WO2022037005A1 - 一体化有毒难降解废水处理装置及处理方法 - Google Patents

一体化有毒难降解废水处理装置及处理方法 Download PDF

Info

Publication number
WO2022037005A1
WO2022037005A1 PCT/CN2021/071970 CN2021071970W WO2022037005A1 WO 2022037005 A1 WO2022037005 A1 WO 2022037005A1 CN 2021071970 W CN2021071970 W CN 2021071970W WO 2022037005 A1 WO2022037005 A1 WO 2022037005A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
stage reactor
wastewater
coagulation
sedimentation tank
Prior art date
Application number
PCT/CN2021/071970
Other languages
English (en)
French (fr)
Inventor
赖波
张恒
刘杨
熊兆锟
何传书
Original Assignee
四川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学 filed Critical 四川大学
Priority to US18/021,184 priority Critical patent/US11834360B2/en
Publication of WO2022037005A1 publication Critical patent/WO2022037005A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/02Settling tanks with single outlets for the separated liquid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5281Installations for water purification using chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/122Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using filter presses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/306Pesticides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/343Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/026Spiral, helicoidal, radial
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention belongs to the field of toxic and refractory wastewater treatment, and relates to a toxic and refractory wastewater treatment device and a toxic and refractory wastewater treatment method.
  • Fenton and Fenton-like reactions are mainly used for physicochemical pretreatment of toxic and refractory wastewater.
  • Fenton method means that H 2 O 2 generates strong oxidizing hydroxyl radicals (HO ) under the catalysis of Fe 2+ ;
  • Fenton - like method means that zero-valent iron and iron-based polymetallic materials are Under the condition of oxygen, O 2 is reduced to H 2 O 2 , and then under the catalysis of Fe 2+ , HO ⁇ with strong oxidizing property is generated in situ.
  • the HO produced by the Fenton reaction and the Fenton - like reaction can rapidly mineralize the toxic and refractory pollutants in the wastewater without selectivity, or decompose the toxic and refractory pollutants into small molecules that are easy to biochemically treat. Biodegradability of wastewater.
  • the existing Fenton-like reactor is mainly in the form of a fixed bed, and the Fenton-like reactor in the form of a fixed bed has the problems that the packing is easy to harden and passivate and the mass transfer efficiency in the reactor is low.
  • CN101979330B discloses a drum-type micro-electrolysis reaction device
  • CN102276018B discloses an immersed iron-carbon micro-electrolysis reactor. By rotating the entire reactor or the packing drum, the packing is in a tumbling motion state, To prevent packing passivation.
  • CN104876319A discloses a kind of Fenton reactor.
  • This kind of Fenton reactor fluidizes the packing in the reaction tank by means of mechanical stirring and waste water reflux to prevent the packing from hardening and passivation.
  • the device needs to rely on stirring to assist the flow of the packing. It is not conducive to the reduction of energy consumption, and the device still cannot completely avoid the central deposition of the filler at the bottom of the reaction tank, which is not conducive to the further improvement of the mass transfer efficiency in the reaction tank.
  • CN104876319A also discloses a method for treating toxic and refractory waste water, which combines two groups of Fenton-like reactors, one group of Fenton reactors and a coagulation sedimentation tank, each The group of Fenton-like reactors includes 2 to 3 above-mentioned Fenton-like reactors, and the coagulation and sedimentation tank includes 2 to 4 stages. That is, using this method for wastewater treatment requires at least five reaction tanks and two-stage sedimentation tanks connected in series with each other, and the equipment costs are high and the floor space is large. At the same time, this method introduces ozone into the Fenton reactor when treating wastewater, and fills the tank of the Fenton reactor with a certain level of activated carbon.
  • ozone treatment On the one hand, the cost of ozone treatment is high, and ozone treatment needs to be equipped with ozone Removal equipment to avoid environmental damage caused by residual ozone escaping, which further increases the cost of wastewater treatment.
  • activated carbon filled in the reaction tank will affect pollutants, corrosion products, active substances, degradation products, etc. Mass transfer efficiency between phases and fillers, reducing wastewater treatment efficiency.
  • the above-mentioned Fenton-like reactor needs to rely on the combined action of mechanical stirring and wastewater reflux to realize the fluidization of the filler, and the energy consumption is too high, which is not conducive to reducing the cost of wastewater treatment, and because this type of Fenton reactor cannot completely Avoiding the accumulation of the filler at the bottom of the reaction tank hinders the further improvement of the fluidization degree of the filler, which also limits the further improvement of the wastewater treatment efficiency.
  • the object of the present invention is to overcome the deficiencies of the prior art, and to provide an integrated toxic and refractory wastewater treatment device and a treatment method, so as to further reduce the treatment cost of toxic and refractory wastewater, improve the treatment efficiency of toxic and refractory wastewater, and strengthen wastewater treatment Effect.
  • An integrated toxic and refractory waste water treatment device includes a regulating tank, a first-stage reactor, a second-stage reactor, a third-stage reactor, a coagulation sedimentation tank, a biochemical reaction tank, and an aeration tank, which are connected in series. air blower;
  • the first-stage reactor and the third-stage reactor are both advanced oxidation reactors, and the second-stage reactor is a Fenton reactor; It is composed of a coagulation reaction tank, a primary sedimentation tank and a secondary sedimentation tank in series.
  • the primary sedimentation tank and the secondary sedimentation tank are both vertical pipe sedimentation tanks;
  • the biochemical reaction tank is composed of anoxic tank, aerobic tank, sedimentation tank and clear water. Pools are connected in series;
  • the regulating tank is communicated with the water inlet of the first-stage reactor through the pipe fitting, the water outlet of the first-stage reactor is communicated with the water inlet of the second-stage reactor through the pipe fitting, and the water outlet of the second-stage reactor is connected with the third-stage reactor through the pipe fitting.
  • the water inlet of the reactor is connected, the water outlet of the third-stage reactor is connected with the water inlet of the coagulation and sedimentation tank through the pipe fitting, the water outlet of the coagulation sedimentation tank is connected with the water inlet of the biochemical reaction tank through the pipe fitting;
  • the aeration blower is connected with the pipe fitting It is respectively communicated with the aeration members provided in the first-stage reactor, the third-stage reactor, the coagulation reaction tanks of the coagulation and sedimentation tanks of all levels and the aerobic tank of the biochemical reaction tank;
  • the first-stage reactor, the second-stage reactor, the third-stage reactor, the coagulation sedimentation tank and the biochemical reaction tank are pushed through the liquid level difference.
  • the biochemical reaction tank further includes a mixed liquid return pump and a sludge return pump, and the aerobic tank of the biochemical reaction tank passes through the mixed liquid return pipe through the mixed liquid return pump and the biochemical reaction tank.
  • the settling tank of the biochemical reaction tank is connected to the anoxic tank of the biochemical reaction tank through the sludge return pipe and the sludge return pump.
  • the technical solution of the above-mentioned integrated toxic and refractory wastewater treatment device also includes a sludge filter press. It is used to filter the sludge produced in the coagulation and sedimentation tanks at all levels and the excess sludge produced by the sedimentation tank of the biochemical reaction tank on the basis of satisfying the sludge return.
  • the primary sedimentation tank and the secondary sedimentation tank of the coagulation sedimentation tank are both vertical pipe sedimentation tanks, and honeycomb vertical flow pipes are arranged in the vertical pipe sedimentation tank. ;
  • the design of the coagulation sedimentation tank can economically and efficiently remove Fe 2+ and Fe 3+ in the effluent of Fenton and Fenton-like treatment, which is beneficial to the subsequent biochemical reaction treatment, and also helps to improve the efficiency of wastewater treatment equipment in wastewater treatment. Shock resistance.
  • the advanced oxidation reactor includes a reaction tank and a sedimentation tank, and the reaction tank is provided with a waste water reflux structure for making the micro-scale micro-electrolysis material in the reaction tank in a fluidized state, and the reaction tank is The tank is provided with an aeration structure, and the sedimentation tank is provided with a vertical flow pipe for accelerating the precipitation of micron-level micro-electrolytic materials; the Fenton reactor includes a reaction tank, and the reaction tank is provided with a swirling flow for the wastewater in the reaction tank. State of the wastewater return structure.
  • the structure of the advanced oxidation reactor can be designed with reference to the advanced oxidation reactor disclosed by CN210127117U.
  • the inclined plate can not effectively prevent the packing from flowing out with the effluent of the sedimentation tank.
  • the conical baffle is easily damaged due to the impact of the water flow and the wear of the packing.
  • the present invention is based on the advanced oxidation reactor disclosed in CN210127117U.
  • the structure is improved.
  • the inclination angle of the bottom of the sedimentation tank has been improved.
  • a honeycomb vertical pipe is set in the sedimentation tank, and the conical baffle is detachably installed in the reaction tank.
  • an aeration plate and an aeration pipe connected with the aeration plate are set on the conical baffle plate to meet the needs of aeration. More specifically, the structure of the improved advanced oxidation reactor of the present invention is as follows:
  • the advanced oxidation reactor includes a first reaction tank, a first return pump, a first return pipe, a first support, a first conical baffle plate, an aeration pan, and a sedimentation tank.
  • the sedimentation tank is provided with a vertical flow pipe,
  • the first reaction tank is composed of a first cylinder and a first spherical cap, the height of the first spherical cap is smaller than the radius of the first cylinder, the inner diameter of the first cylinder is equal to the inner diameter of the opening end of the first spherical cap, and the first cylinder
  • One end of the first spherical cap is connected with the open end of the first spherical cap, and the bottom of the first spherical cap is provided with a lower flange;
  • the bottom periphery of a conical baffle is provided with an upper flange, the open end of the first conical baffle is connected with the lower flange by screws through the upper flange, the axis of the first conical baffle, the axis of the first cylinder and the first
  • the high coincidence of the spherical crown, the cone angle of the first conical baffle is 40° ⁇ 100°, and the ratio of the height of the first conical baffle to the height of the reaction
  • the first cylinder is provided with a first dosing port, a first water inlet, a first overflow port, a first return water outlet and a first water outlet, and the first spherical cap is provided with a first return water inlet and a first water outlet.
  • the first emptying port is located on the first spherical cap outside the first conical baffle, and the first return water inlet is located at the center of the top of the first spherical cap; it is horizontal at the same height of the first conical baffle
  • an aeration plate is arranged on the top of the first conical baffle plate, and an aeration pipe is connected to the aeration plate;
  • the precipitation tank is arranged on the outer side wall of the first cylinder, and part of the outer side wall of the first cylinder serves as the inner side wall of the precipitation tank at the same time.
  • the upper end of the precipitation tank is open and the precipitation tank has an inclined bottom of the precipitation tank.
  • the included angle of the vertical plane is 15° ⁇ 60°.
  • the first water outlet is located at the connection between the bottom of the sedimentation tank and the side wall of the first cylinder to connect the first reaction tank with the sedimentation tank.
  • the width of the first water outlet is related to the sedimentation tank.
  • the length of the intersection of the tank bottom and the outer wall of the first cylinder is equal, the opening height of the first water outlet is 10-200mm, the first water outlet is located at the lower part of the first cylinder, and the upper part of the sedimentation tank is provided with a second water outlet , the sedimentation tank is provided with a vertical flow pipe, the vertical flow pipe is flush with the top and bottom, the bottom is located above the bottom of the sedimentation tank, and the top is located below the second water outlet;
  • the first return pipe is connected to the first return water outlet, and the other end is connected to the first return water inlet.
  • the first return pump is located on the pipeline of the first return pipe, and the first bracket is connected to the outer wall of the first reaction tank to support the first return pipe.
  • a reaction tank is in a state perpendicular to the horizontal plane.
  • the first 90° elbow can also be arranged in another way, and at least three uniformly arranged first 90° elbows are horizontally arranged at the same height position of the first spherical cap.
  • each first 90° elbow is located on the end face of the outer wall of the first conical baffle plate and is close to the outer wall of the first conical baffle plate; one end of the first return pipe is connected to the first return water outlet The other end is connected to each first 90° elbow on the first spherical cap through a branch pipe, and the first return pump is located on the pipeline of the first return pipe.
  • the first conical baffle plate need not be detachably mounted on the spherical cap.
  • the vertical flow pipe is installed in the sedimentation tank through a support frame horizontally arranged at the upper end of the bottom of the sedimentation tank, and the nominal diameter of the vertical flow pipe is 10-50 mm.
  • the standpipe is preferably a honeycomb standpipe.
  • the aeration pan is horizontally arranged on the top of the first conical baffle.
  • the structure of the Fenton reactor can be designed with reference to the advanced oxidation reactor disclosed by CN208684505U.
  • the present invention improves the structure of introducing circulating water into the reaction tank on the basis of the advanced oxidation reactor disclosed in CN208684505U, so as to avoid the introduced circulating water from causing the conical baffle to cause damage. impact, prolong the service life of the cone baffle.
  • the structure of the improved Fenton reactor of the present invention is as follows:
  • the Fenton reactor includes a second reaction tank, a second reflux pump, a second reflux pipe, a second support, and a second conical baffle plate,
  • the second reaction tank is composed of a second cylinder and a second spherical cap.
  • the height of the second spherical cap is smaller than the radius of the second cylinder.
  • the inner diameter of the second cylinder is equal to the inner diameter of the open end of the second spherical cap.
  • One end of the second conical baffle is connected to the open end of the second spherical cap, the second conical baffle is located inside the second reaction tank, the bottom surface of the second conical baffle is open, and the apex is upward, and the open end of the second conical baffle
  • the inner wall of the crown is connected, the axis of the second conical baffle and the axis of the second cylinder coincide with the height of the second spherical crown, the cone angle of the second conical baffle is 40° ⁇ 100°, and the height of the second conical baffle
  • the ratio with the height of the second reaction tank is 1:(6-15);
  • the second cylinder is provided with a second dosing port, a second water inlet, a second overflow port, a second return water outlet and a third water outlet, the second spherical cap is provided with a second emptying port, the second The emptying port is located on the second spherical cap outside the second conical baffle plate; at the same height position of the second spherical cap, at least three second 90° elbows evenly arranged horizontally are arranged to connect the inside of the second spherical cap with the External communication, each second 90° elbow is located at the end face of the outer wall of the second conical baffle plate and is close to the outer wall of the second conical baffle plate;
  • the second return pipe is connected to the second return water outlet, and the other end is connected to each second 90° elbow on the second spherical cap through a branch pipe.
  • the second return pump is located on the pipeline of the second return pipe, and the second support Connecting with the outer wall of the second reaction tank supports the second reaction tank in a state perpendicular to the horizontal plane.
  • the present invention also provides a method for treating toxic and refractory waste water.
  • the method uses the above-mentioned integrated toxic and refractory waste water treatment device for waste water treatment, and the steps are as follows:
  • the micro-scale micro-electrolytic packing in the first-stage reactor is in a fluidized state for wastewater treatment, and the hydraulic retention time of the wastewater in the first-stage reactor is controlled to be 20-180 min;
  • the waste water treated by the first-stage reactor continuously enters the second-stage reactor, and sulfuric acid and hydrogen peroxide are added to the second-stage reactor to adjust the concentration of hydrogen peroxide in the second-stage reactor to be 20-200 mmol/L and the pH value of the waste water.
  • the wastewater in the second-stage reactor is in a swirling state for wastewater treatment by means of wastewater reflux, and the hydraulic retention time of the wastewater in the second-stage reactor is controlled to be 20 to 180 min;
  • the wastewater treated by the second-stage reactor continuously enters the third-stage reactor, and the micron-scale micro-electrolysis materials are added to the third-stage reactor, aeration and the return of the wastewater to make the micron-scale in the third-stage reactor.
  • the micro-electrolysis packing is in a fluidized state for wastewater treatment, and the hydraulic retention time in the third-stage reactor is controlled to be 20-180 minutes;
  • the wastewater treated by the third-stage reactor continuously enters the coagulation reaction tank of the first-stage coagulation and sedimentation tank, and the flocculant and inorganic alkali are added to the coagulation reaction tank, aeration, and the mixed liquid formed in the coagulation reaction tank is coagulated. Continuously enter the primary sedimentation tank, and the wastewater passing through the primary sedimentation tank continuously enters the secondary sedimentation tank;
  • the waste water in the secondary sedimentation tank of the previous coagulation sedimentation tank enters the coagulation reaction tank of the next coagulation sedimentation tank, and repeats the aforementioned process of adding flocculant and inorganic alkali, aeration, entering the primary sedimentation tank and the secondary sedimentation tank. Operate until the wastewater enters the secondary sedimentation tank of the last stage coagulation sedimentation tank;
  • the wastewater treated in the coagulation sedimentation tank continuously enters the anoxic tank of the biochemical reaction tank for treatment, and the wastewater treated in the anoxic tank continuously enters the aerobic tank, and is treated under the condition of aeration of the aerobic tank.
  • the wastewater treated by the oxygen tank continuously enters the sedimentation tank, and the wastewater treated by the sedimentation tank continuously enters the clear water tank, and then discharges up to the standard; biological fillers are fixed in the anoxic tank and the aerobic tank to control the hydraulic retention time of the wastewater in the anoxic tank It is 60-600min, and the hydraulic retention time of wastewater in the aerobic tank is controlled to be 180-1200min.
  • step 5 of the technical solution of the above-mentioned toxic and refractory wastewater treatment method the mixed solution in the aerobic tank of the biochemical reaction tank is returned to the anoxic tank of the biochemical reaction tank, and the sludge in the sedimentation tank of the biochemical reaction tank is returned to the In the anoxic tank of the biochemical reaction tank, the sludge reflux ratio is 50% to 100%, and the mixed liquor reflux ratio is 100% to 400%.
  • step 5 of the technical solution of the above-mentioned toxic and refractory wastewater treatment method the dissolved oxygen concentration of the wastewater in the anoxic tank is controlled to be 0.2 to 0.5 mg/L, the pH value is 6.5 to 7.5, and the dissolved oxygen concentration of the wastewater in the aerobic tank is controlled to be 2 ⁇ 4mg/L, pH 7 ⁇ 8.
  • the micron-scale micro-electrolytic material is zero-valent iron particles, iron-copper bimetallic particles, iron-palladium bimetallic particles or iron-nickel bimetallic particles, and the micron-scale microelectrolytic material is in the first.
  • the addition amount in the first or third stage reactor is determined according to the specific water quality.
  • the addition amount of micron-scale micro-electrolysis material in the first or third stage reactor is per liter of the first stage reactor or The effective volume of the third-stage reactor is 10-200 g.
  • step 4 of the technical solution of the above-mentioned toxic and refractory wastewater treatment method the types and amounts of flocculants and inorganic bases are determined according to the actual demand and water quality.
  • the pH value is 7.5-10.
  • the inorganic alkali added to the reaction tank in the coagulation sedimentation tank is mainly sodium hydroxide, and the added flocculants are mainly polyacrylamide (PAM), polyaluminum chloride (PAC), polyferric sulfate (PFS), polyaluminum sulfate (PAS), polyferric chloride (PFC), the above flocculants can be used alone or in combination.
  • PAM polyacrylamide
  • PAC polyaluminum chloride
  • PFS polyferric sulfate
  • PAS polyaluminum sulfate
  • PFC polyferric chloride
  • steps 1. and 3. when the liquid level of the wastewater in the first-stage/third-stage reactor reaches the wastewater backflow, the wastewater level reaches the first level.
  • the outlet of the reflux water of the reaction tank of the third-stage reactor is above, add micron-scale micro-electrolysis material to the first-stage/third-stage reactor; in step 2, when the liquid level of the wastewater in the second-stage reactor is When the height reaches the waste water reflux level, that is, when the waste water level reaches above the reflux water outlet of the reaction tank of the second-stage reactor, sulfuric acid and hydrogen peroxide are added to the second-stage reactor.
  • step 2 in order to increase the degree of automation of wastewater treatment, step 2. add sulfuric acid and hydrogen peroxide to the second-stage reactor through a dosing pump, and the sulfuric acid and hydrogen peroxide are diluted to a certain extent. The pump is pumped in.
  • step 4 the flocculant and the inorganic base are added to the coagulation reaction tank through the dosing pump, and the flocculant and the inorganic alkali are prepared into a solution and pumped by the dosing pump.
  • the sludge generated in the coagulation sedimentation tanks at all levels and the excess sludge generated in the sedimentation tank of the biochemical reaction tank on the basis of satisfying the sludge return flow are filtered through the sludge press.
  • Centralized treatment after dehydration by machine press filter dehydrated sludge is generally hazardous waste and cannot be disposed of in landfill
  • the waste water generated by sludge filter press filtration can be returned to the coagulation sedimentation tank or biochemical reaction tank for secondary treatment .
  • the present invention provides an integrated toxic and refractory wastewater treatment device, which includes a conditioning tank, a first-stage reactor, a second-stage reactor, a third-stage reactor, a 2-4 stage coagulation sedimentation tank and a
  • the biochemical reaction tank and the adjustment tank can effectively alleviate the adverse effect of the fluctuation of the wastewater quality conditions on the treatment effect, which is conducive to improving the impact resistance of the device; the three-stage reactor only relies on the return of the wastewater to achieve the full fluidization of the catalyst in the reactor. And to ensure the swirling state of wastewater, no external stirring device is required, which is conducive to reducing the energy consumption of wastewater treatment. At the same time, the three-stage reactor does not contain fixed packing fillers, which is conducive to the improvement of mass transfer efficiency.
  • the three-stage reactor The Fenton-like reaction and the Fenton reaction are effectively coupled, which can further improve the treatment efficiency of wastewater and strengthen the treatment effect of wastewater;
  • the design of the coagulation sedimentation tank can effectively remove iron ions and other metal ions in the effluent of the tertiary reactor.
  • the design of the biochemical reaction tank can ensure that the pollutants in the wastewater are completely removed, so that the effluent can be discharged up to the standard.
  • the structure of the wastewater treatment device provided by the present invention is simpler, and only requires three-stage reactors in series.
  • the high-efficiency treatment of toxic and refractory wastewater can be realized by the upper coagulation sedimentation tank and biological reaction tank, without introducing ozone for treatment, without supporting ozone generation and removal equipment, and without supporting the use of stirring devices, which can effectively reduce equipment costs and reduce costs.
  • Small energy consumption, reduced floor space, and at the same time, the wastewater treatment device provided by the present invention does not have fixed catalysts, the catalysts in the first and third stage reactors are more fully fluidized, and have mass transfer efficiency Higher characteristics are conducive to improving the efficiency of wastewater treatment.
  • the integrated toxic and refractory wastewater treatment device provided by the present invention is designed with 2-4 levels of coagulation and sedimentation tanks.
  • the reaction tank can effectively remove iron ions and other metal ions in the water by adding inorganic alkali, and reduce the color and COD concentration of wastewater. It can more effectively reduce the precipitation time of flocs, accelerate the precipitation of flocs, and make it more effective to remove iron ions and other metal ions in the effluent of the tertiary reactor, which is beneficial to the subsequent biochemical reaction treatment, and coagulates the sedimentation tank at the same time.
  • the design is also conducive to improving the impact resistance of the device.
  • the biochemical reaction tank of the integrated toxic and refractory wastewater treatment device includes anoxic tank, aerobic tank, sedimentation tank and clear water tank, and biological fillers are fixed in the anoxic tank and aerobic tank. Sludge and mixed liquid return structure, the mixed liquid in the aerobic tank is returned to the anoxic tank, and the sludge in the sedimentation tank is returned to the anoxic tank.
  • the design of the biochemical reaction tank has the advantages of shock load resistance, low sludge production, With the characteristics of high biomass and long sludge age, it can also maintain more nitrifying and denitrifying bacteria, improve the denitrification effect, and help the pollutants in the wastewater to be fully degraded, so that the treated effluent can stably meet the relevant discharge standards. .
  • the present invention also provides a method for treating toxic and refractory waste water.
  • the Fe contained in the effluent of the first-stage reactor can be directly used in the second-stage reactor.
  • the catalyst for the Fenton reaction so there is no need to add catalyst to the second-stage reactor, the third-stage reactor can consume the residual hydrogen peroxide and the acid produced in the effluent of the second-stage reactor, and the hydrogen peroxide in the effluent of the second-stage reactor and acid can also enhance the advanced oxidation reaction in the third stage reactor.
  • the toxic and refractory wastewater treatment method provided by the present invention is a complete wastewater treatment method.
  • the wastewater After the wastewater is subjected to Fenton and Fenton-like reactions in the first to third stage reactors, it is treated by coagulation and sedimentation to effectively remove the pollutants in the water. Iron ions and other metal ions are then biochemically treated to completely remove the pollutants in the wastewater, so that the effluent is discharged up to the standard.
  • the method has a short process flow and high mass transfer efficiency in the first to third stage reactors, which is beneficial to reducing the cost of wastewater treatment, improving the treatment efficiency and improving the wastewater treatment effect.
  • the toxic and refractory wastewater treatment method provided by the present invention combines reasonable process parameters on the basis of the toxic and refractory wastewater treatment device provided by the present invention, and effectively couples the Fenton-like reaction and the Fenton reaction.
  • the synergistic effect is achieved, and the appropriate coagulation sedimentation and biochemical reactions are matched at the same time, which can further strengthen the wastewater treatment effect and improve the wastewater treatment efficiency on the basis of the existing technology.
  • using the treatment method provided by the present invention to treat the production waste water of detonator factory, the production waste water of military primer, the production water of hydrazine nickel nitrate primer, antibiotic waste water, dye intermediate waste water, pharmaceutical waste water, pesticide production waste water, etc. all have good effects. , can greatly improve the biodegradability of toxic and refractory wastewater, and has a wide range of applications.
  • Fig. 1 is the structure schematic diagram of the first first-stage reactor and the third-stage reactor (advanced oxidation reactor), wherein (A) is a front view, (B) is a top view, (C) is (A) ) Partial enlarged view at A in the figure;
  • Fig. 2 is the structural representation of the second-stage first-stage reactor and the third-stage reactor (advanced oxidation reactor), wherein (A) is a front view, and (B) is a top view;
  • FIG. 3 is a schematic structural diagram of a second-stage reactor (Fenton reactor), wherein (A) is a front view, and (B) is a top view.
  • Fenton reactor second-stage reactor
  • FIG. 4 is a schematic structural diagram and a process flow diagram of the integrated toxic and refractory wastewater treatment device of the present invention
  • 10 regulating tank
  • 20 first stage reactor
  • 30 second stage reactor
  • 40 third stage reactor
  • 50 coagulation sedimentation tank
  • 501 coagulation reaction tank
  • 502 primary sedimentation tank
  • 503-secondary sedimentation tank 60-biochemical reaction tank
  • 601-anoxic tank 602-aerobic tank
  • 603-sedimentation tank 604-clear water tank
  • 605-mixed liquid return pump 606-sludge return pump
  • 70 aeration blower
  • 80 sludge filter press
  • 1-1 first reaction tank
  • 1-2 first return pump
  • 1-3 first return pipe
  • 1-4 first support
  • 1 -5 the first cone baffle
  • 1-6 aeration plate
  • 1-7 settling tank
  • 1-8 the first cylinder
  • 1-9 the first spherical cap
  • 1-10 the lower flange
  • 1-11 upper flange
  • 1-12 screw
  • 1-13 gasket
  • 1-14 first dosing port
  • 1-15 first water inlet
  • FIG. 1 a schematic structural diagram of the advanced oxidation reactor is shown in FIG. 1, including a first reaction tank 1-1, a first reflux pump 1-2, a first reflux pipe 1-3, a first support 1-4, The first conical baffle 1-5, the aeration plate 1-6, the sedimentation tank 1-7, and the sedimentation tank is provided with a vertical flow pipe 1-24.
  • the first reaction tank 1-1 consists of a first cylinder 1-8 and a first spherical cap 1-9.
  • the height of the first spherical cap 1-9 is smaller than the radius of the first cylinder 1-8.
  • the first cylinder 1 The inner diameter of -8 is equal to the inner diameter of the open end of the first spherical cap 1-9, one end of the first cylinder 1-8 is connected with the open end of the first spherical cap 1-9, and the bottom of the first spherical cap 1-9 is provided with There is a lower flange 1-10; the first conical baffle 1-5 is located inside the first reaction tank 1-1, the bottom surface of the first conical baffle 1-5 is open, and the apex is upward, and the first conical baffle 1-5 is There is an upper flange 1-11 on the periphery of the bottom.
  • the open end of the first conical baffle plate 1-5 is connected with the lower flange 1-10 by screws 1-12 through the upper flange 1-11.
  • a gasket 1-13 is arranged between the lower flange 1-10, so that the first conical baffle 1-5 can be detachably fixed on the first spherical cap 1-9, and the first conical baffle 1-5
  • the open end of the first spherical cap 1-9 is connected with the inner wall of the bottom of the first spherical cap 1-9.
  • the axis of the first conical baffle plate 1-5 and the axis of the first cylinder 1-8 coincide with the height of the first spherical cap 1-9.
  • the cone angle of the conical baffle 1-5 is 40°, and the ratio of the height of the first conical baffle 1-5 to the height of the first reaction tank 1-1 is 1:12.
  • the first cylinder 1-9 is provided with a first dosing port 1-14, a first water inlet 1-15, a first overflow port 1-16, a first return water outlet 1-17 and a first water outlet 1 -18, the first spherical cap 1-9 is provided with a first return water inlet 1-19 and a first emptying port 1-20, and the first emptying port 1-20 is located outside the first conical baffle 1-5
  • the first return water inlet 1-19 is located at the center of the top of the first spherical cap 1-9; four uniform horizontal
  • the distributed first 90° elbows 1-21 communicate the inside and outside of the first conical baffle 1-5, and the end surfaces of the first 90° elbows 1-21 located on the outer wall of the first conical baffle 1-5 are located at On the same side of the vertical line passing through the center of the other end face of the first 90° elbow 1-21, the top of the first conical baffle plate 1-5 is horizontally provided with an aeration plate 1-6,
  • the precipitation tank 1-7 is arranged on the outer side wall of the first cylinder 1-8, and part of the outer side wall of the first cylinder 1-8 serves as the inner side wall of the precipitation tank 1-7 at the same time, and the upper end of the precipitation tank 1-7 is opened and precipitated.
  • the tank 1-7 has an inclined sedimentation tank bottom 1-22, the angle between the sedimentation tank bottom 1-22 and the vertical plane is 40°, and the first water outlet 1-18 is located between the sedimentation tank bottom 1-22 and the first water outlet 1-22.
  • the first reaction tank 1-1 is communicated with the precipitation tank 1-7 where the side walls of a cylinder 1-8 are connected, and the width of the first water outlet 1-18 is connected to the bottom 1-22 of the precipitation tank and the first cylinder.
  • the lengths of the intersection lines of the outer walls of 1-8 are equal, the opening height of the first water outlet 1-18 is 80mm, the first water outlet 1-18 is located at the lower part of the first cylinder 1-8, and the upper part of the sedimentation tank 1-7 is provided with There is a second water outlet 1-23, a vertical flow pipe 1-24 is arranged in the sedimentation tank 1-7, and the vertical flow pipe 1-24 passes through a support frame 1-25 horizontally arranged at the upper end of the sedimentation tank bottom 1-22 Installed in the sedimentation tank 1-8, the vertical flow pipe 1-24 is flush with the top and bottom, the bottom is located above the bottom of the sedimentation tank tank 1-22, and the top is located below the second water outlet 1-23.
  • the nominal value of the vertical flow pipe 1-24 is The diameter is 20mm, and the vertical flow pipes 1-24 are honeycomb vertical flow pipes.
  • first return pipe 1-3 One end of the first return pipe 1-3 is connected to the first return water outlet 1-17, and the other end is connected to the first return water inlet 1-19, and the first return pump 1-2 is located in the pipe of the first return pipe 1-3
  • first support 1-4 is connected to the outer wall of the first reaction tank 1-1 to support the first reaction tank 1-1 in a state perpendicular to the horizontal plane.
  • the structure of the advanced oxidation reactor is basically the same as that of the advanced oxidation reactor in Example 1, the difference is: the cone angle of the first conical baffles 1-5 is 60°, the first conical baffle The ratio of the height of the plate 1-5 to the height of the first reaction tank 1-1 is 1:8, and three evenly distributed first 90° elbows are horizontally arranged on the same height position of the first conical baffle plate 1-5 1-21, the angle between the bottom 1-22 of the sedimentation tank and the vertical plane is 30°, the opening height of the first water outlet is 50mm, and the nominal diameter of the vertical flow pipe 1-24 is 10mm.
  • FIG. 2 the structure of the advanced oxidation reactor is shown in FIG. 2 , which is basically the same as that of the advanced oxidation reactor in Embodiment 1, except that the first 90° elbow 1-21 adopts another
  • a 90° elbow 1-21 is located at the end face of the outer wall of the first conical baffle plate 1-5 and is close to the outer wall of the first conical baffle plate 1-5.
  • first return pipe 1-3 One end of the first return pipe 1-3 is connected to the first return water outlet 1 -17 connection, the other end is connected with each first 90° elbow 1-21 on the first spherical cap 1-9 through a branch pipe; the first conical baffle plate 1-5 is not connected in a detachable way, but is directly fixed On the inner wall of the first spherical cap 1-5; the cone angle of the first conical baffle 1-5 is 40°, and the ratio of the height of the first conical baffle 1-5 to the height of the first reaction tank 1-1 is 1 : 13, the angle between the bottom 1-22 of the sedimentation tank and the vertical plane is 25°, the opening height of the first water outlet 1-18 is 100mm, and the nominal diameter of the vertical flow pipe 1-24 is 20mm.
  • the structure of the advanced oxidation reactor is basically the same as the structure of the advanced oxidation reactor in Embodiment 3, the difference is: on the same height position of the first spherical caps 1-9, there are evenly arranged horizontal Three first 90° elbows 1-21; the cone angle of the first conical baffle plate 1-5 is 50°, and the ratio of the height of the first conical baffle plate 1-5 to the height of the first reaction tank 1-1 is At 1:10, the angle between the bottom 1-22 of the sedimentation tank and the vertical plane is 40°, the opening height of the first water outlet 1-18 is 50mm, and the nominal diameter of the vertical flow pipe 1-24 is 15mm.
  • the structure design of the first 90° elbow outlet 1-21, the first spherical cap 1-9 and the first conical baffle 1-5 in the above advanced oxidation reactor is conducive to the formation of swirling flow of wastewater under the action of the return pump, avoiding
  • the micron-scale electrolytic material is gathered in the center and around the bottom of the first reaction tank 1-1, so that the micron-scale electrolytic material is in a fully fluidized state in the first reaction tank 1-1, and the micron-scale electrolytic material is prevented from being hardened, which can effectively Improve the mass transfer efficiency in the first reaction tank 1-1, strengthen the wastewater treatment effect and prolong the operation period of the reactor.
  • the high-grade electrolytic material has better fluidization effect and significantly lower energy consumption, which is beneficial to reduce the cost of wastewater treatment and improve the treatment efficiency of wastewater.
  • the first conical baffle plate 1-5 in the first reaction tank 1-1 is designed to be detachable, which is easy to replace when the first conical baffle plate 1-5 is worn and affects use, and can be extended.
  • the service life of the whole reactor; in Examples 3 and 4, the first 90° elbow 1-21 is arranged on the end face of the outer wall of the first conical baffle plate 1-5 and is close to the outer wall of the first conical baffle plate 1-5.
  • first return pipe 1-3 is connected to the first return water outlet 1-17, and the other end is connected to each first 90° elbow 1-21 on the first spherical cap 1-9 through a branch pipe,
  • the design of the precipitation tank 1-7 can make the micron-scale electrolytic material in the treated wastewater fully settle in the precipitation tank 1-7, avoid the loss of the micron-scale electrolytic material with the effluent, and prevent the micron-scale electrolytic material from entering the subsequent treatment process.
  • aeration plates 1-6 can not only provide dissolved oxygen required for wastewater treatment, but also aeration itself can play a certain role in fluidizing micro-electrolysis materials, further increasing the fluidization degree of micro-scale micro-electrolysis materials in wastewater , improve mass transfer efficiency, strengthen wastewater treatment effect and improve wastewater treatment efficiency.
  • FIG. 3 the structure of the Fenton reactor is shown in FIG. 3, including a second reaction tank 3-1, a second reflux pump 3-2, a second reflux pipe 3-3, a second support 3-4, a second Two conical baffles 3-5.
  • the second reaction tank 3-1 consists of a second cylinder 3-7 and a second spherical cap 3-8.
  • the height of the second spherical cap 3-8 is smaller than the radius of the second cylinder 3-7.
  • the second cylinder 3-8 The inner diameter of -7 is equal to the inner diameter of the open end of the second spherical cap 3-8, one end of the second cylinder 3-7 is connected to the open end of the second spherical cap 3-8, and the second conical baffle plate 3-5 is located at Inside the second reaction tank 3-1, the bottom surface of the second conical baffle plate 3-5 is open and the apex is upward, the open end of the second conical baffle plate 3-5 is connected to the inner wall of the second spherical cap 3-8, and the second conical baffle plate 3-5 is connected to the inner wall of the second spherical cap 3-8.
  • the ratio of the height of -5 to the height of the second reaction tank 3-1 is 1:12.
  • the second cylinder 3-7 is provided with a second dosing port 3-6, a second water inlet 3-9, a second overflow port 3-10, a second return water outlet 3-11 and a third water outlet 3 -12, the second spherical cap 3-8 is provided with a second evacuation port 3-13, and the second evacuation port 3-13 is located on the second spherical cap 3-8 outside the second conical baffle 3-5;
  • four second 90° bends 3-14 are evenly arranged horizontally to connect the inside and the outside of the second spherical cap 3-8, and each second 90° bend
  • the head 3-14 is located at the end face of the outer wall of the second conical baffle plate 3-5 and is close to the outer wall of the second conical baffle plate 3-5;
  • the second return pipe 3-3 is connected to the second return water outlet 3-11, and the other end is connected to each second 90° elbow 3-14 on the second spherical cap 3-8 through a branch pipe.
  • the second return pump 3-2 is located on the pipeline of the second return pipe 3-3, and the second support 3-4 is connected to the outer wall of the second reaction tank 3-1 to support the second reaction tank 3-1 in a state perpendicular to the horizontal plane.
  • the structure of the Fenton reactor is basically the same as that of the Fenton reactor in Example 5, the only difference is that the cone angle of the second conical baffle 3-5 is 60°, and the second conical baffle The ratio of the height of the plate 3-5 to the height of the second reaction tank 3-1 is 1:10, and three second 90° elbows are arranged horizontally at the same height of the second spherical crown 3-8. 3-14.
  • each second 90° elbow 3-14 and the structural design of the second spherical cap 3-8 and the second conical baffle 3-5 are conducive to the formation of swirl of waste water under the action of the return pump. It can effectively improve the mass transfer efficiency in the reaction tank and strengthen the wastewater treatment effect.
  • Example 7 Integrated toxic and refractory wastewater treatment device structure
  • FIG. 4 the schematic structural diagram of the integrated toxic and refractory wastewater treatment device is shown in FIG. 4 , including a regulating tank 10 , a first-stage reactor 20 , a second-stage reactor 30 , and a third-stage reactor 40 connected in series in sequence. , a coagulation sedimentation tank 50, a biochemical reaction tank 60, and also includes an aeration blower 70 and a sludge filter press 80.
  • the first-stage reactor 20 and the third-stage reactor 40 are both advanced oxidation reactors in Example 1, and the second-stage reactor 30 is a Fenton reactor in Example 5; the coagulation sedimentation tank 50 includes two levels. Coagulation and sedimentation tanks 50 at all levels are formed by a coagulation reaction tank 501, a primary sedimentation tank 502 and a secondary sedimentation tank 503 in series.
  • the coagulation reaction tank 501 is provided with an aeration element, and the primary sedimentation tank 502 and the secondary sedimentation tank 503 are connected in series.
  • the secondary sedimentation tank 503 is a vertical pipe sedimentation tank, and a honeycomb vertical flow pipe is arranged in the vertical pipe sedimentation tank; the biochemical reaction tank 60 is connected in series by an anoxic tank 601, an aerobic tank 602, a sedimentation tank 603 and a clear water tank 604
  • the anoxic tank 601 and the aerobic tank 602 are fixed with biological fillers, the aerobic tank 602 is provided with an aeration element, and the biochemical reaction tank 60 also includes a mixed liquid return pump 605 and a sludge return pump 606.
  • the biochemical reaction tank The aerobic tank 602 of the biochemical reaction tank 60 is communicated with the anoxic tank 601 of the biochemical reaction tank 60 through the mixed liquid return pipe through the mixed liquid return pump 605, and the sedimentation tank 603 of the biochemical reaction tank 60 is connected to the biochemical reaction tank 60 through the sludge return pipe through the sludge return pump 606.
  • the anoxic tank 601 of the reaction tank 60 is connected.
  • the regulating tank 10 is communicated with the water inlet of the first-stage reactor 20 through the pipe fitting, the water outlet of the first-stage reactor 20 is communicated with the water inlet of the second-stage reactor 30 through the pipe fitting, and the water outlet of the second-stage reactor 30 is connected by the pipe fitting.
  • the pipe fitting is communicated with the water inlet of the third-stage reactor 40, the water outlet of the third-stage reactor 40 is communicated with the water inlet of the coagulation sedimentation tank 50 through the pipe fitting, and the water outlet of the coagulation sedimentation tank 50 is connected with the biochemical reaction tank 60 through the pipe fitting.
  • the aeration blower 70 is connected to the first-stage reactor 20, the third-stage reactor 40, the coagulation reaction tank 501 of the coagulation and sedimentation tank 50 of each level and the aerobic tank 602 of the biochemical reaction tank 60 through the pipe fittings respectively.
  • the aeration member provided in the middle is connected; the sludge filter press 80 is communicated with the coagulation sedimentation tank 50 at all levels and the sedimentation tank 603 of the biochemical reaction tank 60 through the pipe fittings.
  • the first-stage reactor 20 , the second-stage reactor 30 , the third-stage reactor 40 , the coagulation sedimentation tank 50 and the biochemical reaction tank 60 push flow through the liquid level difference.
  • Example 8 Integrated toxic and refractory wastewater treatment device structure
  • the structure of the integrated toxic and refractory wastewater treatment device is basically the same as that of the device in Embodiment 7, the difference is that the first-stage reactor 20 and the third-stage reactor 30 are both in Embodiment 2
  • the coagulation sedimentation tank 50 includes 3 stages.
  • Example 9 Integrated toxic and refractory wastewater treatment device structure
  • the structure of the integrated toxic and refractory wastewater treatment device is basically the same as that of the device in Embodiment 7, except that the first-stage reactor 20 and the third-stage reactor 40 are both in Embodiment 3
  • the advanced oxidation reactor in Example 6, the second stage reactor 30 is the Fenton reactor in Example 6, and the coagulation sedimentation tank 50 includes four stages.
  • Example 10 Integrated toxic and refractory wastewater treatment device structure
  • the structure of the integrated toxic and refractory wastewater treatment device is basically the same as that of the device in Embodiment 7, except that the first-stage reactor 20 and the third-stage reactor 30 are both in Embodiment 3
  • the advanced oxidation reactor in Example 6 the second-stage reactor 40 is the Fenton reactor in Example 6.
  • Example 11 Integrated toxic and refractory wastewater treatment device structure
  • the structure of the integrated toxic and refractory wastewater treatment device is basically the same as that of the device in Embodiment 7, except that the first-stage reactor 20 and the third-stage reactor 40 are both in Embodiment 4
  • the advanced oxidation reactor in Example 5 the second stage reactor 30 is the Fenton reactor in Example 5, and the coagulation sedimentation tank 50 includes two stages.
  • the present embodiment adopt the toxic and refractory wastewater treatment device in Example 7 and equip with a dosing device to treat the dinitrodiazophenol (DDNP) production wastewater of a detonator factory, the characteristics of the wastewater: COD concentration is 1500mg/L, BOD The concentration is 0mg/L and the chromaticity is 15000 times.
  • DDNP dinitrodiazophenol
  • Each of the dosing pipes of the toxic and refractory waste water treatment device is connected to the respective dosing device, and the processing steps are as follows:
  • the wastewater treated by the first-stage reactor enters the second-stage reactor continuously through the second water outlet of the first-stage reactor, and when the wastewater level in the second-stage reactor reaches the second reflux water of the second reaction tank
  • the outlet is above, open the sulfuric acid dosing pump and the hydrogen peroxide dosing pump, add sulfuric acid and hydrogen peroxide to the second-stage reactor to adjust the concentration of hydrogen peroxide in the second-stage reactor to 20mmol/L, and the pH value of the waste water is 3.
  • the backflow method makes the wastewater in the second-stage reactor in a swirling state for wastewater treatment, and controls the hydraulic retention time of the wastewater in the second-stage reactor to be 40min.
  • the wastewater treated by the second-stage reactor enters the third-stage reactor continuously through the third water outlet of the second-stage reactor, and when the wastewater level in the third-stage reactor reaches the first reflux water of the first reaction tank Above the outlet, add micron-scale zero-valent iron particles into the third-stage reactor, and the amount of zero-valent iron particles added is 20g per liter of the effective volume of the third-stage reactor, aerate and turn on the first reflux pump to pass the wastewater.
  • the way of backflow makes the zero-valent iron particles in the third-stage reactor in a fluidized state for wastewater treatment, and the hydraulic retention time in the third-stage reactor is controlled to be 40min.
  • the wastewater treated by the third-stage reactor continuously enters the coagulation reaction tank of the first-stage coagulation and sedimentation tank through the second water outlet of the third-stage reactor, and the flocculant PAM and the concentration of 40wt are added to the coagulation reaction tank.
  • the wastewater enters the coagulation reaction tank of the second-stage coagulation and sedimentation tank, and repeats the aforementioned operations of adding flocculant PAM and sodium hydroxide, aeration, and entering the primary sedimentation tank and the secondary sedimentation tank; 3+ and the resulting flocs are effectively removed.
  • the hydraulic retention time of the wastewater in the coagulation sedimentation tank is controlled to be 60 minutes, and the pH value of the coagulation reaction tank of the coagulation sedimentation tank at all levels is controlled to be 7.5 to 8.5.
  • the wastewater treated by the coagulation sedimentation tank continuously enters the anoxic tank of the biochemical reaction tank from the secondary sedimentation tank of the second-stage coagulation sedimentation tank for treatment, and the wastewater treated by the anoxic tank continuously enters the aerobic tank.
  • the wastewater treated by the aerobic tank continuously enters the sedimentation tank, and the wastewater treated by the sedimentation tank continuously enters the clear water tank, and then discharges up to the standard; biological fillers are fixed in the anoxic tank and the aerobic tank , the dissolved oxygen concentration of the wastewater in the anoxic tank is controlled to be 0.2 mg/L and the pH value is 6.5, the hydraulic retention time of the wastewater in the anoxic tank is controlled to be 90 min, and the dissolved oxygen concentration of the wastewater in the aerobic tank is controlled to be 2 mg/L and pH. The value is 7, and the hydraulic retention time of the control wastewater in the aerobic tank is 200min.
  • the mixture reflux ratio is 100%.
  • the sludge generated in the coagulation and sedimentation tanks at all levels, and the excess sludge generated by the sedimentation tank of the biochemical reaction tank on the basis of satisfying the sludge return are processed by the sludge filter press after dehydration.
  • the effluent of the clean water tank of the biochemical reaction tank was taken for water quality testing, and it was found that the COD concentration of the effluent was 40 mg/L, the BOD concentration was 10 mg/L, the chromaticity was reduced to less than 70 times, and the toxic and refractory pollutants in the wastewater were completely degraded After transformation, the effluent can stably meet the relevant industry discharge standards.
  • the toxic and refractory wastewater treatment device in Example 7 is used and the DDNP production wastewater of a detonator factory is treated with a dosing device.
  • the characteristics of the wastewater are: COD concentration is 4500mg/L, BOD concentration 50000 times.
  • Each of the dosing pipes of the toxic and refractory waste water treatment device is connected to the respective dosing device, and the processing steps are as follows:
  • the wastewater level in the first-stage reactor reaches the first reflux water outlet of the first reaction tank
  • the zero-valent iron particles in the first-stage reactor are in a fluidized state for wastewater treatment, and the hydraulic retention time of the wastewater in the first-stage reactor is controlled to be 60 min.
  • the wastewater treated by the first-stage reactor enters the second-stage reactor continuously through the second water outlet of the first-stage reactor, and when the wastewater level in the second-stage reactor reaches the second reflux water of the second reaction tank
  • the outlet is above, open the sulfuric acid dosing pump and the hydrogen peroxide dosing pump, add sulfuric acid and hydrogen peroxide to the second-stage reactor to adjust the concentration of hydrogen peroxide in the second-stage reactor to 40mmol/L, and the pH value of the waste water is 3.
  • the backflow method makes the wastewater in the second-stage reactor in a swirling state for wastewater treatment, and the hydraulic retention time of the wastewater in the second-stage reactor is controlled to be 60 min.
  • the wastewater treated by the second-stage reactor enters the third-stage reactor continuously through the third water outlet of the second-stage reactor, and when the wastewater level in the third-stage reactor reaches the first reflux water of the first reaction tank Above the outlet, add micron-scale zero-valent iron particles to the third-stage reactor, and the amount of zero-valent iron particles added is 30g per liter of the effective volume of the third-stage reactor, aerate and turn on the first reflux pump to pass the wastewater.
  • the way of backflow makes the zero-valent iron particles in the third-stage reactor in a fluidized state for wastewater treatment, and the hydraulic retention time in the third-stage reactor is controlled to be 60 min.
  • the wastewater treated by the third-stage reactor continuously enters the coagulation reaction tank of the first-stage coagulation and sedimentation tank through the second water outlet of the third-stage reactor, and the flocculants PAM and PAC are added to the coagulation reaction tank, and The sodium hydroxide with a concentration of 40wt.% is aerated, and the mixed liquid formed in the coagulation reaction tank continuously enters the primary sedimentation tank, and the wastewater passing through the primary sedimentation tank continuously enters the secondary sedimentation tank;
  • the wastewater in the sedimentation tank enters the coagulation reaction tank of the second-stage coagulation sedimentation tank, and repeats the operations of adding flocculants PAM, PAC and sodium hydroxide, aeration, and entering the primary sedimentation tank and the secondary sedimentation tank; Fe 2+ , Fe 3+ and the resulting flocs were effectively removed.
  • the hydraulic retention time of the wastewater in the coagulation sedimentation tank is controlled to be 80 minutes, and the pH value of the coagulation reaction tanks of the coagulation
  • the wastewater treated by the coagulation sedimentation tank continuously enters the anoxic tank of the biochemical reaction tank from the secondary sedimentation tank of the second-stage coagulation sedimentation tank for treatment, and the wastewater treated by the anoxic tank continuously enters the aerobic tank.
  • the wastewater treated by the aerobic tank continuously enters the sedimentation tank, and the wastewater treated by the sedimentation tank continuously enters the clear water tank, and then discharges up to the standard; biological fillers are fixed in the anoxic tank and the aerobic tank , the dissolved oxygen concentration of the wastewater in the anoxic tank is controlled to be 0.4 mg/L and the pH value is 7, the hydraulic retention time of the wastewater in the anoxic tank is controlled to be 120 min, and the dissolved oxygen concentration of the wastewater in the aerobic tank is controlled to be 4 mg/L and pH value.
  • the value is 7.5, and the hydraulic retention time of the control wastewater in the aerobic tank is 360min.
  • the effluent of the secondary sedimentation tank of the second-stage coagulation sedimentation tank was taken for water quality testing, and it was found that the COD concentration of the effluent was 500 mg/L, the BOD concentration was 300 mg/L, and the chromaticity was reduced to below 70 times.
  • the effluent of the clean water tank of the biochemical reaction tank was taken for water quality testing, and it was found that the COD concentration of the effluent was 70 mg/L, the BOD concentration was 15 mg/L, the chromaticity was reduced to less than 70 times, and the toxic and refractory pollutants in the wastewater were completely degraded After transformation, the effluent can stably meet the relevant industry discharge standards.
  • Comparative Example 1 Treatment of wastewater using the method in Example 8 of CN104876319A
  • Example 8 of CN104876319A was used to treat the DDNP production wastewater described in Example 13, and the micron-scale micro-electrolysis material used in the wastewater treatment was micron-scale zero-valent iron particles, and the characteristics of the wastewater: COD concentration It is 4500mg/L, the BOD concentration is 0mg/L, and the chromaticity is 50,000 times.
  • the effluent of the fourth-stage coagulation sedimentation tank is taken for water quality inspection, and it is found that the COD concentration of the effluent is 800mg/L, the BOD concentration is 400mg/L, and the chromaticity is reduced. to 100 times or less.
  • Example 13 Combining Example 13 and Comparative Example 1, it can be seen that in Comparative Example 1, the water quality of the effluent treated by the five-stage reactor combined with the four-stage coagulation and sedimentation tank is higher than that of the effluent treated by the three-stage reactor and the two-stage coagulation sedimentation tank in Example 13. The water quality is worse, indicating that the method of the present invention can further strengthen the treatment effect of wastewater.
  • the toxic and refractory waste water treatment device in Example 8 is used and a dosing device is used to process the waste water from a certain military primer powder production.
  • the characteristics of the waste water are: 30000 times.
  • Each of the dosing pipes of the toxic and refractory waste water treatment device is connected to the respective dosing device, and the processing steps are as follows:
  • the wastewater treated by the first-stage reactor enters the second-stage reactor continuously through the second water outlet of the first-stage reactor, and when the wastewater level in the second-stage reactor reaches the second reflux water of the second reaction tank
  • the outlet is above, turn on the sulfuric acid dosing pump and the hydrogen peroxide dosing pump, add sulfuric acid and hydrogen peroxide into the second-stage reactor to adjust the concentration of hydrogen peroxide in the second-stage reactor to 40mmol/L, and the pH value of the waste water is 3.
  • the backflow method makes the wastewater in the second-stage reactor in a swirling state for wastewater treatment, and controls the hydraulic retention time of the wastewater in the second-stage reactor to be 90 min.
  • the wastewater treated by the second-stage reactor enters the third-stage reactor continuously through the third water outlet of the second-stage reactor, and when the wastewater level in the third-stage reactor reaches the first reflux water of the first reaction tank Above the outlet, add micron-scale zero-valent iron particles to the third-stage reactor, and the amount of zero-valent iron particles added is 30g per liter of the effective volume of the third-stage reactor, aerate and turn on the first reflux pump to pass the wastewater.
  • the way of backflow makes the zero-valent iron particles in the third-stage reactor in a fluidized state for wastewater treatment, and the hydraulic retention time in the third-stage reactor is controlled to be 90min.
  • the wastewater treated by the third-stage reactor continuously enters the coagulation reaction tank of the first-stage coagulation and sedimentation tank through the second water outlet of the third-stage reactor, and the flocculant PAM and the concentration of 40wt are added to the coagulation reaction tank.
  • .% sodium hydroxide, aeration, and the mixed liquid formed in the coagulation reaction tank continuously enters the primary sedimentation tank, and the wastewater passing through the primary sedimentation tank continuously enters the secondary sedimentation tank;
  • the wastewater enters the coagulation reaction tank of the second-stage coagulation and sedimentation tank, and repeats the operations of adding flocculant PAM and sodium hydroxide, aeration, and entering the primary sedimentation tank and the secondary sedimentation tank.
  • the wastewater in the secondary sedimentation tank enters the coagulation reaction tank of the third-stage coagulation sedimentation tank, and the operations of adding flocculant PAM and sodium hydroxide, aeration, and entering the primary sedimentation tank and the secondary sedimentation tank are repeated; 2+ , Fe 3+ and the resulting flocs were effectively removed.
  • the hydraulic retention time of the wastewater in the coagulation sedimentation tank is controlled to be 120 minutes, and the pH value of the coagulation reaction tanks of the coagulation sedimentation tanks at all levels is controlled to be 8.5 to 9.5.
  • the wastewater treated by the coagulation sedimentation tank continuously enters the anoxic tank of the biochemical reaction tank from the secondary sedimentation tank of the second-stage coagulation sedimentation tank for treatment, and the wastewater treated by the anoxic tank continuously enters the aerobic tank.
  • the wastewater treated by the aerobic tank continuously enters the sedimentation tank, and the wastewater treated by the sedimentation tank continuously enters the clear water tank, and then discharges up to the standard; biological fillers are fixed in the anoxic tank and the aerobic tank , the dissolved oxygen concentration of the wastewater in the anoxic tank is controlled to be 0.5mg/L and the pH value is 7.5, the hydraulic retention time of the wastewater in the anoxic tank is controlled to be 120min, and the dissolved oxygen concentration of the wastewater in the aerobic tank is controlled to be 4mg/L and pH value.
  • the value is 8, and the hydraulic retention time of the control wastewater in the aerobic tank is 360min.
  • the mixture reflux ratio is 400%.
  • the sludge generated in the coagulation and sedimentation tanks at all levels, and the excess sludge generated by the sedimentation tank of the biochemical reaction tank on the basis of satisfying the sludge return are processed by the sludge filter press after dehydration.
  • the effluent of the clean water tank of the biochemical reaction tank was taken for water quality testing, and it was found that the COD concentration of the effluent was 40 mg/L, the BOD concentration was 10 mg/L, the chromaticity was reduced to below 70 times, and the toxic and refractory pollutants in the wastewater were completely degraded After transformation, the effluent can stably meet the relevant industry discharge standards.
  • the toxic and refractory waste water treatment device in Example 8 is used and equipped with a dosing device to treat the waste water produced by a certain military primer.
  • the characteristics of the waste water are: 50,000 times.
  • Each of the dosing pipes of the toxic and refractory waste water treatment device is connected to the respective dosing device, and the processing steps are as follows:
  • the wastewater treated by the first-stage reactor enters the second-stage reactor continuously through the second water outlet of the first-stage reactor, and when the wastewater level in the second-stage reactor reaches the second reflux water of the second reaction tank
  • the outlet is above, turn on the sulfuric acid dosing pump and the hydrogen peroxide dosing pump, add sulfuric acid and hydrogen peroxide to the second-stage reactor to adjust the concentration of hydrogen peroxide in the second-stage reactor to 60mmol/L, and the pH value of the wastewater is 3.
  • the backflow method makes the wastewater in the second-stage reactor in a swirling state for wastewater treatment, and the hydraulic retention time of the wastewater in the second-stage reactor is controlled to be 120 min.
  • the wastewater treated by the second-stage reactor enters the third-stage reactor continuously through the third water outlet of the second-stage reactor, and when the wastewater level in the third-stage reactor reaches the first reflux water of the first reaction tank Above the outlet, add micron-scale zero-valent iron particles to the third-stage reactor, and the amount of zero-valent iron particles added is 40g per liter of the effective volume of the third-stage reactor, aerate and turn on the first reflux pump to pass the wastewater.
  • the way of backflow makes the zero-valent iron particles in the third-stage reactor in a fluidized state for wastewater treatment, and the hydraulic retention time in the third-stage reactor is controlled to be 120min.
  • the wastewater treated by the third-stage reactor continuously enters the coagulation reaction tank of the first-stage coagulation and sedimentation tank through the second water outlet of the third-stage reactor, and the flocculants PAS and PAM are added to the coagulation reaction tank, and The sodium hydroxide with a concentration of 40wt.% is aerated, and the mixed liquid formed in the coagulation reaction tank continuously enters the primary sedimentation tank, and the wastewater passing through the primary sedimentation tank continuously enters the secondary sedimentation tank;
  • the wastewater in the sedimentation tank enters the coagulation reaction tank of the second-stage coagulation and sedimentation tank, and repeats the operations of adding flocculants PAS, PAM and sodium hydroxide, aeration, entering the primary sedimentation tank and the secondary sedimentation tank.
  • the waste water in the secondary sedimentation tank of the coagulation sedimentation tank enters the coagulation reaction tank of the third stage coagulation sedimentation tank, and the above-mentioned steps of adding flocculants PAS, PAM and sodium hydroxide, aeration, entering the primary sedimentation tank and the secondary sedimentation tank are repeated. Operation; effectively remove Fe 2+ , Fe 3+ and generated flocs in wastewater.
  • the hydraulic retention time of the wastewater in the coagulation sedimentation tank is controlled to be 120min, and the pH value of the coagulation reaction tank of the coagulation sedimentation tank at all levels is controlled to be 9-10.
  • the wastewater treated by the coagulation sedimentation tank continuously enters the anoxic tank of the biochemical reaction tank from the secondary sedimentation tank of the second-stage coagulation sedimentation tank for treatment, and the wastewater treated by the anoxic tank continuously enters the aerobic tank.
  • the wastewater treated by the aerobic tank continuously enters the sedimentation tank, and the wastewater treated by the sedimentation tank continuously enters the clear water tank, and then discharges up to the standard; biological fillers are fixed in the anoxic tank and the aerobic tank , the dissolved oxygen concentration of the wastewater in the anoxic tank is controlled to be 0.4 mg/L and the pH value is 7, the hydraulic retention time of the wastewater in the anoxic tank is controlled to be 150min, and the dissolved oxygen concentration of the wastewater in the aerobic tank is controlled to be 4 mg/L and pH value.
  • the value is 7.5, and the hydraulic retention time of the control wastewater in the aerobic tank is 390min.
  • the mixture reflux ratio is 350%.
  • the sludge generated in the coagulation and sedimentation tanks at all levels, and the excess sludge generated by the sedimentation tank of the biochemical reaction tank on the basis of satisfying the sludge return are processed by the sludge filter press after dehydration.
  • the effluent of the clean water tank of the biochemical reaction tank was taken for water quality testing, and it was found that the COD concentration of the effluent was 90 mg/L, the BOD concentration was 20 mg/L, the chromaticity was reduced to below 70 times, and the toxic and refractory pollutants in the wastewater were completely degraded After transformation, the effluent can stably meet the relevant industry discharge standards.
  • the toxic and refractory waste water treatment device in Example 11 adopt the toxic and refractory waste water treatment device in Example 11 and be equipped with a dosing device to process a certain hydrazine nickel nitrate priming agent production waste water, the characteristics of the waste water: COD concentration is 6500mg/L, BOD concentration is 0mg/L, color The degree is 5000 times.
  • Each of the dosing pipes of the toxic and refractory waste water treatment device is connected to the respective dosing device, and the processing steps are as follows:
  • the wastewater treated by the first-stage reactor enters the second-stage reactor continuously through the second water outlet of the first-stage reactor, and when the wastewater level in the second-stage reactor reaches the second reflux water of the second reaction tank
  • the outlet is above, turn on the sulfuric acid dosing pump and the hydrogen peroxide dosing pump, add sulfuric acid and hydrogen peroxide into the second-stage reactor to adjust the concentration of hydrogen peroxide in the second-stage reactor to 40mmol/L, and the pH value of the waste water is 3.
  • the backflow method makes the wastewater in the second-stage reactor in a swirling state for wastewater treatment, and controls the hydraulic retention time of the wastewater in the second-stage reactor to be 90 min.
  • the wastewater treated by the second-stage reactor enters the third-stage reactor continuously through the third water outlet of the second-stage reactor, and when the wastewater level in the third-stage reactor reaches the first reflux water of the first reaction tank Above the outlet, add micron-scale iron-copper bimetallic particles into the third-stage reactor, and the addition amount of the iron-copper bimetallic particles is 25g per liter of the effective volume of the third-stage reactor, aerate and open the first reflux pump,
  • the iron-copper bimetallic particles in the third-stage reactor are in a fluidized state for wastewater treatment by means of wastewater reflux, and the hydraulic retention time in the third-stage reactor is controlled to be 90 min.
  • the wastewater treated by the third-stage reactor continuously enters the coagulation reaction tank of the first-stage coagulation and sedimentation tank through the second water outlet of the third-stage reactor, and the flocculants PFS and PAM are added to the coagulation reaction tank, and Sodium hydroxide with a concentration of 45wt.% is aerated, and the mixed liquid formed in the coagulation reaction tank continuously enters the primary sedimentation tank, and the wastewater passing through the primary sedimentation tank continuously enters the secondary sedimentation tank;
  • the wastewater in the sedimentation tank enters the coagulation reaction tank of the second-stage coagulation sedimentation tank, and repeats the aforementioned operations of adding flocculants PFS, PAM and sodium hydroxide, aeration, entering the primary sedimentation tank and the secondary sedimentation tank; Fe 2+ , Fe 3+ and the resulting flocs were effectively removed.
  • the hydraulic retention time of wastewater in the coagulation sedimentation tank is controlled to be 90min, and the pH value of the coagulation reaction tank of the coagul
  • the wastewater treated by the coagulation sedimentation tank continuously enters the anoxic tank of the biochemical reaction tank from the secondary sedimentation tank of the second-stage coagulation sedimentation tank for treatment, and the wastewater treated by the anoxic tank continuously enters the aerobic tank.
  • the wastewater treated by the aerobic tank continuously enters the sedimentation tank, and the wastewater treated by the sedimentation tank continuously enters the clear water tank, and then discharges up to the standard; biological fillers are fixed in the anoxic tank and the aerobic tank , the dissolved oxygen concentration of the wastewater in the anoxic tank is controlled to be 0.4 mg/L and the pH value is 7, the hydraulic retention time of the wastewater in the anoxic tank is controlled to be 120 min, and the dissolved oxygen concentration of the wastewater in the aerobic tank is controlled to be 4 mg/L and pH value.
  • the value is 7.5, and the hydraulic retention time of the control wastewater in the aerobic tank is 240min.
  • the effluent of the clean water tank of the biochemical reaction tank was taken for water quality testing, and it was found that the COD concentration of the effluent was 30 mg/L, the BOD concentration was 10 mg/L, the chromaticity was reduced to below 70 times, and the toxic and refractory pollutants in the wastewater were completely degraded After transformation, the effluent can stably meet the relevant industry discharge standards.
  • the toxic and refractory wastewater treatment device in Example 10 is used and a dosing device is used to treat a certain dye intermediate wastewater.
  • the characteristics of the wastewater are: the COD concentration is 9500 mg/L, the BOD concentration is 10-150 mg/L, the chromaticity 10000 times.
  • Each of the dosing pipes of the toxic and refractory waste water treatment device is connected to the respective dosing device, and the processing steps are as follows:
  • the wastewater treated by the first-stage reactor enters the second-stage reactor continuously through the second water outlet of the first-stage reactor, and when the wastewater level in the second-stage reactor reaches the second reflux water of the second reaction tank
  • the outlet is above, open the sulfuric acid dosing pump and the hydrogen peroxide dosing pump, add sulfuric acid and hydrogen peroxide to the second-stage reactor to adjust the concentration of hydrogen peroxide in the second-stage reactor to be 60mmol/L, and the pH value of the waste water is 3.
  • the backflow method makes the wastewater in the second-stage reactor in a swirling state for wastewater treatment, and controls the hydraulic retention time of the wastewater in the second-stage reactor to be 90 min.
  • the wastewater treated by the second-stage reactor enters the third-stage reactor continuously through the third water outlet of the second-stage reactor, and when the wastewater level in the third-stage reactor reaches the first reflux water of the first reaction tank
  • add micron-level iron-palladium bimetallic particles to the third-stage reactor the addition of the iron-palladium bimetallic particles is 40g in the effective volume of every liter of the third-stage reactor, aerate and open the first reflux pump
  • the iron-palladium bimetallic particles in the third-stage reactor are in a fluidized state for wastewater treatment by means of wastewater reflux, and the hydraulic retention time in the third-stage reactor is controlled to be 90 min.
  • the wastewater treated by the third-stage reactor continuously enters the coagulation reaction tank of the first-stage coagulation and sedimentation tank through the second water outlet of the third-stage reactor, and the flocculants PFC and PAM are added to the coagulation reaction tank, and
  • the sodium hydroxide with a concentration of 40wt.% is aerated, and the mixed liquid formed in the coagulation reaction tank continuously enters the primary sedimentation tank, and the wastewater passing through the primary sedimentation tank continuously enters the secondary sedimentation tank;
  • the wastewater in the sedimentation tank enters the coagulation reaction tank of the second-stage coagulation sedimentation tank, and repeats the operations of adding flocculants PFC, PAM and sodium hydroxide, aeration, entering the primary sedimentation tank and the secondary sedimentation tank; Fe 2+ , Fe 3+ and the resulting flocs were effectively removed.
  • the hydraulic retention time of the wastewater in the coagulation sedimentation tank is controlled to be 60 minutes, and the pH value of the coagulation reaction tanks of the coagul
  • the wastewater treated by the coagulation sedimentation tank continuously enters the anoxic tank of the biochemical reaction tank from the secondary sedimentation tank of the second-stage coagulation sedimentation tank for treatment, and the wastewater treated by the anoxic tank continuously enters the aerobic tank.
  • the wastewater treated by the aerobic tank continuously enters the sedimentation tank, and the wastewater treated by the sedimentation tank continuously enters the clear water tank, and then discharges up to the standard; biological fillers are fixed in the anoxic tank and the aerobic tank , the dissolved oxygen concentration of the wastewater in the anoxic tank is controlled to be 0.4 mg/L and the pH value is 7, the hydraulic retention time of the wastewater in the anoxic tank is controlled to be 100min, and the dissolved oxygen concentration of the wastewater in the aerobic tank is controlled to be 4 mg/L and pH value.
  • the value is 7.5, and the hydraulic retention time of the control wastewater in the aerobic tank is 200min.
  • the effluent of the clean water tank of the biochemical reaction tank was taken for water quality testing, and it was found that the COD concentration of the effluent was 50 mg/L, the BOD concentration was 20 mg/L, the chromaticity was reduced to less than 100 times, and the toxic and refractory pollutants in the wastewater were completely degraded After transformation, the effluent can stably meet the relevant industry discharge standards.
  • the toxic and refractory wastewater treatment device in Example 8 is used and a drug dosing device is used to treat a certain pharmaceutical wastewater.
  • the characteristics of the wastewater are: the COD concentration is 35,000 mg/L, the BOD concentration is 500-1000 mg/L, and the chromaticity is 20,000. times.
  • Each dosing pipe of the toxic and refractory waste water treatment device is connected to the respective dosing device respectively, and the processing steps are as follows:
  • the wastewater level in the first-stage reactor reaches the first reflux water outlet of the first reaction tank Above 1-17, add micron-scale iron-nickel bimetallic particles to the first-stage reactor, the addition amount of iron-nickel bimetallic particles is 80g per liter of the effective volume of the first-stage reactor, aerate and open the first reflux Pump, the iron-nickel bimetallic particles in the first-stage reactor are in a fluidized state by means of aeration and wastewater backflow for wastewater treatment, and the hydraulic retention time of the wastewater in the first-stage reactor is controlled to 160min.
  • the wastewater treated by the first-stage reactor enters the second-stage reactor continuously through the second water outlet of the first-stage reactor, and when the wastewater level in the second-stage reactor reaches the second reflux water of the second reaction tank Above the outlet, open the sulfuric acid dosing pump and the hydrogen peroxide dosing pump, add sulfuric acid and hydrogen peroxide to the second-stage reactor to adjust the concentration of hydrogen peroxide in the second-stage reactor to be 120 mmol/L and the pH value of the wastewater to be 3.
  • the backflow method makes the wastewater in the second-stage reactor in a swirling state for wastewater treatment, and the hydraulic retention time of the wastewater in the second-stage reactor is controlled to be 160 min.
  • the wastewater treated by the second-stage reactor enters the third-stage reactor continuously through the third water outlet of the second-stage reactor, and when the wastewater level in the third-stage reactor reaches the first reflux water of the first reaction tank Above the outlet, add micron-scale iron-nickel bimetallic particles to the third-stage reactor, and the addition amount of the iron-nickel bimetallic particles is 40g per liter of the effective volume of the third-stage reactor, aerate and open the first reflux pump,
  • the iron-nickel bimetallic particles in the third-stage reactor are in a fluidized state for wastewater treatment by means of wastewater reflux, and the hydraulic retention time in the third-stage reactor is controlled to be 160 min.
  • the wastewater treated by the third-stage reactor continuously enters the coagulation reaction tank of the first-stage coagulation and sedimentation tank through the second water outlet of the third-stage reactor, and the flocculant PAM and the concentration of 40wt are added to the coagulation reaction tank.
  • .% sodium hydroxide, aeration, and the mixed liquid formed in the coagulation reaction tank continuously enters the primary sedimentation tank, and the wastewater passing through the primary sedimentation tank continuously enters the secondary sedimentation tank;
  • the wastewater enters the coagulation reaction tank of the second-stage coagulation and sedimentation tank, and repeats the operations of adding flocculant PAM and sodium hydroxide, aeration, and entering the primary sedimentation tank and the secondary sedimentation tank.
  • the wastewater in the secondary sedimentation tank enters the coagulation reaction tank of the third-stage coagulation sedimentation tank, and the operations of adding flocculant PAM and sodium hydroxide, aeration, and entering the primary sedimentation tank and the secondary sedimentation tank are repeated; 2+ , Fe 3+ and the resulting flocs were effectively removed.
  • the hydraulic retention time of the wastewater in the coagulation sedimentation tank is controlled to be 240 minutes, and the pH value of the coagulation reaction tanks of the coagulation sedimentation tanks at all levels is controlled to be 8.5 to 9.5.
  • the wastewater treated by the coagulation sedimentation tank continuously enters the anoxic tank of the biochemical reaction tank from the secondary sedimentation tank of the second-stage coagulation sedimentation tank for treatment, and the wastewater treated by the anoxic tank continuously enters the aerobic tank.
  • the wastewater treated by the aerobic tank continuously enters the sedimentation tank, and the wastewater treated by the sedimentation tank continuously enters the clear water tank, and then discharges up to the standard; biological fillers are fixed in the anoxic tank and the aerobic tank , the dissolved oxygen concentration of the wastewater in the anoxic tank is controlled to be 0.4 mg/L and the pH value is 7, the hydraulic retention time of the wastewater in the anoxic tank is controlled to be 120 min, and the dissolved oxygen concentration of the wastewater in the aerobic tank is controlled to be 4 mg/L and pH value.
  • the value is 7.5, and the hydraulic retention time of the control wastewater in the aerobic tank is 240min.
  • the effluent of the clean water tank of the biochemical reaction tank was taken for water quality testing, and it was found that the COD concentration of the effluent was 100mg/L, the BOD concentration was 15mg/L, the chromaticity was reduced to less than 100 times, and the toxic and refractory pollutants in the wastewater were completely degraded After transformation, the effluent can stably meet the relevant industry discharge standards.
  • the toxic and refractory wastewater treatment device in Example 8 is used and a dosing device is used to treat a certain pesticide production wastewater.
  • the characteristics of the wastewater are: the COD concentration is 23000mg/L, the BOD concentration is 500-1000mg/L, the chromaticity is 50,000 times.
  • Each of the dosing pipes of the toxic and refractory waste water treatment device is connected to the respective dosing device, and the processing steps are as follows:
  • the wastewater treated by the first-stage reactor enters the second-stage reactor continuously through the second water outlet of the first-stage reactor, and when the wastewater level in the second-stage reactor reaches the second reflux water of the second reaction tank Above the outlet, open the sulfuric acid dosing pump and the hydrogen peroxide dosing pump, add sulfuric acid and hydrogen peroxide to the second-stage reactor to adjust the concentration of hydrogen peroxide in the second-stage reactor to be 120 mmol/L and the pH value of the wastewater to be 3.
  • the backflow method makes the wastewater in the second-stage reactor in a swirling state for wastewater treatment, and the hydraulic retention time of the wastewater in the second-stage reactor is controlled to be 160 min.
  • the wastewater treated by the second-stage reactor enters the third-stage reactor continuously through the third water outlet of the second-stage reactor 30, and when the wastewater level in the third-stage reactor reaches the first return of the first reaction tank Above the outlet of the flowing water, add micron-scale zero-valent iron particles into the third-stage reactor, and the addition amount of zero-valent iron particles is 50g per liter of the effective volume of the third-stage reactor, aerate and open the first reflux pump, and pass through the reactor.
  • the way of wastewater reflux makes the zero-valent iron particles in the third-stage reactor in a fluidized state for wastewater treatment, and the hydraulic retention time in the third-stage reactor is controlled to be 150min.
  • the wastewater treated by the third-stage reactor continuously enters the coagulation reaction tank of the first-stage coagulation and sedimentation tank through the second water outlet of the third-stage reactor, and the flocculants PAC and PAM are added to the coagulation reaction tank, and The sodium hydroxide with a concentration of 40wt.% is aerated, and the mixed liquid formed in the coagulation reaction tank continuously enters the primary sedimentation tank, and the wastewater passing through the primary sedimentation tank continuously enters the secondary sedimentation tank;
  • the wastewater in the sedimentation tank enters the coagulation reaction tank of the second-stage coagulation sedimentation tank, and repeats the operations of adding flocculants PAC, PAM and sodium hydroxide, aeration, and entering the primary and secondary sedimentation tanks.
  • the wastewater in the secondary sedimentation tank of the coagulation sedimentation tank enters the coagulation reaction tank of the third stage coagulation sedimentation tank, and repeats the aforementioned process of adding flocculants PAC, PAM and sodium hydroxide, aeration, entering the primary sedimentation tank and the secondary sedimentation tank. Operation; effectively remove Fe 2+ , Fe 3+ and generated flocs in wastewater. Control the hydraulic retention time of wastewater in the coagulation sedimentation tank to be 360min, and control the pH value of the coagulation reaction tank of the coagulation sedimentation tank at all levels to be 9-10.
  • the wastewater treated by the coagulation sedimentation tank continuously enters the anoxic tank of the biochemical reaction tank from the secondary sedimentation tank of the second-stage coagulation sedimentation tank for treatment, and the wastewater treated by the anoxic tank continuously enters the aerobic tank.
  • the wastewater treated by the aerobic tank continuously enters the sedimentation tank, and the wastewater treated in the sedimentation tank continuously enters the clear water tank, and then discharges up to the standard; biological fillers are fixed in the anoxic tank and the aerobic tank , the dissolved oxygen concentration of the wastewater in the anoxic tank is controlled to be 0.4 mg/L and the pH value is 7, the hydraulic retention time of the wastewater in the anoxic tank is controlled to be 120 min, and the dissolved oxygen concentration of the wastewater in the aerobic tank is controlled to be 4 mg/L and pH value.
  • the value is 7.5, and the hydraulic retention time of the control wastewater in the aerobic tank is 360min.
  • the effluent of the clean water tank of the biochemical reaction tank was taken for water quality testing, and it was found that the COD concentration of the effluent was 80 mg/L, the BOD concentration was 20 mg/L, the chromaticity was reduced to less than 100 times, and the toxic and refractory pollutants in the wastewater were completely degraded After transformation, the effluent can stably meet the relevant industry discharge standards.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明公开了一体化有毒难降解废水处理装置及处理方法,该装置包括依次串联的调节池、第一级反应器、第二级反应器、第三级反应器、混凝沉淀池、生化反应池,还包括曝气鼓风机。第一级反应器和第三级反应器均为高级氧化反应器,第二级反应器为芬顿反应器,混凝沉淀池包括2~4级,各级混凝沉淀池均由混凝反应池、初沉池和二淀池串联而成,生化反应池由缺氧池、好氧池、沉淀池和清水池串联而成。本发明提供的废水处理方法将有毒难降解废水处理装置与合理的工艺参数相结合,有效地耦合了类芬顿反应和芬顿反应,二者相互协同,同时匹配了适当的混凝沉淀和生化反应工艺,可强化废水处理效果、提高废水处理效率和降低废水处理成本。

Description

一体化有毒难降解废水处理装置及处理方法 技术领域
本发明属于有毒难降解废水处理领域,涉及有毒难降解废水处理装置及有毒难降解废水处理方法。
背景技术
目前,有毒难降解废水主要采用芬顿和类芬顿反应进行物化预处理。芬顿法是指H 2O 2在Fe 2+的催化作用下,产生具有强氧化性的羟基自由基(HO ·);类芬顿法是指零价铁和铁基多金属材料等在有氧气的条件下,将O 2还原成H 2O 2,然后在Fe 2+的催化作用下,原位产生具有强氧化性的HO ·。芬顿反应、类芬顿反应产生的HO ·能够无选择性地快速矿化废水中的有毒难降解的污染物质,或者将有毒难降解的污染物质分解转化为易于生化处理的小分子物质,提高废水的可生化性。
现有的类芬顿反应器主要为固定床形式,固定床形式的类芬顿反应器存在着填料容易板结钝化以及反应器内传质效率较低的问题。为了解决填料板结和催化剂利用效率不高的问题,CN101979330B公开了滚筒式微电解反应装置,CN102276018B公开了浸没式铁碳微电解反应器,通过转动整个反应器或填料转鼓使填料处于翻滚运动状态,以防止填料板结钝化。但采用这类装置仍然存在以下不足:(1)转动反应器或填料转鼓的能耗较高,导致运行成本过高;(2)虽然转动可使填料翻转,但无法使填料在整个反应器内处于完全流化状态,传质效率有限,不利于废水处理效率的提高。
CN104876319A公开了一种类芬顿反应器,该类芬顿反应器通过机械搅拌和废水回流的方式来流化反应罐中的填料以防止填料板结钝化,但是,该装置需要依靠搅拌来辅助填料流化,不利于能耗的降低,该装置仍然无法完全避免填料在反应罐底部的中央淤积,这不利于反应罐中传质效率的进一步提高。以所述的类芬顿反应器为基础,CN104876319A还公开了有毒难降解废水处理方法,该方法将两组类芬顿反应器、一组芬顿反应器和混凝沉淀池组合使用,每一组类芬顿反应器包括2~3个上述类芬顿反应器,混凝沉淀池包括2~4级。即采用该方法进行废水处理,至少需要5个相互串联的反应罐和2级沉淀池,设备成本高、占地面积大。同时,该方法在处理废水时,在芬顿反应器中引入了臭氧,并在芬顿反应器的罐体中填充有一定高度的活性炭,一方面,臭氧处理成本高,并且臭氧处理需要配备臭氧脱除设备,以避免残留臭氧逸出造成环境破坏,这又进一步增加了废水处理成本,另一方面,填充在反应罐中的活性炭会影响污染物、腐蚀产物、活性物质、降解产物等在液相和填料之间的传质效率,降低废水处理效率。此外,上述类芬顿反应器需要依靠机械搅拌和废水回流的共同作用来实现填料的流化,能耗过高,不利于废水处理成本的降低,并且,由于该类芬顿反应器并不能完全避免填料在反应罐底部淤积,有碍于填料流化程度的进一步提高,这也限制了废水处理效率的进一步提升。
发明内容
本发明的目的在于克服现有技术的不足,提供一种一体化有毒难降解废水处理装置及处理方法,以进一步降低有毒难降解废水的处理成本、提高有毒难降解废水的处理效率和强化废水处理效果。
为实现上述发明目的,本发明的技术方案如下:
一种一体化有毒难降解废水处理装置,该装置包括依次串联的调节池、第一级反应器、第二级反应器、第三级反应器、混凝沉淀池、生化反应池,还包括曝气鼓风机;
所述第一级反应器和第三级反应器均为高级氧化反应器,第二级反应器为芬顿反应器;所述混凝沉淀池包括2~4级,各级混凝沉淀池均由混凝反应池、初沉池和二淀池串联而成,初级沉淀池和二级沉淀池均为竖管沉淀池;所述生化反应池由缺氧池、好氧池、沉淀池和清水池串联而成;
调节池通过管件与第一级反应器的进水口连通,第一级反应器的出水口通过管件与第二级反应器的进水口连通,第二级反应器的出水口通过管件与第三级反应器的进水口连通,第三级反应器的出水口通过管件与混凝沉淀池的进水口连通,混凝沉淀池的出水口通过管件与生化反应池的进水口连通;曝气鼓风机通过管件分别与第一级反应器、第三级反应器、各级混凝沉淀池的混凝反应池以及生化反应池的好氧池中设置的中的曝气件连通;
第一级反应器、第二级反应器、第三级反应器、混凝沉淀池以及生化反应池之间通过液位差推流。
上述一体化有毒难降解废水处理装置的技术方案中,生化反应池还包括混合液回流泵和污泥回流泵,生化反应池的好氧池通过混合液回流管经混合液回流泵与生化反应池的缺氧池连通,生化反应池的沉淀池通过污泥回流管经污泥回流泵与生化反应池的缺氧池连通。
上述一体化有毒难降解废水处理装置的技术方案中,还包括污泥压滤机,污泥压滤机通过管件与 各级混凝沉淀池以及生化反应池的沉淀池连通,污泥压滤机用于对各级混凝沉淀池中产生的污泥,以及生化反应池的沉淀池在满足污泥回流的基础上产生的多余的污泥进行压滤脱水。
上述一体化有毒难降解废水处理装置的技术方案中,所述混凝沉淀池的初级沉淀池和二级沉淀池均为竖管沉淀池,所述竖管沉淀池中布置了蜂窝状竖流管;混凝沉淀池的设计能经济高效地去除芬顿和类芬顿处理出水中的Fe 2+和Fe 3+,有利于后续的生化反应处理,也有利于提高废水处理装置在废水处理时的抗冲击能力。
上述有毒难降解废水处理装置的技术方案中,所述高级氧化反应器包括反应罐和沉淀罐,反应罐上设有用于使反应罐内微米级微电解材料处于流化状态的废水回流结构,反应罐内设有曝气结构,沉淀罐中设有用于加速微米级微电解材料沉淀的竖流管;所述芬顿反应器包括反应罐,反应罐上设有用于使反应罐内废水处于旋流状态的废水回流结构。
上述有毒难降解废水处理装置的技术方案中,所述高级氧化反应器的结构可参照CN210127117U公开的高级氧化反应器进行设计,我们发现采用CN210127117U公开的高级氧化反应器进行废水处理时,沉淀罐中的斜板无法有效避免填料随沉淀罐的出水而流出,同时因废水回流的原因,圆锥挡板容易因水流冲击和填料的磨损而破损,本发明在CN210127117U公开的高级氧化反应器的基础上进行了结构改进,为了提升沉淀罐对填料的沉降效果,对沉淀罐罐底的倾斜角度进行了改进,在沉淀罐中设置了蜂窝状竖管,将圆锥挡板以可拆卸的方式安装在反应罐的底部,以方便更换,同时在圆锥挡板上设置了曝气盘以及与曝气盘连接的曝气管,以满足曝气的需要。更具体地,本发明改进后的高级氧化反应器的结构如下:
该高级氧化反应器包括第一反应罐、第一回流泵、第一回流管、第一支架、第一圆锥挡板、曝气盘、沉淀罐,沉淀罐中设有竖流管,
第一反应罐由第一圆筒和第一球冠组成,第一球冠的高小于第一圆筒的半径,第一圆筒的内径与第一球冠开口端的内径相等,第一圆筒的一端端部与第一球冠的开口端连接,第一球冠底部设有下法兰;第一圆锥挡板位于第一反应罐内部,第一圆锥挡板的底面开口、顶点向上,第一圆锥挡板的底部外围设有上法兰,第一圆锥挡板的开口端通过上法兰与下法兰通过螺钉连接,第一圆锥挡板的轴线、第一圆筒的轴线与第一球冠的高重合,第一圆锥挡板的锥角为40°~100°,第一圆锥挡板的高度与反应罐的高度之比为1:(6~15);
第一圆筒上设有第一加药口、第一进水口、第一溢流口、第一回流水出口和第一出水口,第一球冠上设有第一回流水进口和第一排空口,第一排空口位于第一圆锥挡板外部的第一球冠上,第一回流水进口位于第一球冠顶部的中心位置;在第一圆锥挡板的同一高度位置上水平设有至少三个第一90°弯头将第一圆锥挡板的内部与外部连通,各第一90°弯头位于第一圆锥挡板外壁的端面(靠近圆锥挡板的底部)均位于过该第一90°弯头另一端面中心的垂线的同一侧,第一圆锥挡板的顶部设有曝气盘,曝气盘上连接曝气管;
沉淀罐设于第一圆筒的外侧壁上,第一圆筒的部分外侧壁同时作为沉淀罐的内侧壁,沉淀罐上端开口且沉淀罐具有倾斜的沉淀罐罐底,沉淀罐罐底与铅垂面的夹角为15°~60°,第一出水口位于沉淀罐罐底与第一圆筒的侧壁相连接处将第一反应罐与沉淀罐连通,第一出水口的宽度与沉淀罐罐底和第一圆筒外壁的交线的长度相等,第一出水口的开口高度为10~200mm,第一出水口位于第一圆筒的下部,沉淀罐的上部设有第二出水口,沉淀罐内设有竖流管,竖流管的上下齐平且底部位于沉淀罐罐底上方、顶部位于第二出水口下方;
第一回流管的一端与第一回流水出口连接、另一端与第一回流水进口连接,第一回流泵位于第一回流管的管路上,第一支架与第一反应罐的外壁连接支撑第一反应罐处于垂直于水平面的状态。
上述高级氧化反应器的技术方案中,第一90°弯头还可采用另一种布置方式,在第一球冠的同一高度位置上水平设有均匀布置的至少三个第一90°弯头将第一球冠的内部与外部连通,各第一90°弯头位于第一圆锥挡板外壁的端面且紧挨第一圆锥挡板的外壁;第一回流管的一端与第一回流水出口连接、另一端通过支管与第一球冠上的各第一90°弯头连接,第一回流泵位于第一回流管的管路上。当采用这种方式布置第一90°弯头时,第一圆锥挡板可不必采用可拆卸的方式安装在球冠上。
上述高级氧化反应器的技术方案中,所述竖流管通过水平设置在沉淀罐罐底上端部处的支撑架安装在沉淀罐中,竖流管的公称直径为10~50mm。所述竖流管优选为蜂窝状竖流管。所述曝气盘水平设置在第一圆锥挡板的顶部。
上述有毒难降解废水处理装置的技术方案中,所述芬顿反应器的结构可参照CN208684505U公开 的高级氧化反应器进行设计,我们发现采用CN208684505U公开的高级氧化反应器进行废水处理时,因废水回流的原因,圆锥挡板容易因水流冲击而破损,本发明在CN208684505U公开的高级氧化反应器的基础上对向反应罐引入循环水的结构进行了改进,以避免引入的循环水对圆锥挡板造成冲击,延长圆锥挡板的使用寿命。更具体地,本发明改进后的芬顿反应器的结构如下:
该芬顿反应器包括第二反应罐、第二回流泵、第二回流管、第二支架、第二圆锥挡板,
第二反应罐由第二圆筒和第二球冠组成,第二球冠的高小于第二圆筒的半径,第二圆筒的内径与第二球冠开口端的内径相等,第二圆筒的一端端部与第二球冠的开口端连接,第二圆锥挡板位于第二反应罐内部,第二圆锥挡板的底面开口、顶点向上,第二圆锥挡板的开口端与第二球冠的内壁连接,第二圆锥挡板的轴线、第二圆筒的轴线与第二球冠的高重合,第二圆锥挡板的锥角为40°~100°,第二圆锥挡板的高度与第二反应罐的高度之比为1:(6-15);
第二圆筒上设有第二加药口、第二进水口、第二溢流口、第二回流水出口和第三出水口,第二球冠上设有第二排空口,第二排空口位于第二圆锥挡板外部的第二球冠上;在第二球冠的同一高度位置上水平设有均匀布置的至少三个第二90°弯头将第二球冠的内部与外部连通,各第二90°弯头位于第二圆锥挡板外壁的端面且紧挨第二圆锥挡板的外壁;
第二回流管的一端与第二回流水出口连接、另一端通过支管与第二球冠上的各第二90°弯头连接,第二回流泵位于第二回流管的管路上,第二支架与第二反应罐的外壁连接支撑第二反应罐处于垂直于水平面的状态。
本发明还提供了一种有毒难降解废水处理方法,该方法使用上述一体化有毒难降解废水处理装置进行废水处理,步骤如下:
①调整调节池中废水的pH值为1~4,将调节池中的废水连续泵入第一级反应器中,向第一级反应器中加入微米级微电解材料,曝气并通过废水回流的方式使第一级反应器中的微米级微电解填料处于流化状态进行废水处理,控制第一级反应器中废水的水力停留时间为20~180min;
②经第一级反应器处理的废水连续进入第二级反应器,向第二级反应器中加入硫酸和双氧水调整第二级反应器中双氧水的浓度为20~200mmol/L、废水的pH值为2~4,通过废水回流的方式使第二级反应器中的废水处于旋流状态进行废水处理,控制第二级反应器中废水的水力停留时间为20~180min;
③经第二级反应器处理的废水连续进入第三级反应器,向第三级反应器中加入微米级微电解材料,曝气并通过废水回流的方式使第三级反应器中的微米级微电解填料处于流化状态进行废水处理,控制第三级反应器中的水力停留时间为20~180min;
④经第三级反应器处理的废水连续进入混凝沉淀池进行混凝沉淀处理:
经第三级反应器处理的废水连续进入第一级混凝沉淀池的混凝反应池,向该混凝反应池中加入絮凝剂和无机碱,曝气,混凝反应池中形成的混合液连续进入初沉池,经初沉池的废水连续进入二沉池;
经前一级混凝沉淀池的二沉池中的废水进入下一级混凝沉淀池的混凝反应池,重复前述加入絮凝剂和无机碱、曝气、进入初沉池和二沉池的操作,直到废水进入最后一级混凝沉淀池的二沉池;
控制废水在混凝沉淀池中的水力停留时间为20~360min;
⑤经混凝沉淀池处理的废水连续进入生化反应池的缺氧池进行处理,经缺氧池处理的废水连续进入好氧池,在对好氧池进行曝气的条件下进行处理,经好氧池处理的废水连续进入沉淀池,经沉淀池处理后的废水连续进入清水池,之后达标排放;缺氧池和好氧池中固定有生物填料,控制废水在缺氧池中的水力停留时间为60~600min,控制废水在好氧池中的水力停留时间为180~1200min。
上述有毒难降解废水处理方法的技术方案的步骤⑤中,将生化反应池的好氧池中的混合液回流至生化反应池的缺氧池,将生化反应池的沉淀池中的污泥回流至生化反应池缺氧池,污泥回流比为50%~100%,混合液回流比为100%~400%。
上述有毒难降解废水处理方法的技术方案的步骤⑤中,控制缺氧池内废水的溶解氧浓度为0.2~0.5mg/L、pH值为6.5~7.5,控制好氧池内废水的溶解氧浓度为2~4mg/L、pH值为7~8。
上述有毒难降解废水处理方法的技术方案中,所述微米级微电解材料为零价铁粒子、铁铜双金属粒子、铁钯双金属粒子或者铁镍双金属粒子,微米级微电解材料在第一级或第三级反应器中的添加量根据具体的水质情况进行确定,通常,微米级微电解材料在第一级或第三级反应器中的添加量为每升第一级反应器或第三级反应器有效容积中10~200g。
上述有毒难降解废水处理方法的技术方案的步骤④中,絮凝剂和无机碱的种类和用量根据实际用 于需求和水质情况进行确定,通常,控制各级混凝沉淀池中混凝反应池的pH值为7.5~10。混凝沉淀池中反应池所加的无机碱主要为氢氧化钠,所加的絮凝剂主要为聚丙烯酰胺(PAM)、聚合氯化铝(PAC)、聚合硫酸铁(PFS)、聚合硫酸铝(PAS)、聚合氯化铁(PFC),以上絮凝剂可以单一使用也可以组合使用。
上述有毒难降解废水处理方法的技术方案中,步骤①和③中,当第一级/第三级反应器中的废水的液面高度达到可进行废水回流时,即废水液面到达第一级/第三级反应器的反应罐的回流水出口上方时,向第一级/第三级反应器中加入微米级微电解材料;步骤②中,当第二级反应器中的废水的液面高度达到可进行废水回流时,即废水液面到达第二级反应器的反应罐的回流水出口上方时,向第二级反应器中加入硫酸和双氧水。
上述有毒难降解废水处理方法的技术方案中,为了增加废水处理的自动化程度,步骤②通过加药泵向第二级反应器中加入硫酸和双氧水,硫酸和双氧水经过一定程度的稀释后由加药泵泵入,步骤④中通过加药泵向混凝反应池中加入絮凝剂和无机碱,絮凝剂和无机碱配制成溶液由加药泵泵入。
上述有毒难降解废水处理方法的技术方案中,各级混凝沉淀池中产生的污泥,以及生化反应池的沉淀池在满足污泥回流的基础上产生的多余的污泥通过污泥压滤机压滤脱水后集中处理(脱水后的污泥一般都属于危险废物,不能填埋处理),污泥压滤机压滤产生的废水可返回混凝沉淀池或生化反应池中进行二次处理。
与现有技术相比,本发明提供的技术方案产生了以下有益的技术效果:
1.本发明提供了一种一体化有毒难降解废水处理装置,该装置包括调节池、第一级反应器、第二级反应器、第三级反应器、2~4级混凝沉淀池和生化反应池,调节池能有效缓解废水水质条件波动对处理效果造成的不利影响,有利于提高装置的抗冲击能力;三级反应器仅依靠废水回流的方式实现催化剂在反应器内的充分流化和确保废水的旋流状态,无需外加搅拌装置,有利于降低废水处理能耗,同时,三级反应器中均不包含固定填充的填料,有利于传质效率的提高,并且,三级反应器有效地耦合了类芬顿反应和芬顿反应,能进一步提高废水的处理效率和强化废水的处理效果;混凝沉淀池的设计可有效去除三级反应器出水中的铁离子及其他金属离子,生化反应池的设计可确保废水中的污染物的彻底去除,使出水达标排放。与现有需要采用五级相互串联的反应器加上混凝沉淀池的有毒难降解废水处理装置相比,本发明提供的废水处理装置的结构更简单,仅需要三级相互串联的反应器加上混凝沉淀池和生物反应池即可实现有毒难降解废水的高效处理,无需引入臭氧进行处理,不必配套臭氧发生和脱除设备,也无需配套搅拌装置使用,这能够有效降低设备成本,减小能耗,减小占地面积,同时,本发明提供的废水处理装置中不具有固定设置的催化剂,第一级和第三级反应器中的催化剂的流化更充分,还具有传质效率更高的特点,有利于提高废水处理效率。
2.本发明提供的一体化有毒难降解废水处理装置设计了2~4级混凝沉淀池,各级混凝沉淀池由混凝反应池、初沉池和二淀池串联而成,混凝反应池通过加无机碱的方式,能够有效的去除水中的铁离子及其他金属离子、降低废水的色度和COD浓度,同时混凝反应池加入絮凝剂以及混凝沉淀池竖管沉淀池的设计能够更有效的降低絮体的沉淀时间,加速絮体的沉淀,使之更有效的去除三级反应器出水中的铁离子及其他金属离子,有利于后续的生化反应处理,同时混凝沉淀池的设计也有利于提高装置的抗冲击能力。
3.本发明提供的一体化有毒难降解废水处理装置的生化反应池包括缺氧池、好氧池、沉淀池及清水池,缺氧池和好氧池中固定有生物填料,此外还设计了污泥和混合液回流结构,将好氧池中的混合液回流至缺氧,将沉淀池中的污泥回流至缺氧池,该生化反应池的设计具有抗冲击负荷、污泥产量少、生物量高、泥龄长的特点,还可保持较多的硝化和反硝化细菌,提高脱氮效果,有利于废水中的污染物质得到充分的降解,使处理后的出水能够稳定达到相关排放标准。
4.本发明还提供了有毒难降解废水的处理方法,采用该有毒难降解废水处理方法进行废水处理时,第一级反应器的出水中含有的Fe 2+可直接作为第二级反应器中芬顿反应的催化剂,因此无需向第二级反应器中添加催化剂,第三级反应器可消耗第二级反应器出水中残留的双氧水和产生的酸,且第二级反应器出水中的双氧水和酸也能强化第三级反应器中的高级氧化反应。由于三级反应器中耦合了类芬顿和芬顿反应,二者之间具有很强的协同作用,因此采用本发明所述方法进行废水处理,不但能避免双氧水和酸残留对后续生化处理的不利影响,而且能减少双氧水的浪费,在消耗了第二级反应器出水中的酸后,第三级反应器出水的pH值升高,可减少后续混凝沉淀时碱的投加量,在强化废水处理效果的同时降低废水处理成本。本发明提供的有毒难降解废水处理方法是一套完整的废水处理方法,废 水经第一级至第三级反应器的芬顿和类芬顿反应后,经混凝沉淀处理,有效去除水中的铁离子及其他金属离子,之后进行生化处理,将废水中的污染物彻底的去除,使出水达标排放。该方法的工艺流程短,第一级至第三级反应器中的传质效率高,有利于降低废水处理成本、提高处理效率和改善废水处理效果。
5.本发明提供的有毒难降解废水处理方法在本发明提供的有毒难降解废水处理装置的基础之上结合了合理的工艺参数,有效地耦合了类芬顿反应和芬顿反应,二者起到相互协同的作用,同时匹配了适当的混凝沉淀和生化反应,可在现有技术的基础之上进一步强化废水处理效果和提高废水处理效率。实验表明,使用本发明提供的处理方法处理雷管厂生产废水、军用底火药生产废水、硝酸肼镍起爆药生产水、抗生素废水、染料中间体废水、制药废水、农药生产废水等均具有良好的效果,能极大改善有毒难降解废水的可生化性,使用范围广。
附图说明
图1是第一种第一级反应器和第三级反应器(高级氧化反应器)的结构示意图,其中(A)图为正视图,(B)图为俯视图,(C)图为(A)图中A处的局部放大图;
图2是第二种第一级反应器和第三级反应器(高级氧化反应器)的结构示意图,其中(A)图为正视图,(B)图为俯视图;
图3是第二级反应器(芬顿反应器)的结构示意图,其中(A)图为正视图,(B)图为俯视图。
图4是本发明一体化有毒难降解废水处理装置的结构示意图和工艺流程图;
图中,10—调节池、20—第一级反应器、30—第二级反应器、40—第三级反应器、50—混凝沉淀池、501—混凝反应池、502—初沉池、503—二沉池、60—生化反应池、601—缺氧池、602—好氧池、603—沉淀池、604—清水池、605—混合液回流泵、606—污泥回流泵、70—曝气鼓风机、80—污泥压滤机,1-1—第一反应罐、1-2—第一回流泵、1-3—第一回流管、1-4—第一支架、1-5—第一圆锥挡板、1-6—曝气盘、1-7—沉淀罐、1-8—第一圆筒、1-9—第一球冠、1-10—下法兰、1-11—上法兰、1-12—螺钉、1-13—垫片、1-14—第一加药口、1-15—第一进水口、1-16—第一溢流口、1-17—第一回流水出口、1-18—第一出水口、1-19—第一回流水进口、1-20—第一排空口、1-21—第一90°弯头、1-22—沉淀罐罐底、1-23—第二出水口、1-24—竖流管、1-25—支撑架、α—沉淀罐罐底与铅垂面的夹角,3-1—第二反应罐、3-2—第二回流泵、3-3—第二回流管、3-4—第二支架、3-5—第二圆锥挡板、3-6—第二加药口、3-7—第二圆筒、3-8—第二球冠、3-9—第二进水口、3-10—第二溢流口、3-11—第二回流水出口、3-12—第三出水口、3-13—第二排空口、3-14—第二90°弯头。
具体实施方式
以下通过实施例对本发明提供的一体化有毒难降解废水处理装置及处理方法作进一步说明。有必要指出,以下实施例只用于对本发明作进一步说明,不能理解为对本发明保护范围的限制,所属领域技术人员根据上述发明内容,对本发明做出一些非本质的改进和调整进行具体实施,仍属于本发明保护的范围。
实施例1:高级氧化反应器结构
本实施例中,高级氧化反应器的结构示意图如图1所示,包括第一反应罐1-1、第一回流泵1-2、第一回流管1-3、第一支架1-4、第一圆锥挡板1-5、曝气盘1-6、沉淀罐1-7,沉淀罐中设有竖流管1-24。
第一反应罐1-1由第一圆筒1-8和第一球冠1-9组成,第一球冠1-9的高小于第一圆筒1-8的半径,第一圆筒1-8的内径与第一球冠1-9开口端的内径相等,第一圆筒1-8的一端端部与第一球冠1-9的开口端连接,第一球冠1-9底部设有下法兰1-10;第一圆锥挡板1-5位于第一反应罐1-1内部,第一圆锥挡板1-5的底面开口、顶点向上,第一圆锥挡板1-5的底部外围设有上法兰1-11,第一圆锥挡板1-5的开口端通过上法兰1-11与下法兰1-10通过螺钉1-12连接,在上法兰1-11与下法兰1-10之间设有垫片1-13,使第一圆锥挡板1-5以可拆卸的方式固定住第一球冠1-9上,第一圆锥挡板1-5的开口端与第一球冠1-9底部的内壁连接,第一圆锥挡板1-5的轴线、第一圆筒1-8的轴线与第一球冠1-9的高重合,第一圆锥挡板1-5的锥角为40°,第一圆锥挡板1-5的高度与第一反应罐1-1的高度之比为1:12。
第一圆筒1-9上设有第一加药口1-14、第一进水口1-15、第一溢流口1-16、第一回流水出口1-17和第一出水口1-18,第一球冠1-9上设有第一回流水进口1-19和第一排空口1-20,第一排空口1-20位于第一圆锥挡板1-5外部的第一球冠1-9上,第一回流水进口1-19位于第一球冠1-9顶部的中心位置;在第一圆锥挡板1-5的同一高度位置上水平设有四个均匀分布的第一90°弯头1-21将第一圆锥挡板1-5的内部与外部连通,各第一90°弯头1-21位于第一圆锥挡板1-5外壁的端面均位于过该第一90° 弯头1-21另一端面中心的垂线的同一侧,第一圆锥挡板1-5的顶部水平设有曝气盘1-6,曝气盘1-6上连接曝气管。
沉淀罐1-7设于第一圆筒1-8的外侧壁上,第一圆筒1-8的部分外侧壁同时作为沉淀罐1-7的内侧壁,沉淀罐1-7上端开口且沉淀罐1-7具有倾斜的沉淀罐罐底1-22,沉淀罐罐底1-22与铅垂面的夹角为40°,第一出水口1-18位于沉淀罐罐底1-22与第一圆筒1-8的侧壁相连接处将第一反应罐1-1与沉淀罐1-7连通,第一出水口1-18的宽度与沉淀罐罐底1-22和第一圆筒1-8外壁的交线的长度相等,第一出水口1-18的开口高度为80mm,第一出水口1-18位于第一圆筒1-8的下部,沉淀罐1-7的上部设有第二出水口1-23,沉淀罐1-7内设有竖流管1-24,竖流管1-24通过水平设置在沉淀罐罐底1-22上端部处的支撑架1-25安装在沉淀罐1-8中,竖流管1-24的上下齐平且底部位于沉淀罐罐底1-22上方、顶部位于第二出水口1-23下方,竖流管1-24的公称直径为20mm,竖流管1-24为蜂窝状竖流管。
第一回流管1-3的一端与第一回流水出口1-17连接、另一端与第一回流水进口1-19连接,第一回流泵1-2位于第一回流管1-3的管路上,第一支架1-4与第一反应罐1-1的外壁连接支撑第一反应罐1-1处于垂直于水平面的状态。
实施例2:高级氧化反应器结构
本实施例中,高级氧化反应器的结构与实施例1中的高级氧化反应器的结构基本相同,不同之处在于:第一圆锥挡板1-5的锥角为60°,第一圆锥挡板1-5的高度与第一反应罐1-1的高度之比为1:8,在第一圆锥挡板1-5的同一高度位置上水平设有三个均匀分布的第一90°弯头1-21,沉淀罐罐底1-22与铅垂面的夹角为30°,第一出水口的开口高度为50mm,竖流管1-24的公称直径为10mm。
实施例3:高级氧化反应器结构
本实施例中,高级氧化反应器的结构如图2所示,与实施例1中的高级氧化反应器的结构基本相同,不同之处在于:第一90°弯头1-21采用了另一种布置方式,在第一球冠1-9的同一高度位置上水平设有均匀布置的四个第一90°弯头1-24将第一球冠1-9的内部与外部连通,各第一90°弯头1-21位于第一圆锥挡板1-5外壁的端面且紧挨第一圆锥挡板1-5的外壁,第一回流管1-3的一端与第一回流水出口1-17连接、另一端通过支管与第一球冠1-9上的各第一90°弯头1-21连接;第一圆锥挡板1-5未采用可拆卸的方式连接,而是直接固定在第一球冠1-5内壁上;第一圆锥挡板1-5的锥角为40°,第一圆锥挡板1-5的高度与第一反应罐1-1的高度之比为1:13,沉淀罐罐底1-22与铅垂面的夹角为25°,第一出水口1-18的开口高度为100mm,竖流管1-24的公称直径为20mm。
实施例4:高级氧化反应器结构
本实施例中,高级氧化反应器的结构与实施例3中的高级氧化反应器的结构基本相同,不同之处在于:在第一球冠1-9的同一高度位置上水平设有均匀布置了三个第一90°弯头1-21;第一圆锥挡板1-5的锥角为50°,第一圆锥挡板1-5的高度与第一反应罐1-1的高度之比为1:10,,沉淀罐罐底1-22与铅垂面的夹角为40°,第一出水口1-18的开口高度为50mm,竖流管1-24的公称直径为15mm。
以上高级氧化反应器中第一90°弯头出水1-21与第一球冠1-9和第一圆锥挡板1-5的结构设计有利于废水在回流泵的作用下形成旋流,避免微米级电解材料在第一反应罐1-1底部的中央和四周聚集,使微米级电解材料在第一反应罐1-1中处于充分流化状态,避免微米级电解材料板结化,这能有效提高第一反应罐1-1内的传质效率,强化废水处理效果和延长反应器运行周期,依靠循环水流流化微米级电解材料的方式较现有机械搅拌的方式能使反应器内的微米级电解材料流化效果更好、能耗明显更低,有利于降低废水处理成本,提高废水的处理效率。实施例1和2中将第一反应罐1-1中的第一圆锥挡板1-5设计为可拆卸式的,在第一圆锥挡板1-5出现磨损影响使用时易于更换,可延长整个反应器的使用寿命;实施例3和4中将第一90°弯头1-21设置在第一圆锥挡板1-5外壁的端面且紧挨第一圆锥挡板1-5的外壁的位置,同时将第一回流管1-3的一端与第一回流水出口1-17连接、另一端通过支管与第一球冠1-9上的各第一90°弯头1-21连接,这可以避免循环水流对第一圆锥挡板1-5造成冲击和破坏,有利于延长整个反应器的使用寿命。沉淀罐1-7的设计可使已处理废水中的微米级电解材料在沉淀罐1-7中得到充分的沉降,避免微米级电解材料随出水流失,同时避免微米级电解材料进入后续处理过程对后续处理产生不利影响,沉淀罐1-7内竖流管1-24的设置能加速微米级电解材料的沉降。曝气盘1-6的设计不但能提供废水处理所需的溶解氧,而且曝气本身也起到一定的流化微电解材料的作用,进一步增加微米级微电解材料在废水中的流化程度,提高传质效率,强化废水处理效果和提高废水处理效率。
实施例5:芬顿反应器结构
本实施例中,芬顿反应器的结构如图3所示,包括第二反应罐3-1、第二回流泵3-2、第二回流管3-3、第二支架3-4、第二圆锥挡板3-5。
第二反应罐3-1由第二圆筒3-7和第二球冠3-8组成,第二球冠3-8的高小于第二圆筒3-7的半径,第二圆筒3-7的内径与第二球冠3-8开口端的内径相等,第二圆筒3-7的一端端部与第二球冠3-8的开口端连接,第二圆锥挡板3-5位于第二反应罐3-1内部,第二圆锥挡板3-5的底面开口、顶点向上,第二圆锥挡板3-5的开口端与第二球冠3-8的内壁连接,第二圆锥挡板3-5的轴线、第二圆筒3-7的轴线与第二球冠3-8的高重合,第二圆锥挡板3-5的锥角为50°,第二圆锥挡板3-5的高度与第二反应罐3-1的高度之比为1:12。
第二圆筒3-7上设有第二加药口3-6、第二进水口3-9、第二溢流口3-10、第二回流水出口3-11和第三出水口3-12,第二球冠3-8上设有第二排空口3-13,第二排空口3-13位于第二圆锥挡板3-5外部的第二球冠3-8上;在第二球冠3-8的同一高度位置上水平设有均匀布置的四个第二90°弯头3-14将第二球冠3-8的内部与外部连通,各第二90°弯头3-14位于第二圆锥挡板3-5外壁的端面且紧挨第二圆锥挡板3-5的外壁;
第二回流管3-3的一端与第二回流水出口3-11连接、另一端通过支管与第二球冠3-8上的各第二90°弯头3-14连接,第二回流泵3-2位于第二回流管3-3的管路上,第二支架3-4与第二反应罐3-1的外壁连接支撑第二反应罐3-1处于垂直于水平面的状态。
实施例6:芬顿反应器结构
本实施例中,芬顿反应器的结构与实施例5中芬顿反应器的结构基本相同,不同之处仅在于:第二圆锥挡板3-5的锥角为60°,第二圆锥挡板3-5的高度与第二反应罐3-1的高度之比为1:10,在第二球冠3-8的同一高度位置上水平设有均匀布置了三个第二90°弯头3-14。
芬顿反应器中,各第二90°弯头3-14的设置位置与第二球冠3-8和第二圆锥挡板3-5的结构设计有利于废水在回流泵的作用下形成旋流,能有效提高反应罐内的传质效率,强化废水处理效果。
实施例7:一体化有毒难降解废水处理装置结构
本实施例中,一体化有毒难降解废水处理装置的结构示意图如图4所示,包括依次串联的调节池10、第一级反应器20、第二级反应器30、第三级反应器40、混凝沉淀池50、生化反应池60,还包括曝气鼓风机70和污泥压滤机80。
所述第一级反应器20和第三级反应器40均为实施例1中的高级氧化反应器,第二级反应器30为实施例5中的芬顿反应器;所述混凝沉淀池50包括2级,各级混凝沉淀池50均由混凝反应池501、初沉池502和二淀池503串联而成,混凝反应池501中设有曝气件,初级沉淀池502和二级沉淀池503均为竖管沉淀池,竖管沉淀池中布置了蜂窝状竖流管;所述生化反应池60由缺氧池601、好氧池602、沉淀池603和清水池604串联而成,缺氧池601和好氧池602中固定有生物填料,好氧池602中设有曝气件,生化反应池60还包括混合液回流泵605和污泥回流泵606,生化反应池60的好氧池602通过混合液回流管经混合液回流泵605与生化反应池60的缺氧池601连通,生化反应池60的沉淀池603通过污泥回流管经污泥回流泵606与生化反应池60的缺氧池601连通。
调节池10通过管件与第一级反应器20的进水口连通,第一级反应器20的出水口通过管件与第二级反应器30的进水口连通,第二级反应器30的出水口通过管件与第三级反应器40的进水口连通,第三级反应器40的出水口通过管件与混凝沉淀池50的进水口连通,混凝沉淀池50的出水口通过管件与生化反应池60的进水口连通;曝气鼓风机70通过管件分别与第一级反应器20、第三级反应器40、各级混凝沉淀池50的混凝反应池501以及生化反应池60的好氧池602中设置的中的曝气件连通;污泥压滤机80通过管件与各级混凝沉淀池50以及生化反应池60的沉淀池603连通。
第一级反应器20、第二级反应器30、第三级反应器40、混凝沉淀池50以及生化反应池60之间通过液位差推流。
实施例8:一体化有毒难降解废水处理装置结构
本实施例中,一体化有毒难降解废水处理装置的结构与实施例7中的装置的结构基本相同,不同之处在于:第一级反应器20和第三级反应器30均为实施例2中的高级氧化反应器,混凝沉淀池50包括3级。
实施例9:一体化有毒难降解废水处理装置结构
本实施例中,一体化有毒难降解废水处理装置的结构与实施例7中的装置的结构基本相同,不同之处在于:第一级反应器20和第三级反应器40均为实施例3中的高级氧化反应器,第二级反应器30 为实施例6中的芬顿反应器,混凝沉淀池50包括4级。
实施例10:一体化有毒难降解废水处理装置结构
本实施例中,一体化有毒难降解废水处理装置的结构与实施例7中的装置的结构基本相同,不同之处在于:第一级反应器20和第三级反应器30均为实施例3中的高级氧化反应器,第二级反应器40为实施例6中的芬顿反应器。
实施例11:一体化有毒难降解废水处理装置结构
本实施例中,一体化有毒难降解废水处理装置的结构与实施例7中的装置的结构基本相同,不同之处在于:第一级反应器20和第三级反应器40均为实施例4中的高级氧化反应器,第二级反应器30为实施例5中的芬顿反应器,混凝沉淀池50包括2级。
实施例12:废水处理方法
本实施例中,采用实施例7中有毒难降解废水处理装置并配备加药装置处理某雷管厂的二硝基重氮酚(DDNP)生产废水,废水的特征:COD浓度为1500mg/L、BOD浓度为0mg/L、色度为15000倍。将所述有毒难降解废水处理装置的各加药管分别与各自的加药装置连接,处理步骤如下:
①调整调节池中废水的pH值为2,将调节池中的废水连续泵入第一级反应器中,当第一级反应器中的废水液面到达第一反应罐的第一回流水出口上方时,向第一级反应器中加入微米级零价铁粒子,零价铁粒子的添加量为每升第一级反应器有效容积中20g,曝气并开启第一回流泵,通过曝气和废水回流的方式使第一级反应器中的零价铁粒子处于流化状态进行废水处理,控制第一级反应器中废水的水力停留时间为40min。
②经第一级反应器处理的废水经第一级反应器的第二出水口连续进入第二级反应器,当第二级反应器中的废水液面到达第二反应罐的第二回流水出口上方时,开启硫酸加药泵和双氧水加药泵,向第二级反应器中加入硫酸和双氧水调整第二级反应器中双氧水的浓度为20mmol/L、废水的pH值为3,通过废水回流的方式使第二级反应器中的废水处于旋流状态进行废水处理,控制第二级反应器中废水的水力停留时间为40min。
③经第二级反应器处理的废水经第二级反应器的第三出水口连续进入第三级反应器,当第三级反应器中的废水液面到达第一反应罐的第一回流水出口上方时,向第三级反应器中加入微米级零价铁粒子,零价铁粒子的添加量为每升第三级反应器有效容积中20g,曝气并开启第一回流泵,通过废水回流的方式使第三级反应器中的零价铁粒子处于流化状态进行废水处理,控制第三级反应器中的水力停留时间为40min。
④经第三级反应器处理的废水连续进入混凝沉淀池进行混凝沉淀处理:
经第三级反应器处理的废水经第三级反应器的第二出水口连续进入第一级混凝沉淀池的混凝反应池,向该混凝反应池中加入絮凝剂PAM和浓度为40wt.%的氢氧化钠,曝气,混凝反应池中形成的混合液连续进入初沉池,经初沉池的废水连续进入二沉池;经第一级混凝沉淀池的二沉池中的废水进入第二级混凝沉淀池的混凝反应池,重复前述加入絮凝剂PAM和氢氧化钠、曝气、进入初沉池和二沉池的操作;使废水中的Fe 2+、Fe 3+以及生成的絮体被有效去除。控制废水在混凝沉淀池中的水力停留时间为60min,控制各级混凝沉淀池的混凝反应池的pH值为7.5~8.5。
⑤经混凝沉淀池处理的废水从第二级混凝沉淀池的二沉池连续进入生化反应池的缺氧池进行处理,经缺氧池处理的废水连续进入好氧池,在对好氧池进行曝气的条件下进行处理,经好氧池处理的废水连续进入沉淀池,经沉淀池处理后的废水连续进入清水池,之后达标排放;缺氧池和好氧池中固定有生物填料,控制缺氧池内废水的溶解氧浓度为0.2mg/L、pH值为6.5,控制废水在缺氧池中的水力停留时间为90min,控制好氧池内废水的溶解氧浓度为2mg/L、pH值为7,控制废水在好氧池中的水力停留时间为200min。
将生化反应池的好氧池中的混合液回流至生化反应池的缺氧池,将生化反应池的沉淀池中的污泥回流至生化反应池的缺氧池,污泥回流比为50%,混合液回流比为100%。各级混凝沉淀池中产生的污泥,以及生化反应池的沉淀池在满足污泥回流的基础上产生的多余的污泥通过污泥压滤机压滤脱水后集中处理。
取生化反应池的清水池的出水进行水质检测,结果发现出水的COD浓度为40mg/L、BOD浓度为10mg/L,色度降低至70倍以下,废水中的有毒难降解污染物被完全降解转化,出水能够稳定达到相关行业排放标准。
实施例13:废水处理方法
本实施例中,采用实施例7中有毒难降解废水处理装置并配备加药装置处理某雷管厂的DDNP生产废水,废水的特征:COD浓度为4500mg/L、BOD浓度为0mg/L、色度为50000倍。将所述有毒难降解废水处理装置的各加药管分别与各自的加药装置连接,处理步骤如下:
①调整调节池中废水的pH值为2.5,将调节池中的废水连续泵入第一级反应器中,当第一级反应器中的废水液面到达第一反应罐的第一回流水出口上方时,向第一级反应器中加入微米级零价铁粒子,零价铁粒子的添加量为每升第一级反应器有效容积中30g,曝气并开启第一回流泵,通过曝气和废水回流的方式使第一级反应器中的零价铁粒子处于流化状态进行废水处理,控制第一级反应器中废水的水力停留时间为60min。
②经第一级反应器处理的废水经第一级反应器的第二出水口连续进入第二级反应器,当第二级反应器中的废水液面到达第二反应罐的第二回流水出口上方时,开启硫酸加药泵和双氧水加药泵,向第二级反应器中加入硫酸和双氧水调整第二级反应器中双氧水的浓度为40mmol/L、废水的pH值为3,通过废水回流的方式使第二级反应器中的废水处于旋流状态进行废水处理,控制第二级反应器中废水的水力停留时间为60min。
③经第二级反应器处理的废水经第二级反应器的第三出水口连续进入第三级反应器,当第三级反应器中的废水液面到达第一反应罐的第一回流水出口上方时,向第三级反应器中加入微米级零价铁粒子,零价铁粒子的添加量为每升第三级反应器有效容积中30g,曝气并开启第一回流泵,通过废水回流的方式使第三级反应器中的零价铁粒子处于流化状态进行废水处理,控制第三级反应器中的水力停留时间为60min。
④经第三级反应器理的废水连续进入混凝沉淀池进行混凝沉淀处理:
经第三级反应器处理的废水经第三级反应器的第二出水口连续进入第一级混凝沉淀池的混凝反应池,向该混凝反应池中加入絮凝剂PAM和PAC、以及浓度为40wt.%的氢氧化钠,曝气,混凝反应池中形成的混合液连续进入初沉池,经初沉池的废水连续进入二沉池;经第一级混凝沉淀池的二沉池中的废水进入第二级混凝沉淀池的混凝反应池,重复前述加入絮凝剂PAM、PAC以及氢氧化钠、曝气、进入初沉池和二沉池的操作;使废水中的Fe 2+、Fe 3+以及生成的絮体被有效去除。控制废水在混凝沉淀池中的水力停留时间为80min,控制各级混凝沉淀池的混凝反应池的pH值为8~9。
⑤经混凝沉淀池处理的废水从第二级混凝沉淀池的二沉池连续进入生化反应池的缺氧池进行处理,经缺氧池处理的废水连续进入好氧池,在对好氧池进行曝气的条件下进行处理,经好氧池处理的废水连续进入沉淀池,经沉淀池处理后的废水连续进入清水池,之后达标排放;缺氧池和好氧池中固定有生物填料,控制缺氧池内废水的溶解氧浓度为0.4mg/L、pH值为7,控制废水在缺氧池中的水力停留时间为120min,控制好氧池内废水的溶解氧浓度为4mg/L、pH值为7.5,控制废水在好氧池中的水力停留时间为360min。
将生化反应池的好氧池中的混合液回流至生化反应池的缺氧池,将生化反应池的沉淀池中的污泥回流至生化反应池的缺氧池,污泥回流比为50%,混合液回流比为300%。各级混凝沉淀池中产生的污泥,以及生化反应池的沉淀池在满足污泥回流的基础上产生的多余的污泥通过污泥压滤机压滤脱水后集中处理。
取第二级混凝沉淀池的二沉池的出水进行水质检测,结果发现出水的COD浓度为500mg/L、BOD浓度为300mg/L,色度降低至70倍以下。
取生化反应池的清水池的出水进行水质检测,结果发现出水的COD浓度为70mg/L、BOD浓度为15mg/L,色度降低至70倍以下,废水中的有毒难降解污染物被完全降解转化,出水能够稳定达到相关行业排放标准。
对比例1:采用CN104876319A的实施例8中的方法处理废水
本对比例中,采用CN104876319A的实施例8中的方法处理实施例13所述的DDNP生产废水,在废水处理时采用的微米级微电解材料为微米级零价铁粒子,废水的特征:COD浓度为4500mg/L、BOD浓度为0mg/L、色度为50000倍。
DDNP生产废水经CN104876319A的实施例8中的方法处理后,取第四级混凝沉淀池的出水进行水质检测,结果发现出水的COD浓度为800mg/L、BOD浓度为400mg/L,色度降低至100倍以下。
结合实施例13和对比例1可知,对比例1采用五级反应器结合四级混凝沉淀池处理后的出水水质比实施例13采用三级反应器和两级混凝沉淀池处理后的出水水质更差,说明采用本发明的方法能进一步强化废水的处理效果。
实施例14:废水处理方法
本实施例中,采用实施例8中有毒难降解废水处理装置并配备加药装置处理某军用底火药生产废水,废水的特征:COD浓度为9500mg/L、BOD浓度为0mg/L、色度为30000倍。将所述有毒难降解废水处理装置的各加药管分别与各自的加药装置连接,处理步骤如下:
①调整调节池中废水的pH值为2,将调节池中的废水连续泵入第一级反应器中,当第一级反应器中的废水液面到达第一反应罐的第一回流水出口上方时,向第一级反应器中加入微米级零价铁粒子,零价铁粒子的添加量为每升第一级反应器有效容积中30g,曝气并开启第一回流泵,通过曝气和废水回流的方式使第一级反应器中的零价铁粒子处于流化状态进行废水处理,控制第一级反应器中废水的水力停留时间为90min。
②经第一级反应器处理的废水经第一级反应器的第二出水口连续进入第二级反应器,当第二级反应器中的废水液面到达第二反应罐的第二回流水出口上方时,开启硫酸加药泵和双氧水加药泵,向第二级反应器中加入硫酸和双氧水调整第二级反应器中双氧水的浓度为40mmol/L、废水的pH值为3,通过废水回流的方式使第二级反应器中的废水处于旋流状态进行废水处理,控制第二级反应器中废水的水力停留时间为90min。
③经第二级反应器处理的废水经第二级反应器的第三出水口连续进入第三级反应器,当第三级反应器中的废水液面到达第一反应罐的第一回流水出口上方时,向第三级反应器中加入微米级零价铁粒子,零价铁粒子的添加量为每升第三级反应器有效容积中30g,曝气并开启第一回流泵,通过废水回流的方式使第三级反应器中的零价铁粒子处于流化状态进行废水处理,控制第三级反应器中的水力停留时间为90min。
④经第三级反应器处理的废水连续进入混凝沉淀池进行混凝沉淀处理:
经第三级反应器处理的废水经第三级反应器的第二出水口连续进入第一级混凝沉淀池的混凝反应池,向该混凝反应池中加入絮凝剂PAM和浓度为40wt.%的氢氧化钠,曝气,混凝反应池中形成的混合液连续进入初沉池,经初沉池的废水连续进入二沉池;经第一级混凝沉淀池的二沉池中的废水进入第二级混凝沉淀池的混凝反应池,重复前述加入絮凝剂PAM和氢氧化钠、曝气、进入初沉池和二沉池的操作,经第二级混凝沉淀池的二沉池中的废水进入第三级混凝沉淀池的混凝反应池,重复前述加入絮凝剂PAM和氢氧化钠、曝气、进入初沉池和二沉池的操作;使废水中的Fe 2+、Fe 3+以及生成的絮体被有效去除。控制废水在混凝沉淀池中的水力停留时间为120min,控制各级混凝沉淀池的混凝反应池的pH值为8.5~9.5。
⑤经混凝沉淀池处理的废水从第二级混凝沉淀池的二沉池连续进入生化反应池的缺氧池进行处理,经缺氧池处理的废水连续进入好氧池,在对好氧池进行曝气的条件下进行处理,经好氧池处理的废水连续进入沉淀池,经沉淀池处理后的废水连续进入清水池,之后达标排放;缺氧池和好氧池中固定有生物填料,控制缺氧池内废水的溶解氧浓度为0.5mg/L、pH值为7.5,控制废水在缺氧池中的水力停留时间为120min,控制好氧池内废水的溶解氧浓度为4mg/L、pH值为8,控制废水在好氧池中的水力停留时间为360min。
将生化反应池的好氧池中的混合液回流至生化反应池的缺氧池,将生化反应池的沉淀池中的污泥回流至生化反应池的缺氧池,污泥回流比为100%,混合液回流比为400%。各级混凝沉淀池中产生的污泥,以及生化反应池的沉淀池在满足污泥回流的基础上产生的多余的污泥通过污泥压滤机压滤脱水后集中处理。
取生化反应池的清水池的出水进行水质检测,结果发现出水的COD浓度为40mg/L、BOD浓度为10mg/L,色度降低至70倍以下,废水中的有毒难降解污染物被完全降解转化,出水能够稳定达到相关行业排放标准。
实施例15:废水处理方法
本实施例中,采用实施例8中有毒难降解废水处理装置并配备加药装置处理某军用底火药生产废水,废水的特征:COD浓度为21000mg/L、BOD浓度为0mg/L、色度为50000倍。将所述有毒难降解废水处理装置的各加药管分别与各自的加药装置连接,处理步骤如下:
①调整调节池中废水的pH值为2,将调节池中的废水连续泵入第一级反应器中,当第一级反应器中的废水液面到达第一反应罐的第一回流水出口上方时,向第一级反应器中加入微米级零价铁粒子,零价铁粒子的添加量为每升第一级反应器有效容积中40g,曝气并开启第一回流泵,通过曝气和废水回流的方式使第一级反应器中的零价铁粒子处于流化状态进行废水处理,控制第一级反应器中废 水的水力停留时间为120min。
②经第一级反应器处理的废水经第一级反应器的第二出水口连续进入第二级反应器,当第二级反应器中的废水液面到达第二反应罐的第二回流水出口上方时,开启硫酸加药泵和双氧水加药泵,向第二级反应器中加入硫酸和双氧水调整第二级反应器中双氧水的浓度为60mmol/L、废水的pH值为3,通过废水回流的方式使第二级反应器中的废水处于旋流状态进行废水处理,控制第二级反应器中废水的水力停留时间为120min。
③经第二级反应器处理的废水经第二级反应器的第三出水口连续进入第三级反应器,当第三级反应器中的废水液面到达第一反应罐的第一回流水出口上方时,向第三级反应器中加入微米级零价铁粒子,零价铁粒子的添加量为每升第三级反应器有效容积中40g,曝气并开启第一回流泵,通过废水回流的方式使第三级反应器中的零价铁粒子处于流化状态进行废水处理,控制第三级反应器中的水力停留时间为120min。
④经第三级反应器处理的废水连续进入混凝沉淀池进行混凝沉淀处理:
经第三级反应器处理的废水经第三级反应器的第二出水口连续进入第一级混凝沉淀池的混凝反应池,向该混凝反应池中加入絮凝剂PAS和PAM、以及浓度为40wt.%的氢氧化钠,曝气,混凝反应池中形成的混合液连续进入初沉池,经初沉池的废水连续进入二沉池;经第一级混凝沉淀池的二沉池中的废水进入第二级混凝沉淀池的混凝反应池,重复前述加入絮凝剂PAS、PAM和氢氧化钠、曝气、进入初沉池和二沉池的操作,经第二级混凝沉淀池的二沉池中的废水进入第三级混凝沉淀池的混凝反应池,重复前述加入絮凝剂PAS、PAM和氢氧化钠、曝气、进入初沉池和二沉池的操作;使废水中的Fe 2+、Fe 3+以及生成的絮体被有效去除。控制废水在混凝沉淀池中的水力停留时间为120min,控制各级混凝沉淀池的混凝反应池的pH值为9~10。
⑤经混凝沉淀池处理的废水从第二级混凝沉淀池的二沉池连续进入生化反应池的缺氧池进行处理,经缺氧池处理的废水连续进入好氧池,在对好氧池进行曝气的条件下进行处理,经好氧池处理的废水连续进入沉淀池,经沉淀池处理后的废水连续进入清水池,之后达标排放;缺氧池和好氧池中固定有生物填料,控制缺氧池内废水的溶解氧浓度为0.4mg/L、pH值为7,控制废水在缺氧池中的水力停留时间为150min,控制好氧池内废水的溶解氧浓度为4mg/L、pH值为7.5,控制废水在好氧池中的水力停留时间为390min。
将生化反应池的好氧池中的混合液回流至生化反应池的缺氧池,将生化反应池的沉淀池中的污泥回流至生化反应池的缺氧池,污泥回流比为60%,混合液回流比为350%。各级混凝沉淀池中产生的污泥,以及生化反应池的沉淀池在满足污泥回流的基础上产生的多余的污泥通过污泥压滤机压滤脱水后集中处理。
取生化反应池的清水池的出水进行水质检测,结果发现出水的COD浓度为90mg/L、BOD浓度为20mg/L,色度降低至70倍以下,废水中的有毒难降解污染物被完全降解转化,出水能够稳定达到相关行业排放标准。
实施例16:废水处理方法
本实施例中,采用实施例11中有毒难降解废水处理装置并配备加药装置处理某硝酸肼镍起爆药生产废水,废水的特征:COD浓度为6500mg/L、BOD浓度为0mg/L、色度为5000倍。将所述有毒难降解废水处理装置的各加药管分别与各自的加药装置连接,处理步骤如下:
①调整调节池中废水的pH值为3,将调节池中的废水连续泵入第一级反应器中,当第一级反应器中的废水液面到达第一反应罐的第一回流水出口上方时,向第一级反应器中加入微米级铁铜双金属粒子,铁铜双金属粒子的添加量为每升第一级反应器有效容积中25g,曝气并开启第一回流泵,通过曝气和废水回流的方式使第一级反应器中的铁铜双金属粒子处于流化状态进行废水处理,控制第一级反应器中废水的水力停留时间为90min。
②经第一级反应器处理的废水经第一级反应器的第二出水口连续进入第二级反应器,当第二级反应器中的废水液面到达第二反应罐的第二回流水出口上方时,开启硫酸加药泵和双氧水加药泵,向第二级反应器中加入硫酸和双氧水调整第二级反应器中双氧水的浓度为40mmol/L、废水的pH值为3,通过废水回流的方式使第二级反应器中的废水处于旋流状态进行废水处理,控制第二级反应器中废水的水力停留时间为90min。
③经第二级反应器处理的废水经第二级反应器的第三出水口连续进入第三级反应器,当第三级反应器中的废水液面到达第一反应罐的第一回流水出口上方时,向第三级反应器中加入微米级铁铜双金 属粒子,铁铜双金属粒子的添加量为每升第三级反应器有效容积中25g,曝气并开启第一回流泵,通过废水回流的方式使第三级反应器中的铁铜双金属粒子处于流化状态进行废水处理,控制第三级反应器中的水力停留时间为90min。
④经第三级反应器处理的废水连续进入混凝沉淀池进行混凝沉淀处理:
经第三级反应器处理的废水经第三级反应器的第二出水口连续进入第一级混凝沉淀池的混凝反应池,向该混凝反应池中加入絮凝剂PFS和PAM、以及浓度为45wt.%的氢氧化钠,曝气,混凝反应池中形成的混合液连续进入初沉池,经初沉池的废水连续进入二沉池;经第一级混凝沉淀池的二沉池中的废水进入第二级混凝沉淀池的混凝反应池,重复前述加入絮凝剂PFS、PAM和氢氧化钠、曝气、进入初沉池和二沉池的操作;使废水中的Fe 2+、Fe 3+以及生成的絮体被有效去除。控制废水在混凝沉淀池中的水力停留时间为90min,控制各级混凝沉淀池的混凝反应池的pH值为8~9。
⑤经混凝沉淀池处理的废水从第二级混凝沉淀池的二沉池连续进入生化反应池的缺氧池进行处理,经缺氧池处理的废水连续进入好氧池,在对好氧池进行曝气的条件下进行处理,经好氧池处理的废水连续进入沉淀池,经沉淀池处理后的废水连续进入清水池,之后达标排放;缺氧池和好氧池中固定有生物填料,控制缺氧池内废水的溶解氧浓度为0.4mg/L、pH值为7,控制废水在缺氧池中的水力停留时间为120min,控制好氧池内废水的溶解氧浓度为4mg/L、pH值为7.5,控制废水在好氧池中的水力停留时间为240min。
将生化反应池的好氧池中的混合液回流至生化反应池的缺氧池,将生化反应池的沉淀池中的污泥回流至生化反应池的缺氧池,污泥回流比为50%,混合液回流比为300%。各级混凝沉淀池中产生的污泥,以及生化反应池的沉淀池在满足污泥回流的基础上产生的多余的污泥通过污泥压滤机压滤脱水后集中处理。
取生化反应池的清水池的出水进行水质检测,结果发现出水的COD浓度为30mg/L、BOD浓度为10mg/L,色度降低至70倍以下,废水中的有毒难降解污染物被完全降解转化,出水能够稳定达到相关行业排放标准。
实施例17:废水处理方法
本实施例中,采用实施例10中有毒难降解废水处理装置并配备加药装置处理某染料中间体废水,废水的特征:COD浓度为9500mg/L、BOD浓度为10~150mg/L、色度为10000倍。将所述有毒难降解废水处理装置的各加药管分别与各自的加药装置连接,处理步骤如下:
①调整调节池中废水的pH值为2,将调节池中的废水连续泵入第一级反应器中,当第一级反应器中的废水液面到达第一反应罐的第一回流水出口上方时,向第一级反应器中加入微米级铁钯双金属粒子,铁钯双金属粒子的添加量为每升第一级反应器有效容积中40g,曝气并开启第一回流泵,通过曝气和废水回流的方式使第一级反应器中的铁钯双金属粒子处于流化状态进行废水处理,控制第一级反应器中废水的水力停留时间为90min。
②经第一级反应器处理的废水经第一级反应器的第二出水口连续进入第二级反应器,当第二级反应器中的废水液面到达第二反应罐的第二回流水出口上方时,开启硫酸加药泵和双氧水加药泵,向第二级反应器中加入硫酸和双氧水调整第二级反应器中双氧水的浓度为60mmol/L、废水的pH值为3,通过废水回流的方式使第二级反应器中的废水处于旋流状态进行废水处理,控制第二级反应器中废水的水力停留时间为90min。
③经第二级反应器处理的废水经第二级反应器的第三出水口连续进入第三级反应器,当第三级反应器中的废水液面到达第一反应罐的第一回流水出口上方时,向第三级反应器中加入微米级铁钯双金属粒子,铁钯双金属粒子的添加量为每升第三级反应器有效容积中40g,曝气并开启第一回流泵,通过废水回流的方式使第三级反应器中的铁钯双金属粒子处于流化状态进行废水处理,控制第三级反应器中的水力停留时间为90min。
④经第三级反应器处理的废水连续进入混凝沉淀池进行混凝沉淀处理:
经第三级反应器处理的废水经第三级反应器的第二出水口连续进入第一级混凝沉淀池的混凝反应池,向该混凝反应池中加入絮凝剂PFC和PAM、以及浓度为40wt.%的氢氧化钠,曝气,混凝反应池中形成的混合液连续进入初沉池,经初沉池的废水连续进入二沉池;经第一级混凝沉淀池的二沉池中的废水进入第二级混凝沉淀池的混凝反应池,重复前述加入絮凝剂PFC、PAM和氢氧化钠、曝气、进入初沉池和二沉池的操作;使废水中的Fe 2+、Fe 3+以及生成的絮体被有效去除。控制废水在混凝沉淀池中的水力停留时间为60min,控制各级混凝沉淀池的混凝反应池的pH值为8.5~9.5。
⑤经混凝沉淀池处理的废水从第二级混凝沉淀池的二沉池连续进入生化反应池的缺氧池进行处理,经缺氧池处理的废水连续进入好氧池,在对好氧池进行曝气的条件下进行处理,经好氧池处理的废水连续进入沉淀池,经沉淀池处理后的废水连续进入清水池,之后达标排放;缺氧池和好氧池中固定有生物填料,控制缺氧池内废水的溶解氧浓度为0.4mg/L、pH值为7,控制废水在缺氧池中的水力停留时间为100min,控制好氧池内废水的溶解氧浓度为4mg/L、pH值为7.5,控制废水在好氧池中的水力停留时间为200min。
将生化反应池的好氧池中的混合液回流至生化反应池的缺氧池,将生化反应池的沉淀池中的污泥回流至生化反应池的缺氧池,污泥回流比为50%,混合液回流比为300%。各级混凝沉淀池中产生的污泥,以及生化反应池的沉淀池在满足污泥回流的基础上产生的多余的污泥通过污泥压滤机压滤脱水后集中处理。
取生化反应池的清水池的出水进行水质检测,结果发现出水的COD浓度为50mg/L、BOD浓度为20mg/L,色度降低至100倍以下,废水中的有毒难降解污染物被完全降解转化,出水能够稳定达到相关行业排放标准。
实施例18:废水处理方法
本实施例中,采用实施例8中有毒难降解废水处理装置并配备加药装置处理某制药废水,废水的特征:COD浓度为35000mg/L、BOD浓度为500~1000mg/L、色度为20000倍。将所述有毒难降解废水处理装置的各加药管分别与各自的加药装置连接,处理步骤如下:
①调整调节池中废水的pH值为2,将调节池中的废水连续泵入第一级反应器中,当第一级反应器中的废水液面到达第一反应罐的第一回流水出口1-17上方时,向第一级反应器中加入微米级铁镍双金属粒子,铁镍双金属粒子的添加量为每升第一级反应器有效容积中80g,曝气并开启第一回流泵,通过曝气和废水回流的方式使第一级反应器中的铁镍双金属粒子处于流化状态进行废水处理,控制第一级反应器中废水的水力停留时间为160min。
②经第一级反应器处理的废水经第一级反应器的第二出水口连续进入第二级反应器,当第二级反应器中的废水液面到达第二反应罐的第二回流水出口上方时,开启硫酸加药泵和双氧水加药泵,向第二级反应器中加入硫酸和双氧水调整第二级反应器中双氧水的浓度为120mmol/L、废水的pH值为3,通过废水回流的方式使第二级反应器中的废水处于旋流状态进行废水处理,控制第二级反应器中废水的水力停留时间为160min。
③经第二级反应器处理的废水经第二级反应器的第三出水口连续进入第三级反应器,当第三级反应器中的废水液面到达第一反应罐的第一回流水出口上方时,向第三级反应器中加入微米级铁镍双金属粒子,铁镍双金属粒子的添加量为每升第三级反应器有效容积中40g,曝气并开启第一回流泵,通过废水回流的方式使第三级反应器中的铁镍双金属粒子处于流化状态进行废水处理,控制第三级反应器中的水力停留时间为160min。
④经第三级反应器处理的废水连续进入混凝沉淀池进行混凝沉淀处理:
经第三级反应器处理的废水经第三级反应器的第二出水口连续进入第一级混凝沉淀池的混凝反应池,向该混凝反应池中加入絮凝剂PAM和浓度为40wt.%的氢氧化钠,曝气,混凝反应池中形成的混合液连续进入初沉池,经初沉池的废水连续进入二沉池;经第一级混凝沉淀池的二沉池中的废水进入第二级混凝沉淀池的混凝反应池,重复前述加入絮凝剂PAM和氢氧化钠、曝气、进入初沉池和二沉池的操作,经第二级混凝沉淀池的二沉池中的废水进入第三级混凝沉淀池的混凝反应池,重复前述加入絮凝剂PAM和氢氧化钠、曝气、进入初沉池和二沉池的操作;使废水中的Fe 2+、Fe 3+以及生成的絮体被有效去除。控制废水在混凝沉淀池中的水力停留时间为240min,控制各级混凝沉淀池的混凝反应池的pH值为8.5~9.5。
⑤经混凝沉淀池处理的废水从第二级混凝沉淀池的二沉池连续进入生化反应池的缺氧池进行处理,经缺氧池处理的废水连续进入好氧池,在对好氧池进行曝气的条件下进行处理,经好氧池处理的废水连续进入沉淀池,经沉淀池处理后的废水连续进入清水池,之后达标排放;缺氧池和好氧池中固定有生物填料,控制缺氧池内废水的溶解氧浓度为0.4mg/L、pH值为7,控制废水在缺氧池中的水力停留时间为120min,控制好氧池内废水的溶解氧浓度为4mg/L、pH值为7.5,控制废水在好氧池中的水力停留时间为240min。
将生化反应池的好氧池中的混合液回流至生化反应池的缺氧池,将生化反应池的沉淀池中的污泥回流至生化反应池的缺氧池,污泥回流比为50%,混合液回流比为300%。各级混凝沉淀池中产生的 污泥,以及生化反应池的沉淀池在满足污泥回流的基础上产生的多余的污泥通过污泥压滤机压滤脱水后集中处理。
取生化反应池的清水池的出水进行水质检测,结果发现出水的COD浓度为100mg/L、BOD浓度为15mg/L,色度降低至100倍以下,废水中的有毒难降解污染物被完全降解转化,出水能够稳定达到相关行业排放标准。
实施例19:废水处理方法
本实施例中,采用实施例8中有毒难降解废水处理装置并配备加药装置处理某农药生产废水,废水的特征:COD浓度为23000mg/L、BOD浓度为500-1000mg/L、色度为50000倍。将所述有毒难降解废水处理装置的各加药管分别与各自的加药装置连接,处理步骤如下:
①调整调节池中废水的pH值为2,将调节池中的废水连续泵入第一级反应器中,当第一级反应器中的废水液面到达第一反应罐的第一回流水出口上方时,向第一级反应器中加入微米级零价铁粒子,零价铁粒子的添加量为每升第一级反应器有效容积中80g,曝气并开启第一回流泵,通过曝气和废水回流的方式使第一级反应器中的零价铁粒子处于流化状态进行废水处理,控制第一级反应器中废水的水力停留时间为160min。
②经第一级反应器处理的废水经第一级反应器的第二出水口连续进入第二级反应器,当第二级反应器中的废水液面到达第二反应罐的第二回流水出口上方时,开启硫酸加药泵和双氧水加药泵,向第二级反应器中加入硫酸和双氧水调整第二级反应器中双氧水的浓度为120mmol/L、废水的pH值为3,通过废水回流的方式使第二级反应器中的废水处于旋流状态进行废水处理,控制第二级反应器中废水的水力停留时间为160min。
③经第二级反应器处理的废水经第二级反应器30的第三出水口连续进入第三级反应器,当第三级反应器中的废水液面到达第一反应罐的第一回流水出口上方时,向第三级反应器中加入微米级零价铁粒子,零价铁粒子的添加量为每升第三级反应器有效容积中50g,曝气并开启第一回流泵,通过废水回流的方式使第三级反应器中的零价铁粒子处于流化状态进行废水处理,控制第三级反应器中的水力停留时间为150min。
④经第三级反应器处理的废水连续进入混凝沉淀池进行混凝沉淀处理:
经第三级反应器处理的废水经第三级反应器的第二出水口连续进入第一级混凝沉淀池的混凝反应池,向该混凝反应池中加入絮凝剂PAC和PAM、以及浓度为40wt.%的氢氧化钠,曝气,混凝反应池中形成的混合液连续进入初沉池,经初沉池的废水连续进入二沉池;经第一级混凝沉淀池的二沉池中的废水进入第二级混凝沉淀池的混凝反应池,重复前述加入絮凝剂PAC、PAM和氢氧化钠、曝气、进入初沉池和二沉池的操作,经第二级混凝沉淀池的二沉池中的废水进入第三级混凝沉淀池的混凝反应池,重复前述加入絮凝剂PAC、PAM和氢氧化钠、曝气、进入初沉池和二沉池的操作;使废水中的Fe 2+、Fe 3+以及生成的絮体被有效去除。控制废水在混凝沉淀池中的水力停留时间为360min,控制各级混凝沉淀池的混凝反应池的pH值为9~10。
⑤经混凝沉淀池处理的废水从第二级混凝沉淀池的二沉池连续进入生化反应池的缺氧池进行处理,经缺氧池处理的废水连续进入好氧池,在对好氧池进行曝气的条件下进行处理,经好氧池处理的废水连续进入沉淀池,经沉淀池处理后的废水连续进入清水池,之后达标排放;缺氧池和好氧池中固定有生物填料,控制缺氧池内废水的溶解氧浓度为0.4mg/L、pH值为7,控制废水在缺氧池中的水力停留时间为120min,控制好氧池内废水的溶解氧浓度为4mg/L、pH值为7.5,控制废水在好氧池中的水力停留时间为360min。
将生化反应池的好氧池中的混合液回流至生化反应池的缺氧池,将生化反应池的沉淀池中的污泥回流至生化反应池的缺氧池,污泥回流比为50%,混合液回流比为300%。各级混凝沉淀池中产生的污泥,以及生化反应池的沉淀池在满足污泥回流的基础上产生的多余的污泥通过污泥压滤机压滤脱水后集中处理。
取生化反应池的清水池的出水进行水质检测,结果发现出水的COD浓度为80mg/L、BOD浓度为20mg/L,色度降低至100倍以下,废水中的有毒难降解污染物被完全降解转化,出水能够稳定达到相关行业排放标准。

Claims (10)

  1. 一种一体化有毒难降解废水处理装置,其特征在于,该装置包括依次串联的调节池(10)、第一级反应器(20)、第二级反应器(30)、第三级反应器(40)、混凝沉淀池(50)、生化反应池(60),还包括曝气鼓风机(70);
    所述第一级反应器(20)和第三级反应器(40)均为高级氧化反应器,第二级反应器(30)为芬顿反应器;所述混凝沉淀池(50)包括2~4级,各级混凝沉淀池均由混凝反应池(501)、初沉池(502)和二淀池(503)串联而成,初级沉淀池和二级沉淀池均为竖管沉淀池;所述生化反应池(60)由缺氧池(601)、好氧池(602)、沉淀池(603)和清水池(604)串联而成;
    调节池通过管件与第一级反应器(20)的进水口连通,第一级反应器(20)的出水口通过管件与第二级反应器(30)的进水口连通,第二级反应器(30)的出水口通过管件与第三级反应器(40)的进水口连通,第三级反应器(40)的出水口通过管件与混凝沉淀池(50)的进水口连通,混凝沉淀池(50)的出水口通过管件与生化反应池(60)的进水口连通;曝气鼓风机(70)通过管件分别与第一级反应器(20)、第三级反应器(40)、各级混凝沉淀池(50)的混凝反应池(501)以及生化反应池(60)的好氧池(602)中设置的曝气件连通;
    第一级反应器(20)、第二级反应器(30)、第三级反应器(40)、混凝沉淀池(50)以及生化反应池(60)之间通过液位差推流。
  2. 根据权利要求1所述一体化有毒难降解废水处理装置,其特征在于,该装置的生化反应池(60)还包括混合液回流泵(605)和污泥回流泵(606),生化反应池(60)的好氧池(602)通过混合液回流管经混合液回流泵(605)与生化反应池(60)的缺氧池(601)连通,生化反应池(60)的沉淀池(603)通过污泥回流管经污泥回流泵(606)与生化反应池(60)的缺氧池(601)连通。
  3. 根据权利要求1或2所述一体化有毒难降解废水处理装置,其特征在于,该装置还包括污泥压滤机(80),污泥压滤机(80)通过管件与各级混凝沉淀池(50)以及生化反应池(60)的沉淀池(603)连通。
  4. 根据权利要求1或2所述一体化有毒难降解废水处理装置,其特征在于,所述高级氧化反应器包括反应罐和沉淀罐,反应罐上设有用于使反应罐内微米级微电解材料处于流化状态的废水回流结构,反应罐内设有曝气结构,沉淀罐中设有用于加速微米级微电解材料沉淀的竖流管;所述芬顿反应器包括反应罐,反应罐上设有用于使反应罐内废水处于旋流状态的废水回流结构。
  5. 一种有毒难降解废水处理方法,其特征在于,该方法使用权利要求1-4中任一权利要求所述一体化有毒难降解废水处理装置进行废水处理,步骤如下:
    ①调整调节池(10)中废水的pH值为1~4,将调节池(10)中的废水连续泵入第一级反应器(20)中,向第一级反应器(20)中加入微米级微电解材料,曝气并通过废水回流的方式使第一级反应器(20)中的微米级微电解填料处于流化状态进行废水处理,控制第一级反应器(20)中废水的水力停留时间为20~180min;
    ②经第一级反应器(20)处理的废水连续进入第二级反应器(30),向第二级反应器(30)中加入硫酸和双氧水调整第二级反应器(30)中双氧水的浓度为20~200mmol/L、废水的pH值为2~4,通过废水回流的方式使第二级反应器(30)中的废水处于旋流状态进行废水处理,控制第二级反应器(30)中废水的水力停留时间为20~180min;
    ③经第二级反应器(30)处理的废水连续进入第三级反应器(40),向第三级反应器(40)中加入微米级微电解材料,曝气并通过废水回流的方式使第三级反应器(40)中的微米级微电解填料处于流化状态进行废水处理,控制第三级反应器(40)中的水力停留时间为20~180min;
    ④经第三级反应器(40)处理的废水连续进入混凝沉淀池(50)进行混凝沉淀处理:
    经第三级反应器(40)处理的废水连续进入第一级混凝沉淀池(50)的混凝反应池,向该混凝反应池(50)中加入絮凝剂和无机碱,曝气,混凝反应池(501)中形成的混合液连续进入初沉池(502),经初沉池(502)的废水连续进入二沉池(503);
    经前一级混凝沉淀池(50)的二沉池(503)中的废水进入下一级混凝沉淀池(50)的混凝反应池(501),重复前述加入絮凝剂和无机碱、曝气、进入初沉池(502)和二沉池(503)的操作,直到废水进入最后一级混凝沉淀池(50)的二沉池(503);
    控制废水在混凝沉淀池(50)中的水力停留时间为20~360min;
    ⑤经混凝沉淀池(50)处理的废水连续进入生化反应池(60)的缺氧池(601)进行处理,经缺氧池(601)处理的废水连续进入好氧池(602),在对好氧池(602)进行曝气的条件下进行处理,经好氧池(602)处理的废水连续进入沉淀池(603),经沉淀池(603)处理后的废水连续进入清水池(604),之后达标排放;缺氧池(601)和好氧池(602)中固定有生物填料,控制废水在缺氧池(601)中的水力停留时间为60~600min,控制废水在好氧池(602)中的水力停留时间为180~1200min。
  6. 根据权利要求5所述有毒难降解废水处理方法,其特征在于,步骤⑤中,将生化反应池(60)的好氧池(602)中的混合液回流至生化反应池(60)的缺氧池(601),将生化反应池(60)的沉淀池(603)中的污泥回流至生化反应池(60)的缺氧池(601),污泥回流比为50%~100%,混合液回流比为100%~400%。
  7. 根据权利要求5所述有毒难降解废水处理方法,其特征在于,步骤⑤中,控制缺氧池(601)内废水的溶解氧浓度为0.2~0.5mg/L、pH值为6.5~7.5,控制好氧池(602)内废水的溶解氧浓度为2~4mg/L、pH值为7~8。
  8. 根据权利要求5-7中任一权利要求所述有毒难降解废水处理方法,其特征在于,微米级微电解材料为零价铁粒子、铁铜双金属粒子、铁钯双金属粒子或者铁镍双金属粒子。
  9. 根据权利要求5-7中任一权利要求所述有毒难降解废水处理方法,其特征在于,微米级微电解材料在第一级反应器(20)或第三级反应器(30)中的添加量为每升第一级反应器(20)或第三级反应器(30)有效容积中10~200g。
  10. 根据权利要求5-7中任一权利要求所述有毒难降解废水处理方法,其特征在于,控制各级混凝沉淀池(50)的混凝反应池(501)的pH值为7.5~10。
PCT/CN2021/071970 2020-08-15 2021-01-15 一体化有毒难降解废水处理装置及处理方法 WO2022037005A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/021,184 US11834360B2 (en) 2020-08-15 2021-01-15 Integrated device and method for treating toxic and refractory wastewater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010821497.9A CN111908722B (zh) 2020-08-15 2020-08-15 一体化有毒难降解废水处理装置及处理方法
CN202010821497.9 2020-08-15

Publications (1)

Publication Number Publication Date
WO2022037005A1 true WO2022037005A1 (zh) 2022-02-24

Family

ID=73278123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071970 WO2022037005A1 (zh) 2020-08-15 2021-01-15 一体化有毒难降解废水处理装置及处理方法

Country Status (3)

Country Link
US (1) US11834360B2 (zh)
CN (1) CN111908722B (zh)
WO (1) WO2022037005A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417480A (zh) * 2022-08-12 2022-12-02 金剑环保集团有限公司 一种方便拼装的不锈钢折板
CN115557648A (zh) * 2022-10-26 2023-01-03 广东广深环保科技股份有限公司 一种发制品废水处理系统及其处理方法
CN115626743A (zh) * 2022-11-10 2023-01-20 华夏碧水环保科技股份有限公司 一种含吡啶废水的处理方法
CN115650390A (zh) * 2022-12-09 2023-01-31 华业环保技术有限公司 一种玻璃磨边废水处理系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111908722B (zh) * 2020-08-15 2021-11-30 四川大学 一体化有毒难降解废水处理装置及处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104876319A (zh) * 2015-05-19 2015-09-02 四川大学 类芬顿反应器和有毒难降解废水处理装置及处理方法
CN205442971U (zh) * 2016-01-05 2016-08-10 宜兴市永创环保科技有限公司 一种高浓度、难降解废水处理系统
CN210127117U (zh) * 2019-03-15 2020-03-06 四川大学 一种高级氧化反应器
CN111908722A (zh) * 2020-08-15 2020-11-10 四川大学 一体化有毒难降解废水处理装置及处理方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19708296A1 (de) * 1997-02-28 1998-09-03 Eastman Kodak Co Verfahren zur Aufbereitung von flüssigen Rückständen aus photographischen Prozessen
TWI245744B (en) * 2001-12-21 2005-12-21 Ind Tech Res Inst System and method for removing deep sub-micron particles from water
CN101955280B (zh) * 2010-08-13 2012-05-30 南京赛佳环保实业有限公司 复合电化学法处理高浓度有机废水工艺
CN201890820U (zh) * 2010-11-02 2011-07-06 陕西天安环保科技有限公司 一种固液分离一体化设备
CN201871250U (zh) * 2010-11-04 2011-06-22 中国石油天然气股份有限公司 竖流式兼氧沉淀池
CN101979330B (zh) 2010-11-19 2012-05-23 上海交通大学 滚筒式微电解反应装置及其水处理方法
CN102276018B (zh) 2011-05-31 2013-01-23 江苏金山环保科技股份有限公司 一种浸没式铁碳微电解反应器
CN102642991B (zh) * 2012-04-28 2013-12-04 南京大学 一种电镀废水高效组合深度处理方法
US9719179B2 (en) * 2012-05-23 2017-08-01 High Sierra Energy, LP System and method for treatment of produced waters
CN103880225B (zh) * 2014-03-21 2018-09-25 安徽华骐环保科技股份有限公司 一种多级铁碳微电解耦合芬顿氧化床反应器
CN104609652A (zh) * 2015-01-08 2015-05-13 河北钢铁股份有限公司 一种稳定提高焦化废水可生化性的耦合处理工艺
CN105417894A (zh) * 2016-01-05 2016-03-23 宜兴市永创环保科技有限公司 一种高浓度、难降解废水处理方法
CN105692860B (zh) * 2016-02-03 2018-04-24 四川大学 催化臭氧化-类芬顿耦合反应器及有毒难降解废水处理方法
CN205473259U (zh) * 2016-03-11 2016-08-17 浙江国清环保科技有限公司 一体化连续式芬顿氧化还原污水处理设备
CN106145467A (zh) * 2016-08-26 2016-11-23 南京白云化工环境监测有限公司 一种处理含pva高浓度有机废水的装置及工艺
US10669168B2 (en) * 2016-11-29 2020-06-02 China Petroleum & Chemical Corporation Method and system for treating brine waste water
CN106830544A (zh) * 2017-03-02 2017-06-13 南昌大学 微电解‑芬顿‑egsb‑a/o‑bco‑baf‑混凝处理制药废水系统
US10526227B2 (en) * 2017-05-10 2020-01-07 Creative Water Solutions, Llc Wastewater treatment and solids reclamation system
CN107792996A (zh) * 2017-11-15 2018-03-13 深圳瑞赛环保科技有限公司 一种废溶剂的一体化原位处理方法及装置
CN208684505U (zh) * 2018-08-01 2019-04-02 四川大学 一种高级氧化反应器
CN208995338U (zh) * 2018-09-25 2019-06-18 成都渤茂科技有限公司 一种油气田钻井废液的处理系统
CN109607985B (zh) * 2019-02-12 2021-09-14 鞍钢股份有限公司 一种焦化废水达标排放的处理方法
CN112010493A (zh) * 2019-06-01 2020-12-01 祝来宏 一种电镀废水治理的新工艺
CN111410374A (zh) * 2020-04-20 2020-07-14 深圳市世清环保科技有限公司 处理含镍电镀废水的系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104876319A (zh) * 2015-05-19 2015-09-02 四川大学 类芬顿反应器和有毒难降解废水处理装置及处理方法
CN205442971U (zh) * 2016-01-05 2016-08-10 宜兴市永创环保科技有限公司 一种高浓度、难降解废水处理系统
CN210127117U (zh) * 2019-03-15 2020-03-06 四川大学 一种高级氧化反应器
CN111908722A (zh) * 2020-08-15 2020-11-10 四川大学 一体化有毒难降解废水处理装置及处理方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417480A (zh) * 2022-08-12 2022-12-02 金剑环保集团有限公司 一种方便拼装的不锈钢折板
CN115417480B (zh) * 2022-08-12 2024-03-19 金剑环保集团有限公司 一种方便拼装的不锈钢折板
CN115557648A (zh) * 2022-10-26 2023-01-03 广东广深环保科技股份有限公司 一种发制品废水处理系统及其处理方法
CN115626743A (zh) * 2022-11-10 2023-01-20 华夏碧水环保科技股份有限公司 一种含吡啶废水的处理方法
CN115626743B (zh) * 2022-11-10 2023-06-13 华夏碧水环保科技股份有限公司 一种含吡啶废水的处理方法
CN115650390A (zh) * 2022-12-09 2023-01-31 华业环保技术有限公司 一种玻璃磨边废水处理系统及方法

Also Published As

Publication number Publication date
US20230242430A1 (en) 2023-08-03
CN111908722B (zh) 2021-11-30
US11834360B2 (en) 2023-12-05
CN111908722A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
WO2022037005A1 (zh) 一体化有毒难降解废水处理装置及处理方法
CN104876319B (zh) 类芬顿反应器和有毒难降解废水处理装置及处理方法
WO2015123996A1 (zh) 一种芬顿流化床处理装置及其废水处理方法
CN102730906B (zh) 一种组合型深度处理高浓度有机废水的装置
CN102826697B (zh) 一种模块化组合式处理高难度有机废水的方法及系统
CN104045156A (zh) 一体式高效自养脱氮反应器
CN101591064A (zh) 厌氧内置零价铁反应器
CN2913345Y (zh) 立式膨胀床微电解催化氧化反应器
CN106946419A (zh) 白酒酿造废水处理方法及处理系统
CN105585184B (zh) 一种印染废水除臭系统排放的循环喷淋液处理方法及装置
CN114031226A (zh) 高浓度有机废水处理方法及其装置
CN213977104U (zh) 一种高效节能的芬顿流化床
CN211226822U (zh) 一种厌氧生物处理脱硫装置
CN111977846A (zh) 一种多级芬顿催化氧化处理高浓度有机磷农药废水的方法
CN216236452U (zh) 一种臭氧高级氧化水处理设备
CN211770557U (zh) 一种无运动部件的单步脱氮的序批式反应装置
CN215712429U (zh) 一种小型生活污水序批式活性污泥-电解设备
CN113105028B (zh) 一种液固流化床三维电解脱除有机物实现有机废水回用的系统及方法
CN211521745U (zh) 一种基于mbbr技术的污水处理设备
CN114149140A (zh) 一种己内酰胺生产废水处理方法
CN107188310A (zh) 一种强化缺氧‑好氧‑沉淀‑厌氧工艺污泥减量的方法
CN210393992U (zh) 一种Fenton处理难生物降解有机物的装置
CN206858246U (zh) 一种芬顿流化床反应器
CN110981044A (zh) 废水预处理催化还原反应器及废水预处理系统及其工艺
CN110862144A (zh) 一种厌氧生物处理脱硫的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857111

Country of ref document: EP

Kind code of ref document: A1