域基向量(frequency domain basis vector):也称为频域向量,可用于表示信道在频域的变化规律的向量。每个频域基向量可以表示一种变化规律。由于信号在经过无线信道传输时,从发射天线可以经过多个路径到达接收天线。多径时延导致频率选择性衰落,就是频域信道的变化。因此,可以通过不同的频域基向量来表示不同传输路径上时延导致的信道在频域上的变化规律。
频域基向量的长度可以由在上报带宽中预配置的待上报的频域单元的个数确定,也可以由该上报带宽的长度确定,还可以是协议预定义值。本申请对于频域基向量的长度不做限定。其中,所述上报带宽例如可以是指通过高层信令(如无线资源控制(radio resource control,RRC)消息)中的CSI上报预配置中携带的CSI上报带宽(csi-ReportingBand)。
频域基向量u f的长度可以记作N f,N f为正整数。频域基向量例如可以是长度为N f的列向量或行向量。本申请对此不作限定。
每个空间层对应的所有空域基向量可以采用相同的频域基向量,每个空间层对应的空域基向量采用的相同的频域基向量称为该空间层对应的频域基向量。
9、候选频域基向量集合:也称为频域基向量集合、频域向量集合:可以包括多种不同长度的频域基向量。在本申请实施例中,频域基向量的长度为N f,故终端设备所上报的频域基向量所属的候选频域基向量集合中的各频域基向量的长度均为N f
在一种可能的设计中,该候选频域基向量集合可以包括N f个频域基向量。该N f个频域基向量之间可以两两相互正交。该候选频域基向量集合中的每个频域基向量可以取自DFT矩阵或IDFT矩阵(即DFT矩阵的共轭转置矩阵)。
该N f个频域基向量例如可以记作
Figure PCTCN2021091203-appb-000007
该N f个频域基向量可以构建矩阵U f
Figure PCTCN2021091203-appb-000008
在另一种可能的设计中,该候选频域基向量集合可以通过过采样因子O f扩展为O f×N f个频域基向量。此情况下,该候选频域基向量集合可以包括O f个子集,每个子集可以包括N f个频域基向量。每个子集中的N f个频域基向量之间可以两两相互正交。该候选频域基向量集合中的每个频域基向量可以取自过采样DFT矩阵或过采样DFT矩阵的共轭转置矩阵。其中,过采样因子O f为正整数。
候选频域基向量集合中的第o f(0≤o f≤O f-1且o s为整数)个子集中的N f个频域基向量例如可以分别记作
Figure PCTCN2021091203-appb-000009
则基于该第o f个子集中的N s个波束向量可以构造矩阵
Figure PCTCN2021091203-appb-000010
因此,候选频域基向量集合中的各频域基向量可以取自DFT矩阵或过采样DFT矩阵,或者取自DFT矩阵的共轭转置矩阵或过采样DFT矩阵的共轭转置矩阵。该候选频域基向量集合中的每个列向量可以称为一个DFT向量或过采样DFT向量。换句话说,频域基向量可以为DFT向量或过采样DFT向量。
10、空频预编码矩阵:在本申请实施例中,空频预编码矩阵可以理解为每个频域单元对应的预编码矩阵组合成的矩阵(每个频域单元对应的预编码矩阵进行矩阵拼接),用于确定每个频域单元对应的预编码矩阵的一个中间量。对于终端设备来说,空频预编码矩阵可以由每个频域单元对应的预编码矩阵或信道矩阵确定。例如,空频预编码矩阵可以记作H,
Figure PCTCN2021091203-appb-000011
其中,w 1
Figure PCTCN2021091203-appb-000012
是与N f个频域单元对应的N f个列向量,每个列向量可以是每个频域单元对应的目标预编码矩阵,各列向量的长度均可以为N s。该N f个列向量分别对应N f个频域单元的目标预编码向量。即空频矩阵可以视为将N f个频域单元对应的目标预编码向量组合构成的联合矩阵。
11、双域压缩:可以包括空域压缩和频域压缩这两个维度的压缩。空域压缩具体可以是指空域基向量集合中选择一个或多个空域基向量来作为构建预编码向量的向量。频域压缩可以是指在频域基向量集合中选择一个或多个频域基向量来作为构建预编码向量的向量。其中,一个空域基向量和一个频域基向量所构建的矩阵例如可以称为空频分量矩阵。被选择的一个或多个空域基向量和一个或多个频域基向量可以构建一个或多个空频分量矩阵。该一个或多个空频分量矩阵的加权和可用于构建与一个空间层对应的空频预编码矩阵。换句话说,空频预编码矩阵可以近似为由上述被选择的一个或多个空域基向量和一个或多个频域基向量所构建的空频分量矩阵的加权和。基于一个空间层对应的空频预编码矩阵,进而可以确定该空间层上各频域单元对应的预编码向量。
具体地,选择的一个或多个空域基向量可以构成空域基矩阵W 1(也称为空域波束基矩阵),其中W 1中的每一个列向量对应选择的一个空域基向量。选择的一个或多个频域基向量可以构成频域基矩阵W 3,其中W 3中的每一个列向量对应选择的一个频域基向量。空频预编码矩阵H可以表示为选择的一个或多个空域基向量与选择的一个或多个频域基向量线性合并的结果,
Figure PCTCN2021091203-appb-000013
在一种实现方式中,若采用双极化方向,每个极化方向选择L个空域基向量,W 1的维度为2N s×2L。在一种可能的实现方式中,两个极化方向采用相同的L个空域基向量
Figure PCTCN2021091203-appb-000014
此时,W 1可以表示为
Figure PCTCN2021091203-appb-000015
其中
Figure PCTCN2021091203-appb-000016
表示选择的第i个空域基向量,i=0,1,…,L-1。
举例说明,对于一个空间层,若每个空域基向量选择相同的M个频域基向量,则
Figure PCTCN2021091203-appb-000017
的维度为M×N f,W 3中的每一个列向量对应一个频域基向量,此时每个空域基向量对应的频域基向量均为W 3中的M个频域基向量。
Figure PCTCN2021091203-appb-000018
为空频合并系数矩阵,维度为2L×M。
空频合并系数矩阵
Figure PCTCN2021091203-appb-000019
中的第i行对应2L个空域基向量中的第i个空域基向量,空频合并系数矩阵
Figure PCTCN2021091203-appb-000020
中的第j列对应M个频域基向量中的第j个频域基向量。第i个空域基向量对应的空频合并系数向量为空频合并系数矩阵
Figure PCTCN2021091203-appb-000021
中的第i个行向量,第i个空域基向量对应的空频合并系数为空频合并系数矩阵
Figure PCTCN2021091203-appb-000022
中的第i个行向量中包含的元素。
此外,L个空域基向量中的每一个空域基向量也可以对应不同的频域基向量。此时,
Figure PCTCN2021091203-appb-000023
其中
Figure PCTCN2021091203-appb-000024
为第i个空域基向量对应的M i个频域基向量构成的M i行N f列的矩阵。
Figure PCTCN2021091203-appb-000025
其中
Figure PCTCN2021091203-appb-000026
是第i个空域基向量对应的维度是1行*M i的空频合并系数矩阵,
Figure PCTCN2021091203-appb-000027
中包含的空频合并系数为第i个空域基向量对应的空频合并系数。
此外,空频矩阵V也可以表示为
Figure PCTCN2021091203-appb-000028
此时W 3中的每一个行向量对应选择的一个频域基向量。
由于双域压缩在空域和频域都分别进行了压缩,终端设备在反馈时,可以将被选择的一个或多个空域基向量和一个或多个频域基向量反馈给网络设备,而不再需要基于每个频域单元(如子带)分别反馈子带的空频合并系数(如包括幅度和相位)。因此,可以大大减小反馈开销。同时,由于频域基向量能够表示信道在频率的变化规律,通过一个或多个频域基向量的线性叠加来模拟信道在频域上的变化。因此,仍能够保持较高的反馈精度,使得网络设备基于终端设备的反馈恢复出来的预编码矩阵仍然能够较好地与信道适配。
12、空频合并系数、幅度和相位:空频合并系数也称合并系数,用于表示用于构建空频预编码矩阵的一个空域基向量和一个频域基向量构成的向量对的权重。如前所述,空频合并系数与一个空域基向量和一个频域基向量构成的向量对具有一一对应关系,或者说,每个空频合并系数与一个空域基向量和一个频域基向量对应。具体地,空频合并系数矩阵
Figure PCTCN2021091203-appb-000029
中第i行第j列的元素为第i个空域基向量与第j个频域基向量构成的向量对所对应的空频合并系数。
在一种实现方式中,为了控制上报开销,终端设备可以仅上报空频合并系数矩阵
Figure PCTCN2021091203-appb-000030
中包含的2LM个空频合并系数的子集。具体地,网络设备可以配置每个空间层对应的终端设备可以上报的空频合并系数的最大数量K 0,其中K 0<=2LM。K 0
Figure PCTCN2021091203-appb-000031
中包含的空频合并 系数总数2LM可以存在比例关系,例如K 0=β·2LM,β的取值可以为{3/4,1/2,1/4}。此外,终端设备可以仅上报K 1个幅度非0的空频合并系数,且K 1<=K 0
每个空频合并系数可以包括幅度和相位。例如,空频合并系数ae 中,a为幅度,θ为相位。
在一种实现方式中,对于上报的K 1个空频合并系数,其幅度值和相位值可以进行独立的量化。其中对于幅度的量化方法包含以下步骤:
1)对于K 1个空频合并系数,以幅度值最大的空频合并系数为参照,对K 1个空频合并系数进行归一化,若第i个空频合并系数归一化前为c i,则归一化后为c' i=c i/c i*,其中c i*为幅度值最大的空频合并系数。归一化后,量化参考幅度值最大的空频合并系数为1。
2)终端设备上报幅度值最大的空频合并系数的索引,指示幅度值最大的空频合并系数的索引的指示信息可以包含
Figure PCTCN2021091203-appb-000032
比特。
3)对于幅度值最大的空频合并系数所在的极化方向,量化参考幅度值为1。对于另一个极化方向,该极化方向内幅度最大的空频合并系数的幅度可以作为该极化方向的量化参考幅度值。对该量化参考幅度值采用4比特进行量化并上报,候选的量化参考幅度值包括
Figure PCTCN2021091203-appb-000033
4)对于每个极化方向,分别以该极化方向对应的量化参考幅度值为参照,对每一个空频合并系数的差分幅度值进行3比特量化,候选的差分幅度值包括
Figure PCTCN2021091203-appb-000034
差分幅度值表示相对于该极化方向所对应的量化参考幅度值的差异值,若一个空频合并系数所在极化方向所对应的量化参考幅度值为A,该空频合并系数量化后的差分幅度值为B,则该空频合并系数量化后的幅度值为A*B。
5)对于每个归一化后的空频合并系数的相位,通过3比特(8PSK)或者4比特(16PSK)进行量化。
在与多个空频分量矩阵对应的多个空频合并系数中,有些空频合并系数的幅度(或者说,幅值)可能为零,或者接近零,其对应的量化值可以是零。通过量化值零来量化幅度的空频合并系数可以称为幅度为零的空频合并系数。相对应地,有些空频合并系数的幅度较大,其对应的量化值不为零。通过非零的量化值来量化幅度的空频合并系数可以称为幅度非零的空频合并系数。换句话说,该多个空频合并系数由一个或多个幅度非零的空频合并系数以及一个或多个幅度为零的空频合并系数组成。
应理解,空频合并系数可以通过量化值指示,也可以通过量化值的索引指示,或者也可以通过非量化值指示,本申请对于空频合并系数的指示方式不作限定,只要让对端知道空频合并系数即可。下文中,为方便说明,将用于指示空频合并系数的信息称为空频合并系数的量化信息。该量化信息例如可以是量化值、索引或者其他任何可用于指示空频合并系数的信息。
13、空间层(layer):在MIMO中,一个空间层可以看成是一个可独立传输的数据流。为了提高频谱资源的利用率,提高通信系统的数据传输能力,网络设备可以通过多个空间 层向终端设备传输数据。
空间层数也就是信道矩阵的秩。终端设备可以根据信道估计所得到的信道矩阵确定空间层数。根据信道矩阵可以确定预编码矩阵。例如,可以通过对信道矩阵或信道矩阵的协方差矩阵进行SVD来确定预编码矩阵。在SVD过程中,可以按照特征值的大小来区分不同的空间层。例如,可以将最大的特征值所对应的特征向量所确定的预编码向量与第1个空间层对应,并可以将最小的特征值所对应的特征向量所确定的预编码向量与第R个空间层对应。即,第1个空间层至第R个空间层所对应的特征值依次减小。简单来说,R个空间层中自第1个空间层至第R个空间层强度依次递减。
应理解,基于特征值来区分不同的空间层仅为一种可能的实现方式,而不应对本申请构成任何限定。例如,协议也可以预先定义区分空间层的其他准则,本申请对此不作限定。
14、信道状态信息(CSI)报告(report):在无线通信系统中,由接收端(如终端设备)向发送端(如网络设备)上报的用于描述通信链路的信道属性的信息。CSI报告中例如可以包括但不限于,预编码矩阵指示(PMI)、秩指示(RI)、信道质量指示(CQI)、信道状态信息参考信号(channel state information reference signal,CSI-RS资源指示(CSI-RS resource indicator,CRI)以及层指示(layer indicator,LI)等。应理解,以上列举的CSI的具体内容仅为示例性说明,不应对本申请构成任何限定。CSI可以包括上文所列举的一项或多项,也可以包括除上述列举之外的其他用于表征CSI的信息,本申请对此不作限定。
以终端设备向网络设备上报CSI为例。
终端设备可以在一个时间单元(如时隙(slot))内上报一个或多个CSI报告,每个CSI报告可以对应一种CSI上报的配置条件。该CSI上报的配置条件例如可以由CSI上报配置(CSI reporting setting)来确定。该CSI上报配置可用于指示CSI上报的时域行为、带宽、与上报量(report quantity)对应的格式等。其中,时域行为例如包括周期性(periodic)、半持续性(semi-persistent)和非周期性(aperiodic)。终端设备可以基于一个CSI上报配置生成一个CSI报告。
终端设备在一个时间单元内上报一个或多个CSI报告可以称为一次CSI上报。
终端设备在生成CSI报告时,可以将CSI报告中的内容分为两部分。例如,CSI报告可以包括第一部分和第二部分。第一部分和第二部分可以是独立编码的。其中,第一部分的净荷(payload)大小(size)可以是预先定义的,第二部分的净荷大小可以根据第一部分中所携带的信息来确定。
网络设备可以根据预先定义的第一部分的净荷大小解码第一部分,以获取第一部分中携带的信息。网络设备可以根据从第一部分中获取的信息确定第二部分的净荷大小,进而解码第二部分,以获取第二部分中携带的信息。
应理解,该第一部分和第二部分类似于NR协议TS38.214版本15(release 15,R15)中定义的CSI的部分1(part 1)和部分2(part 2)。
在长期演进(long term evolution,LTE)以及新无线(New radio,NR)中,MIMO技术被广泛采用。对于小区边缘用户,采用空频块码(Space Frequency Block Code,SFBC)传输模式来提高小区边缘信噪比。对于小区中心用户,采用多层并行传输的传输模式来提供较高的数据传输速率。如果网络设备可以获得全部或者部分下行CSI的时候,可以采用预编码技术来提高信号传输质量或者速率。对于时分双工(Time Division Duplexing,TDD) 系统,无线信道的上下行具有互异性,网络设备可以根据上行信道获取下行CSI。但是对于频分双工(Frequency Division Duplexing,FDD)系统,由于上行和下行的载波频率不同,网络设备不能利用上行信道来获得下行CSI,网络设备一般通过终端设备反馈的方式获取CSI,该反馈分为两种方式:1)隐式反馈,即终端设备反馈预编码矩阵,现有LTE以及NR系统均采用这种反馈方式;2)显式反馈,即终端设备反馈信道矩阵,若未来的通信系统支持脏纸编码(Dirty Paper Coding,DPC),以实现更好的预编码性能,则需要显式反馈。
在显式反馈中,待压缩空间为“发送天线—接收天线—频率”三维信号空间;在隐式反馈中,待压缩空间为“发送天线—层—频率”三维信号空间。由于显式反馈和隐式反馈待压缩信号空间结构相同,均是对“发送天线-频率”进行二维压缩。因此本申请实施例同时适用于显式反馈和隐式反馈。
在对“发送天线—接收天线—频率”三维信号空间或“发送天线—层—频率”三维信号空间,经过“发送天线-频率”二维压缩后可以得到如下公式:
Figure PCTCN2021091203-appb-000035
其中,H为空频预编码矩阵,H表示为选择的一个或多个空域基向量与选择的一个或多个频域基向量线性合并的结果。
W 1是由选择的一个或多个空域基向量构成的空域基矩阵。若采用双极化方向,每个极化方向选择L个空域基向量,W 1的维度为2N s×2L。在一种可能的实现方式中,两个极化方向采用相同的L个空域基向量
Figure PCTCN2021091203-appb-000036
此时,W 1可以表示为
Figure PCTCN2021091203-appb-000037
其中,
Figure PCTCN2021091203-appb-000038
表示选择的第i个空域基向量,i=0,1,…,L-1。
其中,Ns=N1*N2,N1和N2分别为水平和垂直方向天线端口数量,L为网络设备配置的每个空间层选择空域基向量的数量。两个极化方向选择相同的空域基向量,其中选择的空域基向量
Figure PCTCN2021091203-appb-000039
(i=0,1,…,L-1)为旋转2D-DFT基矩阵(维度N 1N 2×N 1N 2)中选择的第i个基向量。相应的,旋转2D-DFT基矩阵可以表示为:
Figure PCTCN2021091203-appb-000040
其中,D N为N×N的正交DFT矩阵,第m行第n列的元素为
Figure PCTCN2021091203-appb-000041
Figure PCTCN2021091203-appb-000042
表示N×N的旋转矩阵。假设旋转因子q为均匀分布,那么
Figure PCTCN2021091203-appb-000043
相应的,旋转矩阵与DFT正交矩阵的乘积构成的矩阵满足
Figure PCTCN2021091203-appb-000044
W 3为选择的一个或多个频域基向量构成的频域基向量矩阵。其中选择的频域基向量可以是从预定义的DFT基矩阵或旋转DFT基矩阵(维度N f×N f)中选择的。网络设备配置每个空间层对应的W 3中包含的频域基向量的数量M,其中M的取值与频域单元的数量N f相关,
Figure PCTCN2021091203-appb-000045
其中p的取值可以为{1/2,1/4}。若一个空间层上每个空域基向量对应相同的M个频域基向量,则
Figure PCTCN2021091203-appb-000046
的维度为M×N f,W 3中的每一个列向量对应一个频域基向量,此时每个空域基向量对应的频域基向量均为W 3中的M个频域基向量。
Figure PCTCN2021091203-appb-000047
为空频合并系数矩阵,维度为2L×M。空频合并系数矩阵
Figure PCTCN2021091203-appb-000048
中的第i行对应2L个空域基向量中的第i个空域基向量,空频合并系数矩阵
Figure PCTCN2021091203-appb-000049
中的第j列对应M个频域基向量中的第j个频域基向量。第i个空域基向量对应的空频合并系数为空频合并系数矩阵
Figure PCTCN2021091203-appb-000050
中的第i个行向量,第i个空域基向量对应的空频合并系数为空频合并系数矩阵
Figure PCTCN2021091203-appb-000051
中的第i个行向量中包含的元素。
此外,L个空域基向量中的每一个空域基向量也可以对应不同的频域基向量。此时,
Figure PCTCN2021091203-appb-000052
其中
Figure PCTCN2021091203-appb-000053
为第i个空域基向量对应的M i个频域基向量构成的M i行N f列的矩阵。
Figure PCTCN2021091203-appb-000054
其中
Figure PCTCN2021091203-appb-000055
是第i个空域基向量对应的维度是1*M i的空频合并系数矩阵,
Figure PCTCN2021091203-appb-000056
中包含的空频合并系数为第i个空域基向量对应的空频合并系数。此时,
Figure PCTCN2021091203-appb-000057
共计包含
Figure PCTCN2021091203-appb-000058
个合并系数。若每个空域基向量对应的频域基向量的数量均为M,则
Figure PCTCN2021091203-appb-000059
共计包含2*L*M个合并系数。
终端设备在确定了空域基向量、频域基向量以及空频向量对的空频合并系数之后,向网络设备反馈空域基向量、频域基向量以及空频向量对的空频合并系数,从而网络设备可以基于空域基向量、频域基向量以及空频向量对的空频合并系数构建预编码矩阵。
目前,为提升天线振子密度和天线口径,提出新型天线结构,如QHA等。新型天线结构的每个天线单元可以等效于天线面板上的多组双极化天线,因此新型天线结构相较于传统传极化天线,可提升天线振子密度,等效天线振子数量增加,等效天线口径增大。
为便于理解,本申请实施例以新型天线结构为四臂螺旋天线为例进行说明。当然,该新型天线结构也可以是其他天线结构,如六臂螺旋天线、八臂螺旋天线等。
如图2所示,为四臂螺旋天线单元与双极化天线的等效示意图。图2中以天线面板上的两个水平方向的四臂螺旋天线单元(简称为QHA单元)为例。其中,每个QHA单元由四个天线振子构成。一个QHA单元在对角上的两个天线振子的极化方向相同,可以等效为空间上分开的两个极化方向相同的极化天线,等效天线之间的间隔由QHA中对应的两个天线振子方向图决定。
参考图2,QHA单元1的天线振子1和天线振子3的极化方向相同,天线振子2和天线振子4的极化方向相同。QHA单元1等效于图2中所示的第1组双极化天线和第3组双极化天线,并且QHA单元1的天线振子1和天线振子3等效于第1组双极化天线和第3组双极化天线在一个极化方向上的天线振子,QHA单元1的天线振子2和天线振子4等效于第1组双极化天线和第3组双极化天线在另一个极化方向上的天线振子。
参考图2,QHA单元2的天线振子1和天线振子3的极化方向相同,天线振子2和天线振子4的极化方向相同。QHA单元2等效于图2中所示的第2组双极化天线和第4组双极化天线,并且QHA单元2的天线振子1和天线振子3等效于第2组双极化天线和第4组双极化天线在一个极化方向上的天线振子,QHA单元2的天线振子2和天线振子4等效于第2组双极化天线和第4组双极化天线在另一个极化方向上的天线振子。
可见,原本仅可放两组双极化天线的面板,应用QHA阵列可放四组双极化天线,等效天线振子数量增加,等效天线口径增大。
需要说明的是,以上是以两个QHA单元为例进行说明。进一步地,也可以用两个以上的QHA单元构成天线阵列,或者是采用“Q+X”的组阵方式构成天线阵列。其中,“Q+X”指的是QHA单元和双极化天线相结合的组阵方式。
在使用QHA时,期望通过设计QHA各个天线振子的幅度方向图和相位方向图,使其逼近传统位于不同位置的两组双极化天线的幅度方向图和相位方向图。然而,在工程实现中,QHA天线一般会存在一定程度的“幅度偏头现象”和“相位跳变现象”,从而导致QHA不能理想逼近传统双极化天线。
如图3所示,为幅度方向图示意图。其中,实线椭圆表示QHA单元中2个极化方向相同的天线振子中的1个天线振子的幅度方向图,虚线椭圆表示该QHA单元中2个极化方向相同的天线振子中的另1个天线振子的幅度方向图。由于天线设计工艺限制,无法使得实线椭圆和虚线椭圆重合,因此表示出现幅度偏头现象。幅度偏头现象的含义是QHA单元中2个极化方向相同的天线振子的幅度方向图不同。
如图4所示,为相位方向图示意图。其中,实线表示QHA单元中2个极化方向相同的天线振子中的1个天线振子的相位方向图,虚线表示该QHA单元中2个极化方向相同的天线振子中的另1个天线振子的相位方向图。由于天线设计工艺限制,实线和/或虚线的斜率会发生跳变,因此表示出现相位跳变现象。相位跳变现象的含义是QHA单元中2个极化方向相同的天线振子的相位方向图无法逼近空间上分开的两个极化方向相同的极化天线的相位方向图。
另外,在“Q+X”阵列中,等效天线阵列的天线振子间距可能非规则。如图5所示,为“Q+X”组阵方式的一个示例图。可以看出,在同一个天线面板上同时存在QHA单元和传统双极化天线。从等效阵列的图形中可以看到,双极化天线的排列是非规则的。需要说明的是,图5中的虚线框的双极化天线所在的位置既不存在等效的双极化天线,也不存在实际的传统双极化天线,该位置处是空置的,或者理解为该位置的双极化天线是虚拟的双极化天线或实际不存在的双极化天线。
只有在d1=2d2=d4的情况下,等效阵列的图形的双极化天线的排列才是规则的。当等式中任意一个等式不满足,则是非规则的。在图3的示例中,d1=3d2=3d4,因此是非规则的。其中,d1表示同一个QHA单元在同一极化方向上的两个等效天线振子之间间隔,d2表示两个普通天线振子(或称为传统天线振子)之间的物理间隔,d4表示两个QHA单元之间的物理间隔。
综上,相对于传统X-MIMO,在Q-MIMO或Q+X-MIMO中存在以下非理想因素:
1)天线方向图存在幅度偏头现象,也即天线振子或等效天线振子的幅度方向图不同;
2)天线方向图存在相位跳变现象,也即天线振子或等效天线振子的相位方向图不同;
3)等效天线阵列的天线振子间距非规则,也即天线振子或等效天线振子非等间隔排 布。
基于存在的上述三个问题,将导致传统DFT基矩阵不再适用于信道空域压缩。也即,对于非规则的天线阵列,不能直接使用传统DFT基矩阵。其中,非规则的天线阵列满足以下一项或多项:天线振子或等效天线振子的幅度方向图不同、天线振子或等效天线振子的相位方向图不同、天线振子或等效天线振子非等间隔排布。
具体的,在目前传统双极化天线阵列中(即没有引入QHA单元),参考上述公式(2),L个空域基向量
Figure PCTCN2021091203-appb-000060
是从公式(3)所示的旋转2D-DFT基矩阵中选择的,也即选择旋转2D-DFT基矩阵
Figure PCTCN2021091203-appb-000061
中的L个列向量构成空域基矩阵W 1。然而,基于存在的上述三个问题,将导致传统DFT基矩阵不再适用于信道空域压缩。也即终端设备将不能从旋转2D-DFT基矩阵中选择用于构成空域基矩阵W 1的空域基向量。
为解决上述问题,一种可能的设计方案是:通过调整QHA内的天线振子之间的设计来消除以上三个问题,从而终端设备仍然可以从旋转DFT基矩阵中选择用于构成空域基矩阵W 1的空域基向量。然而,在实际工程中发现,通过调整QHA内的天线振子之间的设计的方案难度比较大,只能尽量缓解但不能消除上述非理想因素。
为此,本申请实施例通过另一种解决方案来消除上述三个问题中的一个或多个。本申请实施例方案通过对正交DFT基矩阵进行修正,从而实现使得修正的基矩阵适用于Q-MIMO或Q+X-MIMO。也即,根据幅度偏头大小,和/或相位跳变大小,和/或非规则排列形式,来相应地调整正交DFT基矩阵,从而得到修正的基矩阵。后续,终端设备从修正的基矩阵中选择一个或多个空域基向量构成空域基矩阵W 1。需要说明的是,只要能够解决上述1)至3)中的任一个问题,则本申请实施例都是存在相应的技术效果的。
需要说明的是,本申请实施例仅是以新型天线为四臂螺旋天线作为示例进行说明,实际应用中也适用于其他新型天线,或其他新型天线与普通双极化天线的组合,或普通双极化天线非规则排布的场景。
下面首先对本申请实施例提供的解决方案进行说明。如图6所示,为本申请实施例提供的一种通信方法,该方法用于解决上述提到的三个问题中的一个或多个。
该方法包括以下步骤:
步骤601,终端设备确定第一基矩阵中的至少一个列向量为空域基向量。
即终端设备选择第一基矩阵的一个或多个列向量作为空域基向量。
其中,第一基矩阵是根据第二基矩阵、第一矩阵中的至少一个确定的,第二基矩阵是根据第一DFT矩阵的N 1-K 1行得到的,第一DFT矩阵是N 1行*N 1列的矩阵,N 1为大于1的整数,K 1为小于N 1的正整数,第一矩阵是根据第二矩阵和/或第三矩阵得到的,第二矩阵的每个列向量包含一组或多组相位补偿值,第三矩阵的每个列向量包含一组或多组幅度补偿值。
所述相位补偿值可以为实数,所述幅度补偿值可以为模为1的复数。
步骤602,终端设备向网络设备发送CSI,该CSI包括空域基向量对应的空域基向量索引指示。相应地,网络设备可以接收到该CSI。
步骤603,网络设备根据CSI,确定下行信道状态信息。
这里的下行信道状态信息,可以是下行信道、下行数据对应的预编码矩阵,下行CQI,下行信道测量所对应的较优的配置参数,下行信道测量反馈所对应的较优的上行资源等。
针对现有技术中的正交DFT基矩阵不适用于存在“幅度偏头现象”、“相位跳变现象”或“阵列非规则”的大规模天线阵列(例如,Q-MIMO、Q+X)的信道空域压缩问题,本申请实施例提出了一种基于非理想因素补偿的空域基底的构造方案,通过对现有技术中的正交DFT基矩阵进行修正,使得其适用于存在“阵列非规则”、“幅度偏头现象”、“相位跳变现象”的非规则天线阵列的空域压缩,从而有助于保障终端设备与网络设备之间的正确通信。
本申请上述实施例适用于一维天线阵列场景和二维天线阵列场景。其中,一维天线阵列场景指的是选用1D-DFT矩阵作为基矩阵或选用根据1D-DFT矩阵变形得到的矩阵作为基矩阵的应用场景。二维天线阵列场景指的是选用2D-DFT矩阵作为基矩阵或选用根据2D-DFT矩阵变形得到的矩阵作为基矩阵的应用场景。
为便于理解,下面先对与上述图6实施例有关的一些术语进行说明。
一、天线端口的数量
在一维天线阵列场景中,N 1为天线端口(或天线振子)数量。
在二维天线阵列场景中,N 1为水平方向的天线端口(或天线振子)数量,N 2为垂直方向的天线端口(或天线振子)数量。
需要说明的是,这里的天线端口为QHA单元等效的双极化天线的天线振子、普通双极化天线的天线振子以及虚拟的天线振子的数量之和。参考图5,N 1的大小涵盖了QHA单元等效的双极化天线、普通双极化天线和虚拟的双极化天线。N 2的大小涵盖了QHA单元等效的双极化天线、普通双极化天线和虚拟的双极化天线。
二、正交DFT基矩阵
正交DFT基矩阵指的是现有技术中的用于提供空域基向量的矩阵。
在一维天线阵列场景中,正交DFT基矩阵等于第一DFT矩阵,第一DFT矩阵是N 1行*N 1列的矩阵,正交DFT基矩阵是N 1行*N 1列的矩阵。
在二维天线阵列场景中,正交DFT基矩阵是第一DFT矩阵与第二DFT矩阵的克罗内克积,或是第二DFT矩阵与第一DFT矩阵的克罗内克积。其中,第一DFT矩阵是N 1行*N 1列的矩阵,第二DFT矩阵是N 2行*N 2列的矩阵,正交DFT基矩阵是N 1N 2行*N 1N 2列的矩阵。
三、第一基矩阵
第一基矩阵指的是本申请实施例针对上述存在“幅度偏头现象”、“相位跳变现象”或“阵列非规则”的大规模天线阵列(例如,Q-MIMO、Q+X)所构造的用于提供空域基向量的基矩阵。也即,本申请实施例将从第一基矩阵中选择一列或多列向量,作为空域基向量。
四、第二基矩阵
本申请实施例构造的第二基矩阵,是用于解决上述提到的问题3),即阵列非规则的问题。
在一维天线阵列场景中,第二基矩阵等于第一DFT矩阵的N 1-K 1行,第一DFT矩阵是N 1行*N 1列的矩阵,K 1为小于N 1的正整数。也即,将第一DFT矩阵抽掉K 1行,得到第二矩阵。以图5为例,抽掉的K 1行对应图5中虚拟的双极化天线的位置。
在二维天线阵列场景中,第二基矩阵为第一DFT矩阵的N 1-K 1行与第二DFT矩阵N 2-K 2行的克罗内克积,或为第二DFT矩阵N 2-K 2行与第一DFT矩阵的N 1-K 1行的克罗内克积,或为第一DFT矩阵的N 1-K 1行与第二DFT矩阵的克罗内克积,或为第二DFT矩阵与第一DFT矩阵的N 1-K 1行的克罗内克积。其中,第一DFT矩阵是N 1行*N 1列的矩阵,K 1为小于N 1的正整数,第二DFT矩阵是N 2行*N 2列的矩阵,N 2为大于1的整数,K 2为小于N 2的正整数。以图5为例,对第一矩阵抽掉的K 1行对应图5中虚拟的双极化天线的位置。
其中,上述描述的第一DFT矩阵可以是普通DFT矩阵,也可以是旋转DFT矩阵。上述描述的第二DFT矩阵可以是普通DFT矩阵,也可以是旋转DFT矩阵。
五、第二矩阵
第二矩阵的每个列向量包含一组或多组相位补偿值。构造第二矩阵用于解决上述问题2),即天线振子或等效天线振子的相位方向图不同的问题。
其中,一组相位补偿值包含一个或多个补偿值。以图5为例,一组补偿值可以包含两个补偿值,分别用于对一个QHA单元中同一个极化方向的两个天线振子进行相位补偿。
六、第三矩阵
第三矩阵的每个列向量包含一组或多组幅度补偿值。构造第二矩阵用于解决上述问题1),即天线振子或等效天线振子的幅度方向图不同的问题。
其中,一组幅度补偿值包含一个或多个补偿值。以图5为例,一组补偿值可以包含两个补偿值,分别用于对一个QHA单元中同一个极化方向的两个天线振子进行幅度补偿。
需要说明的是,当上述第一DFT矩阵和/或第二DFT矩阵是旋转DFT矩阵,则旋转DFT矩阵不同旋转因子,对应的第二矩阵、第三矩阵不同。
七、第一矩阵
第一矩阵等于第二矩阵,或等于第三矩阵,或等于第二矩阵与第三矩阵的点积。
其中,可以用⊙表示两个矩阵之间的点积(或点乘)。点积指的是维度相同的两个矩阵之间的相同位置的元素之间相乘,并将相乘的结果作为该位置的元素。
下面对上述实施例中的第一基矩阵的不同构造方式进行具体说明。其中,第一基矩阵的构造方式包括但不限于:
方法1,第一基矩阵为正交DFT基矩阵与第一矩阵点积,第一矩阵等于第二矩阵。
也即,第一基矩阵=正交DFT基矩阵⊙第二矩阵。
在一维天线阵列场景中,第一基矩阵、正交DFT基矩阵、第二矩阵的维度均为N 1行*N 1列。
在二维天线阵列场景中,第一基矩阵、正交DFT基矩阵、第二矩阵的维度均为N 1N 2行*N 1N 2列。
基于该方法构造的第一基矩阵,仅用于解决上述问题2),即天线振子或等效天线振子的相位方向图不同的问题。
方法2,第一基矩阵为正交DFT基矩阵与第一矩阵点积,第一矩阵等于第三矩阵。
也即,第一基矩阵=正交DFT基矩阵⊙第三矩阵。
在一维天线阵列场景中,第一基矩阵、正交DFT基矩阵、第三矩阵的维度均为N 1行*N 1列。
在二维天线阵列场景中,第一基矩阵、正交DFT基矩阵、第三矩阵的维度均为N 1N 2行*N 1N 2列。
基于该方法构造的第一基矩阵,仅用于解决上述问题1),即天线振子或等效天线振子的幅度方向图不同的问题。
方法3,第一基矩阵为正交DFT基矩阵与第一矩阵点积,第一矩阵等于第二矩阵与第三矩阵的点积。
也即,第一基矩阵=正交DFT基矩阵⊙第二矩阵⊙第三矩阵。
在一维天线阵列场景中,第一基矩阵、正交DFT基矩阵、第二矩阵、第三矩阵的维度均为N 1行*N 1列。
在二维天线阵列场景中,第一基矩阵、正交DFT基矩阵、第二矩阵、第三矩阵的维度均为N 1N 2行*N 1N 2列。
基于该方法构造的第一基矩阵,用于解决上述问题1)和2),即天线振子或等效天线振子的幅度方向图不同和相位方向图不同的问题。
方法4,第一基矩阵等于第二基矩阵。
在一维天线阵列场景中,第一基矩阵、第二基矩阵的维度均为(N 1-K 1)行*N 1列。
在二维天线阵列场景中,第一基矩阵、第二基矩阵的维度均为(N 1-K 1)(N 2-K 2)行*N 1N 2列,或均为(N 1-K 1)N 2行*N 1N 2列。
基于该方法构造的第一基矩阵,用于解决上述问题3),即天线振子或等效天线振子非等间隔排布的问题。
方法5,第一基矩阵等于第二基矩阵与第一矩阵的点积,第一矩阵等于第二矩阵。
也即,第一基矩阵=第二基矩阵⊙第二矩阵。
在一维天线阵列场景中,第一基矩阵、第二基矩阵、第二矩阵的维度均为(N 1-K 1)行*N 1列。
在二维天线阵列场景中,第一基矩阵、第二基矩阵、第二矩阵的维度均为(N 1-K 1)(N 2-K 2行*N 1N 2列,或均为(N 1-K 1)N 2行*N 1N 2列。
基于该方法构造的第一基矩阵,用于解决上述问题2)和3),即天线振子或等效天线振子的相位方向图不同的问题和天线振子或等效天线振子非等间隔排布的问题。
方法6,第一基矩阵等于第二基矩阵与第一矩阵的点积,第一矩阵等于第三矩阵。
也即,第一基矩阵=第二基矩阵⊙第三矩阵。
在一维天线阵列场景中,第一基矩阵、第二基矩阵、第三矩阵的维度均为(N 1-K 1)行*N 1列。
在二维天线阵列场景中,第一基矩阵、第二基矩阵、第三矩阵的维度均为(N 1-K 1)(N 2-K 2)行*N 1N 2列,或均为(N 1-K 1)N 2行*N 1N 2列。
基于该方法构造的第一基矩阵,用于解决上述问题1)和3),即天线振子或等效天线振子的幅度方向图不同的问题和天线振子或等效天线振子非等间隔排布的问题。
方法7,第一基矩阵等于第二基矩阵与第一矩阵的点积,第一矩阵等于第二矩阵与第三矩阵的点积。
也即,第一基矩阵=第二基矩阵⊙第二矩阵⊙第三矩阵。
在一维天线阵列场景中,第一基矩阵、第二基矩阵、第二矩阵、第三矩阵的维度均为(N 1-K 1)行*N 1列。
在二维天线阵列场景中,第一基矩阵、第二基矩阵、第二矩阵、第三矩阵的维度均为(N 1-K 1)(N 2-K 2)行*N 1N 2列,或均为(N 1-K 1)N 2行*N 1N 2列。
基于该方法构造的第一基矩阵,用于解决上述问题1)、2)和3),即天线振子或等效天线振子的幅度方向图不同的问题、天线振子或等效天线振子的相位方向图不同的问题和天线振子或等效天线振子非等间隔排布的问题。
本申请实施例通过上述方法1至方法7中的任一种方法,可以解决上述提到的问题1) 至3)中的一个或多个问题。
本申请实施例中,在对现有技术的正交DFT基矩阵进行幅度补偿之后,可以消除幅度偏头现象。比如,针对图3示例,在消除幅度偏头现象之后,可以得到如图7所示的无幅度偏头现象的幅度方向图。
本申请实施例中,在对现有技术的正交DFT基矩阵进行相位补偿之后,可以消除相位跳变现象。比如,针对图4示例,在消除相位跳变现象之后,可以得到如图8所示的无相位跳变现象的相位方向图。
本申请实施例中,上述第一基矩阵可以是由网络设备构造并由网络设备将构造的第一基矩阵对应的参数中的部分或全部参数下发至终端设备的。终端设备可以从第一基矩阵中选择一列或多列向量构造空域基底并执行CSI压缩反馈。需要说明的是,网络设备下发第一基矩阵对应的参数的频率远小于终端设备执行CSI压缩反馈的频率。特别的,网络设备可以仅在终端设备接入之后下发一次第一基矩阵对应的参数。
本申请实施例中,上述第一基矩阵也可以是由终端设备构造的,并且终端设备需要将构造的第一基矩阵对应的参数中的部分或全部参数上报至网络设备。终端设备可以从第一基矩阵中选择一列或多列向量构造空域基底并执行CSI压缩反馈。作为一种实现方法,终端设备上报第一基矩阵对应的参数的频率远小于终端设备执行CSI压缩反馈的频率。作为另一种实现方法,终端设备上报第一基矩阵对应的参数的频率与终端设备执行CSI压缩反馈的频率相同。
本申请实施例中,网络设备向终端设备发送以下信息中的一项或多项,和/或,终端设备向网络设备发送以下信息中的一项或多项:
1)第二矩阵的每个列向量包含的一组或多组相位补偿值中的至少一组相位补偿值;
2)一组或多组相位补偿值中的至少一组相位补偿值在第二矩阵的列向量中的第一位置,一组或多组相位补偿值中的每组相位补偿值对应一个或多个第一位置;其中,这里的“对应”指的是一组相位补偿值可以插在一个列向量的多个位置。
3)第三矩阵的每个列向量包含的一组或多组幅度补偿值;
4)一组或多组幅度补偿值中的至少一组幅度补偿值在第三矩阵的列向量中的第二位置,一组或多组幅度补偿值中的每组幅度补偿值对应一个或多个第二位置;其中,这里的“对应”指的是一组相位补偿值可以插在一个列向量的多个位置。
5)第一DFT矩阵中的被抽掉的K 1行的行序号中的部分或全部行序号。
6)第一DFT矩阵中的被选择的所述N 1-K 1行的行序号中的部分或全部行序号。
7)第二DFT矩阵中的被抽掉的K 2行的行序号中的部分或全部行序号。
8)第二DFT矩阵中的被选择的所述N 2-K 2行的行序号中的部分或全部行序号。
作为一种实现方法,第一位置包括每组相位补偿值在第二矩阵的列向量中的一个或多个起始位置,和/或每组相位补偿值在列向量中的元素间隔。第二位置包括每组幅度补偿值在第三矩阵的列向量中的一个或多个起始位置,和/或每组幅度补偿值在所述列向量中的元素间隔。
本申请实施例中,针对双极化天线阵列,可对每一个极化方向分别按照上述描述的方法构造相应的第一基矩阵、第二基矩阵、第一矩阵、第二矩阵、第三矩阵等,但不同极化方向上的矩阵的元素值可能不同。
下面以图5的示例为例,以公式的形式来描述上述各矩阵。以对正交DFT基矩阵执行非规则补偿,以及执行幅度补偿和相位补偿为例,来说明第一基矩阵的构造方式。需要说明的是,该示例针对的是二维天线阵列。
第一基矩阵D=第二基矩阵C⊙第一矩阵S;
其中,
Figure PCTCN2021091203-appb-000062
表示对第一矩阵去掉K 1行之后的矩阵,
Figure PCTCN2021091203-appb-000063
表示对第二矩阵去掉K 2行之后的矩阵。D的第(i-1)*N 2+j列为
Figure PCTCN2021091203-appb-000064
其中,
Figure PCTCN2021091203-appb-000065
Figure PCTCN2021091203-appb-000066
的第i列,
Figure PCTCN2021091203-appb-000067
Figure PCTCN2021091203-appb-000068
的第j列。S ij为S的第(i-1)*N 2+j列,S ij=kron([a1,a2,a1,a2,1,…,1,a2,a1,a2,a1]’,ONES(1,N 2-K 2))。a1和a2为同一个QHA单元在对角上的两个天线振子分别相对于普通双极化天线的天线振子的补偿量。⊙表示点击(或点乘)。kron表示克罗内克积。
其中,[a1,a2,a1,a2,1,…,1,a2,a1,a2,a1]的生成方式包括以下步骤1至步骤3:
步骤1,构造一个长度为N 1的全1序列L1。
步骤2,根据图5中QHA单元等效的双极化天线在天线面板上的位置,将(a1,a2)填入上述全1序列L1,得到L2,即使用a1,a2替换全1序列L1中相应位置上的元素1。
步骤3,删除L2中与虚拟双极化天线的位置(图5中的虚线框双极化天线)对应的元素1(共删除K 1个),得到长度为N 1-K 1的序列L3,该L3即为:[a1,a2,a1,a2,1,…,1,a2,a1,a2,a1]。
其中,一个(a1,a2)对可用于构造矩阵S的一个列向量,由于矩阵S的列数为N 1N 2,因此在一个极化方向需要N 1N 2个(a1,a2)对,不同(a1,a2)对中的a1取值可以相同或不同,a2取值可以相同或不同。
上述主要从各个网元之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,上述实现各网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
可以理解的是,上述各个方法实施例中,对应由终端设备实现的步骤或者操作,也可以由配置于终端设备的部件(例如芯片或者电路)实现,对应由网络设备实现的步骤或者操作,也可以由配置于网络设备的部件(例如芯片或者电路)实现。
本申请实施例还提供用于实现以上任一种方法的装置,例如,提供一种装置包括用以实现以上任一种方法中终端设备所执行的各个步骤的单元(或手段)。再如,还提供另一 种装置,包括用以实现以上任一种方法中网络设备所执行的各个步骤的单元(或手段)。
参考图9,为本申请实施例提供的一种通信装置的示意图。该装置用于实现上述方法实施例中对应终端设备、或网络设备所执行的各个步骤,如图9所示,该装置900包括收发单元910和处理单元920。
在第一个实施例中,该通信装置用于实现上述方法实施例中对应终端设备所执行的各个步骤,则:
处理单元920,用于确定第一基矩阵中的至少一个列向量为空域基向量;收发单元910,用于向网络设备发送信道状态信息CSI,所述CSI包括所述空域基向量对应的空域基向量索引指示;其中,所述第一基矩阵是根据第二基矩阵、第一矩阵中的至少一个确定的,所述第二基矩阵是根据第一DFT矩阵的N 1-K 1行得到的,所述第一DFT矩阵是N 1行*N 1列的矩阵,N 1为大于1的整数,K 1为小于N 1的正整数,所述第一矩阵是根据第二矩阵和/或第三矩阵得到的,所述第二矩阵的每个列向量包含一组或多组相位补偿值,所述第三矩阵的每个列向量包含一组或多组幅度补偿值。
在一种可能的实现方法中,所述收发单元910,还用于从所述网络设备接收所述第一基矩阵对应的参数中的部分或全部参数;或者,所述处理单元920还用于构造所述第一基矩阵;所述收发单元910,还用于向所述网络设备发送所述第一基矩阵对应的参数中的部分或全部参数。
在一种可能的实现方法中,所述收发单元910,还用于从所述网络设备接收以下信息中的一项或多项:
所述第二矩阵的每个列向量包含的所述一组或多组相位补偿值中的至少一组相位补偿值;
所述一组或多组相位补偿值中的至少一组相位补偿值在所述第二矩阵的所述列向量中的第一位置,所述一组或多组相位补偿值中的每组相位补偿值对应一个或多个所述第一位置;
所述第三矩阵的每个列向量包含的所述一组或多组幅度补偿值;
所述一组或多组幅度补偿值中的至少一组幅度补偿值在所述第三矩阵的所述列向量中的第二位置,所述一组或多组幅度补偿值中的每组幅度补偿值对应一个或多个所述第二位置;
所述第一DFT矩阵中的被抽掉的K 1行的行序号中的部分或全部行序号;
所述第一DFT矩阵中的被选择的所述N 1-K 1行的行序号中的部分或全部行序号;
所述第二DFT矩阵中的被抽掉的K 2行的行序号中的部分或全部行序号;
所述第二DFT矩阵中的被选择的所述N 2-K 2行的行序号中的部分或全部行序号。
在一种可能的实现方法中,所述收发单元910,还用于向所述网络设备发送以下信息中的一项或多项:
所述第二矩阵的每个列向量包含的所述一组或多组相位补偿值中的至少一组相位补 偿值;
所述一组或多组相位补偿值中的至少一组相位补偿值在所述第二矩阵的所述列向量中的第一位置,所述一组或多组相位补偿值中的每组相位补偿值对应一个或多个所述第一位置;
所述第三矩阵的每个列向量包含的所述一组或多组幅度补偿值;
所述一组或多组幅度补偿值中的至少一组幅度补偿值在所述第三矩阵的所述列向量中的第二位置,所述一组或多组幅度补偿值中的每组幅度补偿值对应一个或多个所述第二位置;
所述第一DFT矩阵中的被抽掉的K 1行的行序号中的部分或全部行序号;
所述第一DFT矩阵中的被选择的所述N 1-K 1行的行序号中的部分或全部行序号;
所述第二DFT矩阵中的被抽掉的K 2行的行序号中的部分或全部行序号;
所述第二DFT矩阵中的被选择的所述N 2-K 2行的行序号中的部分或全部行序号。
在一种可能的实现方法中,所述第一位置包括所述每组相位补偿值在所述第二矩阵的所述列向量中的一个或多个起始位置,和/或所述每组相位补偿值在所述列向量中的元素间隔;所述第二位置包括所述每组幅度补偿值在所述第三矩阵的所述列向量中的一个或多个起始位置,和/或所述每组幅度补偿值在所述列向量中的元素间隔。
在一种可能的实现方法中,上述任意实现方法中的相位补偿值可以为实数。
在一种可能的实现方法中,上述任意实现方法中的幅度补偿值可以为模为1的复数。
在第二个实施例中,该通信装置用于实现上述方法实施例中对应网络设备所执行的各个步骤,则:
收发单元910,用于从终端设备接收信道状态信息CSI,所述CSI包括空域基向量对应的空域基向量索引指示,所述空域基向量包括第一基矩阵中的至少一个列向量,所述第一基矩阵是根据第二基矩阵、第一矩阵中的至少一个确定的,所述第二基矩阵是根据第一DFT矩阵的N 1-K 1行得到的,所述第一DFT矩阵是N 1行*N 1列的矩阵,N 1为大于1的整数,K 1为小于N 1的正整数,所述第一矩阵是根据第二矩阵和/或第三矩阵得到的,所述第二矩阵的每个列向量包含一组或多组相位补偿值,所述第三矩阵的每个列向量包含一组或多组幅度补偿值;处理单元920,用于根据所述CSI,确定下行信道状态信息。
在一种可能的实现方法中,所述收发单元910,还用于从所述终端设备接收所述第一基矩阵对应的参数中的部分或全部参数;或者,所述处理单元920,还用于构造所述第一基矩阵;所述收发单元910,还用于向所述终端设备发送所述第一基矩阵对应的参数中的部分或全部参数。
在一种可能的实现方法中,所述收发单元910,还用于从所述终端设备接收以下信息中的一项或多项:
所述第二矩阵的每个列向量包含的所述一组或多组相位补偿值中的至少一组相位补偿值;
所述一组或多组相位补偿值中的至少一组相位补偿值在所述第二矩阵的所述列向量中的第一位置,所述一组或多组相位补偿值中的每组相位补偿值对应一个或多个所述第一 位置;
所述第三矩阵的每个列向量包含的所述一组或多组幅度补偿值;
所述一组或多组幅度补偿值中的至少一组幅度补偿值在所述第三矩阵的所述列向量中的第二位置,所述一组或多组幅度补偿值中的每组幅度补偿值对应一个或多个所述第二位置;
所述第一DFT矩阵中的被抽掉的K 1行的行序号中的部分或全部行序号;
所述第一DFT矩阵中的被选择的所述N 1-K 1行的行序号中的部分或全部行序号;
所述第二DFT矩阵中的被抽掉的K 2行的行序号中的部分或全部行序号;
所述第二DFT矩阵中的被选择的所述N 2-K 2行的行序号中的部分或全部行序号。
在一种可能的实现方法中,所述收发单元910,还用于向所述终端设备发送以下信息中的一项或多项:
所述第二矩阵的每个列向量包含的所述一组或多组相位补偿值中的至少一组相位补偿值;
所述一组或多组相位补偿值中的至少一组相位补偿值在所述第二矩阵的所述列向量中的第一位置,所述一组或多组相位补偿值中的每组相位补偿值对应一个或多个所述第一位置;
所述第三矩阵的每个列向量包含的所述一组或多组幅度补偿值;
所述一组或多组幅度补偿值中的至少一组幅度补偿值在所述第三矩阵的所述列向量中的第二位置,所述一组或多组幅度补偿值中的每组幅度补偿值对应一个或多个所述第二位置;
所述第一DFT矩阵中的被抽掉的K 1行的行序号中的部分或全部行序号;
所述第一DFT矩阵中的被选择的所述N 1-K 1行的行序号中的部分或全部行序号;
所述第二DFT矩阵中的被抽掉的K 2行的行序号中的部分或全部行序号;
所述第二DFT矩阵中的被选择的所述N 2-K 2行的行序号中的部分或全部行序号。
在一种可能的实现方法中,所述第一位置包括所述每组相位补偿值在所述第二矩阵的所述列向量中的一个或多个起始位置,和/或所述每组相位补偿值在所述列向量中的元素间隔;所述第二位置包括所述每组幅度补偿值在所述第三矩阵的所述列向量中的一个或多个起始位置,和/或所述每组幅度补偿值在所述列向量中的元素间隔。
在一种可能的实现方法中,上述任意实现方法中的相位补偿值可以为实数。
在一种可能的实现方法中,上述任意实现方法中的幅度补偿值可以为模为1的复数。
可以理解的是,上述各个单元也可以称为模块或者电路等,并且上述各个单元可以独立设置,也可以全部或者部分集成。
上述收发单元910也可称为通信接口,上述处理单元920也可以称为处理器。
可选的,上述通信装置900还可以包括存储单元,该存储单元用于存储数据或者指令(也可以称为代码或者程序),上述各个单元可以和存储单元交互或者耦合,以实现对应的方法或者功能。例如,处理单元可以读取存储单元中的数据或者指令,使得通信装置实 现上述实施例中的方法。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元(例如接收单元)是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元(例如发送单元)是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
参考图10,其为本申请实施例提供的一种终端设备的结构示意图。该终端设备用于实现以上实施例中终端设备的操作。如图10所示,该终端设备包括:天线1010、射频装置1020、信号处理部分1030。天线1010与射频装置1020连接。在下行方向上,射频装置1020通过天线1010接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分1030进行处理。在上行方向上,信号处理部分1030对终端设备的信息进行处理,并发送给射频装置1020,射频装置1020对终端设备的信息进行处理后经过天线1010发送给网络设备。
信号处理部分1030用于实现对数据各通信协议层的处理。信号处理部分1030可以为该终端设备的一个子系统,则该终端设备还可以包括其它子系统,例如中央处理子系统,用于实现对终端设备操作系统以及应用层的处理;再如,周边子系统用于实现与其它设备的连接。信号处理部分1030可以为单独设置的芯片。可选的,以上的装置可以位于信号处理部分1030。
信号处理部分1030可以包括一个或多个处理元件1031,例如,包括一个主控CPU和其它集成电路,以及包括接口电路1033。此外,该信号处理部分1030还可以包括存储元件1032。存储元件1032用于存储数据和程序,用于执行以上方法中终端设备所执行的方法的程序可能存储,也可能不存储于该存储元件1032中,例如,存储于信号处理部分1030之外的存储器中,使用时信号处理部分1030加载该程序到缓存中进行使用。接口电路1033 用于与装置通信。以上装置可以位于信号处理部分1030,该信号处理部分1030可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如该装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端设备执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于信号处理部分1030上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以是一个存储器,也可以是多个存储元件的统称。
参考图11,为本申请实施例提供的一种网络设备的结构示意图。该网络设备用于实现以上实施例中网络设备的操作。如图11所示,该网络设备包括:天线1110、射频装置1120、基带装置1130。天线1110与射频装置1120连接。在上行方向上,射频装置1120通过天线1110接收终端设备发送的信息,将终端设备发送的信息发送给基带装置1130进行处理。在下行方向上,基带装置1130对终端设备的信息进行处理,并发送给射频装置1120,射频装置1120对终端设备的信息进行处理后经过天线1110发送给终端设备。
基带装置1130可以包括一个或多个处理元件1131,例如,包括一个主控CPU和其它集成电路,以及还包括接口1133。此外,该基带装置1130还可以包括存储元件1132,存储元件1132用于存储程序和数据;接口1133用于与射频装置1120交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可 以位于基带装置1130,例如,以上用于网络设备的装置可以为基带装置1130上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上网络设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上网络设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于网络设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种网络设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行网络设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行网络设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上网络设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以是一个存储器,也可以是多个存储元件的统称。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信 号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
在一个或多个示例性的设计中,本申请所描述的上述功能可以在硬件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理器读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、数字通用光盘(英文:Digital Versatile Disc,简称:DVD)、软盘和蓝光光盘,磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (32)

  1. 一种通信方法,其特征在于,包括:
    终端设备确定第一基矩阵中的至少一个列向量为空域基向量;
    所述终端设备向网络设备发送信道状态信息CSI,所述CSI包括所述空域基向量对应的空域基向量索引指示;
    其中,所述第一基矩阵是根据第二基矩阵、第一矩阵中的至少一个确定的,所述第二基矩阵是根据第一DFT矩阵的N 1-K 1行得到的,所述第一DFT矩阵是N 1行*N 1列的矩阵,N 1为大于1的整数,K 1为小于N 1的正整数,所述第一矩阵是根据第二矩阵和/或第三矩阵得到的,所述第二矩阵的每个列向量包含一组或多组相位补偿值,所述第三矩阵的每个列向量包含一组或多组幅度补偿值。
  2. 如权利要求1所述的方法,其特征在于,所述第二基矩阵是根据第一DFT矩阵的N 1-K 1行得到的,包括:
    所述第二基矩阵为所述第一DFT矩阵的N 1-K 1行;或者,
    所述第二基矩阵为所述第一DFT矩阵的N 1-K 1行与第二DFT矩阵N 2-K 2行的克罗内克积,或为第二DFT矩阵N 2-K 2行与所述第一DFT矩阵的N 1-K 1行的克罗内克积,或为所述第一DFT矩阵的N 1-K 1行与第二DFT矩阵的克罗内克积,或为第二DFT矩阵与所述第一DFT矩阵的N 1-K 1行的克罗内克积,所述第二DFT矩阵是N 2行*N 2列的矩阵,N 2为大于1的整数,K 2为小于N 2的正整数。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一基矩阵是根据第二基矩阵、第一矩阵中的至少一个确定的,包括:
    所述第一基矩阵为正交DFT基矩阵与所述第一矩阵点积,所述第一矩阵为所述第二矩阵、或为所述第三矩阵、或为所述第二矩阵与所述第三矩阵的点积;或者,
    所述第一基矩阵为所述第二基矩阵;或者,
    所述第一基矩阵为所述第二基矩阵与所述第一矩阵的点积,所述第一矩阵为所述第二矩阵、或为所述第三矩阵、或为所述第二矩阵与所述第三矩阵的点积。
  4. 如权利要求1-3任一所述的方法,其特征在于,还包括:
    所述终端设备从所述网络设备接收所述第一基矩阵对应的参数中的部分或全部参数;或者,
    所述终端设备构造所述第一基矩阵,向所述网络设备发送所述第一基矩阵对应的参数中的部分或全部参数。
  5. 如权利要求1-4任一所述的方法,其特征在于,所述终端设备从所述网络设备接收以下信息中的一项或多项:
    所述第二矩阵的每个列向量包含的所述一组或多组相位补偿值中的至少一组相位补偿值;
    所述一组或多组相位补偿值中的至少一组相位补偿值在所述第二矩阵的所述列向量中的第一位置,所述一组或多组相位补偿值中的每组相位补偿值对应一个或多个所述第一 位置;
    所述第三矩阵的每个列向量包含的所述一组或多组幅度补偿值;
    所述一组或多组幅度补偿值中的至少一组幅度补偿值在所述第三矩阵的所述列向量中的第二位置,所述一组或多组幅度补偿值中的每组幅度补偿值对应一个或多个所述第二位置;
    所述第一DFT矩阵中的被抽掉的K 1行的行序号中的部分或全部行序号;
    所述第一DFT矩阵中的被选择的所述N 1-K 1行的行序号中的部分或全部行序号。
  6. 如权利要求1-4任一所述的方法,其特征在于,所述终端设备向所述网络设备发送以下信息中的一项或多项:
    所述第二矩阵的每个列向量包含的所述一组或多组相位补偿值中的至少一组相位补偿值;
    所述一组或多组相位补偿值中的至少一组相位补偿值在所述第二矩阵的所述列向量中的第一位置,所述一组或多组相位补偿值中的每组相位补偿值对应一个或多个所述第一位置;
    所述第三矩阵的每个列向量包含的所述一组或多组幅度补偿值;
    所述一组或多组幅度补偿值中的至少一组幅度补偿值在所述第三矩阵的所述列向量中的第二位置,所述一组或多组幅度补偿值中的每组幅度补偿值对应一个或多个所述第二位置;
    所述第一DFT矩阵中的被抽掉的K 1行的行序号中的部分或全部行序号;
    所述第一DFT矩阵中的被选择的所述N 1-K 1行的行序号中的部分或全部行序号。
  7. 如权利要求5或6所述的方法,其特征在于,
    所述第一位置包括所述每组相位补偿值在所述第二矩阵的所述列向量中的一个或多个起始位置,和/或所述每组相位补偿值在所述列向量中的元素间隔;
    所述第二位置包括所述每组幅度补偿值在所述第三矩阵的所述列向量中的一个或多个起始位置,和/或所述每组幅度补偿值在所述列向量中的元素间隔。
  8. 一种通信方法,其特征在于,包括:
    网络设备从终端设备接收信道状态信息CSI,所述CSI包括空域基向量对应的空域基向量索引指示,所述空域基向量包括第一基矩阵中的至少一个列向量,所述第一基矩阵是根据第二基矩阵、第一矩阵中的至少一个确定的,所述第二基矩阵是根据第一DFT矩阵的N 1-K 1行得到的,所述第一DFT矩阵是N 1行*N 1列的矩阵,N 1为大于1的整数,K 1为小于N 1的正整数,所述第一矩阵是根据第二矩阵和/或第三矩阵得到的,所述第二矩阵的每个列向量包含一组或多组相位补偿值,所述第三矩阵的每个列向量包含一组或多组幅度补偿值;
    所述网络设备根据所述CSI,确定下行信道状态信息。
  9. 如权利要求8所述的方法,其特征在于,所述第二基矩阵是根据第一DFT矩阵的N 1-K 1行得到的,包括:
    所述第二基矩阵为所述第一DFT矩阵的N 1-K 1行;或者,
    所述第二基矩阵为所述第一DFT矩阵的N 1-K 1行与第二DFT矩阵N 2-K 2行的克罗内克积,或为第二DFT矩阵N 2-K 2行与所述第一DFT矩阵的N 1-K 1行的克罗内克积,或为所述第一DFT矩阵的N 1-K 1行与第二DFT矩阵的克罗内克积,或为第二DFT矩阵与所述第一DFT矩阵的N 1-K 1行的克罗内克积,所述第二DFT矩阵是N 2行*N 2列的矩阵,N 2为大于1的整数,K 2为小于N 2的正整数。
  10. 如权利要求8或9所述的方法,其特征在于,所述第一基矩阵是根据第二基矩阵、第一矩阵中的至少一个确定的,包括:
    所述第一基矩阵为正交DFT基矩阵与所述第一矩阵点积,所述第一矩阵为所述第二矩阵、或为所述第三矩阵、或为所述第二矩阵与所述第三矩阵的点积;或者,
    所述第一基矩阵为所述第二基矩阵;或者,
    所述第一基矩阵为所述第二基矩阵与所述第一矩阵的点积,所述第一矩阵为所述第二矩阵、或为所述第三矩阵、或为所述第二矩阵与所述第三矩阵的点积。
  11. 如权利要求8-10任一所述的方法,其特征在于,还包括:
    所述网络设备从所述终端设备接收所述第一基矩阵对应的参数中的部分或全部参数;或者,
    所述网络设备构造所述第一基矩阵,向所述终端设备发送所述第一基矩阵对应的参数中的部分或全部参数。
  12. 如权利要求8-11任一所述的方法,其特征在于,所述网络设备从所述终端设备接收以下信息中的一项或多项:
    所述第二矩阵的每个列向量包含的所述一组或多组相位补偿值中的至少一组相位补偿值;
    所述一组或多组相位补偿值中的至少一组相位补偿值在所述第二矩阵的所述列向量中的第一位置,所述一组或多组相位补偿值中的每组相位补偿值对应一个或多个所述第一位置;
    所述第三矩阵的每个列向量包含的所述一组或多组幅度补偿值;
    所述一组或多组幅度补偿值中的至少一组幅度补偿值在所述第三矩阵的所述列向量中的第二位置,所述一组或多组幅度补偿值中的每组幅度补偿值对应一个或多个所述第二位置;
    所述第一DFT矩阵中的被抽掉的K 1行的行序号中的部分或全部行序号;
    所述第一DFT矩阵中的被选择的所述N 1-K 1行的行序号中的部分或全部行序号。
  13. 如权利要求8-11任一所述的方法,其特征在于,所述网络设备向所述终端设备发送以下信息中的一项或多项:
    所述第二矩阵的每个列向量包含的所述一组或多组相位补偿值中的至少一组相位补偿值;
    所述一组或多组相位补偿值中的至少一组相位补偿值在所述第二矩阵的所述列向量中的第一位置,所述一组或多组相位补偿值中的每组相位补偿值对应一个或多个所述第一位置;
    所述第三矩阵的每个列向量包含的所述一组或多组幅度补偿值;
    所述一组或多组幅度补偿值中的至少一组幅度补偿值在所述第三矩阵的所述列向量中的第二位置,所述一组或多组幅度补偿值中的每组幅度补偿值对应一个或多个所述第二位置;
    所述第一DFT矩阵中的被抽掉的K 1行的行序号中的部分或全部行序号;
    所述第一DFT矩阵中的被选择的所述N 1-K 1行的行序号中的部分或全部行序号。
  14. 如权利要求12或13所述的方法,其特征在于,
    所述第一位置包括所述每组相位补偿值在所述第二矩阵的所述列向量中的一个或多个起始位置,和/或所述每组相位补偿值在所述列向量中的元素间隔;
    所述第二位置包括所述每组幅度补偿值在所述第三矩阵的所述列向量中的一个或多个起始位置,和/或所述每组幅度补偿值在所述列向量中的元素间隔。
  15. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一基矩阵中的至少一个列向量为空域基向量;
    收发单元,用于向网络设备发送信道状态信息CSI,所述CSI包括所述空域基向量对应的空域基向量索引指示;
    其中,所述第一基矩阵是根据第二基矩阵、第一矩阵中的至少一个确定的,所述第二基矩阵是根据第一DFT矩阵的N 1-K 1行得到的,所述第一DFT矩阵是N 1行*N 1列的矩阵,N 1为大于1的整数,K 1为小于N 1的正整数,所述第一矩阵是根据第二矩阵和/或第三矩阵得到的,所述第二矩阵的每个列向量包含一组或多组相位补偿值,所述第三矩阵的每个列向量包含一组或多组幅度补偿值。
  16. 如权利要求15所述的装置,其特征在于,所述第二基矩阵是根据第一DFT矩阵的N 1-K 1行得到的,包括:
    所述第二基矩阵为所述第一DFT矩阵的N 1-K 1行;或者,
    所述第二基矩阵为所述第一DFT矩阵的N 1-K 1行与第二DFT矩阵N 2-K 2行的克罗内克积,或为第二DFT矩阵N 2-K 2行与所述第一DFT矩阵的N 1-K 1行的克罗内克积,或为所述第一DFT矩阵的N 1-K 1行与第二DFT矩阵的克罗内克积,或为第二DFT矩阵与所述第一DFT矩阵的N 1-K 1行的克罗内克积,所述第二DFT矩阵是N 2行*N 2列的矩阵,N 2为大于1的整数,K 2为小于N 2的正整数。
  17. 如权利要求15或16所述的装置,其特征在于,所述第一基矩阵是根据第二基矩阵、第一矩阵中的至少一个确定的,包括:
    所述第一基矩阵为正交DFT基矩阵与所述第一矩阵点积,所述第一矩阵为所述第二矩阵、或为所述第三矩阵、或为所述第二矩阵与所述第三矩阵的点积;或者,
    所述第一基矩阵为所述第二基矩阵;或者,
    所述第一基矩阵为所述第二基矩阵与所述第一矩阵的点积,所述第一矩阵为所述第二 矩阵、或为所述第三矩阵、或为所述第二矩阵与所述第三矩阵的点积。
  18. 如权利要求15-17任一所述的装置,其特征在于,所述收发单元,还用于从所述网络设备接收所述第一基矩阵对应的参数中的部分或全部参数;或者,
    所述处理单元,还用于构造所述第一基矩阵;所述收发单元,还用于向所述网络设备发送所述第一基矩阵对应的参数中的部分或全部参数。
  19. 如权利要求15-18任一所述的装置,其特征在于,所述收发单元,还用于从所述网络设备接收以下信息中的一项或多项:
    所述第二矩阵的每个列向量包含的所述一组或多组相位补偿值中的至少一组相位补偿值;
    所述一组或多组相位补偿值中的至少一组相位补偿值在所述第二矩阵的所述列向量中的第一位置,所述一组或多组相位补偿值中的每组相位补偿值对应一个或多个所述第一位置;
    所述第三矩阵的每个列向量包含的所述一组或多组幅度补偿值;
    所述一组或多组幅度补偿值中的至少一组幅度补偿值在所述第三矩阵的所述列向量中的第二位置,所述一组或多组幅度补偿值中的每组幅度补偿值对应一个或多个所述第二位置;
    所述第一DFT矩阵中的被抽掉的K 1行的行序号中的部分或全部行序号;
    所述第一DFT矩阵中的被选择的所述N 1-K 1行的行序号中的部分或全部行序号。
  20. 如权利要求15-18任一所述的装置,其特征在于,所述收发单元,还用于向所述网络设备发送以下信息中的一项或多项:
    所述第二矩阵的每个列向量包含的所述一组或多组相位补偿值中的至少一组相位补偿值;
    所述一组或多组相位补偿值中的至少一组相位补偿值在所述第二矩阵的所述列向量中的第一位置,所述一组或多组相位补偿值中的每组相位补偿值对应一个或多个所述第一位置;
    所述第三矩阵的每个列向量包含的所述一组或多组幅度补偿值;
    所述一组或多组幅度补偿值中的至少一组幅度补偿值在所述第三矩阵的所述列向量中的第二位置,所述一组或多组幅度补偿值中的每组幅度补偿值对应一个或多个所述第二位置;
    所述第一DFT矩阵中的被抽掉的K 1行的行序号中的部分或全部行序号;
    所述第一DFT矩阵中的被选择的所述N 1-K 1行的行序号中的部分或全部行序号。
  21. 如权利要求19或20所述的装置,其特征在于,
    所述第一位置包括所述每组相位补偿值在所述第二矩阵的所述列向量中的一个或多个起始位置,和/或所述每组相位补偿值在所述列向量中的元素间隔;
    所述第二位置包括所述每组幅度补偿值在所述第三矩阵的所述列向量中的一个或多个起始位置,和/或所述每组幅度补偿值在所述列向量中的元素间隔。
  22. 一种通信装置,其特征在于,包括:
    收发单元,用于从终端设备接收信道状态信息CSI,所述CSI包括空域基向量对应的空域基向量索引指示,所述空域基向量包括第一基矩阵中的至少一个列向量,所述第一基 矩阵是根据第二基矩阵、第一矩阵中的至少一个确定的,所述第二基矩阵是根据第一DFT矩阵的N 1-K 1行得到的,所述第一DFT矩阵是N 1行*N 1列的矩阵,N 1为大于1的整数,K 1为小于N 1的正整数,所述第一矩阵是根据第二矩阵和/或第三矩阵得到的,所述第二矩阵的每个列向量包含一组或多组相位补偿值,所述第三矩阵的每个列向量包含一组或多组幅度补偿值;
    处理单元,用于根据所述CSI,确定下行信道状态信息。
  23. 如权利要求22所述的装置,其特征在于,所述第二基矩阵是根据第一DFT矩阵的N 1-K 1行得到的,包括:
    所述第二基矩阵为所述第一DFT矩阵的N 1-K 1行;或者,
    所述第二基矩阵为所述第一DFT矩阵的N 1-K 1行与第二DFT矩阵N 2-K 2行的克罗内克积,或为第二DFT矩阵N 2-K 2行与所述第一DFT矩阵的N 1-K 1行的克罗内克积,或为所述第一DFT矩阵的N 1-K 1行与第二DFT矩阵的克罗内克积,或为第二DFT矩阵与所述第一DFT矩阵的N 1-K 1行的克罗内克积,所述第二DFT矩阵是N 2行*N 2列的矩阵,N 2为大于1的整数,K 2为小于N 2的正整数。
  24. 如权利要求22或23所述的装置,其特征在于,所述第一基矩阵是根据第二基矩阵、第一矩阵中的至少一个确定的,包括:
    所述第一基矩阵为正交DFT基矩阵与所述第一矩阵点积,所述第一矩阵为所述第二矩阵、或为所述第三矩阵、或为所述第二矩阵与所述第三矩阵的点积;或者,
    所述第一基矩阵为所述第二基矩阵;或者,
    所述第一基矩阵为所述第二基矩阵与所述第一矩阵的点积,所述第一矩阵为所述第二矩阵、或为所述第三矩阵、或为所述第二矩阵与所述第三矩阵的点积。
  25. 如权利要求22-24任一所述的装置,其特征在于,所述收发单元,还用于从所述终端设备接收所述第一基矩阵对应的参数中的部分或全部参数;或者,
    所述处理单元,还用于构造所述第一基矩阵;所述收发单元,还用于向所述终端设备发送所述第一基矩阵对应的参数中的部分或全部参数。
  26. 如权利要求22-25任一所述的装置,其特征在于,所述收发单元,还用于从所述终端设备接收以下信息中的一项或多项:
    所述第二矩阵的每个列向量包含的所述一组或多组相位补偿值中的至少一组相位补偿值;
    所述一组或多组相位补偿值中的至少一组相位补偿值在所述第二矩阵的所述列向量中的第一位置,所述一组或多组相位补偿值中的每组相位补偿值对应一个或多个所述第一位置;
    所述第三矩阵的每个列向量包含的所述一组或多组幅度补偿值;
    所述一组或多组幅度补偿值中的至少一组幅度补偿值在所述第三矩阵的所述列向量中的第二位置,所述一组或多组幅度补偿值中的每组幅度补偿值对应一个或多个所述第二位置;
    所述第一DFT矩阵中的被抽掉的K 1行的行序号中的部分或全部行序号;
    所述第一DFT矩阵中的被选择的所述N 1-K 1行的行序号中的部分或全部行序号。
  27. 如权利要求22-25任一所述的装置,其特征在于,所述收发单元,还用于向所述终端设备发送以下信息中的一项或多项:
    所述第二矩阵的每个列向量包含的所述一组或多组相位补偿值中的至少一组相位补偿值;
    所述一组或多组相位补偿值中的至少一组相位补偿值在所述第二矩阵的所述列向量中的第一位置,所述一组或多组相位补偿值中的每组相位补偿值对应一个或多个所述第一位置;
    所述第三矩阵的每个列向量包含的所述一组或多组幅度补偿值;
    所述一组或多组幅度补偿值中的至少一组幅度补偿值在所述第三矩阵的所述列向量中的第二位置,所述一组或多组幅度补偿值中的每组幅度补偿值对应一个或多个所述第二位置;
    所述第一DFT矩阵中的被抽掉的K 1行的行序号中的部分或全部行序号;
    所述第一DFT矩阵中的被选择的所述N 1-K 1行的行序号中的部分或全部行序号。
  28. 如权利要求26或27所述的装置,其特征在于,
    所述第一位置包括所述每组相位补偿值在所述第二矩阵的所述列向量中的一个或多个起始位置,和/或所述每组相位补偿值在所述列向量中的元素间隔;
    所述第二位置包括所述每组幅度补偿值在所述第三矩阵的所述列向量中的一个或多个起始位置,和/或所述每组幅度补偿值在所述列向量中的元素间隔。
  29. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1-7任一所述方法,或使得所述装置执行如权利要求8-14任一所述方法。
  30. 一种通信装置,其特征在于,包括:处理器和接口;
    所述处理器用于控制所述装置执行如权利要求1-7任一所述方法,或控制所述装置执行如权利要求8-14任一所述方法;
    所述处理器还用于控制所述接口与其他装置通信。
  31. 一种通信系统,其特征在于,包括:用于执行如权利要求1-7任一所述方法的终端设备,和用于执行如权利要求8-14任一所述方法的网络设备。
  32. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如利要求1-14任一所述的通信方法。
PCT/CN2021/091203 2020-05-29 2021-04-29 一种通信方法、装置及系统 WO2021238576A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010478592.3 2020-05-29
CN202010478592.3A CN113746514A (zh) 2020-05-29 2020-05-29 一种通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2021238576A1 true WO2021238576A1 (zh) 2021-12-02

Family

ID=78724960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091203 WO2021238576A1 (zh) 2020-05-29 2021-04-29 一种通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN113746514A (zh)
WO (1) WO2021238576A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024001744A1 (zh) * 2022-06-29 2024-01-04 华为技术有限公司 一种信道状态信息的上报方法及通信装置
WO2024007853A1 (zh) * 2022-07-04 2024-01-11 华为技术有限公司 一种信道状态信息反馈的方法、终端设备和接入网设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117318774A (zh) * 2022-06-22 2023-12-29 维沃移动通信有限公司 信道矩阵处理方法、装置、终端及网络侧设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023624A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种预编码矩阵指示方法、装置和系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023624A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种预编码矩阵指示方法、装置和系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Codebook design for multi-panel structured MIMO in NR", 3GPP DRAFT; R1-1611666, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, US; 20161114 - 20161118, 5 November 2016 (2016-11-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051190070 *
HUAWEI, HISILICON: "Discussion on CSI enhancement", 3GPP DRAFT; R1-1812242, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 3 November 2018 (2018-11-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051478408 *
HUAWEI, HISILICON: "DL Codebook design for multi-panel structured MIMO in NR", 3GPP DRAFT; R1-1700066, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170116 - 20170120, 9 January 2017 (2017-01-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051202492 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024001744A1 (zh) * 2022-06-29 2024-01-04 华为技术有限公司 一种信道状态信息的上报方法及通信装置
WO2024007853A1 (zh) * 2022-07-04 2024-01-11 华为技术有限公司 一种信道状态信息反馈的方法、终端设备和接入网设备

Also Published As

Publication number Publication date
CN113746514A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
WO2021238576A1 (zh) 一种通信方法、装置及系统
CN112751592B (zh) 上报信道状态信息的方法和通信装置
CN111342873B (zh) 一种信道测量方法和通信装置
WO2021017571A1 (zh) 一种空频合并系数的指示方法及装置
JP7238167B2 (ja) プリコーディング行列表示及び決定方法、及び通信装置
WO2018228599A1 (zh) 通信方法、通信装置和系统
WO2020125511A1 (zh) 一种信道测量方法和通信装置
US20220416866A1 (en) Channel state information feedback method and communications apparatus
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
CN111865376B (zh) 一种通信方法及装置
CN114600384B (zh) 一种信道测量方法和通信装置
CN111757382B (zh) 指示信道状态信息的方法以及通信装置
CN112312464A (zh) 上报信道状态信息的方法和通信装置
WO2020244496A1 (zh) 一种信道测量方法和通信装置
WO2020221117A1 (zh) 一种用于构建预编码矩阵的系数指示方法和通信装置
CN111756422B (zh) 指示信道状态信息的方法以及通信装置
EP4311121A1 (en) Information transmission method and apparatus
CN111756416B (zh) 一种通信方法及装置
WO2020207254A1 (zh) 一种通信方法及装置
WO2023011570A1 (zh) 一种信道信息反馈的方法及通信装置
WO2024140677A1 (zh) 一种信道信息上报的方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812353

Country of ref document: EP

Kind code of ref document: A1