WO2024007853A1 - 一种信道状态信息反馈的方法、终端设备和接入网设备 - Google Patents

一种信道状态信息反馈的方法、终端设备和接入网设备 Download PDF

Info

Publication number
WO2024007853A1
WO2024007853A1 PCT/CN2023/101221 CN2023101221W WO2024007853A1 WO 2024007853 A1 WO2024007853 A1 WO 2024007853A1 CN 2023101221 W CN2023101221 W CN 2023101221W WO 2024007853 A1 WO2024007853 A1 WO 2024007853A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
access network
csi
terminal device
network device
Prior art date
Application number
PCT/CN2023/101221
Other languages
English (en)
French (fr)
Inventor
李婷
王潇涵
金黄平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024007853A1 publication Critical patent/WO2024007853A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0693Partial feedback, e.g. partial channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity

Definitions

  • the present application relates to the field of communications, and more specifically, to a method for channel state information feedback, terminal equipment, and access network equipment.
  • the 5G communication system has higher requirements for system capacity, spectrum efficiency and other aspects.
  • the application of large-scale multi-antenna technology plays a crucial role in improving the spectrum efficiency of the system.
  • MIMO multiple-input multiple-output
  • the access network equipment needs to precode the data before sending it to the UE.
  • FDD frequency division duplex
  • the access network equipment requires the terminal equipment to feed back the channel state information (CSI) of the downlink channel to the access network equipment to determine the precoding matrix. Therefore, how to accurately feedback CSI is an important factor affecting system performance.
  • CSI channel state information
  • This application provides a channel state information feedback method, terminal equipment and access network equipment, which can achieve accurate feedback of CSI information, improve the accuracy of the precoding matrix, and improve system performance.
  • a method for channel state information feedback including: a terminal device sending first channel state information CSI to an access network device, where the first CSI includes indication information of a first base of a statistical feature subspace, the The period in which the terminal equipment sends the first CSI is the first period; before the terminal equipment updates the second base to the first base, the terminal equipment sends the second CSI to the access network equipment, and the second CSI includes the first linear combination
  • the indication information of the coefficient is that the period in which the terminal device sends the second CSI is a second period, the first period is greater than the second period, and the first linear combination coefficient is a combination coefficient corresponding to the second base, wherein the first linear combination coefficient is a combination coefficient corresponding to the second base.
  • the second CSI is generated by the terminal device based on the second base of the statistical characteristic subspace.
  • the first base and the second base are different.
  • the first base and the second base are respectively used to represent the downlink channel in the spatial domain and frequency domain.
  • the change rule of at least one of them, or the first base and the second base are respectively used to represent the change rule of the downlink channel in the joint space-frequency domain;
  • the terminal equipment updates the second base to the first base according to the trigger information ;
  • the terminal device After the terminal device updates the second base as the first base, the terminal device sends a third CSI to the access network device.
  • the third CSI includes indication information of the second linear combination coefficient, and the third CSI is the The terminal device generates the third CSI based on the updated second base, and the period in which the terminal device sends the third CSI is the second period.
  • the terminal device updates the base of the statistical feature subspace according to the trigger information, and updates the second base to the first base.
  • the trigger information can ensure that the access network device and the terminal device update the base of the statistical feature subspace synchronously.
  • the terminal device sends the third CSI generated based on the updated second base to the access network device.
  • the base used by the access network device is the updated second base, so that the access network device receives the third CSI based on the updated second base.
  • the second linear combination coefficient obtained from the indication information of the second linear combination coefficient reported in the second cycle can match the first basis used to restore the statistical characteristic subspace of the precoding matrix, thereby improving the accuracy of the precoding matrix. , improve system performance.
  • the terminal device when the trigger information is timing information, the terminal device updates the second base to the first base according to the trigger information, including: when the timing information When the information reaches the set time, the terminal device updates the second base as the first base.
  • the terminal equipment updates the second base as the first base through timing information, which can ensure that the access network equipment (the access network equipment also updates the second base as the first base through timing information) and the terminal equipment are updated synchronously
  • the base of statistical feature subspace so that accurate feedback of CSI information can also save signaling overhead.
  • the timing information is obtained by the terminal device through configuration information.
  • the access network equipment obtains it, or the timing information is predefined.
  • the terminal device receives update instruction information sent by the access network device, and the update instruction information is used to instruct the terminal device to update the statistical feature subspace.
  • the second base is the first base; the terminal device updates the second base to the first base according to the trigger information, including: the terminal device updates the second base to the first base according to the update instruction information.
  • the terminal device After receiving the indication information, the terminal device updates the second base as the first base, which can ensure that the access network device (the access network device updates the second base as the first base after sending the indication information) and The terminal device synchronously updates the basis of the statistical feature subspace, thereby accurately feeding back CSI information.
  • the method before the terminal device updates the second base to the first base according to the trigger information, the method further includes: the terminal device receives the interface The retransmission signaling sent by the network access device is used to instruct the terminal device to retransmit the first CSI; the terminal device retransmits the first CSI to the access network device according to the retransmission signaling. .
  • the access network device When the access network device fails to successfully obtain the indication information of the first base, the access network device instructs the terminal device to retransmit the first CSI by sending a retransmission signaling to the terminal device, thereby re-obtaining the indication information of the first base. , and then the terminal device updates the second basis of the statistical feature subspace to the first basis according to the timing information.
  • the access network device can match the first basis for restoring the statistical characteristic subspace of the precoding matrix according to the second linear combination coefficient obtained by receiving the indication information of the second linear combination coefficient reported in the second period. , improve the accuracy of the precoding matrix and improve system performance.
  • the duration of the timing information is information configured locally on the terminal device, is predefined by the protocol, and is known to both the access network device and the terminal device; or , the access network device sends the duration of the first cycle, the duration of the second cycle and the duration of the timing information to the terminal device through configuration information; or the duration of the timing information can also be determined by the terminal device and then reported to the access network device.
  • Network access equipment configured locally on the terminal device, is predefined by the protocol, and is known to both the access network device and the terminal device; or , the access network device sends the duration of the first cycle, the duration of the second cycle and the duration of the timing information to the terminal device through configuration information; or the duration of the timing information can also be determined by the terminal device and then reported to the access network device.
  • At least one of the update indication information, the configuration information, or the retransmission signaling is included in radio resource control layer RRC signaling, media access Control layer control element MAC-CE signaling or downlink control information DCI.
  • a method for channel state information feedback including: the access network device receiving and parsing the first channel state information CSI sent by the terminal device, where the first CSI includes an indication of a first base of the statistical characteristic subspace. Information, the period in which the access network device receives the first CSI is the first period; before the access network device updates the second base to the first base, the access network device receives and parses the second base sent by the terminal device.
  • the second CSI includes indication information of the first linear combination coefficient, the period in which the access network device receives the second CSI is a second period, the first period is greater than the second period, and the first linear combination coefficient is The combination coefficient corresponding to the second base, where the statistical feature subspace base currently used by the access network device is the second base of the statistical feature subspace, and the second CSI is the third base of the terminal device based on the statistical feature subspace.
  • the access network device updates the second base to the first base according to the timing information; when the access network device updates After the second base is the first base, the access network device receives and parses the third CSI sent by the terminal device.
  • the third CSI includes indication information of the second linear combination coefficient.
  • the third CSI is based on the terminal device. The period in which the terminal device sends the third CSI is generated by the updated second base and is the second period; the access network device determines a precoding matrix based on the first base and the second linear combination coefficient.
  • the access network device updates the base of the statistical feature subspace according to the timing information, and updates the second base to the first base.
  • the timing information can ensure that the access network device and the terminal device update the base of the statistical feature subspace synchronously.
  • the access network device receives the third CSI.
  • the third CSI includes indication information of the second linear combination coefficient.
  • the third CSI is generated by the terminal device based on the updated second base.
  • the base used by the access network device is the updated second base, so that the access network device can obtain the second linear combination coefficient based on the received indication information of the second linear combination coefficient reported in the second cycle. Matching is used to restore the first basis of the statistical feature subspace of the precoding matrix, thereby improving the accuracy of the precoding matrix and improving system performance.
  • the timing information is determined or predefined by the access network device.
  • the method when the timing information is determined by the access network device, the method further includes: the access network device sending the configuration information to the terminal device .
  • the method before the access network device updates the second base to the first base according to the timing information, the method further includes: when the access network When the device fails to obtain the first base, the access network device The equipment sends retransmission signaling to the terminal device, where the retransmission signaling is used to instruct the terminal device to retransmit the first CSI;
  • the access network device receives the first CSI retransmitted by the terminal device.
  • the access network device failing to obtain the first base includes: the access network device failing to receive the first CSI; or, the access network device failing to receive the first CSI; The network access device did not successfully resolve the first CSI.
  • the duration of the timing information is information configured locally on the terminal device, is predefined by the protocol, and is known to both the access network device and the terminal device; or , the access network device sends the duration of the first cycle, the duration of the second cycle and the duration of the timing information to the terminal device through configuration information; or the duration of the timing information can also be determined by the terminal device and then reported to the access network device.
  • Network access equipment configured locally on the terminal device, is predefined by the protocol, and is known to both the access network device and the terminal device; or , the access network device sends the duration of the first cycle, the duration of the second cycle and the duration of the timing information to the terminal device through configuration information; or the duration of the timing information can also be determined by the terminal device and then reported to the access network device.
  • At least one of the configuration information and the retransmission signaling is included in the radio resource control layer RRC signaling, the media access control layer control element MAC -In CE signaling or downlink control information DCI.
  • a method for channel state information feedback including: the access network device receiving and parsing the first channel state information CSI sent by the terminal device, where the first CSI includes an indication of a first base of the statistical feature subspace. Information, the period in which the access network device receives the first CSI is the first period; before the access network device updates the second base to the first base, the access network device receives and parses the second base sent by the terminal device.
  • the second CSI includes indication information of the first linear combination coefficient
  • the access network device receives the second CSI as a second period, the first period is greater than the second period, the first linear combination coefficient is the combination coefficient corresponding to the second base, where the statistical feature subspace base currently used by the access network device is the second base, and the second CSI is generated by the terminal device based on the second base of the statistical feature subspace.
  • the first base and the second base are different, the first base and the second base are respectively used to represent the change law of at least one of the downlink channel in the spatial domain and the frequency domain, or the first base and the second base
  • the bases are respectively used to represent the change rules of the downlink channel in the joint space-frequency domain;
  • the access network device updates the second base as the first base;
  • the access network device sends update instruction information to the terminal device, and the update instruction information Used to instruct the terminal device to update the second base as the first base;
  • the access network device receives and parses the third CSI sent by the terminal device ,
  • the third CSI includes indication information of the second linear combination coefficient, the third CSI is generated by the terminal device based on the updated second base, and the period in which the terminal device sends the third CSI is the second period;
  • the access network device determines a precoding matrix according to the first basis and the second linear combination coefficient.
  • the access network device determines the base for updating the statistical feature subspace, and the access network device sends instruction information to the terminal device to instruct the terminal device to update the base of the statistical feature subspace, which can realize that the access network device and the terminal device synchronously update the statistical feature subspace.
  • the basis thereby enabling the access network device to match the second linear combination coefficient obtained based on the received indication information of the second linear combination coefficient reported in the second period to the statistical characteristic subspace used to restore the precoding matrix.
  • One base improves the accuracy of the precoding matrix and improves system performance.
  • the method before the access network device updates the second base as the first base, the method further includes: when the access network device fails to successfully obtain When the first base is used, the access network device sends retransmission signaling to the terminal device.
  • the retransmission signaling is used to instruct the terminal device to retransmit the first CSI; the access network device receives the retransmission of the terminal device.
  • the first CSI is used to instruct the terminal device to retransmit the first CSI.
  • the access network device failing to obtain the first base includes: the access network device failing to receive the first CSI; or, the access network device failing to receive the first CSI; The network access device did not successfully resolve the first CSI.
  • the access network device sends the duration of the first cycle and the duration of the second cycle to the terminal device through configuration information; or the timing information
  • the duration can also be determined by the terminal device and then reported to the access network device.
  • At least one of the update indication information and the retransmission signaling is transmitted through the radio resource control layer RRC signaling and the media access control layer control element MAC.
  • -CE signaling or downlink control information DCI is sent.
  • a terminal device including: a transceiver, configured to send first channel state information CSI to an access network device, where the first CSI includes indication information of a first base of a statistical feature subspace, the terminal The period in which the device sends the first CSI is the first period; the transceiver is also configured to send the second CSI to the access network device before the terminal device updates the second base as the first base, and the second CSI includes the first base.
  • Indication information of a linear combination coefficient, the period in which the terminal device sends the second CSI is a second period, the first period is greater than the second period, and the first linear combination coefficient is a combination coefficient corresponding to the second base, where , the second CSI is generated by the terminal device based on the second base of the statistical characteristic subspace.
  • the first base and the second base are different.
  • the first base and the second base are respectively used to represent the downlink channel in the spatial domain.
  • the processor is configured to update the second base according to the trigger information For this a base;
  • the transceiver is also configured to send a third CSI to the access network equipment after the terminal equipment updates the second base to the first base, where the third CSI includes indication information of the second linear combination coefficient, the The third CSI is generated by the terminal device based on the updated second base, and the period in which the terminal device sends the third CSI is the second period.
  • the processor is further configured to: when the timing information reaches a set time, update the second base as the first base.
  • the timing information is obtained by the transceiver from the access network device through configuration information, or the timing information is predefined.
  • the transceiver is configured to receive update instruction information sent by the access network device, where the update instruction information is used to instruct the terminal device to update the statistical feature subspace.
  • the second base is the first base; the processor is specifically configured to: update the second base to be the first base according to the update instruction information.
  • the transceiver is further configured to: receive retransmission signaling sent by the access network device, where the retransmission signaling is used to instruct the terminal device Retransmit the first CSI; retransmit the first CSI to the access network device according to the retransmission signaling.
  • the duration of the timing information is information configured locally on the terminal device, is predefined by the protocol, and is known to both the access network device and the terminal device; or , the access network device sends the duration of the first cycle, the duration of the second cycle and the duration of the timing information to the terminal device through configuration information; or the duration of the timing information can also be determined by the terminal device and then reported to the access network device.
  • Network access equipment configured locally on the terminal device, is predefined by the protocol, and is known to both the access network device and the terminal device; or , the access network device sends the duration of the first cycle, the duration of the second cycle and the duration of the timing information to the terminal device through configuration information; or the duration of the timing information can also be determined by the terminal device and then reported to the access network device.
  • At least one of the update indication information, the configuration information, or the retransmission signaling is included in radio resource control layer RRC signaling, media access Control layer control element MAC-CE signaling or downlink control information DCI.
  • an access network device including: a transceiver, configured to receive first channel state information CSI sent by a terminal device, where the first CSI includes indication information of a first base of a statistical feature subspace, the The period in which the access network device receives the first CSI is the first period; the processor is configured to parse the first CSI; the transceiver is configured to receive the terminal before the access network device updates the second base to the first base
  • the second CSI sent by the device, the second CSI includes indication information of the first linear combination coefficient, the period in which the access network device receives the second CSI is a second period, the first period is greater than the second period, and the second period is
  • a linear combination coefficient is a combination coefficient corresponding to the first basis, wherein the statistical feature subspace basis currently used by the processor is the second basis of the statistical feature subspace, and the second CSI is the terminal device based on the statistical feature subspace.
  • the first basis and the second basis are different, and the first basis and the second basis are respectively used to represent the change law of at least one of the downlink channel in the spatial domain and the frequency domain, or the third basis
  • a base and the second base are respectively used to represent the variation pattern of the downlink channel in the joint space-frequency domain;
  • the processor is used to parse the second CSI;
  • the processor is used to update the second base as the first base based on timing information ;
  • the transceiver receives the third CSI sent by the terminal device after the access network device updates the second base to the first base.
  • the third CSI includes indication information of the second linear combination coefficient, and the third CSI is the
  • the terminal device generates the third CSI based on the updated second base, and the period in which the terminal device sends the third CSI is the second period; the processor is used to parse the third CSI; the processor is used to analyze the third CSI according to the first base and the third base. Bilinear combination coefficients determine the precoding matrix.
  • the timing information is determined or predefined by the access network device.
  • the transceiver when the timing information is determined by the access network device, the transceiver is further configured to: send the configuration information to the terminal device.
  • the transceiver is further configured to: when the first base is not successfully acquired, send retransmission signaling to the terminal device, the retransmission signaling Used to instruct the terminal device to retransmit the first CSI; to receive the first CSI retransmitted by the terminal device.
  • the access network device failing to successfully acquire the first base includes: the transceiver failing to receive the first CSI; or, the processor failing The first CSI is successfully parsed.
  • the duration of the timing information is information configured locally on the terminal device, is predefined by the protocol, and is known to both the access network device and the terminal device; or , the access network device sends the duration of the first cycle, the duration of the second cycle and the duration of the timing information to the terminal device through configuration information; or the duration of the timing information can also be determined by the terminal device and then reported to the access network device.
  • Network access equipment configured locally on the terminal device, is predefined by the protocol, and is known to both the access network device and the terminal device; or , the access network device sends the duration of the first cycle, the duration of the second cycle and the duration of the timing information to the terminal device through configuration information; or the duration of the timing information can also be determined by the terminal device and then reported to the access network device.
  • At least one of the configuration information and the retransmission signaling includes Included in radio resource control layer RRC signaling, media access control layer control element MAC-CE signaling or downlink control information DCI.
  • an access network device including: a transceiver, configured to receive first channel state information CSI sent by a terminal device, where the first CSI includes indication information of a first base of a statistical feature subspace, the The period in which the access network device receives the first CSI is the first period; the processor is used to decode the first CSI; the transceiver is used to receive the terminal before the access network device updates the second base to the first base.
  • the second CSI sent by the device, the second CSI includes indication information of the first linear combination coefficient, the period in which the access network device receives the second CSI is a second period, the first period is greater than the second period, and the second period is A linear combination coefficient is a combination coefficient corresponding to the second basis, wherein the statistical feature subspace basis currently used by the processor is the second basis of the statistical feature subspace, and the second CSI is the terminal device based on the statistical feature subspace.
  • the processor is used to parse the second CSI;
  • the access network equipment updates the second base to the first base;
  • the transceiver sends update instruction information to the terminal device, and the update instruction information is used to instruct the terminal device to update the second base as the first base;
  • the third CSI includes indication information of the second linear combination coefficient.
  • the third CSI is generated by the terminal device based on the updated second base.
  • the terminal device sends the third CSI.
  • the period of the CSI is the second period; the processor is configured to parse the third CSI; and the processor is configured to determine a precoding matrix according to the first basis and the second linear combination coefficient.
  • the transceiver is further configured to: when the first base is not successfully acquired, send retransmission signaling to the terminal device, the retransmission signaling Used to instruct the terminal device to retransmit the first CSI; to receive the first CSI retransmitted by the terminal device.
  • the failure to successfully obtain the first base includes: the transceiver fails to receive the first CSI; or the processor fails to parse the first base. 1 CSI.
  • the access network device sends the duration of the first cycle and the duration of the second cycle to the terminal device through configuration information.
  • At least one of the update indication information and the retransmission signaling is transmitted through radio resource control layer RRC signaling, media access control layer control element MAC -CE signaling or downlink control information DCI is sent.
  • a seventh aspect provides a computer program product, which includes instructions that, when run on a computer, cause the computer to perform the method in the first aspect or any possible implementation of the first aspect, or to perform The method in the second aspect or any possible implementation of the second aspect, or perform the method in the third aspect or any possible implementation of the third aspect.
  • a computer-readable storage medium is provided.
  • a computer program is stored in the computer-readable storage medium. When the computer program is executed, it is used to perform the first aspect or any possible implementation of the first aspect. method, or perform the second aspect or the method in any possible implementation of the second aspect, or perform the third aspect or the method in any possible implementation of the third aspect.
  • a chip system in a ninth aspect, includes a processor for the communication device to implement the functions involved in the above aspects, such as generating, receiving, sending, or processing the data involved in the above methods. /or information.
  • the chip system also includes a memory, which is used to store necessary program instructions and data of the communication device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a communication system in a tenth aspect, includes a terminal device having the functions of implementing the methods and various possible designs of the above-mentioned first aspect and a terminal device having the functions of implementing the methods and various possible designs of the above-mentioned second aspect.
  • Functional access network equipment alternatively, the communication system includes a terminal device with functions that implement the methods and various possible designs of the above-mentioned first aspect and a terminal device with functions that implement various methods and various possible designs of the above-mentioned third aspect.
  • Access network equipment is provided.
  • Figure 1 shows a schematic architecture diagram of a communication system of the present application
  • Figure 2 shows a schematic architecture diagram of another communication system of the present application
  • Figure 3 is a schematic flow chart of a method for user equipment to feed back CSI of downlink channels to access network equipment;
  • Figure 4 shows a schematic diagram of the air interface interaction process of CSI when using statistical feature subspace codebook
  • Figure 5 is a schematic flow chart of a channel state information feedback method of the present application.
  • Figure 6 is a schematic flow chart of air interface interaction between access network equipment and terminal equipment provided by this application.
  • Figure 7 is a schematic flow chart of air interface interaction between access network equipment and terminal equipment provided by this application.
  • Figure 8 is a schematic flow chart of a method for determining a precoding matrix in this application.
  • Figure 9 is a schematic flow chart of air interface interaction between access network equipment and terminal equipment provided by this application.
  • Figure 10 is a schematic flow chart of air interface interaction between access network equipment and terminal equipment provided by this application.
  • Figure 11 is a schematic diagram of module interaction between a terminal device and an access network device provided by this application;
  • Figure 12 shows a schematic block diagram of a communication device according to an embodiment of the present application.
  • Figure 13 shows a schematic block diagram of a communication device according to an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a terminal device provided by this application.
  • Figure 15 is a schematic structural diagram of an access network device provided by this application.
  • GSM Global System For Mobile Communications
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • TDD Time division duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G fifth generation
  • NR new radio
  • the access network device in the embodiment of this application may be a device used to communicate with a terminal device, and may be a base station, an access point, or a network device, or may refer to one or more devices on the air interface in the access network.
  • the network equipment may be used to convert received air frames to and from IP packets and act as a router between the wireless terminal and the remainder of the access network, which may include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • Network devices also coordinate attribute management of the air interface.
  • the access network equipment can be a base station (Base Transceiver Station, BTS) in GSM or CDMA, a base station (NodeB, NB) in WCDMA, or an evolved base station (evolved NodeB, eNB) in the LTE system. or eNodeB), or it can be a wireless controller in a cloud radio access network (CRAN) scenario, or the access device can be a relay station, access point, vehicle-mounted device, wearable device, or in a 5G network Access equipment or network equipment in future evolved PLMN networks, etc., may be access points (access points, APs) in WLAN, or gNBs in new wireless systems (new radio, NR) systems.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • eNB evolved base station
  • the access device can be a relay station, access point, vehicle-mounted device, wearable device, or in a 5G network Access equipment or network equipment in future evolved PLMN networks, etc.
  • TRPs Transmission Reception Points
  • All TRPs belong to the same cell, and each TRP and terminal can use this The measurement reporting method described in the application embodiment.
  • network equipment can also be divided into control units (Control Unit, CU) and data units (Data Unit, DU).
  • CU Control Unit
  • DU Data Unit
  • Under a CU there can be multiple DUs, where each DU and terminal The measurement reporting method described in the embodiment of this application can be used.
  • the difference between the CU-DU separation scenario and the multiple TRP scenario is that the TRP is just a radio frequency unit or an antenna device, while the protocol stack function can be implemented in the DU.
  • the physical layer function can be implemented in the DU.
  • the access network device is a device in the access network (radio access network, RAN), or in other words, a RAN node that connects the terminal device to the wireless network.
  • RAN radio access network
  • the access network equipment you can enumerate: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (radio network controller) , RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB ), baseband unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), etc.
  • TRP transmission reception point
  • eNB evolved Node B
  • eNB radio network controller
  • RNC Radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station
  • the access network equipment provides services for the cell, and the terminal equipment communicates with the access network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be an access network equipment (for example, a base station). ).
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: urban cell (metro cell), micro cell (micro cell), and pico cell (pico cell). ), femto cells, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • the terminal equipment in the embodiment of the present application may also be called: user equipment (UE), mobile station (mobile station, MS), mobile terminal (MT), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user Devices etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user Devices etc.
  • the terminal device may be a device that provides voice/data connectivity to the user, such as a handheld device, a vehicle-mounted device, etc. with wireless connectivity capabilities.
  • some examples of terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocols , SIP) telephone, wireless local loop (WLL) station, personal digital assistant (PDA), handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, vehicle Equipment, wearable devices, terminal equipment in the 5G network or terminal equipment in the future evolved public land mobile communication network (public land mobile network, PLMN), etc., the embodiments of this application are not limited to this.
  • a wearable device may also be called a wearable smart device, which is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Broadly defined wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones. Use, such as various types of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device may also be a terminal device in the Internet of things (IoT) system.
  • IoT Internet of things
  • Its main technical feature is to transfer items through communication technology. Connect with the network to realize an intelligent network of human-computer interconnection and physical-object interconnection.
  • the various terminal devices introduced above can be considered as vehicle-mounted terminal equipment if they are located on the vehicle (for example, placed or installed in the vehicle).
  • vehicle-mounted terminal equipment is also called an on-board unit (OBU), for example. ).
  • OBU on-board unit
  • the terminal device may also include a relay. Or it can be understood that anything that can perform data communication with the base station can be regarded as a terminal device.
  • Figure 1 shows a schematic diagram of a communication system 100 of the present application.
  • Figure 1 includes an access network device 110, terminal device 120, terminal device 130, terminal device 140, terminal device 150, terminal device 160 and terminal device 170.
  • the access network equipment 110 works, for example, in an evolved universal mobile communication system terrestrial radio access (E-UTRA) system, or works in an NR system, or works in a next-generation communication system or other
  • E-UTRA evolved universal mobile communication system terrestrial radio access
  • the access network device 110 and the terminal devices 120 to 170 can communicate through the Uu interface, and the access network device 110 and the terminal devices 120 to 170 form a communication system.
  • the terminal device 120 to the terminal device 170 can send uplink data to the access network device 110.
  • the access network device 110 needs to receive the uplink data sent by the terminal device 120 to the terminal device 170.
  • the access network device 110 can send The terminal device 120 to the terminal device 170 can send downlink data.
  • the terminal device 150 to the terminal device 170 may also form a communication system. In this communication system, the access network device can send downlink information to the terminal device 150, and the terminal device 150 can also send downlink information to the terminal devices 160 and 170.
  • one access network device can serve multiple terminal devices, and Figure 1 only takes some of the terminal devices as an example.
  • the access network equipment in Figure 1 is, for example, a base station.
  • the access network equipment corresponds to different equipment in different systems.
  • the access network equipment in Figure 1 may correspond to the eNB
  • the 5G system it may correspond to the access network equipment in 5G, such as the gNB.
  • the technical solutions provided by the embodiments of this application can also be applied to future mobile communication systems, so the access network equipment in Figure 1 can also correspond to the access network equipment in future mobile communication systems.
  • Figure 1 takes the access network device as a base station as an example.
  • the access network device can also be an RSU or other device.
  • Figure 2 shows a schematic architecture diagram of another communication system 200 of the present application. As shown in Figure 2, it consists of multiple access network devices (access network device 210, access network device 220, and access network device 230) and multiple terminal devices (terminal device 240, terminal device 250, and terminal device 260). In a communication system, multiple access network devices serve one terminal device at the same time. For example, the access network equipment 210, the access network equipment 220, and the access network equipment 230 serve the terminal equipment 250 at the same time.
  • the access network equipment in Figure 1 or Figure 2 is, for example, a base station.
  • access network equipment corresponds to different equipment in different systems, for example In the 4G system, it can correspond to eNB, and in the 5G system, it corresponds to the access network equipment in 5G, such as gNB.
  • the technical solution provided by this application can also be applied to future mobile communication systems, so the access network equipment in Figure 1 can also correspond to the access network equipment in future mobile communication systems.
  • Figure 1 or Figure 2 takes the access network device as a base station as an example. In fact, referring to the previous introduction, the access network device can also be an RSU or other device.
  • the communication system shown in Figure 1 or Figure 2 may also include more network nodes, such as other terminal equipment or access network equipment.
  • the access network equipment included in the communication system shown in Figure 1 or Figure 2 Or the terminal equipment may be the above-mentioned various forms of access network equipment or terminal equipment.
  • the embodiments of the present application are no longer shown one by one in the drawings.
  • the 5G communication system has higher requirements for system capacity, spectrum efficiency and other aspects.
  • the application of massive multiple antenna technology plays a crucial role in improving the spectrum efficiency of the system.
  • MIMO technology the access network equipment needs to precode the data before sending it to the UE. How to perform precoding depends on the channel state information (CSI) fed back by the user equipment to the access network equipment. Therefore, accurate CSI feedback information is an important factor affecting system performance.
  • CSI channel state information
  • TDD time division duplex
  • Figure 3 is a method 300 for the user equipment to feed back the CSI of the downlink channel to the access network equipment. Schematic flow chart. The method 300 includes S310 to S340.
  • the access network device sends channel measurement configuration information to the terminal device.
  • the channel measurement configuration information is used to configure the time and behavior of the terminal device to perform channel measurement.
  • S320 The access network device sends a reference signal to the terminal device for channel measurement.
  • the terminal device performs measurements based on the reference signal sent by the access network device, calculates the final CSI feedback amount based on the measurement results, and the terminal device feeds back the CSI to the access network device.
  • the access network device sends data according to the CSI fed back by the terminal device.
  • CSI can include parameters such as precoding matrix indicator (precoding matrix indicator, PMI), channel rank indicator (rank indicator, RI), channel quality indicator (channel quality indicator, CQI), etc.
  • precoding matrix indicator precoding matrix indicator, PMI
  • channel rank indicator rank indicator
  • CQI channel quality indicator
  • the access network device can determine the precoding for transmitting data to the terminal device according to the PMI fed back by the terminal device; the access network device can determine the number of streams to transmit data to the terminal device according to the RI fed back by the terminal device; the access network device The modulation order and channel coding rate for transmitting data to the terminal device can be determined based on the CQI fed back by the terminal device.
  • the precoding matrix can be a precoding matrix determined by the network device based on the channel matrix of each frequency domain unit. For example, the precoding matrix can be performed by performing singular value decomposition (SVD) on the channel matrix or the covariance matrix of the channel matrix. Alternatively, it can also be obtained by performing eigenvalue decopomsition (EVD) on the covariance matrix of the channel matrix.
  • the precoding matrix contains channel information of the sending end of the network device.
  • the design of FDD CSI codebook is a basic and important issue in 5G communication systems.
  • the Type II (Type II) codebook of the 3rd generation partnership project (3GPP) R15 version adopts the idea of air domain (angle domain) compression, taking advantage of the sparsity of the channel in the angle domain, that is, multipath signals If the energy is strong in certain angular directions and weak in other directions, the spatial discrete Fourier transform (DFT) basis vector is used to represent the angular direction with strong energy, and the precoding matrix is It is characterized by a linear combination of several spatial DFT basis vectors.
  • the 3GPP R16 Type II codebook proposes a dual-domain compression idea.
  • the frequency domain correlation of the amplitude and phase coefficients of different subbands is used to increase the frequency domain (delay domain) Compression: Compress and feedback channel information in the spatial domain and frequency domain respectively, and use the weighted sum of the space-frequency component matrix to approximately represent the precoding matrix.
  • the space-frequency component matrix is constructed from one or more spatial domain basis vectors that have been compressed in the spatial domain and one or more frequency domain basis vectors that have been compressed in the frequency domain.
  • the R16 codebook further takes advantage of the sparsity of the channel delay domain, that is, the multipath signal has stronger energy in certain delay components and weaker energy in the remaining delay components, completing the corresponding Frequency domain compression.
  • the above dual-domain compression codebook only takes advantage of the sparsity of the channel in the angle domain (spatial domain) and delay domain (frequency domain), and needs to report the selected one or more spatial domain basis vectors and one or more frequency domain basis vectors.
  • Vectors and space-frequency component matrices constructed from one or more spatial domain basis vectors and one or more frequency domain basis vectors The corresponding weighting coefficient is still expensive.
  • the protocol stipulates that both the spatial domain basis vectors and the frequency domain basis vectors are DFT vectors, and the resolution in the angle domain and delay domain is limited. Therefore, the separate reporting of the spatial domain basis vectors and frequency domain basis vectors limits the sparseness of the weighting coefficient matrix. properties, resulting in lower system performance.
  • feedback can be provided in the form of a statistical feature subspace codebook.
  • This codebook uses the long-period statistical feature subspace base and the corresponding linear Combine coefficients to represent the downlink channel or precoding matrix.
  • the codebook can be similar to the R16 Type II codebook.
  • the spatial domain and frequency domain are each characterized by a set of statistical characteristic subspace bases in the form of bilinear combination.
  • the codebook can also be joint in space and frequency domains, represented by a set of basic linear combinations of space-frequency joint feature subspaces.
  • the statistical characteristic subspace basis is a characteristic vector or vector group that can be used to represent the statistical variation pattern of the channel in the spatial domain, frequency domain, or joint spatial and frequency domain. It is usually obtained by performing eigenvalue decomposition of the statistical covariance matrix of the channel.
  • the joint space-frequency domain is a joint domain of the air domain and the frequency domain.
  • the air domain mainly describes the angular direction characteristics of the channel
  • the frequency domain mainly describes the delay distribution characteristics of the channel, both of which are considered from a single dimension.
  • the joint space-frequency domain considers the combination of the air domain and the frequency domain, and mainly describes the angular direction and delay distribution characteristics of multipath, and the angular direction and delay distribution are in one-to-one correspondence.
  • the statistical characteristic subspace base used to represent the statistical variation pattern of the channel in the spatial domain is referred to as the spatial domain basis.
  • the statistical characteristic subspace basis used to represent the statistical variation pattern of the channel in the frequency domain is referred to as the frequency domain basis. It is used to represent the channel in the joint
  • the statistical characteristic subspace basis of the statistical variation pattern in the space-frequency domain is referred to as the space-frequency joint basis.
  • the characteristic subspace base describes the statistical characteristics of the channel in the domain (such as air domain, frequency domain or joint space and frequency domain), it changes slowly.
  • the terminal equipment can feedback in a long period (i.e., the first period)
  • the linear combination coefficient describes a rapidly changing quantity such as the intensity or phase of the path in the channel
  • the terminal device can feed back the linear combination coefficient corresponding to the basis in a short period (i.e., the second period).
  • long period and short period are relative concepts, wherein the duration of the first period is longer than the duration of the second period, for example, the duration of the first period is multiple integer multiples of the duration of the second period.
  • the access network device recovers the characteristic subspace base based on the CSI reporting amount reported by the terminal device in the first cycle, and recovers the precoding matrix of the terminal device in each second cycle based on the linear combination coefficient reported by the terminal device in the second cycle.
  • the long period base and short period linear combination coefficients used by the access network equipment for recovery need to match. How to align the terminal equipment and the access network equipment with respect to the long period characteristics? Whether the spatial basis is updated or not is very important. If the access network equipment has a mismatch between the long-period basis and the short-period linear combination coefficient when restoring the precoding matrix, the precoding matrix will be inaccurate, resulting in performance loss.
  • Figure 4 shows a schematic diagram of the air interface interaction process of CSI when using statistical feature subspace codebook.
  • the terminal device feeds back the first base B of the statistical feature subspace through the long-period (i.e., first period) CSI reporting amount, and feeds back the linear combination coefficient C2 corresponding to the first base B through the short-period (i.e., second period) CSI reporting amount, and then
  • the network access device sends a channel state information-reference signal (CSI-RS) to the terminal device in the second cycle.
  • CSI-RS channel state information-reference signal
  • the terminal device receives the CSI-RS in each second cycle, determines the first base B of the statistical feature subspace based on the current and historical multiple short-cycle CSI-RS measurement results, and feeds it back to the access network device in the first cycle.
  • the terminal equipment determines the linear combination coefficient C2 based on the short-period CSI-RS measurement results combined with the first basis B of the statistical feature subspace and feeds it back to the access network equipment in a second period.
  • Figure 4 shows two air interface interaction processes in the first cycle.
  • the UE receives the CSI-RS sent by the RAN device.
  • the UE determines the first base B of the statistical feature subspace based on the current and historical CSI-RS measurement results and feeds it back to the RAN device (see First B) in Figure 4.
  • the UE determines the linear combination coefficient C2 based on the CSI-RS measurement results of multiple second periods combined with the first base B of the statistical feature subspace (see the first B in Figure 4) and uses the second Periodic feedback is given to the RAN equipment (see the first C2 and the second C2 in Figure 4).
  • the RAN device determines precoding matrices corresponding to the plurality of second periods based on the first B and the linear combination coefficients C2 (such as the first C2 and the second C2) received in the plurality of second periods within the first first period.
  • the UE receives the CSI-RS sent by the RAN device.
  • the UE determines the first base B of the statistical feature subspace based on the current and historical CSI-RS measurement results and feeds it back to the RAN device (see Second B) in Figure 4.
  • the UE determines the linear combination coefficient C2 based on the CSI-RS measurement results of multiple second cycles combined with the first base B of the statistical feature subspace (see second B in Figure 4) and uses the second Periodic feedback is given to the RAN equipment (see the third C2 and the fourth C2 in Figure 4).
  • the RAN device determines the precoding matrices corresponding to the plurality of second periods according to the second B and the linear combination coefficient C2 received in the plurality of second periods within the second first period (such as the third C2 and the fourth C2) respectively. (such as the precoding matrix determined according to the second B and the third C2 and the precoding matrix determined according to the second B and the fourth C2).
  • CSI-RS is only used as an example for description, but it is not limited to CSI-RS.
  • the access network device can also measure other reference signals, such as synchronization signal blocks (synchronization signal blocks), by configuring the terminal device.
  • signal block (SSB), demodulation Reference signal (demodulationreference sgnal, DMRS), cell reference signal (cell reference signal, CRS), etc. so that the first base B of the statistical feature subspace obtained by the terminal equipment through long-period (i.e., first period) CSI reporting amount feedback measurement,
  • the linear combination coefficient C2 corresponding to the first base B is fed back through the short period (ie, second period) CSI reporting amount.
  • the first base B fed back by the UE in the first first period may be different from the first base B fed back in the second first period.
  • the first base B fed back by the UE in each second period The feedback linear combination coefficient C2 may also be different.
  • the cycle for the access network device to send CSI-RS to the terminal device is the second cycle
  • the cycle for the terminal device to feedback the first base B of the statistical feature subspace to the access network device is the first cycle
  • the terminal device to the access network device The first base B of the feedback statistical feature subspace is the result of multiple cumulative measurements;
  • the period in which the terminal equipment feeds back the linear combination coefficient C2 to the access network equipment is the second period.
  • the period for the access network device to send CSI-RS to the terminal device is 5 ms
  • the period for the terminal device to feedback the first basis B of the statistical feature subspace to the access network device is 200 ms
  • the period of C2 is 5ms.
  • the first base B of the statistical characteristic subspace is calculated and reported in a long period according to the channel measurement results, and until the next time the new long period statistical characteristic subspace base is calculated, the terminal equipment is based on the current statistical characteristics
  • the first base B of the subspace combines the channel measurement results to calculate the short-period linear combination coefficient C2 and reports it.
  • the access network equipment After receiving the current long-period CSI reporting amount, the access network equipment updates the statistical feature subspace base saved by the access network equipment according to this reporting amount to the first base B, and thereafter until the next reception Before the long-period reporting amount, the access network equipment restores the precoding matrix based on the current statistical characteristic subspace first basis B and the short-period linear combination coefficient C2 determined according to each short-period CSI reporting amount.
  • the calculation of the short-period linear combination coefficient of the terminal equipment is related to the statistical characteristic subspace base, and whether the long-period statistical characteristic subspace base and the short-period linear combination coefficient used by the access network equipment to restore the precoding matrix match the precoding matrix.
  • the accuracy of the encoding matrix has a greater impact.
  • the long-period statistical feature subspace base update alignment of access network equipment and terminal equipment mainly has the following two problems:
  • the terminal device After the terminal device reports the first base B of the long-period current statistical feature subspace, until the next calculation of a new long-period statistical feature subspace base, the terminal device calculates the short-term based on the first base B of the current feature subspace.
  • the periodic linear combination coefficient is reported. However, in the actual system, it takes a period of time from the terminal device to send the long-period reporting volume to the access network device to receive and successfully restore the first base B of the long-period statistical feature subspace. During this period of time, the access network device uses When the received short-period linear combination coefficient C2 is used to restore the precoding matrix, it will be based on the last long-period updated feature subspace base. Therefore, there is a problem of mismatch between the short-period linear combination coefficient and the statistical feature subspace base, resulting in performance loss.
  • Access network equipment may experience loss or decoding errors when receiving long and short period CSI reports. Wrong interpretation or loss of short-period reported quantities will only affect the recovery result of the current precoding matrix. However, if the access network equipment fails to correctly decode the long-cycle reported volume, the access network equipment will use the statistical feature subspace basis of the previous cycle to restore precoding in the next long cycle. At this time, the terminal equipment reports the short-cycle The linear combination coefficients are calculated based on the first basis B of the current statistical characteristic subspace, so that when the access network equipment restores the precoding matrix during the entire current long period, there will be a mismatch between the short period linear combination coefficient and the statistical characteristic subspace basis. problems, resulting in performance loss over a long period of time.
  • this application proposes a channel information feedback method, which can solve the problem of performance loss caused by inaccurate precoding matrices caused by mismatch between short-period linear combination coefficients and long-period space-frequency joint base.
  • FIG. 5 is a schematic flow chart of a channel state information feedback method 400 of the present application.
  • the method 400 can be applied in the above application scenarios, and of course can also be applied in other communication scenarios, which is not limited in this application.
  • the access network device and the terminal device are used as the execution subjects of the method as an example to illustrate the method.
  • the execution subject of the execution method may also be a chip, chip system, or processor applied to terminal equipment and access network equipment.
  • the method 400 shown in FIG. 5 may include S410 to S460. Each step in the method 400 is described in detail below with reference to FIG. 5 .
  • the terminal device sends the first CSI to the access network device, and accordingly, the access network device receives the first CSI from the terminal device.
  • the first CSI includes indication information of the first basis of the statistical characteristic subspace.
  • the period in which the terminal device sends the first CSI is the first period.
  • the first basis is used to represent the variation pattern of the downlink channel in the spatial domain and/or, or the first basis It is used to represent the variation pattern of the downlink channel in the joint space-frequency domain.
  • the indication information of the first substrate directly or indirectly indicates the first substrate, or may indicate part or all of the first substrate.
  • the first substrate can be determined according to the indication information of the first substrate. For example, a mapping relationship between the indication information and the first base may be established in advance, and the mapping relationship between the indication information and the first base may be saved on the access network device and the terminal device, and the terminal device sends the indication of the first base to the access network device. Information, after receiving the indication information of the first base, the access network device determines the first base based on the mapping relationship between the indication information and the first base. In doing so, signaling overhead can be saved.
  • the terminal device periodically sends the first CSI to the access network device, and the sending period is the first cycle, that is, the terminal device sends the first CSI to the access network device at the starting time or the ending time of each first cycle.
  • the first basis can represent the variation pattern of the downlink channel in the spatial domain and/or the frequency domain through vectors or vector groups, or the first basis can also represent the variation pattern of the downlink channel in the joint space and frequency domain through vectors or vector groups.
  • the terminal device sends the second CSI to the access network device, and accordingly, the access network device receives the second CSI from the terminal device.
  • the second CSI includes indication information of the first linear combination coefficient.
  • the period in which the terminal device sends the second CSI is the second period, and the first linear combination coefficient is the combination coefficient corresponding to the second basis.
  • the indication information of the first linear combination coefficient directly or indirectly indicates the first linear combination coefficient, or may indicate part or all of the first linear combination coefficient.
  • the first linear combination coefficient can be determined according to the indication information of the first linear combination coefficient.
  • Combination coefficient For example, a mapping relationship between the indication information and the first linear combination coefficient can be established in advance, and the mapping relationship between the indication information and the first linear combination coefficient is stored on the access network device and the terminal device, and the terminal device sends the first linear combination coefficient to the access network device.
  • An indication information of a linear combination coefficient After receiving the indication information of the first linear combination coefficient, the access network device determines the first linear combination coefficient according to the mapping relationship between the indication information and the first linear combination coefficient. In doing so, signaling overhead can be saved.
  • the first linear combination coefficient matches the second basis of the statistical feature subspace.
  • the statistical characteristic subspace base used by the terminal equipment when sending the second CSI is the second base
  • the second base is reported to the access in the first period before the first period in which the terminal equipment sends the second CSI.
  • the first base is reported to the access network equipment in the first cycle in which the terminal equipment sends the second CSI, that is, the second base is the previous first base.
  • the terminal device sends the second CSI to the access network device in the second cycle, that is, the terminal device sends the second CSI to the access network device at the starting time or end time of each second cycle.
  • the duration of the first cycle and the duration of the second cycle may be determined by the access network device and the duration of the first cycle and the duration of the second cycle may be sent to the terminal device through configuration information.
  • the access network device sends the CSI-RS to the terminal device in the second cycle, the terminal device sends the first CSI to the access network device in the first cycle, and the terminal device sends the first CSI to the access network device in the second cycle.
  • the network device sends the second CSI.
  • the access network device sends first trigger information for reporting the first CSI to the terminal device in a first cycle. After receiving the first trigger information, the terminal device sends the first trigger information to the access network device. CSI.
  • the access network device sends second trigger information for reporting the second channel status information to the terminal device in a second cycle. After receiving the second trigger information, the terminal device sends the second CSI to the access network device.
  • the first CSI and the second CSI may be reported simultaneously or separately. That is, the indication information of the first basis and the indication information of the first linear combination coefficient may be reported in one CSI, or may be reported in different CSIs.
  • the statistical characteristic subspace base used by the access network device is also the second base, and the second base is obtained by the access network device based on the previous first CSI.
  • the access network device determines the precoding matrix according to the second basis and the first linear combination coefficient.
  • the base used by the access network device when determining the precoding matrix is the second base, and the terminal device reports the second CSI based on the second base.
  • the access network device updates the second basis of the statistical feature subspace to the first basis according to the timing information.
  • S440 The terminal device updates the second basis of the statistical feature subspace to the first basis according to the timing information.
  • the timing information can be implemented through a timer, for example, the duration is set to 20ms.
  • the duration of the timing information configured on the access network device and the timing information configured on the terminal device may be the same or different. For example, when considering the information propagation time between the terminal device and the access network device and the time for parsing the first CSI on the access network device, the duration of the timing information on the access network device may be greater than the timing information on the terminal device. of duration. For another example, if the information propagation time between the terminal device and the access network device and the time for parsing the first CSI on the access network device are not considered, the duration of the timing information on the access network device can be equal to that on the terminal device. The duration of the scheduled message.
  • the purpose of using the timing information is to enable the terminal device and the access network device to jointly update the second base of the statistical feature subspace as the first base. How to configure timing information to terminal equipment and access network equipment can be implemented in various ways.
  • the timing information is timing information pre-configured on the access network equipment and terminal equipment. As specified in the communication protocol, both the access network equipment and the terminal equipment are known.
  • the timing information is determined by the access network device and sent to the terminal device through configuration information.
  • the timing information is determined by the terminal device and reported to the access network device. It should be understood that before the terminal equipment and the access network equipment synchronously update the second base to the first base, the terminal equipment periodically sends the second CSI to the access network equipment. Correspondingly, the access network device periodically receives the second CSI sent by the terminal device.
  • the terminal device sends the third CSI to the access network device.
  • the access network device receives the third CSI from the terminal device.
  • the third CSI includes indication information of the second linear combination coefficient.
  • the third CSI is generated by the terminal device based on the updated second base (i.e., the first base), that is, the terminal device generates the information based on the first CSI that is closest to the current moment.
  • the indicated first base generates the third CSI.
  • the period of the third CSI sent by the terminal device is the second period.
  • the terminal device After both the terminal device and the access network device update the second base to the first base, the terminal device periodically sends the third CSI to the access network device.
  • the access network device periodically receives the third CSI from the terminal device. For example, the access network device sends the CSI-RS to the terminal device in the second cycle. After receiving the CSI-RS, the terminal device also sends the third CSI to the access network device in the second cycle.
  • the access network device parses the third CSI sent by the terminal device, obtains the indication information of the second linear combination coefficient, and determines the second linear combination coefficient.
  • the access network device determines the precoding matrix based on the first basis and the second linear combination coefficient.
  • the access network device and the terminal device jointly update the basis of the statistical feature subspace according to the timing information, so that the access network device obtains the second linear value reported in the second period.
  • the combination coefficient can match the first basis used to restore the statistical characteristic subspace of the precoding matrix, thereby improving the accuracy of the precoding matrix and improving system performance.
  • Figure 6 is a schematic flow chart of air interface interaction between access network equipment and terminal equipment provided by this application.
  • the access network device sends CSI-RS to the terminal device in the second cycle.
  • the terminal equipment receives the CSI-RS, and the terminal equipment determines the second base of the statistical characteristic subspace based on the results of this downlink channel measurement and one or more downlink channel measurements before this time.
  • the terminal equipment feeds back the second base to the access network equipment at the beginning of the first first cycle. It should be understood that in the first first cycle, the access network equipment and terminal equipment will also update the base.
  • the access network device will receive the first linear combination coefficient fed back by the terminal device in the second period.
  • the access network device sends the CSI-RS to the terminal device in the second cycle.
  • the terminal equipment receives the CSI-RS.
  • the terminal equipment determines the first base B of the statistical characteristic subspace based on the results of this downlink channel measurement and one or more downlink channel measurements before this time and starts from the second first cycle. feedback to the access network equipment at the beginning, and the terminal equipment combines the second basis of the previous statistical feature subspace based on the results of this measurement of the downlink channel.
  • the terminal device can feed back the first base B and the first linear combination coefficient C2 in one message, or can feed back the first base B and the first linear combination separately.
  • the access network equipment is currently using the second substrate
  • the access network equipment uses the second base of the previous statistical feature subspace and the first linear combination coefficient C2 to determine the precoding matrix.
  • the terminal equipment starts its own timer timing according to the timing information (for example, after the terminal equipment sends the first base B to the access network equipment), the access network equipment starts its own timer timing based on the timing information (for example, after the access network equipment receives the Timing starts at the first base B of feedback).
  • the access network device sends CSI-RS to the terminal device in the second cycle, and the terminal device receives the CSI-RS and feeds back the first linear combination coefficient C2 to the access network device according to the measurement results.
  • the access network device still uses the second basis and the first linear combination coefficient C2 to determine the precoding matrix.
  • the access network equipment and the terminal equipment simultaneously transmit the second base station Updated to first base B.
  • the terminal equipment and the access network equipment reset their respective timers.
  • the terminal device reports the second linear combination coefficient C' 2 to the access network device based on the first base B, and the access network device calculates the second linear combination coefficient C' 2 based on the updated first base B and the second linear combination coefficient C' 2 reported by the terminal device.
  • the process described in Figure 6 is then performed.
  • the access network equipment and terminal equipment update the base of the statistical feature subspace based on the timing information, so that the access network equipment can match the corresponding statistical feature subspace base when receiving the short-period linear combination coefficient, solving the problem of short-period linearity.
  • the problem of mismatch between combination coefficient and statistical feature subspace base is then performed.
  • the terminal device reports the base or linear combination coefficient to the access network device just for the convenience of description.
  • what the terminal device reports to the access network device is not the base or linear combination coefficient, but the base Indication information or indication information of linear combination coefficients to reduce signaling overhead.
  • the following Figures 7, 9 and 10 are also for convenience of description and do not limit the present application in any way.
  • first cycle and the second cycle in FIG. 6 may refer to the description of the first cycle and the second cycle in FIG. 4 above, and will not be described again here.
  • the access network device may not obtain the indication information of the first base. For example, the access network device did not receive the current first CSI; or the access network device received the current first CSI, but failed to parse the current first CSI successfully and failed to obtain the indication information of the first base.
  • the method 400 may further include: the access network device sends a retransmission signaling to the terminal device, where the retransmission signaling is used to instruct the terminal device to retransmit the first base device.
  • the terminal device receives the retransmission signaling, and the terminal device retransmits the first CSI to the access network device.
  • the timing information is started.
  • the terminal device receives the retransmission signaling within the duration of the timing information, the terminal device stops the current timing.
  • the terminal device retransmits the first CSI to the access network device, it restarts the timer again.
  • the access network device receives the retransmission signaling sent by the terminal device, obtains the indication information of the first base, and restarts the timer again.
  • the timer for restarting again expires, the access network equipment and the terminal equipment will update the second base to the first base at the same time.
  • the timing information is started.
  • the terminal device receives the retransmission signaling within the duration of the timing information, and the terminal device retransmits the first CSI to the access network device.
  • the access network device receives the retransmission signaling sent by the terminal device to obtain the indication information of the first base.
  • the timer duration should be set longer, for example, the timer duration should be longer than the propagation delay of retransmission signaling.
  • the access network device When the access network device does not obtain the indication information of the first base, the access network device instructs the terminal device to retransmit the first CSI by sending retransmission signaling to the terminal device, thereby reacquiring the indication information of the first base, Then the access network equipment and the terminal equipment update the second basis of the statistical feature subspace to the first basis according to the timing information. Therefore, when the access network device obtains the second linear combination coefficient based on the received indication information of the second linear combination coefficient reported in the second period, it can match the first value of the statistical feature subspace used to restore the precoding matrix. Base, improve the accuracy of the precoding matrix and improve system performance.
  • retransmission signaling can be through Radio Resource Control layer (Radio Resource Control, RRC) signaling, Media Access Control layer control element (Media Access Control-Control Element, MAC-CE) signaling or downlink control information ( Downlink Control Information, DCI) is sent.
  • RRC Radio Resource Control
  • Media Access Control-Control Element Media Access Control-Control Element
  • MAC-CE Media Access Control-Control Element
  • DCI Downlink Control Information
  • Figure 7 is a schematic flow chart of air interface interaction between access network equipment and terminal equipment provided by this application.
  • the access network device sends CSI-RS to the terminal device in the second cycle.
  • the terminal equipment receives the CSI-RS, and the terminal equipment determines the second base of the statistical characteristic subspace based on the results of this measurement of the downlink channel and the results of one or more downlink channel measurements before this time.
  • the terminal equipment feeds back the second base to the access network equipment at the beginning of the first first cycle. (can be regarded as the first first cycle). It should be understood that in the first first cycle, the access network equipment and terminal equipment will also update the base. This process can refer to the following second first cycle connection. Description of network access equipment and terminal equipment update base. It should also be understood that in the first first period, the access network device will receive the first linear combination coefficient fed back by the terminal device in the second period. In the second first cycle, the access network device sends the CSI-RS to the terminal device in the second cycle. The terminal equipment receives the CSI-RS.
  • the terminal equipment determines the first base B of the statistical characteristic subspace based on the results of this downlink channel measurement and one or more downlink channel measurements before this time and starts from the second first cycle. feedback to the access network equipment at the beginning, and the terminal equipment combines the second basis of the previous statistical feature subspace based on the results of this measurement of the downlink channel. Determine the first linear combination coefficient C2 and feed it back to the access network device. At this time, the access network device is currently using the second base The access network equipment is based on the second base and the first linear combination coefficient C2 to determine the precoding matrix. The access network device fails to obtain the first base B. The access network device sends retransmission signaling to the terminal device.
  • the terminal device receives the retransmission signaling sent by the access network device and retransmits the traditional accounting characteristics to the access network device.
  • Subspace first basis B At this time, that is, the terminal equipment starts timing based on the timing information after sending the retransmission signaling, and the access network equipment starts timing based on the timing information after receiving the retransmission signaling.
  • the access network device sends CSI-RS to the terminal device in the second cycle, and the terminal device receives the CSI-RS and feeds back the first linear combination coefficient C2 to the access network device according to the measurement results.
  • the terminal device still uses the previous statistical characteristics subspace second basis and the first linear combination coefficient C2 to determine the precoding matrix.
  • the access network equipment and the terminal equipment simultaneously transmit the second base station Updated to first base B.
  • the terminal equipment and the access network equipment reset their respective timers.
  • the terminal device reports the second linear combination coefficient C' 2 to the access network device based on the first base B, and the access network device calculates the second linear combination coefficient C' 2 based on the replaced first base B and the second linear combination coefficient C' 2 reported by the terminal device.
  • Determine the precoding matrix Until the terminal device feeds back the statistical characteristic subspace basis in the next first period, the process described in Figure 7 above is then performed.
  • the access network device instructs the terminal device to retransmit the current first channel status information by sending a retransmission signaling to the terminal device, thereby re-acquiring the indication information of the first base.
  • indication information and then the access network equipment and the terminal equipment update the second basis of the statistical feature subspace to the first basis according to the timing information.
  • first cycle and the second cycle in FIG. 7 may refer to the description of the first cycle and the second cycle in FIG. 4 above, and will not be described again here.
  • FIG. 8 is a schematic flow chart of a method 500 for determining a precoding matrix according to the present application.
  • the method 500 can be applied in the above application scenarios, and of course can also be applied in other communication scenarios, which is not limited in this application.
  • the access network device and the terminal device are used as the execution subjects of the method as an example to illustrate the method.
  • the execution subject of the execution method may also be a chip, chip system, or processor applied to terminal equipment and access network equipment.
  • the method 500 shown in FIG. 8 may include S510 to S570. Each step in the method 500 is described in detail below with reference to FIG. 8 .
  • the terminal device sends the first CSI to the access network device, and accordingly, the access network device receives the first CSI from the terminal device.
  • the first CSI includes indication information of the first basis of the statistical characteristic subspace.
  • the period during which the terminal device sends the first CSI is the first period.
  • the first basis is used to represent the variation pattern of the downlink channel in the spatial domain and/or frequency domain, or the first basis.
  • a base is also used to represent the variation pattern of the downlink channel in the joint space-frequency domain.
  • the description of the indication information about the first substrate may refer to the description of step S410 in the method 400, and will not be described again here.
  • the terminal device periodically sends the first CSI to the access network device, and the sending period is the first cycle, that is, the terminal device sends the first CSI to the access network device at the start time or end time of each first cycle.
  • the terminal device sends the second CSI to the access network device, and accordingly, the access network device receives the second CSI from the terminal device.
  • the second CSI includes indication information of the first linear combination coefficient.
  • the period in which the terminal device sends the second CSI is the second period, and the first linear combination coefficient is the combination coefficient corresponding to the second basis.
  • the description of the indication information of the first linear combination coefficient may refer to the description of step S420 in the method 400, and will not be described again here.
  • the first linear combination coefficient matches the second basis of the statistical feature subspace.
  • the statistical characteristic subspace base used by the terminal device when sending the second CSI is the second base, and the second base is reported to the receiver in the first period before the first period in which the terminal device sends the second CSI.
  • the first base is fed back to the access network equipment in the first cycle in which the terminal equipment sends the second CSI, that is, the second base is the previous first base.
  • the terminal device sends the second CSI to the access network device in the second cycle, that is, the terminal device sends the second CSI to the access network device at the starting time or end time of each second cycle. It should be noted that the duration of the first cycle and the duration of the second cycle may be determined by the access network device and sent to the terminal device through configuration information.
  • the first CSI and the second CSI may be reported simultaneously or separately. That is, the indication information of the first basis and the indication information of the first linear combination coefficient may be reported in one CSI, or may be reported in different CSIs.
  • the statistical characteristic subspace base used by the access network device is also the second base, and the second base is obtained by the access network device based on the previous first CSI.
  • the access network device determines the precoding matrix according to the second basis and the first linear combination coefficient.
  • the base used by the access network device when determining the precoding matrix is the second base, and the terminal device reports the second CSI based on the second base.
  • the access network device sends update instruction information to the terminal device, where the update instruction information is used to instruct the terminal device to update the second base of the statistical feature subspace to the first base.
  • the terminal device receives the update instruction from the access network device.
  • the terminal device updates the second basis of the statistical feature subspace to the first basis according to the update instruction information.
  • the terminal device sends the third CSI to the access network device.
  • the access network device receives the third CSI from the terminal device.
  • the third CSI includes indication information of the second linear combination coefficient.
  • the third CSI is generated by the terminal device based on the updated second base (i.e., the first base), that is, the terminal device indicates based on the first CSI that is closest to the current time.
  • the first base generates the third CSI.
  • the period of the third CSI sent by the terminal device is the second period.
  • the terminal device After both the terminal device and the access network device update the second base to the first base, the terminal device periodically sends 3rd CSI.
  • the access network device periodically receives the third CSI from the terminal device. For example, the access network device sends the CSI-RS to the terminal device in the second cycle. After receiving the CSI-RS, the terminal device also sends the third CSI to the access network device in the second cycle.
  • the access network device parses the third CSI sent by the terminal device, obtains the indication information of the second linear combination coefficient, and determines the second linear combination coefficient.
  • the access network device determines the precoding matrix based on the first basis and the second linear combination coefficient.
  • the access network device when the access network device determines the base of the new statistical feature subspace, the access network device sends an update instruction to the terminal device to instruct the terminal device to update the base of the statistical feature subspace, and at the same time, the access network device sends the second base Update to the first basis, enabling the access network equipment and the terminal equipment to jointly update the base of the statistical feature subspace, so that the second linear combination coefficient obtained by the access network equipment and reported in the second period can match and be used to restore the precoding matrix
  • the first basis of the statistical feature subspace improves the accuracy of the precoding matrix and improves system performance.
  • Figure 9 is a schematic flow chart of air interface interaction between access network equipment and terminal equipment provided by this application.
  • the access network device sends CSI-RS to the terminal device in the second cycle.
  • the terminal equipment receives the CSI-RS, and the terminal equipment determines the second base of the statistical characteristic subspace based on the results of this downlink channel measurement and one or more downlink channel measurements before this time.
  • the terminal equipment feeds back the second base to the access network equipment at the beginning of the first first cycle. (can be regarded as the first first cycle).
  • the access network equipment and terminal equipment will also update the base. This process can refer to the following second first cycle connection. Description of network access equipment and terminal equipment update base. It should also be understood that in the first first period, the access network device will receive the first linear combination coefficient fed back by the terminal device in the second period. In the second first cycle, the access network device sends the CSI-RS to the terminal device in the second cycle. The terminal equipment receives the CSI-RS. The terminal equipment determines the first base B of the statistical characteristic subspace based on the results of this downlink channel measurement and one or more downlink channel measurements before this time and starts from the second first cycle.
  • the terminal equipment combines the second basis of the previous statistical feature subspace based on the results of this measurement of the downlink channel.
  • the access network equipment is currently using the second base The access network equipment is based on the second base and the first linear combination coefficient C2 to determine the precoding matrix.
  • Access network equipment update second base As the first base B, the access network equipment sends an update instruction to the terminal equipment, instructing the terminal equipment to update the second base B. is the first base B.
  • the terminal device After receiving the instruction information, the terminal device updates the second base is the first base B. Thereafter, the terminal equipment reports the second linear combination coefficient C' 2 to the access network equipment based on the first base B, and the access network equipment determines the precoding based on the first base B and the second linear combination coefficient C' 2 reported by the terminal equipment. matrix. Until the terminal device feeds back the statistical characteristic subspace basis in the next first period, the process described in Figure 9 is then performed.
  • first cycle and the second cycle in FIG. 9 may refer to the description of the first cycle and the second cycle in FIG. 4 above, and will not be described again here.
  • the indication information can be transmitted through Radio Resource Control (RRC) signaling, Media Access Control-Control Element (MAC-CE) signaling or Downlink Control information.
  • RRC Radio Resource Control
  • MAC-CE Media Access Control-Control Element
  • DCI Downlink Control information
  • the access network device may not obtain the indication information of the first base. For example, the access network device did not receive the current first channel status information; or the access network device received the current first channel status information, but failed to successfully parse the current first channel status information and did not obtain the indication information of the first base. .
  • the method 500 may further include: the access network device sends a retransmission signaling to the terminal device, where the retransmission signaling is used to instruct the terminal device to retransmit the first base device. For channel status information, the terminal device receives the retransmission signaling and retransmits the first channel status information to the access network device.
  • the access network device receives the first channel state information retransmitted by the terminal device, and obtains the indication information of the first base. After the access network device obtains the indication information of the first base, the access network device sends the indication information to the terminal device, and the indication information is used to instruct the terminal device to update the second base of the statistical feature subspace to the first base. After the access network device sends the instruction information to the terminal device, the access network device updates the second base of the statistical feature subspace to be the first base.
  • the access network device When the access network device does not obtain the indication information of the first base, the access network device instructs the terminal device to retransmit the first channel status information by sending retransmission signaling to the terminal device, thereby re-obtaining the indication of the first base. information, and then when the access network device determines the base of the new statistical feature subspace, the access network device sends instruction information to the terminal device to instruct the terminal device to update the base of the statistical feature subspace, which can realize that the access network device and the terminal device update statistics synchronously The basis of the characteristic subspace, so that the access network equipment can When receiving the second linear combination coefficient obtained from the indication information of the second linear combination coefficient reported in the second period, it can match the first basis used to restore the statistical characteristic subspace of the precoding matrix, improving the performance of the precoding matrix. accuracy and improve system performance.
  • Figure 10 is a schematic flow chart of air interface interaction between access network equipment and terminal equipment provided by this application.
  • the access network device sends CSI-RS to the terminal device in the second cycle.
  • the terminal equipment receives the CSI-RS, and the terminal equipment determines the second base of the statistical characteristic subspace based on the results of this downlink channel measurement and one or more downlink channel measurements before this time.
  • the terminal equipment feeds back the second base to the access network equipment at the beginning of the first first cycle.
  • the access network equipment and terminal equipment will also update the base. This process can refer to the following second first cycle connection. Description of network access equipment and terminal equipment update base. It should also be understood that in the first first period, the access network device will receive the first linear combination coefficient fed back by the terminal device in the second period. In the second first cycle, the access network device sends the CSI-RS to the terminal device in the second cycle. The terminal equipment receives the CSI-RS, and the terminal equipment determines the first base B of the statistical characteristic subspace based on the results of this downlink channel measurement and one or more downlink channel measurements before this time at the start of the second first period. time and feedback to the access network equipment.
  • the terminal equipment combines the results of this downlink channel measurement with the second basis of the previous statistical feature subspace. Determine the first linear combination coefficient C2 and feed it back to the access network device. At this time, the access network device is currently using the second base The access network equipment is based on the second base and the first linear combination coefficient C2 to determine the precoding matrix. The access network device fails to obtain the first base B. The access network device sends retransmission signaling to the terminal device. The terminal device receives the retransmission signaling sent by the access network device and retransmits the traditional accounting characteristics to the access network device. Subspace first basis B.
  • the access network device After the access network device obtains the first base B, the access network device updates the second base As the first base B, the access network equipment sends an update instruction to the terminal equipment, instructing the terminal equipment to update the second base B. is the first base B. After receiving the instruction information, the terminal device updates the second base is the first base B. Thereafter, the terminal equipment reports the second linear combination coefficient C' 2 to the access network equipment based on the first base B, and the access network equipment determines the precoding based on the first base B and the second linear combination coefficient C' 2 reported by the terminal equipment. matrix. Until the terminal device feeds back the statistical characteristic subspace basis in the next first period, the process described in Figure 10 is then performed.
  • first cycle and the second cycle in FIG. 10 may refer to the description of the first cycle and the second cycle in FIG. 4 above, and will not be described again here.
  • FIG 11 is a schematic diagram of module interaction between a terminal device and an access network device provided by this application.
  • Access network equipment and terminal equipment include RRC signaling interaction module, MAC signaling interaction module and port physical layer (Port Physical Layer, PHY) signaling and data interaction module respectively.
  • the RRC signaling interaction module is a module used by access network equipment and terminal equipment to send and receive RRC signaling.
  • the MAC signaling interaction module is a module used by access network equipment and terminal equipment to send and receive MAC-CE signaling.
  • the PHY signaling and data interaction module is a module used by access network equipment and terminal equipment to send and receive downlink control signaling and downlink data. Downlink control signaling can be sent and received through the Physical Downlink Control Channel (PDCCH), and downlink data can be sent and received through the Physical Downlink Shared CHannel (PDSCH).
  • PDCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared CHannel
  • the indication information and retransmission signaling in this application can be sent through RRC signaling, MAC-CE signaling or DCI.
  • Figure 12 shows a schematic block diagram of a communication device 600 according to an embodiment of the present application.
  • the device 600 may be a terminal device, or may be a chip or circuit, such as a chip or circuit that may be provided in the terminal device.
  • the device 600 may be an access network device, or may be a chip or circuit, such as a chip or circuit that may be provided in the access network device.
  • the device 600 may include a processing unit 610 (ie, an example of a processor) and a transceiver unit 630.
  • the processing unit 610 may also be called a determining unit.
  • the transceiver unit 630 may include a receiving unit and a sending unit.
  • the transceiver unit 630 can be implemented by a transceiver or a transceiver-related circuit or an interface circuit.
  • the device may also include a storage unit 620.
  • the storage unit 620 is used to store instructions.
  • the storage unit can also be used to store data or information.
  • the storage unit 620 may be implemented by a memory.
  • the processing unit 610 is used to execute instructions stored in the storage unit 620, so that the device 600 implements the steps performed by the terminal device in the above method.
  • the processing unit 610 can be used to call the data of the storage unit 620, so that the device Setting 600 implements the steps performed by the terminal device in the above method.
  • the processing unit 610 is used to execute instructions stored in the storage unit 620, so that the apparatus 600 implements the steps performed by the access network equipment in the above method.
  • the processing unit 610 may be used to call the data in the storage unit 620, so that the apparatus 600 implements the steps performed by the access network device in the above method.
  • the processing unit 610, the storage unit 620, and the transceiver unit 630 can communicate with each other through internal connection paths to transmit control and/or data signals.
  • the storage unit 620 is used to store a computer program, and the processing unit 610 can be used to call and run the computer program from the storage unit 620 to control the transceiver unit 630 to receive signals and/or send signals to complete the above method. Steps for terminal equipment or access network equipment.
  • the storage unit 620 may be integrated in the processing unit 610 or may be provided separately from the processing unit 610 .
  • the transceiver unit 630 includes a receiver and a transmitter.
  • the receiver and transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively called transceivers.
  • the transceiver unit 630 includes an input interface and an output interface.
  • the function of the transceiver unit 630 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processing unit 610 may be implemented by a dedicated processing chip, a processing circuit, a processing unit or a general-purpose chip.
  • a general-purpose computer may be considered to implement the communication device (such as a terminal device or an access network device) provided in the embodiments of the present application. That is, the program code that implements the functions of the processing unit 610 and the transceiver unit 630 is stored in the storage unit 620. The general processing unit implements the functions of the processing unit 610 and the transceiver unit 630 by executing the code in the storage unit 620.
  • the device 600 may be a terminal device, or a chip or circuit provided in the terminal device.
  • the transceiver unit 630 is configured to send first channel state information to the access network device, where the first channel state information includes the first base of the statistical feature subspace.
  • the instruction information, the period in which the terminal equipment sends the first channel state information is the first period; the transceiver unit 630 is also configured to send the second base to the access network equipment before the terminal equipment updates the second base to the first base.
  • the second channel state information includes indication information of the first linear combination coefficient
  • the period in which the transceiver unit 630 sends the second channel state information is a second period, the first period is greater than the second period
  • the The first linear combination coefficient is a combination coefficient corresponding to the second basis
  • the second channel state information is generated by the terminal device based on the second basis of the statistical feature subspace, and the first basis and the second basis are different , the first base and the second base are respectively used to represent the variation pattern of at least one of the downlink channel in the spatial domain and the frequency domain, or the first base and the second base are respectively used to represent the downlink channel in the joint space-frequency
  • the changing rule of the domain the processing unit 610 is used to update the second base as the first base according to the trigger information
  • the transceiver unit 630 is also used to send a message to the terminal device after the terminal device updates the second base as the first base.
  • the network access device sends third channel state information.
  • the third channel state information includes indication information of the second linear
  • the processing unit 610 is also configured to update the second base to the first base when the timing information reaches the set time.
  • the timing information is obtained by the transceiver from the access network device through configuration information, or the timing information is predefined.
  • the transceiver unit 630 is configured to receive update instruction information sent by the access network device, where the update instruction information is used to instruct the terminal device to update the second base of the statistical feature subspace to be the first base; this process The unit is specifically configured to: update the second base to the first base according to the update instruction information.
  • the transceiver unit 630 is also configured to: receive retransmission signaling sent by the access network device, where the retransmission signaling is used to instruct the terminal device to retransmit the first channel status information; according to the retransmission signaling command to retransmit the first channel status information to the access network device.
  • the duration of the timing information is information configured locally on the terminal device; or, the transceiver unit receives configuration information sent by the access network device, where the configuration information includes the duration of the first period, the duration of the second period. duration and the duration of the timing information.
  • At least one of the update indication information, the configuration information or the retransmission signaling is included in radio resource control layer RRC signaling, media access control layer control element MAC-CE signaling or downlink control information DCI middle.
  • each module or unit in the device 600 can be used to perform each action or process performed by the terminal device in the above method. To avoid redundancy, detailed description is omitted here.
  • the device 600 may be an access network device, or a chip or circuit provided in the access network device.
  • the transceiver unit 630 is configured to receive the first channel state information sent by the terminal device, where the first channel state information includes statistical characteristics. Indicative information of the first base of space, the transceiver unit 630 The cycle of receiving the first channel status information is the first cycle; the processing unit is used to decode the first channel status information; the transceiver unit 630 is used to receive the second channel status information sent by the terminal device, the second channel status The information includes indication information of the first linear combination coefficient.
  • the period during which the transceiver unit 630 receives the second channel state information is a second period, the first period is greater than the second period, and the first linear combination coefficient is the second basis.
  • the corresponding combination coefficient wherein the statistical feature subspace base currently used by the processing unit 610 is the second base of the statistical feature subspace, and the second channel state information is generated by the terminal device based on the second base of the statistical feature subspace.
  • the first base and the second base are different, the first base and the second base are respectively used to represent the change law of at least one of the downlink channel in the spatial domain and the frequency domain, or, the first base and the third base
  • the two bases are respectively used to represent the change pattern of the downlink channel in the joint space-frequency domain;
  • the processing unit is used to parse the second channel state information;
  • the processing unit 610 is used to update the second base as the first base according to the timing information ;
  • the transceiver unit 630 receives the third channel state information sent by the terminal device.
  • the third channel state information includes indication information of the second linear combination coefficient.
  • the third channel state information is based on the updated second linear combination coefficient of the terminal device.
  • the period in which the transceiver unit 630 sends the third channel state information is a second period; the processing unit 610 is used to parse the third channel state information; the processing unit 610 is used to analyze the third channel state information according to the first base and the third Bilinear combination coefficients determine the precoding matrix.
  • the timing information is determined or predefined by the access network device.
  • the transceiver is also used to: send the configuration information to the terminal device.
  • the transceiver unit 630 is also configured to: when the first base is not successfully obtained, send retransmission signaling to the terminal device, where the retransmission signaling is used to instruct the terminal device to retransmit the first channel status. Information; receiving the first channel status information retransmitted by the terminal device.
  • the access network device's failure to successfully obtain the first base includes: the transceiver unit failed to receive the first channel status information; or the processing unit failed to parse the first channel status information successfully.
  • the duration of the timing information is information configured locally on the access network device; or, the transceiver unit sends indication information to the terminal device, where the indication information includes the duration of the first period, the duration of the second period. duration and the duration of the timing information.
  • At least one of the configuration information and the retransmission signaling is included in radio resource control layer RRC signaling, media access control layer control element MAC-CE signaling or downlink control information DCI.
  • each module or unit in the device 600 can be used to perform each action or processing process performed by the access network device in the above method.
  • the details are omitted. Its detailed description.
  • the device 600 may be an access network device, or a chip or circuit provided in the access network device.
  • the transceiver unit 630 is configured to receive the first channel state information sent by the terminal device, where the first channel state information includes statistical characteristics.
  • the indication information of the first base of space, the period in which the transceiver unit 630 receives the first channel state information is the first period; the processing unit 610 is used to parse the first channel state information; the transceiver unit 630 is used to receive the terminal
  • the second channel state information sent by the device, the second channel state information includes indication information of the first linear combination coefficient, the period in which the access network device receives the second channel state information is a second period, and the first period is greater than the In the second period, the first linear combination coefficient is a combination coefficient corresponding to the second basis, wherein the statistical feature subspace basis currently used by the processing unit 610 is the second basis of the statistical feature subspace, and the second channel state information is generated by the terminal device based on the second base of the statistical characteristic subspace.
  • the first base and the second base are different.
  • the first base and the second base are respectively used to represent the downlink channel in the spatial domain and frequency domain.
  • At least one change rule, or the first base and the second base are respectively used to represent the change rule of the downlink channel in the joint space-frequency domain;
  • the processing unit 610 is used to parse the second channel state information;
  • the access network The device updates the second base as the first base;
  • the transceiver unit 630 sends update instruction information to the terminal device, the update instruction information is used to instruct the terminal device to update the second base as the first base;
  • the transceiver unit 630 Receive third channel state information sent by the terminal device, the third channel state information includes indication information of the second linear combination coefficient, the third channel state information is generated by the terminal device based on the updated second base, the The period in which the terminal device sends the third channel state information is a second period;
  • the processing unit 610 is used to parse the third channel state information;
  • the processing unit 610 is used to
  • the transceiver unit 630 is also configured to: when the first base is not successfully obtained, send retransmission signaling to the terminal device, where the retransmission signaling is used to instruct the terminal device to retransmit the first channel status. Information; receiving the first channel status information retransmitted by the terminal device.
  • the failure to successfully obtain the first base includes: the transceiver unit 630 failed to receive the first channel state information successfully; or the processing unit 610 failed to parse the first channel state information successfully.
  • the access network device sends the duration of the first period and/or the duration of the second period to the terminal device through the second indication information. duration.
  • At least one of the update indication information and the retransmission signaling is sent through radio resource control layer RRC signaling, media access control layer control element MAC-CE signaling or downlink control information DCI.
  • the processing unit 610 can be implemented by a processor
  • the storage unit 620 can be implemented by a memory
  • the transceiver unit 630 can be implemented by a transceiver, as shown in Figure 13.
  • Figure 13 is a communication device provided by this application. 700 structural diagram.
  • Communication device 700 may include a processor 710, a memory 720, and a transceiver 730.
  • the processor 710, the memory 720 and the transceiver 730 are respectively used to implement the functions of the processing unit 610, the storage unit 620 and the transceiver unit 630. No further details will be given here.
  • Figure 14 is a schematic structural diagram of a terminal device 800 provided by this application.
  • the terminal device 800 can perform the actions performed by the terminal device in the above method embodiment.
  • FIG. 14 shows only the main components of the terminal device.
  • the terminal device 800 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, and to control the entire terminal device, execute software programs, and process data of the software programs. For example, it is used to support the terminal device to execute the above instruction method of the transmission precoding matrix in the embodiment. the action described.
  • the memory is mainly used to store software programs and data, such as the codebook described in the above embodiment.
  • the control circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 14 only shows one memory and processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be called a storage medium or a storage device, which is not limited in the embodiments of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device, execute software programs, and process software programs. data.
  • the processor in Figure 14 integrates the functions of a baseband processor and a central processor.
  • the baseband processor and the central processor can also be independent processors and are interconnected through technologies such as buses.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing communication protocols and communication data can be built into the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the control circuit with the transceiver function can be regarded as the transceiver unit 810 of the terminal device 800
  • the processor with the processing function can be regarded as the processing unit 820 of the terminal device 800
  • the terminal device 800 includes a transceiver unit 810 and a processing unit 820 .
  • the transceiver unit may also be called a transceiver, a transceiver, a transceiver device, etc.
  • the devices used to implement the receiving function in the transceiver unit 810 can be regarded as a receiving unit, and the devices used in the transceiver unit 810 used to implement the transmitting function can be regarded as a transmitting unit, that is, the transceiver unit includes a receiving unit and a transmitting unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, a transmitting circuit, etc.
  • FIG. 15 is a schematic structural diagram of an access network device 900 provided by an embodiment of the present application, which can be used to implement the access device (for example, the first access network device, the second access network device or the third access network device) in the above method. access network equipment) functions.
  • the access network device 900 includes one or more radio frequency units, such as a remote radio unit (RRU) 910 and one or more baseband units (BBU) (also called a digital unit, DU)920.
  • RRU 910 may be called a transceiver unit, a transceiver, a transceiver circuit, a transceiver, etc., and may include at least one antenna 911 and a radio frequency unit 912.
  • the RRU910 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals. For example, it is used to send the information described in the above embodiment to the terminal device. signaling message.
  • the BBU920 part is mainly used for baseband processing, base station control, etc.
  • the RRU910 and the BBU920 may be physically installed together or physically separated, that is, a distributed base station.
  • the BBU920 is the control center of the base station, which can also be called a processing unit. It is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, etc.
  • the BBU (processing unit) 920 can be used to control the base station 40 to execute the operation process related to the access network equipment in the above method embodiment.
  • the BBU 920 may be composed of one or more single boards. Multiple single boards may jointly support a wireless access network of a single access standard (such as an LTE system or a 5G system), or may support different access networks respectively. standard wireless access network.
  • the BBU 920 also includes a memory 921 and a processor 922 .
  • the memory 921 is used to store necessary instructions and data.
  • the memory 921 stores the codebook etc. in the above embodiment.
  • the processor 922 is used to control the base station to perform necessary actions, for example, to control the base station to perform the operation process of the access network equipment in the above method embodiment.
  • the memory 921 and processor 922 may serve one or more single boards. In other words, the memory and processor can be set independently on each board. It is also possible for multiple boards to share the same memory and processor. In addition, necessary circuits can also be installed on each board.
  • SoC system-on-chip
  • all or part of the functions of part 920 and part 910 can be implemented by SoC technology, for example, by a base station function chip Implementation, the base station function chip integrates processor, memory, antenna interface and other devices.
  • the program of the base station related functions is stored in the memory, and the processor executes the program to realize the related functions of the base station.
  • the base station function chip can also read the memory external to the chip to implement related functions of the base station.
  • the processor may be a central processing unit (CPU).
  • the processor may also be other general-purpose processors, digital signal processors (DSP), or dedicated integrated processors.
  • Circuit application specific integrated circuit, ASIC
  • off-the-shelf programmable gate array field programmable gate array, FPGA
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • RAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory access memory
  • direct rambus RAM direct rambus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmit to another website, computer, server or data center through wired (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that a computer can access, or a data storage device such as a server or a data center that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • Embodiments of the present application also provide a computer-readable medium on which a computer program is stored.
  • the steps executed by the terminal device in any of the above embodiments or the steps executed by the access network device are implemented. .
  • Embodiments of the present application also provide a computer program product, which, when executed by a computer, implements the steps executed by the terminal device in any of the above embodiments, or the steps executed by the access network device.
  • An embodiment of the present application also provides a system chip, which includes: a communication unit and a processing unit.
  • the processing unit may be, for example, a processor.
  • the communication unit may be, for example, a communication interface, an input/output interface, a pin or a circuit, or the like.
  • the processing unit can execute computer instructions to cause the chip in the communication device to perform the steps performed by the terminal equipment provided in the embodiments of the present application, or the steps performed by the access network equipment.
  • the computer instructions are stored in a storage unit.
  • the embodiment of the present application further provides a communication system, which includes the aforementioned access network equipment and terminal equipment.
  • various aspects or features of the present application may be implemented as methods, apparatus, or articles of manufacture using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer-readable device, carrier or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks, tapes, etc.), optical disks (e.g., compact discs (CD), digital versatile discs (DVD)) etc.), smart cards and flash memory devices (e.g. erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • a and/or B can mean: A alone exists, A and B exist simultaneously, and B alone exists.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • At least one refers to one or more;
  • At least one of A and B similar to "A and/or B", describes the association relationship of associated objects, indicating that there can be three relationships, for example, A and B At least one of them can represent three situations: A alone exists, A and B exist simultaneously, and B exists alone.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or an access network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信道状态信息反馈的方法、终端设备和接入网设备,可以实现准确反馈信道状态信息,提高预编码矩阵的准确度。该方法包括:终端设备向接入网设备发送第一信道状态信息,第一信道状态信息包括统计特征子空间的第一基底的指示信息,终端设备发送第一信道状态信息的周期为第一周期;终端设备向接入网设备发送第二信道状态信息,第二信道状态信息包括第一线性组合系数的指示信息,终端设备发送第二信道状态信息的周期为第二周期;终端设备根据触发信息,更新第二基底为第一基底;终端设备向接入网设备发送第三信道状态信息,第三信道状态信息包括第二线性组合系数的指示信息,第三信道状态信息是终端设备基于更新后的第二基底生成的。

Description

一种信道状态信息反馈的方法、终端设备和接入网设备
本申请要求于2022年07月04日提交中华人民共和国知识产权局、申请号为202210779750.8、发明名称为“一种信道状态信息反馈的方法、终端设备和接入网设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体的,涉及一种信道状态信息反馈的方法、终端设备和接入网设备。
背景技术
5G通信系统对系统容量、频谱效率等方面有了更高的要求。在5G通信系统中,大规模多天线技术的应用对提高系统的频谱效率起到了至关重要的作用。当采用多输入多输出技术(multiple-input multiple-output,MIMO)技术时,接入网设备在向UE发送数据前,需要对数据进行预编码。在频分双工(frequency division duplex,FDD)系统中,由于上下行频带间的间隔大于带宽,因此上下行信道之间不具有完整的互易性。接入网设备需要终端设备向接入网设备反馈下行信道的信道状态信息(channel state information,CSI)来确定预编码矩阵。因此如何准确的反馈CSI是影响系统性能的重要因素。
发明内容
本申请提供一种信道状态信息反馈的方法、终端设备和接入网设备,可以实现准确的反馈CSI信息,提高预编码矩阵的准确度,提高系统性能。
第一方面,提供了一种信道状态信息反馈的方法,包括:终端设备向接入网设备发送第一信道状态信息CSI,该第一CSI包括统计特征子空间的第一基底的指示信息,该终端设备发送该第一CSI的周期为第一周期;在该终端设备更新第二基底为该第一基底之前,终端设备向接入网设备发送第二CSI,该第二CSI包括第一线性组合系数的指示信息,该终端设备发送该第二CSI的周期为第二周期,该第一周期大于该第二周期,该第一线性组合系数为该第二基底对应的组合系数,其中,该第二CSI是该终端设备基于该统计特征子空间的第二基底生成的,该第一基底和该第二基底不同,该第一基底和该第二基底分别用于表示下行信道在空域和频域中的至少一个的变化规律,或该第一基底和该第二基底分别用于表示下行信道在联合空频域的变化规律;该终端设备根据触发信息,更新该第二基底为该第一基底;在该终端设备更新第二基底为该第一基底之后,该终端设备向该接入网设备发送第三CSI,该第三CSI包括第二线性组合系数的指示信息,该第三CSI是该终端设备基于更新后的该第二基底生成的,该终端设备发送该第三CSI的周期为第二周期。
终端设备根据触发信息,更新统计特征子空间的基底,将第二基底更新为第一基底,该触发信息可以确保接入网设备和终端设备同步更新统计特征子空间的基底,在该终端设备更新基底之后,该终端设备向该接入网设备发送根据更新后的第二基底生成的第三CSI,该接入网设备使用的基底为更新后的第二基底,从而使得接入网设备根据接收到的以第二周期上报的第二线性组合系数的指示信息所获取的第二线性组合系数,能够匹配用于恢复预编码矩阵的统计特征子空间的第一基底,提高预编码矩阵的准确度,提高系统性能。
结合第一方面,在第一方面的一种可能的实现方式中,当该触发信息为定时信息时,该终端设备根据触发信息,更新该第二基底为该第一基底,包括:当该定时信息达到设定时间时,该终端设备更新该第二基底为该第一基底。
该终端设备通过定时信息来更新该第二基底为该第一基底,可以确保接入网设备(接入网设备也通过定时信息来更新该第二基底为该第一基底)和终端设备同步更新统计特征子空间的基底,从而准确地反馈CSI信息还可以节省信令开销。
结合第一方面,在第一方面的一种可能的实现方式中,该定时信息是该终端设备通过配置信息从 该接入网设备获取的,或该定时信息是预先定义的。
结合第一方面,在第一方面的一种可能的实现方式中,该终端设备接收该接入网设备发送的更新指示信息,该更新指示信息用于指示该终端设备更新统计特征子空间的该第二基底为该第一基底;该终端设备根据触发信息,更新该第二基底为该第一基底,包括:该终端设备根据该更新指示信息,更新该第二基底为该第一基底。
该终端设备接收到指示信息后,更新该第二基底为该第一基底,可以确保接入网设备(接入网设备在发送该指示信息后,更新该第二基底为该第一基底)和终端设备同步更新统计特征子空间的基底,从而准确地反馈CSI信息。
结合第一方面,在第一方面的一种可能的实现方式中,在该终端设备根据触发信息,更新该第二基底为该第一基底之前,该方法还包括:该终端设备接收该该接入网设备发送的重传信令,该重传信令用于指示该终端设备重传该第一CSI;该终端设备根据该重传信令,向该接入网设备重传该第一CSI。
在接入网设备没有成功获取到第一基底的指示信息的情况下,接入网设备通过向终端设备发送重传信令指示终端设备重传第一CSI,从而重新获取第一基底的指示信息,然后终端设备根据定时信息,更新统计特征子空间的第二基底为第一基底。从而使得接入网设备根据接收到的以第二周期上报的第二线性组合系数的指示信息所获取的第二线性组合系数,能够匹配用于恢复预编码矩阵的统计特征子空间的第一基底,提高预编码矩阵的准确度,提高系统性能。
结合第一方面,在第一方面的一种可能的实现方式中,该定时信息的时长为配置在该终端设备本地的信息,由协议预定义,接入网设备与终端设备均已知;或者,该接入网设备通过配置信息向该终端设备发送该第一周期的时长、该第二周期的时长和该定时信息的时长;或者该定时信息的时长也可以由终端设备确定后上报给接入网设备。
结合第一方面,在第一方面的一种可能的实现方式中,该更新指示信息、该配置信息或该重传信令中的至少一项包括在无线资源控制层RRC信令、媒体接入控制层控制元素MAC-CE信令或下行控制信息DCI中。
第二方面,提供了一种信道状态信息反馈的方法,包括:接入网设备接收并解析终端设备发送的第一信道状态信息CSI,该第一CSI包括统计特征子空间的第一基底的指示信息,该接入网设备接收该第一CSI的周期为第一周期;在该接入网设备更新第二基底为该第一基底之前,该接入网设备接收并解析终端设备发送的第二CSI,该第二CSI包括第一线性组合系数的指示信息,该接入网设备接收该第二CSI的周期为第二周期,该第一周期大于该第二周期,该第一线性组合系数为该第二基底对应的组合系数,其中,该接入网设备当前使用的统计特征子空间基底为统计特征子空间的第二基底,该第二CSI是该终端设备基于该统计特征子空间的第二基底生成的,该第一基底和该第二基底不同,该第一基底和该第二基底分别用于表示下行信道在空域和频域空域和频域中的至少一个的变化规律,或该第一基底和该第二基底分别用于表示下行信道在联合空频域的变化规律;该接入网设备根据定时信息,更新该第二基底为该第一基底;在该接入网设备更新第二基底为该第一基底之后,该接入网设备接收并解析该终端设备发送的第三CSI,该第三CSI包括第二线性组合系数的指示信息,该第三CSI是该终端设备基于更新后的该第二基底生成的,该终端设备发送该第三CSI的周期为第二周期;该接入网设备根据该第一基底和该第二线性组合系数,确定预编码矩阵。
接入网设备根据定时信息,更新统计特征子空间的基底,将第二基底更新为第一基底,该定时信息可以确保接入网设备和终端设备同步更新统计特征子空间的基底,在该接入网设备更新基底之后,该接入网设备接收第三CSI,该第三CSI包括第二线性组合系数的指示信息,该第三CSI是该终端设备基于更新后的该第二基底生成的,该接入网设备使用的基底为更新后的第二基底,从而使得接入网设备根据接收到的以第二周期上报的第二线性组合系数的指示信息所获取的第二线性组合系数,能够匹配用于恢复预编码矩阵的统计特征子空间的第一基底,提高预编码矩阵的准确度,提高系统性能。
结合第二方面,在第二方面的一种可能的实现方式中,该定时信息是由该接入网设备确定或预先定义的。
结合第二方面,在第二方面的一种可能的实现方式中,当该定时信息是由该接入网设备确定时,该方法还包括:该接入网设备向该终端设备发送该配置信息。
结合第二方面,在第二方面的一种可能的实现方式中,在该接入网设备根据定时信息,更新该第二基底为该第一基底之前,该方法还包括:当该接入网设备没有成功获取该第一基底时,该接入网设 备向该终端设备发送重传信令,该重传信令用于指示该终端设备重传该第一CSI;
该接入网设备接收该终端设备重传的该第一CSI。
结合第二方面,在第二方面的一种可能的实现方式中,该接入网设备没有成功获取该第一基底包括:该接入网设备没有成功接收到该第一CSI;或者,该接入网设备没有成功解析该第一CSI。
结合第二方面,在第二方面的一种可能的实现方式中,该定时信息的时长为配置在该终端设备本地的信息,由协议预定义,接入网设备与终端设备均已知;或者,该接入网设备通过配置信息向该终端设备发送该第一周期的时长、该第二周期的时长和该定时信息的时长;或者该定时信息的时长也可以由终端设备确定后上报给接入网设备。
结合第二方面,在第二方面的一种可能的实现方式中,该配置信息和该重传信令中的至少一项包括在无线资源控制层RRC信令、媒体接入控制层控制元素MAC-CE信令或下行控制信息DCI中。
第三方面,提供了一种信道状态信息反馈的方法,包括:接入网设备接收并解析终端设备发送的第一信道状态信息CSI,该第一CSI包括统计特征子空间的第一基底的指示信息,该接入网设备接收该第一CSI的周期为第一周期;在该接入网设备更新第二基底为该第一基底之前,该接入网设备接收并解析终端设备发送的第二CSI,该第二CSI包括第一线性组合系数的指示信息,该接入网设备接收该第二CSI的周期为第二周期,该第一周期大于该第二周期,该第第一线性组合系数为该第二基底对应的组合系数,其中,该接入网设备当前使用的统计特征子空间基底为该第二基底,该第二CSI是该终端设备基于该统计特征子空间的第二基底生成的,该第一基底和该第二基底不同,该第一基底和该第二基底分别用于表示下行信道在空域和频域中的至少一个的变化规律,或该第一基底和该第二基底分别用于表示下行信道在联合空频域的变化规律;该接入网设备更新该第二基底为该第一基底;该接入网设备向该终端设备发送更新指示信息,该更新指示信息用于指示该终端设备更新该第二基底为该第一基底;在该接入网设备更新第二基底为该第一基底之后,该接入网设备接收并解析该终端设备发送的第三CSI,该第三CSI包括第二线性组合系数的指示信息,该第三CSI是该终端设备基于更新后的该第二基底生成的,该终端设备发送该第三CSI的周期为第二周期;该接入网设备根据该第一基底和该第二线性组合系数,确定预编码矩阵。
接入网设备确定更新统计特征子空间的基底,接入网设备向终端设备发送指示信息指示终端设备更新统计特征子空间的基底,可以实现接入网设备和终端设备同步更新统计特征子空间的基底,从而使得接入网设备根据接收到的以第二周期上报的第二线性组合系数的指示信息所获取的第二线性组合系数,能够匹配用于恢复预编码矩阵的统计特征子空间的第一基底,提高预编码矩阵的准确度,提高系统性能。
结合第三方面,在第三方面的一种可能的实现方式中,在该接入网设备更新该第二基底为该第一基底之前,该方法还包括:当该接入网设备没有成功获取该第一基底时,该接入网设备向该终端设备发送重传信令,该重传信令用于指示该终端设备重传该第一CSI;该接入网设备接收该终端设备重传的该第一CSI。
结合第三方面,在第三方面的一种可能的实现方式中,该接入网设备没有成功获取该第一基底包括:该接入网设备没有成功接收到该第一CSI;或者,该接入网设备没有成功解析该第一CSI。
结合第三方面,在第三方面的一种可能的实现方式中,该接入网设备通过配置信息向该终端设备发送该第一周期的时长和该第二周期的时长;或者该定时信息的时长也可以由终端设备确定后上报给接入网设备。
结合第三方面,在第三方面的一种可能的实现方式中,该更新指示信息和该重传信令中的至少一项通过无线资源控制层RRC信令、媒体接入控制层控制元素MAC-CE信令或下行控制信息DCI发送。
第四方面,提供了一种终端设备,包括:收发器,用于向接入网设备发送第一信道状态信息CSI,该第一CSI包括统计特征子空间的第一基底的指示信息,该终端设备发送该第一CSI的周期为第一周期;该收发器还用于在该终端设备更新第二基底为该第一基底之前,向接入网设备发送第二CSI,该第二CSI包括第一线性组合系数的指示信息,该终端设备发送该第二CSI的周期为第二周期,该第一周期大于该第二周期,该第一线性组合系数为该第二基底对应的组合系数,其中,该第二CSI是该终端设备基于该统计特征子空间的第二基底生成的,该第一基底和该第二基底不同,该第一基底和该第二基底分别用于表示下行信道在空域和频域中的至少一个的变化规律,或该第一基底和该第二基底分别用于表示下行信道在联合空频域的变化规律;处理器,用于根据触发信息,更新该第二基底为该第 一基底;该收发器还用于在该终端设备更新第二基底为该第一基底之后,向该接入网设备发送第三CSI,该第三CSI包括第二线性组合系数的指示信息,该第三CSI是该终端设备基于更新后的该第二基底生成的,该终端设备发送该第三CSI的周期为第二周期。
结合第四方面,在第四方面的一种可能的实现方式中,该处理器还用于:当该定时信息达到设定时间时,更新该第二基底为该第一基底。
结合第四方面,在第四方面的一种可能的实现方式中,该定时信息是该收发器通过配置信息从该接入网设备获取的,或该定时信息是预先定义的。
结合第四方面,在第四方面的一种可能的实现方式中,该收发器用于接收该接入网设备发送的更新指示信息,该更新指示信息用于指示该终端设备更新统计特征子空间的该第二基底为该第一基底;该处理器具体用于:根据该更新指示信息,更新该第二基底为该第一基底。
结合第四方面,在第四方面的一种可能的实现方式中,该收发器还用于:接收该该接入网设备发送的重传信令,该重传信令用于指示该终端设备重传该第一CSI;根据该重传信令,向该接入网设备重传该该第一CSI。
结合第四方面,在第四方面的一种可能的实现方式中,该定时信息的时长为配置在该终端设备本地的信息,由协议预定义,接入网设备与终端设备均已知;或者,该接入网设备通过配置信息向该终端设备发送该第一周期的时长、该第二周期的时长和该定时信息的时长;或者该定时信息的时长也可以由终端设备确定后上报给接入网设备。
结合第四方面,在第四方面的一种可能的实现方式中,该更新指示信息、该配置信息或该重传信令中的至少一项包括在无线资源控制层RRC信令、媒体接入控制层控制元素MAC-CE信令或下行控制信息DCI中。
第五方面,提供了一种接入网设备,包括:收发器,用于接收终端设备发送的第一信道状态信息CSI,该第一CSI包括统计特征子空间的第一基底的指示信息,该接入网设备接收该第一CSI的周期为第一周期;处理器,用于解析该第一CSI;该收发器用于在该接入网设备更新第二基底为该第一基底之前接收该终端设备发送的第二CSI,该第二CSI包括第一线性组合系数的指示信息,该接入网设备接收该第二CSI的周期为第二周期,该第一周期大于该第二周期,该第一线性组合系数为该第一基底对应的组合系数,其中,该处理器当前使用的统计特征子空间基底为统计特征子空间的第二基底,该第二CSI是该终端设备基于该统计特征子空间的第二基底生成的,该第一基底和该第二基底不同,该第一基底和该第二基底分别用于表示下行信道在空域和频域中的至少一个的变化规律,或该第一基底和该第二基底分别用于表示下行信道在联合空频域的变化规律;该处理器用于解析该第二CSI;该处理器用于根据定时信息,更新该第二基底为该第一基底;该收发器在该接入网设备更新第二基底为该第一基底之后接收该终端设备发送的第三CSI,该第三CSI包括第二线性组合系数的指示信息,该第三CSI是该终端设备基于更新后的该第二基底生成的,该终端设备发送该第三CSI的周期为第二周期;该处理器用于解析该第三CSI;该处理器用于根据该第一基底和该第二线性组合系数,确定预编码矩阵。
结合第五方面,在第五方面的一种可能的实现方式中,该定时信息是由该接入网设备确定或预先定义的。
结合第五方面,在第五方面的一种可能的实现方式中,当该定时信息是由该接入网设备确定时,该收发器还用于:向该终端设备发送该配置信息。
结合第五方面,在第五方面的一种可能的实现方式中,该收发器还用于:当没有成功获取该第一基底时,向该终端设备发送重传信令,该重传信令用于指示该终端设备重传该第一CSI;接收该终端设备重传的该第一CSI。
结合第五方面,在第五方面的一种可能的实现方式中,该接入网设备没有成功获取该第一基底包括:该收发器没有成功接收到该第一CSI;或者,该处理器没有成功解析该第一CSI。
结合第五方面,在第五方面的一种可能的实现方式中,该定时信息的时长为配置在该终端设备本地的信息,由协议预定义,接入网设备与终端设备均已知;或者,该接入网设备通过配置信息向该终端设备发送该第一周期的时长、该第二周期的时长和该定时信息的时长;或者该定时信息的时长也可以由终端设备确定后上报给接入网设备。
结合第五方面,在第五方面的一种可能的实现方式中,该配置信息和该重传信令中的至少一项包 括在无线资源控制层RRC信令、媒体接入控制层控制元素MAC-CE信令或下行控制信息DCI中。
第六方面,提供了一种接入网设备,包括:收发器,用于接收终端设备发送的第一信道状态信息CSI,该第一CSI包括统计特征子空间的第一基底的指示信息,该接入网设备接收该第一CSI的周期为第一周期;处理器,用于解该第一CSI;该收发器用于在该接入网设备更新第二基底为该第一基底之前接收该终端设备发送的第二CSI,该第二CSI包括第一线性组合系数的指示信息,该接入网设备接收该第二CSI的周期为第二周期,该第一周期大于该第二周期,该第一线性组合系数为该第二基底对应的组合系数,其中,该处理器当前使用的统计特征子空间基底为统计特征子空间的第二基底,该第二CSI是该终端设备基于该统计特征子空间的第二基底生成的,该第一基底和该第二基底不同,该第一基底和该第二基底分别用于表示下行信道在空域和频域中的至少一个的变化规律,或该第一基底和该第二基底分别用于表示下行信道在联合空频域的变化规律;该处理器用于解析该第二CSI;该接入网设备更新该第二基底为该第一基底;该收发器向该终端设备发送更新指示信息,该更新指示信息用于指示该终端设备更新该第二基底为该第一基底;该收发器在该接入网设备更新第二基底为该第一基底之后接收该终端设备发送的第三CSI,该第三CSI包括第二线性组合系数的指示信息,该第三CSI是该终端设备基于更新后的该第二基底生成的,该终端设备发送该第三CSI的周期为第二周期;该处理器用于解析该第三CSI;该处理器用于根据该第一基底和该第二线性组合系数,确定预编码矩阵。
结合第六方面,在第六方面的一种可能的实现方式中,该收发器还用于:当没有成功获取该第一基底时,向该终端设备发送重传信令,该重传信令用于指示该终端设备重传该第一CSI;接收该终端设备重传的该第一CSI。
结合第六方面,在第六方面的一种可能的实现方式中,该没有成功获取该第一基底包括:该收发器没有成功接收到该第一CSI;或者,该处理器没有成功解析该第一CSI。
结合第六方面,在第六方面的一种可能的实现方式中,该接入网设备通过配置信息向该终端设备发送该第一周期的时长和该第二周期的时长。
结合第六方面,在第六方面的一种可能的实现方式中,该更新指示信息和该重传信令中的至少一项通过无线资源控制层RRC信令、媒体接入控制层控制元素MAC-CE信令或下行控制信息DCI发送。
第七方面,提供了一种计算机程序产品,该计算机程序产品包括指令,当该指令在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法,或者执行第二方面或第二方面的任意可能的实现方式中的方法,或者执行第三方面或第三方面的任意可能的实现方式中的方法。
第八方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当该计算机程序被执行时,用于执行第一方面或第一方面的任意可能的实现方式中的方法,或者执行第二方面或第二方面的任意可能的实现方式中的方法,或者执行第三方面或第三方面的任意可能的实现方式中的方法。
第九方面,提供了一种芯片系统,该芯片系统包括处理器,用于通信装置实现上述各方面中所涉及的功能,例如,生成,接收,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存通信装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面的各方法及各种可能设计的功能的终端设备和具有实现上述第二方面的各方法及各种可能设计的功能的接入网设备;或者,该通信系统包括具有实现上述第一方面的各方法及各种可能设计的功能的终端设备和具有实现上述第三方面的各方法及各种可能设计的功能的接入网设备。
附图说明
图1示出了本申请的一种通信系统的示意性架构图;
图2示出了本申请的另一种通信系统的示意性架构图;
图3是一种用户设备向接入网设备反馈下行信道的CSI的方法的示意性流程图;
图4示出了在采用统计特征子空间码本时CSI的空口交互流程示意图;
图5是本申请的一种信道状态信息反馈的方法的示意性流程图;
图6是本申请提供的接入网设备和终端设备之间的空口交互示意性流程图;
图7是本申请提供的接入网设备和终端设备之间的空口交互示意性流程图;
图8是本申请的一种确定预编码矩阵的方法的示意性流程图;
图9是本申请提供的接入网设备和终端设备之间的空口交互示意性流程图;
图10是本申请提供的接入网设备和终端设备之间的空口交互示意性流程图;
图11是本申请提供的一种终端设备和接入网设备的模块交互示意图;
图12示出了本申请实施例的通信装置的示意性框图;
图13示出了本申请实施例的通信装置的示意性框图;
图14为本申请提供的一种终端设备的结构示意图;
图15为本申请提供的一种接入网设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(Global System For Mobile Communications,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR),此外,还可以适用于使用后续的演进系统,如第六代6G通信系统、甚至更高级的第七代7G通信系统等。
本申请实施例中的接入网设备可以是用于与终端设备通信的设备,可以是基站,或者接入点,或者网络设备,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。网络设备可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。网络设备还可协调对空中接口的属性管理。例如,接入网设备可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),也可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该接入设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的接入设备或者未来演进的PLMN网络中的网络设备等,可以是WLAN中的接入点(access point,AP),可以是新型无线系统(new radio,NR)系统中的gNB本申请实施例并不限定。需要说明的是,对于5G系统,在一个基站下,可能存在一个或多个发送接收点(Transmission Reception Point,TRP),所有的TRP属于同一个小区,其中,每个TRP和终端都可以使用本申请实施例所述的测量上报方法。在另一种场景下,网络设备还可以分为控制单元(Control Unit,CU)和数据单元(Data Unit,DU),在一个CU下,可以存在多个DU,其中,每个DU和终端都可以使用本申请实施例所述的测量上报方法。CU-DU分离场景和多TRP场景的区别在于,TRP只是一个射频单元或一个天线设备,而DU中可以实现协议栈功能,例如DU中可以实现物理层功能。
另外,在本申请实施例中,接入网设备是接入网(radio access network,RAN)中的设备,或者说,是将终端设备接入到无线网络的RAN节点。例如,作为示例而非限定,作为接入网设备,可以列举:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。
接入网设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与接入网设备进行通信,该小区可以是接入网设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
本申请实施例中的终端设备也可以称为:用户设备(user equipment,UE)、移动台(mobile station, MS)、移动终端(mobile terminal,MT)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
图1示出了本申请的一种通信系统100的示意图。在图1中包括一个接入网设备110、终端设备120、终端设备130、终端设备140、终端设备150、终端设备160和终端设备170。其中,接入网设备110例如工作在演进的通用移动通信系统陆地无线接入(evolved UMTS terrestrial radio access,E-UTRA)系统中,或者工作在NR系统中,或者工作在下一代通信系统或其他通信系统中,接入网设备110和终端设备120至终端设备170之间可以通过Uu接口通信,接入网设备110和终端设备120至终端设备170组成一个通信系统。在该通信系统中,终端设备120至终端设备170可以发送上行数据给接入网设备110,接入网设备110需要接收终端设备120至终端设备170发送的上行数据,接入网设备110可以向终端设备120至终端设备170可以发送下行数据。此外,终端设备150至终端设备170也可以组成一个通信系统。在该通信系统中,接入网设备可以发送下行信息给终端设备150,终端设备150也可以发送下行信息给终端设备160和170。
在本申请中,一个接入网设备可以服务于多个终端设备,图1只是以其中的部分终端设备为例。
图1中的接入网设备例如为基站。其中,接入网设备在不同的系统对应不同的设备,例如在4G系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB。本申请实施例所提供的技术方案也可以应用于未来的移动通信系统中,因此图1中的接入网设备也可以对应未来的移动通信系统中的接入网设备。图1以接入网设备是基站为例,实际上参考前文的介绍,接入网设备还可以是RSU等设备。
图2示出了本申请的另一种通信系统200的示意性架构图。如图2所示,多个接入网设备(接入网设备210、接入网设备220和接入网设备230)和多个终端设备(终端设备240、终端设备250和终端设备260)组成一个通信系,多个接入网设备同时服务一个终端设备。如接入网设备210、接入网设备220和接入网设备230同时服务于终端设备250。
图1或图2中的接入网设备例如为基站。其中,接入网设备在不同的系统对应不同的设备,例如 在4G系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB。本申请所提供的技术方案也可以应用于未来的移动通信系统中,因此图1中的接入网设备也可以对应未来的移动通信系统中的接入网设备。图1或图2以接入网设备是基站为例,实际上参考前文的介绍,接入网设备还可以是RSU等设备。
应理解,图1或图2所示的通信系统中还可以包括更多的网络节点,例如其他终端设备或接入网设备,图1或图2所示的通信系统中包括的接入网设备或者终端设备可以是上述各种形式的接入网设备或者终端设备。本申请实施例在图中不再一一示出。
5G通信系统对系统容量、频谱效率等方面有了更高的要求。在5G通信系统中,大规模多天线技术(Massive MIMO)的应用对提高系统的频谱效率起到了至关重要的作用。当采用MIMO技术时,接入网设备在向UE发送数据前,需要对数据进行预编码。而如何进行预编码,需要依靠用户设备向接入网设备反馈的信道状态信息(channel state information,CSI),因此准确的CSI反馈信息是影响系统性能的重要因素。
在时分双工(time division duplex,TDD)系统中,由于上行信道和下行信道使用相同的频段,因此具有互易性。接入网设备可以利用信道的互易性,通过上行信道来获取下行信道的CSI,进而进行预编码。
而在频分双工(frequency division duplex,FDD)系统中,由于上下行频带间的间隔大于带宽,因此上下行信道之间不具有完整的互易性。在传统的FDD系统中,需要用户设备向接入网设备反馈下行信道的CSI,基本流程如图3所示,图3是一种用户设备向接入网设备反馈下行信道的CSI的方法300的示意性流程图。该方法300包括S310至S340。
S310,接入网设备向终端设备发送信道测量配置信息,信道测量配置信息用于配置终端设备进行信道测量的时间及行为。
S320,接入网设备向终端设备发送参考信号用于信道测量。
S330,终端设备根据接入网设备发送的参考信号进行测量,根据测量结果进行计算得到最终的CSI反馈量,终端设备向接入网设备反馈CSI。
S340,接入网设根据终端设备反馈的CSI进行数据发送。
其中,CSI可以包括预编码矩阵指示(precoding matrix indicator,PMI)、信道秩指示(rank indicator,RI)、信道状态指示(channel quality indicator,CQI)等参数。示例性地,接入网设备可根据终端设备反馈的PMI确定给终端设备传输数据的预编码;接入网设备可根据终端设备反馈的RI确定给终端设备传输数据的流数;接入网设备可根据终端设备反馈的CQI确定给终端设备传输数据的调制阶数及信道编码的码率。
PMI是根据一套码本来确定和上报的,用于指示预编码矩阵,网络设备基于PMI和该码本恢复出该预编码矩阵。该预编码矩阵可以是网络设备基于各个频域单元的信道矩阵确定的预编码矩阵,例如,预编码矩阵可以通过对信道矩阵或信道矩阵的协方差矩阵进行奇异值分解(singular value decomposition,SVD)的方式获得,或者,也可以通过对信道矩阵的协方差矩阵进行特征值分解(eigenvalue decopomsition,EVD)的方式获得。该预编码矩阵包含网络设备发送端的信道信息。FDD CSI码本的设计是5G通信系统中的一个基本且重要的问题。
第三代合作伙伴计划(3rd generation partnership project,3GPP)R15版本的类型II(Type II)码本采用的是空域(角度域)压缩的思想,利用信道在角度域的稀疏性,即多径信号在某几个角度方向上能量较强,在其余方向上能量较弱,则利用空域离散傅里叶变换(discrete fourier transform,DFT)基向量来表示这个能量较强的角度方向,将预编码矩阵用若干的空域DFT基向量线性组合表征。3GPP R16 Type II码本则提出了一种双域压缩的思想,在R15码本的基础上利用不同子带的幅度和相位系数所具有的频域相关性增加了频域(时延域)的压缩,在空域和频域分别对信道信息进行压缩反馈,用空频分量矩阵的加权和近似表征预编码矩阵。其中,该空频分量矩阵是由经过空域压缩的一个或多个空域基向量和经过频域压缩的一个或多个频域基向量所构建的。
相比R15码本,R16码本进一步利用到了信道的时延域稀疏性,即多径信号在某几个时延分量上能量较强,在其余时延分量上能量均较弱,完成相应的频域压缩。但是上述双域压缩码本仅分别利用了信道在角度域(空域)和时延域(频域)的稀疏性,需要上报所选择的一个或多个空域基向量、一个或多个频域基向量以及根据一个或多个空域基向量和一个或多个频域基向量所构建的空频分量矩阵 对应的加权系数,开销还是较大。另外,在协议中规定空域基向量和频域基向量均为DFT向量,在角度域和时延域的分辨率有限,所以空域基向量、频域基向量的分别上报限制了加权系数矩阵的稀疏性,导致系统性能较低。
为了充分利用信道在空域和频域的稀疏性,进一步降低PMI反馈的开销,可以采用统计特征子空间的码本的方式进行反馈,该码本利用长周期统计的特征子空间基底以及相应的线性组合系数来表示下行信道或者预编码矩阵。
该码本可以是类似于R16 Type II码本的空域、频域各用一组统计特征子空间基底通过双线性组合的形式来表征。进一步地,该码本也可以是空域频域联合的,用一组空频联合的特征子空间基底线性组合表征。统计特征子空间基底是可用于表示信道在空域、频域、或者联合空频域的统计变化规律的特征向量或向量组,通常是通过对信道的统计协方差矩阵做特征值分解得到的。联合空频域是空域和频域的联合域,一般而言,信号径过多条路径传播,以不同的角度离开发射端,经过不同的时延以不同的角度到达接收端。空域主要描述信道的角度方向特征,频域主要描述信道的时延分布特征,都是从单个维度来考虑的。而联合空频域考虑的是空域和频域的联合,主要描述多径的角度方向和时延分布特征,且角度方向和时延分布是一一对应的。其中,用于表示信道在空域统计变化规律的统计特征子空间基底简称为空域基底,用于表示信道在频域统计变化规律的统计特征子空间基底简称为频域基底,用于表示信道在联合空频域统计变化规律的统计特征子空间基底简称为空频联合基底。
由于特征子空间基底描述的是信道在所在域(如空域、频域或联合空频域)的统计特征,变化缓慢,对于此类码本,终端设备可以以长周期(即第一周期)反馈统计特征子空间基底;由于线形组合系数描述的是信道中路径的强度或相位等变化较快的量,因此,终端设备可以以短周期(即第二周期)反馈基底对应的线性组合系数。应理解,长周期和短周期是相对的概念,其中,第一周期的时长大于第二周期的时长,例如第一周期的时长为第二周期的时长的多个整数倍。接入网设备根据终端设备以第一周期上报的CSI上报量恢复特征子空间基底,根据终端设备以第二周期上报的线性组合系数,恢复终端设备在各个第二周期的预编码矩阵。对于这种存在长周期和短周期的CSI上报码本,接入网设备恢复时用到的长周期基底与短周期线性组合系数需要匹配,如何对齐终端设备和接入网设备关于长周期特征子空间基底更新与否是十分重要的,若接入网设备在恢复预编码矩阵时出现长周期基底与短周期线性组合系数失配的问题,会导致预编码矩阵不准确,从而出现性能损失。
如图4所示,图4示出了在采用统计特征子空间码本时CSI的空口交互流程示意图。终端设备通过长周期(即第一周期)CSI上报量反馈统计特征子空间的第一基底B,通过短周期(即第二周期)CSI上报量反馈第一基底B对应的线性组合系数C2,接入网设备以第二周期向终端设备发送信道状态信息-参考信号(channel state information-reference signal,CSI-RS)。终端设备在各个第二周期接收CSI-RS,并根据当前及历史多次短周期的CSI-RS测量结果确定统计特征子空间第一基底B并以第一周期反馈给接入网设备。同时终端设备根据短周期的CSI-RS测量结果结合统计特征子空间第一基底B确定线性组合系数C2并以第二周期地反馈给接入网设备。如图4所示,图4示出了两个第一周期的空口交互过程。在第一个第一周期开始阶段,UE接收到RAN设备发送的CSI-RS,UE根据当前及历史多次的CSI-RS测量结果确定统计特征子空间第一基底B并反馈给RAN设备(见图4中的第一B)。在第一个第一周期内,UE根据多个第二周期的CSI-RS测量结果结合统计特征子空间第一基底B(见图4中的第一B)确定线性组合系数C2并以第二周期反馈给RAN设备(见图4中的第一C2和第二C2)。RAN设备根据第一B和在第一个第一周期内的多个第二周期接收的线性组合系数C2(如第一C2和第二C2)分别确定对应该多个第二周期的预编码矩阵(如根据第一B和第一C2确定的预编码矩阵以及根据第一B和第二C2确定的预编码矩阵)。在第二个第一周期开始阶段,UE接收到RAN设备发送的CSI-RS,UE根据当前及历史多次的CSI-RS测量结果确定统计特征子空间第一基底B并反馈给RAN设备(见图4中的第二B)。在第二个第一周期内,UE根据多个第二周期的CSI-RS测量结果结合统计特征子空间第一基底B(见图4中的第二B)确定线性组合系数C2并以第二周期反馈给RAN设备(见图4中的第三C2和第四C2)。RAN设备根据第二B和在第二个第一周期内的多个第二周期接收的线性组合系数C2(如第三C2和第四C2)分别确定对应该多个第二周期的预编码矩阵(如根据第二B和第三C2确定的预编码矩阵以及根据第二B和第四C2确定的预编码矩阵)。
应理解,在本申请实施例中,仅以CSI-RS为例进行描述,但并不限定为CSI-RS,接入网设备还可以通过配置终端设备测量其他参考信号,如同步信号块(synchronization signal block,SSB)、解调 参考信号(demodulationreference sgnal,DMRS)、小区参考信号(cell reference signal,CRS)等,使得终端设备通过长周期(即第一周期)CSI上报量反馈测量得到的统计特征子空间的第一基底B,通过短周期(即第二周期)CSI上报量反馈第一基底B对应的线性组合系数C2。
应注意的是,由于信道的变化,因此UE在第一个第一周期反馈的第一基底B可能与在第二个第一周期反馈的第一基底B不同,同样UE在每个第二周期反馈的线性组合系数C2可能也不相同。
可见,接入网设备向终端设备发送CSI-RS的周期是第二周期,终端设备向接入网设备反馈统计特征子空间第一基底B的周期是第一周期,终端设备向接入网设备反馈统计特征子空间第一基底B是多次累计测量的结果;终端设备向接入网设备反馈线性组合系数C2的周期是第二周期。例如,接入网设备向终端设备发送CSI-RS的周期是5ms,终端设备向接入网设备反馈统计特征子空间第一基底B的周期为200ms,终端设备向接入网设备反馈线性组合系数C2的周期为5ms。
对于终端设备而言,根据信道测量结果长周期的计算统计特征子空间第一基底B并上报,且直至下一次计算新的长周期统计特征子空间基底之前,终端设备都是根据当前的统计特征子空间第一基底B结合信道测量结果来计算短周期线性组合系数C2并上报。而对于接入网设备而言,接入网设备接收当前的长周期CSI上报量后,根据此上报量更新接入网设备保存的统计特征子空间基底为第一基底B,此后直至下一次接收长周期上报量前,接入网设备均基于当前的统计特征子空间第一基底B和根据每次短周期CSI上报量确定的短周期线性组合系数C2恢复预编码矩阵。
由此可见,终端设备短周期线性组合系数的计算与统计特征子空间基底相关,且接入网设备恢复预编码矩阵时使用的长周期统计特征子空间基底及短周期线性组合系数是否匹配对预编码矩阵准确度有着较大的影响。
接入网设备和终端设备的长周期统计特征子空间基底更新对齐方式主要存在以下两方面的问题:
(1)终端设备上报长周期当前统计特征子空间第一基底B后,直至下一次计算新的长周期统计特征子空间基底之前,终端设备都是根据当前特征子空间第一基底B来计算短周期线性组合系数并上报的。但在实际系统中,从终端设备发送长周期上报量到接入网设备接收并成功恢复长周期统计特征子空间第一基底B是需要一段时间的,在这段时间里,接入网设备用接收到的短周期线性组合系数C2来恢复预编码矩阵时会基于上一个长周期更新的特征子空间基底,因此存在短周期线性组合系数与统计特征子空间基底不匹配的问题,导致性能损失。
(2)接入网设备在接收长短周期CSI上报量时均可能出现丢失或解码错误的情况。对于短周期上报量解错或丢失,仅会影响当次预编码矩阵的恢复结果。但若接入网设备未能正确解码长周期上报量,则接入网设备在之后的一个长周期里会用上一周期的统计特征子空间基底恢复预编码,此时终端设备短周期上报的线性组合系数都是基于当前统计特征子空间第一基底B计算得到的,使得当前整个长周期里接入网设备恢复预编码矩阵时都存在短周期线性组合系数与统计特征子空间基底不匹配的问题,从而导致一整个长周期内的性能损失。
综上所述,上述两种情况下存在短周期线性组合系数与长周期特征子空间基底不匹配导致性能损失的可能。
因此,本申请提出了一种信道信息反馈的方法,可以解决短周期线性组合系数与长周期空频联合基底不匹配导致预编码矩阵不准确带来的性能损失的问题。
下面结合图5详细说明本申请提供的一种信道信息反馈的方法,图5是本申请的一种信道状态信息反馈的方法400的示意性流程图。该方法400可以应用上述应用场景中,当然也可以应用在其他通信场景中,本申请在此不作限制。
还应理解,在本申请实施例中,以接入网设备和终端设备作为执行方法的执行主体为例,对方法进行说明。作为示例而非限定,执行方法的执行主体也可以是应用于终端设备和接入网设备的芯片、芯片系统、或处理器等。
如图5所示,图5中示出的方法400可以包括S410至S460。下面结合图5详细说明方法400中的各个步骤。
S410,终端设备向接入网设备发送第一CSI,相应地,接入网设备接收来自终端设备的第一CSI。第一CSI包括统计特征子空间的第一基底的指示信息,终端设备发送第一CSI的周期为第一周期,第一基底用于表示下行信道在空域和/或的变化规律,或者第一基底用于表示下行信道在联合空频域的变化规律。
应理解,第一基底的指示信息直接或间接指示了第一基底,也可以是指示部分或全部的第一基底,根据第一基底的指示信息可以确定第一基底。如,可以预先建立指示信息与第一基底的映射关系,并在接入网设备和终端设备上保存有指示信息与第一基底的映射关系,终端设备向接入网设备发送第一基底的指示信息,接入网设备收到第一基底的指示信息后,根据指示信息与第一基底的映射关系,确定第一基底。这样做,可以节省信令开销。
终端设备周期性地向接入网设备发送第一CSI,发送的周期为第一周期,即每一个第一周期的起始时刻或终止时刻终端设备向接入网设备发送第一CSI。
应理解,第一基底可以通过向量或向量组来表示下行信道在空域和/或频域的变化规律,或者第一基底也可以通过向量或向量组来表示下行信道在联合空频域的变化规律。
S420,终端设备向接入网设备发送第二CSI,相应地,接入网设备接收来自终端设备的第二CSI。第二CSI包括第一线性组合系数的指示信息。终端设备发送第二CSI的周期为第二周期,第一线性组合系数为第二基底对应的组合系数。
应理解,第一线性组合系数的指示信息直接或间接指示了第一线性组合系数,也可以是指示部分或全部的第一线性组合系数,根据第一线性组合系数的指示信息可以确定第一线性组合系数。如,可以预先建立指示信息与第一线性组合系数的映射关系,并在接入网设备和终端设备上保存有指示信息与第一线性组合系数的映射关系,终端设备向接入网设备发送第一线性组合系数的指示信息,接入网设备收到第一线性组合系数的指示信息后,根据指示信息与第一线性组合系数的映射关系,确定第一线性组合系数。这样做,可以节省信令开销。
其中,第一线性组合系数是与统计特征子空间的第二基底匹配的。应理解,终端设备在发送第二CSI时使用的统计特征子空间基底为第二基底,第二基底是在终端设备发送第二CSI所处的第一周期的前一个第一周期上报给接入网设备的,第一基底是在终端设备发送第二CSI所处的第一周期上报给接入网设备的,即第二基底为前一个第一基底。
终端设备以第二周期向接入网设备发送第二CSI,即每一个第二周期的起始时刻或终止时刻终端设备向接入网设备发送第二CSI。需要说明的是,第一周期和第二周期的时长可以是接入网设备确定的并通过配置信息向终端设备发送第一周期的时长和第二周期的时长。
在一种可能的实现方式中,接入网设备以第二周期向终端设备发送CSI-RS,终端设备以第一周期向接入网设备发送第一CSI,终端设备以第二周期向接入网设备发送第二CSI。在另一种可能的实现方式中,接入网设备以第一周期向终端设备发送上报第一CSI的第一触发信息,终端设备接收到第一触发信息后,向接入网设备发送第一CSI。接入网设备以第二周期向终端设备发送上报第二信道状态信息的第二触发信息,终端设备接收到第二触发信息后,向接入网设备发送第二CSI。
应理解,第一CSI可以与第二CSI同时上报,也可以分开上报。即第一基底的指示信息和第一线性组合系数的指示信息可以在一个CSI中上报,也可以在不同的CSI中上报。
此时,接入网设备使用的统计特征子空间基底同样为第二基底,第二基底是接入网设备根据前一个第一CSI获取的。此时,接入网设备根据第二基底和第一线性组合系数来确定预编码矩阵。
应理解,在S420中,接入网设备在确定预编码矩阵时使用的基底为第二基底,终端设备基于第二基底上报第二CSI。
S430,接入网设备根据定时信息,更新统计特征子空间的第二基底为第一基底。
S440,终端设备根据定时信息,更新统计特征子空间的第二基底为第一基底。
在一种可能的实现方式中,定时信息可以通过定时器实现,如设定时长为20ms。接入网设备上配置的定时信息与终端设备上配置的定时信息的时长可以相同也可以不同。例如,在考虑终端设备与接入网设备之间的信息传播时间以及接入网设备上的解析第一CSI的时间时,接入网设备上的定时信息的时长可以大于终端设备上的定时信息的时长。又例如,如果不考虑终端设备与接入网设备之间的信息传播时间以及接入网设备上的解析第一CSI的时间时,接入网设备上的定时信息的时长可以等于终端设备上的定时信息的时长。
使用定时信息的目的在于使得终端设备和接入网设备可以共同更新统计特征子空间的第二基底为第一基底。定时信息如何配置给终端设备和接入网设备可以有多种实现方式。
可选的,定时信息是预先配置在接入网设备和终端设备上的定时信息,如在通信协议中规定的,接入网设备与终端设备均已知。
可选的,定时信息是接入网设备确定的,并通过配置信息发送给终端设备。
可选的,定时信息是终端设备确定的,并上报给接入网设备。应理解,在终端设备和接入网设备同步更新第二基底为第一基底之前,终端设备周期性的向接入网设备发送第二CSI。相应的,接入网设备周期性的接收终端设备发送的第二CSI。
S450,终端设备向接入网设备发送第三CSI。相应的,接入网设备接收来自终端设备的第三CSI。
第三CSI包括第二线性组合系数的指示信息,第三信CSI是终端设备基于更新后的第二基底(即第一基底)生成的,即终端设备基于与当前时刻最接近的第一CSI所指示的第一基底生成第三CSI。终端设备发送的第三CSI的周期为第二周期。
在终端设备和接入网设备均更新第二基底为第一基底之后,终端设备周期性的向接入网设备发送第三CSI。相应的,接入网设备周期性的接收来自终端设备的第三CSI。例如,接入网设备以第二周期向终端设备发送CSI-RS,终端设备接收到CSI-RS后,同样以第二周期向接入网设备发送第三CSI。
接入网设备解析终端设备发送的第三CSI,获取第二线性组合系数的指示信息,确定第二线性组合系数。
S460,接入网设备根据第一基底和第二线性组合系数,确定预编码矩阵。
在方法400中,接入网设备和终端设备根据定时信息,实现接入网设备和终端设备共同更新统计特征子空间的基底,从而使得接入网设备获取的以第二周期上报的第二线性组合系数能够匹配用于恢复预编码矩阵的统计特征子空间的第一基底,提高预编码矩阵的准确度,提高系统性能。
为了更清楚的理解方法400,下面再通过接入网设备和终端设备之间的空口交互示意性流程图予以说明。图6是本申请提供的接入网设备和终端设备之间的空口交互示意性流程图。如图6所示,在第一个第一周期,接入网设备以第二周期向终端设备发送CSI-RS。终端设备接收CSI-RS,终端设备根据本次测量下行信道的结果以及在本次之前的一次或多次测量下行信道的结果确定统计特征子空间第二基底终端设备在第一个第一周期起始时刻向接入网设备反馈第二基底应理解,在第一个第一周期内,接入网设备和终端设备也会更新基底,这一过程可以参考下述第二个第一周期接入网设备和终端设备更新基底的描述。还应理解,在第一个第一周期内,接入网设备会以第二周期接收终端设备反馈的第一线性组合系数。在第二个第一周期,接入网设备以第二周期向终端设备发送CSI-RS。终端设备接收CSI-RS,终端设备根据本次测量下行信道的结果以及在本次之前的一次或多次测量下行信道的结果确定统计特征子空间第一基底B并在第二个第一周期起始时刻向接入网设备反馈,终端设备根据本次测量下行信道的结果结合前一个统计特征子空间第二基底确定第一线性组合系数C2并向接入网设备反馈,应理解,终端设备可以在一个消息中反馈第一基底B和第一线性组合系数C2,也可以分开反馈第一基底B和第一线性组合系数C2。接入网设备当前正在使用的是第二基底接入网设备根据前一个统计特征子空间第二基底和第一线性组合系数C2确定预编码矩阵。终端设备根据定时信息开始自身定时器计时(如终端设备向接入网设备发送第一基底B后),接入网设备根据定时信息开始自身定时器计时(如接入网设备在收到终端设备反馈的第一基底B时开始计时)。接入网设备以第二周期向终端设备发送CSI-RS,终端设备接收CSI-RS,根据测量结果向接入网设备反馈第一线性组合系数C2,接入网设备依然根据第二基底和第一线性组合系数C2确定预编码矩阵。在终端设备和接入网设备各自的定时信息到时时,接入网设备和终端设备同时将第二基底更新为第一基底B。终端设备和接入网设备将各自定时器重置。此后,终端设备根据第一基底B向接入网设备上报第二线性组合系数C'2,接入网设备根据已经更新的第一基底B和终端设备上报的第二线性组合系数C'2来确定预编码矩阵。直至在下一个第一周期终端设备反馈统计特征子空间基底,再进行上述图6描述的流程。接入网设备和终端设备根据定时信息,更新统计特征子空间的基底,从而使得接入网设备在接收到短周期线性组合系数时,能够匹配相应的统计特征子空间基底,解决了短周期线性组合系数与统计特征子空间基底不匹配的问题。
应理解,在上述图6的描述中,终端设备向接入网设备上报基底或线性组合系数,只是为了便于描述,通常终端设备向接入网设备上报的不是基底或线性组合系数,而是基底的指示信息或线性组合系数的指示信息,以此来降低信令开销。下述图7、图9和图10也是为了便于描述,并不对本申请造成任何限定。
还应理解,图6中第一周期和第二周期的描述可以参考上述图4中第一周期和第二周期的描述的描述,此处不再赘述。
在一种可能的实现方式中,接入网设备存在没有获取到第一基底的指示信息的情况。例如,接入网设备没有接收到当前第一CSI;或者接入网设备接收到了当前第一CSI,但是没有成功解析当前第一CSI,没有获取到第一基底的指示信息。当接入网设备在没有获取到第一基底的指示信息时,该方法400还可以包括:接入网设备向终端设备发送重传信令,重传信令用于指示终端设备重传第一CSI,终端设备接收重传信令,终端设备向接入网设备重传第一CSI。
例如,终端设备向接入网设备发送第一CSI后,启动定时信息。终端设备在定时信息的时长内接收到重传信令,终端设备停止当前定时,终端设备向接入网设备重传第一CSI后,再次重新启动定时器。接入网设备接收终端设备发送的重传信令获取第一基底的指示信息,再次重新启动定时器。当再次重新启动的定时器的时间到时时,接入网设备和终端设备将同时将第二基底更新为第一基底。
又例如,终端设备向接入网设备发送第一CSI后,启动定时信息。终端设备在定时信息的时长内接收到重传信令,终端设备向接入网设备重传第一CSI。接入网设备接收终端设备发送的重传信令获取第一基底的指示信息。当定时器的时间到时时,接入网设备和终端设备将同时将第二基底更新为第一基底。在终端设备和接入网设备都不重启定时器时,定时器的时长应该设定的较长,如定时器的时长大于重传信令的传播时延。
在接入网设备没有获取到第一基底的指示信息的情况下,接入网设备通过向终端设备发送重传信令指示终端设备重传第一CSI,从而重新获取第一基底的指示信息,然后接入网设备和终端设备根据定时信息,更新统计特征子空间的第二基底为第一基底。从而使得接入网设备根据接收到的以第二周期上报的第二线性组合系数的指示信息所获取的第二线性组合系数时,能够匹配用于恢复预编码矩阵的统计特征子空间的第一基底,提高预编码矩阵的准确度,提高系统性能。
可选的,重传信令可以通过无线资源控制层(Radio Resource Control,RRC)信令、媒体接入控制层控制元素(Media Access Control-Control Element,MAC-CE)信令或下行控制信息(Downlink Control Information,DCI)发送。
为了更清楚的理解接入网设备发送重传信令时,终端设备和接入网设备更新统计子空间特征基底的过程,下面再通过接入网设备和终端设备之间的空口交互示意性流程图予以说明。图7是本申请提供的接入网设备和终端设备之间的空口交互示意性流程图。如图7所示,在第一个第一周期,接入网设备以第二周期向终端设备发送CSI-RS。终端设备接收CSI-RS,终端设备根据本次测量下行信道的结果以及在本次之前的一次或多次测量下行信道的结果确定统计特征子空间第二基底终端设备在第一个第一周期起始时刻向接入网设备反馈第二基底(可以看作第一个第一周期),应理解,在第一个第一周期内,接入网设备和终端设备也会更新基底,这一过程可以参考下述第二个第一周期接入网设备和终端设备更新基底的描述。还应理解,在第一个第一周期内,接入网设备会以第二周期接收终端设备反馈的第一线性组合系数。在第二个第一周期,接入网设备以第二周期向终端设备发送CSI-RS。终端设备接收CSI-RS,终端设备根据本次测量下行信道的结果以及在本次之前的一次或多次测量下行信道的结果确定统计特征子空间第一基底B并在第二个第一周期起始时刻向接入网设备反馈,终端设备根据本次测量下行信道的结果结合前一个统计特征子空间第二基底确定第一线性组合系数C2并向接入网设备反馈,此时,接入网设备当前正在使用的是第二基底接入网设备根据第二基底和第一线性组合系数C2确定预编码矩阵。接入网设备没有成功获取到第一基底B,接入网设备向终端设备发送重传信令,终端设备接收接入网设备发送的重传信令,并向接入网设备重传统计特征子空间第一基底B。此时,即终端设备在发送重传信令后根据定时信息开始计时,接入网设备接收重传信令后根据定时信息开始计时。接入网设备以第二周期向终端设备发送CSI-RS,终端设备接收CSI-RS,根据测量结果向接入网设备反馈线性组合系数第一线性组合系数C2,终端设备依然根据前一个统计特征子空间第二基底和第一线性组合系数C2确定预编码矩阵。在终端设备和接入网设备各自的定时信息到时时,接入网设备和终端设备同时将第二基底更新为第一基底B。终端设备和接入网设备将各自定时器重置。此后,终端设备根据第一基底B向接入网设备上报第二线性组合系数C'2,接入网设备根据已经替换的第一基底B和终端设备上报的第二线性组合系数C'2来确定预编码矩阵。直至在下一个第一周期终端设备反馈统计特征子空间基底,再进行上述图7描述的流程。在接入网设备没有获取到第一基底的指示信息的情况下,接入网设备通过向终端设备发送重传信令指示终端设备重传当前第一信道状态信息,从而重新获取第一基底的指示信息,然后接入网设备和终端设备根据定时信息,更新统计特征子空间的第二基底为第一基底。从而使得接入网设备在接收到短周期线性组合系数时,能够匹 配相应的统计特征子空间基底,解决了短周期线性组合系数与统计特征子空间基底不匹配的问题。
还应理解,图7中第一周期和第二周期的描述可以参考上述图4中第一周期和第二周期的描述的描述,此处不再赘述。
下面结合图8详细说明本申请提供的另一种确定预编码矩阵的方法500,图8是本申请的一种确定预编码矩阵的方法500的示意性流程图。该方法500可以应用上述应用场景中,当然也可以应用在其他通信场景中,本申请在此不作限制。
还应理解,在本申请实施例中,以接入网设备和终端设备作为执行方法的执行主体为例,对方法进行说明。作为示例而非限定,执行方法的执行主体也可以是应用于终端设备和接入网设备的芯片、芯片系统、或处理器等。
如图8所示,图8中示出的方法500可以包括S510至S570。下面结合图8详细说明方法500中的各个步骤。
S510,终端设备向接入网设备发送第一CSI,相应地,接入网设备接收来自终端设备的第一CSI。第一CSI包括统计特征子空间的第一基底的指示信息,终端设备发送第一CSI的周期为第一周期,第一基底用于表示下行信道在空域和/或频域的变化规律,或者第一基底还用于表示下行信道在联合空频域的变化规律。
应理解,关于第一基底的指示信息的描述可以参考方法400中步骤S410的描述,此处不再赘述。
终端设备周期性地向接入网设备发送第一CSI,发送的周期为第一周期,即每一个第一周期的起始时刻或终止时刻终端设备向接入网设备发送第一CSI。
有关第一基底的描述可以参考方法400中的对应描述,为了避免重复,此处不再赘述。
S520,终端设备向接入网设备发送第二CSI,相应地,接入网设备接收来自终端设备的第二CSI。第二CSI包括第一线性组合系数的指示信息。终端设备发送第二CSI的周期为第二周期,第一线性组合系数为第二基底对应的组合系数。
应理解,关于第一线性组合系数的指示信息的描述可以参考方法400中步骤S420的描述,此处不再赘述。
其中,第一线性组合系数是与统计特征子空间的第二基底匹配的。应理解,终端设备在发送第二CSI时使用的统计特征子空间基底为第二基底,第二基底是在终端设备发送第二CSI所处的第一周期的前一个第一周期里上报给接入网设备的,第一基底是终端设备发送第二CSI所处的第一周期里反馈给接入网设备的,即第二基底为前一个第一基底。
终端设备以第二周期向接入网设备发送第二CSI,即每一个第二周期的起始时刻或终止时刻终端设备向接入网设备发送第二CSI。需要说明的是,第一周期和第二周期的时长可以是该接入网设备确定的并通过配置信息向终端设备发送第一周期的时长和第二周期的时长。
有关第一周期与第二周期的描述,可以参考方法400中的相关描述,此处不再赘述。
应理解,第一CSI可以与第二CSI同时上报,也可以分开上报。即第一基底的指示信息和第一线性组合系数的指示信息可以在一个CSI中上报,也可以在不同的CSI中上报。
此时,接入网设备使用的统计特征子空间基底同样为第二基底,第二基底是接入网设备根据前一个第一CSI获取的。此时,接入网设备根据第二基底和第一线性组合系数来确定预编码矩阵。
应理解,在步骤S510至步骤S520中,接入网设备在确定预编码矩阵时使用的基底为第二基底,终端设备基于第二基底上报第二CSI。
S530,接入网设备向终端设备发送更新指示信息,更新指示信息用于指示终端设备更新统计特征子空间的第二基底为第一基底。相应地,终端设备接收来自接入网设备的更新指示。
S540,接入网设备向终端设备发送更新指示信息后,接入网设备更新统计特征子空间的第二基底为第一基底。
S550,终端设备根据更新指示信息更新统计特征子空间的第二基底为第一基底。
S560,终端设备向接入网设备发送第三CSI。相应的,接入网设备接收来自终端设备的第三CSI。
第三CSI包括第二线性组合系数的指示信息,第三CSI是终端设备基于更新后的第二基底(即第一基底)生成的,即终端设备基于与当前时刻最接近的第一CSI所指示的第一基底生成第三CSI。终端设备发送的第三CSI的周期为第二周期。
在终端设备和接入网设备均更新第二基底为第一基底之后,终端设备周期性的向接入网设备发送 第三CSI。相应的,接入网设备周期性的接收来自终端设备的第三CSI。例如,接入网设备以第二周期向终端设备发送CSI-RS,终端设备接收到CSI-RS后,同样以第二周期向接入网设备发送第三CSI。
接入网设备解析终端设备发送的第三CSI,获取第二线性组合系数的指示信息,确定第二线性组合系数。
S570,接入网设备根据第一基底和第二线性组合系数,确定预编码矩阵。
在方法500中,在接入网设备确定新统计特征子空间的基底时,接入网设备向终端设备发送更新指示指示终端设备更新统计特征子空间的基底,同时接入网设备将第二基底更新为第一基底,实现接入网设备和终端设备共同更新统计特征子空间的基底,从而使得接入网设备获取的以第二周期上报的第二线性组合系数能够匹配用于恢复预编码矩阵的统计特征子空间的第一基底,提高预编码矩阵的准确度,提高系统性能。
为了更清楚的理解方法500,下面再通过接入网设备和终端设备之间的空口交互示意性流程图予以说明。图9是本申请提供的接入网设备和终端设备之间的空口交互示意性流程图。如图9所示,在第一个第一周期,接入网设备以第二周期向终端设备发送CSI-RS。终端设备接收CSI-RS,终端设备根据本次测量下行信道的结果以及在本次之前的一次或多次测量下行信道的结果确定统计特征子空间第二基底终端设备在第一个第一周期起始时刻向接入网设备反馈第二基底(可以看作第一个第一周期),应理解,在第一个第一周期内,接入网设备和终端设备也会更新基底,这一过程可以参考下述第二个第一周期接入网设备和终端设备更新基底的描述。还应理解,在第一个第一周期内,接入网设备会以第二周期接收终端设备反馈的第一线性组合系数。在第二个第一周期,接入网设备以第二周期向终端设备发送CSI-RS。终端设备接收CSI-RS,终端设备根据本次测量下行信道的结果以及在本次之前的一次或多次测量下行信道的结果确定统计特征子空间第一基底B并在第二个第一周期起始时刻向接入网设备反馈,终端设备根据本次测量下行信道的结果结合前一个统计特征子空间第二基底确定第一线性组合系数C2并向接入网设备反馈,应理解,终端设备可以在一个消息中反馈第一基底B和第一线性组合系数C2,也可以分开反馈第一基底B和第一线性组合系数C2。此时,接入网设备当前正在使用第二基底接入网设备根据第二基底和第一线性组合系数C2确定预编码矩阵。接入网设备更新第二基底为第一基底B,接入网设备向终端设备发送更新指示,指示终端设备更新第二基底为第一基底B。终端设备接收到指示信息后,更新第二基底为第一基底B。此后,终端设备根据第一基底B向接入网设备上报第二线性组合系数C'2,接入网设备根据第一基底B和终端设备上报的第二线性组合系数C'2来确定预编码矩阵。直至在下一个第一周期终端设备反馈统计特征子空间基底,再进行上述图9描述的流程。
还应理解,图9中第一周期和第二周期的描述可以参考上述图4中第一周期和第二周期的描述的描述,此处不再赘述。
可选的,指示信息可以通过无线资源控制层(Radio Resource Control,RRC)信令、媒体接入控制层控制元素(Media Access Control-Control Element,MAC-CE)信令或下行控制信息(Downlink Control Information,DCI)发送。
在一种可能的实现方式中,接入网设备存在没有获取到第一基底的指示信息的情况。例如,接入网设备没有接收到当前第一信道状态信息;或者接入网设备接收到了当前第一信道状态信息,但是没有成功解析当前第一信道状态信息,没有获取到第一基底的指示信息。当接入网设备在没有获取到第一基底的指示信息时,该方法500还可以包括:接入网设备向终端设备发送重传信令,重传信令用于指示终端设备重传第一信道状态信息,终端设备接收重传信令并向接入网设备重传第一信道状态信息。接入网设备接收终端设备重传的第一信道状态信息,获取第一基底的指示信息。在接入网设备获取第一基底的指示信息后,接入网设备向终端设备发送指示信息,指示信息用于指示终端设备更新统计特征子空间的第二基底为第一基底。接入网设备向终端设备发送指示信息后,接入网设备更新统计特征子空间的第二基底为第一基底。
在接入网设备没有获取到第一基底的指示信息的情况下,接入网设备通过向终端设备发送重传信令指示终端设备重传第一信道状态信息,从而重新获取第一基底的指示信息,然后接入网设备确定新统计特征子空间的基底时,接入网设备向终端设备发送指示信息指示终端设备更新统计特征子空间的基底,可以实现接入网设备和终端设备同步更新统计特征子空间的基底,从而使得接入网设备根据接 收到的以第二周期上报的第二线性组合系数的指示信息所获取的第二线性组合系数时,能够匹配用于恢复预编码矩阵的统计特征子空间的第一基底,提高预编码矩阵的准确度,提高系统性能。
为了更清楚的理解接入网设备发送重传信令时,终端设备和接入网设备更新统计子空间特征基底的过程,下面再通过接入网设备和终端设备之间的空口交互示意性流程图予以说明。图10是本申请提供的接入网设备和终端设备之间的空口交互示意性流程图。如图10所示,在第一个第一周期,接入网设备以第二周期向终端设备发送CSI-RS。终端设备接收CSI-RS,终端设备根据本次测量下行信道的结果以及在本次之前的一次或多次测量下行信道的结果确定统计特征子空间第二基底终端设备在第一个第一周期起始时刻向接入网设备反馈第二基底(可以看作第一个第一周期),应理解,在第一个第一周期内,接入网设备和终端设备也会更新基底,这一过程可以参考下述第二个第一周期接入网设备和终端设备更新基底的描述。还应理解,在第一个第一周期内,接入网设备会以第二周期接收终端设备反馈的第一线性组合系数。在第二个第一周期,接入网设备以第二周期向终端设备发送CSI-RS。终端设备接收CSI-RS,终端设备根据本次测量下行信道的结果以及在本次之前的一次或多次测量下行信道的结果确定统计特征子空间第一基底B在第二个第一周期起始时刻并向接入网设备反馈,终端设备根据本次测量下行信道的结果结合前一个统计特征子空间第二基底确定第一线性组合系数C2并向接入网设备反馈,此时,接入网设备当前正在使用的是第二基底接入网设备根据第二基底和第一线性组合系数C2确定预编码矩阵。接入网设备没有成功获取到第一基底B,接入网设备向终端设备发送重传信令,终端设备接收接入网设备发送的重传信令,并向接入网设备重传统计特征子空间第一基底B。接入网设备获取第一基底B后,接入网设备更新第二基底为第一基底B,接入网设备向终端设备发送更新指示,指示终端设备更新第二基底为第一基底B。终端设备接收到指示信息后,更新第二基底为第一基底B。此后,终端设备根据第一基底B向接入网设备上报第二线性组合系数C'2,接入网设备根据第一基底B和终端设备上报的第二线性组合系数C'2来确定预编码矩阵。直至在下一个第一周期终端设备反馈统计特征子空间基底,再进行上述图10描述的流程。
还应理解,图10中第一周期和第二周期的描述可以参考上述图4中第一周期和第二周期的描述的描述,此处不再赘述。
图11是本申请提供的一种终端设备和接入网设备的模块交互示意图。接入网设备和终端设备分别包括RRC信令交互模块、MAC信令交互模块和端口物理层(Port Physical Layer,PHY)信令及数据交互模块。RRC信令交互模块是接入网设备和终端设备用于发送及接收RRC信令的模块。MAC信令交互模块是接入网设备和终端设备用于发送及接收MAC-CE信令的模块。PHY信令及数据交互模块是接入网设备和终端设备用于发送及接收下行控制信令和下行数据的模块。可以通过下行控制信道(Physical Downlink Control Channel,PDCCH)发送及接收下行控制信令,通过物理下行共享信道(Physical Downlink Shared CHannel,PDSCH)发送及接收下行数据。
本申请中的指示信息、重传信令都可以通过RRC信令、MAC-CE信令或DCI发送。
以上结合图1至图11对本申请实施例的方法做了详细说明。以下,结合图12至图14对本申请实施例通信装置进行详细说明。
图12示出了本申请实施例的通信装置600的示意性框图。
一些实施例中,该装置600可以为终端设备,也可以为芯片或电路,比如可设置于终端设备的芯片或电路。
一些实施例中,该装置600可以为接入网设备,也可以为芯片或电路,比如可设置于接入网设备的芯片或电路。
一种可能的方式中,该装置600可以包括处理单元610(即,处理器的一例)和收发单元630。一些可能的实现方式中,处理单元610还可以称为确定单元。一些可能的实现方式中,收发单元630可以包括接收单元和发送单元。
可选的,收发单元630可以通过收发器或者收发器相关电路或者接口电路实现。
可选的,该装置还可以包括存储单元620。一种可能的方式中,该存储单元620用于存储指令。可选的,该存储单元也可以用于存储数据或者信息。存储单元620可以通过存储器实现。
一些可能的设计中,该处理单元610用于执行该存储单元620存储的指令,以使装置600实现如上述方法中终端设备执行的步骤。或者,该处理单元610可以用于调用存储单元620的数据,以使装 置600实现如上述方法中终端设备执行的步骤。
一些可能的设计中,该处理单元610用于执行该存储单元620存储的指令,以使装置600实现如上述方法中接入网设备执行的步骤。或者,该处理单元610可以用于调用存储单元620的数据,以使装置600实现如上述方法中接入网设备执行的步骤。
例如,该处理单元610、存储单元620、收发单元630可以通过内部连接通路互相通信,传递控制和/或数据信号。例如,该存储单元620用于存储计算机程序,该处理单元610可以用于从该存储单元620中调用并运行该计算计程序,以控制收发单元630接收信号和/或发送信号,完成上述方法中终端设备或接入网设备的步骤。该存储单元620可以集成在处理单元610中,也可以与处理单元610分开设置。
可选地,若该装置600为通信设备(例如,终端设备,或接入网设备),该收发单元630包括接收器和发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置600为芯片或电路,该收发单元630包括输入接口和输出接口。
作为一种实现方式,收发单元630的功能可以考虑通过收发电路或者收发的专用芯片实现。处理单元610可以考虑通过专用处理芯片、处理电路、处理单元或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信设备(例如终端设备,或接入网设备)。即将实现处理单元610、收发单元630功能的程序代码存储在存储单元620中,通用处理单元通过执行存储单元620中的代码来实现处理单元610、收发单元630的功能。
一些实施例中,装置600可以为终端设备,或设置于终端设备的芯片或电路。
当装置600为终端设备,或设置于终端设备的芯片或电路时,收发单元630用于向接入网设备发送第一信道状态信息,该第一信道状态信息包括统计特征子空间的第一基底的指示信息,该终端设备发送该第一信道状态信息的周期为第一周期;该收发单元630还用于在该终端设备更新第二基底为该第一基底之前,向接入网设备发送第二信道状态信息,该第二信道状态信息包括第一线性组合系数的指示信息,该收发单元630发送该第二信道状态信息的周期为第二周期,该第一周期大于该第二周期,该第一线性组合系数为该第二基底对应的组合系数,其中,该第二信道状态信息是该终端设备基于该统计特征子空间的第二基底生成的,该第一基底和该第二基底不同,该第一基底和该第二基底分别用于表示下行信道在空域和频域中的至少一个的变化规律,或,该第一基底和该第二基底分别用于表示下行信道在联合空频域的变化规律;处理单元610用于根据触发信息,更新该第二基底为该第一基底;该收发单元630还用于在该终端设备更新第二基底为该第一基底之后,向该接入网设备发送第三信道状态信息,该第三信道状态信息包括第二线性组合系数的指示信息,该第三信道状态信息是该终端设备基于更新后的该第二基底生成的,该终端设备发送该第三信道状态信息的周期为第二周期。
可选的,该处理单元610还用于:当该定时信息达到设定时间时,更新该第二基底为该第一基底。
可选的,该定时信息是该收发器通过配置信息从该接入网设备获取的,或该定时信息是预先定义的。
可选的,该收发单元630用于接收该接入网设备发送的更新指示信息,该更新指示信息用于指示该终端设备更新统计特征子空间的该第二基底为该第一基底;该处理单元具体用于:根据该更新指示信息,更新该第二基底为该第一基底。
可选的,该收发单元630还用于:接收该接入网设备发送的重传信令,该重传信令用于指示该终端设备重传该第一信道状态信息;根据该重传信令,向该接入网设备重传该该第一信道状态信息。
可选的,该定时信息的时长为配置在该终端设备本地的信息;或者,该收发单元接收接入网设备发送的配置信息,该配置信息包括该第一周期的时长、该第二周期的时长和该定时信息的时长。
可选的,该更新指示信息、该配置信息或该重传信令中的至少一项包括在无线资源控制层RRC信令、媒体接入控制层控制元素MAC-CE信令或下行控制信息DCI中。
当该装置600配置在或本身即为终端设备时,装置600中各模块或单元可以用于执行上述方法中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
一些实施例中,装置600可以为接入网设备时,或设置于接入网设备中的芯片或电路。当装置600为接入网设备时,或设置于接入网设备中的芯片或电路时,收发单元630用于接收终端设备发送的第一信道状态信息,该第一信道状态信息包括统计特征子空间的第一基底的指示信息,该收发单元630 接收该第一信道状态信息的周期为第一周期;处理单元,用于解该第一信道状态信息;该收发单元630用于接收该终端设备发送的第二信道状态信息,该第二信道状态信息包括第一线性组合系数的指示信息,该收发单元630接收该第二信道状态信息的周期为第二周期,该第一周期大于该第二周期,该第一线性组合系数为该第二基底对应的组合系数,其中,该处理单元610当前使用的统计特征子空间基底为统计特征子空间的第二基底,该第二信道状态信息是该终端设备基于该统计特征子空间的第二基底生成的,该第一基底和该第二基底不同,该第一基底和该第二基底分别用于表示下行信道在空域和频域中的至少一个的变化规律,或,该第一基底和该第二基底分别用于表示下行信道在联合空频域的变化规律;该处理单元用于解析该第二信道状态信息;该处理单元610用于根据定时信息,更新该第二基底为该第一基底;该收发单元630接收该终端设备发送的第三信道状态信息,该第三信道状态信息包括第二线性组合系数的指示信息,该第三信道状态信息是该终端设备基于更新后的该第二基底生成的,该收发单元630发送该第三信道状态信息的周期为第二周期;该处理单元610用于解析该第三信道状态信息;该处理单元610用于根据该第一基底和该第二线性组合系数,确定预编码矩阵。
可选的,该定时信息是由该接入网设备确定或预先定义的。
可选的,当该定时信息是由该接入网设备确定时,该收发器还用于:向该终端设备发送该配置信息。
可选的,该收发单元630还用于:当没有成功获取该第一基底时,向该终端设备发送重传信令,该重传信令用于指示该终端设备重传该第一信道状态信息;接收该终端设备重传的该第一信道状态信息。
可选的,该接入网设备没有成功获取该第一基底包括:该收发单元没有成功接收到该第一信道状态信息;或者,该处理单元没有成功解析该第一信道状态信息。
可选的,该定时信息的时长为配置在该接入网设备本地的信息;或者,该收发单元向该终端设备发送指示信息,该指示信息包括该第一周期的时长、该第二周期的时长和该定时信息的时长。
可选的,该配置信息和该重传信令中的至少一项包括在无线资源控制层RRC信令、媒体接入控制层控制元素MAC-CE信令或下行控制信息DCI中。
当该装置600配置在或本身即为接入网设备时,装置600中各模块或单元可以用于执行上述方法中接入网设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
一些实施例中,装置600可以为接入网设备时,或设置于接入网设备中的芯片或电路。当装置600为接入网设备时,或设置于接入网设备中的芯片或电路时,收发单元630用于接收终端设备发送的第一信道状态信息,该第一信道状态信息包括统计特征子空间的第一基底的指示信息,该收发单元630接收该第一信道状态信息的周期为第一周期;处理单元610,用于解析该第一信道状态信息;该收发单元630用于接收该终端设备发送的第二信道状态信息,该第二信道状态信息包括第一线性组合系数的指示信息,该接入网设备接收该第二信道状态信息的周期为第二周期,该第一周期大于该第二周期,该第一线性组合系数为该第二基底对应的组合系数,其中,该处理单元610当前使用的统计特征子空间基底为统计特征子空间的第二基底,该第二信道状态信息是该终端设备基于该统计特征子空间的第二基底生成的,该第一基底和该第二基底不同,该第一基底和该第二基底分别用于表示下行信道在空域和频域中的至少一个的变化规律,或,该第一基底和该第二基底分别用于表示下行信道在联合空频域的变化规律;该处理单元610用于解析该第二信道状态信息;该接入网设备更新该第二基底为该第一基底;该收发单元630向该终端设备发送更新指示信息,该更新指示信息用于指示该终端设备更新该第二基底为该第一基底;该收发单元630接收该终端设备发送的第三信道状态信息,该第三信道状态信息包括第二线性组合系数的指示信息,该第三信道状态信息是该终端设备基于更新后的该第二基底生成的,该终端设备发送该第三信道状态信息的周期为第二周期;该处理单元610用于解析该第三信道状态信息;该处理单元610用于根据该第一基底和该第二线性组合系数,确定预编码矩阵。
可选的,该收发单元630还用于:当没有成功获取该第一基底时,向该终端设备发送重传信令,该重传信令用于指示该终端设备重传该第一信道状态信息;接收该终端设备重传的该第一信道状态信息。
可选的,该没有成功获取该第一基底包括:该收发单元630没有成功接收到该第一信道状态信息;或者,该处理单元610没有成功解析该第一信道状态信息。
可选的,该接入网设备通过第二指示信息向该终端设备发送该第一周期的时长和/或该第二周期的 时长。
可选的,该更新指示信息和该重传信令中的至少一项通过无线资源控制层RRC信令、媒体接入控制层控制元素MAC-CE信令或下行控制信息DCI发送。
该装置600所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
应注意,本申请中,处理单元610可以由处理器实现,存储单元620可以由存储器实现,收发单元630可以由收发器实现,如图13所示,图13为本申请提供的一种通信装置700的结构示意图。通信装置700可以包括处理器710、存储器720和收发器730。该处理器710、存储器720和收发器730分别用于实现处理单元610、存储单元620和收发单元630的功能。此处不再赘述。
图14为本申请提供的一种终端设备800的结构示意图。该终端设备800可以执行上述方法实施例中终端设备执行的动作。
为了便于说明,图14仅示出了终端设备的主要部件。如图14所示,终端设备800包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述传输预编码矩阵的指示方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图14仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
例如,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图14中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备800的收发单元810,将具有处理功能的处理器视为终端设备800的处理单元820。如图14所示,终端设备800包括收发单元810和处理单元820。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元810中用于实现接收功能的器件视为接收单元,将收发单元810中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图15为本申请实施例提供的一种接入网设备900的结构示意图,可以用于实现上述方法中的接入设备(例如,第一接入网设备,第二接入网设备或者第三接入网设备)的功能。接入网设备900包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)910和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)920。所述RRU910可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线911和射频单元912。所述RRU910部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的 信令消息。所述BBU920部分主要用于进行基带处理,对基站进行控制等。所述RRU910与BBU920可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU920为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如该BBU(处理单元)920可以用于控制基站40执行上述方法实施例中关于接入网设备的操作流程。
在一个示例中,所述BBU920可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE系统,或5G系统),也可以分别支持不同接入制式的无线接入网。所述BBU920还包括存储器921和处理器922。所述存储器921用以存储必要的指令和数据。例如存储器921存储上述实施例中的码本等。所述处理器922用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于接入网设备的操作流程。所述存储器921和处理器922可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在一种可能的实施方式中,随着片上系统(system-on-chip,SoC)技术的发展,可以将920部分和910部分的全部或者部分功能由SoC技术实现,例如由一颗基站功能芯片实现,该基站功能芯片集成了处理器、存储器、天线接口等器件,基站相关功能的程序存储在存储器中,由处理器执行程序以实现基站的相关功能。可选的,该基站功能芯片也能够读取该芯片外部的存储器以实现基站的相关功能。
应理解,图15示例的接入网设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的基站结构的可能。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一实施例中的终端设备执行的步骤,或者接入网设备执行的步骤。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一实施例中的终端设备执行的步骤,或者接入网设备执行的步骤。
本申请实施例还提供了一种系统芯片,该系统芯片包括:通信单元和处理单元。该处理单元,例如可以是处理器。该通信单元例如可以是通信接口、输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使该通信装置内的芯片执行上述本申请实施例提供的终端设备执行的步骤,或者接入网设备执行的步骤。
可选地,该计算机指令被存储在存储单元中。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的接入网设备和终端设备。
本申请中的各个实施例可以独立的使用,也可以进行联合的使用,这里不做限定。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或一个以上;“A和B中的至少一个”,类似于“A和/或B”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和B中的至少一个,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者接入网设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种信道状态信息反馈的方法,其特征在于,包括:
    终端设备向接入网设备发送第一信道状态信息CSI,所述第一CSI包括统计特征子空间的第一基底的指示信息,所述终端设备发送所述第一CSI的周期为第一周期;
    在所述终端设备更新第二基底为所述第一基底之前,所述终端设备向所述接入网设备发送第二CSI,所述第二CSI包括第一线性组合系数的指示信息,所述终端设备发送所述第二CSI的周期为第二周期,所述第一周期大于所述第二周期,所述第一线性组合系数为所述第二基底对应的组合系数,
    其中,所述第二CSI是所述终端设备基于所述统计特征子空间的第二基底生成的,所述第一基底和所述第二基底不同,所述第一基底和所述第二基底分别用于表示下行信道在空域和频域中的至少一个的变化规律,或所述第一基底和所述第二基底分别用于表示下行信道在联合空频域的变化规律;
    所述终端设备根据触发信息,更新所述第二基底为所述第一基底;
    在所述终端设备更新第二基底为所述第一基底之后,所述终端设备向所述接入网设备发送第三信道状态信息,所述第三信道状态信息包括第二线性组合系数的指示信息,所述第三信道状态信息是所述终端设备基于更新后的所述第二基底生成的,所述终端设备发送所述第三信道状态信息的周期为第二周期。
  2. 根据权利要求1所述的方法,其特征在于,当所述触发信息为定时信息时,所述终端设备根据触发信息,更新所述第二基底为所述第一基底,包括:
    当所述定时信息达到设定时间时,所述终端设备更新所述第二基底为所述第一基底。
  3. 根据权利要求2所述的方法,其特征在于,所述定时信息是所述终端设备通过配置信息从所述接入网设备获取的,或所述定时信息是预先定义的。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述接入网设备发送的更新指示信息,所述更新指示信息用于指示所述终端设备更新统计特征子空间的所述第二基底为所述第一基底;
    所述终端设备根据触发信息,更新所述第二基底为所述第一基底,包括:
    所述终端设备根据所述更新指示信息,更新所述第二基底为所述第一基底。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,在所述终端设备根据触发信息,更新所述第二基底为所述第一基底之前,所述方法还包括:
    所述终端设备接收所述接入网设备发送的重传信令,所述重传信令用于指示所述终端设备重传所述第一CSI;
    所述终端设备根据所述重传信令,向所述接入网设备重传所述第一CSI。
  6. 根据权利要求3至5中任一项所述的方法,其特征在于,所述更新指示信息、所述配置信息和所述重传信令中的至少一项包括在无线资源控制层RRC信令、媒体接入控制层控制元素MAC-CE信令或下行控制信息DCI中。
  7. 一种信道状态信息反馈的方法,其特征在于,包括:
    接入网设备接收并解析终端设备发送的第一信道状态信息CSI,所述第一CSI包括统计特征子空间的第一基底的指示信息,所述接入网设备接收所述第一CSI的周期为第一周期;
    在所述接入网设备更新第二基底为所述第一基底之前,所述接入网设备接收并解析终端设备发送的第二CSI,所述第二CSI包括第一线性组合系数的指示信息,所述接入网设备接收所述第二CSI的周期为第二周期,所述第一周期大于所述第二周期,所述第一线性组合系数为所述第二基底对应的组合系数,
    其中,所述接入网设备当前使用的统计特征子空间基底为所述第二基底,所述第二CSI是所述终端设备基于所述第二基底生成的,所述第一基底和所述第二基底不同,所述第一基底和所述第二基底分别用于表示下行信道在空域和频域中的至少一个的变化规律,或所述第一基底和所述第二基底分别用于表示下行信道在联合空频域的变化规律;
    所述接入网设备根据定时信息,更新所述第二基底为所述第一基底;
    在所述接入网设备更新第二基底为所述第一基底之后,所述接入网设备接收并解析所述终端设备发送的第三CSI,所述第三CSI包括第二线性组合系数的指示信息,所述第三CSI是所述终端设备基 于更新后的所述第二基底生成的,所述终端设备发送所述第三CSI的周期为第二周期;
    所述接入网设备根据所述第一基底和所述第二线性组合系数,确定预编码矩阵。
  8. 根据权利要求7所述的方法,其特征在于,所述定时信息是由所述接入网设备确定或预先定义的。
  9. 根据权利要求8所述的方法,其特征在于,当所述定时信息是由所述接入网设备确定时,所述方法还包括:所述接入网设备向所述终端设备发送所述配置信息。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,在所述接入网设备根据定时信息,更新所述第二基底为所述第一基底之前,所述方法还包括:
    当所述接入网设备没有成功获取所述第一基底时,所述接入网设备向所述终端设备发送重传信令,所述重传信令用于指示所述终端设备重传所述第一CSI;
    所述接入网设备接收所述终端设备重传的所述第一CSI。
  11. 根据权利要求10所述的方法,其特征在于,所述接入网设备没有成功获取所述第一基底包括:
    所述接入网设备没有成功接收到所述第一CSI;或者,
    所述接入网设备没有成功解析所述第一CSI。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述配置信息和所述重传信令中的至少一项包括在无线资源控制层RRC信令、媒体接入控制层控制元素MAC-CE信令或下行控制信息DCI中。
  13. 一种信道状态信息反馈的方法,其特征在于,包括:
    接入网设备接收并解析终端设备发送的第一信道状态信息CSI,所述第一CSI包括统计特征子空间的第一基底的指示信息,所述接入网设备接收所述第一CSI的周期为第一周期;
    在所述接入网设备更新第二基底为所述第一基底之前,所述接入网设备接收并解析终端设备发送的第二CSI,所述第二CSI包括第一线性组合系数的指示信息,所述接入网设备接收所述第二CSI的周期为第二周期,所述第一周期大于所述第二周期,所述第一线性组合系数为所述第二基底对应的组合系数,
    其中,所述接入网设备当前使用的统计特征子空间基底为所述第二基底,所述第二CSI是所述终端设备基于所述第二基底生成的,所述第一基底和所述第二基底不同,所述第一基底和所述第二基底分别用于表示下行信道在空域和频域中的至少一个的变化规律,或所述第一基底和所述第二基底分别用于表示下行信道在联合空频域的变化规律;
    所述接入网设备更新所述第二基底为所述第一基底;
    所述接入网设备向所述终端设备发送更新指示信息,所述更新指示信息用于指示所述终端设备更新所述第二基底为所述第一基底;
    在所述接入网设备更新第二基底为所述第一基底之后,所述接入网设备接收并解析所述终端设备发送的第三CSI,所述第三CSI包括第二线性组合系数的指示信息,所述第三CSI是所述终端设备基于更新后的所述第二基底生成的,所述终端设备发送所述第三CSI的周期为第二周期;
    所述接入网设备根据所述第一基底和所述第二线性组合系数,确定预编码矩阵。
  14. 根据权利要求13所述的方法,其特征在于,在所述接入网设备更新所述第二基底为所述第一基底之前,所述方法还包括:
    当所述接入网设备没有成功获取所述第一基底时,所述接入网设备向所述终端设备发送重传信令,所述重传信令用于指示所述终端设备重传所述第一CSI;
    所述接入网设备接收所述终端设备重传的所述第一CSI。
  15. 根据权利要求14所述的方法,其特征在于,所述接入网设备没有成功获取所述第一基底包括:
    所述接入网设备没有成功接收到所述第一CSI;或者,
    所述接入网设备没有成功解析所述第一CSI。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述更新指示信息和所述重传信令中的至少一项通过无线资源控制层RRC信令、媒体接入控制层控制元素MAC-CE信令或下行控制信息DCI发送。
  17. 一种终端设备,其特征在于,包括:
    收发器,用于向接入网设备发送第一信道状态信息CSI,所述第一CSI包括统计特征子空间的第 一基底的指示信息,所述终端设备发送所述第一CSI的周期为第一周期;
    所述收发器还用于在所述终端设备更新第二基底为所述第一基底之前,向接入网设备发送第二CSI,所述第二CSI包括第一线性组合系数的指示信息,所述终端设备发送所述第二CSI的周期为第二周期,所述第一周期大于所述第二周期,所述第一线性组合系数为所述第二基底对应的组合系数,
    其中,所述第二CSI是所述终端设备基于所述统计特征子空间的第二基底生成的,所述第一基底和所述第二基底不同,所述第一基底和所述第二基底分别用于表示下行信道在空域和频域中的至少一个的变化规律,或所述第一基底和所述第二基底分别用于表示下行信道在联合空频域的变化规律;
    处理器,用于根据触发信息,更新所述第二基底为所述第一基底;
    所述收发器还用于在所述终端设备更新第二基底为所述第一基底之后,向所述接入网设备发送第三CSI,所述第三CSI包括第二线性组合系数的指示信息,所述第三CSI是所述终端设备基于更新后的所述第二基底生成的,所述终端设备发送所述第三CSI的周期为第二周期。
  18. 根据权利要求17所述的终端设备,其特征在于,所述处理器还用于:
    当所述定时信息达到设定时间时,更新所述第二基底为所述第一基底。
  19. 根据权利要求18所述的终端设备,其特征在于,所述定时信息是所述收发器通过配置信息从所述接入网设备获取的,或所述定时信息是预先定义的。
  20. 根据权利要求17所述的终端设备,其特征在于,所述收发器用于接收所述接入网设备发送的更新指示信息,所述更新指示信息用于指示所述终端设备更新统计特征子空间的所述第二基底为所述第一基底;
    所述处理器具体用于:
    根据所述更新指示信息,更新所述第二基底为所述第一基底。
  21. 根据权利要求17至20中任一项所述的终端设备,其特征在于,所述收发器还用于:
    接收所述接入网设备发送的重传信令,所述重传信令用于指示所述终端设备重传所述第一CSI;
    根据所述重传信令,向所述接入网设备重传所述第一CSI。
  22. 根据权利要求19至21中任一项所述的终端设备,其特征在于,所述更新指示信息所述配置信息和所述重传信令中的至少一项包括在无线资源控制层RRC信令、媒体接入控制层控制元素MAC-CE信令或下行控制信息DCI中。
  23. 一种接入网设备,其特征在于,包括:
    收发器,用于接收终端设备发送的第一信道状态信息CSI,所述第一CSI包括统计特征子空间的第一基底的指示信息,所述接入网设备接收所述第一CSI的周期为第一周期;
    处理器,用于解所述第一CSI;
    所述收发器用于在所述接入网设备更新第二基底为所述第一基底之前接收所述终端设备发送的第二CSI,所述第二CSI包括第一线性组合系数的指示信息,所述接入网设备接收所述第二CSI的周期为第二周期,所述第一周期大于所述第二周期,所述第一线性组合系数为所述第二基底对应的组合系数,
    其中,所述处理器当前使用的统计特征子空间基底为统计特征子空间的第二基底,所述第二CSI是所述终端设备基于所述统计特征子空间的第二基底生成的,所述第一基底和所述第二基底不同,所述第一基底和所述第二基底分别用于表示下行信道在空域和频域中的至少一个的变化规律,或所述第一基底和所述第二基底分别用于表示下行信道在联合空频域的变化规律;
    所述处理器用于解析所述第二CSI;
    所述处理器用于根据定时信息,更新所述第二基底为所述第一基底;
    所述收发器用于在所述接入网设备更新第二基底为所述第一基底之后接收所述终端设备发送的第三CSI,所述第三CSI包括第二线性组合系数的指示信息,所述第三CSI是所述终端设备基于更新后的所述第二基底生成的,所述终端设备发送所述第三CSI的周期为第二周期;
    所述处理器用于解析所述第三CSI;
    所述处理器用于根据所述第一基底和所述第二线性组合系数,确定预编码矩阵。
  24. 根据权利要求23所述的接入网设备,其特征在于,所述定时信息是由所述接入网设备确定或预先定义的。
  25. 根据权利要求24所述的接入网设备,其特征在于,当所述定时信息是由所述接入网设备确定 时,所述收发器还用于:向所述终端设备发送所述配置信息。
  26. 根据权利要求23至25中任一项所述的接入网设备,其特征在于,所述收发器还用于:
    当没有成功获取所述第一基底时,向所述终端设备发送重传信令,所述重传信令用于指示所述终端设备重传所述第一CSI;
    接收所述终端设备重传的所述第一CSI。
  27. 根据权利要求26所述的接入网设备,其特征在于,所述接入网设备没有成功获取所述第一基底包括:
    所述收发器没有成功接收到所述第一CSI;或者,
    所述处理器没有成功解析所述第一CSI。
  28. 根据权利要求25至27中任一项所述的接入网设备,其特征在于,所述配置信息和所述重传信令中的至少一项包括在无线资源控制层RRC信令、媒体接入控制层控制元素MAC-CE信令或下行控制信息DCI中。
  29. 一种接入网设备,其特征在于,包括:
    收发器,用于接收终端设备发送的第一信道状态信息CSI,所述第一CSI包括统计特征子空间的第一基底的指示信息,所述接入网设备接收所述第一CSI的周期为第一周期;
    处理器,用于解所述第一CSI;
    所述收发器用于在所述接入网设备更新第二基底为所述第一基底之前,接收所述终端设备发送的第二CSI,所述第二CSI包括第一线性组合系数的指示信息,所述接入网设备接收所述第二CSI的周期为第二周期,所述第一周期大于所述第二周期,所述第一线性组合系数为所述第二基底对应的组合系数,
    其中,所述处理器当前使用的统计特征子空间基底为统计特征子空间的第二基底,所述第二CSI是所述终端设备基于所述统计特征子空间的第二基底生成的,所述第一基底和所述第二基底不同,所述第一基底和所述第二基底分别用于表示下行信道在空域和频域中的至少一个的变化规律,或所述第一基底和所述第二基底分别用于表示下行信道在联合空频域的变化规律;
    所述处理器用于解析所述第二CSI;
    所述接入网设备更新所述第二基底为所述第一基底;
    所述收发器向所述终端设备发送更新指示信息,所述更新指示信息用于指示所述终端设备更新所述第二基底为所述第一基底;
    所述收发器用于在所述接入网设备更新第二基底为所述第一基底之后接收所述终端设备发送的第三CSI,所述第三CSI包括第二线性组合系数的指示信息,所述第三CSI是所述终端设备基于更新后的所述第二基底生成的,所述终端设备发送所述第三CSI的周期为第二周期;
    所述处理器用于解析所述第三CSI;
    所述处理器用于根据所述第一基底和所述第二线性组合系数,确定预编码矩阵。
  30. 根据权利要求29所述的接入网设备,其特征在于,所述收发器还用于:
    当没有成功获取所述第一基底时,向所述终端设备发送重传信令,所述重传信令用于指示所述终端设备重传所述第一CSI;
    接收所述终端设备重传的所述第一CSI。
  31. 根据权利要求30所述的接入网设备,其特征在于,所述没有成功获取所述第一基底包括:
    所述收发器没有成功接收到所述第一CSI;或者,
    所述处理器没有成功解析所述第一CSI。
  32. 根据权利要求29至31中任一项所述的接入网设备,其特征在于,所述更新指示信息和所述重传信令中的至少一项通过无线资源控制层RRC信令、媒体接入控制层控制元素MAC-CE信令或下行控制信息DCI发送。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如权利要求1至6中任一项所述的一种CSI反馈的方法,或者7至12中任一项所述的一种CSI反馈的方法,或者13至16中任一项所述的一种CSI反馈的方法。
  34. 一种芯片,其特征在于,包括处理器和接口;
    所述处理器用于读取指令以执行权利要求1至6中任一项所述的一种CSI反馈的方法,或者7至 12中任一项所述的一种CSI反馈的方法,或者13至16中任一项所述的一种CSI反馈的方法。
  35. 一种计算机程序产品,所述计算机程序产品被计算机执行权利要求1至6中任一项所述的一种CSI反馈的方法,或者7至12中任一项所述的一种CSI反馈的方法,或者13至16中任一项所述的一种CSI反馈的方法。
  36. 一种通信装置,其特征在于,包括处理器和接口;
    所述处理器用于读取指令以执行权利要求1至6中任一项所述的一种CSI反馈的方法,或者7至12中任一项所述的一种CSI反馈的方法,或者13至16中任一项所述的一种CSI反馈的方法。
PCT/CN2023/101221 2022-07-04 2023-06-20 一种信道状态信息反馈的方法、终端设备和接入网设备 WO2024007853A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210779750.8 2022-07-04
CN202210779750.8A CN117394959A (zh) 2022-07-04 2022-07-04 一种信道状态信息反馈的方法、终端设备和接入网设备

Publications (1)

Publication Number Publication Date
WO2024007853A1 true WO2024007853A1 (zh) 2024-01-11

Family

ID=89454184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101221 WO2024007853A1 (zh) 2022-07-04 2023-06-20 一种信道状态信息反馈的方法、终端设备和接入网设备

Country Status (2)

Country Link
CN (1) CN117394959A (zh)
WO (1) WO2024007853A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106506112A (zh) * 2015-09-08 2017-03-15 华为技术有限公司 反馈信道状态信息的方法和网络设备
WO2021238576A1 (zh) * 2020-05-29 2021-12-02 华为技术有限公司 一种通信方法、装置及系统
CN113840324A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种测量上报方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106506112A (zh) * 2015-09-08 2017-03-15 华为技术有限公司 反馈信道状态信息的方法和网络设备
WO2021238576A1 (zh) * 2020-05-29 2021-12-02 华为技术有限公司 一种通信方法、装置及系统
CN113840324A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种测量上报方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Enhancement on CSI measurement and reporting", 3GPP DRAFT; R1-2008909, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051945423 *

Also Published As

Publication number Publication date
CN117394959A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
WO2021083068A1 (zh) 上报信道状态信息的方法和通信装置
US11923929B2 (en) Channel information obtaining method
EP4027543A1 (en) Channel measurement method and communication apparatus
WO2019029562A1 (zh) 波束失败恢复方法和用户终端
US20240030980A1 (en) Data transmission method and apparatus
US20220329305A1 (en) Channel information feedback method and communication apparatus
WO2021083157A1 (zh) 一种预编码矩阵的处理方法和通信装置
US20230164004A1 (en) Channel parameter obtaining method and apparatus
WO2024027394A1 (zh) 一种通信方法及装置
WO2021203373A1 (zh) 一种信道测量方法和通信装置
US20230171634A1 (en) Communication Method and Apparatus
US20230019630A1 (en) Update Method and Communications Apparatus
US20230013510A1 (en) Method for indicating channel state information csi measurement and communication apparatus
WO2024007853A1 (zh) 一种信道状态信息反馈的方法、终端设备和接入网设备
WO2022160322A1 (zh) 一种信道状态信息反馈方法及通信装置
WO2024001744A1 (zh) 一种信道状态信息的上报方法及通信装置
EP4224731A1 (en) Channel measurement method and communication apparatus
WO2021207895A1 (zh) 一种用于传输上行信号的方法和通信装置
WO2023184385A1 (en) Indication method and apparatus
WO2023197846A1 (zh) 一种通信方法、通信装置及通信系统
WO2024093646A1 (zh) 一种资源配置的方法和装置
WO2023201460A1 (zh) 参数发送和接收的方法、装置和通信系统
WO2023011570A1 (zh) 一种信道信息反馈的方法及通信装置
WO2022165668A1 (zh) 一种进行预编码的方法和装置
WO2021146938A1 (zh) 用于确定下行信道状态信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834627

Country of ref document: EP

Kind code of ref document: A1